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    Chapter 1   
 Nanoparticles – Defi nitions                     

       Heinz     Mehlhorn    

        The prefi x  nano  has its origin in the Greek and Roman terms nannos/nanus, which 
describe dwarfs or dwarf-like stages of living organisms respectively similarly sized 
non-living structures, which of course at the time of their origin had been visible by 
help of naked eyes. The invention, ameliorations and use of light microscopes (e.g. 
Antony van Leeuwenhoek; 1632–1723) opened insights in the world of tiny struc-
tures, which were later enormously deepened by help of peculiar microscopes. Thus 
Ernst Ruska (1906–1988) invented 1931 the transmission electron microscope 
(honored by the Nobel Prize in 1986), Manfred von Ardenne (1907–1997) devel-
oped the scanning electron microscope in 1937 and fi nally Gerd Binnig and Heinrich 
Rohrer developed the so-called scanning tunneling microscope and were also hon-
ored by the Nobel Prize in Physics in the year 1986 (von Ardenne  1938a ,  b ; Binnig 
et al.  1982a ,  b ; Ruska  1987 ; Ruska and Knoll  1931 ; Knoll and Ruska  1932 ; 
Goldstein et al.  2003 ). These and several other new microscopical technologies 
(Table  1.1 ) made it possible to discover, to describe and to use a broad range of new 
very tiny structures of only a few nanometers in size, which at fi rst were named as 
“ultrafi ne particles” (Granqvist et al.  1976 ; Hayashi et al.  1997 ).

   However, soon afterwards these “ ultrafi ne particles ” were named  nanoparticles  
(Kiss et al.  1999 ; Buzea et al.  2007 ; Fahlman  2007 ; Khan  2012 ; Reiss and Hutten 
 2010 ; Gubin  2009 ). According to recent defi nitions these ultrafi ne particles and 
nanoparticles measure between 1 and 100 nm, whereby 1 nm is 1 × 10 −9  m. Tubular 
structures and fi bers with a size of below 100 nm are also termed nanoparticles. In 
literature there are described further categories of microparticles:  coarse particles  
covering a range between 2500 and 10,000 nm, while  fi ne particles  measure between 
100 and 2500 nanometers (nm). On the other hand the so-called nanoplancton in the 
different water biotopes is defi ned by a body size measuring between 7 and 15 μm. 

        H.   Mehlhorn      
  Department of Parasitology ,  Heinrich Heine University ,   Building 26.13.01 Room 42, 
Universitätsstr. 1 ,  Düsseldorf   D-40225 ,  Germany   
 e-mail: mehlhorn@uni-duesseldorf.de  
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Thus the trypanosomatid agent of sleeping sickness in cattle and ruminants, which 
occurs in the blood is now called  Trypanosoma congolense  and measures 7–18 μm 
in length, was formerly described as  Trypanosoma nannomonas  or  T. nanum  
(Wiesner and Ribbeck  1978 ; Mehlhorn  2016 ). 

 The term nanoparticles is only used for a special group of particles. Although 
they may exhibit size-related properties that differ not signifi cantly from those seen 
in  fi ne particles  or  bulk materials , the term is used only for a special group of par-
ticles. Individual molecules – even when ranging in the same size group – are never 
referred to as nanoparticles (Salata  2004 ; Taylor et al.  2013 ; Vert et al.  2012 ). 

 So-called  nanoclusters  have at least one dimension between 1 and 10 nm and 
show in general a very narrow size variation. The term  nanopowder  is given for 
agglomerates consisting of  ultrafi ne particles , defi ned amounts of  nanoparticles  or 
 nanoclusters . If  single crystals  are nanometer-sized, they were described as  nano-
crystals . The same term is used for single-domain  ultrafi ne particles . 

     Table 1.1    Size examples of cellular structures/components and viruses measured in nanometers   

 Structure/object  Size (nm) 

 H +  (hydrogen)  0.2 
 K +  (potassium)  0.3 
 Na +  (sodium)  0.36 
 O 2  (oxygen)  0.45 
 Mg+ (magnesium)  1.08 
 Ribosomes (80 s)  25 × 16 
 Ribosomes (70 s)  20 × 15 
 Cell membrane (diameter)  5–10 
 Microtubules in cilia, fl agella  25 
  Variola  = pox virus (DNA)  250 
 Papilloma virus (DNA)  53 
 Herpes virus (DNA)  150 
 Infl uenza virus (RNA)  100 
 Poliomyelitis virus (RNA)  20 
 Spring summer virus (Flaviviridae) (RNA)  70 
 Crimean-Congo haemorrhagic fever (CCHF) virus 
(Bunyaviridae) (RNA) 

 100 

 Chikungunya virus (Alpha-virus) (RNA)  100 
 Dengue virus (Flaviviridae) (RNA)  100 
 Yellow fever virus (Flaviviridae) (RNA)  100 
 Japanese encephalitis virus (Flaviviridae) (RNA)  100 
 West nile virus (Flaviviridae) (RNA)  100 
 American horse encephalitis virus (Alphavirus, 
Togaviridae) (RNA) 

 60–65 

 California encephalitis virus (Bunyaviridae) (RNA)  80–120 
 Rift valley virus (Bunyaviridae) (RNA)  80–120 
 Pappataci fever virus (Phleboviridae)  90–110 

H. Mehlhorn
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 Nanoparticles may be dissolved as suspensions, since interactions between the 
particle surface and the solvent is strong and thus may overcome density differ-
ences, which would lead to sinking or fl oating effects in the liquid. 

 There are different types of nanoparticles, which may either be solid or semi- 
solid, e.g.  liposomes  are of semi-solid nature and can be used as delivery systems 
for drugs and vaccines to enter the tissues of patients. Liposomes, which possess 
one hydrophilic and another hydrophobic half, are called  Janus  particles (being 
named after the Greek double-headed god of the beginning and the end and which 
was often placed at doors when used as entrance and exit). These  Janus particles  
stabilize emulsions and may self-assemble e.g. at water/oil interfaces thus possibly 
acting as solid surfactants. 

 Nanoparticles can be produced by help of different methods including  hydro-
thermal synthesis ,  attrition  or  pyrolysis . Inert gas condensation is used to create 
nanoparticles from several metals with low melting points. Another method of 
nanoparticle formation originates from radiation chemistry, where radiolysis occurs, 
when gamma rays lead to the creation of very active free radicals in a solution. In 
total there exists already a broad spectrum of different methods, which are used 
depending on the purpose, for which these nanoparticles will be used. Depending 
on their components the nanoparticles may appear as globules, nanospheres, nanor-
eefs, nanotubules, rods, fi bres, cups, nanoboxes etc. 

 For biological applications nanoparticles are used, which have a polar surface 
coating that is able to provide a high aquaeous solubility and prevents nanoparticle 
aggregation inside skin, blood or lymph vessels of patients treated by a peculiar type 
of drug containing nanoparticles. 

 To protect nanoparticles (when being used in drug traffi cking into a body) from 
attacks of the human immune system, they can be charged with red blood cell coat-
ings. Today more and more nanoparticles are used in applications for medical pur-
poses. In these cases common carriers are liposomes, iron oxide nanoparticles, 
polymeric nanoparticles, dendrimeres etc. To develop and to test nanoparticles a 
broad spectrum of chemical and physical methods had been developed as well as 
sophisticated microscopical techniques (Tables  1.1  and  1.4 ). 

 When studying by help of various techniques viruses (Fig.  1.1 ), bacteria (Figs.  1.2  
and  1.3 ), eukaryotic cells such as parasites (Figs.  1.4 ,  1.5 ,  1.6 ,  1.7 ,  1.8 ,  1.9 ,  1.10 , 
 1.11 ,  1.12 ,  1.13 ,  1.14 , and  1.15 ), it was found, that many very important cell/cyto-
logic components range in the world of nanometers (Tables  1.2 ,  1.3 , and  1.4 ). Even 
several hydrated chemicals reach into the size range of nanometers (1 nm = 10 −9 ). 
The size of the wavelength of light is measured in Ångström (Å) (honoring a 
Swedish scientist, 1814–1874), whereby 1 Å corresponds to 10 −10  m. As can be seen 
in Tables  1.1 ,  1.2 , and  1.3  viruses, bacteria and the typical parasites range in differ-
ent size leagues so that parasites may even contain and transmit viruses and bacteria 
(Mehlhorn  2010 ).

                    Furthermore parasitic protozoans contain and/or excrete vesicles called exo-
somes, ectosomes, microvesicles or microparticles in the nano range. Thus excre-
tion of exosomes measuring 40–100 nm is described in  Plasmodium berghei , 

1 Nanoparticles – Defi nitions
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 P. yoeli ,  Toxoplasma gondii ,  Trypanosoma cruzi , T.  brucei ,  Leishmania  species, 
 Giardia intestinalis ,  Trichomonas vaginalis . Excretion of microvesicles measuring 
0.1–1 μm is described in  Plasmodium vivax ,  P. falciparum ,  Trypanosoma cruzi  as 
well as in  Leishmania  species and in  Giardia intestinalis . Even apoptotic remnants 
of cells range in the general size measuring 1–3 μm in diameter (Mantel et al.  2013 ; 
Regev-Rudzki et al.  2013 ; Nantakomol et al.  2011 ; Cestari et al.  2012 ; Silverman 
et al.  2010 ; Deolindo et al.  2013 ; Twu et al.  2013 ; Geiger et al.  2010 ; Evans-Osses 
et al.  2015 ).    

  Fig. 1.1    Diagrammatic representation of the tick-transmitted Spring-summer meningoencephali-
tis viruses measuring only 70 nm       

  Fig. 1.2    Light micrograph 
of the gram-negative 
plague bacteria ( Yersinia 
pestis ), which are 
transmitted by fl eas and 
characterized by their 
bipolar staining. Their 
length is 1.5 × 0.5 μm       
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  Fig. 1.3    Light micrograph of a Giemsa stained blood smear showing stages of  Borrelia recur-
rentis , the agent of tick-borne relapsing fever (measuring 8–30 × 0.2–0.5 μm)       

  Fig. 1.4    Light micrograph of a host cell containing tachyzoites of  Toxoplasma gondii  (7 × 1.5 μm)       
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  Fig. 1.5    Electron micrograph of a  Toxoplasma gondii  tachyzoite showing the typical subpellicular 
microtubuli and the conoid, which also consists of (twisted) microtubules (ø 25 nm)       

  Fig. 1.6    Transmission electron micrograph of a longitudinal section of a tachyzoite of  Toxoplasma 
gondii  (7 μm). Note that the interior is fi lled by small spherical ribosomes. The rhoptries ( red ) have 
diameters of less than 0.1 μm. The nucleus is yellowish-green stained and has diameters of 1.5 μm       
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  Fig. 1.7     Plasmodium 
vivax . Light micrograph of 
a rather large Giemsa 
stained schizont inside a 
red blood cell measuring 
about 6 μm in diameter       
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  Fig. 1.8     Plasmodium 
falciparum . Scanning 
electron micrograph 
showing two protruded 
schizonts (~2–3 μm) and 
the typical whitish 
appearing surface knobs as 
a characteristic of an 
infected red blood cell       

  Fig. 1.9    Light micrograph 
of a Giemsa stained smear 
preparation of  Babesia 
canis  stages (mostly in 
fi nal stage of divisions) in 
dog red blood cells. They 
measure about 4–5 μm in 
length       
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  Fig. 1.10    Representation of a drawing of Robert Koch showing in Figs.  9 ,  10 ,  11  smear prepara-
tions of ray bodies = gametes of  Theileria parva  besides erythrocytes in tick intestine. Figures  47 , 
 48 ,  49  show growing schizonts in lymphocytes besides erythrocytes (From Grüntzig and Mehlhorn 
 2010 )       
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  Fig. 1.11    Transmission electron micrograph of a section through a schizont of  Cryptosporidium 
parvum  (Apicomplexa) showing merozoites with cross sections less than 0.8 μm in diameter       

  Fig. 1.12     Trypanosoma 
brucei rhodesiense . Light 
micrograph of Giemsa 
stained fl agellates scattered 
among human red blood 
cells (the latter have 
diameters of about 
7–8 μm)       
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  Fig. 1.13     Trypanosoma 
brucei . Scanning electron 
micrograph of a blood 
stage showing the typical 
fl agellum, which protrudes 
at the posterior end of the 
parasite and becomes free 
at the anterior one. These 
stages measure about 
20 µm in length       

  Fig. 1.14     Leishmania 
tropica . TEM of a 
longitudinal section 
through a 2 μm sized 
amastigote stage. Note the 
blue colored nucleus of the 
parasites and the reduced 
fl agellum (therefore the 
correct description is: 
micromastigote stage)       
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  Fig. 1.15     Leishmania 
tropica . Light micrograph 
of the remnants of a 
Giemsa stained 
macrophage, which was 
destroyed by 2 μm sized 
 Leishmania  parasites now 
surrounding the large host 
cell nucleus       

    Table 1.2    Size examples of Rickettsiales and bacteria   

 Organism  Vector  Size (μm)  Disease 

  Rickettsia prowazeki  (R)  Lice  0.8–2 × 0.3–0.5  Spotted fever 
  Rickettsia typhi  (R)  Fleas  0.8–2 × 0.3–0.5  Murine spotted fever 
  Rickettsia rickettsi  (R)  Ticks  0.8–2 × 0.3–0.5  Rocky Mountain spotted fever 
  Rickettsia conori  (R)  Ticks  0.9–1.6 × 0.3–0.5  Mediterranean fever 
  Rickettsia africae  (R)  Ticks  1 × 0.4  African tick bite fever 
  Orienta tsutsugamushi  (B)  Mites  1–1.5 × 0.5  Tsutsugamushi fever 
  Ehrlichia chaffeensis  (B)  Ticks  0.3–0.5  Ehrlichiosis 
  Anaplasma phagocytophilium  
(B) 

 Ticks  0.3–0.5  Anaplasmosis 

  Coxiella burneti  (B)  Ticks  0.3–0.5  Q–Fever 
  Borrelia burgdorferi  (B)  Ticks  20–30 × 0.2–0.3  Borreliosis 
  Yersinia pestis  (B)  Fleas  1–2 × 0.5  Plague 

   R Rickettsia  stage,  B  bacteria  
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    Table 1.3    Size of protozoan parasites   

 Species  Stage  Vector 
 Size 
(μm)  Disease 

  Trypanosoma brucei 
gambiense  

 Flagellated blood 
stage 

  Glossina  fl y  ~18  Sleeping sickness 

  Trypanosoma cruzi   Flagellated blood 
stage 

 Bugs, e.g. 
 Triatoma  spp. 

 ~18  Chagas disease 
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optical microscopy 
(SNOM) 
 Scanning tunneling 
microscopy 

 Low energy electron 
diffraction (LEED) 
 Nuclear magnetic 
resonance (NMR) 
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    Chapter 2   
 Bloodsucking Parasites as Vectors of Agents 
of Diseases Endangering Human and Animal 
Health                     

       Heinz     Mehlhorn    

2.1            Modes of Blood Uptake 

 Blood sucking arthropods (ticks, mites, insects) inject saliva into the skin of their 
hosts that has three main tasks:

    1.    to avoid feeling pain of the host during the injection of the mouthparts and dur-
ing the meal of the arthopods;   

   2.    to enlarge the host’s blood vessels in order to get an optimum amount of blood 
during sucking;   

   3.    to avoid coagulation and thus to keep the blood fl uid during the engorging 
process.     

 In order to get the blood in a most easiest way these arthropods have developed 
two principally different methods. There are two groups of blood ingestion: 

2.1.1     Vessel Feeders 

  Vessel feeders , e.g. mosquitoes, which inject their double channel mouthparts 
directly into the blood vessel of the host. One channel contains the above described 
saliva, while the other is used to engorge the fl uid kept blood (Figs.  2.16 ,  2.17 ,  2.18 , 
and  2.19 ).  

        H.   Mehlhorn      
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2.1.2     Pool Feeders 

 The members of this group belong to many different groups of arthropods including 
many genera of  ticks  and  mites  (Figs.  2.1 ,  2.2 , and  2.3 ),  lice  (Figs.  2.4a–c ,  2.5 , and 
 2.6 ),  bugs  (Figs.  2.7a, b ,  2.8 , and  2.9 ),  bloodsucking   fl ies  (Figs.  2.10 ,  2.11 ,  2.12 , and 
 2.13 ),  black   fl ies  (simuliids) (Figs.  2.20a–c ,  2.21 , and  2.22 ),  midges  (Figs.  2.23  and 
 2.24 )  tabanids  (Fig.  2.25 ) and  fl eas  (Figs.  2.25 ,  2.26a, b ,  2.27 , and  2.28 ), while typical 
fl ies (such as the house fl y  Musca domestica  or the wound fl y  Lucilia sericata  respec-
tively species of the genera  Sarcophaga  or  Calliphora ) have licking mouthparts 
(Figs.  2.14  and  2.15 ). Therefore these (typical) fl ies cannot pierce the body surface of 
potential hosts but lick e.g. at surface wounds of their animal or human hosts.   

2.2     Shape of Mouthparts 

 The different mouthparts of the different blood feeding arthropodan species, which 
are shown on diagrams, light micrographs and on scanning electron micrographs on 
Figs.  2.1 ,  2.2 ,  2.3 ,  2.4 ,  2.5 ,  2.6 ,  2.7 ,  2.8 ,  2.9 ,  2.10 ,  2.11 ,  2.12 ,  2.13 ,  2.14 ,  2.15 ,  2.16 , 
 2.17 ,  2.18 ,  2.19 , and  2.20  are composed of similar but differently structured append-
ages at the lower side of the head (Table  2.1 ; Figs.  2.1 ,  2.3 ,  2.4b, c ,  2.7a ,  2.10 ,  2.12a , 
 2.14 ,  2.16 ,  2.20a–c ,  2.24 , and  2.26a, b ). The size and shape of these mouthparts 
have been adapted during evolution according to the specialization with respect to 
the site of blood uptake and to their own body size.

2.3                            Host Finding 

 Recognition of potential hosts is differently achieved by the members of the various 
bloodsucker groups. While eyeless ticks (such as  Ixodes  species, Figs.  2.1 ,  2.2 , and 
 2.3 ) use their so-called Haller’s organ, which is placed at the anterior portion of their 
two anterior legs and which contains sensilla for the registration of the movements 
of smells and soil vibration of approaching potential hosts, to attach themselves at 
this host, ticks with eyes (e.g.  Dermacentor reticulatus ,  Hyalomma  species, 
 Rhipicephalus  species) are able to recognize potential hosts over distances of up to 
15 m and to crawl to them in a rather short time (often within a few minutes). 

 Mosquitoes (Fig.  2.16 ,  2.17 ,  2.18 , and  2.19 ) possess large compound eyes and 
thus may recognize potential hosts from far, however, fi nal approach and touch 
down to the skin depends on host-derived volatile smelling compounds, which are 
as individually specifi c that the hungry females show clear preferences not only 
with respect to different groups of hosts (e.g. animals and humans), but differentiate 
even among individuals of humans so that one person sleeping next to another may 
be attacked and the second not. 
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  Fig. 2.3    Diagrammatic representation of a female and male ixodid tick in copulation during 
attachment at a host.  A  anus,  BG  blood vessel,  BL  blood lacune,  CU  cutis,  ED  terminal portion of 
intestine,  EP  epidermis,  GÖ  female genital opening,  MS  channel of excretion system,  OV  ovary, 
 SP  salivary gland        

  Fig. 2.1    Diagrammatic 
representation of a 
longitudinal section 
through the mouthparts of 
a tick (e.g.  Dermacentor  
sp.).  CHS  muscle system 
of the sheath of the 
retractable cheliceres, 
which cut a hollow into the 
skin of the host,  H  
hypostome,  Ö  esophagus 
fi lled with ingested blood, 
 SD  salivary duct       

  Fig. 2.2    Scanning electron 
micrograph of the anterior 
portion of an adult female 
of  Ixodes ricinus        
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  Fig. 2.5    Light micrographs of females ( a ,  b ) and a male ( c ) of  Pediculus humanus capitis        

ca

b

  Fig. 2.4    ( a – c ) Sucking apparatus of lice. ( a ) Diagrammatic representation of a body louse during 
blood sucking. ( b ) Longitudinal section through the head of lice showing the sucking apparatus. 
( c ) Cross section through the anterior portion of the head of a louse.  CU  cuticle,  HY  hypopharynx, 
 KR  fecal particle,  LA  labrum (upper lip),  LB  labium,  M  mouth hollow,  MX  maxilla (surrounding 
ingested blood ( red )),  O  esophagus,  RI Rickettsia  stages (only in  Pediculus humanus corporis ),  RM  
retractor muscles,  SG  salivary gland excretion channel,  ST  sting-like system formed by labium, 
maxilla and hypopharynx       
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  Fig. 2.6    Scanning electron micrograph of a female adult louse of  Pediculus humanus corporis  and 
eggs attached at cloths       

a

b

  Fig. 2.7    Bed bug ( Cimex 
lectularius ). ( a ) Cross 
section through the 
proboscis, which includes 
the mouthparts in a 
channel. Both maxillae 
form together two 
channels: the larger upper 
one is used for 
transportation of the 
ingested blood ( N ), while 
the small one (below) 
introduces/transports the 
saliva into the wound 
during sucking. Below 
these channels the maxillae 
are cross-sectioned.  N  food 
channel,  P  proboscis. ( b ) 
Diagrammatic 
representation of the 
phases of injection of the 
mouthparts into the host’s 
skin.  LB  labium (erectable 
mouthpart channel),  P  
proboscis       
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  Fig. 2.9    Light micrograph 
of a raptor bug ( Triatoma  
sp.)       

  Fig. 2.8    Light micrograph 
of a bed bug ( Cimex 
lectularius ) and two eggs 
just excreted       
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 Fleas (Figs.  2.26a, b ,  2.27 , and  2.28 ) possess a single ocellum at both sides of 
their laterally depressed head, but their viewing capacity is rather limited. Thus 
soil/fl oor shakings due to movements of potential hosts are the main registration 
signs for their host selection. Their second famous ability – jumps of up to 
30 cm in length and height – then help them to reach the host. However, also the 

  Fig. 2.10    Diagrammatic representation of the mouthparts of  Stomoxys calcitrans  (stable fl y).  1  
Lateral aspect of the head.  2  Frontal aspect of the head.  3  Cross-section through the labium ( LB ) 
containing the blood sucking system.  AR  arista and antenna,  HA  haustellum,  HY  hypopharynx with 
saliva channel,  LA  labrum,  LB  labium,  LL  labellum with grooves to distribute the saliva,  MT  maxil-
lar toucher,  N  food channel       

  Fig. 2.11    Macrophoto of a stable fl y ( Stomoxys calcitrans )       
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  Fig. 2.12    Diagrammatic representation of a tsetse fl y and its mouthparts. ( a ) Total dorsal aspect; 
( b ) Antenna with three segments and arista; ( c ) cross-section through blood sucking system.  AB  
abdomen,  AR  arista,  D  discoidal fi eld of wings,  FA  compound eye,  HA  haltere,  HY  hypopharynx 
with saliva channel,  LA  labrum,  LB  labium,  MT  mesothorax,  N  food channel,  O  ocellus,  PT  pro-
thorax,  T  metathorax         
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odor of a host is a very important criterion, since there are clear preferences: a 
cat fl ea will enter predominantly the hair of the cat if there is a choice between 
man and cat. 

 Female black fl ies (simuliids) (Figs.  2.21  and  2.22 ) and midges (Figs.  2.23  and 
 2.24 ) as well as tabanids (Fig.  2.25 ) and males and females of biting fl ies (Figs.  2.11 , 
 2.12 ,  2.13 , and  2.25 ) possess each two large compound eyes and thus are able to 
recognize their potential hosts mainly by aspects of their movements at rather large 
distances. Thus it is common that they follow cyclists or moving hosts or recognize 
even from far tail movements of cattle and horses (Figs.  2.26 ,  2.27 , and  2.28 ).

  Fig. 2.13    Scanning electron micrograph of the sucking apparatus of a tsetse fl y ( Glossina  sp.)       

Fig. 2.12 (continued)
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  Fig. 2.14    Diagrammatic representation of the mouthparts of  Musca domestica  (house fl y).  1  
Lateral aspect of the head and mouthparts;  2  Labellum;  3  Frontal aspect of head;  4  Cross-section 
of the mouthpart channel system.  AR  arista,  AT  antenna,  CL  clypeus,  HA  haustellum,  HY  hypo-
pharynx with saliva channel,  LA  labrum,  LB  labium,  LL  labellum with grooves to distribute the 
saliva,  MT  maxillar toucher,  N  food channel       

  Fig. 2.15    Light micrograph of a fl y ( Musca domestica )       
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  Fig. 2.16    Diagrammatic representation of the mouthparts of a mosquito.  1  Lateral aspect of head 
(female);  2  Cross-section through blood sucking mouthparts:  3  Injection of the mouthparts into a 
blood vessel of the host.  AT  antenna,  HY  hypopharynx with saliva channel,  LA  labrum,  LB  labium, 
 MD  mandible,  MT  maxillar toucher,  MX  maxilla,  N  food channel       

a b c

  Fig. 2.17    Diagrammatic representation of the head and mouthparts of mosquitoes ( a – c ). Note that 
the antennae of males have a bushy aspect ( c ).  AT  antenna,  FA  compound eye,  MT  maxillar toucher, 
 R  labium       
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  Fig. 2.18    Light 
micrograph of a female 
 Anopheles stephensi  
mosquito, a potential 
vector of agents of malaria       

  Fig. 2.19    Scanning electron micrograph of a female  Anopheles stephensi  mosquito       

2.4               Types of Transmission of Agents of Disease 

 Since the mouthparts of all blood feeders, when retracted from the skin of a host 
after a successful blood meal, contain outer contaminations with remnants of the 
host blood, a mechanical transmission of agents of diseases is rather easy, especially 
in cases of a potential transmission of agents of diseases belonging to the groups of 
small sized viruses, bacteria and protozoans. Of course the success of such an acci-
dental transmission depends on the amount of viable agents of disease inside the 
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attacked host. But in regions with high rates of endemicity of viruses, bacteria and/
or parasites risks due to  accidental transmission  is high (Table  2.2 ) as can be seen 
in the recommended literature listed at the end of this chapter.

    Cyclic transmission  (Table  2.2 ) of parasites, bacteria and viruses is very com-
mon as it is shown in Table  2.2 , where, however, only a few examples of the very 
common and widely spread diseases are listed. Thus billions of humans and their 
house animals are endangered by arthropod-transmitted diseases. Therefore the 
individual protection from bites of bloodsucking arthropods by use of repellents is 
highly needed on one side, but also on the other side trials to eradicate or to reduce 
the number of arthropod vectors in the surroundings of humans and house animals 
must be done at the same time (see Chap.   3    ).     

a b

c

  Fig. 2.20    Diagrammatic representation of the head and mouthparts of black fl ies ( Simulium  sp.). 
( a ) Head of female. ( b ) Head of a male. ( c ) Cross-section through mouthparts.  AT  antenna,  CL  
clypeus,  FA  compound eye,  GF  large facettes,  HY  hypopharynx with saliva channel,  KF  small 
facettes,  LA  labrum,  LB  labium,  MD  mandible,  MT  maxillar toucher,  MX  maxilla,  N  food channel       
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  Fig. 2.21    Light micrograph of a black fl y ( Simulium  sp.)       

  Fig. 2.22    Scanning electron micrograph of a female black fl y ( Simulium  sp.)       
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  Fig. 2.23    Light micrograph of a midge ( Culicoides obsoletus )       

  Fig. 2.24    Scanning electron micrograph of a midge ( Culicoides obsoletus )       
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  Fig. 2.25    Light micrograph of a horsefl y ( Chrysops  sp.)       

a b

  Fig. 2.26    Diagrammatic representation of the head ( a ) and mouthparts ( b ) of fl eas.  AT  antenna, 
 AU  eye,  B  blood inside food channel,  L  lacini,  LB  labium,  LT  labial toucher,  MT  maxillar toucher, 
 SP  saliva channels       
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  Fig. 2.27    Light micrograph of the human fl ea ( Pulex irritans )       

  Fig. 2.28    Scanning electron micrograph of the human fl ea ( Pulex irritans )       
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     Table 2.2    Transmission of agents of diseases by arthropods (important examples)   

 Vectors  Cyclic transmission 
 Accidental by mechanical 
contamination 

 Reduviidae (BU)   Trypanosoma cruzi  (P)  ? 
  Pediculus humanus 
capitis , 
  Phthirus pubis  (L) 

 – 
 – 

 ? 
 – 

  Pediculus humanus 
corporis  (L) 

  Rickettsia prowazeki  (B), 
  Bartonella quartana  (B), 
  Borrelia recurrentis  (B) 

 Hepatitis A, B; other viruses 

  Anopheles  species (M)   Plasmodium  species (P), 
 Filarial worms (N), 
 Viruses (V) 

 ? 

  Aedes  species (M)  Filarial worms (N), 
 Viruses (V) 

 ? 

  Culex  species  Filarial worms (N), 
 Viruses (V) 

 ? 

  Simulium  species  Arboviruses (V), 
 Filarial worms (N) 

 Viruses 

  Culicoides  species (MI)  Viruses (e.g. Bluetongue virus in 
cattle) 

 Viruses, bacteria 

 Phlebotomidae (S)   Leishmania  species (P), 
 Arboviruses (V), 
  Bartonella bacilliformis  (B) 

 ? 

 Glossinidae (T)   Trypanosoma brucei  (P)  Bacteria, viruses 
 Muscidae (F)  –  Bacteria, viruses, protozoans, 

worm eggs, fungi 
 Stomoxyidae (F)  –  Bacteria, viruses, protozoans 
 Pulicidae (FL)   Yersinia pestis  (B), 

  Rickettsia  species (B) 
 Bacteria, viruses 

 Noctuidae (BF), males  –  Viruses (hepatitis B) 
 Argasidae (TI)   Borrelia  species (e.g.  Borrelia 

duttoni ) (B) 
 Viruses, bacteria 

 Ixodidae (TI)   Anaplasma  species (B), 
  Rickettsia  species (B), 
  Borrelia  species (B), 
 Viruses (e.g. Flavivirus, Nairovirus, 
Coltivirus, Bunyavirus) (V) 

  Coxiella burneti  (B) 

 Dermanyssidae (MIT)   Rickettsia acari  (B)  Viruses 
 Trombiculidae (MIT)   Orienta tsutsugamushi  (B)  Viruses 

  According to Krenn and Aspöck ( 2010 ) 
  B  bacteria,  BF  butterfl ies,  BU  bugs,  F  fl ies,  FL  fl eas,  L  lice,  M  mosquitoes,  MI  midges,  MIT  mites, 
 N  nematode,  P  protozoa,  RI  rickettsiales,  S  sandfl ies,  T  tsetse fl y,  TI  ticks,  V  viruses  
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    Chapter 3   
 Available Means to Control Bloodsucking 
Ticks, Mites and Insects – An Overview                     

       Heinz     Mehlhorn    

3.1            Introduction 

 Ticks, mites and insects are important members in the pyramid of living organisms 
on earth, whereby most species serve as food for predators, while others control the 
amounts of predators by weakening them or even killing them due to blood sucking 
or by transmission of agents of diseases. On the other side plants, which belong to 
the food of numerous insects, have also developed measurements to survive in the 
struggle for life. These measurements were mainly based on the production and 
release of substances, which have either repellent or killing effects. Some of the 
available plant-derived compounds have both properties: repellency and insecti-
cidal/killing activity. At the early days of mankind humans learnt to use the plant- 
derived compounds for their own protection (Faulde  2010 ; Nentwig  2003 ; Amer and 
Mehlhorn  2006a ,  b ,  c ,  d ). However, since these rather specifi c products have mostly 
only rather poor or short-lasting effects on insects and other arthropods attacking 
humans, the latter started to develop chemical repellents and insecticides/arthropodo-
cides, the effi cacy of which, however, nowadays is threatened by increasing resis-
tancy among the billion-headed aggressors (Figs.  3.1 ,  3.2 ,  3.3 ,  3.4 ,  3.5 , and  3.6 ). 
Thus development of new approaches in the fi ght against arthropods that endanger 
health of humans and/or their food production, are highly needed. Therefore the 
introduction of nanoparticles as carriers of insecticides seem to be a very promising 
method to overcome recent lacks in arthropod control (Rai et al.  2014 ). 

 Humans have developed two main strategies in the fi ght against arthropods:

    (a)    Use of so-called repellents (from Latin repellere = to repulse, to push away, 
reject).   
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   (b)    Development of so-called arthopodocides/insecticides = products that kill 
aggressors belonging to the group of ticks, mites or blood-feeding respectively 
food or material destroying insects.      

3.2     Repellents 

 Especially mosquitoes and fl ies can be kept away from their blood donors by help 
of plant-derived repellent compounds or by chemical substances, which both hide 
the hosts from attacking bloodsuckers by covering the attractive skin odor, which 
consists of a clearly individual mixture of about 40 compounds such as carboxyl 
ammonia, lactic acid, carbon dioxide etc. (Smallegange et al.  2005 ). The special 
odor of each person or animal, which is more or less intense in the air surrounding 
a host (and the clothes of humans, too) are noted by a huge number of receptors of 
an extremely high number of at least fi ve types of sensilla (olfactoric chemorecep-
tors), which are situated densely on the antennae of blood sucking insects or at the 
pedipalps and forelegs (Haller’s organ) of ticks (Davis  1985 ; Mehlhorn  2015 ; 
Sonenshine  1991 ,  1992 ) (Figs.  3.1 ,  3.2 ,  3.3 ,  3.4 ,  3.5 , and  3.6 ).

3.2.1            Plant Derived Repellents 

 This group of active compounds includes:

 –    essential oils,  
 –   short chain fatty acids,  
 –   coconut fatty acids.    

  Fig. 3.1    Light micrograph of a female mosquito of  Aedes  sp. Note the tiny antennae, which bear, 
however, numerous very short sensilla       
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  Fig. 3.2    Scanning electron micrograph of the frontal aspect of a female  Anopheles  mosquito 
showing the long antennae       

  Fig. 3.3    Diagrammatic representation of the head and antennae of male and female mosquitoes. 
 AT  antennae,  FA  compounds eye,  MT  maxillar toucher,  R  labium       

 Amer and Mehlhorn ( 2006c ) tested 41 essential oils and summarized as Nentwig 
( 2003 ) the fi ndings in this fi eld. However, depending on the concentrations rather 
very short lasting protection rates were found. Increasing the concentrations of 
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these plant extracts also increases considerably the risk of development of allergic 
reactions of the user’s body. Thus products based on such extracts leave a consider-
able risk of the transmission of agents of diseases in regions, where malaria, dengue 
fever, yellow fever etc. are endemic.  

3.2.2     Chemical Derived Repellents 

 These products, the number of which was recently considerably reduced by legal obli-
gations of the European Community. Thus there are rather few compounds left: e.g. 
DEET (di-ethyl-toluamid), IR 3535 ((N-n-butyl-N-acetyl)-aminoproprionacidethylester), 
Icaridin/Saltidin (2-(2-hydroxyethyl)-piperidin-1- carbonic acid-1-methylpropyles-
ter), perhaps also an  Eucalyptus  derivative (paramenthan-diol) 

  Fig. 3.4    Scanning electron micrograph of the anterior end of a nymph of  Ixodes ricinus  showing 
the thorny injection system and the pedipalps       

  Fig. 3.5    Scanning electron micrograph of the foreleg of  Ixodes ricinus  showing the depression of 
the so-called Haller’s organ with the  reddish  painted tips of sensillae       
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 Dimethylphthalate (DMP) was the fi rst relevant compound being introduced in 
1929 in a wider spectrum of countries. Its activity = protection period, however, was 
rather short and also only a limited number of arthropod species were kept away from 
treated bodies. Today this compound is considered as harmful for the skin, but is still 
used as means to soften and/or dilute other compounds (Legrum  2011 ; Lorz et al. 
 2007 ). Further research activities in this fi eld led to the launching of indol and 2-ethyl-
1,3-hexandiol (Rutgers 612) as new repellents (wikipedia.org/wiki/indol). Since these 
products had also rather weak repellent effects, research went on – especially in the 
laboratories of the Army of the United States of America. In large series of experi-
ments the substance Diethyltoluamid (DEET) was detected in the year 1942 and fi rst 
used by American soldiers in Asia during the so-called Korea war (1950–1953). 
Further intense research activities made it possible that DEET was offered in the year 
1955 to the civil population in the USA and in other countries worldwide, where it is 
up to now the most commonly used repellent (Barnard  2000 ; Barnard et al.  2012 ; 
Nauke et al.  2006 ; Nentwig  2003 ), although wrong applications led to severe health 
damages – even death cases have been reported in relevant scientifi c journals (Reuveni 
and Yagupski  1982 ; Stinecipher and Shaw  1997 ; Tenebein  1987 ; Faulde  2010 ). 

 These potential health problems due to DEET and also the facts, that this com-
pound leads to a glueing feeling on the skin combined with a bad smelling, that it 
destroys plastics (e.g. bracelets of watches, belts, shoes etc.) and that it has only a 
rather poor activity against ticks, made it necessary that many governmental insti-
tutes and private chemical companies started intense research projects. 

 In the year 1969 scientists of Merck company synthetized the chemical com-
pound (N-n-butyl-N-acetyl)-amino-propionacidethylester (IR 3535). 

 Bayer (Germany) succeeded after long series of thousands of tests by the fi nding 
of KBR 3021, which now is named Saltidin, after passing a long list of different 
compound names (Bayrepel, Propidin, Picaridin, Icaridin etc.). This product was 
tested worldwide and showed a broad and safe effi cacy against an extremely widely 
spectrum of bloodsuckers besides offering very high health safety parameters 
(Semmler et al.  2011 ). 

  Fig. 3.6    Diagrammatic representation of the Haller’s organ and its nerves of an  Ixodes  tick.  Blue  
nerves,  yellow  glands,  other colors  different types of sensitive nerve cells       
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 The chemical compound p-menthane-3,8-diol was isolated from oil of the 
citron- eucalyptus tree ( Eucalyptus maculata citridon ), but has a less long and 
less broad effi cacy against blood suckers compared to DEET and Saltidin/
Icaridin.   

3.3     Insecticides and Acaricides 

 If it is needed to control insects, ticks and mites by diminishing their number (and not 
only to keep them away from human and animal bodies) at given surroundings, the 
use of insecticides and/or acaricides is obligatory. Most of those biocidal acting com-
pounds have polytoxic effects showing combinations of the following effects (Faulde 
 2010 ; Koren et al.  2003 ; Perrotey et al.  2002 ; Amer and Mehlhorn  2006a–d ):

 –    killing effects,  
 –   knock-down effects,  
 –   fl ushing-out effects,  
 –   hot feet effects,  
 –   detaching effects,  
 –   antifeedant effects and even  
 –   repellent effects.    

 These biocides may be based on

 –    natural and/or  
 –   synthetized chemical compounds.    

3.3.1     Natural Compounds 

 Natural compounds are included in plant oils (e.g. neem oil), fungal extractions 
(abamectins), bacterial contents (toxins of  Bacillus thuringensis ) or in dusts pro-
duced from diatomeans respectively based on natural pyrethroids obtained e.g. from 
 Chrysanthemum  plants.  

3.3.2     Synthetic Compounds 

 Synthetic compounds have their origin in

 –    amorgic substances (e.g. boreal acid) or  
 –   organic chemicals such as pyrethroids (e.g. permethrin, allethrin), carbamates, 

organophosphates etc.    
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 All these products act primarily neurotoxic on different regions of the peripheral 
nerve system and/or on the “brain” ganglia of the target organisms by different 
mechanisms such as e.g.:

 –    blocking of neurotransmitters,  
 –   blocking of GABA receptors or their antagonists,  
 –   blocking of the acetylcholine esterase.    

 These synthetical insecticidal compounds have, however, several disadvantages, 
since

 –    there exist already a broad spectrum of resistances with respect to many 
substances,  

 –   several compounds have a very high toxicity,  
 –   rain can wash them down from walls or from fur of animals thus requiring cost-

ful repeated treatments,  
 –   they may become transported by hand-mouth contacts into the intestinal tract of 

humans and thus leading to intoxication,  
 –   may be licked off from walls, fences etc. by cattle, sheep, horses etc. – also 

increasing the risk of intoxication.    

 With respect to all these above described problems, the nanotechnology based 
inclusion of insecticides/acaricides within extremely tiny particles is a very promis-
ing technique that will help to solve – or at least – to minimize the above cited 
problems.      
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    Chapter 4   
 Available Compounds, Methods and 
Means to Control Protozoan and 
Helminthic Parasites                     

       Heinz     Mehlhorn    

4.1            Introduction 

 Parasites in a strict sense belong to the animal phylum groups of

•    Protozoa  
•   Metazoa with its subgroups of

 –    Myxosporea  
 –   Platyhelminthes

 –    Trematodes (Mono-, Digenea = fl ukes)  
 –   Cestodes (tapeworms)     

 –   Nemathelminthes (roundworms)  
 –   Acanthocephala (thorny-headed worms)  
 –   Annelida (sic leeches)  
 –   Pentastomida (tongue worms)  
 –   Arachnida (mites, ticks)  
 –   Insecta (insects)  
 –   Crustacea (crustaceans)       

 The members of the animal group of parasites have developed highly sophisti-
cated methods to enter potential hosts (humans, animals), to survive inside their 
hosts and to give rise to offspring, which is able to survive outside the host. Thus a 
successful elimination of infections by parasites needs strategies that comprise a 
broad spectrum of measurements. The following approaches are needed:

 –    development of broad spectrum and specialized diagnostic methods,  
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 –   development of medicaments to treat internal parasitosis,  
 –   development of acaricides and insecticides,  
 –   development of repellent compounds, which prevent skin penetration,  
 –   development of immunological protection by vaccines,  
 –   development of methods and tools of cleaning, sterilization respectively disin-

fection of working places, equipment, dwellings, hospitals, stables etc.,  
 –   development of prophylactic protection from infections by establishment of 

hygienic standards and their constant control and amelioration as well as in sta-
bles, dwellings and in surroundings of humans and farmed animals,  

 –   development of methods of elimination of human and animal feces,  
 –   development of methods to avoid entrance of particles of human and animal 

feces in lakes, rivers and drinking and bathing water,  
 –   development of urgency plans to minimize consequences in case one of the 

described targets had been missed.     

