
Chapter 1
Classes of Modulars

1.1 Modulars Versus Metrics

In order to motivate the notion of modular on a set, we begin by recalling the notion
of metric. Let X be a nonempty set.

A function d W X � X ! R is said to be a metric on X if, for all elements
(conventionally called points) x; y; z 2 X, it satisfies the following three conditions
(axioms):

(d.1) x D y if and only if d.x; y/ D 0 (nondegeneracy);
(d.2) d.x; y/ D d.y; x/ (symmetry);
(d.3) d.x; y/ � d.x; z/ C d.z; y/ (triangle inequality).

The pair .X; d/ is called a metric space. (Actually, two axioms suffice to define
a metric, because conditions (d.1)–(d.3) are equivalent to (d.1), and (d.3) written
in the ‘strong’ form as d.x; y/ � d.x; z/ C d.y; z/: in fact, putting z D x and then
interchanging x and y, we obtain (d.2). Traditionally, the symmetry property of d is
introduced explicitly.)

Clearly, a metric d assumes nonnegative (and finite) values, and if X has at least
two elements (which is tacitly assumed throughout), then d 6� 0 on X � X. If the
value 1 is allowed for d satisfying (d.1)–(d.3), then d is called an extended metric
on X, and the pair .X; d/ is called an extended metric space.

If d W X � X ! Œ0; 1� satisfies (d.2), (d.3) and (only) a weaker condition

(d.10) d.x; x/ D 0 for all x 2 X,

then d is called a pseudometric on X, and it is called an extended pseudometric on X
if the value ‘infinity’ is allowed for d.
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2 1 Classes of Modulars

Fig. 1.1 Variants of metric
notions

(d.1),(d.2),(d.3)

metric −→
(d.1),(d.2),(d.3),(∞ allowed)

extended metric
⏐
�

⏐
�

(d.1′ ),(d.2),(d.3)
pseudometric −→

(d.1′ ),(d.2),(d.3),(∞ allowed)

extended pseudometric

The notion of metric reflects our geometric intuition of what a distance function
on a set should be: to any two points x; y 2 X, a number

0 � d.x; y/ < 1 (the distance between x and y)

is assigned, satisfying properties (d.1)–(d.3). The implications between the above
four metric notions are presented in Fig. 1.1.

The idea of modular w on X can be expressed in physical terms as follows: to any
parameter � > 0, interpreted as time, and any two points x; y 2 X, a quantity

0 � w�.x; y/ � 1 (the velocity between x and y in time �)

is assigned, satisfying three axioms to be discussed below, and the one-parameter
family w D fw� W � > 0g � fw�g�>0 of functions of the form w� W X � X ! Œ0; 1�

is a (generalized, nonlinear) velocity field on X.
Now we address the axioms of a modular. By a scaling of time � > 0 we mean

any value h.�/ > 0 such that the function � 7! �=h.�/ is nonincreasing in � (e.g.,
given p � 1, h.�/ D �p, or h.�/ D exp.�p/ � 1, or h.�/ D �e�, etc.). Let .X; d/ be
a metric space, and x; y 2 X. Consider the quantity

w�.x; y/ D d.x; y/

h.�/
D �

h.�/
� d.x; y/

�
; (1.1.1)

which is a scaled mean velocity between x and y in time �. For h.�/ D �, this is
the mean (or uniform) velocity, and so, in order to cover the distance d.x; y/, it takes
time � to move between x and y with velocity w�.x; y/ D d.x; y/=�.

The following natural-looking properties of quantity (1.1.1) hold.

(i) Two points x and y from X coincide (and d.x; y/ D 0) if and only if any time
� > 0 will do in order to move from x to y with velocity w�.x; y/ D 0 (that is, no
movement is needed at any time). Formally, given x; y 2 X, we have:

x D y if and only if w�.x; y/ D 0 for all � > 0 (nondegeneracy).

(ii) For any time � > 0, the mean velocity during the movement from point x to point
y is equal to the mean velocity in the opposite direction, i.e., given x; y 2 X,

w�.x; y/ D w�.y; x/ for all � > 0 (symmetry).
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(iii) The third property of quantity (1.1.1), which is, in a sense, a counterpart of the
triangle inequality (for velocities!), is new and the most important. Suppose that
movements from x to y happen to be made in two ways, but the duration of time
is the same in each of the cases: (a) passing through a third point z 2 X, or
(b) moving directly from x to y. If � is the time needed to move from x to z and �

is the time needed to move from z to y, then the corresponding mean velocities are
equal to w�.x; z/ and w�.z; y/. The total time spent during the movement in case
(a) is equal to �C�. It follows that the mean velocity in case (b) should be equal
to w�C�.x; y/. It may become clear from the physical intuition that the velocity
w�C�.x; y/ does not exceed at least one of the velocities w�.x; z/ or w�.z; y/. This
is expressed as

w�C�.x; y/ � maxfw�.x; z/; w�.z; y/g � w�.x; z/ C w�.z; y/ (1.1.2)

for all points x; y; z 2 X and times �; � > 0. These inequalities can be verified
rigorously: since .� C �/=h.� C �/ � �=h.�/, it follows from (1.1.1) and (d.3)
that

w�C�.x; y/ D d.x; y/

h.� C �/
�d.x; z/Cd.z; y/

h.�C�/
� �

�C�
� d.x; z/

h.�/
C �

�C�
� d.z; y/

h.�/

D �

�C�
w�.x; z/C �

�C�
w�.z; y/ � w�.x; z/Cw�.z; y/: (1.1.3)

By (in)equality (1.1.3), conditions w�.x; z/ < w�C�.x; y/ and w�.z; y/ <

w�C�.x; y/ cannot hold simultaneously, which proves the left-hand side inequal-
ity in (1.1.2).

