
Schema Discovery in RDF Data Sources

Kenza Kellou-Menouer(B) and Zoubida Kedad(B)

PRISM - University of Versailles Saint-Quentin-en-Yvelines, Versailles, France
{kenza.menouer,zoubida.kedad}@prism.uvsq.fr

Abstract. The Web has become a huge information space consisting of
interlinked datasets, enabling the design of new applications. The mean-
ingful usage of these datasets is a challenge, as it requires some knowledge
about their content such as their types and properties. In this paper, we
present an automatic approach for schema discovery in RDF(S)/OWL
datasets.

We consider a schema as a set of type and link definitions. Our con-
tribution is twofold: (i) generating the types describing a dataset, along
with a description for each of them called type profile; (ii) generating the
semantic links between types as well as the hierarchical links through the
analysis of type profiles. Our approach relies on a density-based cluster-
ing algorithm and it does not require any schema-related information
in the dataset. We have implemented the proposed algorithms and we
present some evaluation results showing the effectiveness of our approach.

Keywords: Schema extraction · Clustering · Semantic Web

1 Introduction

The Web has evolved into a huge global information space, consisting of inter-
linked datasets, expressed in the Semantic Web standard languages such as RDF,
RDFS or OWL. An unprecedented amount of data is made available, enabling
the design of new applications in many domains. But if access to these datasets
is provided, their meaningful usage is still a challenge, because it requires some
knowledge about their content. For example, a user willing to query a dataset
needs to know some of the properties and types existing in this dataset. This
information could be obtained by randomly browsing the data, but this would
be a tedious task. Writing the query would be straightforward with a schematic
description of the dataset. This schema would be useful for other purposes, such
as creating links between datasets; some interlinking tools have been proposed,
such as Silk1, which was used to link Yago [14] to DBpedia [1], but they require
type and property information about the datasets to generate the appropriate
owl:sameAs links.

An RDF(S)/OWL dataset may provide some information about its schema,
such as rdf:type, specifying the type of a given entity, but this information is
1 Silk: wifo5-03.informatik.uni-mannheim.de/bizer/silk.

c© Springer International Publishing Switzerland 2015
P. Johannesson et al. (Eds.): ER 2015, LNCS 9381, pp. 481–495, 2015.
DOI: 10.1007/978-3-319-25264-3 36

http://wifo5-03.informatik.uni-mannheim.de/bizer/silk

482 K. Kellou-Menouer and Z. Kedad

not always complete. Even when datasets are automatically extracted, such as
DBpedia which is extracted from Wikipedia, type information can be missing.
The experiments presented in [12] show that at most 63.7 % of the data have
complete type declarations in DBpedia, and at most 53.3 % in YAGO. We argue
that providing a schematic description of a dataset is essential for its meaningful
exploitation. In the context of Web data, the notion of schema is understood as
a guide, not as a strict representation to which the data must conform. Indeed,
languages used to format data on the Web do not impose any constraint on its
structure: two entities having the same type may have different properties. In
addition, an entity may have several types.

The goal of our work is to extract the schema describing an RDF(S)/OWL
dataset and we propose a deterministic and automatic approach for schema
discovery. We consider a schema as a set of type and link definitions. Our con-
tribution is twofold: (i) generating the types describing a dataset, along with a
description for each of them called type profile, where each property is associated
to a probability; (ii) generating the semantic links between types as well as the
hierarchical links through the analysis of type profiles. Our approach relies on a
density-based clustering algorithm, it does not require any schema related infor-
mation and it can detect noisy instances. We have implemented the algorithms
underlying our approach and we present some evaluation results using different
datasets to show the quality of the resulting schema.

The paper is organized as follows. We introduce a formal definition of the
problem in Sect. 2 and we give some definitions related to entity description
in Sect. 3. In Sect. 4, we present the core algorithms of our schema discovery
approach. Section 5 presents the generation of overlapping types and Sect. 6 is
devoted to links generation. Our evaluation results are presented in Sect. 7. We
discuss the related works in Sect. 8 and finally, Sect. 9 concludes the paper.