4.2     Available Medications against Parasites (Selected 
Compounds) 

4.2.1     Chemical Compounds 

4.2.1.1     Antiprotozoal Compounds and Target Species and Genera 

 –     Albendazol ( Giardia   lamblia ,  Echinococcus  species)  
 –   Allopurinol ( Leishmania  species)  
 –   Amphothericin ( Acanthamoeba ,  Naegleria )  
 –   Atovaquon-Proguanil ( Plasmodium  species)  
 –   Chloroquin ( Plasmodium vivax )  
 –   Clindamycine ( Toxoplasma gondii ,  Neospora ,  Babesia )  
 –   Cotrimoxazole ( Isospora belli ,  Cyclospora cayetanensis ,  Enterocephalitozoon  sp.)  
 –   Doxycyclin ( Plasmodium  species)  
 –   Diclazuril (Coccidia)  
 –   Efl ornithin ( Trypanosoma  species)  
 –   Emodepsid + Toltrazuril ( Isospora )  
 –   Fenbendazole ( Giardia ,  Encephalitozoon )  
 –   Furazolidon ( Giardia )  
 –   Halofuginone (Coccidia,  Theileria  species)  
 –   Imidocarb ( Babesia  species,  Hepatozoon  species)  
 –   Lasalocid (Coccidia)  
 –   Manduramycin (Coccidia)  
 –   Mefl oquin ( Plasmodium  species)  
 –   Meglumantimonat ( Leishmania donovani )  
 –   Metronidazole ( Giardia ,  Blastocystis ,  Trichomonas vaginalis )  
 –   Miltefosin ( Leishmania  species)  
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 –   Monensin (Coccidia)  
 –   Narasin (Coccidia)  
 –   Nifurtimox ( Trypanosoma cruzi )  
 –   Nitroimidazole ( Balantidium coli ,  Entamoeba histolytica )  
 –   Pyrimethamine + Sulfonamides ( Toxoplasma gondii )  
 –   Pyrimethamine ( Toxoplasma gondii )  
 –   -Robenidin ( Eimeria  species)  
 –   Salinomycin (Coccidia)  
 –   Semduramycin (Coccidia)  
 –   Sodium stibogluconate ( Leishmania donovani ,  Leishmania  species)  
 –   Spiramycin ( Toxoplasma gondii )  
 –   Sulfadiazin ( Toxoplasma gondii )  
 –   Suramin ( Trypanosoma cruzi )  
 –   Toltrazuril ( Eimeria  species)          
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5.1           Introduction 

 The fi eld of nanotechnology is a standout amongst the most dynamic ranges of in 
cutting edge materials science. New uses of nanoparticles and nanomaterials are 
rising quickly (Jahn  1999 ; Dickson  1999 ; Naiwa  2000 ). Nanotechnology is per-
ceived as a progressive assembling innovation of the twenty-fi rst century, includ-
ing multidisciplinary exploration issues that depend on the comprehension and 
control of substances at the nano-scale length. Human hair and red blood cell, are 
pretty nearly 80,000 and 7000 nm wide, are littler than 1 nm, though numerous 
particles including a few proteins range somewhere around 1 nm and bigger 
(Whitesides  2003 ). Nanotechnology includes the customizing of materials at the 
atomic level to achieve remarkable properties, which can be suitably manipulated, 
controlled for the craved applications (Gleiter et al.  2003 ). The center for phyto-
synthesis has moved from physical and compound procedures towards green sci-
ence and bioprocesses (Vigneshwaran et al.  2007 ). As of now, there is a developing 
need to grow naturally big-hearted nanoparticle union procedures that don’t uti-
lize dangerous chemicals in blend convention (Whitesides  2003 ). Nanotechnology 
has made a sort of upheaval as this new zone includes physical science, science, 
materials science, building, science and prescription. A few applications are 
imagined from these intriguing materials in the fi eld of sensors (Haes and Van 
Duyne  2004 ), catalysis (Roucoux et al.  2002 ), symptomatic instruments (Rosi 
and Mirkin  2005 ), remedial operators (Chen and Wang  2006 ), medication/quality 
conveyance vehicles (McAllister et al.  2003 ), sun based cells (Anderson and Lian 
 2005 ), plasmonics gadgets (Zou and Schatz  2006 ), beautifi ers (Cengiz et al. 
 2006 ), covering materials (Baglioni and Giorgi  2006 ), phone imaging (El-Sayed 
et al.  2005 ), power modules (Fichtner  2005 ) and photonic band crevice materials 
(Moran et al.  2004 ). 

5.1.1     Nanoscaled Materials 

 The general vision of nanoscience depends unequivocally on the capacity of making 
and controlling matter at the nanoscale (Murphy  2002 ). The examination in 
nanoscaled matter started to become exponentially when it got to be perceived that 
the mass properties of materials change radically as their sizes diminish from the 
mass material to small clusters of atoms (Service  2004 ). Suitable control of the 
properties of nanometer-scale structures can prompt new science and in addition 
new items, gadgets and advancements (Rao and Cheetham  2001 ). Two important 
variables are in charge of bringing on the properties of nanoscaled materials to vary 
fundamentally from their conduct in mass condition. The expanded relative surface 
zone and size ward properties start to rule when the matter is lessened to the 
nanoscale. These impacts can’t just change the synthetic reactivity and quality defi -
nitely, additionally the electrical, optical and warm attributes.  
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5.1.2     Synthesis of Nanoparticles 

 The synthesis of inorganic nanomaterials has been exhibited by a few systems 
including physical, concoction and organic. A portion of the physical courses 
prompting fruitful combination of nanophase materials, particularly the noble metal 
nanoparticles include vapour deposition (Choi et al.  2002 ; Perekrestov  2005 ), ther-
mal decomposition (Hou et al.  2004 ; Lee and Kang  2004 ), spray pyrolysis (Kim 
et al.  2002 ; Suh and Suslick  2005 ), photo irradiation (Esumi et al.  1995 ; Sakamoto 
et al.  2006 ; Jia et al.  2006 ), laser removal (Cai et al.  1998 ; Zhu et al.  2006 ), ultra-
sonication (Suslick et al.  1996 ; Wu et al.  2006 ), radiolysis (Doudna et al.  2003 ) and 
solvated metal molecule scattering (Davis and Klabunde  1982 ; Stoeva et al.  2002 ). 
Nonetheless, substance techniques for synthesis of metal nanoparticles have been 
better known and have increased wide acknowledgement. A portion of the regular 
concoction courses incorporates a sol-gel system (Devarajan et al.  2005 ; Shukla and 
Seal  1999 ), solvothermal (Gao et al.  2005 ) and galvanic replacement reaction 
(Liang et al.  2004 ; Shukla et al.  2005 ). Chemical reduction has been the most popu-
lar famous course towards blend of metal nanostructures because of simple conven-
tions and the fi ne shape and size control gave by this strategy. The control over size, 
shape, dependability and the gathering of nanoparticles is accomplished by fusing 
distinctive topping specialists, solvents and layouts. Topping operators that have 
been utilized, range from straightforward particles to polymeric atoms and even 
biomolecules (Toshima et al.  1991 ; Toshima and Wang  1994 ). 

 Albeit, in the course of recent decades, physical and chemical methods have 
commanded the amalgamation of nanostructures, as of late signifi cant consideration 
has been paid towards the utilization of organic frameworks. Natural frameworks 
have been known not mind boggling structures at the small scale and nano-scales 
with exact control in typical ecological conditions. The wonderful siliceous exo-
skeletons of the diatoms and radilarians (Mann  1993 ; Kröger et al.  1999 ) and cal-
careous structures orchestrated by the coccoliths (Young et al.  1999 ) were micro 
scale materials, which have pulled in enormous hobby. This has attracted research-
ers to comprehend the hidden instruments utilized by the organic frameworks and 
consequently, investigate the biomimetic methodology towards combination of 
nanomaterials. Opened up the doors for the utilization of organic frameworks for 
the combination of silver nanoparticles (Ag NPs) accounted for by Klaus et al. 
( 1999 ) utilizing the periplasmic space of the microbes  Pseudomonas stutzeri  
(AG259). A few microscopic organisms  Escherichia coli ,  Pseudomonas aeruginosa  
(Sondi and Salopek-Sondi  2004 ; Konishi et al.  2004 ; Husseiny et al.  2007 ; 
Hernández-Sierra et al.  2008 ), S-layer microorganisms like  Pseudomonas stutzeri  
AG259 (Pum and Sleytr  1999 ; Sleytr et al.  1999 ), fungi like  Fusarium oxysporum , 
 Colletotrichum  sp.,  Aspergillus fumigatus  (Mukherjee et al.  2002 ; Duran et al.  2005 ; 
Mandal et al.  2006 ; Bhanska and D’Souza  2006 ), algae,  Padina pavonica  (Hosea 
et al.  1986 ) and plants like  Pelargonium graveolens ,  Piper longum ,  Desmodium 
trifl orum  and  Andrographis paniculata  (Armendariz et al.  2004 ; Ahmad et al.  2011 ; 
Jacob et al.  2012 ; Suriyakalaa et al.  2013 ) have been utilized for the amalgamation 
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of diverse nanoparticles with distinctive shapes, sizes and compositions. Cell-free 
culture supernatants of fi ve psychrophilic bacteria,  Pseudomonas antarctica , 
 Pseudomonas proteolytica ,  Pseudomonas meridiana ,  Arthrobacter kerguelensis  
and  Arthrobacter gangotriensis  and two mesophilic bacteria,  Bacillus indicus  and 
 Bacillus cecembensis  have been used to synthesize Ag NPs (Shivaji et al.  2011 ). 
Synthesis of gold nanoparticles using seed aqueous extract of  Abelmoschus esculen-
tus  (Jayaseelan et al.  2013b ). An ecofriendly, ambient temperature protocol for size 
controlled synthesis of gold nanoparticles, using the fungus,  Aspergillus terreus  
(Priyadarshini et al.  2014 ). Two model organisms have primarily been used to study 
the production and application of bio- Palladium like the sulfate reducing bacte-
rium,  Desulfovibrio desulfuricans  (Lloyd et al.  1998 ) and the metal-respiring bacte-
rium,  Shewanella oneidensis  (De Windt et al.  2006 ). Synthesis of copper oxide 
nanoparticles using Serratia sp., a Gram-negative bacterium was reported (Hasan 
et al.  2007 ). Biosynthesis of ZnO NPs using reproducible bacteria,  Aeromonas 
hydrophila  as eco-friendly, reducing and capping agent (Jayaseelan et al.  2012 ). 
Eco-friendly and reproducible microbes,  Bacillus subtilis  mediated biosynthesis of 
TiO 2  nanoparticles (Kirthi et al.  2011 ).  

5.1.3     Properties of Nanoparticles 

 Bulk materials have generally steady physical properties paying little mind to their 
size, but at the nanoscale this is regularly not the situation. As the material gets to be 
littler, the rate of molecules at the surface builds with respect to the aggregate num-
ber of particles of the material bulk. This can prompt surprising properties of 
nanoparticles, which are incompletely because of the surface of the material com-
manding over the mass properties. At this scale, the surface-to-volume proportions 
of materials turn out to be extensive and their electronic vitality states get to be 
discrete, prompting special electronic, optical, attractive and mechanical properties 
of the nanomaterials. When all is said in done, as the span of inorganic and natural 
materials diminishes towards the nanoscale, their optical and electronic properties 
to a great extent fl uctuates from the mass material at the nuclear/atomic levels and 
is size and shape subordinate. In this way, the crystallographic surface structure and 
huge surface to volume proportion make the nanoparticles showed amazing proper-
ties. In addition, the expanded reactant action because of morphologies with excep-
tionally dynamic features and the customizing of its amalgamation according to the 
necessity makes the nanoparticles an appealing instrument to tackle different inno-
vative issues (Gupta and Gupta  2005 ; Jamieson et al.  2007 ). 

 In the fi eld of pharmaceutical, nanoparticles are being investigated broadly due to 
their size dependant concoction and physical properties. The span of nanoparticles is 
like that of most organic particles and structures. This makes them an intriguing con-
tender for application in both  in vivo  and  in vitro  biomedical exploration. The conse-
quence of their combination in the fi eld of pharmaceutical has prompted their 
application basically in focused on medication conveyance, imaging, detecting and 
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counterfeit inserts. Another intriguing parkway for their investigation in medication 
is their utilization as antimicrobials to target exceedingly pathogenic and drug safe 
organisms. Yet, for the use of nanoparticles in science, biocompatibility is a much 
fancied attribute. Biocompatibility is the materials capacity to perform medicinally 
without effort of undesired nearby or systemic impacts (Samia et al.  2006 ).  

5.1.4     Biomedical Nanotechnology 

 Nanotechnology offers new answers for the change of biosystems and gives a wide 
mechanical stage to applications in a few regions like bioprocessing in the industry 
and atomic solution like the location and treatment of diseases, body part substitution 
and regenerative pharmaceutical, nanoscale surgery, blend and focused on convey-
ance of medications (Bugunia-Kubik and Susisaga  2002 ; Schmidt and Montemagno 
 2002 ). Researching the well being impact of nanostructures in nature contamination 
by nanoparticles (Keanea et al.  2002 ), eco-toxicology (Moore  2002 ; Borm et al. 
 2006 ), enhancing sustenance and horticultural frameworks, improving rural yield, 
new nourishment items, nourishment preservation (Chen  2002 ) and enhancing 
human execution like upgrading sensorial limit, uniting cerebrum and psyche, incor-
porating neural frameworks with nanoelectronics and nanostructured materials. 
Polymers have additionally been utilized to grow new conveyance strategies for per-
forming helpful capacities  in vivo  and to build nanostructured platforms for medica-
tion conveyance with around 97 % porosity. The nanoparticles were utilized for DNA 
conveyance into cells (Zhu et al.  2002 ; Quintana et al.  2002 ). Biocompatible inserts 
to supplant harmed or worn body parts and tissue building at the nanoscale (Mcintire 
et al.  1998 ) to make bioartifi cial organs. Nanotechnology guarantees to lessen geno-
typing by two requests of greatness, permitting relationship between hereditary vari-
eties and maladies to be uncovered (Galvin  2002 ). It has been reported that 
medicinally valuable angiosperms have the greatest potential for synthesis of metal-
lic nanoparticles with respect to quality and quantity (Song and Kim  2009 ). 
Biosynthesized Ag NPs are used in the label-free colorimetric assay to detect enzy-
matic reactions, (Wei et al.  2008 ), surface plasmon resonance studies (Turney et al. 
 2004 ; Kundu et al.  2004 ), antimicrobial materials (Duran et al.  2005 ), anti-viral and 
anti-HIV studies (Elechiguerra et al.  2005 ). Ag NPs have been found to have applica-
tions in various fi elds. Insecticide applications, although highly effi cacious against 
the target species vector control, is facing a threat due to the development of resis-
tance to chemical insecticides resulting in rebounding vectorial capacity (Liu et al. 
 2006 ). Biosynthesis approaches that have advantages over conventional methods 
involving chemical agents associated with environmental toxicity and eco-friendly 
bio-organisms contain proteins, which act as both reducing and capping agents form-
ing stable and Shape-controlled TiO 2  NPs. This method of biological TiO 2  NPs pro-
duction provides rates of synthesis faster or comparable to those of chemical methods 
and can potentially be used in various human contacting areas such as cosmetics, 
foods and sunscreen products applications (Quadros and Marr  2010 ).  
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5.1.5     Green Synthesis of Nanoparticles 

 The methods for getting nanoparticles utilizing normally happening reagents, for 
example, vitamins, sugars, plant concentrates, biodegradable polymers, and micro-
organisms as reductants and topping operators could be viewed as appealing for 
nanotechnology. Plant parts, for example, leaf, root, latex, seed and stem are being 
utilized for metal nanoparticle synthesis. Greener amalgamation of nanoparticles 
gives progression over different systems as it is straightforward, savvy and gener-
ally reproducible and frequently brings about more steady materials (Kalaiarasi 
et al.  2010 ). Microorganisms can likewise be used to create nanoparticles, however 
the rate of combination is moderate and just predetermined number of sizes and 
shapes are managable contrasted with courses including plant based materials. At 
present, organisms are increasing overall ubiquity as nano-production lines for the 
green combination of nanoparticles (Dhillon et al.  2012 ). By and large, organic 
materials give a domain amicable or greener compound system to deliver important 
materials in light of the fact that the biomaterial based courses kill the need to utilize 
unforgiving or lethal chemicals (Parsons et al.  2007 ). Synthesis of Ag NPs using the 
aqueous leaf extract of  Ocimum sanctum  (Brahmachari et al.  2014 ), and synthesis 
of Ag and Au NPs by the reduction of aqueous leaf extract of  Aerva lanata  (Joseph 
and Mathew  2014 ). Pd NPs were synthesized using a leaf extract of  Cinnamomum 
camphora  (Yang et al.  2010 ), bark extract of  Cinnamomum zeylanicum , and tuber 
extract of  Curcuma longa  (Sathishkumar et al.  2009a ,  b ), and peel extract of  Musa 
paradisiaca  and  Annona squamosa  (Bankar et al.  2010 ; Roopan et al.  2012 ). The 
biosynthesized TiO 2  NPs using the leaf aqueous extract of  Nyctanthes arbor - tristis  
(Sundrarajan and Gowri  2011 ),  Eclipta prostrata  (Rajakumar et al.  2012 ), 
 Catharanthus roseus  (Velayutham et al.  2012 ),  Psidium guajava  (Santhoshkumar 
et al.  2014 ) and the fl ower aqueous extract of  Calotropis gigantea  (Marimuthu et al. 
 2013 ). Synthesis of ZnO NPs from fruit of  Citrus aurantifolia  (Ramesh et al.  2014 ), 
and root extract of  Polygala tenuifolia  (Nagajyothi et al.  2015 ). Syntheses of Cu 
NPs using Ficus religiosa leaf extract was reported (Sankar et al.  2014 ) (Fig.  5.1 ).

5.2         Metal Nanoparticles (MNPs) 

 The advances in the fi eld of biotechnology and nanotechnology owes to the huge 
change in human life. Lately, an expanding rate of nanomaterial is developing and 
making headway in distinctive fi elds. Not at all like the mass partners, had nanopar-
ticulate materials showed extremely fascinating electrical, optical, attractive and 
compound properties (Sahoo et al.  2009 ). Metal nanoparticles are generally con-
nected in like manner items like cleansers, beatufi ers, toothpaste, shampoos and 
medicines (Song et al.  2009 ). 

 Normally spurred investigational practice for the biosynthesis of metal nanopar-
ticles is currently settled as a developing zone of nanoscience innovative work. As 
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nature makes ideal utilization of materials and space, numerous inorganic materials 
are delivered in organic frameworks (Dwivedi and Gopal  2010 ). Plant mediated 
green synthesis of different MNPs has emerged as one of the options for implemen-
tation of green chemistry principles, and successfully made an important contribu-
tion towards green nanotechnology (Das and Brar  2013 ). 

 For the most part, MNPs can be arranged and settled by physical and chemical 
reduction, for example, synthetic diminishment, electrochemical procedures, and 
photochemical lessening are broadly utilized (Chen et al.  2001 ; Frattini et al.  2005 ). 
Studies have demonstrated that the size, morphology, and properties (substance and 
physical) of the MNPs are emphatically impacted by the trial conditions, the kinet-
ics of interaction of metal ions with reducing agents, and adsorption processes of a 
stabilizing agent with MNPs (Knoll and Keilmann  1999 ; Sengupta et al.  2005 ). The 
biosynthesis of Ag NPs using the leaf extracts of  Manilkara zapota  (Rajakumar and 
Rahuman  2011 ),  Mimosa pudica  (Marimuthu et al.  2011 ) and  Nelumbo nucifera  
(Santhoshkumar et al.  2011 ). 

Nanoparticle synthesis

(size reduction)

• Mechanical milling/ball milling • Chemical/electrochemical precipitation

• Vapor deposition
• Atomic/molecular condensation

• Sol-gel processes
• Spray pyrolysis

• Laser pyrolysis

• Aerosol processes

• Using cell-free extracts
  (plants, microorgnisms, macrofungi, macroalgae)

• Using whole organism/tissue
  (plants, mushrooms, seaweeds, microbial cells)

• Bioreductions

Metal salts NADPH

NADPMetal nanoparticles

• Chemical etching
• Thermal ablation/laser ablation
• Explosion processes

• Sputtering

(build up from smaller entities)

Top down methods Bottom up methods

  Fig. 5.1    Various approaches for making nanoparticles and cofactor dependent bioreduction       
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5.2.1     Silver Nanoparticles (Ag NPs) 

 Silver has long been perceived as having an inhibitory impact toward numerous 
bacterial strains and microorganisms regularly show in therapeutic and modern pro-
cedures (Jiang et al.  2004 ). The most broadly utilized and known uses of Ag and Ag 
NPs are in the restorative business. These incorporate topical balms and creams 
containing Ag to forestall disease of smolders and open injuries (Becker  1999 ). 
Other broadly utilized applications are therapeutic gadgets and inserts arranged 
with silver-impregnated polymers (Silver  2003 ). The employments of silver particle 
and additionally Ag NPs can be misused in drug for blaze treatment, dental materi-
als, covering stainless steel materials, material fabrics, water treatment, sunscreen 
salves, and so on and had low harmfulness to human cells, high warm soundness 
and low unpredictability (Duran et al.  2007 ). 

 In creating nanoparticles utilizing plant concentrates, the concentrate is blended 
with an answer of the metal salt at room temperature. The way of the plant concen-
trates, its fi xation, the amassing of the metal salt, pH, temperature and contact time 
are assumed real part for the rate of generation of the nanoparticles, their amount 
and different attributes (Dwivedi and Gopal  2010 ). Huang et al. ( 2007 ) exhibited the 
possibility of utilizing sun dried  Cinnamon camphora  leaf for the combination of 
the nano-sized metal Ag at surrounding conditions. The synthesis Ag NPs utilizing 
the parts like leaves, seeds of  Coleus amboinicus  (Narayanan and Sakthivel  2008 ; 
Subramanian  2012 ),  Calotropis gigantea  (Baskaralingam et al.  2012 ),  Musa para-
disiaca  (Bankar et al.  2010 a, b),  Ocimum sanctum  (Singhal et al.  2011 ),  Mentha 
piperita  (MubarakAli et al.  2011 ),  Prosopis chilensis  (Kandasamy et al.  2013 ), 
 Syzygium cumini  (Banerjee and Narendhirakannan  2011 ),  Sida acuta  (Veerakumar 
et al.  2013 ),  Piper nigrum  (Paulkumar et al.  2014 ),  Melia azedarach  (Sukirtha et al. 
 2012 ),  Moringa oleifera  (Prasad and Elumalai  2011 ),  Nelumbo nucifera  
(Santhoshkumar et al.  2011 ),  Catharanthus roseus  (Ponarulselvam et al.  2012 ), 
 Ocimum sanctum  (Singhal et al.  2011 ),  Argemone mexicana  (Singh et al.  2010 ), 
 Ficus benghalensis  (Saxena et al.  2012 ),  Cassia auriculata  (Kumar et al.  2011 ), 
 Cinnamon zeylanicum  (Sathishkumar et al.  2009b ),  Euphorbia hirta  (Elumalai et al. 
 2010 ),  Ficus racemosa  (Velayutham et al.  2013 ) and  Manilkara zapota  (Rajakumar 
and Rahuman  2012 ) had antibacterial, antifungal, cancer prevention agent, cytotox-
icity, plasmodial pathogens, anticancer, antidiabetic, larvicidal and acaricidal 
activities.  

5.2.2     Gold Nanoparticles (Au NPs) 

 Gold nanoparticles (Au NPs) have a developing part in restorative biotechnology 
(Song et al.  2009 ; Willner et al.  2006 ). Generation of nanoparticles can be accom-
plished for the most part through chemical, physical, and biological methods. 
Biological methods for nanoparticle synthesis using plants or plant extracts have 
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been recommended as would be prudent eco-accommodating distinct options for 
substance and physical strategies. Au NPs are discovered to be valuable in numer-
ous applications, for example, biomedicine, catalysis and biosensing, electronic and 
attractive gadgets. Albeit existing chemical and physical methods have effectively 
delivered all around characterized nanoparticles. 

 Biosynthesis of Au NPs with the assistance of restorative plants have come into 
the spotlight in nanobiotechnology because of the developing need to create envi-
ronment neighborly considerate innovations. Plants are an incredible wellspring 
of optional metabolites, and have been discovered to be savvy and eco- 
accommodating for the vast scale synthesis of nanoparticles (Sastry et al.  2003 ). 
Au NPs are most likely the most appealing individual from MNPs because of their 
entrancing properties and potential applications in nonlinear optics, catalysis, 
gadgets and different spaces of high innovation and medication (Wu and Yang 
 2011 ; Sreeja et al.  2009 ; Haruta  2003 ). Au NPs with natural base are fascinating 
on the grounds that they display the best similarity with biomolecules (Deshpande 
et al.  2010 ). Biosynthesis of Au NPs using leaf extracts of  Chenopodium album  
(Dwivedi and Gopal  2010 ),  Sorbus aucuparia  (Dubey et al.  2010 ),  Hibiscus 
rosasinensis  (Philip  2010a ),  Mangifera indica  (Philip  2010b ),  Syzygium aromati-
cum  (Deshpande et al.  2010 ),  Anacardium occidentale  (Sheny et al.  2011 ), 
 Murraya koenigii  (Philip et al.  2011 ),  Psidium guajava  (Raghunandan et al.  2009 ), 
 Anthocepholus cadamba  (Kumar et al.  2013 ),  Punica granatum  (Ganeshkumar 
et al.  2013 ),  Dysosma pleiantha  (Karuppaiya et al.  2013 ),  Terminalia chebula  
(Edison and Sethuraman  2012 ),  Trianthema decandra  (Geethalakshmi and Sarada 
 2013 ),  Allium cepa  (Parida et al.  2011 ),  Chrysopogon zizanioides  (Arunachalam 
and Annamalai  2013 ) and  Phoenix dactylifera  (Zayed and Eisa  2014 ) had antimi-
crobial, anticancer action, hostile to harmful, cell reinforcement against meta-
static, larvicidal and have been accounted for as of late.  

5.2.3     Palladium Nanoparticles (Pd NPs) 

 Palladium nanoparticles (Pd NPs) are interest of their properties and for hydrogen. 
Nanoparticles of palladium and palladium containing intermetallic have extraordi-
nary applications like sensors (Fritsch et al.  2003 ). Pd NPs were through an exten-
sive variety of wet including, sonochemical, electrochemical as well as polyol (Wu 
et al.  2001 ; Korovchenko et al.  2005 ; Chen et al.  2001 ). Furthermore the Pd (II) by 
PEG (Luo et al.  2005 ) or ascorbic and sonochemical of Pd (NO 3 ) 2  (Sun and Luo 
 2005 ) were for the Pd NPs. 

 As of late, the advances in ultrafi ne Pd NPs have increased incredible signifi -
cance because of their application both in heterogeneous and homogeneous cataly-
sis, because of their high surface-to-volume proportion and their high surface 
vitality (Narayanan and El-Sayed  2005 ). The standard engineered techniques for 
creating Pd NPs include synthetic methodologies for producing Pd NPs involve 
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chemical reduction decrease of Pd (II) by alcohol (Teranishi and Miyake  1998 ), 
NaBH 4 /ascorbic acid (Jana et al.  2000 ), dinitrogen tetrahydride (N 2 H 4 ) (Yonezawa 
et al.  2001 ), polyethylene glycol (PEG) (Luo et al.  2005 ), potassium isocyanoace-
tate (CNCH 2 COOK) (Wang et al.  2004 ), ascorbic acid (Sun et al.  2007 ) and reduc-
tion of Pd(OAc)2 by dimethylamine-borane in supercritical carbon dioxide (Kameo 
et al.  2003 ). By and by, the majority of these procedures were performed in the 
vicinity of different stabilizers to keep the arrangement of undesired agglomerates 
or the totals of Pd NPs. Furthermore, there are few reports concerning of Pd NPs by 
plant concentrate or biomass, where the biomass was normally found to go about as 
both and stabilizer. The achievement was the creation of Pd NPs utilizing espresso 
and tea concentrate and the work offered moderately rare data with respect to Pd 
NPs (Nadagouda and Varma  2008 ). 

 Pd NPs are having a broad application in heterogeneous and homogeneous catal-
ysis because of their high surface to volume proportion (Chen et al.  2010 ; Gopidas 
et al.  2003 ). Surface plasma reverberation (SPR) is another imperative element in 
the Pd NPs blend which is valuable in detecting, chemo-optical transducers and 
plasmonic wave guiding (TobisÏka et al.  2001 ; Chen et al.  2007 ; West et al.  2010 ). 
All in all, sonochemical (Nemamcha et al.  2006 ), electrochemical (Cha et al.  2007 ) 
and polyol (Xiong et al.  2005 ) have been explored for the structure controlled syn-
thesis of MNPs. The testing errands in the Pd NPs union are size control and repress 
the agglomeration amid combination and also stockpiling (Nemamcha et al.  2006 ; 
Nguyen et al.  2010 ). Pd NPs was successfully blended utilizing leaf of  Diopyros 
kaki  (Song et al.  2010 ),  Cinnamom camphora  (Yang et al.  2010 ), bark of  Cinnamom 
zeylanicum , tubers of  Curcuma longa  (Sathishkumar et al.  2009a ,  b ) and  Musa par-
adisiaca  (Bankar et al.  2010 a, b) concentrates, which went about as decreasing and 
in addition balancing out operators and had antimicrobial movement and anticancer 
action. Nonetheless, the union of Pd NPs utilizing plant has not settled as much with 
respect to Ag NPs and Au NPs.  

5.2.4     Copper Nanoparticles (Cu NPs) 

 Copper nanoparticles (Cu NPs) have more intrigue contrasted with different NPs 
union in light of their valuable properties achievable at considerably less cost than 
silver and gold (Han et al.  2006 ). Cu NPs are in the range of nanotechnology and 
nanomedicine for most recent 10 years on account of their fabulous reactant, optical, 
electrical and antifungal/antibacterial applications (Ponce and Klabunde  2005 ; 
Huang et al.  2008 ). Polyol technique reported by Park et al. ( 2007 ) and integrated 
very monodispersive Cu NPs in air environment. Biosynthesis of Cu NPs was 
accounted for by Valodkar et al. ( 2011 ) plant leaf extracts of  Euphorbia nivulia  dem-
onstrated their organic impacts on tumor cells. Cu NPs were naturally orchestrated 
utilizing  Magnolia kobus  leaf extricate as lessening specialists and their antibacterial 
movement was assessed against  E. coli  (Lee et al.  2013 ). Amalgamations of Cu NPs 

G. Rajakumar and A.A. Rahuman



61

utilizing Syzygium aromaticum fl uid concentrate, the biomolecules introduce in the 
biomass decrease the metal particles and as well as settle the NPs by keeping them 
from being oxidized after the arrangement (Subhankari and Nayak  2013 ).   

5.3     Metal Oxide Nanoparticles (MONPs) 

 Metal oxides play a very important role in many areas of chemistry, physics and 
materials science. The metal elements are able to form a large diversity of oxide 
compounds. Oxide nanoparticles showed remarkable physical and substance prop-
erties because of their constrained size and high thickness of the corner or edge 
surface sites (Henrich and Cox  1984 ; Kung  1989 ; Rodríguez and Fernández-García 
 2007 ). MONPs gives proof of the way that metal oxides incorporate numerous and 
various sorts of NPs with vast contrasts in synthetic piece and conduct; nanoparti-
cles of Titanium dioxide (TiO2), Zinc oxide (ZnO), Copper oxide (CuO) and Cerium 
oxide (CeO 2 ) involve a percentage of the more regular samples. MONPs utilized for 
diverse applications, for example, photonics, energy conversion, stockpiling, cataly-
sis, biomedical applications, social insurance items and self cleaning surfaces 
(Sharma  2009 ; Pinna and Niederberger  2008 ; Nowack and Bucheli  2007 ). Current 
chemical protocols in vogue for the synthesis of magnetic iron oxides incorporate 
sol-gel, forced hydrolysis, sonochemical and electrochemical systems (Fernández- 
García et al.  2004 ). 

5.3.1     Titanium Dioxide Nanoparticles (TiO 2  NPs) 

 TiO 2  NPs have made another methodology for astounding applications as an allur-
ing multi-useful material. TiO 2  NPs have exceptional properties, like higher solid-
ness, durable, sheltered and expansive range antibiosis (Roessler et al.  2002 ; Cai 
et al.  2006 ; Fu et al.  2005 ; Bae et al.  2003 ). TiO 2  NPs have been particularly the 
focal point of consideration for their activities (Zhang et al.  2005 ; Rajagopal et al. 
 2006 ; Uddin et al.  2007 ; Wang et al.  2008 ). TiO 2  NPs utilized as a part of numer-
ous fi elds, like self-cleaning against bacterial, and UV securing specialists (Han 
and Yu  2006 ) and air purifi er (Li et al.  2005 ; Cermenati et al.  1997 ), gas sensors 
and highly effi cient solar cell (Park and Kim  2005 ; Weibel et al.  2006 ; Verran et al. 
 2007 ). The photoactivity property is fi rmly identifi ed with the structure, miniatur-
ized scale structure and the powder (Weibel et al.  2006 ; Park and Kim  2005 ; 
Verran et al.  2007 ). 

 TiO 2  by light with more vitality contrasted with its band crevices produces 
electron gap combines that affect redox response at the surface of TiO 2 . Various 
highly active oxygen species can oxidize organic compounds of cell to carbon 
dioxide (CO 2 ) and water (H 2 O). Accordingly, TiO 2  can decompose common 
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organic matters in the air such as odor molecules, bacteria and viruses (Tan et al. 
 1996 ; Fu et al.  2005 ). Fu et al. ( 2005 ) have connected the sol-gel technique to 
create TiO 2  NPs in its anatase structure and the molecule size is accounted for to 
be delicate to arrangement pH and the rate of expansion of isopropoxide. TiO 2  
NPs have been utilized to study the antibacterial activity of methicillin-resistant 
 Staphylococcus aureus  (Daoud and Xin  2004 ; Daoud et al.  2005 ), self-cleaning 
(Bozzi et al.  2005 ), UV-protection (Han and Yu  2006 ), hydrophilic (Sawada et al. 
 2003 ) or ultra- hydrophobic properties (Rios et al.  2008 ), dye degradation in tex-
tile effl uent (Mahmoodi et al.  2006 ) and as a nano-catalyst for cross-linking cel-
lulose with poly carboxylic acids (Wang and Chen  2005 ; Nazari et al.  2009a ,  b ; 
Chen and Wang  2006 ). 

 The environmental fate and behaviour of TiO 2  NPs are a rapidly expanding area 
of research and used in a broad range of products as food colorant, sunscreen and 
cosmetics. Nanometer sized TiO 2  NPs were synthesized by inert gas condensation 
and co-condensation techniques. Both techniques were based on the evaporation 
of a metal into an inert atmosphere with subsequent cooling for the nucleation and 
growth of the nanoparticles. Physical and chemical procedures have been used for 
the synthesis of large quantities of nanoparticles exposed to short time period. 
However, the colloidal nanoparticles formed by electrostatic collaborations while 
in arrangement, upon extraction in powder form, the particles develop and lose 
their trademark properties. Combination of the nanoparticle is controlled by cap-
ping the nanoparticles by organic or inorganic molecules which captures their con-
glomeration in a grid of glass (Liu and Risbud  1990 ) and natural polymers (Kane 
et al.  1996 ). 

 Visible light activated TiO 2  NPs showed that a fundamentally higher proportion 
of all tested pathogens including  Staphylococcus aureus ,  Shigella fl exneri  and 
 Acinetobacter baumannii  were killed by the nanoparticle with higher bacterial 
interaction property (Cheng et al.  2009 ). Reactive oxygen species, such as  – OH, 
O 2  − , and H 2 O 2  generated in the light irradiated TiO 2  surfaces were shown to operate 
in show to attack polyunsaturated phospholipids in bacteria (Maness et al.  1999 ). 
Antibacterial activities of apatite-coated TiO 2  against  S. aureus ,  E. coli , methicillin- 
resistant  S. aureus  and  Micrococcus luteus  were investigated and suggested for its 
potential use in reducing the risk of microorganism transmission in textile applica-
tions (Kangwansupamonkon et al.  2009 ). The synthesized TiO 2  NPs using 
 Catharanthus roseus  extracts functional as effective, reducing and stabilizing 
agents and reported signifi cant parasitic activity against  Hippobosca maculata  and 
 Bovicola ovis  (Velayutham et al.  2012 ). Sundrarajan and Gowri ( 2011 ) reported 
that the facile and eco-friendly method for the synthesis of TiO 2  NPs from titanium 
isopropoxide solution using  Nyctanthes arbortristis  leaves extract and reported the 
nanoparticles in biomedical and nanotechnology applications in the absence of 
adverse side effects. The synthesized TiO 2  NPs utilizing  Lactobacillus  sp. 
 furthermore,  Sachharomyces cerevisae  had hostile to bacterial, against contagious 
properties, useful applications in photovoltaic cells, optical, biological sensors, 
conductive materials and coating formulations (Jha et al.  2009 ). The antifungal 
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activity of TiO 2  NPs synthesized using airborne fungus,  Penicillium expansum  was 
accounted for (Snowdon  1990 ). TiO 2  NPs are utilized to provide whiteness and 
opacity to items, for example, paints, plastics, papers, inks, nourishment colorants, 
and toothpastes (Cai et al.  2006 ). TiO 2  NPs is also used in cosmetic and likewise 
utilized as a part of corrective and healthy skin items, especially in sun blocks 
cream (Dankovic et al.  2007 ).  

5.3.2     Zinc Oxide Nanoparticles (ZnO NPs) 

 A mixture of fabricated metal oxide nanoparticles (NPs) are being produced and con-
solidated into items where the are one of a kind synergist limit, optoelectronic proper-
ties, antimicrobial action and different attributes make them alluring for a wide scope 
of utilizations (Oskam  2006 ). Zinc oxide (ZnO) is generally utilized MONPs that has 
a wurtzite crystal structure that adds to its remarkable optoelectric properties (Wang 
et al.  2004 ). ZnO nanopowder is right now utilized as a part of items including plas-
tics, earthenware production, glass, concrete, elastic, oils, paints, source of Zn nutri-
ent), batteries, fi re retardants, etc (Mitchnick et al.  1999 ). In addition, ZnO NPs are 
common constituents of personal care products including cosmetics and sunscreens 
because of their excellent UV retention and refl ective properties (Cross et al.  2007 ). 
The worldwide creation of NPs for sunscreen items alone was assessed to be roughly 
1000 t amid 2003/3004, comprising basically of ZnO particles (Borm et al.  2006 ). 