A modular on a set X is any one-parameter family w D fw�g�>0 of functions w�

mapping X�X into Œ0; 1� and satisfying properties (i), (ii), and (iii) meaning (1.1.2).
(The interpretation of modular as a generalized nonlinear mean velocity field has
been chosen as the most intuitive and accessible; there are different interpretations
of modular such as a double joint generalized variation of two mappings x and y.)

Even on a metric space .X; d/, modulars may look unusual: given � > 0 and
x; y 2 X, set w�.x; y/ D 1 if � � d.x; y/, and w�.x; y/ D 0 if � > d.x; y/.

The difference between a metric (= distance function) and a modular (= velocity
field) on a set is now clearly seen: a modular depends on a positive parameter �

and may assume infinite values (to say nothing of the axioms). The equality
w�.x; y/ D 1 may be thought of as there is no possibility (or there is a prohibition)
to move from x to y in time �. For instance, the distance d.x; y/ D 10;000 km
between two cities x and y cannot be covered physically in � D 1; 2; : : : ; 100 s;
however, for times � large enough, a certain finite velocity will do.

The essential property of a modular w (e.g., (1.1.1)) is that the velocity w�.x; y/

is nonincreasing as a function of time � > 0.
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A modular w on X gives rise to a modular space around a (chosen) point
xı 2 X—this is the set

X�
w D fx 2 X W w�.x; xı/ is finite for some � D �.x/ > 0g

of those points x, which are reachable from xı with a finite velocity. The knowledge
of (mean) velocities w�.x; y/ for all � > 0 and x; y 2 X provides more information
than simply the knowledge of distances d.x; y/ between points x and y. In fact, if w
satisfies (i), (ii) and the left-hand side (in)equality in (1.1.3), then the modular space
X�

w is metrizable by the following (implicit, or limit case) metric:

d�
w.x; y/ D inff� > 0 W w�.x; y/ � 1g:

Naturally, the pair .X�
w; d�

w/ is called a metric modular space. For instance, the
original metric space .X; d/ is restored via the (mean velocity) modular (1.1.1) with
h.�/ D � as the ‘limit case’ in that X�

w D X and d�
w.x; y/ D d.x; y/ for all x; y 2 X.

This book is intended as the general study of modulars, modular spaces and
metric modular spaces generated by modulars. Since the metric space theory is a
well-established and rich theory, the main emphasis of this exposition is focused
(where it is possible) on non-metric features of modulars and modular spaces.

Essentially, modulars serve two important purposes:

– to define new metric spaces, such as .X�
w; d�

w/ and others, in a unified and general
manner, and

– to present a new type of convergence in the modular space X�
w, the so called

modular convergence, whose topology is weaker (coarser) than the d�
w-metric

topology and, in general, is non-metrizable.

1.2 The Classification of Modulars

In the sequel, we study functions w of the form w W .0; 1/ � X � X ! Œ0; 1�,
where X is a fixed nonempty set (with at least two elements). Due to the disparity
of the arguments, we may (and will) write w�.x; y/ D w.�; x; y/ for all � > 0

and x; y 2 X. In this way, w D fw�g�>0 is a one-parameter family of functions
w� W X � X ! Œ0; 1�. On the other hand, given x; y 2 X, we may set wx;y.�/ D
w.�; x; y/ for all � > 0, so that wx;y W .0; 1/ ! Œ0; 1�. In the latter case, the
usual terminology of Real Analysis can be applied to w D fwx;ygx;y2X . For instance,
the function w is called nonincreasing (right/left continuous, etc.) on .0; 1/ if the
function wx;y is such for all x; y 2 X.

Definition 1.2.1. A function w W .0; 1/ � X � X ! Œ0; 1� is said to be a metric
modular (or simply modular) on X if it satisfies the following three axioms:

(i) given x; y 2 X, x D y if and only if w�.x; y/ D 0 for all � > 0;
(ii) w�.x; y/ D w�.y; x/ for all � > 0 and x; y 2 X;

(iii) w�C�.x; y/ � w�.x; z/ C w�.z; y/ for all �; � > 0 and x; y; z 2 X.
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Weaker and stronger versions of conditions (i) and (iii) will be of importance. If,
instead of (i), the function w satisfies (only) a weaker condition

(i0) w�.x; x/ D 0 for all � > 0 and x 2 X,

then w is said to be a pseudomodular on X. Furthermore, if, instead of (i), the
function w satisfies (i0) and a stronger condition

(is) given x; y 2 X with x ¤ y, w�.x; y/ ¤ 0 for all � > 0,

then w is called a strict modular on X.
A modular (or pseudomodular, or strict modular) w on X is said to be convex if,

instead of (iii), it satisfied the (stronger) inequality (iv):

(iv) w�C�.x; y/ � �

� C �
w�.x; z/C �

� C �
w�.z; y/ for all �; � > 0 and x; y; z 2 X.

A few remarks concerning this definition are in order.

Remark 1.2.2. (a) The assumption w W .0; 1/�X�X ! .�1; 1� in the definition
of a pseudomodular does not lead to a greater generality: in fact, setting y D x
and � D � > 0 in (iii) and taking into account (i0) and (ii), we find

0 D w2�.x; x/ � w�.x; z/ C w�.z; x/ D 2w�.x; z/;

and so, w�.x; z/ � 0 or w�.x; z/ D 1 for all � > 0 and x; z 2 X.
(b) If w�.x; y/ D w� is independent of x; y 2 X, then, by (i0), w � 0. Note that

w � 0 is only a pseudomodular on X (by virtue of (i)).
If w�.x; y/ D w.x; y/ does not depend on � > 0, then axioms (i)–(iii) mean

that w is an extended metric (extended pseudometric if (i) is replaced by (i0)) on
X; w is a metric on X if, in addition, it assumes finite values.