2 Problem Statement

Consider the sets R, B, P and L representing resources, blank nodes (anony-
mous resources), properties and literals respectively. A dataset described in
RDF(S)/OWL is defined as a set of triples D ⊆ (R ∪ B) × P × (R ∪ B ∪ L).
Graphically, a dataset is represented by a labeled directed graph G, where each
node is a resource, a blank node or a literal and where each edge from a node
e to another node e′ labeled with the property p represents the triple (e, p, e′)
of the dataset D. In such RDF(S)/OWL graph, we define an entity as a node
corresponding to either a resource or a blank node, that is, any node apart from
the ones corresponding to literals.

Figure 1(a) shows an example of such dataset, related to conferences. We can
see that some entities are described by the property rdf:type, defining the classes
to which they belong, as it is the case for “UVSQ”, defined as a university. For
other entities, such as “WWW”, this information is missing. Two entities having
the same type are not necessarily described by the same properties, as we can
see for “UVSQ” and “MIT” in our example, which are both associated to the
“University” type, but unlike “UVSQ”, “MIT” has a “website” property.

Schema Discovery in RDF Data Sources 483

Fig. 1. Example of dataset and generated schema.

Our problem can be stated as follows: given an RDF(S)/OWL dataset with
incomplete schema information, how to infer type definitions and links between
these types? As a result, we provide an extracted schema defined as follows:

Definition. The extracted schema S of a dataset D is composed of:

– A set of possibly overlapping classes C = {C1, ..., Cn}, where each class Ci

corresponds to a set of entities in D and defines their type;
– A set of links {p1, ..., pm}, such that each pi is a property for which both the

range and the domain are two types corresponding to two classes in C;
– A set of hierarchical links involving two types corresponding to classes in C,

expressing that one is the generic type of the other.

Table 1. Entity types in the conference dataset (Fig. 1(a)).

Types Entities

“Conference” “WWW”, “ISWC”

“Presentation” “Pr1”, “Pr2”

“AuthorList” “AL1” and “AL2”

“University” “UVSQ”, “MIT”

“Organizer” “P1”, “P4”

“Author” “P1”, “P2” and “P3”

“Person” “P1”, “P2”, “P3” and “P4”

In order to define the schema describing a dataset, we first need to evalu-
ate the similarity between entities and then group the similar ones into types,

484 K. Kellou-Menouer and Z. Kedad

knowing that entities having the same type could be described by heterogeneous
properties and that a given entity may have several types. In the example given
in Fig. 1(a), seven type definitions would be inferred (see Fig. 1(b)), the respec-
tive sets of entities corresponding to each type is given in Table 1. As we can see
in the results, the classes are not necessarily disjoint: the entity “P1” has three
types, namely “Author”, “Organizer” and “Person”.

Schema discovery also requires the identification of links between types on
the basis of existing properties between entities, given the heterogeneity of the
corresponding property sets. In our example, as entities “P4” and “ISWC” are
related through the “made” property, there is a link labeled “made” between
“Organizer” and “Conference” in the resulting schema. Finally, another problem
we are faced with is the one of identifying types generalizing other types, which
could be represented by rdfs:subClassOf properties, such as the ones between
the generic type “Person” and its specific types “Author” and “Organizer”.

3 Entity Description

We consider that an entity is described by different kinds of properties. Some of
them are part of the RDF(S)/OWL vocabularies, and we will refer to them as
primitive properties, and others are user-defined. We distinguish between these
two kinds because all the properties should not be used for the same purpose dur-
ing type discovery. Some predefined properties may provide information about
the schema of the dataset and could be applied to any entity, therefore they
should not be considered when evaluating the similarity between entities. Some
of these properties can be used to validate the resulting schema: for example, if
two entities e and e′ are linked with the owl:sameAs primitive property, then
we can check that the types inferred for e and e′ are the same. We define the
description of an entity as follows.

Fig. 2. Example of entity description.