 ZnO is a potential of ultra violet absorbance, wide chemistry, piezoelectricity 
and luminescence at high temperatures, it has entered into industry, and now is one 
of the critical building blocks in today’s modern society. It is found in paints, cos-
metics, plastic and rubber manufacturing, electronics and pharmaceuticals. More 
recently, it has again increased huge enthusiasm for its semiconducting properties 
(Look  2001 ) and utilized for nano ZnO impregnated as a part of cotton materials 
demonstrated brilliant antibacterial action against  Staphylococcus aureus  and 
 Klebsiella pneumoniae  and promising security against UV radiation (Wiegand et al. 
 2013 ). ZnO is right now being explored as antibacterial operators in both microscale 
and nanoscale plans (Nair et al.  2008 ). It has been proposed that the principle of 
reactive oxygen species (ROS) produced on the surface of the particles, zinc particle 
discharge, layer brokenness, and nanoparticles disguise are the primary driver of 
cell swelling (Nair et al.  2008 ).  Parthenium hysterophorus  interceded ZnO NPs 
were incorporated and ended up being effective antifungal agents (Rajiv et al.  2013 ). 
The quick natural combination of ZnO NPs utilizing leaf extricate of  Calotropis 
gigantea  gave an effective course for amalgamation of nanoparticles (Vidya et al. 
 2013 ). Exceptionally steady and circular ZnO NPs were created by utilizing zinc 
nitrate and  Aloe barbadensis  ( Aloe vera ) leaf extract (Sangeetha et al.  2011 ). The 
aqueous leaf extract of  Corriandrum sativum  synthesized ZnO NPs using zinc ace-
tic acid derivation and sodium hydroxide as a surrogate for Substance strategy 
(Gnanasangeetha and Thambavani  2013 ).   
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5.4     Biomedical Utilizations of Plant Synthesized MNPs 
and MONPs 

5.4.1     Antimicrobial Activity 

 Plant mediated green synthesis of nanoparticles is an eco-friendly and effi cacious 
approach effective methodology which fi nds tremendous application in the fi eld 
of solution. Nanoparticles were ended up being the most productive as they have 
great antimicrobial (Jayesh et al.  2008 ; Anima and Saravanan  2009 ; Karunakar 
et al.  2013 ), mitigating (Tsai et al.  2007 ; Nadworny et al.  2008 ; Chaloupka et al. 
 2010 ), against plasmodial (Panneerselvam et al.  2011 ; Ponarulselvam et al.  2012 ), 
hostile to tumor (Saraniya Devi et al.  2013 ) and hostile to oxidant exercises (Joyita 
and Narendhirakannan  2011 ; Kumar et al.  2012 ; Edhaya Naveena and Prakash 
 2013 ). Nanoparticles connect to the cell surface of microbe’s reasons basic 
changes and harm aggravating the imperative cell capacities lastly prompting cell 
demise (Li et al.  2010 ). The antibacterial activity of plant synthesized Ag NPs 
utilizing watery leaves concentrate of  Ficus benghalensis  for the control of 
 Escherichia coli  (Saxena et al.  2012 ). Antimicrobial action of the saponin disen-
gaged from  Trianthema decandra , combined Au NPs and Ag NPs utilizing micro-
scopic organisms,  Staphylococcus aureus ,  Staphylococcus faecalis ,  Enterococcus 
faecalis ,  E. coli ,  Pseudomonas aeruginosa ,  Pseudomonas vulgaris ,  Bacillus sub-
tilis ,  Yersinia enterocolitica ,  Klebsiella pneumoniae  and organism,  Candida albi-
cans  (Geethalakshmi and Sarada  2013 ). The  in vitro  antimicrobial action of the 
combined Ag NPs utilizing  Rhinacanthus nasutus  leaf concentrate was powerful 
against  B. subtilis ,  S. aureus ,  P. aeruginosa ,  K. pneumonia ,  E. coli ,  Aspergillus 
niger  and  Aspergillus fl avus  utilizing a disc diffusion method (Pasupuleti et al. 
 2013 ). Das et al. ( 2013 ) reported the synthesized Ag NPs using the aqueous leaves 
extract of  Sesbania grandifl ora , and it has been assessed to study  in vitro  antibac-
terial activity against selected human pathogens,  Salmonella enterica  and 
 Staphylococcus aureus . Adams et al. ( 2014 ) reported the antimicrobial capacity of 
synthesized Pd NPs from by pyrolysis method against  E. coli  and  S. aureus . 
Biogenic Cu NPs nanoparticles synthesis using  Tabernaemontana divaricate  leaf 
extract and its antibacterial activity against urinary tract pathogen of  E.coli  
(Sivaraj et al.  2014 ). Synthesis of Cu NPs uses  Piper betle  leaf extract against 
phytopathogens  Ralstonia solanacearum  and  Xanthomonas axonopodis  using 
well diffusion method (Praburaman et al.  2015 ). The antibacterial movement of 
the synthesized TiO 2  NPs using  Aeromonas hydrophila  bacteria was effective 
against  E. coli ,  P. aeruginosa ,  S. aureus ,  Streptococcus pyogenes  and  Enterococcus 
faecalis  using a well diffusion method (Jayaseelan et al.  2013a ,  b ). ZnO NPs were 
synthesized from  Parthenium hysterophorus  by inexpensive, eco-friendly and 
simple method and its antifungal activity was studied against  A. fl avus  and  A. 
niger  (Rajiv et al.  2013 ).  
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5.4.2     Antioxidant Activity 

 Antioxidant therapy has gained an enormous importance. The application of nano-
technology to healthcare holds great promise in therapeutic fi eld in zones, for exam-
ple, imaging, speedier conclusion, drug conveyance and tissue recovery, and the 
advancement of new therapeutics. To be sure, various results of nanometric mea-
surements are being assessed in clinical trials (Zhang et al.  2008 ). The stem bark 
concentrates of  Shorea roxburghii  utilized as a profi cient green decreasing special-
ists for the generation of Ag NPs and its applications in the aversion of free radical 
related maladies (Subramanian et al.  2013 ). Combination of Ag NPs by using the 
fl uid leaf concentrates of  Chenopodium murale  indicated antimicrobial action for  S. 
aureus  and cell reinforcement exercises for business application (Abdel-Aziz et al. 
 2014 ). A basic green synthesis for the preparation of Ag NPs using leaf extract of 
 Cleistanthus collinus  as a potential phyto reducer and the  in vitro  antioxidant activ-
ity of Ag NPs showed a signifi cant effect on scavenging of free radicals (Kanipandian 
et al.  2014 ). The effect of the phytochemicals presents in  Memecylon umbellatum , 
including saponins, phenolic compounds, phytosterols, and quinones, on the forma-
tion of stable Ag NPs and Au NPs was investigated by FTIR spectroscopy 
(Arunachalam et al.  2013 ).  Terminalia arjuna  bark extract was used to reduce Cu 
NPs under microwave irradiation method and showed very good antioxidant prop-
erty (Yallappa et al.  2013 ).  Gardenia jasminoides  was used for the bioreduction of 
palladium chloride into the formation of Pd NPs and identifi ed as good antioxidant 
activity (Jia et al.  2009 ). The synthesis of Pd NPs using gum of  Anogeissus latifolia  
plant showed superior antioxidant at a much lower nanoparticle dose (Kora and 
Rastogi  2015 ). The effi cacies of antioxidant activities of aqueous leaf extract of 
 Psidium guajava  mediated biosynthesis of TiO 2  NPs when compared with ascorbic 
acid (Santhoshkumar et al.  2014 ). A fl avonoid rich extract of  Teucrium polium  syn-
thesized ZnO NPs, which was used as physical sunscreen, for protection in a wide 
range of UV radiation and possessed good anti-infl ammatory and anti-oxidant 
activities of fl avonoids (Mehdi et al.  2013 ).  

5.4.3     Anticancer Activity 

 Tumor is one of most essential scourges of humankind and in charge of signifi cant 
mortality, more than ten million individuals are determined to have the malady 
every year, it was produced through different cell physiological frameworks, cell 
fl agging and apoptosis. With the predominance and the development of different 
medication resistance, nonspecifi c systemic circulation of antitumor operators, 
insuffi cient medication fi xations coming to the tumor site, horrendous cytotoxicity 
and restricted capacity to screen helpful reactions due to these diffi culties disease 
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got to be hopeless. To defeat this issue, it is important to create and outline new 
methodologies, apparatuses and drugs for the analysis and treatment of growth 
(Acharya and Sahoo  2010 ). Union of Ag NPs by using the fl uid leaf concentrates of 
Iresine herbstii demonstrated cancer prevention agent exercises of the combined 
NPs and their cytotoxicity toward the HeLa cervical growth cell line (Dipankar and 
Murugan  2012 ). Green amalgamation of Ag NPs utilizing the leaf concentrate of 
 Podophyllum hexandrum  was assessed for its anticancer potential against HeLa cell 
line under  in vitro  condition (Jeyaraj et al.  2013 ). Sukirtha et al. ( 2012 ) reported the 
incorporated Ag NPs utilizing leaf concentrate of  Melia azedarach  and reported 
compelling against HeLa cervical disease cell line. Jacob et al. ( 2012 ) reported the 
blend of Ag NPs utilizing  P. longum  leaf remove and demonstrated noteworthy 
cytotoxic impact on HEp-2 tumor cells. Parida et al. ( 2011 ) reported the combina-
tion of Au NPs intervened by a concentrate of  Allium cepa  and it was disguised by 
MCF-7 breast malignancy cells through endocytosis. 

 A straightforward organic technique for the blend of Ag NPs and Au NPs utiliz-
ing  Chrysopogon zizanioides , and blended NPs can have clinical use as antibacte-
rial, cancer prevention agent, and additionally cytotoxic operators and can be 
utilized for biomedical applications (Arunachalam and Annamalai  2013 ). 
Cytotoxicity against  in vitro  HeLa, HBL 100 cell lines and  in vivo  DAL cell line in 
mice model was concentrated on utilizing biosynthesis of stable Ag NPs from the 
leaves aqueous extract of  M. azedarach  (Sukirtha et al.  2012 ). The poisonous qual-
ity impacts of silver (nAg) and zinc oxide (nZnO) designed nanoparticles (ENPs) 
utilizing  Spirodela punctuta  were examined to explore the potential dangers pos-
tured by these ENPs towards higher amphibian plants (Thwala et al.  2013 ). 

 Apoptosis is incited by extracellular or intracellular signs, which trigger onset of 
fl agging course with trademark biochemical and cytological marks, including atomic 
buildup and DNA discontinuity (Gopinath et al.  2010 ). Biomedical capability of Ag 
NPs combined from calli cells of  Citrullus colocynthis  was described by utilizing 
Fourier change infrared spectroscopy (FTIR), Nuclear power magnifying instrument 
(AFM) and its poisonous quality on HEp2 phone line was evaluated utilizing 3-(4, 
5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide, a yellow tetrazole 
(MTT) test, caspase-3 measure, lactate dehydrogenase spillage examine and DNA 
discontinuity examine (Satyavani et al.  2011 ). The organic properties of a novel Ag 
NPs, combined from an aqueous leaf extract of  Albizia adianthifolia  were researched 
on A549 cell line (human lung carcinoma) was very much described by MTT exam-
ine, cell oxidative status (lipid peroxidation and glutathione (GSH) levels), ATP fi xa-
tion, caspase-3/ -7, -8 and -9 exercises and DNA discontinuity were decided 
(Govender et al.  2013 ). Au NPs have as of late been explored as for biocompatibility 
as indicated by their collaborations with human breast epithelial MCF-7 cells was 
surveyed by cytotoxicity by MTT assay and caspase 3, 9, Bax and Bcl expression by 
real-time PCR assays examines (Selim and Hendi  2012 ). The cytotoxic impacts of 
ZnO NPs in hepatocellular carcinoma Hep-G2 cells were shown with stream cytom-
etry investigation and lactate dehydrogenase discharge measures uncover that the 
method of cell demise fundamental the impacts of the nanoparticle was a mix of 
apoptotic and necrotic cell passing (Tadinada et al.  2013 ) (Fig.  5.2a, b ).
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5.5         Conclusion 

 The green synthesis approach was utilized as the reducing and capping agent for 
producing functionally stable and crystalline Ag NPs, Au NPs, Pd NPs, Cu NPs, 
TiO 2  NPs and ZnO NPs. Ag NPs, Au NPs, Pd NPs, Cu NPs, TiO 2 NPs and ZnO NPs 
might be useful for the development of newer and more potent antimicrobial, anti-
oxidants and anticancer agents. 

 The synthesized Au NPs, Pd NPs and ZnO NPs showed low toxicity were 
selected for the Caspase -3, -8, -9 assays. The results of this study the Pd NPs and 
ZnO NPs exhibit more signifi cant activity against caspase-3 and down regulate cas-
pase- 9, which might indicate an activation of caspase-9 in Hep-G2 cells than Au 
NPs. These results suggest that Pd NPs and ZnO NPs can potentially change apop-
totic protein expression and trigger apoptosis in mitochondria-dependent pathways 
in Hep-G2 cells. Apoptotic effect of Pd NPs and ZnO NPs was studied using DNA 
fragmentation assay. The data represented in our study contribute to a novel and 
unexplored area of nanomaterial as alternative medicine. Therefore, further studies 
are needed to fully characterize the toxicity and the mechanisms involved with the 
antimicrobial and antioxidant activity of these NPs. This chapter can be helpful in 
the utilization of an environment friendly solvent and reducing agent in the synthe-
sis of functionally stable and crystalline noble nanomaterial, for modern industrial, 
bio-medical and other process green applications.     
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    Chapter 6   
 Microbial Nanoparticles as Mosquito 
Control Agents                     

       C.     Balasubramanian     and     A.     Najitha     Banu    

6.1             Introduction 

 One of the fi rst and most natural question asked starting to deal with nanoparticles 
is “Why are nanoparticles so interesting? Why work with these extremely small 
structures that are challenging to handle and synthesize especially when compared 
with their macroscopic counterparts”? The answer lies in the unique properties pos-
sessed by these nanoparticles. Norio Taniguchi fi rst defi ned the term Nanotechnology 
in 1970. The term nano is adapted from the Greek word meaning “dwarf”. When 
used as a prefi x it implies 10 −9 . 

 Throughout history, silver and its compounds have been used extensively for 
many applications as a result of their useful properties. It is believed that silver was 
known and used longer than what is recorded in history. Archeological evidence 
suggests that civilizations have been using silver since at least 3000 B.C. Ancient 
Egyptians and Persians used silver vessels to keep their water clean and safe. 
Romans and Greeks knew its powerful bactericidal effect and used it for healing 
wounds. During World War I, silver compounds were used to prevent wound infec-
tion before the emergence of antibiotics. In the American Old West, pioneers travel-
ing along Oregon trails used to toss silver coins into their water storage barrels to 
keep their water fresh (Russell and Russell  1995 ; Wijnhoven et al.  2009 ; Information 
and History  2010 ; History of Silver  2010 ). During the nineteenth century, beyond 
home remedies, silver was applied in practical medicine such as eye treatment and 
the treatment of skin ulcers (Foot Defense  2010 ). The US Food and Drug 
Administration approved silver solutions in the 1920s to be used as antibacterial 
agents (Wikipedia  2010 ). 
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 Nanosilver is not a new discovery; it has been known for over 100 years (USFDA 
 2010 ). Previously, nanosilver or suspensions of nanosilver were referred to as col-
loidal silver. To produce colloidal silver, a positive electrical current is applied 
through pure silver bars suspended in water resulting in colloidal silver particles 
with a size range of 15–500 nm (Lindemann  1997 ). Before the invention of penicil-
lin in 1928, colloidal silver had been used to treat many infections and illnesses 
(Nano Health Solutions  2010 ). By converting bulk silver into nanosized silver, its 
effectiveness for controlling bacteria and viruses was increased multifold, primarily 
because of the nanomaterials’ extremely large surface area when compared to bulk 
silver, thus resulting in increased contact with bacteria and fungi. Nanosilver, when 
in contact with bacteria and fungus, adversely affects the cellular metabolism of the 
electron transfer systems, and the transport of substrate in the microbial cell mem-
brane. Nanosilver also inhibits multiplication and growth of those bacteria and 
fungi which caused infection, odor, itchiness and sores (Nanotech Plc  2010 ).  

6.2     Synthesis of Silver Nanoparticle 

 The top-down or bottom-up approaches are commonly used to synthesize silver 
nanoparticles; typically, the bottom-up approaches involve wet chemistry tech-
niques. It has to be mentioned that there is plenty of overlap between all the previ-
ously mentioned categories. For instance, using microbes to synthesize nanosilver 
is a conventional/green/bottom-up synthesis. 

 The synthesis methods in the early 1980s described the reduction of metal ion as 
a two-step procedure; in fi rst step very small particles were synthesized, which were 
then enlarged to several nanometers. The difference remained in the use of the 
reducing agent for the synthesis where in the former step a stronger reducing agent 
was used and in latter step a weaker reducing agent was used (Sintubin et al.  2009 ). 
Chemical methods were used for the size-dependent synthesis of silver nanoparti-
cles, a controlled process mediated by the addition of specifi c reducing agents at 
raised temperatures and various pH. Silver nanoparticles were also synthesized 
through an array of methods such as spark discharging, electrochemical reduction, 
solution irradiation and cryochemical synthesis. The biosynthesis of nanoparticles 
as an emerging highlight of the intersection of nanotechnology and biotechnology 
has received increasing attention due to a growing need to develop environmentally 
benign technologies in material synthesis (Kalishwaralal et al.  2008 ). 

 Silver nitrate (AgNO 3 ) is the most widely used silver ion precursor for the pro-
duction of nanosilver. As a result of its low cost and chemical stability compared to 
the other available silver salts. The use of silver nitrate makes it likely that nitrate 
(NO 3  − ) will be the dominant anion associated with the silver nanomaterial synthesis 
processes. The reducing agents can refer to any chemical agents, plant derivatives, 
biological agents or irradiation methods that provide free electrons to reduce silver 
ions and form silver nanoparticles. For the production of silver nanoparticles, vari-
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ous reducing agents are reported such as H 2  gas (Evanoff and Chumanov  2004 ), 
sodium borohydride (Lee and Meisel  1982 ), hydrazine (Kim et al.  2007 ), ethylene 
glycol (Iyer et al.  2007 ), Tollen’s reagent (Fernandez et al.  2008 ), ascorbic acid 
(Kashiwagi et al.  2006 ) and aliphatic amines (Rao and Trivedi  2006 ). Depending on 
the strength of the reducing agents, the particle size can be controlled.  

6.3     Characterization of Silver Nanoparticles 

 Characterization of nanoparticles is important to understand and control nanoparti-
cles synthesis and applications. Characterization is performed using a variety of 
different techniques such as transmission and scanning electron microscopy (TEM, 
SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), X-ray 
photoelectron spectroscopy (XPS), powder X-ray diffractometry (XRD), Fourier 
transform infrared spectroscopy (FTIR), and UV–Visual spectroscopy (Sun et al. 
 2000 ; Yeo et al.  2003 ; Hutter and Fendler  2004 ; Chimentao et al.  2004 ; He et al. 
 2004 ; Zhang et al.  2004 ,  2006 ; Choi et al.  2007 ; Yoosaf et al.  2007 ; Vilchis-Nestor 
et al.  2008 ). These techniques are used for determination of different parameters 
such as particle size, shape, crystallinity, fractal dimensions, pore size and surface 
area. Moreover, orientation, intercalation and dispersion of nanoparticles and nano-
tubes in nanocomposite materials could be determined by these techniques. For 
instance, the morphology and particle size could be determined by TEM, SEM and 
AFM. The advantage of AFM over traditional microscopes such as SEM and TEM 
is that AFM measures three-dimensional images so that particle height and volume 
can be calculated. Furthermore, dynamic light scattering is used for determination 
of particles size distribution. Moreover, X-ray diffraction is used for the determina-
tion of crystallinity, while UV–Vis spectroscopy is used to confi rm sample forma-
tion by showing the Plasmon resonance. 

 Saifuddin et al. ( 2009 ) studied the development of rapid and reliable for the syn-
thesis of nanosized materials is of great importance in the fi eld of nanotechnology. 
Synthesis of silver nanoparticles using microorganism have been reported, but the 
process is rather slow. A novel combinatorial synthesis approach which is rapid, 
simple and “green” for the synthesis of metallic nanostructure of noble metals such 
as silver (Ag), by using a combination of culture supernant of  Bacillus subtilis  and 
Microwave (MW) irradiation in water in absence of a surfactant or soft template. It 
was found that exposure of culture supernatant of  B. subtilis  and microwave irradia-
tion to silver ion lead to the formation of silver nanoparticles. The silver nanoparti-
cles were in the range of 5–60 nm in dimension. The nanoparticles were examined 
using UV-Visible spectroscopy and Transmission Electron Microscopy (TEM) 
analyses. The formation of nanoparticles by this method is extremely rapid, requires 
no toxic chemicals and the nanoparticles are stable for several months. The main 
conclusion is that the bio-reduction method to produce nanoparticles is a good alter-
native to the electrochemical methods.  
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6.4     Mechanism Behind the Synthesis of Silver Nanoparticles 

 The mechanism behind the extracellular synthesis of nanoparticles using microbes 
is not fully known. But it is considered that the enzymes like nitrate reductase 
secreted by microbes help in the bioreduction of metal ions to metal nanoparticles 
(Duran et al.  2005 ). 

 Anil Kumar et al. ( 2007 ) and Kalimuthu et al. ( 2008 ) reported that all the organ-
isms are not found to be competent for the synthesis of silver nanoparticles. Those 
organisms which contain the “Silver resistance machinery” can synthesize silver 
nanoparticles provided that the concentration of the silver ions does not cross the 
“threshold limit”. The resistance mechanism differs with organisms. Extracts from 
bio-organisms may act both as reducing and capping agents in AgNPs synthesis. 
The reduction of Ag +  ions by combinations of biomolecules found in these extracts 
such as enzymes/proteins, amino acids, polysaccharides and vitamins is environ-
mentally benign, yet chemically complex. But, the mechanism which is widely 
accepted for the synthesis of silver nanoparticles is the presence of enzyme “Nitrate 
reductase”. The reduction mediated by the presence of the enzyme in the organism 
has been found to be responsible for the synthesis. The use of a specifi c enzyme 
a-NADPH- dependent nitrate reductase in the  in - vitro  synthesis of nanoparticles is 
important because this would do away with the downstream processing required for 
the use of these nanoparticles in homogeneous catalysis and other applications such 
as non- linear optics. During the catalysis, nitrate is converted to nitrite, and an 
electron will be shuttled to the incoming silver ions. This has been excellently 
described in the organism  Bacillus licheniformis . It is known to secrete the co-factor 
NADH and NADH-dependent enzymes, especially nitrate reductase, that might be 
responsible for the bioreduction of Ag +  to Ag 0  and the subsequent formation of sil-
ver nanoparticles (Kalimuthu et al.  2008 ). 

 Although all these speculation, direct evidence was provided by Anil Kumar 
et al. ( 2007 ) who directly used the purifi ed nitrate reductase from the organism 
 Fusarium oxysporum  for the synthesis of silver nanoparticle in a test tube. Their 
reaction mixture contained only the enzyme nitrate reductase, silver nitrate and 
NADPH. Slowly, the reaction mixture turned brown with all the characteristics of 
silver nanoparticles. This is the fi rst direct evidence for the involvement of nitrate 
reductase for the synthesis of silver nanoparticles (Fig.  6.1 ).

6.5        Properties, Biological Applications and Important 
Nanoparticles 

 The high aspect ratio and resultant special properties exhibited by matter at 
nanoscale has been a great attraction for development and study of nanoparticles 
from every possible material. In order to study and exploit the enormous potential 
provided by “nanoscale”, every possible building block for development of 
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nanoparticles is being explored. The design and synthesis and surface modifi cation 
of nanomaterials with novel properties has become an exciting area of research. 
Considering that primary limit is only the size range of 1-100 nm, there is virtually 
no limit of the possible ways, for fabrication of nanoparticles. Indeed, almost limit-
less types of nanoparticles of different shape, size and surface properties are being 
developed from a range of materials of inorganic, organic, biological or hybrid 
nature. Availability of new methods of fabrication and tools for characterization and 
manipulation has resulted in a variety of innovative application of nanoparticles 
(Rao and Cheetham  2001 ). 

 In decade over the nano materials research which was initially restricted to 
materials science has seen cross-disciplinary expansions to almost every fi eld of 
science including biology and medicine. The novel properties of nanoparticles 
hold enormous potential for applications in both basic and applied area of research 
in Biology. Addressing different problems in biology using the nanoparticles has 
been an active area of research. This merger of nanomaterials research with 
Biotechnology has given birth to a new discipline called Nanobiotechnology, in 
which innumerable types of nanoparticles are being constantly developed and 
investigated for better understanding of biological system as well as development 
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  Fig. 6.1    Possible mechanism for silver nanoparticles synthesis using  B. licheniformis        
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of new products and technologies (Niemeyer  2001 ; Roco  2003 ). Nanobiotechnology 
is now a burgeoning fi eld, having infl uence in almost every aspect in biomedical 
research. Because of the diversity of the fi eld it is almost impossible to review 
different aspects of every type of nanoparticle. So let us examine few most impor-
tant nanoparticles which are being studied for applications in biology and 
medicine. 

 Silver nanoparticles have been used extensively as anti-bacterial agents in the 
health industry, food storage, textile coatings and a number of environmental 
applications. It is important to note that despite of decades of use, the evidence of 
toxicity of silver is still not clear. Products made with AgNps have been approved 
by a range of accredited bodies, including the US FDA, US EPA, SIAA of Japan, 
Korea’s Testing and Research Institute for Chemical Industry and FITI Testing 
and Research Institute (Deng et al.  2007 ; Bhattacharya and Mukherjee  2008 ). As 
anti-bacterial agents, AgNps were applied in a wide range of applications from 
disinfecting medical devices and home appliances to water treatment (Bosetti 
et al.  2002 ; Cho et al.  2005 ; Li et al.  2008 ). Moreover, this encouraged the textile 
industry to use AgNps in different textile fabrics. In this direction, silver nano-
composite fi bers were prepared containing silver nanoparticles incorporated 
inside the fabric (Yeo et al.  2003 ). The cotton fi bers containing AgNps exhibited 
high anti-bacterial activity against  Escherichia coli  (Yeo et al.  2003 ; Duran et al. 
 2007 ). Furthermore, the electrochemical properties of AgNps incorporated them 
in nanoscale sensors that can offer faster response times and lower detection 
limits. 

 Use of organisms to synthesize nanoparticles one of the primary processes in 
biomimetics (biological principles for materials formation) involves bioreduction. 
Initially bacteria were used to synthesize nanoparticles and this was later succeeded 
with the use of bacteria, fungi, actinomycetes and more recently plants.  

6.6     Biological Synthesis of Silver Nanoparticles 

 In recent years, the development of effi cient green chemistry methods employ-
ing natural reducing, capping, and stabilizing agents to prepare silver nanopar-
ticles with desired morphology and size have become a major focus of 
researchers. Biological methods can be used to synthesize silver nanoparticles 
without the use of any harsh, toxic and expensive chemical substances (Ahmad 
et al.  2003a ; Shankar et al.  2004 ; Ankamwar et al.  2005 ; Huang et al.  2007 ). The 
bioreduction of metal ions by combinations of biomolecules found in the extracts 
of certain organisms (e.g., enzymes/proteins, amino acids, polysaccharides, and 
vitamins) is environmentally benign, yet chemically complex. Many studies 
have reported successful synthesis of silver nanoparticle using organisms 
(microorganisms and biological systems) (Sastry et al.  2003 ; Korbekandi et al. 
 2009 ; Iravani  2011 ).  
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6.7     Synthesis of Silver Nanoparticles by Bacteria 

 Synthesis of metal nanoparticles by using of microbial cells has emerged as a novel 
approach. Recently, the efforts directed towards the biosynthesis of nanomaterials, 
the interactions between microorganisms and metals have been well documented 
and the ability of microorganisms to extract and or accumulate metals is employed 
in commercial biotechnological processes such as bioleaching and bioremediation. 
Bacteria are well known to produce inorganic materials either intracellularly or 
extracellularly. Compare to the intra cellular synthesis extracellular biosynthesis is 
cheap and it requires simpler downstream processing. This favors large-scale pro-
duction of silver nanoparticles to explore its potential applications. Because of this, 
many studies were focussed on extracellular methods for the synthesis of metal 
nanoparticles (Duran et al.  2005 ; Gericke and Pinches  2006 ). 

 Minaeian et al. ( 2008 ) reported the fi rst time production of silver nanoparticles 
in enterobacteria. The silver nanoparticles were effectively produced, by  Klebsiella 
pneumoniae ,  Escherichia coli  and  Enterobacter cloacae . They did not observe any 
extracellular biosynthesis activity from other micro organisms such as the 
 Staphylococcus aureus ,  B. subtilis ,  Lactobacillus acidophilus  and  Candida albicans  
in conditions tested during investigation. Studies on reduction of Ag +  ions to AgNPs 
by  Staphylococcus aureus  also high- light the potential of extracellular method of 
nanoparticle formation (Nanda and Saravanan  2009 ). 

 Jain et al. ( 2010 ) reported that the spore crystal mixture of  Bacillus thuringiensis  
was used for the synthesis of silver nanoparticles which were characterized using 
UV-vis absorption spectroscopy, XRD and TEM, X-ray diffraction. The average 
particle size 15 nm and mixed (cubic and hexagonal) structure. Thus, the bacterial 
spore crystal mixture was used for the synthesis of nanoparticles. Further, these 
biologically synthesized nanoparticles were found to be highly toxic against differ-
ent multi drug resistant human pathogenic bacteria. 

 When the culture supernatant of  Bacillus megaterium  was treated with aqueous 
solutions of Ag +  ions, within few minutes it formed silver nanoparticles (AgNPs) 
extracellularly (Saravanan et al.  2011 ). The culture supernatants of bacteria like 
 Pseudomonas proteolytica ,  Pseudomonas meridiana ,  Arthrobacter kerguelensis , 
 Bacillus indicus ,  Bacillus thuringiensis ,  Bacillus strain  CS 11, etc., were also 
proven its property to form extracellular nanoparticles very effectively (Shivaji et al. 
 2011 ; Das et al.  2014 ; Najitha Banu et al.  2014 ).  

6.8     Synthesis of Silver Nanoparticles by Fungi 

 Fungi are the most promising group of bioactive compounds producer among fun-
gal species. The various microscopic fi lamentous fungi (Ascomycetes,  Fungi 
Imperfecti , etc.) are the most frequent producers with about 6400 produced com-
pounds (Berdy  2005 ). Siddhardha et al. ( 2012 ) reported that the fungi are the 
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promising source of secondary metabolites. They were screened seven species of 
fungi namely  Cladosporium spherospermum ,  Cladosporium oxysporum , 
 Chaetomium indicum ,  Gilmaniella Subornata ,  Penicillium purpurogenum  for their 
ability to secondary metabolites. The crude extracts of fungi were evaluated for 
antimicrobial and larvicidal activity. 

 Extracellularly produced nanoparticles were stabilized by the proteins and reduc-
ing agents secreted by the fungus. A minimum of four high molecular weight pro-
teins released by the fungal biomass have been found in association with 
nanoparticles. One of these was strain specifi c NADH-dependent reductase. 
However, emission band produced by fl uorescence spectra indicate the native form 
of these proteins present in the solution as well as bound to the surface of nanopar-
ticles (Macdonald and Smith  1996 ; Kumar and McLendon  1997 ). 

 Silver nanoparticles (5–50 nm) could be synthesized extracellularly using  F. oxy-
sporum , with no evidence of fl occulation of the particles even a month after the reac-
tion (Ahmad et al.  2003a ). The long-term stability of the nanoparticle solution might 
be due to the stabilization of the silver particles by proteins. The morphology of 
nanoparticles was highly variable, with generally spherical and occasionally triangu-
lar shapes observed in the micrographs. Silver nanoparticles have been reported to 
interact strongly with proteins including cytochrome c (Cc). This protein could be 
self-assembled on citrate-reduced silver colloid surface (Macdonald and Smith 
 1996 ). Interestingly, adsorption of (Cc)-coated colloidal Au nanoparticles onto aggre-
gated colloidal Ag resulted Ag: Cc: Au nanoparticle conjugates (Keating et al.  1998 ). 

 In UV-vis spectra from the reaction mixture after 72 h, the presence of an absorp-
tion band at 270 nm might be due to electronic excitations in tryptophan and tyro-
sine residues in the proteins. In  F. oxysporum , the bioreduction of silver ions was 
attributed to an enzymatic process involving NADH-dependent reductase (Ahmad 
et al.  2003b ). The exposure of silver ions to  F. oxysporum , resulted in release of 
nitrate reductase and subsequent formation of highly stable silver nanoparticles in 
solution (Anil Kumar et al.  2007 ). The secreted enzyme was found to be dependent 
on NADH cofactor. They mentioned high stability of nanoparticles in solution was 
due to capping of particles by release of capping proteins by  F. oxysporum . Stability 
of the capping protein was found to be pH dependent. At higher pH values (>12), 
the nanoparticles in solution remained stable, while they aggregated at lower pH 
values (<2) as the protein was denatured. 

 Anil Kumar et al. ( 2007 ) have demonstrated enzymatic synthesis of silver 
nanoparticles with different chemical compositions, sizes and morphologies, using-
NADPH- dependent nitrate reductase purifi ed from  F. oxysporum  and phytochelatin, 
 in vitro . Silver ions were reduced in the presence of nitrate reductase, leading to 
formation of a stable silver hydrosol 10–25 nm in diameter and stabilized by the cap-
ping peptide. Use of a specifi c enzyme in  in vitro  synthesis of nanoparticles showed 
interesting advantages. This would eliminate the downstream processing required 
for the use of these nanoparticles in homogeneous catalysis and other applications 
such as non-linear optics. The biggest advantage of this protocol based on purifi ed 
enzyme was the development of a new approach for green synthesis of nanomaterials 
over a range of chemical compositions and shapes without possible aggregation. 
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 Ingle et al. ( 2008 ) assessed the potential ability of  Fusarium acuminatum  Ell. 
and Ev. (USM-3793) cell extracts in biosynthesis of silver nanoparticles produced 
within 15–20 min and were spherical with a broad size distribution in the range of 
5–40 nm with the average diameter of 13 nm. A nitrate-dependent reductase 
enzyme might act as the reducing agent. The white rot fungus,  Phanerochaete 
chrysosporium , also reduced silver ions to form nano-silver particles (Vigneshwaran 
et al.  2006 ). The most dominant morphology was pyramidal shape, in different 
sizes, but hexagonal structures were also observed. Possible involvement of pro-
teins in synthesizing silver nanoparticles was observed in  Plectonema boryanum  
UTEX 485 (a fi lamentous cyanobacterium) (Lengke et al.  2007 ). Stable silver 
nanoparticles could be achieved by using  Aspergillus fl avus . These nanoparticles 
were found to be stable in water for more than 3 months with no signifi cant aggre-
gation because of surface binding of stabilizing materials secreted by the fungus 
(Vigneshwaran et al.  2007 ). 

 Bhainsa and D’Souza ( 2006 ) reported that the extracellular biosynthesis of silver 
nanoparticles using  Aspergillus fumigates  (an ubiquitous saprophytic mold) has 
also been investigated. The resulted TEM micrograph showed well-dispersed silver 
nanoparticles (5–25 nm) with variable shapes. Most of them were spherical in 
nature with some others having occasionally triangular shapes. Compared to intra-
cellular biosynthesis of nanoparticles; extracellular synthesis could be developed as 
a simple and cheap method because of uncomplicated downstream processing and 
handling of biomasses. 

 The extracellular fi ltrate of  Cladosporium cladosporioides  biomass was used to 
synthesize silver nanoparticles (Balaji et al.  2009 ). It was suggested that proteins, 
organic acids and polysaccharides released by  C. cladosporioides  were responsible 
for formation of spherical crystalline silver nanoparticles. Kathiresan et al. ( 2009 ) 
have shown that when the culture fi ltrate of  Pencillium fellutanum  was incubated 
with silver ions and maintained under dark conditions, spherical silver nanoparticles 
could be produced. They also changed crucial factors such as pH, incubation time, 
temperature, silver nitrate concentration and sodium chloride to achieve the maxi-
mum nanoparticle production. The highest optical density at 430 nm was found at 
24 h after the start of incubation time, 1 mM concentration of silver nitrate, pH 6.0, 
5 °C temperature and 0.3 % sodium chloride. Fungi of  Penicillium  genus were used 
for green synthesis of silver nanoparticles (Sadowski et al.  2008 ).  Penicillium  sp. J3 
isolated from soil was able to produce silver nanoparticles (Maliszewska et al. 
 2009 ). The bioreduction of silver ions occurred on the surface of the cells and 
 proteins might have critical role in formation and stabilization of the synthesized 
nanoparticles. 

 Sanghi and Verma ( 2009 ) have investigated the ability of  Coriolus versicolor  in 
formation of monodisperse spherical silver nanoparticles. Under alkaline conditions 
(pH 10) the time taken for production of silver nanoparticles was reduced compared 
to the normal pH from 72–1 h. It was indicated that alkaline conditions might be 
involved in bioreduction of silver ions, water hydrolysis and interaction with protein 
functionalities. Findings of this study have shown that glucose was necessary for the 
reduction of silver nanoparticles, and S-H of the protein played an important role in 

6 Microbial Nanoparticles as Mosquito Control Agents



90

the bioreduction. Extracellular synthesis of silver nanoparticles was reported using 
fungus like  Aspergillus niger ,  Chrysosporium tropicum ,  Pencillium sp ,  A. niger  
2587 etc., (Soni and Prakash  2012 ,  2013 ; Dhanasekaran and Thangaraj  2013 ).  

6.9     Silver Nanoparticles Used as a Mosquitocidal Agent 

 Sap-Iam et al. ( 2010 ) investigated the pest control of mosquito  Ae. aegypti  by means 
of larvicidal is still necessity in order to diminish the vector of some life-threaten 
diseases. In this study, Polymethacrylate (PMA)-stabilize silver nanoparticles were 
synthesized by UV irradiation, characterized by surface Plasmon Resonance (SPR), 
Transmission Electron Microscopy (TEM) and zeta potential measurement and 
evaluated for their larvicidal activity toward  A. aegypti  larvae. Through the pro-
cesses of characterization and larvicidal assay, silver nanoparticles were 
concentration- dependent and supposed to arise from the penetration of the nanopar-
ticles into the larval membrane. The PMA-capped silver nanoparticles at a concen-
tration of 5 ppm exhibited less than 10 % survival of larvae within 3 h exposure 
time. The study suggests that the silver nanoparticles synthesized by UV- irradiation 
can be employed in biocontrol of pest including mosquito larvae. Soni and Prakash 
( 2012 ) reported that the fungus,  A. niger  synthesized gold nanoparticles (AuNPs) 
was more and rapid and environmentally friendly approach for mosquito control 
than current approach. This could potentially lead to a new vector control strategy. 

 Sareen Sarah et al. ( 2012 ) studied the larvicidal potential of  Hibiscus rosasinen-
sis  synthesized silver nanoparticles adjacent to  Aedes albopictus . They are revealed 
the signifi cant larvicidal activity. This method is considered as an innovative alter-
native approach using green nanochemistry technique to control vector parasites 
and is the fi rst report on mosquito larvicidal activity of  H. rosasinensis  leaf medi-
ated synthesized silver nanoparticles. 

 Soni and Prakash ( 2012 ) have investigated the entomopathogenic fungus 
 Chrysosporium tropicum  synthesized silver and gold nanoparticles against the 
 Culex quinquefasciatus  and  Anopheles stephensi  larvae and they are reported the all 
larval stages of  Cx. quinquefasciatus  were found more susceptible to the synthe-
sized silver nanoparticles. Whereas, the larvae of  An. stephensi  were found more 
susceptible to larvicide synthesized with gold nanoparticles. 

 Dhanasekaran and Thangaraj ( 2013 ) studied the pathogenicity and synthesis effi -
ciency of ten selected microbial (bacterial and fungal) isolates, among the ten iso-
lates four isolates such as  A. bisporus ,  E. coli ,  Pencillium sp. and Vibrio sp . showed 
100 % mortality was observed at 24 h of post treatment. 

 Soni and Prakash ( 2013 ) have synthesized the silver nanoparticles (AgNPs) by 
using the soil fungus  A. niger  2587. They are tested the effi cacy at different concen-
tration against larvae and pupae of  An. stephensi ,  Cx. quinquefasciatus  and  Ae. 
aegypti . The larvae of  Cx. quinquefasciatus  have shown the 100 % mortality to the 
synthesized AgNPs after 1 h of exposure, while the larvae of  An. stephensi  and  Ae. 
aegypti  were found less susceptible to the synthesized AgNPs. 
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 Najitha Banu et al. ( 2014 ) reported that the entomopathogenic bacteria,  B. 
thuringiensis  (Bt) synthesized silver nanoparticles against dengue vector,  A. aegypti . 
The mortality rendered by Bt-AgNPs was comparatively higher than that of the 
control against third instar larvae of  A. aegypti  (LC 50  0.10 ppm and LC 90  0.39 ppm) 
in all the tested concentrations, viz. 0.03, 0.06, 0.09, 0.12, and 0.15 ppm. 

 The nanoparticles encoded by secondary metabolite of bacteria and entomo-
pathogenic fungi are a novel tool to havoc the larval population from the nuisance 
where vector species cause endemic diseases. This approach has been successfully 
adopted in vector control programme in future and also thus the reduction of xeno-
biotic chemicals loads in the environment directly (Najitha Banu and 
Balasubramanian  2014a ,  b )  

6.10     Role of Dissolved Silver (Ag + ) in Toxicity 

 Silver nanoparticles release silver ions (Ag + ) in the aqueous state (Kim et al.  2009 ), 
it is necessary to distinguish between the toxic effects of Ag NP and dissolved Ag +  
(Johnston et al.  2010 ). Results from recent studies appear ambiguous. Some investi-
gators suggested that Ag NP might act as a “Trojan horse”, bypassing typical barriers 
and then releasing Ag +  ions that damage cell machinery (Lubick  2008 ). This hypoth-
esis of similar biological response of AgNPs and Ag +  ions was further supported by 
some other investigators (Foldbjerg et al.  2009 ; Laban et al.  2009 ). Alternatively, a 
combination of both may be responsible, as the release of ions would be expected to 
be greater for smaller particles. Navarro et al. ( 2008 ) examined the rate of photosyn-
thesis in algae exposed to Ag NP or Ag +  in the presence and absence of cysteine (a 
chelator of free Ag +  ions). This study showed that AgNPs were more toxic than Ag +  
ions. Interestingly, a higher concentration of cysteine was required to eliminate Ag +  
ion toxicity. These fi ndings suggest that interactions between algae and nanoparti-
cles may enhance the release of Ag +  ions, i.e., nanoparticles acted as an effective 
delivery vehicle for Ag +  ions. Kawata et al. ( 2009 ) also suggest that both “nanosized 
particle of Ag” as well as “ionic Ag + ” contribute to the toxic effects of AgNP. 