(c) Axiom (i) can be written as .x D y/ , .wx;y � 0/, and part (i() in
it—as .x ¤ y/ ) .wx;y 6� 0/. Condition (is) says that .x ¤ y/ )
.wx;y.�/ ¤ 0 for all � > 0/, and so, it implies (i(). In other words, (is) means
that if w�.x; y/ D 0 for some � > 0 (and not necessarily for all � > 0 as in
(i()), then x D y. Thus, (i0) + (is) ) (i) ) (i0). Clearly, (iv) ) (iii). Thus, a
(convex) strict modular on X is a (convex) modular on X, and so, it is a (convex)
pseudomodular on X. These implications are shown in Fig. 1.2, and it will be
seen later that none of them can be reversed.

(i′),(is),(ii),(iv)
strict convex modular −→

(i),(ii),(iv)

convex modular −→
(i′),(ii),(iv)

convex pseudomodular
⏐
�

⏐
�

⏐
�

(i′),(is),(ii),(iii)
strict modular −→

(i),(ii),(iii)

modular −→
(i′),(ii),(iii)

pseudomodular

Fig. 1.2 Classification of modulars
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(d) Rewriting (iv) in the form .� C �/w�C�.x; y/ � �w�.x; z/ C �w�.z; y/, we see
that the function w is a convex (pseudo)modular on X if and only if the function
Ow�.x; y/ D �w�.x; y/ is simply a (pseudo)modular on X. This somewhat unusual
observation on the convexity of w will be justified later (see Sect. 1.3.3).

The essential property of a pseudomodular w on X is its monotonicity: given
x; y 2 X, the function wx;y W .0; 1/ ! Œ0; 1� is nonincreasing on .0; 1/. In fact, if
0 < � < �, then axioms (iii) (with z D x) and (i0) imply

w�.x; y/ D w.���/C�.x; y/ � w���.x; x/ C w�.x; y/ D w�.x; y/: (1.2.1)

As a consequence, given x; y 2 X, at each point � > 0 the limit from the right

.wC0/�.x; y/ � w�C0.x; y/ D lim
�!�C0

w�.x; y/ D supfw�.x; y/ W � > �g (1.2.2)

and the limit from the left

.w�0/�.x; y/ � w��0.x; y/ D lim
�!��0

w�.x; y/ D inffw�.x; y/ W 0 < � < �g
(1.2.3)

exist in Œ0; 1�, and the following inequalities hold, for all 0 < � < �:

w�C0.x; y/�w�.x; y/�w��0.x; y/�w�C0.x; y/�w�.x; y/�w��0.x; y/: (1.2.4)

To see this, by the monotonicity of w, for any 0 < � < �1 < �1 < �, we have:

w�.x; y/ � w�1.x; y/ � w�1.x; y/ � w�.x; y/;

and it remains to pass to the limits as �1 ! � � 0 and �1 ! � C 0.

Proposition 1.2.3. Let w be a convex pseudomodular on X, and x; y 2 X. We
have:

(a) functions � 7! w�.x; y/ and � 7! �w�.x; y/ are nonincreasing on .0; 1/, and

w�.x; y/ � .�=�/w�.x; y/ � w�.x; y/ for all 0 < � � �I (1.2.5)

(b) if wx;y 6� 0 (e.g., w is a convex modular and x ¤ y), then lim�!C0 w�.x; y/D1I
(c) if wx;y 6� 1, then lim�!1 w�.x; y/ D 0.

Proof. (a) is a consequence of (1.2.1) and Remark 1.2.2(d) concerning Ow.
(b) follows from the fact that w�.x; y/ D wx;y.�/ 2 .0; 1� for some � > 0

and the left-hand side inequality in (1.2.5): w�.x; y/ � .1=�/�w�.x; y/ for all
0 < � < �. In particular, by Remark 1.2.2(c), if w is a convex modular and
x ¤ y, then wx;y 6� 0.

(c) Since w�.x; y/ < 1 for some � > 0, the assertion is a consequence of the
left-hand side inequality in (1.2.5). ut
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Definition 1.2.4. Functions wC0; w�0 W .0; 1/�X �X ! Œ0; 1�, defined in (1.2.2)
and (1.2.3), are called the right and left regularizations of w, respectively.

Proposition 1.2.5. Let w be a pseudomodular on X, possibly having additional
properties shown in Fig. 1.2 on p. 5. Then wC0 and w�0 are also pseudomodulars
on X having the same additional properties as w. Moreover, wC0 is continuous from
the right and w�0 is continuous from the left on .0; 1/.

Proof. Since properties (i0), (ii), (iii), and (iv) are clear for wC0 and w�0, we verify
only (i(), the strictness, and one-sided continuities.

Suppose w is a modular. Let x; y 2 X, and .wC0/�.x; y/ D 0 for all � > 0.
Given � > 0, choose � such that 0 < � < �. Then (1.2.4) and (1.2.2) yield
0 � w�.x; y/ � w�C0.x; y/ D 0, and so, by axiom (i), x D y. Now, assume that
.w�0/�.x; y/ D 0 for all � > 0. Since w�.x; y/ � w��0.x; y/ D 0, axiom (i) implies
x D y.