Definition. Given the set of primitive properties PP and the set of user-defined
properties PU in the dataset D, an entity e is described by:

1. A user-defined property set e.PU composed of properties pu from PU , each
one annotated by an arrow indicating its direction, and such that:

Schema Discovery in RDF Data Sources 485

– If ∃(e, pu, e′) ∈ D then −→pu ∈ e.PU ;
– If ∃(e′, pu, e) ∈ D then ←−pu ∈ e.PU .

2. A primitive property set e.PP , composed of properties pp from PP with their
values, such that:

– If ∃(e, pp, e′) ∈ D then pp ∈ e.PP .

Figure 2 shows an example of entity description. In order to infer type def-
initions, entities are compared according to their structure. Our type discov-
ery algorithm takes as input the set DU = {ei.PU : i = 1, ...n}, where ei.PU

represents the set of user-defined properties describing the entity ei. The set
DP = {ei.PP : i = 1, ...n}, where ei.PP represents the set of primitive properties
describing the entity ei, can be used to validate the results of the algorithm and
to specify type checking rules. This validation process is out of the scope of this
paper.

4 Generating Types

Our requirements for type discovery are as follows: (i) the number of types in
the dataset is not known, (ii) an entity can have several types, and (iii) the
datasets may contain noise. The most suitable grouping approach is density-
based clustering [3] because it is robust to noise, deterministic and it finds classes
of arbitrary shape, which is useful for datasets where entities are described with
heterogeneous property sets. In addition, unlike the algorithms based on k-means
and k-medoid, the number of classes is not required.

Algorithm 1. Density-based Clustering with Type Profile
Require: DU , ε, MinPts

setOfTypeProfile ← ∅
class ← 0
while ∃ “no marked” e.PU ∈ DU do

mark e.PU

setOfNeighbor ← FindNeighbor(DU , e.PU , ε)
if |setOfNeighbor| ≥ MinPts then

class + +;
setOfTypeProfile ← setOfTypeProfile ∪ ExpandCluster(DU ,
e.PU , MinPts, ε, class, setOfNeighbor)

end if
end while
return setOfTypeProfile, typed DU

Our density-based algorithm has two parameters: ε, representing the mini-
mum similarity value for two entities to be considered as neighbors, and MinPts,
representing the minimum number of entities in the neighborhood required for

486 K. Kellou-Menouer and Z. Kedad

an entity to be a core [3] and to generate a type; MinPts is used to exclude
the outliers and the noise. We use Jaccard similarity to compute the closeness
between two property sets e.PU and e′.PU describing respectively two entities
e and e′.

Beside the set of types, we provide a description of each of them called a type
profile. The profiles will be used to find links between types and to generate
overlapping types, i.e. multiple types for each entity. A profile consists in a
property vector where each property is associated to a probability. The profile
corresponding to a type Ti is denoted TPi = ((pi1, αi1), ..., (pin, αin)), where
each pij represents a property and where each αij represents the probability for
an entity of Ti to have the property pij . It is evaluated as the number of entities in
Ti having the property pij over the total number of entities in Ti. In Fig. 1, the
profile of the “University” type is: ((−−−→name, 1), (

−−−−−→
website, 0.5), (

←−−−−−−−−
affiliation, 1)).

The probability of “website” is 0.5 because this property is defined for “MIT”
but not for “UVSQ”.

In order to group similar entities and build the profile of each class, we have
adapted a density-based clustering algorithm (Algorithm 1); it uses the Find-
Neighbors function which returns for a given entity all the entities having a
distance smaller than ε. For each new entity e such that the number of its neigh-
bors is lower than MinPts, we expand the class of e using the ExpandCluster
function, defined in Algorithm 2, which finds all entities belonging to the same
class as the current entity e. Each time a new entity e belonging to the current
class is found, the type profile of this class is updated using the UpdateType-
Profile function which adds the properties of e if they are not already in the
profile and recomputes the probabilities.