 Chae et al. ( 2009 ) further elaborated that these two silver forms have distinguish-
able toxicological fi ngerprints. While AgNP led to cellular and DNA damage, as 
well as carcinogenic and oxidative stresses, genes related with metal detoxifi cation/
metabolism regulation and radical scavenging action were also induced. In contrast, 
the Ag +  led to an induction of infl ammatory response and metallic detoxifi cation 
processes, but resulted in a lower overall stress response when compared to AgNP. In 
contrast, Kim et al. ( 2009 ) suggested that AgNP induced toxicity independent of 
free Ag +  ions. Asharani et al. ( 2008 ) compared Ag +  ions and AgNP on the preva-
lence of phenotypic defects in zebrafi sh. None of the phenotypic defects observed 
in AgNP treatment were observed in Ag +  ion treated embryos. These preliminary 
studies appear to indicate that AgNP-mediated toxicity is independent of Ag +  ions. 

 The nanoparticles were detected in the brain indicating that silver nanoparticles 
have the ability to penetrate blood brain as observed in  Danio rerio  (Kashiwada 
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 2006 ; Asharani et al.  2008 ; Fent et al.  2010 ), mice and rat model (Kiruba Daniel 
et al.  2010 ). It was suggested that the nanoparticles could enter the cells through 
many routes, some of which include diffusion or endocytosis through the skin of 
embryos. Both nanocopper and nanosilver exposures increased metal content asso-
ciated with gill tissue, through silver concentrations were much higher following, 
nanosilver exposures suggesting that inact silver nanoparticles are associated with 
the gill (Kashiwada  2006 ; Asharani et al.  2008 ; Fent et al.  2010 ; Bai Wei et al.  2010 ; 
Zhu et al.  2008 ; Wei Bai et al.  2010 ). 

 Asharani et al. ( 2008 ) reported that the AgNPs treated embryos showed a normal 
cardiac morphology with atria and ventricle differentiated normally with proper 
orientation with time. Only at higher concentrations of AgNPs resulted in signifi -
cant growth retardation, which could be due to delay of inhibition of cell division. 

 Kiruba Daniel et al. ( 2011 ) reported that  Ocimum tenuifl orum  synthesized silver 
nanoparticles against Zebra fi sh ( Danio rerio ) model. They were confi rmed, there 
was no toxic effect occur at the concentration of 160 μg, but it could penetrate all 
tissues including the brain through life time protection can be given to healthy 
young ones. 

 Comparative toxicity of several metal oxide nanoparticles aqueous suspensions to 
 D. rerio  development stage was reported earlier. The embryo toxicity test revealed 
that nano ZnO killed  D. rerio  embryos (50 and 100 mg/L), retarded the embryo hatch-
ing (1–25 μg/L), reduced the body length of larvae, and caused tail. The embryo 
toxicity of nano-Cu at 0.01 and 0.05 mg/L showed no signifi cant difference from 
Cu2 +  at the corresponding concentrations (0.006 and 0.03 mg/L), but 0.1 mg/L nano 
Cu had greater toxicity than 0.06 mg/L Cu2 +  (Fent et al.  2010 ). As nanoparticles con-
centration increased, the number of normally developed  D. rerio  decreased, while the 
number of dead  D. rerio  increased (Kerry et al.  2007 ; Zhu et al.  2008 ; Cristina Ispas 
et al.  2009 ; Bai Wei et al.  2010 ; Wei Bai et al.  2010 ). But the real time study transport 
and biocompatibility in early embryoning development in Zebra fi sh embryo single 
silver nanoparticles (5–46 nm) showed at 0.19 nm concentration no toxicity. 

 The major implication of this biological approach is simple and less time con-
suming. In addition to this the high yield, low toxicity, low cost, and its biocompat-
ibility add to its value (Kalimuthu et al.  2010 ). An additional advantage is that the 
size of the nanoparticles synthesized can also be easily controlled by various 
 controlling parameters like pH, temperature (Gurunathan et al.  2009 ), and the use of 
stabilizers to prevent aggregation is not required as the proteins in the system act as 
stabilizers (Kalishwaralal et al.  2010 ). Nanoparticles with smaller radius of curva-
ture have higher catalytic activity; hence angular shapes are preferable due to their 
smaller radii of curvature compared to spherical particles of the same volume. 
Several research groups have successfully demonstrated the superior antimicrobial 
effi cacy of AgNPs either as they are or in composites with polymer (Sondi and 
Salopek-Sondi  2004 ; Morones et al.  2005 ; Gogoi et al.  2006 ; Sanpui et al.  2011 ; 
Banerjee et al.  2011 ). In addition, another research group demonstrated that AgNPs 
have potential cytotoxicity against cancer (Gopinath et al.  2008 ; Rani et al.  2009 ; 
Sriram et al.  2010 ) and antiangiogenic property in microvascular endothelial cells 
(Gurunathan et al.  2009 ; Kalishwaralal et al.  2009 ). 
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 Arora et al. ( 2008 ) have studied the interaction of synthesized AgNPs with 
HT-1080 (human fi brosarcoma) and A431 (human skin/carcinoma) cells in vitro. 
Results showed that a concentration of AgNPs was safe in the range from 1.56 to 
6.25 μg ml −1 , and some effects appeared when concentrations >6.25 μg ml −1 . 

 Sangiliyandi et al. ( 2013 ) studied the cytotoxic effects of AgNPs on 
MDA-MB-231 breast cancer cells and its mechanism of cell death. They are devel-
oped a green method for synthesis of AgNPs using culture supernatant of  Bacillus 
funiculus , and synthesized AgNPs were characterized by various analytical tech-
niques such as UV-visible spectrophotometer, particle size analyzer, and transmis-
sion electron microscopy (TEM). The toxicity was evaluated using cell viability, 
metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were 
treated with various concentrations of AgNPs (5–25 μg/mL) for 24 h. They were 
found that AgNPs inhibited the growth in a dose-dependent manner using MTT 
assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells 
through activation of the lactate dehydrogenase (LDH), caspase- 3, reactive oxy-
gen species (ROS) generation, eventually leading to induction of apoptosis which 
was further confi rmed through resulting nuclear fragmentation. For their results 
showed that AgNPs might be a potential alternative agent for human breast cancer 
therapy. 

 So that, the further investigation was required to fi nd out the, most challenging 
aspects of microbial synthesis of nanomaterials is to identify the proteins/enzymes 
and their subsequent DNA fragment, which actually governs the biochemical path-
way. This would lead to synthesis of respective nanomaterials in bulk quantity and 
thus a material was formulated and applies for fi eld, patent and commercialization 
of the entomopathogenic microbes-AgNPs as bio-larvicides for vectors and agricul-
tural crop pests.     
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    Chapter 7   
 Green Synthesized Silver Nanoparticles: 
A Potential New Insecticide for 
Mosquito Control                     

       Marimuthu     Govindarajan    

7.1             Introduction 

7.1.1     Mosquitos and Diseases 

 Mosquitoes (Family: Culicidae) are by far the most thoroughly researched insects. 
They probably have a much greater infl uence on human health and well-being 
throughout the world than any other arthropod, mainly because of their involvement 
in both transmitting a number of dreadful diseases (such as malaria, fi lariasis, den-
gue, Japanese encephalitis, Rift valley fever, Chikungunya and West Nile virus) and 
creating nuisance of great public health importance. Consequently, among the many 
species of blood-sucking insects, mosquitoes belonging to genera  Culex ,  Aedes , and 
 Anopheles  are the most important arthropods from medical standpoint as they are 
responsible for nearly 10 % of all the sickness of human. Although, there are more 
than 3500 species all over the world. However, only fewer than 100 species under 
eight genera only are vectors of diseases. These vectors are organized in two of the 
three subfamilies, Anophelinae and Culicinae, while the third subfamily 
Toxorhynchitinae has members with mouthparts suited to feed on plant sap only. 
Mosquitoes are cosmopolitan in distribution and are found in all climatic zones and 
zoogeographical regions (Govindarajan et al.  2008a ). 

  Culex tritaeniorhynchus  (Giles) (Diptera: Culicidae) has emerged as an important 
vector of Japanese encephalitis (JE) virus in east, southeast, and south Asia 
(Govindarajan et al.  2008b ). While  C. tritaeniorhynchus  is present throughout India, 
JE is endemic only in seven states (Andhra Pradesh, Assam, Bihar, Karnataka, 
Tamilnadu, Uttar Pradesh, and West Bengal). The change in the pattern of JE virus 
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transmission in some parts of India from epidemic to endemic is partly correlated 
with the establishment of  C. tritaeniorhynchus  in these areas. The ability of  C. tritae-
niorhynchus  to transmit and spread JE across India has become a topic of concern. 
Understanding the role of  C. tritaeniorhynchus  as a zoonotic and epizootic vector of 
JE is of primary importance in the understanding the JE epidemiology. Differences 
in transmission and vector competence of  C. tritaeniorhynchus  for JE provide rea-
sons for investigation of variations in the populations of this species. However, in 
spite of its epidemiological importance in JE transmission, few studies have been 
done on  C. tritaeniorhynchus . Neither the evolutionary history nor the population 
dynamics of this species is well understood (Govindarajan et al.  2011a ,  b ,  c ,  d ). 

 Malaria is one of the most common vector-borne diseases widespread in tropical 
and subtropical regions, including parts of the America, Asia, and Africa (WHO 
 2007 ). Worldwide, there were about 247 million malaria cases with 0.881 million 
deaths reported in 2006 (WHO  2008 ). Malaria is the world’s most dreadful tropical 
disease. As reported recently, 406 million Indians were at risk of stable  Plasmodium 
falciparum  transmission in 2007 with an uncertainty point estimate of 101.5 million 
clinical cases (95 % CI 31.0–187.0 million cases) (Hay et al.  2010 ; Govindarajan 
et al.  2008c ). In India, Malaria is still the most important cause of morbidity and 
mortality with approximately two to three million new cases arising every year 
(Govindarajan et al.  2008d ). Rapid increases in population, limited funds, and 
know-how together with environmental change and an increase in the resistance of 
vectors and pathogens to insecticides and drugs and a shift in vector-control opera-
tions from long-term preventive measures to on-the-spot responses have led to an 
increase in vector transmitted diseases (Gubler  1998 ). Malaria causes 1.3 % loss in 
economic growth in Africa per year, and the long-term impact over a 15-year period 
is estimated at a 20 % loss in the gross national product (Zaim and Guillet  2002 ). 
 Anopheles subpictus  is known to transmit malaria in an isolated study of multiple 
host-feeding in fi eld populations, and its specifi c role in transmitting malaria in Sri 
Lanka revealed that multiple blood feeding within the same gonotrophic cycle was 
attributed to a local “frequent feeding strategy” in this primarily zoophagic and 
endophilic malaria vector (Govindarajan  2009 ). 

  Aedes albopictus , the Asian tiger mosquito, is a vector of dengue haemorrhagic 
fever (DHF), and is capable of breeding in a wide range of container types and water 
holding habitats. In Thailand,  A. albopictus  has been found in forested habitats 
ranging in elevation from 450 to 1,800 m as well as in a variety of other habitats in 
rural and suburban areas (Scanlon and Esah  1965 ; Thavara et al.  1996 ). Ubiquitous 
breeding sites, such as tree holes, coconut shells, fruit peels, water jars, unused and 
discarded tires and boats holding water have been found to contain  A. albopictus  
larvae. Because of the diverse breeding sites of  A. albopictus , especially in the for-
ested areas, they may be hard to reach to monitor larval populations. Detection and 
measuring mosquito abundance through their egg-laying activities using ovitraps is 
the most common surveillance or sampling method for this and some other  Aedes  
mosquitoes (Service  1992 ; Govindarajan et al.  2008e ). Yap et al. ( 1995 ) pointed out 
the importance of ovipostion site preferences in planning vector control programs 
against  Aedes  mosquitoes. However, information on oviposition attractants for  A. 
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albopictus  is rather limited at the present time. Sucharit et al. ( 1980 ) studied the 
oviposition behavior of  A. aegypti  and  A. albopictus  to be infl uenced by their own 
larval holding water or that of other species. They found that larval holding water of 
 A. albopictus  signifi cantly increased oviposition by  A. aegypti , but there was no 
oviposition attractancy for  A. albopictus . Thavara et al. ( 1989 ) demonstrated that  A. 
albopictus  ( A. aegypti  absent) prefer to lay eggs in the fi eld in containers with con-
ditioned water that was left outside for a long period and with a stable fl ora together 
with the immature stages of this species.  

7.1.2     Vector Control 

 The medical importance of mosquitoes as vectors for the transmission of serious 
diseases that cause morbidity, mortality, economic loss and social disruption such 
as malaria, lymphatic fi lariasis and viral diseases is well documented. Rapid 
increases in population, limited funds, and know-how together with environmental 
change and an increase in the resistance of vectors and pathogens to insecticides 
and drugs and a shift in vector-control operations from long-term preventive mea-
sures to on-the- spot responses have led to an increase in vector transmitted dis-
eases (Govindarajan  2010a ). The mosquito borne diseases remains endemic in 
more than 100 developing tropical countries and its control is a major goal for 
improved worldwide health. In the Indian scenario, almost the entire country is 
endemic to the mosquito-borne diseases due to favorable ecological conditions. 
Vector control is a global problem. It may be directed against the immature or 
adult stages of mosquitoes. Thus, one of the approaches for control of these 
mosquito- borne diseases is the interruption of disease transmission by killing or 
preventing mosquitoes from biting human beings. It is known that larvicides play 
a vital role in controlling mosquitoes in their breeding sites. However, it is undoubt-
edly the best method of protecting the community against the diseases. In recent 
years, it has been realized that personal protection from biting mosquitoes and 
other haematophagous arthropods is the fi rst line of defence against the infectious 
disease. Mosquito control has been mainly affected by use of conventional insec-
ticides, but these have caused their own problems, such as adverse effects on the 
environment and the encouragement of pesticide resistance in some mosquitoes 
(Govindarajan  2011a ,  b ).  

7.1.3     Disadvantage of Chemical Control 

 The current mosquito control approach is based on synthetic insecticides. Even 
though they are effective, they created many problems like insecticide resistance 
(Govindarajan and Karuppannan  2011 ). Chemical control using synthetic insecti-
cides had been favorable so far because of their speedy action and easy application. 
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The control of mosquito larvae worldwide depends primarily on continued applica-
tions of organophosphates, such as temephos and fenthion, and insect growth regu-
lators, such as difl ubenzuron and methoprene (Yang et al.  2002 ). Although effective, 
continued use of synthetic insecticides for mosquito control has disrupted natural 
biological control systems and also resulted in lower effi cacy of such insecticides 
and development of resistance in the mosquito population, which are undesirable 
effects on nontarget organisms (Govindarajan et al.  2005 ). Mosquito control has 
been becoming increasingly diffi cult because of the indiscriminate uses of synthetic 
chemical insecticides which have an adverse impact on the environment and disturb 
ecological balance (Govindarajan  2010a ). Majority of the chemical pesticides are 
harmful to man and animals, some of which are not easily degradable and spreading 
toxic effects. The increased use of these insecticides may enter into the food chain, 
and thereby, the liver, kidney, etc., may be irreversibly damaged. They even result in 
mutation of genes and these changes become prominent only after a few generations 
(Ghosh and Chandra  2006 ). Chemical insecticides are very costly. In larval mos-
quito control, application of insecticides in ponds, wells, and other water bodies 
may cause health hazards to human and larvivorus fi shes. Nowadays, mosquito 
coils containing synthetic pyrethroids and other organophosphorus compounds 
because so many side effects, such as breathing problem, eye irritation, headache, 
asthma, itching, and sneezing to the users. With the use mosquito repellent, people 
complained of ill health effect and sometimes required medical treatment. In addi-
tion, pests were becoming resistant to chemical treatments. Indoor residual spraying 
of insecticides stains the walls and leaves a long lasting unpleasant odor. There is an 
urgent need to develop new insecticides which are more environmentally safe and 
also biodegradable and target specifi c against mosquitoes (Govindarajan  2011c ).  

7.1.4     Advantage of Botanical Insecticides 

 Biopesticides provide an alternative to synthetic pesticides because of their gener-
ally low environmental pollution, low toxicity to humans and other advantages (Liu 
et al.  2012 ; Govindarajan  2011d ). Recently there has been a concerted effort to 
promote the use of botanical pesticides (as possible alternative to synthetic chemical 
insecticides), which provide a pest specifi c, cost effective, easy to use, readily bio-
degradable and environment friendly method (Govindarajan  2010b ). Therefore, an 
effort should be made to fi nd alternative insecticides. Plants are rich sources of 
bioactive compounds that can be used to develop environmentally safe vector and 
pest-managing agents. A number of plants and microbes have been reported as 
selective with little or no harmful effect on non-target organisms and the environ-
ment (Govindarajan and Sivakumar  2011 ). One of the most effective alternative 
approaches under the biological control programme is to explore the fl oral biodiver-
sity and enter the fi eld of using safer insecticides of botanical origin as a simple and 
sustainable method of mosquito control. Further, unlike conventional insecticides 
which are based on a single active ingredient, plant derived insecticides comprise 
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botanical blends of chemical compounds which act concertedly on both behavourial 
and physiological processes. Thus there is very little chance of pests developing 
resistance to such substances. Identifying bio-insecticides that are effi cient, as well 
as being suitable and adaptive to ecological conditions, is imperative for continued 
effective vector control management. Botanicals have widespread insecticidal prop-
erties and will obviously work as a new weapon in the arsenal of synthetic insecti-
cides and in future may act as suitable alternative product to fi ght against mosquito 
borne diseases. These well known drawbacks with synthetic insecticides shifted the 
mosquito control programme to use of eco-friendly, biodegradable and microbial 
plant compounds with mosquitocidal property (Govindarajan et al.  2006a ,  b ). 

 Natural products of plant origin are generally preferred because of their less 
harmful nature to nontarget organisms and their innate biodegradability. Medicinal 
plants may be an alternative source of mosquito control agent because they have 
been reported to show several bioactivities such as insecticidal, antifungal, and 
nematicidal activities. It has been shown that the use of botanicals as mosquito con-
trol agents can be effectual in minimizing these adverse impacts due to their eco- 
safety, target specifi city, negligible resistance, reduced number of applications, 
higher acceptability, and suitability for rural areas. Many researchers have reported 
that extracts from various plants can be used as effective and advantageous alterna-
tives to synthetic insecticides or along with other insecticides under integrated vec-
tor control programs for the control of mosquitoes (Govindarajan et al.  2007 ).  

7.1.5     Nanoparticles 

 Nanomaterials are defi ned as materials that have at least one dimension\100 nm 
(1 nm = 10 −9  m) and they can be divided into two large groups: ultrafi ne nanosized 
particles not intentionally produced and engineered nanoparticles produced in a 
controlled, engineered way (Oberdorster et al.  2005 ). Nanotechnology is rapidly 
growing by producing nanoproducts and nanoparticles (NPs) that can have novel 
and size-related physico-chemical properties differing signifi cantly from larger 
matter (Ju-Nam and Lead  2008 ). The novel properties of NPs have been exploited 
in a wide range of potential applications in medicine, cosmetics, renewable ener-
gies, environmental remediation and biomedical devices (Lu et al.  2007 ). Among 
them, silver nanoparticles (Ag-NPs or nanosilver) have attracted increasing interest 
due to their unique physical, chemical and biological properties compared to their 
macro-scaled counterparts (Sharma et al.  2009 ). Ag-NPs have distinctive physico- 
chemical properties, including a high electrical and thermal conductivity, surface- 
enhanced Raman scattering, chemical stability, catalytic activity and non linear 
optical behavior (Krutyakov et al.  2008 ). These properties make them of potential 
value in inks, microelectronics, and medical imaging. Besides, Ag-NPs exhibit 
broad spectrum bactericidal and fungicidal activity (Ahamed et al.  2010 ) that has 
made them extremely popular in a diverse range of consumer products, including 
plastics, soaps, pastes, food and textiles, increasing their market value. To date, 
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nanosilver technologies have appeared in a variety of manufacturing processes and 
end products. Nanosilver can be used in a liquid form, such as a colloid (coating and 
spray) or contained within a shampoo (liquid) and can also appear embedded in a 
solid such as a polymer master batch or be suspended in a bar of soap (solid). 
Nanosilver can also be utilized either in the textile industry by incorporating it into 
the fi ber (spun) or employed in fi ltration membranes of water purifi cation systems. 
In many of these applications, the technological idea is to store silver ions and 
incorporate a time-release mechanism. This usually involves some form of moisture 
layer that the silver ions are transported through to create a long-term protective 
barrier against bacterial/fungal pathogens (Dallas et al.  2011 ).  

7.1.6     Synthesis of Nanoparticle 

7.1.6.1     Chemical Synthesis 

 Chemical synthesis of Ag NPs requires three components: precursor for Ag NPs 
usually silver nitrate (AgNO 3 ), reducing agents such as sodium borohydrate 
(NaBH 4 ) and capping agent like polyvinylpyrrolidone (C 6 H 9 NO)n. In chemical 
synthesis, there is single reducing and capping agent which allow synthesis of 
nanoparticles with defi ned shape and size which is major advantage of this method 
but use of hazardous chemicals, harsh reaction parameters such as high tempera-
ture, pressure and toxic by-product creates environmental concern (Brichkin et al. 
 2008 ). There are chances of adherence of toxic chemical residues on surface of 
nanoparticles. This restricts use of chemically synthesized Ag NPs in medicine 
and healthcare. Moreover, the Ag NPs produced by chemical methods tend to 
agglomerate or become insoluble in aqueous system therefore, their application in 
living system which is aqueous too raise concern about stability and safety 
(Mafune et al.  2001 ). 

 Currently, many methods have been reported for the synthesis of Ag NPs by 
using chemical, physical, and biological routes. Each method has advantages and 
disadvantages with common problems being costs, scalability, particle sizes and 
size distribution. Among the existing methods, the chemical methods have been 
mostly used for production of Ag-NPs. Chemical methods provide an easy way to 
synthesize Ag-NPs in solution. Monodisperse samples of silver nanocubes were 
synthesized in large quantities by reducing silver nitrate with ethylene glycol in the 
presence of polyvinylpyrrolidone (PVP) (Sun and Xia  2002 ), the so-called polyol 
process. In this case, ethylene glycol served as both reductant and solvent. It showed 
that the presence of PVP and its molar ratio relative to silver nitrate both played 
important roles in determining the geometric shape and size of the product. It sug-
gested that it is possible to tune the size of silver nanocubes by controlling the 
experimental conditions. Spherical Ag NPs with a controllable size and high 
 monodispersity were synthesized by using the polyol process and a modifi ed pre-
cursor injection technique (Kim et al.  2006 ). 
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 In the precursor injection method, the injection rate and reaction temperature 
were important factors for producing uniform-sized Ag NPs with a reduced size. Ag 
NPs with a size of 17 ± 2 nm were obtained at an injection rate of 2.5 ml s −1  and a 
reaction temperature of 100 °C. The injection of the precursor solution into a hot 
solution is an effective means to induce rapid nucleation in a short period of time, 
ensuring the fabrication of Ag NPs with a smaller size and a narrower size distribu-
tion. Nearly monodisperse Ag NPs have been prepared in a simple oleylamine- 
liquid paraffi n system (Chen et al.  2007 ). It was shown that the formation process 
of Ag NPs could be divided into three stages: growth, incubation and Oatwald rip-
ening stages. In this method, only three chemicals, including silver nitrate, oleyl-
amine and liquid paraffi n, are employed throughout the whole process. The higher 
boiling point of 300 °C of paraffi n affords a broader range of reaction temperature 
and makes it possible to effectively control the size of Ag NPs by varying the heat-
ing temperature alone without changing the solvent. Otherwise, the size of the col-
loidal Ag-NPs could be regulated not only by changing the heating temperature, or 
the ripening time, but also by adjusting the ratio of oleylamine to the silver 
precursor.  

7.1.6.2     Physical Synthesis 

 For a physical approach, the metallic NPs can be generally synthesized by evapora-
tion–condensation, which could be carried out by using a tube furnace at atmo-
spheric pressure. However, in the case of using a tube furnace at atmospheric 
pressure there are several drawbacks such as a large space of tube furnace, great 
consumption energy for raising the environmental temperature around the source 
material and a lot of time for achieving thermal stability. Therefore, various meth-
ods of synthesis of Ag NPs based on the physical approach have been developed. A 
thermal-decomposition method was developed to synthesize Ag NPs in powder 
form (Lee and Kang  2004 ). The Ag NPs were formed by decomposition of a Ag1+−
oleate complex, which was prepared by a reaction with AgNO 3  and sodium oleate 
in a water solution, at high temperature of 290 °C. Average particle size of the Ag 
NPs was obtained of about 9.5 nm with a standard deviation of 0.7 nm. This indi-
cates that the Ag NPs have a very narrow size distribution. Jung et al. ( 2006 ) reported 
an attempt to synthesize metal NPs via a small ceramic heater that has a local heat-
ing area. The small ceramic heater was used to evaporate source materials. The 
results showed that the geometric mean diameter, the geometric standard deviation 
and the total number concentration of NPs increase with heater surface temperature. 
The particle generation was very stable, because the temperature of the heater sur-
face does not fl uctuate with time. Spherical NPs without agglomeration were 
observed, even at high concentration with high heater surface temperature. The gen-
erated Ag NPs were pure silver, when air was used as a carrier gas. The geometric 
mean diameter and the geometric standard deviation of Ag NPs were in the range of 
6.2–21.5 nm and 1.23–1.88 nm, respectively. Tien et al. ( 2008 ) used the arc dis-
charge method to fabricate Ag NPs suspension in deionized water with no added 
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surfactants. In this synthesis, silver wires (Gredmann, 99.99 %, 1 mm in diameter) 
were submerged in deionized water and used as electrodes. The experimental results 
show that Ag NPs suspension fabricated by means of arc discharge method with no 
added surfactants contains metallic Ag NPs and ionic silver. With a silver rod con-
sumption rate of 100 mg min −1 , yielding metallic Ag NPs of 10 nm in size and ionic 
silver obtained at concentrations of approximately 11 ppm and 19 ppm, 
respectively.  

7.1.6.3     Biological Synthesis 

 The biological synthesis of Ag NPs, the reducing agent and the stabilizer are 
replaced by molecules produced by living organisms. These reducing and/or stabi-
lizing compounds can be utilized from bacteria, fungi, yeasts, algae or plants 
(Sintubin et al.  2012 ). The formation of small, spherical, nearly monodispersed Ag 
NPs in the size range from 2 to 11 nm (average size of 4 ± 1.5 nm) was observed. 
The Ag NPs exhibit useful properties such as being hydrophilic, stable, and having 
a large surface area. This bacterially based method of synthesis is economical, sim-
ple, reproducible, and requires less energy when compared to chemical synthesis 
routes. In another study, the use of the fungus  Trichoderma viride  ( T. viride ) for the 
extracellular biosynthesis of Ag NPs from silver nitrate solution was reported 
(Fayaz et al.  2010 ). In this regard  T. viride  proves to be an important biological 
component for extracellular biosynthesis of stable Ag NPs. The morphology of Ag 
NPs is highly variable, with spherical and occasionally rod-like NPs observed on 
micrographs. The obtained diameter of Ag NPs was in the range from 5 to 40 nm. 
In another study, stable Ag NPs of 5–15 nm in size were synthesized by using an air 
borne bacteria ( Bacillus  sp.) and silver nitrate (Pugazhenthiran et al.  2009 ). The 
biogenic NPs were observed in the periplasmic space of the bacterial cells, which 
is between the outer and inner cell membranes. Also, the Ag NPs were produced by 
using the  Lactobcillus  spp. as reducing and capping agent. Sintubin et al. ( 2009 ) 
were carried with different  Lactobcillus  species to accumulate and subsequently 
reduce Ag+. The result showed that only the lactic acid bacterial were confi rmed to 
have the ability to produce Ag0. In addition, both particle localization and distribu-
tion inside the cell were dependent on  Lactobcillus  species. The mean diameter of 
the biogenic Ag NPs produced by this method varied with the  Lactobacillus  spp. 
used. The smallest NPs were produced by  L. fermentum  and had a diameter of 
11.2 nm. The recovery of silver and the reduction rate were pH dependent. On the 
other hand, Naik et al. ( 2002 ) have demonstrated the biosynthesis of biogenic Ag 
NPs using peptides selected by their ability to bind to the surface of silver particles. 
By the nature of peptide selection against metal particles, a ‘memory effect’ has 
been imparted to the selected peptides. The silver-binding clones were incubated in 
an aqueous solution of 0.1 mM silver nitrate for 24–48 h at room temperature. The 
silver particles synthesized by the silver-binding peptides showed the presence of 
silver particles 60–150 nm in size. In summary, the biological method provides a 
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wide range of resources for the synthesis of Ag NPs, and this method can be con-
sidered as an environmentally friendly approach and also as a low cost technique. 
The rate of reduction of metal ions using biological agents is found to be much 
faster and also at ambient temperature and pressure conditions. In biological syn-
thesis, the cell wall of the microorganisms pays a major role in the intracellular 
synthesis of NPs. The negatively charged cell wall interacts electrostatically with 
the positively charged metal ions and bioreduces the metal ions to NPs (Thakkar 
et al.  2010 ). When microorganisms are incubated with silver ions, extracellular Ag 
NPs can be generated as an intrinsic defense mechanism against the metal’s toxic-
ity. Other green syntheses of Ag NPs using plant exacts as reducing agents have 
been performed. This defense mechanism can be exploited as a method of NPs 
synthesis and has advantages over conventional chemical routes of synthesis. 
However, it is not easy to have a large quantity of Ag NPs by using biological 
synthesis.  

7.1.6.4     Mosquitocidal Properties of Ag NPs 

 Nanotechnology is an exciting and powerful discipline of science; the altered 
properties of which have offered many new and profi table products and applica-
tions. Agriculture, food and medicine sector industries have been investing more 
in nanotechnology research. Plants or their extracts provide a biological synthesis 
route of several metallic nanoparticles which is more eco-friendly and allows a 
controlled synthesis with well-defi ned size and shape. The rapid drug delivery in 
the presence of a carrier is a recent development to treat patients with nanoparti-
cles of certain metals. The engineered nanoparticles are more useful in increasing 
the crop production, although this issue is still in infancy. This is simply due to the 
unprecedented and unforeseen health hazard and environmental concern. The 
well-known metal ions such as zinc, iron and copper are essential constituents of 
several enzymes found in the human system even though the indiscriminate use of 
similar other metal nanoparticle in food and medicine without clinical trial is not 
advisable. These attempts to develop novel materials as mosquito larvicides are 
still necessary. With the progress of nano-technology, many laboratories around 
the world have investigated silver nanoparticle (AgNPs) production as the 
nanoparticle possesses more surface atoms than a microparticle, which greatly 
improves the particle’s physical and chemical characteristics. Some physical or 
chemical methods that are currently available for silver nanoparticle production 
include mechanical smashing, a solid-phase reaction, freeze-drying, spread dry-
ing, and precipitation (co- and homo-precipitation). In general, these methods 
consume a lot of energy in order to maintain the high pressures and temperatures 
that are needed for them to work. In contrast, many bioprocesses occur under 
normal air pressure and temperature, resulting in vast energy savings. As a conse-
quence, this type of procedure attracted the attention of microbiologists and 
chemists (Chen et al.  2003 ). 

7 Green Synthesized Silver Nanoparticles: A Potential New Insecticide



108

 Green Ag NPs have been synthesized using various natural products like 
 Azadirachta indica  (Tripathi et al.  2009 ),  Glycine max  (Vivekanandhan et al. 
 2009 ),  Cinnamon zeylanicum  (Sathishkumar et al.  2009 ), and  Camellia sinensis  
(Begum et al.  2009 ). Such studies could prove to have an enormous impact in the 
immediate future if plant tissue culture and downstream processing procedures 
were applied in order to synthesize metallic as well as oxide nanoparticles on 
industrial scale. Currently, there is limited knowledge about the possible adverse 
effects that Ag nanotechnologies can exert to aquatic organisms, but there could be 
a potential for increased exposure to both ionic Ag and Ag NPs because of the 
rapid development of commercialized nanoproducts. Ag NPs may be released into 
the environment from discharges at the point of production, fromerosion of engi-
neered materials in household products (antibacterial coatings and silver-impreg-
nated water fi lters), and from washing or disposal of silver-containing products 
(Benn and Westerhoff  2008 ). Elumalai et al. ( 2010 ) have reported that the aqueous 
extract of shade dried leaves of  Euphorbia hirta  was used for the synthesis of Ag 
NPs and their antibacterial activities. The larvicidal activity of synthesized Ag NPs 
utilizing aqueous extract from  Eclipta prostrata , a member of the Asteraceae, has 
been investigated against fourth instar larvae of fi lariasis vector,  C. quinquefascia-
tus  and malaria vector,  A. subpictus  (Rajakumar and Abdul Rahuman  2011 ). The 
larvicidal activities of mycosynthesized Ag NPs against vectors  A. aegypti  and  A. 
stephensi  responsible for diseases of public health importance have been evaluated 
(Salunkhe et al.  2011 ). 

 The pediculocidal and larvicidal activities of synthesized silver nanoparticles 
using the aqueous leaf extract of  Tinospora cordifolia  have been reported against 
the human capitis and fourth- instar larvae of  A.subpictus  and  C. quinquefascia-
tus  (Jayaseelan et al.  2011 ). The larvicidal activity of silver nanoparticles syn-
thesized using  Pergularia daemia  plant latex has been screened against  A. 
aegypti ,  A. stephensi , and nontarget fi sh  Poecilia reticulata  (Patil et al.  2012b ) 
Synthesis of silver nanoparticles was carried out using leaves of  Catharanthus 
roseus  and their antiplasmodial activities against  P. falciparum  (Ponarulselvam 
et al.  2012 ). Biolarvicidal and pupicidal potential of silver nanoparticles synthe-
sized with  Euphorbia hirta  has been screened against the larvae of  A. stephensi  
(Priyadarshini et al.  2012 ). The larvicidal activity of crude petroleum ether, 
ethyl acetate, and methanol extracts of the whole plants of  Phryma leptostachya  
was assayed for its toxicity against the early fourth instar larvae of  C. pipiens  
pallens. The larval mortality was observed after 24 h of exposure (Xiao et al. 
 2012 ). The hexane, ethyl acetate, and methanol extracts of  Aristolochia indica , 
 Cassia angustifolia ,  Diospyros melanoxylon ,  Dolichos bifl orus , Gymnema syl-
vestre Schult ,  Justicia procumbens ,  Mimosa pudica , and  Zingiber zerumbet  
were tested for the adulticidal, repellent, and larvicidal activity against  C. geli-
dus  and  C. quinquefasciatus  (Kamaraj and Rahuman  2010 ). The extracts of 
 Coccoloba mollis ,  Guettarda grazielae ,  Merremia aegyptia ,  Rourea doniana , 
 Spermacoce verticillata , and  Triplaris americana  were tested for larvicidal 
activity against  A. aegypti  (Oliveira et al.  2010 ). The early fourth instar larvae 
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of  C. quinquefasciatus , reared in the laboratory, were used for larvicidal assay 
with water, hot water, acetone, chloroform, and methanol leaf, stem bark, and 
fl ower extracts of  Acacia arabica ,  Cedrus deodara ,  Hibiscus rosasinensis , 
 Mangifera indica ,  Nerium indicum ,  Nicotiana tabacum ,  Pongamia pinnata , and 
 Solanum nigrum  (Rahuman et al.  2009 ). The chloroform–methanol extract of the 
mature leaves of  Solanum villosum  was investigated to establish its biocontrol 
potentiality under laboratory condition against the larval forms of  A. subpictus  
(Chowdhury et al.  2009 ). 

 Murugan et al. ( 2003 ) studied the interactive effect of botanicals (Neem, 
 Pongamia ) and  Leucas aspera ,  Bacillus sphaericus  against the larvae of  C. quin-
quefasciatus . The aqueous extracts of seed kernels of  Pongamia glabra ,  Adenanthera 
pavonina , and  Sapindus emarginatus  were found to exhibit effective ovicidal, larvi-
cidal, and pupicidal activity on  A. aegypti  (Koodalingam et al.  2009 ). The ethanolic 
extracts of the orange peel ( C. sinensis ) was tested for the toxicity effect on the 
larvae of the yellow fever mosquito  A. aegypti  (Amusan et al.  2005 ); the petroleum 
ether extract showed larvicidal activity against the  A. aegypti ,  C. quinquefasciatus , 
 A. dirus  and  Mansonia uniformis  (Komalamisra et al.  2005 ). Larvicidal activity of 
ethyl acetate, butanol, and petroleum ether extracts of fi ve species of Euphorbiaceae 
plants,  Jatropha curcas ,  Pedilanthus tithymaloides ,  Phyllanthus amarus ,  Euphorbia 
hirta , and  Euphorbia tirucalli , were tested against the early fourth instar larvae of 
 A. aegypti  and  C. quinquefasciatus  (Rahman et al.  2007 ). Hexane extract obtained 
from leaves of  Eucalyptus citriodora  was tested against larvae of  A. stephensi ,  C. 
quinquefasciatus , and  A. aegypti  to assess its toxicity and growth-inhibiting activity 
(Singh et al.  2007 ). 

 Aqueous extracts of nine medicinal plants were bioassayed against larvae of  C. 
quinquefasciatus  and  A. aegypt  among these plants, the long pepper,  Piper retro-
fractum  Vahl (Piperaceae), showed the highest level of activity against mosquito 
larvae. Larvicidal activity of  P. retrofractum , fresh fruits of this plant were extracted 
in water and the extracts made into powder and bioassayed against 3rd and 4th 
instar larvae of  C. quinquefasciatus  and  A. aegypti  in the laboratory (Chansang 
et al.  2005 ). Larvicidal potential of petroleum ether (Pee), carbon tetrachloride 
(Cte) and methanol extract (Mee) of  Artemisia annua ,  Chenopodium album  and 
 Sonchus oleraceus  was observed against malaria vector,  A. stephensi  (Sharma et al. 
 2006 ). Nanotechnology provides the cutting edge to engineer these properties of 
nanomaterials for need-based application in bioscience such as biomedicine, bio-
sensor, etc. (Thevenot et al.  2001 ). Nanosilica was reported to have potential as a 
drug delivery vehicle for medical and veterinary treatments and as pesticides in 
agriculture, but information on the effect on mosquitoes is not available. The 
reported mode of action for insecticidal activity of nanosilica is through desiccation 
of insect cuticle by physicosorption of lipid and is also expected to cause damage 
in the cell membrane resulting in cell lysis and death of the insects (Tiwari and 
Behari  2009 ). 

 Plants and microbes are currently used for nanoparticle synthesis. The use of 
plants for synthesis of nanoparticles is rapid, low-cost, eco-friendly, and a 
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single- step method for biosynthesis process (Huang et al.  2007 ). Among the 
various known synthesis methods, plant-mediated nanoparticles synthesis is pre-
ferred as it is cost- effective, environmentally friendly, and safe for human thera-
peutic use (Kumar and Yadav  2009 ). It has been reported that medicinally 
valuable angiosperms have the greatest potential for synthesis of metallic 
nanoparticles with respect to quality and quantity (Song and Kim  2009 ). 
Biosynthesized Ag NPs are used in label-free colorimetric assay to detect enzy-
matic reactions (Wei et al.  2008 ), surface plasmon resonance studies (Turney 
et al.  2004 ; Kundu et al.  2004 ), antimicrobial materials (Duran et al.  2005 ), anti-
viral, and anti-HIV studies (Elechiguerra et al.  2005 ). The silver and gold 
nanoparticles synthesized with  Chrysosporium tropicum  have been tested as a 
larvicide against the  A. aegypti  larvae (Soni and Prakash  2012 ). They found that 
the silver nanoparticles were more effective against the mosquito larval stages 
than the gold nanoparticles. The silver nanoparticles synthesized with  Nelumbo 
nucifera  leaf extract have been tested against the malaria and fi lariasis vectors 
(Santhoshkumar et al.  2011 ). The effi cacies of synthesized silver nanoparticles 
using the aqueous leaf extract of  Mimosa pudica  have been evaluated against the 
larvae of  A. subpictus ,  C. quinquefasciatus , and  Rhipicephalus microplus  
(Marimuthu et al.  2010 ). 

 The larvicidal and repellent properties of essential oils is from various parts of 
four plant species  C. citratus ,  C. zeylanicum ,  Rosmarinus offi cinalis , and  Z. offi ci-
nale  against  C. tritaeniorhynchus  and  A.subpictus  (Govindarajan  2011c ). The lar-
vicidal effi cacy of the crude leaf extracts of  Ficus benghalensis , with three 
different solvents like methanol, benzene, and acetone, were tested against the 
early second, third, and fourth instar larvae of  C. quinquefasciatus ,  A. aegypti , and 
 A. stephensi  (Govindarajan  2010c ). The leaf extract of  Acalypha indica  with dif-
ferent solvents—benzene, chloroform, ethyl acetate, and methanol—has been 
tested for larvicidal- ovicidal activity and oviposition attractancy against  A. ste-
phensi  (Govindarajan et al.  2008c ). Nanoparticles, generally considered as parti-
cles with sizes of up to 100 nm, exhibit completely new or improved properties 
compared to the larger particles of the bulk material that they are composed of, 
based on specifi c characteristics such as size, distribution, and morphology 
(Willem and van den Wildenberg  2005 ). Anti-fungal, antiinfl ammatory, and anti-
viral activities of silver nanoparticles were reported (Kim et al.  2009 ; Nadworny 
et al.  2008 ). However, the silica nanoparticles have been tested against the larvae 
and pupae of  A. stephensi ,  C. quinquefasciatus , and  A. aegypti  (Barik et al.  2012 ). 
Mosquitocidal properties of the Ag-NPs are summarized in Table  7.1 . As far as 
our literature survey could ascertain, no information was available on the larvici-
dal activity of the experimental plant species given here against  A. subpictus ,  A. 
albopictus  and  C. tritaeniorhynchus . Therefore, the aim of this study was to inves-
tigate the mosquito larvicidal activity of aqueous crude extract and Ag NPs from 
 Feronia elephantum ,  Heliotropium indicum  and  Sida acuta . This is the fi rst report 
on the mosquito larvicidal activity of selected plant against the target 
mosquitoes.
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7.2          Materials and Methods 

7.2.1     Collection of Materials 

 Fresh leaves of  F. elephantum ,  H. Indicum  and  S. acuta , (Figs.  7.1 ,  7.2 , and  7.3 ) 
were collected from Tamil Nadu, India and the taxonomic identifi cation was made 
by Dr. V. Vengatesalu, Professor, Department of Botany, Annamalai University, 
Annamalai Nagar, Tamil Nadu, India. The voucher specimens were numbered and 
kept in our research laboratory for further reference. Silver nitrate was obtained 
from Qualigens Fine Chemicals, Mumbai, India.