Let w be strict, and x; y 2 X, x ¤ y. By condition (is) and (1.2.4),

0 ¤ w�.x; y/ � w��0.x; y/ � w�C0.x; y/; 0 < � < �;

and so, .w�0/�.x; y/ ¤ 0 for all � > 0 and .wC0/�.x; y/ ¤ 0 for all � > 0.
Let us show that wC0 is continuous from the right on .0; 1/ (the left continuity

of w�0 is treated similarly). Since wC0 is a pseudomodular on X, it is nonincreasing
on .0; 1/, and so, if � > 0, x; y 2 X, and � D .wC0/�C0.x; y/, we have, by (1.2.4),
� � .wC0/�.x; y/. In order to obtain the reverse inequality, we may assume that �

is finite. For any " > 0 there exists �0 D �0."/ > � such that, if � < �0 � �0,
we have .wC0/�0.x; y/ < � C ". Given � with � < � � �0, choosing �0 such that
� < �0 < �, we find, by virtue of (1.2.4), that w�.x; y/ � w�0C0.x; y/ < � C ".
Passing to the limit as � ! � C 0, we get the inequality .wC0/�.x; y/ � � C " for
all " > 0. ut
Remark 1.2.6. In the above proof, we have shown that .wC0/C0 D wC0 (as well as
.w�0/�0 D w�0), and one can show that .w�0/C0 D wC0 and .wC0/�0 D w�0.

1.3 Examples of Modulars

In order to get a better feeling of the notion of modular, we ought to have a
sufficiently large reservoir of them. This section serves this purpose (to begin with).
Where a metric notion is needed, we prefer a metric space context; generalizations
to extended metrics and pseudometrics can then be readily obtained in a parallel
manner. Instead of referring to the family w D fw�g�>0, it is often convenient and
nonambiguous to term a (pseudo)modular the value w�.x; y/.
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1.3.1 Separated Variables

Let .X; d/ be a metric space, and g W .0; 1/ ! Œ0; 1� be an extended (nonnegative)
valued function. We set

w�.x; y/ D g.�/ � d.x; y/; � > 0; x; y 2 X; (1.3.1)

with the convention that 1 � 0 D 0, and 1 � a D 1 for all a > 0.
By (d.1) and (d.2), the family w D fw�g�>0 satisfies axioms (i0) and (ii). It follows

that the modular classes of w on X (cf. Fig. 1.2) are characterized as follows:

(A) w is a pseudomodular on X iff axiom (iii) is satisfied;
(B) w is a modular on X iff conditions (i() and (iii) are satisfied;
(C) w is a strict modular on X iff (is) and (iii) are satisfied.

Replacing (iii) by (iv) in the right-hand sides of (A)–(C), we get the characterization
of w to be a convex pseudomodular / modular / strict modular.

Properties (i(), (is), (iii), and (iv) of w from (1.3.1) are expressed as follows.

Proposition 1.3.1. (a) (i() is equivalent to g 6� 0I
(b) (is) if and only if g.�/ ¤ 0 for all � > 0I
(c) (iii) if and only if g is nonincreasing on .0; 1/I
(d) (iv) if and only if � 7! �g.�/ is nonincreasing on .0; 1/.

Proof. Let �; � > 0 and x; y; z 2 X.

(a) ()) To show that g 6� 0, choose x ¤ y, so that d.x; y/ ¤ 0. If g � 0,
then w�.x; y/ D 0 for all � > 0, and, by virtue of (i(), x D y, which is a
contradiction.

(() Let w�.x; y/ D 0 for all � > 0. Since g 6� 0, there exists �0 > 0 such
that g.�0/ ¤ 0, and since g.�0/d.x; y/ D 0, we have d.x; y/ D 0, and so, x D y.

(b) If x ¤ y, then d.x; y/ ¤ 0, and so, w�.x; y/ D g.�/d.x; y/ ¤ 0 for all � > 0 if
and only if g.�/ ¤ 0 for all � > 0.

(c) ()) By (iii) for w as above, g.� C �/d.x; y/ � g.�/d.x; z/ C g.�/d.z; y/.
Choosing x ¤ y D z, we find g.� C �/d.x; y/ � g.�/d.x; y/, i.e.,
g.� C �/ � g.�/.

(() The triangle inequality (d.3) and inequality g.� C �/ � g.�/ imply

w�C�.x; y/ D g.�C�/d.x; y/ � g.�/d.x; z/Cg.�/d.z; y/ D w�.x; z/Cw�.z; y/:

(d) Apply (c) to the function Ow�.x; y/ D �w�.x; y/ (see Remark 1.2.2(d)). ut
Let us consider some particular cases of modulars (1.3.1). Note that w � 0 is the

only pseudomodular on X (corresponding to g � 0), which is not a modular on X.

Example 1.3.2. (1) Setting g.�/ D 1=� in (1.3.1), we get the convex strict modular
w�.x; y/ D d.x; y/=� (the mean velocity between x and y in time � from
Sect. 1.1), called the canonical modular on the metric space .X; d/. Another
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natural strict modular w�.x; y/ D d.x; y/ on X, corresponding to g � 1, is
nonconvex. Due to this, the canonical modular admits more adequate properties
in order to ‘embed’ the metric space theory into the modular space theory.

More generally, w�.x; y/ D d.x; y/=�p (p � 0) is a strict modular on X,
which is convex if and only if p � 1 (here �p may be replaced by exp.�p/ � 1,
or �e�, etc.).

(2) The modular w given by w�.x; y/ D d.x; y/=� if 0 < � < 1, and w�.x; y/ D 0

if � � 1, is convex and nonstrict. If we replace the first equality by w�.x; y/ D
d.x; y/ if 0 < � < 1, then the resulting modular w on X is nonconvex and
nonstrict.

(3) Given a set X, denote by • the discrete metric on X (i.e., •.x; y/ D 0 if x D y,
and •.x; y/ D 1 if x ¤ y), and let d D • in (1.3.1).