  Fig. 7.1     Feronia elephantum  Correa (Family: Rutaceae). Common names: Wood Apple, Elephant 
Apple, Monkey Fruit, Curd Fruit; Plant: Erect slow growing tree; Leaves: Deciduous, alternate, 
7.5–12.5 cm long, dark-green, leathery, dotted with oil glands and slightly lemon-scented when 
crushed; Flower: Dull-red or greenish fl owers 1.25 cm wide, borne in small, loose, terminal or 
lateral panicles. Usually bisexual; Fruit: Round to oval, 5–12.5 cm wide, with a hard, woody, 
grayish-white, scurfy rind about 6 mm thick; The pulp is brown, mealy, odorous, resinous, astrin-
gent, acid or sweetish, with numerous small, white seeds scattered through it. The wood-apple is 
native and common in the wild in dry plains of India. The rind must be cracked with a hammer. The 
fruit shell is fashioned into snuffboxes and other small containers. The fruit is much used in India 
as a liver and cardiac tonic, and, when unripe, as an astringent means of halting diarrhea and dys-
entery and effective treatment for hiccough, sore throat and diseases of the gums. The pulp is 
poulticed onto bites and stings of venomous insects, as is the powdered rind. Juice of young leaves 
is mixed with milk and sugar candy and given as a remedy for biliousness and intestinal troubles 
of children. Oil derived from the crushed leaves is applied on itch and the leaf decoction is given 
to children as an aid to digestion. Leaves, bark, roots and fruit pulp are all used against snakebite       
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7.2.2          Mosquitoes 

 The laboratory-bred pathogen-free strains of mosquitoes were reared in the vector 
control laboratory, Department of Zoology, Annamalai University. The larvae were 
fed on dog biscuits and yeast powder in the 3:1 ratio. At the time of adult feeding, 
these mosquitoes were 3–4 days old after emergences (maintained on raisins and 
water) and were starved for 12 h before feeding. Each time, 500 mosquitoes per 
cage were fed on blood using a feeding unit fi tted with parafi lm as membrane for 
4 h.  A. albopictus  feeding was done from 12 noon to 4:00 p.m. and  A. subpictus  and 
 C. tritaeniorhynchus  were fed during 6:00–10:00 p.m. A membrane feeder with the 

  Fig. 7.2     Heliotropium indicum  L. (Boraginaceae).  Heliotropium indicum , one of the largest helio-
tropes found in Texas, is introduced, and is one of the few annuals within this genus (in Texas). 
India heliotrope grows upright (2–3 ft in height) and is very leafy, when compared to other helio-
tropes. The leaves are dark green, alternate, entire, and hispid (hairy). The stems are also hispid. 
Flowers are blue or violet (rarely white), and like all heliotropes, the younger fl owers are located 
towards the tip of the infl orescence (fl ower cluster), while mature seed are lower on the fl ower 
stalk. There are approximately 14 species of  Heliotropium  in Texas. Most are upland species found 
in the western portions of the state. Six are commonly found in wetlands. Most have white fl owers, 
although blue or violet is not uncommon. Vegetatively, most heliotropes have smallish and narrow 
leaves and the growth habit is prostrate, or generally so. The seed head, and the way that the fl ow-
ers are restricted to the tips, is very characteristic of the entire genus.  Heliotropium  from helios 
(sun) and trope (turn) fl owers turn toward the sun. Some species are considered poisonous, while 
others are considered fair browse for sheep and goats. Although apparently not preferred by water-
fowl, some incidental use has been documented       
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bottom end fi tted with parafi lm was placed with 2.0 ml of the blood sample (obtained 
from a slaughter house by collecting in a heparinized vial and stored at 4 °C) and 
kept over a netted cage of mosquitoes. The blood was stirred continuously using an 
automated stirring device, and a constant temperature of 37 °C was maintained 
using a water jacket circulating system. After feeding, the fully engorged females 
were separated and maintained on raisins. Mosquitoes were held at 28 ± 2 °C, 
70–85 % relative humidity, with a photoperiod of 12-h light and 12-h dark.  

7.2.3     Preparation of Plant Extracts 

 The leaves ( F. elephantum ,  H. Indicum  and  S. acuta ) were dried in shade and ground 
to fi ne powder in an electric grinder. Aqueous extract was prepared by mixing 50 g 
of dried leaf powder with 500 mL of water (boiled and cooled distilled water) with 
constant stirring on a magnetic stirrer (Veerakumar et al.  2013 ). The suspension of 
dried leaf powder in water was left for 3 h, fi ltered through Whatman no. 1 fi lter 
paper, and the fi ltrate was stored in amber-colored air-tight bottle at 10 °C tempera-
ture till use.  

  Fig. 7.3     Sida acuta  Burm.f. (Family: Malvaceae). Common names: Common  Sida , Prickly  Sida , 
Broomweeds, Wireweed, Cheeseweed; Plant: 1 m; Shrub with slender branches and fi brous stems; 
Leaves: Slightly concave oval or elongated leaves with a shiny surface and toothed margins; 
Flower: 10 mm across. The fl owers are yellow, conspicuous and borne on short stalks in the leaf 
axils along the branches; Fruit: The fruit is a dark brown capsule; it splits into 6–10 single-seeded 
segments when ripe. Native to pantropical regions, it can be found throughout the warm regions of 
the world.  Sida  is a weed of tropical pastures. Leaves and roots are used in traditional medicine       
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7.2.4     Synthesis of Silver Nanoparticles 

 The broth solution of fresh plant leaves was prepared by taking 10 g of thoroughly 
washed and fi nely cut leaves in a 300-mL Erlenmeyer fl ask along with 100 mL of 
sterilized double distilled water and then boiling the mixture for 5 min before fi nally 
decanting it. The extract was fi ltered with Whatman fi lter paper no. 1 and stored at 
−15 °C and could be used within 1 week. The fi ltrate was treated with aqueous 
1 mM AgNO 3  (21.2 mg of AgNO 3  powder in 125 mL Milli-Q water) solution in an 
Erlenmeyer fl ask and incubated at room temperature. Eighty-eight-milliliter aque-
ous solution of 1 mM of silver nitrate was reduced using 12 mL of leaves extract at 
room temperature for 10 min, resulting in a brown-yellow solution indicating the 
formation of Ag NPs (Veerakumar and Govindarajan  2014 ).  

7.2.5     Characterization of the Synthesized Nanoparticles 

 Synthesis of AgNP solution with leaf extract may be easily observed by UV–Vis 
spectroscopy. The bioreduction of the Ag ions in solutions was monitored by peri-
odic sampling of aliquots (1 mL) of the aqueous component after 20 times dilution 
and measuring the UV–Vis spectra of the solution. UV–Vis spectra of these aliquots 
were monitored as a function of time of reaction on a Shimadzu 1601 spectropho-
tometer in the 300–800-nm range operated at a resolution of 1 nm. Further, the 
reaction mixture was subjected to centrifugation at 60,000× g for 40 min; the result-
ing pellet was dissolved in deionized water and fi ltered through Millipore fi lter 
(0.45 μm). An aliquot of this fi ltrate containing silver nanoparticles was used for 
Fourier transform infrared (FTIR). For electron microscopic studies, 25 μL of sam-
ple was sputter-coated on a copper stub, and the images of the nanoparticles were 
studied using scanning electron microscopy (SEM; JEOL, model JFC-1600), and 
TEM (JEOL, model 1200EX) measurements were operated at an accelerating volt-
age of 120 kV and later with an XDL 3000 powder. FTIR spectra of the samples 
were measured using PerkinElmer Spectrum One instrument in the diffuse refl ec-
tance mode at a resolution of 4 cm  −1  in KBr pellets. An aliquot of this fi ltrate con-
taining silver nanoparticles was used for X-ray diffraction (XRD) analysis.  

7.2.6     Larvicidal Activity 

 Larvicidal activity of the aqueous crude extract and Ag NPs from of  S. acuta , 
 H. Indicum ,  F. elephantum  was evaluated according to WHO protocol ( 2005 ). Based 
on the wide range and narrow range tests, aqueous crude extract was tested at the 
range of 30–300 μg/mL concentrations and Ag NPs was tested at range of 8–60 μg/
mL concentrations. Twenty numbers of late third instar larvae were introduced into 
a 500-mL glass beaker containing 249 mL of dechlorinated water and 1 mL of 
desired concentrations of leaf extract and silver nanoparticles was added. For each 
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concentration, fi ve replicates were performed, for a total of 100 larvae. Larval mor-
tality was recorded at 24 h after exposure, during which no food was given to the 
larvae. Each test included a set control groups (silver nitrate and distilled water) 
with fi ve replicates for each individual concentration. The lethal concentrations 
(LC 50  and LC 90 ) were calculated by probit analysis (Finney  1971 ).  

7.2.7     Statistical Analysis 

 The average larval mortality data were subjected to probit analysis for calculating 
LC 50 , LC 90 , and other statistics at 95 % confi dence limits of upper confi dence limit 
and lower confi dence limit, and Chi-square values were calculated using the 
Statistical Package of Social Sciences 12.0 software. Results with p < 0.05 were 
considered to be statistically signifi cant.   

7.3     Results 

7.3.1     UV–Vis Analysis of Ag NPs 

 Leaves extracts from all three plants under study ( F. elephantum ,  H. Indicum  and  S. 
acuta ) showed rapid conversion of silver nitrate into silver nanoparticles indicated 
by color changes from colorless to red brown within few minutes of extract addition 
in 100 ppm AgNO 3  solution (Figs.  7.4a, b ,  7.5a, b , and  7.6a, b ). A representative 
scheme of biosynthesis and UV-vis spectrum is given in Figs.  7.4c ,  7.5c  and  7.6c . 
Synthesized silver nanoparticles primarily characterized by UV-visible spectros-
copy. Ag NPs give typical spectrum having maximum absorption in range of 420–
450 nm. This absorption is unique property of metal nanoparticles called SPR 
(Surface Plasmon Resonance) arises due to conduction of electrons on surface of 
AgNPs. After adding leaves extract in AgNO 3  solution, the biomolecules are stabi-
lized in medium, interact with each other, and with silver salt, after initial interac-
tion silver salt are consumed and the process of nucleation, reduction and capping 
starts leading nanoparticles synthesis.

7.3.2          FT-IR Analysis of Ag NPs 

 Typical IR spectrum of lyophilized powder of  F. elephantum  leaves extract showed 
presence of C–H bending (671.81, 762.21, and 822.47 cm  −1 ), C–O stretch (1016.97 
and 1,120.07), –C–H bending (1,384.10), C = C bending (1,617.90), C–H stretch 
(2,849.59), and N–H stretch (3,422.14) (Fig.  7.7 ). FTIR analysis of the purifi ed 
nanoparticles of  H. Indicum  showed the presence of bands due to O–H group C = H 
bending (824.98), C = O stretch (1,094.71), N = H bending (1,603.81), –C = O stretch 

7 Green Synthesized Silver Nanoparticles: A Potential New Insecticide



118

3.000

2.000

1.000

0.155
300.00 400.00 500.00 600.00 700.00 800.00

nm.

A
bs

.
a b

c

1

  Fig. 7.4    ( a ) Photograph showing change in color after adding AgNO 3  before reaction. ( b ) After 
reaction time of 6 h. ( c ) UV–Vis spectra of aqueous silver nitrate with  F. elephantum  leaf extract       
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  Fig. 7.5    ( a ) Photographs showing change in color after adding AgNO 3  before reaction and ( b ) 
After reaction time of 6 h. ( c ) UV–Vis spectra of aqueous silver nitrate with  H.indicum  leaf extract       
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  Fig. 7.6    ( a ) Photographs showing change in color after adding AgNO 3  before reaction. ( b ) After 
reaction time of (6 h). ( c ) UV–Vis spectra of aqueous silver nitrate with  S.acuta  leaf extract       
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(1,765.45), C–H stretch (2,851.32), C–H stretch (2,932.36), and O–H stretch 
(3,396.59) (Fig.  7.8 ). FT-IR analysis of  S.acuta  Ag NPs showed the presence of 
bands due to O–H group (1,269.92 cm  −1 ), C═N stretch (1,486.57), – NH2(1636.98), 
═NH (2,332.25), −H stretch (2,358.27), and O–H stretch (3,345.57) (Fig.  7.9 ).

7.3.3          SEM, EDX and TEM Analysis of Ag NPs 

 SEM micrographs of the synthesized Ag NPs of  F. elephantum ,  H. indicum  and  S. 
acuta  magnifi ed at ×500, ×3,000 and ×5,000 and measured at 20–60 nm, respectively 
are shown in Figs.  7.10a ,  7.11a , and  7.12a . The triangular, pentagonal, and hexagonal 
structures are clear. Energy-dispersive X-ray spectroscopy (EDX) proves the chemi-
cal purity of the synthesized Ag NPs (Figs.  7.10b ,  7.11b , and  7.12b ). Transmission 
electron microscopy has been employed to characterize the size, shape and morphol-
ogy of synthesized silver nanoparticles. The TEM image of silver nanoparticles is 
shown in Figs.  7.13a ,  7.14a , and  7.15a . The electron microscopic study of the 
nanoparticles using TEM revealed that the nano-Ag predominates with spherical, 
triangle, truncated triangles, and decahedral morphologies ranging from 18 to 45 nm. 
The average particles size measured from the TEM image is 22 nm. Figures  7.13b , 
 7.14b , and  7.15b  shows the histogram of size distribution of silver nanoparticles.

7.3.4             XRD Analysis of Ag NPs 

 After reaction, the diffraction peaks formed facets of the face- centered cubic crystal 
structure. A few unassigned peaks were also noticed in the vicinity of the character-
istic peaks. These sharp Bragg peaks might have resulted due to the capping agent 
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  Fig. 7.7    FT-IR spectrum of synthesized AgNPs using  F. elephantum  leaf extract       
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stabilizing the nanoparticles. Figures  7.16 ,  7.17 , and  7.18  depicts the X-ray diffrac-
tion (XRD) pattern of  F. elephantum ,  H. Indicum  and  S. acuta  -powdered silver 
nanoparticles in the 2θ range. It exhibits a broad peak at 38.4°, 44.5°, and 64.2° and 
78.4°. The broadening of the peaks clearly indicates that the particles are in the 
nanoregime. Apart from these, many unidentifi ed peaks at 28°, 29°, 30°, 32°, 35°, 
43°, 45° and 52° arise, possibly due to other chemical reactions or organic impuri-
ties present in the sample.
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  Fig. 7.8    FT-IR spectrum of synthesized AgNPs using  H.indicum  leaf extract       
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7.3.5          Larvicidal Effi cacy of Aqueous Extract and Synthesized 
Ag NPs 

 The results of larvicidal activity of  S. acuta ,  H. Indicum  and  F. elephantum  aqueous 
leaf extract and Ag NPs against late third instar  A. subpictus ,  A. albopictus  and  C. 
tritaeniorhynchus  was noted and presented in Tables  7.2 ,  7.3 ,  7.4 ,  7.5 ,  7.6  and  7.7  
(Figs.  7.19 ,  7.20 , and  7.21 ). From the three plant aqueous leaf extract and Ag NPs 
tested against late third instar  A. subpictus ,  A. albopictus  and  C. tritaeniorhynchus , 
the highest larvicidal activity was observed in  F. elephantum , moderate larvicidal 
activity was observed in  H. Indicum  and lowest larvicidal activity was observed in 
 S. acuta . All three plant aqueous leaf extract and synthesized Ag NPs showed the 
larvicidal effi cacy within 24 h of exposure. Mortality rate (Y) is positively related to 
the concentration of dose (X) indicating that mortality increases with the increasing 
dose. Among the Ag NPs tested, the Ag NPs of  F. elephantum  were highly effective 
against third instar larvae of  A. subpictus ,  A. albopictus  and  C. tritaeniorhynchus  

  Fig. 7.10    Scanning 
electron micrographs of 
AgNPs synthesized with  F. 
elephantum  leaf extract 
and 1.0 mM AgNO 3  
solution and incubated at 
60 °C for 6 h at pH 7.0. ( a ) 
Magnifi ed ×500;  inset bar  
represents 50 μm. ( b ) EDX 
image showing chemical 
composition       
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with the LC 50  and LC 90  values were 20.01, 21.59, 24.04 μg/mL and 34.76, 37.06, 
40.86 μg/mL, respectively. The control showed nil mortality in the concurrent assay. 
χ 2  value was signifi cant at p ≤ 0.05 level. High larvicidal activity of  F. elephantum  
mediated Ag NPs can be correlated with its lower particle size than other Ag NPs 
from different plants. Smaller particle size increase surface area to volume ratio and 
thus increases its action against larvae. The order of effectiveness decreased from  F. 
elephantum  > H. Indicum  > S. acuta  against third instars of  A. subpictus  followed by 
 A. albopictus  and  C. tritaeniorhynchus . The larvae of  A. subpictus  were found 
highly susceptible to the synthesized Ag NPs than the larvae of  A. albopictus  and  C. 
tritaeniorhynchus .

7.4                 Discussion 

 Mosquito-borne diseases are one of the most public health problems in the develop-
ing countries. Many approaches have been developed to control mosquito menace. 
One such approach to prevent mosquito-borne disease is by killing mosquito at 
larval stage. Management of this disease vector using synthetic chemicals has failed 
because of insecticide resistance, vector resurgence, and environmental pollution 

  Fig. 7.11    Scanning 
electron micrographs of 
AgNPs synthesized with 
 H.indicum  leaf extract and 
1.0 mM AgNO 3  solution 
and incubated at 60 °C for 
6 h at pH 7.0. ( a ) 
Magnifi ed ×3000;  inset bar  
represents 5 μm. ( b ) EDX 
image showing chemical 
composition       
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(Wondji et al.  2009 ). In recent years, silver nanoparticles play a major role in anti-
bacterial, antifungal, and insect control programs. The development of novel tech-
nology was in the fi eld of insect control particularly mosquito control due to the 
resistance behavior of the mosquitoes. Plant materials which synthesized silver 
nanoparticles also used for the mosquito control (Borase et al.  2013 ) are more popu-
lar. Petroleum ether, acetone, ethyl acetate, aqueous extract, methanol and ethanol 
fractionate of  Eichhornia crassipes  Solms was tested for their larvicidal effi cacy 
against the different instars (I, II, III and IV) and pupae of  C. quinquefasciatus  . The 
larval mortality was observed after 24 h of the treatment. Ethanol fractionate of  E. 
crassipes  showed the highest larvicidal and pupicidal activity against  C. quinque-
fasciatus  compared to other solvent extracts and fractionates with LC 50  71.43, 
94.68,120.42, 152.15 and 173.35 ppm for I, II, III, IV and pupae, respectively 
(Jayanthi et al.  2012 ). Vinayachandra et al. ( 2011 )) reported that the effect of aril 
and kernel extracts of  Knema attenuata  on larvae of  A. albopictus  and  A. stephensi  
under laboratory conditions. The aril was extracted with chloroform and ethanol; 
the kernel was extracted with ethanol and hexane. All the graded concentrations 
(100, 200, 300, 400 and 500 ppm) showed signifi cant larval mortality after 24 h of 
observation. Chloroform extracts of aril showed 100 % mortality against both larval 
forms of  A. albopictus  and  A. stephensi  at the concentration of 500 ppm. Among the 
extracts tested, chloroform extracts of aril and ethanol extracts of kernel exhibited 

  Fig. 7.12    Scanning 
electron micrographs of 
AgNPs synthesized with 
 S.acuta  leaf extract and 
1.0 mM AgNO 3  solution 
and incubated at 60 °C for 
6 h at pH 7.0. ( a ) 
Magnifi ed ×5000;  inset bar  
represents 5 μm. ( b ) EDX 
image showing chemical 
composition       
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  Fig. 7.13    Transmission 
electron microscopic 
image ( a ) and histogram 
( b ) showing synthesized 
AgNPs from  F. elephantum        

  Fig. 7.14    Transmission 
electron microscopic 
image ( a ) and histogram 
( b ) showing synthesized 
AgNPs from  H.indicum        
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  Fig. 7.15    Transmission 
electron microscopic 
image ( a ) and histogram 
( b ) showing synthesized 
AgNPs from  S.acuta        
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  Fig. 7.16    X-Ray diffraction showing synthesized AgNPs from  F. elephantum        
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  Fig. 7.17    X-Ray diffraction showing synthesized AgNPs from  H.indicum        
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  Fig. 7.18    X-Ray diffraction showing synthesized AgNPs from  S. acuta        
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   Table 7.2    Larvicidal activity of  Sida acuta  aqueous leaf extract against  Anopheles subpictus , 
 Aedes albopictus , and  Culex tritaeniorhynchus    

 Mosquitoes  Concentration 

 24 h 
mortality 
(%) ± SD a  

 LC 50  (μg/
mL) 
(LCL- UCL) 

 LC 90  (μg/
mL) 
 (LCL- UCL)  χ 2  

  A. subpictus   Control 
 60 
 120 
 180 
 240 
 300 

 0.0 ± 0.0 
 29.3 ± 0.8 
 48.5 ± 1.6 
 70.4 ± 1.2 
 82.6 ± 0.4 
 100.0 ± 0.0 

 131.73 
(92.13–
168.41) 

 241.94 
(198.89–
331.55) 

 20.320* 

  A. albopictus   Control 
 60 
 120 
 180 
 240 
 300 

 0.0 ± 0.0 
 23.8 ± 1.2 
 41.6 ± 2.0 
 64.9 ± 0.6 
 83.2 ± 0.4 
 96.4 ± 1.3 

 144.61 
(119.08–
169.59) 

 257.66 
(224.59–
311.47) 

 9.737* 

  C.tritaeniorhynchus   Control 
 60 
 120 
 180 
 240 
 300 

 0.0 ± 0.0 
 20.1 ± 2.0 
 36.4 ± 1.5 
 52.5 ± 0.8 
 78.9 ± 1.6 
 94.3 ± 0.2 

 161.44 
(135.52–
188.06) 

 280.33 
(244.35–
340.34) 

 9.807* 

   SD  standard deviation,  LCL  lower confi dence limits,  UCL  upper confi dence limits,  χ  2  Chi-square test 
 *p < 0.05, level of signifi cance 
  a Values are mean ± SD of fi ve replicates  

   Table 7.3    Larvicidal activity of silver nanoparticles synthesized using  Sida acuta  against 
 Anopheles subpictus ,  Aedes albopictus , and  Culex tritaeniorhynchus    

 Mosquitoes  Concentration 

 24 h 
mortality 
(%) ± SD a  

 LC 50  (μg/mL) 
(LCL- UCL) 

 LC 90  (μg/
mL) 
(LCL- UCL)  χ 2  

  A.subpictus   Control 
 12 
 24 
 36 
 48 
 60 

 0.0 ± 0.0 
 30.8 ± 1.0 
 41.6 ± 0.8 
 62.5 ± 1.6 
 80.4 ± 1.2 
 100.0 ± 0.0 

 25.68 
(15.69–
36.11) 

 48.29 
(37.42–
79.62) 

 30.914* 

  A. albopictus   Control 
 12 
 24 
 36 
 48 
 60 

 0.0 ± 0.0 
 25.2 ± 0.3 
 38.8 ± 1.2 
 57.1 ± 2.0 
 76.4 ± 0.5 
 98.3 ± 0.2 

 28.10 
(19.61–
37.36) 

 51.71 
(41.29–
77.14) 

 24.070* 

  C.tritaeniorhynchus   Control 
 12 
 24 
 36 
 48 
 60 

 0.0 ± 0.0 
 21.9 ± 1.6 
 34.2 ± 1.2 
 52.1 ± 0.3 
 70.8 ± 0.8 
 95.4 ± 1.4 

 30.19 
(22.79–
40.24) 

 56.26 
(45.43–
81.46) 

 21.219* 

   SD  standard deviation,  LCL  lower confi dence limits,  UCL  upper confi dence limits,  χ  2  Chi-square test 
 *p < 0.05, level of signifi cance 
  a Values are mean ± SD of fi ve replicates  
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   Table 7.4    Larvicidal activity of  Heliotropium indicum  aqueous leaf extract against  Anopheles 
subpictus ,  Aedes albopictus , and  Culex tritaeniorhynchus    

 Mosquitoes  Concentration 

 24 h 
mortality 
(%) ± SD a  

 LC 50  (μg/
mL) 
(LCL- UCL) 

 LC 90  (μg/
mL) 
(LCL- UCL)  χ 2  

  A.subpictus   Control 
 40 
 80 
 120 
 160 
 200 

 0.0 ± 0.0 
 28.6 ± 0.8 
 45.6 ± 1.6 
 62.4 ± 1.2 
 80.3 ± 0.4 
 100.0 ± 0.0 

 93.16 
(65.00–
120.07) 

 169.67 
(138.44–
238.76) 

 22.281* 

  A. albopictus   Control 
 40 
 80 
 120 
 160 
 200 

 0.0 ± 0.0 
 24.5 ± 1.2 
 41.2 ± 2.0 
 59.6 ± 0.6 
 78.3 ± 0.4 
 95.4 ± 1.3 

 100.83 
 (80.42–
121.13) 

 182.13 
 (155.54–
229.81) 

 12.491* 

  C.tritaeniorhynchus   Control 
 40 
 80 
 120 
 160 
 200 

 0.0 ± 0.0 
 19.2 ± 2.0 
 39.5 ± 1.5 
 54.3 ± 0.8 
 74.6 ± 1.6 
 92.1 ± 0.2 

 109.14 
 (91.26–
127.58) 

 193.40 
 (167.97–
236.39) 

 9.662* 

   SD  standard deviation,  LCL  lower confi dence limits,  UCL  upper confi dence limits, χ 2  Chi-square test 
 *p < 0.05, level of signifi cance 
  a Values are mean ± SD of fi ve replicates  

   Table 7.5    Larvicidal activity of silver nanoparticles synthesized using  Heliotropium indicum  
against  Anopheles subpictus ,  Aedes albopictus , and  Culex tritaeniorhynchus    

 Mosquitoes  Concentration 

 24 h 
mortality 
(%) ± SD a  

 LC 50  (μg/mL) 
(LCL- UCL) 

 LC 90  (μg/
mL) 
(LCL- UCL)  χ 2  

  A.subpictus   Control 
 10 
 20 
 30 
 40 
 50 

 0.0 ± 0.0 
 29.5 ± 1.0 
 45.2 ± 0.8 
 62.3 ± 1.6 
 78.4 ± 1.2 
 100.0 ± 0.0 

 23.44 
(15.80–
30.72) 

 43.04 
(34.74–
62.53) 

 24.601* 

  A. albopictus   Control 
 10 
 20 
 30 
 40 
 50 

 0.0 ± 0.0 
 23.9 ± 0.3 
 40.1 ± 1.2 
 58.5 ± 2.0 
 74.2 ± 0.5 
 96.3 ± 0.2 

 25.84 
(20.13–
31.62) 

 46.37 
(39.04–
60.58) 

 15.220* 

  C.tritaeniorhynchus   Control 
 10 
 20 
 30 
 40 
 50 

 0.0 ± 0.0 
 20.7 ± 1.6 
 35.3 ± 1.2 
 52.4 ± 0.3 
 68.2 ± 0.8 
 91.5 ± 1.4 

 28.54 
(23.31–
34.15) 

 50.76 
(43.20–
64.89) 

 12.184* 

   SD  standard deviation,  LCL  lower confi dence limits,  UCL  upper confi dence limits,  χ  2  Chi-square test 
 *p < 0.05, level of signifi cance 
  a Values are mean ± SD of fi ve replicates  
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   Table 7.6    Larvicidal activity of  Feronia elephantum  aqueous leaf extract against  Anopheles 
subpictus ,  Aedes albopictus , and  Culex tritaeniorhynchus    

 Mosquitoes  Concentration 

 24 h 
mortality 
(%) ± SD a  

 LC 50  (μg/mL) 
(LCL- UCL) 

 LC 90  (μg/mL) 
(LCL- UCL)  χ 2  

  A.subpictus   Control 
 30 
 60 
 90 
 120 
 150 

 0.0 ± 0.0 
 22.3 ± 1.0 
 36.2 ± 1.5 
 61.4 ± 2.0 
 82.5 ± 1.8 
 100.0 ± 0.0 

 74.14 
(58.90–
89.38) 

 126.48 
(107.78–
160.92) 

 14.933* 

  A. albopictus   Control 
 30 
 60 
 90 
 120 
 150 

 0.0 ± 0.0 
 20.5 ± 1.5 
 31.6 ± 1.3 
 56.2 ± 2.0 
 77.4 ± 1.6 
 97.3 ± 1.2 

 80.19 
(66.09–
94.70) 

 136.53 
(117.81–
169.43) 

 12.224* 

  C.tritaeniorhynchus   Control 
 30 
 60 
 90 
 120 
 150 

 0.0 ± 0.0 
 17.2 ± 1.8 
 26.5 ± 1.2 
 50.3 ± 0.8 
 72.4 ± 1.6 
 94.6 ± 2.0 

 87.11 
(74.29–
100.78) 

 145.38 
(127.03–
176.38) 

 10.035* 

   SD  standard deviation,  LCL  lower confi dence limits,  UCL  upper confi dence limits,  χ  2  Chi-square test  
  * p < 0.05, level of signifi cance  
  a Values are mean ± SD of fi ve replicates  

   Table 7.7    Larvicidal activity of silver nanoparticles  Feronia elephantum  against  Anopheles 
subpictus ,  Aedes albopictus , and  Culex tritaeniorhynchus    

 Mosquitoes  Concentration 

 24 h mortality 
(%) 
 ± SD a  

 LC 50  (μg/
mL) 
(LCL- UCL) 

 LC 90  (μg/
mL) 
(LCL- UCL)  χ 2  

  A.subpictus   Control 
 8 
 16 
 24 
 32 
 40 

 0.0 ± 0.0 
 23.2 ± 2.0 
 38.4 ± 1.8 
 57.5 ± 0.4 
 79.6 ± 1.6 
 100.0 ± 0.0 

 20.01 
(15.33–
24.85) 

 34.76 
(29.06–
46.29) 

 18.464* 

  A. albopictus   Control 
 8 
 16 
 24 
 32 
 40 

 0.0 ± 0.0 
 20.4 ± 1.6 
 32.5 ± 2.0 
 54.3 ± 1.9 
 78.6 ± 1.4 
 95.2 ± 1.6 

 21.59 
(18.19–
25.09) 

 37.06 
(32.36–
44.86) 

 9.846* 

  C.tritaeniorhynchus   Control 
 8 
 16 
 24 
 32 
 40 

 0.0 ± 0.0 
 18.4 ± 1.3 
 26.3 ± 1.2 
 48.2 ± 0.2 
 67.5 ± 1.8 
 92.1 ± 1.9 

 24.04 
(20.17–
28.33) 

 40.86 
(35.15–
51.25) 

 11.549* 

   SD  standard deviation,  LCL  lower confi dence limits,  UCL  upper confi dence limits,  χ  2  Chi-square test 
 *p < 0.05, level of signifi cance 
  a Values are mean ± SD of fi ve replicates  
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higher toxicity against both  A. albopictus  (LC 50 , 141 and 159 ppm; LC 90 , 290 and 
342 ppm) and  A. stephensi  (LC 50 , 160 and 162 ppm; LC 90 , 445 and 458 ppm). 
Hexane extracts of kernel exhibited least toxicity against  A. albopictus  (LC 50 , 
239 ppm; LC 90 , 484 ppm), whereas ethanol extracts of aril showed the least toxicity 
against  A. stephensi  (LC 50 , 290; LC 90 , 498). 

 Mahesh Kumar et al. ( 2012 ) have reported that the LC 50  value of fi rst to fourth 
instar larvae and pupae was 155.29, 198.32, 271.12, 377.44 and 448.41 ppm, respec-
tively. The LC 90  value of fi rst to fourth instar larvae and pupae was 687.14, 913.10, 
1,011.89, 1,058.85 and 1141.65 ppm, respectively. Patil et al. ( 2011 ) evaluated 
 larvicidal activity of extracts of medicinal plants  Plumbago zeylanica  and  Cestrum 
nocturnum  against  A. aegypti ; the LC 50  values of both the plants were less than 
50 ppm. The larvicidal stability of the extracts at fi ve constant temperatures (19, 22, 
25, 28 and 31 °C) evaluated against fourth instars larvae revealed that toxicity of 
both plant extracts increases with increase in temperature. Prophiro et al. ( 2012 ) 
reported that the susceptibility of the larvae was determined under three different 
temperatures of 15 °C, 20 °C, and 30 °C with lethal concentrations for  Copaifera  sp. 
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  Fig. 7.19    Graph showing the LC 50  and LC 90  values of larvicidal activity of  S.acuta  aqueous leaf 
extract and silver nanoparticles against  Anopheles subpictus ,  Aedes albopictus , and  Culex 
tritaeniorhynchus        

 

M. Govindarajan



133

ranged from LC 50  = 47 to LC 90  = 91 (milligrams per liter), and for  Carapa guianen-
sis , they were LC 50  = 136 to LC 90  = 551 (milligrams per liter), respectively. The lar-
vicidal activity of crude petroleum ether, ethyl acetate, and methanol extracts of the 
whole plants of  Phryma leptostachya  was assayed for its toxicity against the early 
fourth instar larvae of  C. pipiens  pallens. The larval mortality was observed after 
24 h of exposure. Among three solvent extracts from  P. leptostachya , the petroleum 
ether extract exhibited the best larvicidal activity. The corresponding LC 50  values of 
petroleum ether, ethyl acetate, and methanol extracts were 3.23, 5.23, and 61.86 ppm 
against the early fourth instar larvae of  C. pipiens  (Xiao et al.  2012 ). The bio- 
effi cacy of  Aloe vera  leaf extract and bacterial insecticide,  Bacillus sphaericus  lar-
vicidal activity was assessed against the fi rst to fourth instars larvae of  A. aegypti , 
under the laboratory conditions. The LC 50  of  A. vera  against the fi rst to fourth instars 
larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC 90  442.98, 518.86, 
563.18 and 612.96 ppm, respectively (Subramaniam et al.  2012 ). 

 The hexane extract of  M. koenigii  was found to be the most effective providing 
100 % mortality at 750 ppm against the larvae of  A. stephensi  at 48 h followed by 
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 C. quinquefasciatus  at 1,000 ppm at 48 h. Hexane extract showed the least LC 50  
value of 418.74 and 466.09 ppm against  A. stephensi  and  C. quinquefasciatus , but it 
was diethyl ether in the case of  A. aegypti  with an LC 50  value of 511.12 ppm (Arivoli 
and Samuel  2011 ). Essential oils extracted by steam distillation from rhizome of  Z. 
offi cinalis  and leaf and stem of  Achyranthes aspera  were evaluated for larvicidal, 
attractant/repellent, and oviposition attractant/ deterrent activity against two mos-
quito species  viz .,  A.aegypti  and  C. quinquefasciatus . The highest larvicidal activity, 
i.e., LC 50  = 154 ppm and LC 50  = 197 ppm for  A. aegypti  and  C. quinquefasciatus , 
respectively was shown by  Z. offi cinalis . This oil also offers 5-h protection at the 
concentration of 0.5 mg/cm 2  from both mosquito species (Khandagle et al.  2011 ). 
Khanna et al. ( 2011 ) have reported that the larvicidal crude leaf extract of  Gymnema 
sylvestre  showed the highest mortality in the concentration of 1,000 ppm against the 
larvae of  A. subpictus  (LC 50  = 166.28 ppm) and against the larvae of  C. quinquefas-
ciatus  (LC 50  = 186.55 ppm), and the maximum effi cacy was observed in gymnema-
genol compound isolated from petroleum ether leaf extract of  G. sylvestre  with LC 50  
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values against the larvae of  A. subpictus  at 22.99 ppm and against  C. quinquefascia-
tus  at 15.92 ppm. 

 The larvicidal, ovicidal, and repellent activities of crude benzene and ethyl ace-
tate extracts of leaf of  Ervatamia coronaria  and  Caesalpinia pulcherrima  were 
assayed for their toxicity against three important vector mosquitoes,  viz .,  A. ste-
phensi ,  A. aegypti , and  C. quinquefasciatus . All extracts showed moderate larvici-
dal effects; however, the highest larval mortality was found in benzene extract of  E. 
coronaria  against the larvae of  A. stephensi ,  A. aegypti , and  C. quinquefasciatus  
with the LC 50  and LC 90  values were 79.08, 89.59, and 96.15 ppm and 150.47, 
166.04, and 174.10 ppm, respectively (Govindarajan et al.  2011b ). Mathew et al. 
( 2009 ) reported that leaf chloroform extracts of  Nyctanthes arbortristis  showed 
lethal values (LC 50  = 526.3 and 780.6 ppm (24 h) and LC 50  = 303.2 and 518.2 ppm 
(48 h)) against  A. aegypti  and  A.stephensi , respectively. Elimam et al. ( 2009 ) to 
investigate the larvicidal, adult emergence inhibition and oviposition deterrent 
activity of aqueous leaves extract of  Calotropis procera  against  A. arabiensis  and  C. 
quinquefasciatus  as natural mosquito larvicide. LC 50  and LC 90  values calculated 
were 273.53–783.43, 366.44–1018.59 and 454.99–1224.62 ppm for 2nd, 3rd and 
4th larval instars, respectively, of  A. arabiensis  and 187.93–433.51, 218.27–538.27 
and 264.85–769.13 ppm for 2nd, 3rd and 4th larval instars, respectively, of  C. 
quinquefasciatus . 

 Mathivanan et al. ( 2010 ) determine that the LC 50  and LC 90  values of crude meth-
anol extract of leaves of  Ervatamia coronaria  on  C. quinquefasciatus ,  A. aegypti , 
and  A. stephensi  larvae in 24 h were 72.41, 65.67, and 62.08 and 136.55, 127.24, 
and 120.86 mg/L, respectively. The ethanolic leaf extract of  Cassia obtusifolia  was 
investigated for their larvicidal and oviposition deterrence effects against  A. ste-
phensi . Concentrations ranging from 25 to 125 mg/l were assessed at 24 h post- 
treatment against late third instar larvae. The leaf extract had signifi cant larvicidal 
effect with LC 50  and LC 90  values were 52.2 and 108.7 mg/l, respectively. In oviposi-
tion behaviour study, four different concentrations ranging from 100 to 400 mg/l 
were studied against gravid female mosquitoes. Essential oil from  Tagetes fi lifolia  
showed the strongest larvicidal activity against the third instar larvae of  A. aegypti  
with the LC 50  value of 47.7 ppm (Ruiz et al.  2011 ). Conti et al. ( 2010 ) studied 
 Foeniculum vulgare  essential oil for larvicidal activity against fourth instar larvae of 
 A. albopictus  and the oil showed larvicidal activity with an IC 50  value of 142.9 ppm. 
In  Calotropis procera  against  A. stephensi , showed 99 % mortality at 64 ppm for  A. 
stephensi , only 44 % mortality against  C. quinquefasciatus , and a maximum of 
67 % in 256 ppm, respectively (Shahi et al.  2010 ).  Clitoria ternatea  leaf methanol 
extract showed dose-dependent larvicidal activity against  A. stephensi  with LC 50  
values of 555.6 (24 h) and 867.3 (48 h) ppm, also the root extracts with LC 50  value 
of 340 ppm (48 h). Seed extract showed larvicidal activity (LC 50  = 116.8, 195 ppm) 
after 24 h and (LC 50  = 65.2, 154.5 ppm) after 48 h treatment against  A. stephensi  and 
 A. aegypti , respectively. Larvicidal activity of fl ower methanol extract showed LC 50  
values 233 and 302.5 ppm against  A. stephensi  and  A. aegypti , respectively, after 
48 h treatment. Methanol extract showed lowest LD values against several instars of 
larvae and 50 adult (121.59, 142.73, 146.84, 202.98, 290.65, 358.42 and 300.03 μg/
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cm 2 , respectively) which indicates highest toxicity or insecticidal activity (Ashraful 
Alam et al.  2009 ). 

 Kamalakannan et al. ( 2011 ) determined the biological activities of methanol 
extracts of  Acalypha indica  and  Achyranthes aspera  leaves individually and in com-
bination as botanical insecticides against  A. aegypti . Based on LC 50  values for 4th 
instar  A. aegypti , the combined extracts showed the strongest larvicidal activity 
(277 ppm).  Achyranthes aspera  and  Acalypha indica  extracts individually gave 
similar results (409 and 420 ppm, respectively). Crude extracts of fruits and leaves 
of  Centratherum anthelminticum  in different solvents were tested for larvicidal 
activity against  A. stephensi , the vector of malaria. The petroleum ether crude 
extract of both fruits and leaves exhibited signifi cant larvicidal activity against III 
instar larvae with LC 50  values of 162.60 ppm and 522.94 ppm, respectively after 
24 h. The petroleum ether extract of fruit was 11.66, 2.15 and 1.32 times more toxic 
than that of leaf extract after 24, 48 and 72 h, respectively at LC 90  level. However, at 
LC 50  level the corresponding values were 3.22, 1.83 and 1.19, respectively 
(Srivastava et al.  2008 ). Gleiser and Zygadlo ( 2007 ) reported that the essential oils 
of  Lippia turbinata  and  L. polystachya  exhibit LC 50  values of 74.9 and 121 mg/l, 
respectively against  C. quinquefasciatus . A preliminary study was conducted to 
investigate the effects of the extracts of 112 medicinal plant species, collected from 
the southern part of Thailand, on  A. aegypti . Studies on larvicidal properties of plant 
extracts against the fourth instar larvae revealed that extracts of 14 species showed 
evidence of larvicidal activity. Eight out of the 14 plant species showed 100 % mos-
quito larvae mortality. The LC 50  values were less than 100 μg/mL (4.1–89.4 μg/mL). 
Six plant species were comparatively more effective against the fourth instar larvae 
at very low concentrations. Three medicinal plants with promising larvicidal activ-
ity, having LC 50  and LC 90  values being 4.1 and 16.4 μg/mL for  Mammea siamensis , 
20.2 and 34.7 μg/mL for  Anethum graveolens  and 67.4 and 110.3 μg/mL for  Annona 
muricata , respectively (Promisiri et al.  2006 ). 

 Cypermethrin and crude extracts of  Solanum xanthocarpum  were both 
observed for their larvicidal activity against  C. quinquefasciatus . Petroleum ether 
extract with lethal concentration LC 50  and LC 90  of 41.28 and 111.16 ppm after 
24 h and LC 50  38.48 and LC 90  80.83 ppm after 48 h, respectively, was found to be 
the most effective, followed by carbon tetrachloride and methanol extracts 
(Mohan et al.  2006 ). Sakthivadivel and Daniel ( 2008 ) showed the crude petro-
leum ether leaf extract of  Jatropha curcas  to have larvicidal activity with the LC 50  
of <100 ppm on the early fourth instar larvae of vector mosquitoes including  C. 
quinquefasciatus ,  A. stephensi , and  A. aegypti . Investigations were made to test 
the larval toxicity and smoke repellent potential of  Albizzia amara  and  Ocimum 
basilicum  at different  concentration (2, 4, 6, 8 and 10 %) against the different 
instar (I, II, III and IV) larvae and pupae of  A. aegypti . The LC 50  values of  A. 
amara  and  O. basilicum  for I instar larvae was 5.412 and 3.734, II instar 6.480 
and 4.154, III instar 7.106 and 4.664, IV instar 7.515 and 5.124, respectively. The 
LC 50  and LC 90  values of pupae were 6.792, 5.449 % and 16.925, 15.474 %. The 
smoke toxicity of  A. amara  was more effective against  A. aegypti  than the  O. 
basilicum  (Murugan et al.  2007 ). 
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 The insecticidal activities of extracts and oils of 17 medicinal plants of Brazil 
have been determined using an  A. aegypti  larvicidal bioassay. Oils from  Anacardium 
occidentalis ,  Copaifera langsdorffi i ,  Carapa guianensis ,  Cymbopogon winterianus  
and  Ageratum conyzoides  showed high activities with LC 50  values of 14.5, 41, 57, 
98 and 148 μg/l, respectively. The most active ethanolic extract tested was that from 
the stem of  Annona glabra  which presented an LC 50  value of 27 μg/l (Mendonca 
et al.  2005 ). Hidayatulfathi et al. ( 2005 ) using the hexane fraction showed the high-
est larvicidal effect on  A. aegypti  4th instar larvae with LC 50  value of 1.88 ppm and 
the LC 90  value of 10.76 ppm respectively. Mosquito larvicidal activity of crude 
carbon-tetra-chloride, methanol and petroleum ether extracts of  Solanum xantho-
carpum  fruits was examined against  A. stephensi  and  C. quinquefasciatus . Among 
the extracts tested, carbon-tetra-chloride extract was the most effective with LC 50  
values of 5.11 ppm after 24 h and 1.27 ppm after 48 h of treatment against  A. 
 stephensi . In the case of  C. quinquefasciatus  the petroleum ether extract was 
observed as most toxic with LC 50  values of 62.62 ppm after 24 h and 59.45 ppm 
after 48 h of exposure period, respectively (Mohan et al.  2005 ). 

 Sivagnaname and Kalyanasundaram ( 2004 ) reported that the methanolic extracts 
of the leaves of  Atlantia monophylla  were evaluated for mosquitocidal activity 
against immature stages of three mosquito species,  C. quinquefasciatus ,  A. ste-
phensi , and  A. aegypti  in the laboratory. Larvae of  C. quinquefasciatus  and pupae of 
 A. stephensi  were found more susceptible, with LC 50  values of 0.14 mg/l and 
0.05 mg/l, respectively. Insect growth regulating activity of this extract was more 
pronounced against  A. aegypti , with EI 50  value 0.002 mg/l. Larvicidal effi cacies of 
extracts of fi ve species of Cucurbitacious plants,  Momordica charantia , 
 Trichosanthes anguina ,  Luffa acutangula ,  Benincasa cerifera  and  Citrullus vulgaris  
were tested against the late third larval age group of  C. quinquefasciatus . The larval 
mortality was observed after 24 h exposure. The LC 50  values of  M. charantia ,  T. 
anguina ,  L. acutangula ,  B. cerifera  and  C. vulgaris  were 465.85, 567.81, 839.81, 
1189.30 and 1636.04 ppm, respectively (Prabakar and Jebanesan  2004 ). Larvicidal 
activity of methanol extracts of 22 Australian and 12 Mexican plants against early 
4th-instar larvae of  A. aegypti  and  C. pipiens  pallens was examined. At 200 ppm, 
100 % mortality in larvae of  A. aegypti  and  C. pipiens  pallens was obtained in 
extracts of  Kigelia pinnata  and  Ruta chalepensis . The extract of  K. pinnata  gave 
76.3 and 80.3 % mortalities in larvae of  A. aegypti  and  C. pipiens  pallens at 100 ppm 
but, at 50 ppm, 23.7 and 42.1 % mortality against larvae of  A. aegypti  and  C. pipiens  
pallens, respectively. The extract of  R. chalepensis  gave 81.2 and 87.9 % mortality 
in larvae of  A. aegypti  and  C. pipiens  pallens at 100 ppm but 23.4 and 53.3 % mor-
tality against larvae of  A. aegypti  and  C. pipiens  pallens at 50 ppm, respectively. 
Larvicidal activities of  K. pinnata  and  R. chalepensis  extracts were signifi cantly 
reduced when used at 25 ppm (Kim et al.  2002 ). 

 The larvicidal effect exhibited by essential oils and the major constituents of 
 Dianthus caryophyllus ,  Lepidium sativum ,  Pimpinella anisum , and  Illicium verum  
against late third to early fourth instar mosquito larvae of  C. pipiens . The essential 
oils of  I. verum  and  P. anisum  demonstrated high larvicidal activity with a LC 50  
<18 mgL −1 . The other two essential oils of  D. caryophyllus  and  L. sativum  revealed 
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moderate larvicidal activity, displaying a LC 50  value above 50 mgL −1 . Among the 
pure components, the most toxic were eugenol, (E)-anethole, and α-terpinyl acetate, 
with LC 50  values 18.28, 16.56, and 23.03 mgL −1 , respectively. Eucalyptol (1,8 cin-
eole) and β- caryophyllene were inactive at concentrations even as high as 
100 mgL −1 , showing the least signifi cant activity against mosquito larvae (Kimbaris 
et al.  2012 ). Larvicidal activity of compound pectolinaringenin derived from the 
chloroform extract of  Clerodendrum phlomidis  against  C. quinquefasciatus  and  A. 
aegypti  was proved with LC 50  and LC 90  values of 0.62 and 2.87 ppm, and 0.79 and 
5.31 ppm, respectively (Muthu et al.  2012 ). Sagnou et al. ( 2012 ) reported that the 
larvicidal activity of isolated curcuminoid compound curcumin from commercially 
available turmeric extract exhibited LC 50  and LC 90  values of 19.07 and 61.63 ppm, 
respectively, against the fourth instar larvae of  C. pipiens . 

 Two coumarins compounds, imperatorin and osthole, from the fruit of  Cnidium 
monnieri  were effective against the third instar larvae of insecticide-susceptible  C. 
pipiens  pallens and  A. aegypti  and wild  C. pipiens  pallens with LC 50  values of 3.14, 
2.88, 4.60 ppm and 13.11, 13.14, 15.26 ppm, respectively (Wang et al.  2012 ); Two 
natural furocoumarins, 5-methoxypsoralen, and 8- methoxypsoralen, isolated from 
the milky sap of  Ficus carica  exhibited LC 50  values of 9.4 and 56.3 ppm, respec-
tively, against the early fourth stage larvae of  A. aegypti  (Chung et al.  2011 ). A new 
C 15  acetogenin isolated from the petroleum ether extract of  Laurencia papillosa  
exhibited LC 50  values of 30.7, 36.9, and 41.8 ppm on the second, third, and fourth 
instar larvae of  C. pipiens , respectively (Abou-Elnaga et al.  2011 ). A sesquiterpene 
compound, 1α, 3α, 4β- trihydroxy-9-cadinen-8-one, isolated from the chloroform 
extract of the roots of black galingale ( Kaempferia parvifl ora ) exhibited LC 50  and 
LC 90  values of 0.7 and 3.8 μM, respectively, against the early fourth stage larvae of 
 A. aegypti  (Moon et al.  2011 ). Three alkaloids, namely evodiamine, rutaecarpine, 
wuchuyuamide I, and two limonoids comprising evodol and limonin, derived from 
the chloroform extract of  Evodia rutaecarpa  unripe fruits showed LC 50  values of 
12.51, 17.02, 26.16, 52.22, and 32.43 ppm against the early fourth instar larvae of 
 A. albopictus  (Liu et al.  2012 ). 

 Isolated compounds such as prenylated fl avonoids derived from  Dodonaea vis-
cosa  showed larvicidal activity against  A. albopictus  and  C. pipiens  (Niu et al. 
 2010 ). Jang et al. ( 2005 ) also found that b-thujaplicin from  Chamaecyparis obtusa  
leaves was effective against fourth-instar larvae of  A. aegypti ,  Ochlerotatus togoi , 
and  C. pipiens  with LC 50  values of 2.91, 2.60, and 1.33 ppm, respectively. Cheng 
et al. ( 2004 ) reported that the cinnamaldehyde, cinnamyl acetate, and eugenol all 
had excellent larvicidal effect against  A. aegypti  larvae in 24 h with LC 50  values of 
29, 33, and 33 lg/ml, respectively. Neotenone and neorautanone isofl avonoids iso-
lated from  Neorautanenia mitis  display activity against adult  A. gambiae  mosqui-
toes with LD 50  values of 80 and 90 ppm, respectively (Joseph et al.  2004 ). 

 The petroleum ether extract of dried ground whole fruits of  Piper nigrum  
afforded 20 compounds (1–20) including two new insecticidal amides named as 
pipnoohine (1), and pipyahyine (2), seven reported for the fi rst time from this plant 
(12, 13, 15–17, 19, 20), and eleven known compounds (3–11, 14, 18). The structure 
of 1 has been elucidated as (2E,4E,12Z)-N-(4-methylpentyl)octadeca-2,4,12- 
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trienamide and that of 2 as (2E,4E,11E)-12-(benzo[1,3]dioxol-5-yl)-N-(3- 
methylbutyl)dodeca-2,4,11-trien-amide through extensive ID-, 2D-NMR spectral 
studies and chemical reactions. 1 and 2 exhibited toxicity at 35.0 and 30.0 ppm 
respectively against fourth instar larvae of  A. aegypti  (Siddiqui et al.  2004 ). Ho et al. 
( 2003 ) reported that the isolated compounds such as meliternatin (3, 5- dimethoxy-3′, 
4′, 6, 7- bismethylendioxyfl avone) (6) and six other minor polyoxygenated fl avones 
derived from  Melicope subunifoliolata  showed larvicidal activity against  A. aegypti . 
They reported that methanol and ethanol fl ower extracts exhibited 96 and 100 % 
larval mortality against the third instar; 88 and 100 % against the fourth instar of  A. 
aegypti , respectively, at 0.75 and 1.00-mg/ml concentrations. Yang et al. ( 2003 ) 
reported a similar result, that emodin had strong larvicidal effects against the larvae 
of  A. aegypti ,  O. togoi  and  C. pipiens  pallens, showing LC 50  values of approxi-
mately 1.4, 1.9, and 2.2 mg/l, respectively. Redwane et al. ( 2002 ) reported that gal-
lotannins isolated from  Quercus lusitania  infectoria galls had the LC 50  value of 
373 ppm against  C. pipiens . The active components dymalol, nymania-3 and 
 triterpenes isolated from the extract of  Dysoxylum malabaricum  act as an oviposi-
tion repellent and/or deterrent to  A. stephensi  (Govindachari et al.  1999 ). The mos-
quitocidal compound ar-turmerone which isolated from rhizomes of  Curcuma longa  
seems 100 % mortality of  A. aegypti  larvae at 50 mg/l concentration (Roth et al. 
 1998 ). Seven mosquitocidal compounds isolated from  Magnolia salicifolia  show 
100 % mortality at the concentration of 15–100 mg/l (Kelm et al.  1997 ). They fur-
ther reported that the higher activity was due to the presence of fl avonoid (2,3- 
dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one). Pereira and Gurudutt ( 1990 ) 
who observed that (−)-3-epicaryoptin isolated from  C. inerme  inhibited the growth 
of  C. quinquefasciatus . 

 Ag NPs also induced chromosomal aberrations and aneuploidy, which showed 
that silver nanoparticles were cytotoxic and genotoxic to fi sh cells (Wise et al. 
 2010 ). Earthworms ( Eisenia fetida ) were exposed to AgNO 3 , (94.21 mg kg −1 ) and 
Ag NPs (727.6 mg kg −1 ) with similar size ranges coated with either polyvinylpyr-
rolidone (hydrophilic) or oleic acid (amphiphilic) 773.3 mg kg  −1  during a standard 
sub-chronic reproduction toxicity test (Shoults-Wilson et al.  2010 ). The use of 
nanoparticulate silver, copper, and their oxides will be considered in relation to their 
effects on bacterial populations. Silver nanoparticles formed exhibited good antibi-
otic activity against both Gram-positive and Gram-negative pathogens and  Candida 
albicans , suggesting their broad-spectrum antimicrobial activity (Kumar et al. 
 2010 ). The toxicity of Ag NPs to natural aquatic bacterial assemblages appears to be 
concentration dependent for concentrations between 0 and 5 μM (Dasari and Hwang 
 2010 ). Mechanisms of toxicity are still poorly understood although it seems clear 
that in some cases, nanoscale-specifi c properties may cause bio-uptake and toxicity 
over and above that caused by the dissolved Ag ion (Fabrega et al.  2011 ). Larvicidal 
studies were carried out against  C. quinquefasciatus , and results were compared 
with bulk permethrin. The LC 50  of nanopermethrin and bulk permethrin to  C. quin-
quefasciatus  were 0.117 and 0.715 mg/l, respectively (Anjali et al.  2010 ). 

 Sakulku et al. ( 2009 ) have reported the low release rate of nanoemulsion with a 
large droplet size that resulted in prolonged mosquito repellant activity compared to 

7 Green Synthesized Silver Nanoparticles: A Potential New Insecticide



140

the nanoemulsion with small droplet size The synthesized zinc oxide nanoparticles 
showed the LC 50  and χ 2  values against  R. microplus  (13.41 mg/l; 0.982),  Pediculus 
humanus  capitis (11.80; 0.966 mg/l), and the larvae of  A. subpictus  (3.19; 0.945 mg/l) 
and  C. quinquefasciatus  (4.87; 0.970 mg/l), respectively (Kirthi et al.  2011 ). The 
highest mortality was found in methanol, aqueous, and synthesized AgNPs, which 
used  N. nucifera  plant extract against the larvae of  A. subpictus  (LC 50  = 8.89, 11.82, 
and 0.69 ppm; LC 90  = 28.65, 36.06, and 2.15 ppm) and against the larvae of  C. quin-
quefasciatus  (LC 50  = 9.51, 13.65, and 1.10 ppm; LC 90  = 28.13, 35.83, and 3.59 ppm) 
(Santhoshkumar et al.  2011 ). Larvicidal activity of synthesized Ag NPs utilizing an 
aqueous extract from  Eclipta prostrata , was observed in crude aqueous, and synthe-
sized Ag NPs against  C. quinquefasciatus  (LC 50  = 27.49 and 4.56 mg/l; LC 90  = 70.38 
and 13.14 mg/l) and against  A. subpictus  (LC 50  = 27.85 and 5.14 mg/l; LC 90  = 71.45 
and 25.68 mg/l), respectively (Rajakumar and Abdul Rahuman  2011 ). The synthe-
sized Ag NPs of  Musa paradisiaca  showed the LC 50  values against  H. bispinosa  
(1.87 mg/l),  H. maculata  (2.02 mg/l), and larvae of  A. stephensi  (1.39 mg/l), against 
 C. tritaeniorhynchus  (1.63 mg/l). Synthesized Ag NPs using  T. cordifolia  extract 
tested against the larvae of  A. subpictus  (LC 50  = 6.43 mg/l) and against the larvae of 
 C. quinquefasciatus  (LC 50  = 6.96 mg/l) (Jayaseelan et al.  2011 ). 

 Microbes and plants are currently used for nanoparticle synthesis. The use of 
plants for the fabrication of nanoparticles is a rapid, low-cost, eco-friendly, and a 
singlestep method for biosynthesis process (Huang et al.  2007 ). The usage of plants 
can also be suitably scaled-up for large-scale synthesis of nanoparticles in a con-
trolled manner according to their size, shape, and dispersity. Moreover, the use of 
plants in the process of nanoparticle synthesis is more benefi cial than other pro-
cesses since the nanoparticles are produced extracellularly. Recently, syntheses of 
silver nanoparticles by using plant extracts are getting more popular (Li et al.  2007 ; 
Song and Kim  2009 ). Chandran et al. ( 2006 ) synthesized silver nanoparticles by 
using the  Aloe vera  extract at 24 h of incubation. Potential antiplasmodial activity 
of synthesized silver nanoparticle using  Andrographis paniculata  with the inhibi-
tory concentration (IC 50 ) values were 26 ± 0.2 % at 25 μg/ml, 83 ± 0.5 % at 100 μg/
ml (Panneerselvam et al.  2011 ). Synthesis of silver nanoparticles using leaves of 
 Catharanthus roseus  and their antiplasmodial activities against  P. falciparum  have 
been reported by Ponarulselvam et al. ( 2012 ). The particle shape of plant-mediated 
Ag NPs was mostly spherical with the exception of neem ( Azadirachta indica ) 
which yielded polydisperse particles both with spherical and fl at plate- 
likemorphology 5–35 nm in size (Shankar et al.  2004 ). SEM images of Ag NPs 
from Emblica offi cinalis were also predominantly spherical with an average size of 
16.8 nm ranging from 7.5 to 25 nm (Ankamwar et al.  2005 ). Tian et al. ( 2007 ) 
reported that the numerous fl avonoids including quercetin or quercetin 3-Oglycosides 
were isolated from lotus leaves that were used for silver nanoparticle synthesis. 

 Earlier studies by various authors state that the uses of plant extract, plant-derived 
essential oils, and bacterial agents especially different strains of  B. thuringiensis  
subsp.  varisraelensis  (B175 and B17) are alternative available potential resources 
for mosquito control. The effi cacy of different plant extracts and  B. thuringiensis  
subsp. var israelensis (Bti) varies from species to species (Mohana  2010 ). Levels of 
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effect of larvicidal activity varied with plant extract depending on the species. In 
contrast, larvicidal action of aqueous leaf extract of  Cassia obtusifolia  (Rajkumar 
and Jebanesan  2009 ) and  Ocimum canum ,  Ocimum sanctum , and  R. nasutus  
(Kamaraj et al.  2008 ) exhibited their lethal effect against larvae of  A. stephensi  and 
 A. aegypti . An effective larval control of neem seed extract against  A. gambiae  was 
reported by Gianotti et al. ( 2008 ). The ethanolic aerial and root extract of  Phyllantus 
amarus  showed high insecticidal activity against stored grain pest  Triboliumcastaneus  
(Khanna et al.  2003 ). Anti-ecdysteroid and growth inhibition effect of biomolecule 
Azadirachtin was documented (Zebit  1984 ), and the isolated compounds, fatty acids, 
and ricinine from leaf extracts of  R. communis  showed excellent insecticidal activity 
against the leaf-cutting ant  Acta sexdens  rubropilosa (Bigi et al.  2010 ). FT   - IR studies 
and XRD analysis showed the presence of bioorganic components which acted as a 
probable stabilizer for the synthesized Ag NPs (Prathna et al.  2011 ). FT-IR peaks 
that were corresponding to aromatic rings, geminal methyls, and ether linkages indi-
cate the presence of fl avones and terpenoids responsible for the  stabilization of the 
Ag NPs synthesized by the  Sesuvium portulacastrum  leaf extract (Nabikhan et al. 
 2010 ). Kumar et al. ( 2010 ) have synthesized Ag NPs using  Syzygium cumini  leaf and 
seed extract as reducing and stabilizing agent.  B. thuringiensis  subsp. var israelensis 
known for its crystal toxin being used as commercial larvicide is known to control 
fi larial vector  C. quinquefasciatus ,  C. tritaeniorhynchus ,  C. sitiens , malarial vector 
 A. stephensi , and dengue vector  A. aegypti . The LC 50  values for culicines (57.8–
300.96 ng/mL), anophelines (740.47–790.61 ng/mL), and  A. aegypti  (514.34–
600.03 ng/mL) have been reported (Manonmani and Balaraman  2001 ). 

 The maximum effi cacy was observed in crude aqueous and synthesized Ag NPs 
against  C. quinquefasciatus  (LC 50  27.49 and 4.56 mg L  −1 ; LC 90  70.38 and 
13.14 mg L −1 ) and against  A. subpictus  (LC 50  27.85 and 5.14 mg L  −1 ; LC 90  71.45 
and 25.68 mg L  −1 ), respectively. A biological method has been used to synthesize 
stable silver nanoparticles that were tested as mosquito larvicides against  A. aegypti , 
 A. stephensi , and  C. quinquefasciatus  (Arjunan et al.  2012 ). The median LC 50  of 
silver nanoparticles that killed fourth instars of  A. aegypti ,  C. quinquefasciatus , and 
 A. stephensi  were 0.30, 0.41, and 2.12 ppm, respectively. The higher mortality rates 
at lower doses are comparable with earlier reports of Ag NPs produced by plant  N. 
nucifera  leaf extracts (LC 50  = 0.69 ppm, LC 90  = 2.15 ppm) against  A. subpictus  and 
 C. quinquefasciatus  (LC 50  = 1.10 ppm, LC 90  = 3.59 ppm) (Thirunavukkarasu et al. 
 2010 ). The ethyl acetate extract of  E. prostrata  showed an LC 50  value of 78.28 and 
LC 90  value of 360.75 ppm against  A. subpictus  and LC 50  119.89 and LC 90  564.85 ppm 
against  C. tritaeniorhynchus. Eclipta paniculata  were the most active with a LC 90  of 
17.2 mg L  −1  and LC 50  of 3.3 mg L  −1  against the larvae of  Aedes  fl uviatilis (Macedo 
et al.  1997 ). 

 Ag NPs synthesized using  Euphorbia hirta  plant leaf extract against malarial 
vector  A. stephensi  was determined; the highest larval mortality was found in syn-
thesized Ag NPs against the fi rst to fourth instar larvae and pupae with the following 
values: LC 50  (10.14, 16.82, 21.51, and 27.89 ppm, respectively), LC 90  (31.98, 50.38, 
60.09, and 69.94 ppm, respectively), and LC 50  and LC 90  of pupae (34.52 and 
79.76 ppm, respectively) (Priyadarshini et al.  2012 ). The mortality effect of silver 
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nanoparticles on mosquito larvae may be enabled by the small size of the particles, 
which allows passage through the insect cuticle and into individual cells where they 
interfere with molting and other physiological processes. The mosquito larvicidal 
activity of UV irradiationinduced Ag NPs were found to decrease the survival of 
fourth instar larvae of  A. aegypti  by 88 % after 24 h of exposure at 1-ppm concentra-
tion (Sap-Iam et al.  2010 ). Silver NPs were synthesized using leaf extract of 
 Acalypha indica ; from the SEM image, the size of the control silver nitrate obtained 
was greater than 1,000 nm, whereas synthesized silver NPs measured 20–30 nm in 
size (Krishnaraj et al.  2010 ). The silver nanoparticles formed were predominantly 
cubical with uniform shape. It is known that the shape of metal nanoparticles con-
siderably changes their optical and electronic properties (Xu and Käll  2002 ). The 
synthesized Ag NPs using  Aloe vera  only after 24 h of reaction and in the presence 
of ammonia, which in the study mentioned enhances the formation of a soluble sil-
ver complex. The sharpening of the peaks clearly indicates that the particles were in 
the nanoregime (Chandran et al.  2006 ). The fi lter paper contact bioassay study 
showed pronounced pediculicidal activity in the fl ower bud hexane extract of 
 Syzygium aromaticum  and the percent mortality were 40, 82, and 100 at 5, 10, and 
20 min, and the median lethal time (LT 50 ) value was 5.83 (0.5 mg cm −2 ); 28, 82, and 
100 at 5, 10, and 30 min (LT 50  = 6.54; 0.25 mg cm −2 ); and 13, 22, 42, 80, and 100 at 
5, 10, 20, 40, and 80 min (LT 50  = 18.68; 0.125 mg cm −2 ), respectively against  P. 
humanus capitis  (Bagavan et al.  2011 ). In conclusion, green synthesis shows that 
the environmentally benign and renewable source of  S. acuta ,  H. Indicum ,  F. ele-
phantum  is used as an effective reducing agent for the synthesis of AgNPs. This 
biological reduction of silver nanoparticles would be a boon for the development of 
clean, nontoxic, and environmentally acceptable green approach to produce Ag NPs 
involving organisms even ranging to higher plants. The formed Ag NPs are highly 
stable and have signifi cant mosquito larvicidal activity of  A. subpictus ,  A. albopic-
tus  and  C. tritaeniorhynchus .  

7.5     Conclusion 

 Today, environmental safety is considered to be of paramount importance. An insec-
ticide does not need to cause high mortality on target organisms in order to be 
acceptable but should be eco-friedly in nature. Phytochemicals may serve as these 
are relatively safe, inexpensive and readily available in many parts of the world. 
Several plants are used in traditional medicines for the mosquito larvicidal activities 
in many parts of the world. The screening of locally available medicinal plants for 
mosquito control would generate local employment, reduce dependence on expen-
sive and imported products, and stimulate local efforts to enhance the public health 
system. The ethno-pharmacological approaches used in the search of new bioactive 
toxins from plants appear to be predictive compared to the random screening 
approach. The recently developed new isolation techniques and chemical character-
ization through different types of spectroscopy and chromatography together with 
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new pharmacological testing have led to an interest in plants as the source of new 
larvicidal compounds. Synergestic approaches such as application of mosquito 
predators with botanical blends and microbial pesticides will provide a better effect 
in reducing the vector population and the magnitude of epidemiology. 
Nanotechnology has the potential to revolutionize the existing technologies used in 
various sectors including agriculture. Nanotechnology may have concrete solutions 
against many agriculture-related problems like insect pest management using tradi-
tional methods, adverse effects of chemical pesticides, development of improved 
crop varieties, etc. nanomaterials in different forms can be used for effi cient man-
agement of insect pests and formulations of potential insecticides and pesticides. 
Nanoparticle-mediated gene transfer would be useful for the development of new 
insect resistant varieties. Therefore, it can also conclude that nanotechnology can 
provide green and eco-friendly alternatives for insect pest management without 
harming the nature.     
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    Chapter 8   
 Plant-Synthesized Nanoparticles: An Eco- 
Friendly Tool Against Mosquito Vectors?                     

       Giovanni     Benelli    

8.1             Current Control Strategies Against Mosquito Vectors 

 Arthropods are dangerous vectors of important pathogens and parasites, which may hit 
as epidemics or pandemics in the increasing world population of humans and animals. 
Among them, mosquitoes (Diptera: Culicidae) represent a key threat for millions of 
organisms worldwide, since they act as vectors for important parasites and pathogens, 
including malaria, dengue and fi lariasis (Mehlhorn et al.  2012 ; Benelli  2015a ). 

 Malaria is caused by  Plasmodium  parasites. They are vectored to people and 
animals through the bites of infected  Anopheles  mosquitoes, which bite mainly 
between dusk and dawn (Breman  2001 ; Jensen and Mehlhorn  2009 ). According to 
the latest estimates, there were about 198 million cases of malaria in 2013 and an 
estimated 584,000 deaths. Malaria mortality rates have fallen by 47 % globally 
since 2000, and by 54 % in the African region. Most deaths occur among children 
living in Africa, where a child dies every minute from malaria (WHO  2014a ). 

 Dengue is a mosquito-borne viral disease mainly transmitted by  Aedes aegypti  
and, to a lesser extent,  Aedes albopictus . Recently, dengue transmission has strongly 
increased in urban and semi-urban tropical areas worldwide, becoming a major 
international public health concern. Over 2.5 billion people are now at risk from 
dengue. The World Health Organization estimates that there may be 50–100 mil-
lions of dengue infections worldwide every year. There are four distinct, but closely 
related, serotypes of the virus that cause dengue (DEN-1, DEN-2, DEN-3 and DEN- 
4). Recovery from infection by one provides lifelong immunity against that particu-
lar serotype. However, cross-immunity to the other serotypes after recovery is only 
partial and temporary (WHO  2012 ). Currently, there is no specifi c treatment for 
dengue, even if the development of a vaccine is in progress (Murrell et al.  2011 ; 
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WHO  2015 ). Its prevention and control solely depends on effective vector control 
measures (Suresh et al.  2015 ; WHO  2015 ). 

 Lymphatic fi lariasis, commonly known as elephantiasis, is a neglected tropical 
disease; more than 1.4 billion people in 73 countries are living in areas where lym-
phatic fi lariasis is transmitted and are at risk of being infected. Globally, an esti-
mated 25 million men suffer with genital disease and over 15 million people are 
affl icted with lymphoedema (WHO  2014b ). Eliminating lymphatic fi lariasis can 
prevent unnecessary suffering and contribute to the reduction of poverty. Lymphatic 
fi lariasis is caused by Filariodidea nematodes, namely  Wuchereria bancrofti , which 
is responsible for 90 % of cases,  Brugia malayi , and  B. timori . Microfi lariae are 
transmitted to humans by different mosquitoes.  Culex  species, with special refer-
ence to  Culex quinquefasciatus , are the most common vectors across urban and 
semi-urban areas of Asia (Chadee et al.  2002 ). Furthermore, mosquitoes also trans-
mit key pathogens and parasites that dogs and horses are very susceptible to, includ-
ing dog heartworm, West Nile virus and Eastern equine encephalitis (WHO  2012 ). 

 In this scenario, mosquito vector control is crucial. Culicidae larvae and pupae are 
usually targeted using organophosphates, insect growth regulators, and microbial con-
trol agents (Benelli  2015a ). Indoors residual spraying and insecticide-treated bed nets 
are also employed to reduce transmission of malaria in tropical countries. However, 
synthetic chemicals have strong negative effects on human health and the environment, 
and induce resistance in a number of mosquito species (e.g. Robert and Olson  1989 ; 
Wattanachai and Tintanon  1999 ; Liu et al.  2005 ). 

 Eco-friendly tools have been recently implemented to enhance control of mos-
quitoes. Renewed interest has been devoted to the potential of Sterile Insect 
Technique (SIT) for suppression of mosquito vectors (Oliva et al.  2014 ). SIT has 
been recently combined with auto-dissemination (i.e. adult females contaminated 
with dissemination stations of juvenile hormone to treat breeding habitats), a tech-
nique proved very effi cient to control  Aedes  species but that cannot be used at large 
scales. This has lead to formulate a new control concept, named “boosted SIT” that 
might enable the area-wide eradication of mosquitoes and other vectors of medical 
and veterinary importance (Bouyer and Lefrançois  2014 ). Biological control of 
mosquito larval populations using aquatic predators, such as insects, copepods and 
tadpoles also received attention (Bowatte et al.  2013 ). Furthermore, huge efforts 
have been carried out to investigate the effi cacy of botanical products against mos-
quito vectors. Many plant extracts, essential oils and pure compounds have been 
reported as effective against Culicidae, acting as adulticidal, larvicidal, ovicidal, 
oviposition deterrent, growth and/or reproduction inhibitors and/or adult repellents 
(e.g. Amer and Mehlhorn  2006a ,  b ; Benelli  2015b ; Benelli et al.  2015a ,  b ,  c ).  

8.2     Plant-Mediated Synthesis of Nanoparticles: A Cheap 
and Single-Step Tool against Mosquitoes? 

 Nanobiotechnologies have the potential to revolutionize a wide array of appli-
cations, including drug delivery, diagnostics, imaging, sensing, gene delivery, 
artificial implants, tissue engineering, and pest management (Aurel et al.  2007 ; 
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Kim et al.  2007 ; Rai et al.  2009 ). The plant-mediated biosynthesis of nanopar-
ticles is advantageous over chemical and physical methods, since it is cheap, 
single-step, does not require high pressure, energy, temperature, and the use of 
highly toxic chemicals (Goodsell  2004 ). A growing number of plant-borne 
compounds have been proposed for efficient and rapid extracellular synthesis of 
metal nanoparticles (e.g. Shankar et al.  2004 ; Song and Kim  2009 ; Priyadarshini 
et al.  2012 ; Ponarulselvam et al.  2012 , see Rajan et al.  2015  for a recent review), 
which showed excellent mosquitocidal properties, also in field conditions (e.g. 
Santhoshkumar et al.  2011 ; Marimuthu et al.  2011 ; Panneerselvam et al.  2012 , 
 2013 ; Dinesh et al.  2015 ; Suresh et al.  2015 ; Murugan et al.  2015a ,  b ; 
Muthukumaran et al.  2015a ,  b ). 

 In this review, I focus on the characterization and effectiveness of plant- 
synthesized nanoparticles against mosquito vectors of medical and veterinary 
importance, mainly the malaria vector  Anopheles stephensi , the dengue vector  A. 
aegypti  and the fi lariasis vector  C. quinquefasciatus . In the fi nal section, particular 
attention is devoted to non-target effects of lethal and sub-lethal doses of plant- 
synthesized mosquitocidal nanoparticles against aquatic organisms, with special 
reference to mosquito natural enemies.  

8.3     Green Synthesis and Characterization of Mosquitocidal 
Nanoparticles 

 In latest years, a growing number of plant part extracts and metabolites have been 
proposed for the biosynthesis of nanoparticles. The number of publications on the 
topic is astonishing. A total of 1414 research products were found on SCOPUS data-
base using “plant synthesis nanoparticles” as keywords (May 2015) (Fig.  8.1a ). 
India and China are the most productive countries, with more than 700 and 100 
publications, respectively (Fig.  8.1b ). Currently, the majority of plant-fabricated 
metal nanoparticles are silver ones (AgNP) (see Rajan et al.  2015  for a dedicated 
review).

   The biosynthesis of metal nanoparticles for different biological purposes often 
exploit the reducing and stabilizing potential of plant extracts and metabolites. Two 
main factors infl uence the size, shape and stability of nanoparticles, namely the 
concentration of the plant extract/metabolite and the substrate (metal ions) concen-
tration (Rajan et al.  2015 ). In the majority of researches, the green synthesis of 
nanoparticles was confi rmed by UV-visualization spectroscopy, followed by 
 scanning electron microscopy (SEM) and/or transmission electron microscopy 
(TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared 
spectroscopy (FTIR) and X-ray diffraction studies (XRD). Plant-fabricated nanopar-
ticles can be also examined for mean size ranges using nanosizers (Rajan et al. 
 2015 ; Murugan et al.  2015b ). 

 For a large number of mosquitocidal nanoparticles synthesized using plant 
extracts, it has been showed that the color intensity of the plant extract incubated 
with the aqueous solution of metal ions usually changed from yellowish/pale brown 
to reddish/dark brown. In the majority of cases, a maximum absorption peak is 
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observed between 350 and 450 nm, after 60 min or more. The absorption peak var-
ies as the function of reaction time and concentration of metal ions. As the size of 
ultrafi ne particles decreases, the energy gap is widened, hence the absorption peaks 
shifted toward a higher energy (Dinesh et al.  2015 ; Suresh et al.  2015 ). The color 
change may be attributed to the excitation of surface plasmon resonance (SPR) in 
metal nanoparticles (Natarajan et al.  2010 ). Bio-synthesized metal nanoparticles 
have free electrons, which give rise to a SPR absorption band, due to the combined 
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vibration of electrons of metal nanoparticles in resonance with the light wave 
(Noginov et al.  2006 ). Besides UV-vis spectroscopy, the biosynthesis of nanoparti-
cles is confi rmed by EDX analysis, which provides information about elemental 
signals and atomic percent values characterising the reaction mixture (e.g. Murugan 
et al.  2015a ,  b ). In particular, AgNP display an optical absorption band peaking at 
3 keV (due to surface plasmon resonance), which is typical of the absorption of 
metallic silver nanocrystallites (Shahverdi et al.  2007 ). 

 SEM and TEM enable the visualization of the size and shape of plant-fabricated 
MNP. These two features may vary consistently with the bio-reduction process. As 
a general trend, the shape of plant-synthesized nanoparticles is spherical, cubic, 
triangular or rod-like, with the exception of those synthesized using neem leaves, 
which lead to both fl at and spherical nanoparticles (size: 5–35 nm) (Shankar et al. 
 2004 ). Recent examples about the morphological features of plant-fabricated mos-
quitocidal nanoparticles are provided below.  Aloe vera -synthesized AgNP have 
spherical and cubic structures with a size range of 35–55 nm. AgNP produced using 
the leaf extract of  Phyllantus niruri  have a spherical shape, with a mean size of 
30–60 nm.  Caulerpa scalpelliformis -synthesized AgNP are mono-dispersed with 
spherical and cubic structures, and mean size of 20–35 nm (Murugan et al.  2015a ). 
 Cymbopogon citratus -synthesized gold nanoparticles showed spherical, triangular, 
hexagonal, and rod shapes, with size ranging from 20 to 50 nm (Murugan et al. 
 2015b ). Comparable morphological characteristics of metal nanoparticles employed 
for different purposes have been obtained via plant-mediated synthesis with aque-
ous extracts from different plant species (Chandran et al.  2006 ; Rajan et al.  2015 ) 

 XRD is carried out to study the crystalline nature of biosynthesized mosquitocidal 
nanoparticles. Concerning AgNP, a good example is the bio-fabrication of AgNP 
using the leaf extract of  P. niruri . The XRD pattern exhibited size-dependent features, 
with a number of Bragg’s refl ections corresponding to the (111), (200), (220), (311) 
and (222) sets of lattice planes. On this basid, it has been pointed out the AgNP 
formed by the reduction of AgNO 3  by  P. niruri  leaf extract were crystalline in nature, 
and the sharp Bragg’s peaks were probably due to the capping agent stabilizing the 
MNP (Suresh et al.  2015 ). As regards to gold nanoparticles (AuNP), the XRD pattern 
of  C. citratus -synthesized Au nanostructures showed peaks corresponding to (111), 
(200) and (220) Bragg’s refl ection based on the face-centered cubic structure of 
AuNP. Again, XRD highlighted that the nanoparticles formed by the reduction of 
HAuCl 4  with  C. citratus  leaf extract were crystalline in nature (Murugan et al.  2015b ). 

 The bio-reduction of metal ions by plant extracts is a chemically complex phenom-
enon involving a wide array of plant compounds, such as vitamins, enzymes/proteins, 
organic acids such as citrates, amino acids, and polysaccharides for the reduction and 
capping. Notably, recent studies showed that “capped” AgNP are stable in solution for 
more than 8 weeks (Suganya et al.  2013 ). The phytochemical screening of secondary 
metabolites also revealed the presence of terpenoids, fl avonoids, phenols, alkaloids, 
proteins, and carbohydrates in the plant extracts. These plant metabolites had 
hydroxyl, carbonyl, and amine functional groups (Rajan et al.  2015 ). Results of FTIR 
studies showed that the functional groups of the diverse metabolites react with metal 
ions and reduced their size into nano-range. Moreover, it has been elucidated that the 
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mentioned functional groups acted as capping agents around the bio-synthesized 
metal nanoparticles, providing stability as well as biocompatibility (Rajan et al.  2015 ). 
For instance, the FTIR spectrum of AgNP fabricated using the  P. niruri  leaf extract 
showed transmittance peaks at 3327.63, 2125.87, 1637.89, 644.35, 597.41 and 
554.63 cm −1 , indicating that the carbonyl groups from amino acid residues probably 
acted as capping agents on nanoparticles, prevent agglomeration, thereby stabilizing 
the medium (Suresh et al.  2015 ). Furthermore, the peaks at 1027–1092 cm −1  corre-
sponded to the C–N stretching vibration of aliphatic amines or to alcohols/phenols, 
representing the presence of polyphenols (see also Song et al.  2009 ). A further exam-
ple is the synthesis of AuNP using the lemongrass leaf extract; AuNP showed FTIR 
peaks at 1448.54 cm −1  (C = C stretch nitro groups of aromatics), 1643.35 cm −1  (C = O 
stretch amides), 2360.87 cm −1  (P-H stretch phosphines), 2856.58 cm −1  and 
2918.30 cm −1  (bending carboxylic acids) (Murugan et al.  2015b ).  