If g � 1, we get the infinite modular on X, which is strict and convex:

w�.x; y/ D 1 � •.x; y/ D
�

0 if x D y;

1 if x ¤ y;
for all � > 0:

Let �0 > 0, and a > 0 or a D 1. Define g.�/ by: g.�/ D a if 0 < � < �0,
and g.�/ D 0 if � � �0. The step-like modular w on X is of the form:

w�.x; y/ D g.�/ � •.x; y/ D
8<
:

0 if x D y and � > 0,
a if x ¤ y and 0 < � < �0,
0 if x ¤ y and � � �0.

It is nonstrict, convex if a D 1, and nonconvex if a > 0 (is finite).

1.3.2 Families of Extended (Pseudo)metrics

A generalization of previous considerations in Sect. 1.3.1 is as follows.
Given � > 0, let d� W X � X ! Œ0; 1� be an extended pseudometric on X.

Setting w D fw�g�>0 with w�.x; y/ D d�.x; y/, x; y 2 X, we find that w satisfies (i0)
and (ii). So, modular classes of w on X (including convex w) are characterized as in
assertions (A)–(C) of Sect. 1.3.1, where properties (i(), (is), (iii), and (iv) are given
in terms of functions wx;y (in place of the function g in Proposition 1.3.1):

(a) (i() ” wx;y 6� 0 for all x; y 2 X with x ¤ y

” condition ‘d�.x; y/ D 0 for all � > 0’ implies x D yI
(b) (is) ” wx;y.�/ ¤ 0 for all � > 0 and x; y 2 X with x ¤ y

” d� is an extended metric on X for all � > 0I
(c) (iii) ” � 7! d�.x; y/ is nonincreasing on .0; 1/ for all x; y 2 XI
(d) (iv) ” � 7! �d�.x; y/ is nonincreasing on .0; 1/ for all x; y 2 X:
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Note only that in establishing assertion (c)(() we have: since � 7! d�.x; y/ is
nonincreasing, the triangle inequality for w�C� D d�C� implies

w�C�.x; y/ � d�C�.x; z/ C d�C�.z; y/ � d�.x; z/ C d�.z; y/ D w�.x; z/ C w�.z; y/;

which proves the inequality in axiom (iii).
Now, we expose two particular cases of families of (extended) metrics.

Example 1.3.3. (1) Let .X; d/ be a metric space, and h W .0; 1/ ! .0; 1/ be a
nondecreasing function. Setting

w�.x; y/ D d.x; y/

h.�/ C d.x; y/
; � > 0; x; y 2 X; (1.3.2)

we find that w D fw�g�>0 is a family of metrics on X such that the function
� 7! w�.x; y/ is nonincreasing on .0; 1/, and so, by (b) and (c) above, w is a
strict modular on X. For instance, the triangle inequality for w� is obtained as
follows: the function

f .t/ D t

h.�/ C t
D 1 � h.�/

h.�/ C t
; t > �h.�/;

is increasing in t � 0, which together with the triangle inequality for d gives

w�.x; y/ D f .d.x; y// � f
�
d.x; z/ C d.z; y/

� D d.x; z/ C d.z; y/

h.�/ C d.x; z/ C d.z; y/

� d.x; z/

h.�/ C d.x; z/
C d.z; y/

h.�/ C d.z; y/
D w�.x; z/ C w�.z; y/:

The modular w is nonconvex: this is a consequence of Proposition 1.2.3(b) and
the fact that w�.x; y/ tends to d.x; y/=.h.C0/ C d.x; y// � 1 as � ! C0 for all
x; y 2 X.

(2) Let T � Œ0; 1/, .M; d/ be a metric space, and X D MT be the set of all
mappings x W T ! M from T into M. If w is defined by

w�.x; y/ D sup
t2T

e��td.x.t/; y.t//; � > 0; x; y 2 X;

then w� is an extended metric on X, for which the function � 7! w�.x; y/ is
nonincreasing on .0; 1/. Hence, w D fw�g�>0 is a strict modular on X. Let us
show that w is nonconvex. Choose x0; y0 2 M, x0 ¤ y0, and set x.t/ D x0 and
y.t/ D y0 for all t 2 T . Then x ¤ y, and w�.x; y/ D exp.�� inf T/d.x0; y0/.
It follows that, as � ! C0, we have w�.x; y/ ! d.x0; y0/ < 1. It remains to
refer to Proposition 1.2.3(b).



1.3 Examples of Modulars 11

1.3.3 Classical Modulars on Real Linear Spaces

Let X be a real linear space. A functional � W X ! Œ0; 1� is said to be a classical
modular on X in the sense of H. Nakano, J. Musielak and W. Orlicz if it satisfies the
following four conditions:

(�.1) �.0/ D 0;
(�.2) if x 2 X, and �.˛x/ D 0 for all ˛ > 0, then x D 0;
(�.3) �.�x/ D �.x/ for all x 2 X;
(�.4) �.˛x C ˇy/ � �.x/ C �.y/ for all ˛; ˇ � 0 with ˛ C ˇ D 1, and x; y 2 X.

If, instead of the inequality in (�.4), � satisfies

(�.5) �.˛x C ˇy/ � ˛�.x/ C ˇ�.y/,

then it is said to be a classical convex modular on X.
An example of a classical convex modular on X is the usual norm (i.e., a

functional k � k W X ! Œ0; 1/ with properties: kxk D 0 , x D 0, k˛xk D j˛j � kxk,
and kx C yk � kxk C kyk for all x; y 2 X and ˛ 2 R/.

In the next two Propositions, we show that modulars in the sense of Defini-
tion 1.2.1 are extensions of classical modulars on linear spaces.

Proposition 1.3.4. Given a functional � W X ! Œ0; 1�, we set

w�.x; y/ D �
�x � y

�

�
; � > 0; x; y 2 X: (1.3.3)

Then, we have: � is a classical (convex) modular on the linear space X if and only
if w is a (convex) modular on the set X.

Proof. Since the assertions (�.1) , (i0), (�.2) , (i(), and (�.3) , (ii) are clear, we
show only that (�.5) , (iv) (the equivalence (�.4) , (iii) is established similarly).

(�.5) ) (iv). Given �; � > 0 and x; y; z 2 X, we have

x � y

� C �
D �

� C �
� x � z

�
C �

� C �
� z � y

�
D ˛x0 C ˇy0; (1.3.4)

where

˛ D �

� C �
> 0; ˇ D �

� C �
> 0; ˛Cˇ D 1; x0 D x � z

�
and y0 D z � y

�
:

By virtue of (1.3.3) and (�.5), we obtain the inequality in axiom (iv) as follows:

w�C�.x; y/ D �
� x � y

� C �

�
D �.˛x0 C ˇy0/ � ˛�.x0/ C ˇ�.y0/

D �

� C �
w�.x; z/ C �

� C �
w�.z; y/:
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(iv) ) (�.5). Assume that ˛ > 0, ˇ > 0, and ˛ C ˇ D 1 (otherwise, (�.5) is
obvious). Taking into account (1.3.3) and (iv), for x; y 2 X, we get

�.˛x C ˇy/ D �
�˛x � .�ˇy/

˛ C ˇ

�
D w˛Cˇ.˛x; �ˇy/

� ˛

˛ C ˇ
w˛.˛x; 0/ C ˇ

˛ C ˇ
wˇ.0; �ˇy/

D ˛�
�˛x

˛

�
C ˇ�

�ˇy

ˇ

�
D ˛�.x/ C ˇ�.y/: ut

Proposition 1.3.5. Suppose the function w W .0; 1/ � X � X ! Œ0; 1� satisfies the
following two conditions:

(I) w�.x C z; y C z/ D w�.x; y/ for all � > 0 and x; y; z 2 XI
(II) w�.�x; 0/ D w�=�.x; 0/ for all �; � > 0 and x 2 X.

Given x 2 X, we set �.x/ D w1.x; 0/. Then, we have:

(a) equality (1.3.3) holds;
(b) w is a .convex/ modular on the set X if and only if � is a classical .convex/

modular on the real linear space X.

Proof. (a) By virtue of assumptions (I) and (II), we find

w�.x; y/ D w�.x � y; y � y/ D w1

�x � y

�
; 0

�
D �

�x � y

�

�
:

(b) As in the proof of Proposition 1.3.4, we verify only that (iv) , (�.5).

(iv) ) (�.5). Given ˛; ˇ > 0 with ˛ Cˇ D 1, and x; y 2 X, equalities (1.3.3),
(I), and (II), and condition (iv) imply

�.˛x C ˇy/ D w1.˛x; �ˇy/ � ˛

˛ C ˇ
w˛.˛x; 0/ C ˇ

˛ C ˇ
wˇ.0; �ˇy/

D ˛w˛=˛.x; 0/ C ˇwˇ=ˇ.y; 0/ D ˛�.x/ C ˇ�.y/:

(�.5) ) (iv). Taking into account equality (1.3.3), this is established as the
corresponding implication in the proof of Proposition 1.3.4. ut

Remark 1.3.6. Proposition 1.3.4 provides tools for further examples of metric
modulars w, generating them from classical modulars by means of formula (1.3.3).
In view of Proposition 1.3.5, modulars w on a real linear space X, not satisfying
conditions (I) or (II), may be nonclassical (e.g., modulars (1.3.1) and (1.3.2)).

Example 1.3.7 (the generalized Orlicz modular). Suppose .˝; ˙; �/ is a measure
space with measure � and ' W ˝ � Œ0; 1/ ! Œ0; 1/ is a function satisfying the
following two conditions: (a) for every t 2 ˝, the function '.t; �/ D Œu 7! '.t; u/�
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is nondecreasing and continuous on Œ0; 1/, '.t; u/ D 0 iff u D 0, and
limu!1 '.t; u/ D 1; (b) for all u � 0, the function '.�; u/ D Œt 7! '.t; u/� is
˙ -measurable. Let X be the set of all real- (or complex-)valued functions on ˝,
which are ˙ -measurable and finite �-almost everywhere (with equality �-almost
everywhere). Then, for every x 2 X, the function t 7! '.t; jx.t/j/ is ˙ -measurable
on ˝, and

�.x/ D
Z

˝

'.t; jx.t/j/ d� is a classical modular on X,

known as the generalized Orlicz modular (note that �.x/ D 0 iff x D 0).

1.3.4 '-Generated Modulars

Let ' W Œ0; 1/ ! Œ0; 1� be a nondecreasing function such that '.0/ D 0 and
' 6� 0.

Given a normed space .X; k � k/ (i.e., X is a linear space and k � k is a norm on it),
the functional �.x/ D '.kxk/, x 2 X, is a classical modular on X; in addition, � is a
convex modular on X if and only if ' is convex on Œ0; 1/. Since d.x; y/ D kx � yk
is a metric on X, taking into account equality (1.3.3), we proceed as follows.

Proposition 1.3.8. Let .X; d/ be a metric space. Set

w�.x; y/ D '
�d.x; y/

�

�
; � > 0; x; y 2 X: (1.3.5)

Then w is a modular on X. Moreover, if ' is convex, then w is a convex modular, and
if '.u/ ¤ 0 for all u > 0, then w is strict.