8.4     Effectiveness of Plant-Synthesized Nanoparticles 
against Mosquito Vectors 

 A growing number of plant-synthesized nanoparticles have been reported as effective 
larvicidals, pupicidals and adulticidals against a number of mosquito species of medi-
cal and veterinary importance. A survey conducted on SCOPUS (May 2015) using 
“nanoparticles mosquito” as keywords, lead to 101 research results (Fig.  8.2a ). The 
most productive countries are India and United States. Of 101 contributions, 36 have 
been published on  Parasitology Research  (Springer), followed by  Environmental 
Science and Pollution Research  (Springer),  Acta Tropica  (Elsevier),  Asia-Pacifi c 
Journal of Tropical Disease  (Elsevier), and  Spectrochimica Acta Part A: Molecular 
and Biomolecular Spectroscopy  (Fig.  8.2b ). Restricting the analysis with keywords 
“plant nanoparticles mosquito” 48 research products have been found. India was con-
fi rmed the leading country and  Parasitology Research  the journal at the forefront in 
this fi eld. Of these studies, 7 have been discarded since they were not focused on plant-
mediated-synthesis of mosquitocidal nanoparticles or did not contain proper calcula-
tion of LC 50 . In addition, 5 research articles more have been found searching on Web 
of Science with the above-mentioned keywords (Raman et al.  2012 ; Velayutham et al. 
 2013 ; Murugan et al.  2015a ; Santhosh et al.  2015 ; Suresh et al.  2015 ).

8.4.1       Ovicidal, Larvicidal and Pupicidal Toxicity in Laboratory 
Conditions 

 To the best of my knowledge, there are no published evidences about the ovicidal 
toxicity of green-synthesized nanoparticles. Concerning larvicidal and pupicidal 
nanoparticles, it has been pointed out that few parts per million of different 
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plant- synthesized metal nanoparticles possess acute toxicity (i.e. 24 h of exposure, 
unless specifi ed differently) against different mosquito vectors. 

 In 2011, fi ve researches investigated the toxicity of plant-synthesized nanopar-
ticles against mosquito larvae. The fi rst article dealing with this issue was from 
Santhoshkumar et al. ( 2011 ), which showed that AgNP synthesized using the aque-
ous leaf extract of  Nelumbo nucifera  were toxic to IV instar larvae of  Anopheles 
subpictus  (LC 50  = 0.69 ppm) and  C. quinquefasciatus  (LC 50  = 1.10 ppm). Marimuthu 
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et al. ( 2011 ) determined the effi cacy of AgNP synthesized with the aqueous leaf 
extract of  Mimosa pudica  against IV instar larvae of  A. subpictus  and  C. quinque-
fasciatus,  with LC 50  of 13.90 and 11.73 mg/L, respectively. Rajakumar and Rahuman 
( 2011 ) studied the toxicity of AgNP synthesized using the aqueous leaf extract from 
 Eclipta prostrata  towards IV instar larvae of  C. quinquefasciatus  (LC 50  4.56 mg/L) 
and  Anopheles subpictus  (LC 50  = 5.14 mg/L). AgNP fabricated with the leaf aqueous 
extract of  Tinospora cordifolia  are toxic to IV instar larvae of  A. subpictus  and  C. 
quinquefasciatus , with LC 50  of 6.43 and 6.96 mg/L, respectively (Jayaseelan et al. 
 2011 ). AgNP synthesized using  Rhizophora mucronata  leaf extract have been tested 
to IV instar larvae of  A. aegypti  and  C. quinquefasciatus , with LC 50  of 0.585 and 
0.891 mg/L, respectively (Gnanadesigan et al.  2011 ). 

 In 2012, fi ve studies focused on the toxicity of plant-synthesized nanoparticles 
against mosquito larvae and pupae.  Annona squamosa- synthesized AgNP were 
toxic to IV instar larvae of  A. aegypti ,  C. quinquefasciatus  and  A. stephensi , LC 50  
were 0.30, 0.41, and 2.12 ppm, respectively (Arjunan et al.  2012 ). AgNP fabricated 
with the  Euphorbia hirta  leaf extract were toxic to  A. stephensi  larvae and pupae, 
with LC 50  values of 10.14 (I), 16.82 (II), 21.51 (III), 27.89 (IV) and 34.52 ppm 
(pupae) (Priyadarshini et al.  2012 ). AgNP produced using the  Plumeria rubra  plant 
latex were toxic to II and IV instar larvae of  A. aegypti  and  A. stephensi ; LC 50  values 
were 1.49 (II) and 1.82 ppm (IV) for  A. aegypti  and 1.10 (II) and 1.74 ppm (IV) for 
 A. stephensi  (Patil et al.  2012a ). AgNP synthesized with the  Pergularia daemia  latex 
were toxic to  A. aegypti  and  A. stephensi  larvae; LC 50  values were 4.39 (I), 5.12 (II), 
5.66 (III) and 6.18 ppm (IV) for  A. aegypti , and 4.41 (I), 5.35 (II), 5.91 (III) and 
6.47 ppm (IV) for  A. stephensi  (Patil et al.  2012b ). Lastly, AgNP fabricated using 
the aqueous leaf extract of  Pithecellobium dulce  showed toxicity against IV instar 
larvae of  C. quinquefasciatus  (LC 50  = 21.56 mg/L) (Raman et al.  2012 ). 

 In 2013, the productivity in this fi eld duplicated, 11 studies were published. 
AgNP produced using  Pedilanthus tithymaloides  aqueous leaf extract showed anti- 
developmental activity and acute toxicity towards  A. aegypti , with LC 50  values of 
0.029 (I), 0.027 (II), 0.047 (III), 0.086 (IV), and 0.018 % (pupae) (Sundaravadivelan 
et al.  2013 ). After 48 h of exposure, AgNP synthesized with the aqueous leaf extract 
of  Vinca rosea  were toxic to IV instar larvae of  A. stephensi  and  C. quinquefascia-
tus,  with LC 50  values of 12.47 and 43.80 mg/mL, respectively (Subarani et al.  2013 ). 
AgNP fabricated using  Nerium oleander  leaf extract was toxic to  A. stephensi  larvae 
and pupae, with LC 50  values of 20.60 (I), 24.90 (II), 28.22 (III), 33.99 (IV) and 
39.55 ppm (pupae) (Roni et al.  2013 ). The larvicidal activity of  Anthocephalus 
cadamba - synthesized  AuNP has been ascertained against III instar larvae of  C. 
quinquefasciatus,  with LC 50  of 1.08 ppm (Naresh Kumar et al.  2013 ). AgNP pro-
duced with the  Murraya koenigii  leaf extract were toxic to  A. stephensi  and  A. 
aegypti. A. stephensi  LC 50  values were 10.82 (I), 14.67 (II), 19.13 (III), 24.35 (IV), 
and 32.09 ppm (pupae), while  A. aegypti  LC 50  were 13.34 (I), 17.19 (II), 22.03 (III), 
27.57 (IV) and 34.84 ppm (pupae) (Suganya et al.  2013 ). AgNP synthesized using 
dried green fruits of  Drypetes roxburghii  have been found toxic against  A. stephensi  
and  C. quinquefasciatus ; LC 50  for II, III and IV larval instars were 0.863, 1.162 and 
1.281 ppm against  C. quinquefasciatus  and 0.7329, 0.8397 and 0.9848 ppm against 
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 A. stephensi , respectively (Haldar et al. 2013). AgNP fabricated using the aqueous 
aerial extract of  Ammannia baccifera  as reducing agent showed toxic effects against 
IV instar larvae of  A. subpictus  (LC 50  = 29.54 ppm) and  C. quinquefasciatus  
(LC 50  = 22.32 ppm) (Suman et al.  2013 ). The mesocarp layer extract of  Cocos 
nucifera  has been employed to produce AgNP toxic to IV instar larvae of  A. ste-
phensi  and  C. quinquefasciatus;  after 72 h of exposure, LC 50  was 87.24 mg/L for  A. 
stephensi  and 84.85 mg/L for  C. quinquefasciatus  (Roopan et al.  2013 ). The larvi-
cidal activity of AgNP synthesized using the aqueous bark extract of  Ficus race-
mosa  was successfully tested against IV larvae of the fi lariasis vector  C. 
quinquefasciatus  and the Japanese encephalitis vectors  Culex gelidus  (LC 50  = 12.00 
and 11.21 mg/L, respectively) (Velayutham et al.  2013 ). AgNP fabricated with the 
 Sida acuta  leaf extract were tested against III instar larvae of  A. stephensi ,  A. 
aegypti,  and  C. quinquefasciatus , with LC 50  values of 21.92, 23.96 and 26.13 μg/
mL, respectively (Veerakumar et al.  2013 ). AgNP were produced using the leaf and 
berry extracts of  Solanum nigrum  and tested against II and III instar larvae of  A. 
stephensi  and  C. quinquefasciatus . Concerning II instar larvae,  A. stephensi  LC 50  
values were 2.12, 2.04 and 1.67 ppm for dry leaves, fresh leaves and berries, respec-
tively.  C. quinquefasciatus  LC 50  values were 2.62, 2.20 and 2.88 ppm for dry leaves, 
fresh leaves and berries, respectively. Concerning III instar larvae,  A. stephensi  LC 50  
values were 1.33, 1.59 and 1.54 ppm for dry leaves, fresh leaves and berries, respec-
tively.  C. quinquefasciatus  LC 50  values were 1.26, 1.33 and 2.44 ppm for dry leaves, 
fresh leaves and berries, respectively (Rawani et al. 2013). 

 In 2014, productivity was constant; ten studies have been conducted to evaluate 
the toxicity of plant-synthesized nanoparticles against mosquito larvae and pupae. 
Silver nanoparticles fabricated with the aqueous extract of  Citrullus colocynthis  
were toxic to III instar larvae of  C. pipiens , with LD 50  of 0.5 mg/mL (Shawky et al. 
 2014 ).  Feronia elephantum -synthesized silver nanoparticles are toxic against  A. ste-
phensi ,  A. aegypti , and  C. quinquefasciatus ;  A. stephensi  has LC 50  of 11.56 μg mL −1 ; 
 A. aegypti  has LC 50  of 13.13 μg mL −1 ; and  C. quinquefasciatus  has LC 50  of 14.19 μg 
mL −1  (Veerakumar et al.  2014a ).  Morinda tinctoria  acetone leaf extract has been 
used to produce AgNP that achieved an LC 50  of 1.442 ppm towards III instar larvae 
of  C. quinqufasciatus  (Kumar et al.  2014 ). AgNP fabricated with the leaves of  Melia 
dubia  were toxic to IV instar larvae of  C. quinquefasciatus  (LC 50  = 11.27 ppm), and 
it has been showed that the larvicidal effect of these AgNP was probably due to the 
different phytoconstituents coating AgNP (Karthikeyan et al.  2014 ). The aqueous 
leaf extracts of neem has been employed to produce AgNP active as larvicides and 
pupicides against  A. stephensi  and  C. quinquefasciatus . After exposure times shorter 
than 24 h, LC 50  values against  C. quinquefasciatus  were 6 (II), 10 (III) and 1 ppm 
(pupae). No values have been calculated for I and IV instar larvae. LC 50  values 
against  A. stephensi  were 2 (I), 2 (II), 2 (III) and 1 (IV). No values have been calcu-
lated for pupae (Soni and Prakash  2014 ). AgNP produced using the aqueous leaf 
extract of Leucas aspera were toxic against IV instar larvae of  A. aegypti , with LC 50  
of 8.563 mg/L (Suganya et al.  2014 ). The aqueous leaf extracts of  Aegle marmelos  
has been used to synthesize nickel nanoparticles toxic to  A. aegypti ,  A. stephensi  
and  C. quinquefasciatus ; LC 50  were 534.83, 595.23 and 520.83 ppm, respectively 
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(Angajala et al.  2014 ). AgNP fabricated with the leaf extract of  Helitropium indicum  
have been tested against III instar larvae of  A. stephensi  (LC 50  = 18.40 μg/mL),  A. 
aegypti  (LC 50  = 20.10 μg/mL) and  C. quinquefasciatus  (LC 50  = 21.84 μg/mL) 
(Veerakumar et al.  2014b ). AgNP produced using the seed extract of  Sterculia 
foetida  showed mosquitocidal activity against IV instar larvae of  A. aegypti  
(LC 50  = 67.75 mg/mL) , A. stephensi  (LC 50  = 57.36 mg/mL) and  C. quinquefasciatus  
(LC 50  = 71.54 mg/mL) (Rajasekharreddy and Rani  2015 ). AgNP synthesized using 
the aqueous root extract of  Delphinium denudatum  exhibited toxic activity towards 
II instar larvae of  A. aegypti , with a LC 50  value of 9.6 ppm (Suresh et al.  2014 ). 

 From January 2015 to May 2015, 13 researches were published.  A. vera - 
fabricated  AgNP were toxic against  A. stephensi ; LC 50  vales were 3.825 ppm (I 
instar lavae), 4.119 ppm (II), 4.982 ppm (III), 5.711 ppm (IV), and 6.113 ppm 
(pupae) (Dinesh et al.  2015 ).  P. niruri -fabricated AgNP have been reported as toxic 
to larvae and pupae of  A. aegypti , with LC 50  of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm 
(III), 8.9 ppm (IV) and 13.04 ppm (pupae) (Suresh et al.  2015 ).  Caulerpa 
scalpelliformis - synthesized  AgNP were effective against  C. quinquefasciatus  larvae 
and pupae, with LC 50  of 3.08 ppm (I instar larvae), 3.49 (II), 4.64 (III), 5.86 ppm 
(IV) and 7.33 (pupae) (Murugan et al.  2015a ).  C. citratus -produced AuNP were 
toxic against  A. stephensi  and  A. aegypti ; LC 50  against  A. stephensi  were 18.80 ppm 
(I), 21.32 ppm (II), 25.92 ppm (III), 31.46 ppm (IV) and 38.32 ppm (pupae); LC 50  
against  A. aegypti  were 20.27 ppm (I), 23.24 ppm (II), 8.63 ppm (III), 35.09 ppm 
(IV) and 41.52 ppm (pupae) (Murugan et al.  2015b ). AgNP synthesized using 
 Chomelia asiatica  leaf extract were toxic to  A. stephensi ,  A. aegypti , and  C. quin-
quefasciatus,  with LC 50  and LC 90  values;  A. stephensi  LC 50  was 17.95 μg/mL,  A. 
aegypti  LC 50  was 19.32,  C. quinquefasciatus  LC 50  was 20.92 μg/mL (Muthukumaran 
et al.  2015a ). AgNP obtained with the  Gmelina asiatica  leaf extract appeared to be 
effective against  A. stephensi  (LC 50  = 22.44 μg/mL) , A. aegypti  (LC 50  = 25.77 μg/
mL) and  C. quinquefasciatus  (LC 50  = 27.83 μg/mL) (Muthukumaran et al.  2015b ). 
AgNP fabricated using leaf and fruit extracts from  Couroupita guianensis  were 
toxic to IV instar larvae of  A. aegypti , with LC 50  values of 2.1 ppm (leaf extract) and 
2.09 ppm (fruit extract) (Vimala et al.  2015 ). The aqueous leaf extract of neem, 
 Azadirachta indica , has been tested against III instar larvae of  A. aegypti  and  C. 
quinquefasciatus , LC 50  values were 0.006 and 0.047 mg/l, respectively (Poopathi 
et al.  2015 ). AgNP biosynthesized using 2,7.bis[2-[diethylamino]-ethoxy]fl uorence 
isolate from  Melia azedarach  leaves have been tested against III instar larvae of  A. 
aegypti  and  C. quinquefasciatus , with LC 50  of 4.27 μg/mL and 3.43 μg/mL, respec-
tively (Ramanibai and Velayutham  2015 ). Extremely stable AgNP have been syn-
thesized using the leaf aqueous extract of  Mukia maderaspatana ; LC 50  values 
against  A. aegypti  and  C. quinquefasciatus  IV instar larvae were 0.211 and 
0.094 ppm, respectively (Chitra et al.  2015 ). AgNP synthesized with  Avicennia 
marina  leaf extract have been tested against I-IV larvae of  A. stephensi  and  A. 
aegypti , with LC 50  values of 4.374 and 7.406 mg/L, respectively (Balakrishnan et al. 
 2015 ). Green synthesized AgNP produced using the  Annona muricata  leaf extract 
were toxic to III instar larvae of  A. aegypti  (LC 50  = 12.58 μg mL −1 ),  A. stephensi  
(LC 50  = 15.28 μg mL −1 ) and  C. quinquefasciatus  (LC 50  = 18.77 μg mL −1 ) (Santhosh 
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et al.  2015 ). Recently, AgNP synthesized from the seed extract of  Moringa oleifera  
have been reported as toxic towards  A. aegypti  young instars, with LC 50  of 10.24 ppm 
(I), 11.81 ppm (II), 13.84 ppm (III), 16.73 ppm (IV) and 21.17 ppm (pupae). In 
addition, these AgNP were able to inhibit the growth of dengue virus, serotype 
DEN-2 (Sujitha et al.  2015 ). 

 Overall, as a general trend, the majority of biosynthesized mosquitocidal 
nanoparticles have been produced exploiting the reducing potential of terrestrial 
plant extracts, while algae and seaweeds have been scarcely employed (Murugan 
et al.  2015a ). Most of metal nanoparticles tested against mosquito larval popula-
tions were AgNP.  C. quinquefasciatus  larvae and pupae seemed more resistant to 
the toxic activity of plant-synthesized AgNP.  

8.4.2     Larvicidal Toxicity in the Field 

 Interestingly, fi eld experiments confi rmed the effectiveness of plant-synthesized 
mosquitocidal nanoparticles. Indeed,  A. aegypti  and  A. stephensi  III instar larvae 
have been recently eliminated from water storage reservoirs 72 h after a single treat-
ment with  P. niruri - and  A. vera -synthesized AgNP (10×LC 50 ), respectively (Dinesh 
et al.  2015 ; Suresh et al.  2015 ). It has been hypothesized that the death of mosquito 
larvae and pupae may be related to the ability of metal nanoparticles to penetrate 
through the exoskeleton. In the intracellular space, nanoparticles can bind to sul-
phur from proteins or to phosphorus from DNA, leading to the rapid denaturation of 
organelles and enzymes. Subsequently, the decrease in membrane permeability and 
disturbance in proton motive force may cause loss of cellular function and cell death 
(Rai et al.  2009 ).  

8.4.3     Adulticidal Toxicity and Ovideterrent Properties 

 Moderate knowledge is available about the adulticidal properties of plant- synthesized 
metal nanoparticles. In laboratory conditions, AgNP synthesized using  F. elephan-
tum  leaf extract were toxic against adults of  A. stephensi ,  A. aegypti , and  C. quinque-
fasciatus. A. stephensi  LD 50  and LD 90  were 18.041 and 32.575 μg mL −1 .  A. aegypti  
LD 50  and LD 90  were 20.399 and 37.534 μg mL −1 .  C. quinquefasciatus  LD 50  and LD 90  
were 21.798 and 39.596 μg mL −1  (Veerakumar and Govindarajan  2014 ). The adulti-
cidal activity of AgNP synthesized using  H. indicum  leaf extract has been evaluated 
against adults of  A. stephensi ,  A. aegypti , and  C. quinquefasciatus ; the maximum 
effi cacy has been observed against the adults of  A. stephensi  (LD 50  = 26.712 μg/mL), 
followed by  A. aegypti  (LD 50  = 29.626 μg/mL) and by  C. quinquefasciatus  
(LD 50  = 32.077 μg/mL) (Veerakumar et al.  2014c ). AgNP prepared using the neem 
leaf extract were toxic for  C. quinquefasciatus  adults, with LC 50  of 0.53 ppm calcu-
lated after 4 h of exposure (Soni and Prakash  2014 ).  P. niruri- synthesized  AgNP 
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tested against  A. aegypti  adults achieved LC 50  and LC 90  values of 6.68 ppm and 
23.58 ppm, respectively (Suresh et al.  2015 ). 

 Little information is available on the impact of metal nanoparticles on oviposi-
tion behavior of mosquito vectors. To the best of my knowledge, only Barik et al. 
( 2012 ) investigated the oviposition behavior of three mosquito species in presence 
of different types of nanosilica. Complete ovideterrence activity of hydrophobic 
nanosilica was observed at 112.5 ppm in  A. aegypti ,  A. stephensi  and  C. quinquefas-
ciatus , while there was no effect of lipophilic nanosilica on oviposition behavior of 
the three vectors (Barik et al.  2012 ).   

8.5     Non-target Effects against Mosquito Natural Enemies 
and Other Aquatic Organisms 

 In latest years, extensive efforts have been done to investigate non-target effects of 
nanoparticles against aquatic organisms (e.g. Oberdorster et al.  2006 ; Park et al.  2014 ; 
see Baun et al.  2008  and Fabrega et al.  2011  for reviews). However, few attempts have 
been conducted to shed light on the toxicity of plant-synthesized mosquitocidal 
nanoparticles against aquatic organisms sharing the same ecological niche of mos-
quito vectors, with special reference to Culicidae natural enemies (Patil et al.  2012a ,  b ; 
Haldar et al. 2013; Rawani et al. 2013; Subarani et al.  2013 ; Murugan et al.  2015a ,  b ). 

 Little knowledge is available about the acute toxicity towards aquatic non-target 
species.  P. rubra - and  P. daemia -synthesized AgNP did not exhibit any evident toxic-
ity effect against  Poecilia reticulata  fi shes, after 48 h of exposure to LC 50  and LC 90  
values calculated on IV instar larvae of  A. aegypti  and  A. stephensi  (Patil et al.  2012a , 
 b ). Subarani et al. ( 2013 ) did not reported toxicity effects of  V. rosea - synthesized  
AgNP against  P. reticulata , after 72 h of exposure to dosages toxic against  A. ste-
phensi  and  C. quinquefasciatus . Similarly, Haldar et al. ( 2013 ) did not detected toxic-
ity of AgNP produced using dried green fruits of  D. roxburghii  against  P. reticulata , 
after 48 h-exposure to LC 50  of IV instar larvae of  A. stephensi  and  C. quinquefascia-
tus . Rawani et al. ( 2013 ) showed that mosquitocidal AgNP synthesized using  Solanum 
nigrum  berry extracts were not toxic against two mosquito predators,  Toxorhynchites  
larvae and  Diplonychus annulatum , and  Chironomus circumdatus  larvae, exposed to 
lethal concentrations of dry nanoparticles calculated on  A. stephensi  and  C. quinque-
fasciatus  larvae. AgNP biosynthesized using the 2,7.bis[2-[diethylamino]-ethoxy]
fl uorence isolate from the  Melia azedarach  leaves did not show acute toxicity against 
 Mesocyclops pehpeiensis  copepods (Ramanibai and Velayutham  2015 ). 

 Scarce information is available about how low dosages of these mosquitocidals 
may impact behavioral traits of aquatic organisms sharing the same ecological niche 
of mosquitoes, such as their predators (Murugan et al.  2015a ,  b ). Notably, these 
investigations unveiled fascinating scenarios. For instance, Murugan et al. ( 2015b ) 
showed that very low doses (i.e. 1 ppm) of lemongrass-synthesized AuNP may help 
to control malaria and dengue vectors boosting early instar mosquito larvae preda-
tion by copepods ( Mesocyclops aspericornis ) in an aquatic environment contami-
nated with ultra-low doses of plant-synthesized AuNP.  
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8.6     Conclusions 

 Overall, despite the extensive number of published papers on plant-mediated syn-
thesis of nanoparticles for mosquito control there is a strong gap between theory and 
practical applications. Much remains to know about this fast-growing research area, 
with special reference to the following issues: (i) chemical characterization and 
standardization of plant-borne botanicals used from nano-synthesis (Heng et al. 
 2013 ); (ii) the potential of industrial by-products of plant origin for bio-fabrication 
of nano-mosquitocidals (e.g. neem-cake, see Benelli et al.  2015c  for a dedicated 
review); (iii) fi eld evaluation of larvicidal and pupicidal properties of green nanopar-
ticles against Culicidae (e.g. Dinesh et al.  2015 ; Suresh et al.  2015 ); (iv) the poten-
tial of plant-synthesized nanoparticles as mosquito ovicidals; (v) the non-target 
effects and environmental fate of plant-synthesized nanoparticles used against mos-
quito vectors. This latter point is of peculiar importance. To deal with these key 
challenges, cooperation among parasitologists, entomologists, behavioral and 
chemical ecologists is encouraged.     
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9.1             Introduction 

 Mosquitoes (Diptera: Culicidae) represent a huge threat for millions of humans and 
animals worldwide, since they act as vectors for malaria, dengue, yellow fever, West 
Nile virus, Japanese encephalitis, and fi lariasis (Mehlhorn et al.  2012 ; Benelli 
 2015 ). According to the latest estimates, there were about 198 million cases of 
malaria in 2013 and an estimated 584,000 deaths. Malaria mortality rates have 
fallen by 47 % globally since 2000, and by 54 % in the African region. Most deaths 
occur among children living in Africa, where a child dies every minute from malaria. 
Malaria is caused by  Plasmodium  parasites; they are vectored to people and animals 
through the bites of infected  Anopheles  mosquitoes, which bite mainly between 
dusk and dawn (WHO  2014 ). 

 People entering into regions where malaria, dengue or yellow fever risks exist 
may protect themselves by use of chemical or plant derived repellents (Mehlhorn 
et al.  2005 ,  2012 ; Mehlhorn  2011 ; Amer and Mehlhorn  2006b ). However, people 
living in endemic regions have to protect themselves by several strategies at the 
same time, since infection rates of mosquitoes may be extremely high (Amer and 
Mehlhorn  2006a ,  c ; Rahuman  2011 ).  Anopheles  populations are usually targeted 
using synthetic insecticides. However, these chemicals have important negative 
effects on human health and the environment, and induce resistance in a number of 
targeted species (Benelli  2015 ). In this scenario, eco-friendly tools have been 
recently implemented to enhance control of mosquito vectors, with special refer-
ence of botanical mosquitocidals (Azizullah et al.  2014 ). Recently, a growing num-
ber of plant-borne compounds have been reported as excellent toxics against 
mosquitoes, acting as adulticidal, larvicidal, ovicidal, oviposition deterrent, growth 
and/or reproduction inhibitors and/or adult repellents (e.g. Amer and Mehlhorn 
 2006a ,  b ,  c ,  d ; Semmler et al.  2009 ; Rahuman  2011 ; Benelli et al.  2015a ,  b ). 

 Nanobiotechnologies have the potential to revolutionize a wide array of applica-
tions, including drug delivery, diagnostics, imaging, sensing, gene delivery, artifi -
cial implants, tissue engineering, and pest management (Elechiguerra et al.  2005 ). 
The plant-mediated biosynthesis (i.e. “green synthesis”) of nanoparticles is advan-
tageous over chemical and physical methods, since it is cheap, single-step, does not 
require high pressure, energy, temperature, and the use of highly toxic chemicals 
(Song and Kim  2009 ). In particular, a growing number of plants and fungi have 
proposed for effi cient and rapid extracellular synthesis of silver and gold nanopar-
ticles, which showed excellent mosquitocidal properties, also in fi eld conditions 
(e.g. Amerasan et al.  2015 ; Dinesh et al.  2015 ; Suresh et al.  2015 ). 

 However, while extensive efforts have been conducted to investigate non-target 
effects of nanoparticles against aquatic organisms, little has been done to shed light 
about the toxicity of green-synthesized mosquitocidal nanoparticles against preda-
tors of mosquito larval and pupal populations (see Benelli  2016  for a recent review). 
Most importantly, scarce information is available about the impact of  mosquitocidal 
nanostructures on al traits of mosquito natural enemies, such as copepods (Murugan 
et al.  2015a ,  b ,  c ). 
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  Acorus calamus  (Acorales: Acoraceae) has been used in the Indian and Chinese 
system of medicine for hundreds of years to cure a wide array of diseases (Mukherjee 
and Kumar  2007 ).  A. calamus  rhizome is the source of an essential oil, which is a 
unique source of oxygenated sesquiterpenes of great structural variety, responsible 
for antibacterial, antifungal, and insecticidal properties (Meena et al.  2010 ; Dahiya 
and Purkayastha  2011 ). The alcoholic extract of  A. calamus  rhizome exhibited anti-
viral activity against herpes viruses that is HSV-1 and HSV-2 (Mamgain and Signh 
 1994 ). The ethanolic extract of the rhizome is also used as antiulcer agent that inhib-
its gastric secretion and protects gastroduodenal mucosa against the injuries caused 
by pyloric ligation (Keller et al.  1985 ). Recently, Nakkala et al. ( 2014 ) reported that 
silver nanoparticles (AgNP) synthesized using the aqueous extract of  A. calamus  
exhibited free radical quenching ability in antioxidant assays and antibacterial 
activity against different pathogenic bacteria. Furthermore AgNP showed antican-
cer effects in HeLa cells and in A549 cells. 

 In this study, we reported a cheap method to synthesize silver nanoparticles (Ag 
NP) using the rhyzome extract of  Acorus calamus , a nontoxic and eco-friendly 
material, that worked as reducing and stabilizing agent during the biosynthesis. 
AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared 
spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive 
X-ray analysis (EDX). We investigated the ovicidal, larvicidal, pupicidal and adul-
ticidal properties of  A. calamus  aqueous rhyzome extract and green-synthesized 
AgNP against the malaria vector  Anopheles stephensi . Furthermore, we evaluated 
the predation effi ciency of the cyclopoid copepod  Mesocyclops edax  against larvae 
of  A. stephensi , both in standard laboratory conditions and in an aquatic environ-
ment treated with AgNP.  

9.2     Materials and Methods 

9.2.1     Plant Materials 

 Fresh rhizomes of  A. calamus  were collected from campus of Bharathiar University 
(Coimbatore, India). Plants were identifi ed by an expert taxonomist at the 
Department of Botany (Bharathiar University, Coimbatore). Voucher specimens 
(ID: ACO1-3) were stored in our laboratories and are available under request.  

9.2.2     Mosquito Rearing 

 Following the method by Dinesh et al. ( 2015 ), the eggs of  A. stephensi  were col-
lected from National Centre for Disease Control (NCDC) fi eld station of 
Mettupalayam, Tamil Nadu, India. Eggs were transferred to laboratory conditions 
[27 ± 2 °C, 75–85 % R.H., 14:10 (L:D) photoperiod] and placed in 18 × 13 × 4 cm 
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plastic containers containing 500 mL of tap water, waiting for hatching. Larvae 
were fed daily with a mixture of dog biscuits (Pedigree, USA) and hydrolyzed yeast 
(Sigma Aldrich, Germany) (3:1,  w : w  ratio). Pupae were collected and transferred to 
plastic containers with 500 mL of water. Each container was placed inside a cubic 
chiffon cage (90 × 90 × 90 cm) to wait for adult emergence. Adults were fed  ad libi-
tum  on 10 % (v:v) sucrose solution. Five days after emergence, the adults were 
deprived of sugar feeding for 12 h and then supplied with artifi cial blood feeding. 
The blood meal was furnished, by means of a professional heating blood (lamb 
blood), at fi xed temperature of 38 °C and provided with a membrane of cow gut. 
After 30 min, the blood meal was removed, due to blood drying phenomena, and gut 
membrane was substituted with a new fresh one for the following utilization 
(Nicoletti et al.  2012 ). Petri dishes (diameter 60 mm) lined with fi lter paper and 
containing 50 mL of water were placed inside each cage, allowing oviposition by 
females.  

9.2.3      Acorus calamus -Mediated Synthesis of Silver 
Nanoparticles 

 The  A. calamus  aqueous rhizome extract was prepared adding 10 g of washed and 
fi nely cut rhizomes in a 300-mL Erlenmeyer fl ask fi lled with 100 mL of sterilized 
double distilled water and then boiling the mixture for 5 min, before fi nally decant-
ing it. The extract was fi ltered using Whatman fi lter paper n. 1, stored at −4 °C and 
tested within 5 days. The fi ltrate was treated with aqueous 1 mM AgNO 3  solution in 
an Erlenmeyer fl ask and incubated at room temperature. A brown-yellowish solu-
tion indicated the formation of AgNP, since aqueous silver ions were reduced by the 
 A. calamus  extract generating stable AgNP in water. Silver nitrate was purchased 
from the Precision Scientifi c Co. (Coimbatore, India).  

9.2.4     Characterization of Green-Synthesized Silver 
Nanoparticles 

 Synthesis of AgNP was confi rmed by sampling the reaction mixture at regular 
intervals and the absorption maxima was scanned by UV–vis, at the wavelength 
of 200–600 nm in UV-3600 Shimadzu spectrophotometer at 1 nm resolution. 
Then, the reaction mixture was subjected to centrifugation at 15,000 rpm for 
20 min, resulting pellet was dissolved in deionized water and fi ltered through 
Millipore fi lter (0.45 μm). An aliquot (2 mL) of this fi ltrate containing silver 
nanoparticles was used for SEM, EDX, FTIR and XRD analyses. The structure 
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and composition of freeze-dried purifi ed AgNP was analyzed using a 10 kV ultra 
high- resolution scanning electron microscope. 25 μL of sample were sputter 
coated on copper stub and the images of nanoparticles were studied using FEI 
QUANTA-200 SEM. The surface groups of the AgNP were qualitatively con-
fi rmed by FTIR spectroscopy, using a Perkin-Elmer Spectrum 2000 FTIR spectro-
photometer. EDX assays confi rmed the presence of metals in the analyzed AgNP 
samples.  

9.2.5     Ovicidal Activity 

 Following Su and Mulla ( 1998 ), mosquito eggs were collected placing ovitraps (i.e., 
Petri dishes, diameter 60 mm, lined with fi lter paper and containing 50 ml of water) 
inside each cage. All ovitraps were stored in the cages for 2 days from the blood 
meal of mosquito females. The eggs laid on fi lter paper lining were examined using 
a photomicroscope (Leica ES2, Germany). For each mosquito species, the eggs 
were placed in a cage with six glass cups (diameter: 6 cm). Five of them were fi lled 
with water plus AgNP treatments as follows: 10, 20, 30, 40 and 50 ppm. The control 
cup was fi lled with distilled water. 100 eggs were placed in each cup. Five replicates 
were done for each dosage. After treatment, the eggs from each concentration were 
transferred to distilled water cups for hatching assessment after counting the eggs 
under microscope. The percent egg mortality was calculated on the basis of non- 
hatchability of eggs with unopened opercula (Chenniappan and Kadarkarai  2008 ). 
The hatch rates were assessed 48 h post-treatment using the following formula 
(Govindarajan et al.  2011 ):

  % /of eggmortality number of hatched larvae total number of eggs= ( )´1100    

9.2.6       Larvicidal and Pupicidal Activity 

 Following the method reported by Suresh et al. ( 2015 ), 25  A. stephensi  larvae (I, II, 
III or IV instar) or pupae were placed in a glass beaker fi lled with 250 mL of dechlo-
rinated water plus the desired concentration of  A. calamus  extract or green- 
synthesized AgNP. Larval food (0.5 mg) was provided for each tested concentration. 
Each concentration was replicated fi ve times against all instars. In control treat-
ments, 25 larvae or pupae were transferred in 250 mL of dechlorinated water. 
Percentage mortality was calculated as follows:

 
% mortality number of dead individuals number of treated individu= / aals( )×100
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9.2.7       Adulticidal Toxicity 

 Adulticidal bioassay was performed following the method by Suresh et al. ( 2015 ). 
The  A. calamus  aqueous crude extract was tested at 100, 200, 300, 400 and 500 ppm, 
and AgNP nanoparticles were tested at 3.125, 6.25, 12.5, 25 and 50 ppm.  A. calamus  
aqueous crude extract or AgNP were applied on Whatman n. 1 fi lter paper (size 
12 × 15 cm) lining a glass holding tube (diameter 30 mm; length 60 mm). Control 
fi lter paper was treated with distilled water and silver nitrate (1 mM), respectively. In 
each test, 20  A. stephensi  females were gently transferred into another glass holding 
tube. The mosquitoes were allowed to acclimatize in the tube for 1 h and then exposed 
to test tube lined with treated or control paper for 1 h. At the end of exposure period, 
the mosquitoes were transferred back to the original holding tube and kept for a 24 h 
recovery period. A pad of cotton soaked with 10 % (w:w) glucose solution was placed 
on the mesh screen at the top of the holding tube (Suresh et al.  2015 ).  

9.2.8     Predation of  Mesocyclops edax  against  Anopheles 
stephensi  Larvae 

 The predation effi ciency of  M. edax  was assessed against  A. stephensi  larvae. For 
each instar, 100 mosquitoes were introduced, with 10 copepods, in a glass beaker 
containing 250 mL of dechlorinated water. Mosquito larvae were replaced daily 
with new ones. For each mosquito instar, four replicates were conducted. Control 
was 250 mL of dechlorinated water without copepods. All beakers were checked 
after 1, 2, 3, 4, and 5 days and the number of prey consumed by copepods was 
recorded. Predatory effi ciency was calculated using the following formula:

  
Predatoryefficiency number of consumed mosquitoes number of pre= / ddators

total number of mosquitoes
( )

× 100    

9.2.9       Predation of  Mesocyclops edax  against  Anopheles 
stephensi  Larvae Post-treatment with Silver 
Nanoparticles 

 Here the predation effi ciency of  M. edax  adults was assessed against  A. stephensi  
larvae, after a mosquitocidal treatment with AgNP. For each instar, 100 mosquitoes 
were introduced with 10 copepods in a glass beaker fi lled with 250 mL of dechlori-
nated water plus the desired concentration of  A. calamus -synthesized AgNP (i.e., 
1/3 of the LC 50  calculated against fi rst instar larvae of  A. stephensi ). Mosquito larvae 
were replaced daily with new ones. For each mosquito instar, four replicates were 
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conducted. Control was dechlorinated water plus AgNP, without copepods. All bea-
kers were checked after 1, 2, 3, 4, and 5 days and the number of prey consumed by 
copepods was recorded. Predatory effi ciency was calculated using the above- 
mentioned formula.  

9.2.10     Data Analysis 

 Ovicidal, larvicidal, pupicidal and adulticidal percentage data were transformed 
into arcsine √ proportion values and analyzed using ANOVA. Means were sepa-
rated using Tukey’s HSD (P < 0.05). The average mosquito mortality data were sub-
jected to probit analysis. In larvicidal, pupicidal and adulticidal experiments, LC 50  
and LC 90  were calculated using the method by Finney ( 1971 ). 

 Copepod predation data were analyzed by JMP 7 using a weighted generalized 
linear model with one fi xed factor: y = Xß + ε where y is the vector of the observa-
tions (i.e. the number of consumed preys), X is the incidence matrix, ß is the vector 
of fi xed effects (i.e. the targeted instar), and ε is the vector of the random residual 
effect. A probability level of P < 0.05 was used for the signifi cance of differences 
between values.   

9.3     Results and Discussion 

9.3.1     Characterization of Green-Synthesized Silver 
Nanoparticles 

 When the AgNO 3  aqueous solution was added to the  A. calamus  rhizome extract, 
the color changed from yellowish to brownish, indicating the reduction from Ag +  to 
Ag 0 , and the formation of AgNP (Fig.  9.1a, b ). After 240 min, a maximum absorp-
tion peak was observed at 430 nm (Fig.  9.1c ), which is characteristic of silver nano-
materials, and probably arises from the excitation of longitudinal plasmon vibrations 
of AgNP in the solution (Dhas et al.  2014 ). XRD patterns showed intense peaks 
corresponding to (111), (200) and (220) Bragg refl ection based on the face- centered 
cubic structure of AgNP. XRD highlighted that AgNP formed by the reduction of 
AgNO 3  with  A. calamus  rhizome extract were crystalline in nature (Fig.  9.2 ). SEM 
analysis (Fig.  9.3 ) highlighted that AgNP synthesized using the rhizome of  A. cala-
mus  were spherical in shape, with a mean size ranging from 30 to 80 nm. In addi-
tion, the SEM analysis predicted the distribution of size of AgNP from 50 to 80 nm, 
which is in good agreement with the absorbance observed in UV–vis spectropho-
tometer (Zahir and Rahuman  2012 ).
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  Fig. 9.1    Chromatic variations of the rhizome extract of  Acorus calamus  before ( a ) and after ( b ) 
the process of reduction of Ag +  to Ag nanoparticles. ( c ) UV-visualization of the absorption spec-
trum of silver nanoparticles synthesized using different dosages of  A. calamus  rhizome extract plus 
an aqueous solution AgNO 3  (1 mM) after 240 min       
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  Fig. 9.2    X-ray diffraction pattern of silver nanoparticles green-synthesized using the aqueous 
rhizome extract of  Acorus calamus        

  Fig. 9.3    Scanning electron micrograph of  Acorus calamus -synthesized silver nanoparticles       
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     The EDX spectrum recorded from  A. calamus -synthesized AgNP was reported 
in Fig.  9.4 . An absorption peak approximately at 3 KeV was detected, which is typi-
cally originated by surface plasmon resonance of silver nanocrystallites (Fayaz 
et al.  2010 ). FTIR spectroscopy analysis was carried out to identify the biomole-
cules capping the AgNP. FTIR spectrum showed main peaks at 666.36, 1217.11, 
1636.87, 2129.78 and 3329.97 cm −1  (Fig.  9.5 ). The absorption peak close to 
1640 cm −1  may be due to the amide bond from the carbonyl group of proteins 
(Macdonald and Smith  1996 ), while peak at 3359 cm −1  may be due to OH groups 
from alcohols and phenols (Theivasanthi and Alagar  2012 ). The band at 1053 cm −1  
corresponds to C–N stretching vibrations of aliphatic amines that are commonly 
found in proteins, indicating the presence of proteins as ligands for AgNP, which 
increase the stability of biosynthesized nanoparticles (Sanghi and Verma  2009 ).