Proof. We shall verify some of the properties of w directly (with no reference to �).
To see that (i() holds, suppose x; y 2 X, and w�.x; y/ D 0 for all � > 0. If

x ¤ y, then d.x; y/ > 0, and so, given u > 0, setting �u D d.x; y/=u, we find that
'.u/ D '.d.x; y/=�u/ D w�u.x; y/ D 0. Since '.0/ D 0, we have ' � 0 on Œ0; 1/,
which is in contradiction with the assumption on '. Thus, x D y.

In checking axiom (iii) for w, the following observation plays a key role. Given
˛; ˇ � 0, ˛ C ˇ � 1, and u1; u2 � 0, we have

.˛ C ˇ/ minfu1; u2g � ˛u1 C ˇu2 � maxfu1; u2g;

and so, since ' is nondecreasing on Œ0; 1/,

'.˛u1 C ˇu2/ � maxf'.u1/; '.u2/g � '.u1/ C '.u2/: (1.3.6)
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Now, if �; � > 0 and x; y; z 2 X, the triangle inequality for d implies

w�C�.x; y/ D '
�d.x; y/

� C �

�
� '

� �

� C �
� d.x; z/

�
C �

� C �
� d.z; y/

�

�
(1.3.7)

� '
�d.x; z/

�

�
C '

�d.z; y/

�

�
D w�.x; z/ C w�.z; y/:

If, in addition, ' is convex, then we proceed from (1.3.7) as follows:

w�C�.x; y/ � �

� C �
'

�d.x; z/

�

�
C �

� C �
'

�d.z; y/

�

�

D �

� C �
w�.x; z/ C �

� C �
w�.z; y/: ut (1.3.8)

Example 1.3.9. Let '.u/ D 0 if 0 � u � 1, and '.u/ D a if u > 1, where a > 0 or
a D 1. Then modular (1.3.5), called the .a; 0/-modular, is of the form:

w�.x; y/ D
�

a if 0 < � < d.x; y/;

0 if � � d.x; y/:
(1.3.9)

It is nonstrict, convex if a D 1, and nonconvex if a > 0.
If '.u/ D 1 for all u > 0, we get the infinite modular from Example 1.3.2(3).

Let .M; k � k/ be a normed space and X D MN the set of all sequences x W N ! M
equipped with the componentwise operations of addition and multiplication by
scalars. As usual, given x 2 X, we set xn D x.n/ for n 2 N, and so, x is also denoted
by fxng1

nD1 � fxng. The functional �.x/ D P1
nD1 kxnkp (p � 1) is a classical convex

modular on the linear space X.
This gives an idea to replace the function u 7! up, defining �, by the function '

as above and consider the following more general construction.

Example 1.3.10. Let .M; d/ be a metric space, X D MN, and h W Œ0; 1/ ! Œ0; 1/

be a superadditive function (see Appendix A.1). Define w W .0; 1/ � X � X !
Œ0; 1� by

w�.x; y/ D
1X

nD1

'
�d.xn; yn/

h.�/

�
; � > 0; x; y 2 X: (1.3.10)

Then w is a modular on X. For axioms (iii) and (iv), it is to be noted only that, by
virtue of (1.3.6), we have (instead of (1.3.7))

'
� d.xn; yn/

h.� C �/

�
� '

� h.�/

h.� C �/
� d.xn; zn/

h.�/
C h.�/

h.� C �/
� d.zn; yn/

h.�/

�

� '
�d.xn; zn/

h.�/

�
C '

�d.zn; yn/

h.�/

�
: (1.3.11)
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This example can be further generalized if we allow d, ' and h to depend on n,
i.e., d.x; y/ D dn.x; y/, '.u/ D 'n.u/, and h.�/ D hn.�/.

1.3.5 Pseudomodulars on the Power Set

Given a set X, we denote by P.X/ � 2X the family of all subsets of X, also called
the power set of X. We employ the convention that sup¿ D 0 and inf¿ D 1.

Let w be a (pseudo)modular on a set X (in the sense of (i0), (i)–(iii)). Following
the idea of construction of the Hausdorff distance (see Appendix A.2), we are going
to introduce a pseudomodular W on the power set P.X/, induced by w.

Given � > 0 and nonempty sets A; B 2 P.X/, we put

E�.A; B/ D sup
x2A

inf
y2B

w�.x; y/ 2 Œ0; 1�: (1.3.12)

Furthermore, we set

E�.¿; B/ D 0 for all � > 0 and B 2 P.X/, (1.3.13)

and

E�.A;¿/ D 1 for all � > 0 and A 2 P.X/, A ¤ ¿. (1.3.14)

Proposition 1.3.11. The function E W .0; 1/ � P.X/ � P.X/ ! Œ0; 1� is well-
defined and has the following two properties:

(a) E�.A; B/ D 0 for all � > 0 and A � B � XI
(b) E�C�.A; C/ � E�.A; B/ C E�.B; C/ for all �; � > 0 and A; B; C 2 P.X/.

Proof. (a) If A D ¿, then the assertion follows from (1.3.13), and if A ¤ ¿,
then, given x 2 A (so that x 2 B), we have, by (i0), 0 � infy2B w�.x; y/ �
w�.x; x/ D 0. Since x 2 A is arbitrary, (1.3.12) implies E�.A; B/ D 0.

(b) If at least one of the sets A, B, or C is empty, then we have the possibilities
shown in Table 1.1.

Now, assume that A, B and C are nonempty and apply (1.3.12). Given x 2 A,
y 2 B, and �; � > 0, by virtue of (iii) for w, we have

inf
z2C

w�C�.x; z/ � w�C�.x; z1/ � w�.x; y/ C w�.y; z1/ for all z1 2 C.

(1.3.15)

Taking the infimum over all z1 2 C, we get, for all y 2 B,

inf
z2C

w�C�.x; z/ � w�.x; y/ C inf
z12C

w�.y; z1/ � w�.x; y/ C E�.B; C/:
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Table 1.1 Inequality (b) when at least one of the sets A, B, or C is empty

Sets A, B, C E�C�.A; C/ E�.A; B/ E�.B; C/ Apply

A D ¿; B D ¿; C D ¿ 0 0 0 (1.3.13)

A ¤ ¿; B D ¿; C D ¿ 1 1 0 (1.3.14), (1.3.13)

A D ¿; B ¤ ¿; C D ¿ 0 0 1 (1.3.13), (1.3.14)

A D ¿; B D ¿; C ¤ ¿ 0 0 0 (1.3.13)

A ¤ ¿; B ¤ ¿; C D ¿ 1 � � � 1 (1.3.14), (1.3.12)

A ¤ ¿; B D ¿; C ¤ ¿ � � � 1 0 (1.3.12), (1.3.14), (1.3.13)

A D ¿; B ¤ ¿; C ¤ ¿ 0 0 � � � (1.3.13), (1.3.12)

Now, taking the infimum over all y 2 B, we find, for all x 2 A,

inf
z2C

w�C�.x; z/ � inf
y2B

w�.x; y/ C E�.B; C/ � E�.A; B/ C E�.B; C/;

and it remains to take the supremum over all x 2 A. ut
Definition 1.3.12. The function W W .0; 1/�P.X/�P.X/ ! Œ0; 1�, defined by

W�.A; B/ D maxfE�.A; B/; E�.B; A/g; � > 0; A; B 2 P.X/;

has the following properties, for all �; � > 0 and A; B; C 2 P.X/:

(A) W�.A; A/ D 0;
(B) W�.A; B/ D W�.B; A/;
(C) W�C�.A; C/ � W�.A; B/ C W�.B; C/.

Thus, W is (only) a pseudomodular on the power set P.X/, called the Hausdorff
pseudomodular, induced by w.

Note that W�.¿;¿/ D 0, while W�.A;¿/ D 1 if ¿ ¤ A 2 P.X/ and � > 0.
If w is a convex (pseudo)modular on X, then applying axiom (iv) in (1.3.15) instead
of (iii), we find that W is a convex pseudomodular on P.X/.

Further properties of W will be presented below (see Theorem 2.2.13,
Example 3.3.11, and Theorem 4.1.3).

1.4 Bibliographical Notes and Comments

Section 1.1. An exposition of the theory of metric spaces can be found in many
monographs and textbooks, e.g., Aleksandrov [2], Copson [33], Kaplansky [51],
Kolmogorov and Fomin [54], Kumaresan [57], Kuratowski [58], Schwartz [97],
Shirali and Vasudeva [98] (to mention a few). A good source of metric and distance
notions is a recent book by Deza and Deza [36]. The ‘strong’ form of the triangle
inequality is due to Lindenbaum [64]. The classical reference on pseudometric
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spaces is Kelley’s book [52]. Extended metrics, also called generalized metrics,
were studied by Jung [50] and Luxemburg [67] in connection with an extension
of Banach’s Fixed Point Theorem from [4].

The interpretation of a modular as a generalized velocity field was initiated by
Chistyakov in [26, 28].

Section 1.2. Definition 1.2.1 of (metric) modular w on a set X appeared
implicitly in Chistyakov [18, 19] in connection with the studies of (bounded
variation and the like) selections of set-valued mappings, and multivalued super-
position operators. Explicitly and axiomatically, (pseudo)modulars were introduced
in Chistyakov [22], and their main properties were established by the author in
[23–25]. The strictness condition (is) and modular regularizations ẇ 0 were defined
in Chistyakov [28].

Section 1.3. Examples of (pseudo)modulars relevant for specific purposes are
contained in [18–29]. In Sect. 1.3 and furtheron, we add some new and more general
ones. An extended metric as in Example 1.3.3(2) was first defined by Bielecki [8] in
order to obtain global solutions of ordinary differential equations (see also Goebel
and Kirk [41, Sect. 2]).

The term modular on a real linear space X, extending the notion of norm, was
introduced by Nakano [80, 81], where he developed the theory of modular spaces.
Nakano’s axioms [81, Sect. 78] of a modular � W X ! Œ0; 1� include (�.1)–(�.3),
(�.5), and (�.6) �.x/ D supf�.˛x/ W 0 � ˛ < 1g for all x 2 X D X�

� (see Sect. 1.3.3
and Remark 2.3.4(1)), i.e., � is a left-continuous convex semimodular on X in the
sense of Musielak [75, Sect. 1].

In the special case of '-integrable functions on Œ0; 1� and '-summable sequences,
a theory (of not necessarily convex) modulars was initiated by Mazur and
Orlicz [71], and a general theory of modular spaces was developed by Musielak and
Orlicz [77]. The key axiom in the nonconvex case is axiom (�.4).

Propositions 1.3.4 and 1.3.5 are taken from Chistyakov [22, 24]. They show that
our approach to (metric) modulars on arbitrary sets X is an extension of the classical
approach of Nakano, Musielak and Orlicz applied to modulars on linear spaces. In
particular, classical modulars are metric modulars via (1.3.3). The same situation
holds for function modulars on linear spaces developed by Kozlowski [55].

For h.�/ D �, modular (1.3.2) can be obtained from the classical nonconvex
modular �.x/ D jxj=.1Cjxj/, x 2 R, by means of (1.3.3) (cf. Maligranda [68, p. 8]).

In Example 1.3.7, we follow Musielak [75, Chap. II,Sect. 7].
The material of Sects. 1.3.4 and 1.3.5 is new.
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