9.3.2         Mosquitocidal Activity 

 Egg hatchability of  A. stephensi  was reduced by 100 % after treatment with 25 and 
30 ppm of AgNP; the  A. calamus  extract exerted 100 % mortality post-treatment 
with 500 ppm, while control eggs showed the 100 % hatchability (Table  9.1 ). To the 
best of our knowledge, no efforts have been carried out to shed light on ovicidal 
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  Fig. 9.4    Energy dispersive X-ray spectrum of  Acorus calamus -synthesized silver nanoparticles       
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properties of plant-synthesized AgNP, and limited information is available about the 
impact of nanoparticles on oviposition behavior of mosquito vectors. Only Barik 
et al. ( 2012 ) investigated oviposition behavior of three mosquito species in presence 
of different types of nanosilica. Complete ovideterrence activity of hydrophobic 
nanosilica was observed at 112.5 ppm in  A. aegypti ,  A. stephensi  and  C. quinquefas-
ciatus , while there was no effect of lipophilic nanosilica on oviposition behavior of 
the three vectors. The ovicidal effi ciency of the tested compounds seems to be 
linked to their ability to penetrate inside the eggshell, and this could be infl uenced 
by the exposure period (Grosscurt  1977 ).
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  Fig. 9.5    Fourier transform infrared spectrum of vacuum-dried powder of silver nanoparticles fab-
ricated using the rhizome extract of  Acorus calamus        

   Table 9.1    Ovicidal activity of  Acorus calamus  rhizome extract and green synthesized silver 
nanoparticles against the malaria vector  Anopheles stephensi    

 Treatment  Egg hatchability (%) 

  Acorus 
calamus  
extract 

 Control  100 ppm  200 ppm  300 ppm  400 ppm  500 ppm 
 84.6 ± 1.1 a   61.8 ± 1.3 b   57.2 ± 1.9 b   45.4 ± 0.89 c   32.4 ± 2.0 d   NH 

 Silver 
nanoparticles 

 Control  3 ppm  6 ppm  12 ppm  25 ppm  50 ppm 
 91.0 ± 2.1 a   56.4 ± 1.1 b   43.2 ± 2.3 b   20.0 ± 2.2 c   NH  NH 

  Values are means ± SE from fi ve replicates 
 Within each row, different letters indicate signifi cant differences (P < 0.05) 
  NH  no egg hatchability (100 % mortality)  
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   In larvicidal and pupicidal assays, the  A. calamus  rhyzome extract was toxic 
against all larval instars (I-IV) and pupae of  A. stephensi . LC 50  values were 
219.06 ppm (I instar), 246.01 ppm (II), 285.79 ppm (III), 345.19 ppm (IV) and 
470.93 ppm (pupa) (Table  9.2 ). Comparable mortality rates have been recently 
reported testing a wide array of botanical extracts and plant-borne compounds 
(Amer and Mehlhorn  2006a ,  b ; see Azizullah et al.  2014  and Benelli et al.  2015b  for 
recent reviews). The larvicidal and pupicidal effect is probably due to the impact of 
secondary metabolites present in  A. calamus , on membrane integrity, damage in the 
lipid components of the gill membrane (Nivsarkar et al.  2001 ).

    A. calamus -synthesized nanoparticles were highly effective against  A. stephensi  
larvae and pupae, with LC 50  values of 8.94 ppm (I), 11.64 ppm (II), 14.94 ppm (III), 
19.15 ppm (IV) and 28.66 ppm (pupa) (Table  9.3 ). In latest years, a growing number 
of green-synthesized AgNP showed comparable larvicidal and pupicidal toxicity 
against a number of mosquito vectors.  Aloe vera -synthesized AgNP were toxic 

   Table 9.2    Larvicidal and pupicidal toxicity of  Acorus calamus  rhizome extract against the malaria 
vector  Anopheles stephensi    

 Target  LC 50  (LC 90 ) 
 Regression 
equation 

 95 % Confi dence Limit 

  χ   2   
 ( d.f . =  4 ) 

 Lower 
 LC 50  (LC 90 ) 

 Upper 
 LC 50  (LC 90 ) 

 Larva I  219.06 
(463.23) 

  y  = 1.150+ 0.005 x   191.513 
(426.168) 

 243.099 
(513.724) 

 2.495  n.s . 

 Larva II  246.01 
(512.31) 

  y  = 1.184 + 0.005 x   218.234 
(469.106) 

 271.083 
(572.580) 

 1.616  n.s . 

 Larva 
III 

 285.79 
(590.52) 

  y  = 1.202 + 0.004 x   256.795 
(534.204) 

 313.838 
(672.919) 

 0.117  n.s . 

 Larva 
IV 

 345.19 
(714.60) 

  y  = 1.198 + 0.003 x   311.998 
(629.879) 

 383.007 
(850.038) 

 0.791  n.s . 

 Pupa  470.93 
(917.94) 

  y  = 1.350 + 0.003 x   420.190 
(775.479) 

 551.387 
(1178.556) 

 1.957  n.s . 

  No mortality was detected in the control 
  χ   2   chi-square,  d.f . degrees of freedom,  n.s . not signifi cant (α = 0.05)  

   Table 9.3    Larvicidal and pupicidal toxicity of  Acorus calamus -synthesized silver nanoparticles 
against the malaria vector  Anopheles stephensi    

 Target  LC 50  (LC 90 ) 
 Regression 
equation 

 95 % confi dence limit 

  χ   2   ( d.f . =  4 ) 
 Lower 
 LC 50  (LC 90 ) 

 Upper 
 LC 50  (LC 90 ) 

 Larva I  8.94 (30.11)   y  = 0.542 + 0.061 x   6.561 (26.26)  11.056 (35.885)  5.170  n.s . 
 Larva II  11.64 (39.47)   y  = 0.537 + 0.046  x   8.768 (14.29)  34.60 (46.49)  4.808  n.s . 
 Larva III  14.94 (46.84)   y  = 0.600 + 0.040  x   11.86 (17.92)  40.98 (55.37)  4.940  n.s . 
 Larva IV  19.15 (59.76)   y  = 0.605 + 0.032  x   15.44 (22.98)  51.29 (72.89)  5.182  n.s . 
 Pupa  28.66 (75.84)   y  = 0.779 + 0.027  x   18.37 (49.32)  53.13 (164.48)  6.611  n.s . 

  No mortality was detected in the control 
  χ   2   chi-square,  d.f . degrees of freedom,  n.s . not signifi cant (α   = 0.05)  
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against  A. stephensi , with LC 50  ranging from 3.825 ppm (larva I) to 6.113 ppm 
(pupae) (Dinesh et al.  2015 ). Low doses of AgNP synthesized using the  Euphorbia 
hirta  leaf extract have been reported as toxic to  A. stephensi , with LC 50  ranging from 
10.14 (I) to 34.52 ppm (pupae) (Priyadarshini et al.  2012 ). Suresh et al. ( 2015 ) high-
lighted that AgNP synthesized using the aqueous extract of  Phyllanthus niruri  
leaves were effective against larvae and pupae of  Aedes aegypti , with LC 50  ranging 
from 3.90 ppm (I) to 13.04 ppm (pupae). Low doses of  Caulerpa scalpelliformis -   
synthesized AgNP were toxic also to the fi lariasis vector  Culex quinquefasciatus , 
with LC 50  ranging from 3.08 ppm (I) to 7.33 ppm (pupae) (Murugan et al.  2015a ). 
We hypothesize that the toxicity of AgNP against dengue vectors may be enabled 
by the small size of nanoparticles, which allows passage through the insect cuticle 
and into individual cells where they interfere with molting and other physiological 
processes (Murugan et al.  2015b ).

   Lastly, in adulticidal experiments, the  A. calamus  rhizome extract and AgNP 
showed LC 50  of 251.71 ppm and 12.74 ppm, respectively (Table  9.4 ). In both cases, 
at the highest concentrations tested, the adults showed restless movements for 
some times with abnormal wagging, and then died. While AgNP have been exten-
sively studied as larvicides and pupicides, moderate efforts have been carried out 
to shed light on adulticidal properties. In laboratory conditions, AgNP synthesized 
using  Feronia elephantum  leaf extract were toxic against adults of  A. stephensi ,  A. 
aegypti , and  C. quinquefasciatus. A. stephensi  LD 50  and LD 90  were 18.041 and 
32.575 μg mL −1 .  A. aegypti  LD 50  and LD 90  were 20.399 and 37.534 μg mL −1 .  C. 
quinquefasciatus  LD 50  and LD 90  were 21.798 and 39.596 μg mL −1  (Veerakumar 
and Govindarajan  2014 ). The adulticidal activity of AgNP synthesized using 
 Heliotropium indicum  leaf extract has been evaluated against adults of  A. stephensi , 
 A. aegypti , and  C. quinquefasciatus ; the maximum effi cacy has been observed 
against the adults of  A. stephensi  (LD 50  = 26.712 μg/mL), followed by  A. aegypti  
(LD 50  = 29.626 μg/mL) and by  C. quinquefasciatus  (LD 50  = 32.077 μg/mL) 
(Veerakumar et al.  2014 ). AgNP prepared using the neem leaf extract were toxic 
for  C. quinquefasciatus  adults, with LC 50  of 0.53 ppm calculated after 4 h of expo-
sure (Soni and Prakash  2014 ).  Phyllanthus niruri -synthesized AgNP tested against 
 A. aegypti  adults achieved LC 50  and LC 90  values of 6.68 ppm and 23.58 ppm, 
respectively (Suresh et al.  2015 ).

   Table 9.4    Adulticidal toxicity of  Acorus calamus  rhizome extract and green synthesized silver 
nanoparticles against the malaria vector  Anopheles stephensi    

 Treatment 
 LC 50  
(LC 90 ) ppm 

 Regression 
equation 

 95 % confi dence limit 

  χ   2   
( d.f . =  4 ) 

 Lower 
 LC 50  (LC 90 ) 

 Upper 
 LC 50  (LC 90 ) 

  Acorus calamus  
extract 

 251.71 
(525.83) 

  y  = 1.177 + 0.005 x   223.51 
(277.30) 

 480.46 
(589.67) 

 0.091 
 n.s . 

 Silver nanoparticles  12.74 
(40.09) 

  y  = 0.597 + 0.047 x   9.998 
(15.344) 

 35.188 
(47.155) 

 2.263 
 n.s . 

   χ   2   chi-square,  d.f . degrees of freedom,  n.s . not signifi cant (P < 0.05)  
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9.3.3        Predation of  Mesocyclops edax  against  Anophels 
stephensi  Larvae before and After Treatment with Silver 
Nanoparticles 

 In our experiments,  M. edax  adults actively predate  A. stephensi  young larval instars. 
The predatory effi ciency per copepod per day was 7.1, 5.8, 2.4 and 1.2 larvae (I, II, 
III, and IV, respectively) (Table  9.5 ). Post-treatment with  A. calamus - synthesized  
AgNP, the predatory effi ciency of a single  M. edax  per day was 8.4, 6.9, 4.6, and 2.4 
larvae (I, II, III, and IV, respectively) (Table  9.5 ). In agreement with Murugan et al. 
( 2015a ), copepods were effective predators of fi rst and second instars of mosqui-
toes, while they are not active control agents against late larval instars. Our results 
highlighted that a combined approach using green synthesized AgNP and preda-
ceous aquatic organisms is effective against the malarial vector against  A. 
stephensi .

   Scarce information is available about how low dosages of green nanosynthesized 
mosquitocidals may impact behavioral traits of aquatic organisms sharing the same 
ecological niche of mosquitoes, such as their predators (Murugan et al.  2015a ,  b ,  c ). 
Notably, these investigations unveiled fascinating scenarios. For instance, Murugan 
et al. ( 2015b ) showed that very low doses (i.e. 1 ppm) of lemongrass-synthesized 
AuNP may help to control malaria and dengue vectors boosting early instar mos-
quito larvae predation by copepods ( Mesocyclops aspericornis ) in an aquatic envi-
ronment contaminated with ultra-low doses of plant-synthesized AuNP.   

9.4     Conclusions 

 Our research showed that the AgNP synthesized using the rhizome extract of  A. 
calamus  are highly effective as ovicides, larvicides, pupicides and adulticides 
against malaria mosquitoes. No detrimental effects were found on the predatory 
effi cacy of cyclopoid crustaceans predating  A. stephensi  larvae. Overall, the chance 
to use  A. calamus -synthesized AgNP for control of mosquito vectors seems promis-
ing, since they are effective at low doses, and may constitute an advantageous alter-
native to build newer and safer mosquito control tools.     
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  Informed Consent     Informed consent was obtained from all individual participants 
included in the study.   
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    Chapter 10   
 Nanoparticles Against Schistosomiasis                     

       Mohamed     A.     Dkhil     ,     Dina     A.     Nafady    ,     Marwa     S.  M.     Diab    ,     Amira     A.     Bauomy    , 
and     Saleh     Al-Quraishy   

10.1            Introduction 

 Schistosomiasis is a neglected parasitic disease and a major public health concern 
in developing countries (WHO  2015 , Fig.  10.1 ). Globally, 232 million people in 78 
countries require annual treatment for schistosomiasis (WHO  2015 ). The use of 
praziquantel (PZQ) is effective in clearing the infestation but, in large and wide-
spread population in endemic areas it has been proven to be insuffi cient to stop 
disease transmission, prevent reinfection, or reduce parasite-induced illness (King 
 2009 ; Matthews  2001 ). Thus, synergistic approach of using drug and vaccination 
can serve as an alternative to the current treatment (Fuaad et al.  2015 ). Akbarieh 
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et al. ( 1992 ) reported that, the failure of mass treatment to control schistosomiasis 
has been attributed to the fact that therapy is not suffi ciently long lasting. This effect 
can occur because of the low bioavailability of praziquantel due to its low hydro-
solubility (el-Arini et al.  1998 ).

   Recently, a powerful emerging technology based on the unique properties of 
nanoscale materials was introduced, which presents a great opportunity to develop 
fast, accurate, and cost-effective diagnostics and treatment for the detection of 
infectious agents (Jain  2005 ; Rosi and Mirkin  2005 ; Kaittanis et al.  2010 ). In this 
chapter we will concentrate on the neuroschistosomiasis induced by  Schistosoma 
mansoni  and the effect of gold nanoparticles on the brain.  

10.2     Nanotechnology and Nanomedicine Applications 
in Schistosomasis 

 Nanoparticles are a collective name for nanospheres and nanocapsules. Nanospheres 
have a matrix type structure, where active compounds can be adsorbed at their sur-
face, entrapped or dissolved in the matrix. Nanocapsules have a polymeric shell and 
an inner core. In this case, the active substances are usually dissolved in the core, 
but may also be adsorbed at their surface (Nishioka and Yoshino  2001 ; Soppimath 
et al.  2001 ; Panyam and Labhasetwar  2003 ). Nanoparticles or colloidal carriers 
have been extensively investigated in biomedical and biotechnological areas, espe-
cially in drug delivery systems for drug targeting because their particle size (ranging 
from 10 to 1000 nm) is acceptable for intravenous injection (Allemann et al.  1998 ; 
Jeon et al.  2000 ; Soppimath et al.  2001 ). 

 Depending on the desired administration way, the size of the carriers should be 
optimized. Thus, if the carrier size is under 1 μm, an intravenous injection (the 
diameter of the smallest blood capillaries is 4 μm) is enabled and this carrier size is 

  Fig. 10.1    Schistosomiasis, countries or areas at risk, 2014 (WHO  2015 )       
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also desirable for intramuscular and subcutaneous administration, minimizing any 
possible irritant reactions (Görner et al.  1999 ; Hans and Lowman  2002 ). 

10.2.1     Nanotechnology-Based Drug Delivery Systems 
in Schistosomasis Treatment 

 The studies concerning the production of new drugs that are more effective and that 
provoke fewer side effects are undoubtedly important and have been the focus of 
several researchers and industries. However, problems shown by the actual drugs, 
such as toxicity and poor solubility in water, may be overcome through their incor-
poration into drug delivery systems (DDS). The DDS should deliver a biologically 
active molecule at a desired rate for a desired duration and at a desired target, so as 
to maintain the drug level in the body at optimum therapeutic concentrations with 
minimum fl uctuation (Kumar et al.  2009 ; Lakshmi and Cato  2006 ). 

 There are several types of medicine applying the DSS technology, and some are 
already approved by the Food and Drug Administration (FDA). DDS applied for cancer 
treatment, for example, has been attracting much attention, but fewer studies are avail-
able on the literature relating to the incorporation of antiprotozoal drugs into DDS. These 
studies involve the use of DDS to treat Leishmaniasis, Malaria and trypanosomiasis 
diseases, but fewer efforts are made for schistosomiasis (Das et al.  2011 ; Nayaka et al. 
 2010 ; Romero and Morilla  2010 ). De Araújo et al. ( 2007 ) reported the  in vitro  schisto-
somicidal activity of the nanoemulsion containing 2-(butylamino)-1-phenyl-1-ethane-
thiosulfuric acid (BphEA) and compared its activity with that of free BphEA. 

 Luz et al. ( 2012 ) evaluated the in vitro schistosomicidal activity of curcumin 
incorporated into poly (lactic-co-glycolic) acid (PLGA) nanoparticles. The schisto-
somicidal activity of the curcumin-loaded PLGA nanoparticles was evaluated 
where; the curcumin-loaded PLGA nanoparticles caused the death of 100 % of 
parasites at 50 and 100 μM at 12 and 24 h. Besides the lethal effect, the curcumin- 
loaded PLGA nanoparticles caused a decrease of motor activity in the fi rst 24 h of 
incubation at 40 μM. This effect was also observed at 30 μM in 12 h of incubation. 
The worms in the negative control groups maintained normal movements with no 
evident alterations. In addition, the results showed that curcumin-loaded PLGA 
nanoparticles caused partial alterations in the tegument of the adult worms in con-
centrations higher than 40 μM, revealed by the presence of vesicles in its structure 
and this alteration was observed after 48 h of incubation (Luz et al.  2012 ).  

10.2.2     Nanoparticle Gene Delivery System 
against Schistosomiasis 

 Until now, there is still urgent need for a vaccine against schistosomiasis, espe-
cially in  Schistosoma japonicum  endemic areas where even a vaccine that will 
interrupt zoonotic transmission will be potentially effective as an intervention tool. 

10 Nanoparticles Against Schistosomiasis
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Thus, Mbanefo et al. ( 2015 ) developed a novel nanoparticle gene delivery system, 
which has proven effi cacious in gene transfection to target immune cells with com-
plementary adjuvant effect and high protective effi cacy in several diseases and had 
applied this nanoparticle system in combination with S. japonicum glutathione 
S-transferase (SjGST) DNA vaccine to show the immunogenicity and anti-fecun-
dity effect of the nanoparticle coated vaccine formulation against murine schisto-
somiasis. The nanoparticle-coated DNA vaccine formulation induced desired 
immune responses. In comparison with the nanoparticle coated empty vector, it 
produced signifi cantly increased antigen-specifi c humoral response, T-helper 1 
polarized cytokine environment, higher proportion of IFN-γ producing CD4+ 
T-cells and the concomitant decrease in IL-4 producing CD4+ T-cells. Although 
there was no effect on worm burden, a marked reduction in tissue egg burden has 
been recorded. There was up to 71.3 % decrease in tissue egg burden and 55 % 
reduction in the fecundity of female adult worms. Their data showed that SjGST 
DNA vaccine, delivered using the nanoparticle gene delivery system, produced 
anti-fecundity effect on female adult schistoomes as previously described by using 
conventional subunit vaccine with adjuvant, proving this DNA vaccine formulation 
as a promising candidate for anti- pathology and transmission blocking application 
(Mbanefo et al.  2015 ). 

 The combination of the nanoparticle gene delivery system and SjGST was very 
immunogenic, inducing higher levels of antibodies and a dominant Th1 type of 
immune response as compared to the nanoparticle coated blank vector. Several 
workers have identifi ed that the presence of polarizing cytokines environment at the 
time of initial CD4 T-cell activation is the determining factor infl uencing Th pheno-
type (Zhu and Paul  2008 ; Steinfelder et al.  2009 ). This vaccine formulation prefer-
entially induced Th1 type of immune response by inducing IL-12 and IFN-γ 
production. By a characteristic feedback mechanism, persistent exposure to the 
antigens by an effective gene delivery system activates macrophages by the classical 
activation pathway to produce more IL-12, which in turn further drives Th1 type of 
immune response (Mosser  2000 ; Watford  2003 ; Cardoso et al.  2008 ). Such domi-
nant Th1 type of immune response is arguably required for protective immunity 
against human schistosomiasis (Brito et al.  2000 ; Acosta et al.  2002 ); and suste-
nance of this Th1 skewed response till the onset of egg production when immune 
response in schistosomiasis becomes Th2 polarized is correlated with reduced liver 
egg burden (Zhang et al.  2001 ; Cardoso et al.  2008 ; Xu et al.  2009 ), and is thought 
to be a potential regulator of egg induced pathology (Sher et al.  1996 ). Indeed, pro-
tective immunity elicited by vaccination with radiation-attenuated cercariae and 
other promising vaccine candidates have consistently proved to be Th1 mediated 
(Anderson et al.  1998 ; Hewitson et al.  2005 ; Wang et al.  2008 ; Cardoso et al.  2008 ; 
He et al.  2010 ; Farias et al.  2010 ). 

 In 2012, researchers found a new strategy based on Smrho protein loaded chito-
san nanoparticles as a candidate oral vaccine against Schistosomiasis (Oliveira et al. 
 2012 ). Moreover, Luz et al. ( 2012 ) reported that curcumin-loaded poly(lacticco- 
glycolic)acid nanoparticles could decreased the motor activity and caused partial 
alterations in the tegument of Schistosoma.  

M.A. Dkhil et al.



195

10.2.3     Nanodiagnostic Assay for Shistosomasis 

 The diagnosis of schistosomiasis is traditionally achieved through the use of parasi-
tological methods (urine fi ltration for  S. haematobium  and Kato-Katz thick smears 
for  S. mansoni  and  S. japonicum  infections). Nevertheless, the parasitological meth-
ods of diagnosis have low sensitivity in patients with the acute phase of the illness 
or with low- intensity infection (Corachan  2002 ). In addition, day-to-day and circa-
dian variation in egg excretion may lead to incorrect estimates in prevalence and 
intensity of infection (Salah et al.  2006 ). To overcome this problem, several immu-
nological tests have been developed for diagnosis of schistosomiasis (Rabello et al. 
 2002 ). Moustafa et al. ( 1998 ) reported that antigen detection assays may facilitate 
earlier diagnosis than antibody tests, as production of detectable levels of specifi c 
immunoglobulin needs time. Also, Aly et al. ( 2013 ) had demonstrated that the use 
of nanotechnology can provide a novel diagnostic assay for Schistosomasis. By 
using the magnetic nanoparticles beads which can utilize larger surface area, a 
higher sensitivity can be achieved for detection of Schistosoma infections in serum 
samples as compared with Sandwich ELISA. The use of magnetic nanoparticles in 
immunoassay (nanomagnetic assay) combines the use of magnetic nanoparticles 
with a high binding capacity as a solid phase and the rapid reaction kinetics of solu-
tions with the simple separation of bound and unbound materials on the solid phase, 
which provides the chance of enhancing the sensitivity of  Schistosoma  antigen 
detection (Aly et al.  2013 ).   

10.3     Gold Nanoparticles against  S. mansoni -Induced 
Neuroschistosomiasis 

 Neuroschistosomiasis is the infection of the central nervous system by  Schistosoma 
spp . Both the brain and the spinal cord can be affected (Ferrari and Moreira  2011 ). 
There are substantial differences in the pathogenesis, clinical presentation, and out-
come of the neurological disorder, depending on the phase and clinical form of 
schistosomiasis in which it occurs (Ferrari and Moreira  2011 ). 

 Central nervous system involvement can occur during acute primary infections 
(Chitsulo et al.  2000 ; Amaral et al.  2006 ). Neurological complications generally 
occur during chronic hepatointestinal schistosomiasis (Lambertucci  2010 ). Most 
pathology in schistosome infected animals is attributed to the host’s reaction to the 
eggs which is maximal by the 8 th  week of infection. 

 Gold nanoparticles have received special attention because they have found poten-
tial application in many fi elds of chemistry, physics and biology because they possess 
an excellent biocompatibility and low toxicity and also because of their unique opti-
cal, electrical, and photothermal properties (Sadowski  2010 ; Isaac et al.  2013 ). 

 Recent interest in using gold nanoparticles (GNPs) in medicine has altered the 
methods of diagnosis and treatment (Chen et al.  2008 ; Peng et al.  2012 ). However, 
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gold has a long history of use in the western world as nervine; a substance that could 
revitalize people suffering from nervous conditions. In addition, in the sixteenth 
century it was recommended for the treatment of epilepsy (Richards et al.  2002 ). 

 GNPs have attracted great attention due to their unique electronic, optical, ther-
mal, chemical, biological properties and their potential catalytic applications in 
various fi elds such as biology, medicine, physics, chemistry, material science and 
other interdisciplinary fi elds (Panyala et al.  2009 ). Although physicochemical prop-
erties of nanoparticles are well studied, their biological properties largely remain 
unexplored (Saritha et al.  2014 ). 

 The properties of colloidal gold nanoparticles, and thus their applications, 
depend strongly upon their size and shape (Zeng et al.  2011 ). The size could be 
determined by transmission electron microscopy (Fig.  10.2 ).

10.3.1       Gold Nanoparticles Induced Changes in Brain 
Neurotransmitters Content 
during Neuroschistosomiasis 

 Dkhil et al. ( 2015 ) found a histopathological impairments, neuronal loss, vacuo-
lated cytoplasm, nuclear hyperchromasia, marked dilated congested blood capillar-
ies accompanied with vessel wall edema and presence of extravasated red blood 
cells in brain tissue of schistosome infected mice as compared to non-infected con-
trol group. On the other hand, the treatment of the schistosome infected mice with 
three different doses of gold nanoparticles recorded histological alleviations. 

 Also, schistosomiasis resulted in a signifi cant reduction in both brain norepi-
nephrine (NE) and dopamine (DA) contents were recorded in schistosome infected 
mice as compared to non-infected mice (Abdel Ghafar et al.  1996 ; Bauomy et al. 
 2014 ; Dkhil et al.  2015 ). The treatment of schistosome infected mice with different 
doses of gold nanoparticles (Table  10.1 ) caused a signifi cant alleviation in content 
of NE and DA (Dkhil et al.  2015 ). Ancient cultures in Egypt, India and China used 
gold to treat some diseases (Chen et al.  2008 ). Moreover, gold complexes with 
 different organic drugs have been tested as ligands against malaria, trypanosomia-
sis, and leishmaniasis (Navarro et al.  2007 ). It is worth mentioning that gold 
nanoparticles have also been used for the diagnosis of Alzheimer’s disease and acti-
vated microglia (Nunes et al .   2012 ).

10.3.2        Gold Nanoparticles and Oxidative Damage 
during Neuroschistosomiasis 

 The oxidative damage in stress could contribute to the degenerative diseases of 
aging, including brain dysfunction (Liu et al.  1996 ). The early-onset decline in 
learning and memory is associated with a very signifi cant increase in two 
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parameters of oxidative stress in the brain, levels of lipid peroxidation and of protein 
oxidation (Liu et al.  2003 ). However, shistosomiasis induced a reduction in brain 
glutathione (GSH) level and an elevation in both levels of nitric oxide (NO) and 
malondialdehyde (MDA) (de Oliveira et al.  2013 ; Diab et al.  2013 ; Bauomy  2014 ; 
Bauomy et al.  2014 ; Dkhil  2014 ). Also, de Oliveira et al. ( 2013 ) cleared that  S. 
mansoni  had altered non-enzymatic antioxidant status in brain. In addition, Bauomy 
( 2014 ) reported that schistosomiasis induced brain oxidative stress as evidenced by 
the decrease of GSH level, total antioxidant capacity and the activity of catalase 
signifi cantly, while a signifi cant elevation in the levels of NO and MDA. Furthermore, 
in different mice organs  S. mansoni  infection decreased GSH level, the activities of 

a

b

  Fig. 10.2    Typical TEM 
and their corresponding 
HR-TEM images of 
synthesized GNPs: ( a ) 
shows the low 
magnifi cation image of 
spherical GNPs (~15–
20 nm), whereas ( b ) 
presents the HR-TEM 
image of difference 
between two lattice 
fringes, which is 
~0.235 nm (Dkhil et al. 
 2015 )       
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catalase and superoxide dismutase signifi cantly, on contrary, increased NO and 
MDA levels signifi cantly (Diab et al.  2013 ; Bauomy et al.  2014 ; Dkhil  2014 ). 
Moreover, treatment with gold nanoparticles at different doses to schistosome 
infected mice resulted in a signifi cant increase in GSH level and a signifi cant 
decrease in NO and MDA levels as compared to schistosome infected mice 
(Fig.  10.3 ). The mechanisms of action of gold drugs are poorly understood (Best 
and Sadler  1996 ). Typically, after systemic administration, the nanoparticles are 
small enough to penetrate very small capillaries throughout the body, and therefore 
they could offer the most effective approach to target certain tissues (Braydich- 
Stolle et al.  2005 ); such as brain and can affect the physiology of any cell in an 
animal body (Brooking et al.  2001 ).

10.3.3        Gold Nanoparticles and Gene Expression 
during Neuroschistosomiasis 

 Comparing gene expression profi le of mice genes during schistosomiasis and after 
treatment with gold nanoparticles of infected mice will explain different molecular 
mechanisms of action and regulated genes by such nanoparticles during infection. 
Dkhil et al. ( 2015 ) studied the gene expression in the brain of mice infected with  S. 
mansoni  and after the treatment of mice with gold nanoparticles. They found that, 
schistosomiasis increased brain Adam23 (a disintegrin and metallopeptidase domain 
23) gene expression. Sagane et al. ( 1999 ) and Mitchell et al. ( 2001 ) reported that 
disruption of the mouse Adam23 induced neurological defects, ataxia and prema-
ture death indicating that this protein is important for normal brain development. On 
the other hand, injection of gold nanoparticles recorded a signifi cant down regula-
tion in brain Adam23 gene. 

 Glrb gene (glycine receptor, beta subunit) encodes the inhibitory human glycine 
receptor β subunit (Lee et al.  2013 ). Inhibitory glycinergic synapses are located pre-
dominantly in the spinal cord and brainstem (Chalphin and Saha  2010 ) and  disruptions 
to their function increase the general level of excitability of motor neurons, thus 

   Table 10.1    Effect of gold nanoparticles (GNPs) on brain neurotransmitters Norepinephrine (NE) 
and Dopamine (DA) on  S. mansoni  infected mice (Dkhil et al.  2015 )   

 Group  Norepinephrine (μg/g tissue)  Dopamine (μg/g tissue) 

 Non-infected  290.2 ± 2.93  877.8 ± 2.67 
 Infected (-GNP)  263.3 ± 2.80 a   778.6 ± 2.08 a  
 Infected (+0.25 mg/kg GNP)  339.0 ± 2.59 a,b   842.8 ± 2.85 a,b  
 Infected (+0.5 mg/kg GNP)  331.5 ± 2.62 a,b   838.1 ± 2.50 a,b  
 Infected (+ 1 mg/kg GNP)  324.0 ± 2.44 a,b   1011.2 ± 4.58 a,b  
 Infected (+ PZQ)  330.6 ± 2.08 a,b   798.4 ± 3.54 a,b  

  Values are means ± SEM 
  a Signifi cant against non-infected (-GNPs) group at P ≤ 0.05 
  b Signifi cant against infected (-GNPs) group at P ≤ 0.05  
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  Fig. 10.3    Changes in the 
level of reduced 
glutathione (GSH), nitric 
oxide and malondialdehyde 
in infected mice brain 
tissue with  S. mansoni  and 
treated with different doses 
of gold nanoparticles. 
Values are means ± SEM. 
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accounting for neonatal hypertonia. Glrb is one of the adult walking behaviors which 
recorded high expression in the malarial brain (Desruisseaux et al.  2010 ). These 
results are in agreement with our records which schistosomiaisis induced a signifi -
cant over expression in brain Glrb gene. On contrary, gene amelioration resulted in 
GNPs treatment. In the present result, Vdac3 gene (voltage-dependent anion channel 
3) recorded a signifi cant overexpression as a result of schistosomiasis. Cízková et al. 
( 2008 ) reported that Vdac3 is a mitochondrial gene is regulated in the malaria brain 
whose dysfunction is associated with neurological disorders. Our results, pointed 
that GNPs and PZQ treatment to schistosome infected mice induced downregulation 
in Vdac3 brain gene. 
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  Fig. 10.4    Gold nanoparticles induced changes in gene expression of mice brain infected with  S. 
mansoni . Expression of Adam23, Glrb, Vdac3, Cacnb4 and Cabp4 in brain tissues was analyzed 
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 Cacnb4 gene (calcium channel, voltage-dependent, beta 4 subunit) mutations 
encoding voltage-gated calcium channels (VGCCs) induce diverse neuronal pathol-
ogies, such as epilepsy, ataxia, autism and migraine (Bidaud et al.  2006 ). It is known 
neuroschistosomiasis induced ataxia, headache as common manifestations (Ferrari 
 2004 ). 

 In the present work, Cacnb4 gene recorded a signifi cant upregulation while, 
Cabp4 gene showed a signifi cant downregulation as a result of neuroschistosomia-
sis. It was reported that, calcium current through VGCCs controls gene expression 
(Tadmouri et al.  2012 ). Barnes and Kelly ( 2002 ) deduced that calcium infl ux through 
calcium channels triggers neurotransmitter release where increase the release of the 
neurotransmitters by exocytosis; and this may explain reduced contents of DA and 
NE in our investigations. VGCCs mediate the infl ux of calcium ions into the cell 
upon membrane polarization which control multiple neuronal functions including 
excitability, synaptic transmission and activity-dependent gene regulation (Catterall 
and Few  2008 ). Cabp4 (calcium binding protein 4) may be an important regulator 
of calcium infl ux and transmitter release in synaptic terminals (Haeseleer et al. 
 2004 ). Cabp4 interacts with calmodulin-binding sequences in VGCC which weakly 
inhibits calcium-dependent inactivation (Fig.  10.4 ).

   It can be concluded that the developed nanoparticles have great potential to over-
come the limitations associated with products currently available in the market for 
the treatment of schistosomiasis because of their ability to modulate drug release 
with the highest rate of absorption into the body and to mask the unpleasant taste of 
the drug, which are considered important steps for increasing the effi ciency of pedi-
atric treatments.      
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    Chapter 11   
 Nanoparticles Against Eimeriosis                     

       Mohamed     A.     Dkhil      and     Saleh     Al-Quraishy   

11.1             Introduction 

11.1.1     Problems of Eimeriosis 

 Eimeriosis is one of the factors that interfere the development of livestock including 
cattle, rabbits, sheep, goats, and, particularly, poultry (Dkhil  2013 ; Wunderlich et al. 
 2014 ). This disease is caused by protozoans of the coccidian genus Eimeria, striking 
the digestive tract of their hosts (Daugschies and Najdrowski  2005 ; Blake and 
Tomley  2014 ; Chapman  2014 ; Mehlhorn  2014 ). Eimeriosis is characterized by diar-
rhea, fl uid loss, dehydration, infl ammation, malabsorption of nutrients, as well as 
increased susceptibility to microbial pathogens (Dkhil et al.  2013 ; Alnassan et al. 
 2014 ). The mortality due to eimeriosis may reach up to 80 %, depending on the 
Eimeria species (Fossum et al.  2009 ). Reduced body weight gain and death of 
infected animals cause enormous economic losses. Worldwide, the costs for control 
measures of coccidiosis only in cattle and poultry are estimated to exceed about two 
billion dollars annually (Williams  1999 ; Shirley et al.  2005 ; Dalloul and Lillehoj 
 2006 ; Blake and Tomley  2014 ).  
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11.1.2     Anticoccidial Agents 

 Treatment of infected hosts with known anti-coccidial drugs causes several adverse 
side effects. There is a critical need for the development and evaluation of new 
drugs. Although a number of drugs are commercially available for the treatment of 
eimeriosis, their effi cacy is being increasingly impaired due to emerging parasite 
resistance and also these drugs causes several adverse side effects (Mehlhorn  2014 ). 
This led us to the search for novel anti-Eimeria agents with a focus on low-cost 
medications. During the last two decades, many attempts have been made to develop 
effective new compounds for treatment of eimeriosis that would be economically 
applicable and could avoid development of resistance.   

11.2     Trace Elements Nanoparticles 

 Trace elements such as selenium and zinc have been found to possess anti-Eimeria 
activity in various animal models (Wunderlich et al.  2014 ). These elements when 
used in nanosize, became more effective (Dkhil et al.  2015 ). For e example zinc 
oxide nanoparticles (ZNPs) are characterized by their high catalytic effi ciency and 
high adsorbing ability (Bouwmeester et al.  2009 ). Moreover, zinc is considered to 
be an essential trace element for various cellular activities (Wunderlich et al.  2014 ; 
Dkhil et al.  2015 ). Moreover, silver nanoparticles were used as additive in poultry 
feeds, but the price of silver nanoparticles could not compete with that of antibiotics 
this is because silver is considered to be a non-toxic, safe, inorganic antibacterial 
agent used for many years for its capability of killing about 650 types of pathogens 
(Jeong et al.  2005 ). Recently, it was reported that silvernanoparticles used in drink-
ing water could reduce the oocyst out put in chicken to about 50 % after 7 days 
postinfection with  E. tenella  (Chauke and Siebrits  2012 ). 

 Recently, Dkhil et al ( 2015 ) showed that, mice infected with  Eimeria papillata  
produced 29.7 × 10 3  ± 1,500 oocysts/g feces on day 5 postinfection. This output was 
signifi cantly decreased, to 12.5 × 10 3  ± 1,000 oocysts, in mice treated with ZNPs. In 
the same experiment the infection induced a moderate infl ammatory damage to the 
infected mice jejuna and ZNPs was able to improve the jejuna histopathology (Dkhil 
et al.  2015 ). The fact that ZNPs possess anticoccidial activity has not been reported 
before, but Bafundo et al. ( 1984 ) demonstrated clearly that zinc utilization is dimin-
ished by  Eimeria acervulina  infection. 

 It was reported that, ZNPs may be indicative of improved innate responses to  E. 
papillata  infection (Dkhil et al.  2015 ) where the number of goblet cells, the major 
intestinal immunocompetent cells secreting mucous, could be elevated after the 
treatment of the infected mice with ZNPs. At the same time ZNPs could protect 
from the eimeria induced intestinal oxidative damage (Dkhil et al.  2015 ). In 2009, 
Scrimgeour and Condlin ( 2009 ) reported that, zinc could be in the treatment of 
gastrointestinal infl ammatory disorders, and ZNPs are known to be able to prevent 
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the loss of GSH during oxidative damage induced by infection, as has been described 
by Dkhil et al. ( 2011 ). It is postulated that the active oxygen species generated by 
these metal oxide particles could be the main mechanism of their antibacterial activ-
ity (2014). 

 Generally, it is known that dietary trace elements/antioxidants can help maintain 
an appropriate antioxidant balance in the case of many infections (Evans and 
Halliwell  2001 ). Wunderlich et al. ( 2014 ) for example, reported that zinc is funda-
mentally important for a balanced redox state, for the immune system, as well as for 
growth and development.  

11.3     Nanoparticle Based Vaccine 

 Vaccination is considered to be an alternative way to control coccidiosis (Dalloul 
and Lillehoj  2006 ; Michels et al.  2011 ). Dalloul and Lillehoj ( 2006 ) reported that 
compared with virulent or attenuated live vaccine, recombinant protein vaccine can 
induce good antibody response and has more effi ciency to protect birds against 
challenge of Eimeria oocysts. In  2012 , Zahng et al. investigated the adjuvant effect 
of ginsenoside-based nanoparticles (ginsomes) on the immune responses induced 
by profi ling recombinant vaccine and subsequent protection against  E. tenella . The 
results of this study showed that vaccination with profi lin plus ginsomes induced an 
antigen-specifi c antibody response, induced changes in the local lymphocyte sub-
populations, and signifi cantly reduced the total oocysts production following chal-
lenge infection. Also, Jang et al. ( 2011 ) investigated protection against  Eimeria 
acervulina  following vaccination of chickens with an Eimeria recombinant profi lin 
in conjunction with nanoparticle adjuvants, or by changing the route of administra-
tion of the adjuvants. They indicated that experimental immunization of chickens 
with the recombinant profi lin subunit vaccine in conjunction with adjuvants 
increases protective mucosal immunity against  E. acervulina  infection.     
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