5 Generating Overlapping Types

An important aspect of RDF(S)/OWL datasets is that an entity may have sev-
eral types [12]. A fuzzy clustering algorithm such as FCM or EM could be used
to assign several types to an entity. However, they require the number of classes,
as their grouping criterion is the similarity between an entity and the center
of each class. This parameter can not be defined in our context, we therefore
propose to derive the set of disjoint classes first, and then to form overlapping
or fuzzy classes by analyzing the type profiles.

Recall that the importance of a property for a given type is captured by the
associated probability. Figure 3(a) shows three classes generated by our algo-
rithm: C1 = {P1}, C2 = {P4} and C3 = {P2, P3}, described respectively by the
following type profiles:

– TP1 = ((
→

name, 1), (
→

made, 1), (
→

affiliation, 1), (
←

heldBy, 1), (
→

holdsRole, 1), (
←
, 1))

– TP2 = ((
→

name, 1), (
→

made, 1))

– TP3 = ((
→

affiliation, 1), (
←

heldBy, 1), (
→

holdsRole, 1), (
←
, 1)).

The entity “P1” has all the properties of the two types TP2 and TP3 for which
the probability is 1, we can therefore assign the corresponding types to “P1”.

Schema Discovery in RDF Data Sources 487

Algorithm 2. Expand Cluster
Require: DU , e.PU , MinPts, ε, class, setOfNeighbor

nbEntitiesInClass ← 0
Type profile of the class TPclass ← ∅
add class to e.PU types
UpdateTypeProfile(TPclass, class, e.PU , nbEntitiesInClass)
nbEntitiesInClass++
while ∃ e′.PU ∈ setOfNeighbor do

if “not marked”e′.PU then
mark e′.PU

setOfNeighbor′ ← FindNeighbor(DU , e′.PU , ε)
if |setOfNeighbor′| ≥ MinPts then

setOfNeighbor ← setOfNeighbor ∪ setOfNeighbor′

end if
end if
add class to e′ types
UpdateTypeProfile(TPclass, class, e′.PU , nbEntitiesInClass)
nbEntitiesInClass++

end while
return TPclass

Fig. 3. Generating fuzzy classes

Fuzzy classes are generated using type profiles as follows; consider the type Ti

described by the profile TPi; if all the properties p of TPi having a probability
α = 1 belong to another type profile TPk, then the type Ti falls within the types
of entities of the group k. This is expressed by the following rule:

– If (∀(p, α) in TPi, α = 1: (p, α) in TPk) then (Add Ti to the types of the
entities of class k).

In our example (Fig. 3), the cluster containing “P1” (class k here) is the
intersection of the classes C2 and C3. Note that instead of comparing only the
properties having a probability of 1, we could extend the comparison to the ones
having a probability greater that a given threshold.

488 K. Kellou-Menouer and Z. Kedad

6 Generating Links

Beside type definitions, links between these types are also important to under-
stand the content of the dataset at hand, as it is shown in Fig. 1(b). We are
interested in two types of links: semantic links, corresponding to user-defined
properties and hierarchical links, corresponding to the rdfs:subClassOf property.

Semantic links. Two types Ti, Tj are linked by a property p if
→
p belongs to

the properties of type profile TPi and
←
p belongs to the properties of type profile

TPj , as follow:

– If (∃ p: (
→
p , αi) in TPi ∧ (

←
p , αj) in TPj) then (Add

→
p from Ti to Tj).

These generated links are checked by finding two entities e ∈ Ti and e′ ∈ Tj

such that (e, p, e′) ∈ D.

Algorithm 3. Hierarchical Links Generation
Require: setOfTypeProfile

setOfHierarchicalLinks ← ∅
while |setOfTypeProfile| > 1 do

Find the most similar type profile and its bestSimilarity
if bestSimilarity = 0 then

Group all of the rest of type profile into the Generic type Thing and STOP
else

Construct the type profile of the Generic type that groups the most similar type
profile
setOfHierarchicalLinks ← setOfHierarchicalLinks ∪ {“rdfs:subClassOf”
links between these most similar types profile and the Generic type}
setOfTypeProfile ← setOfTypeProfile ∪ {type profile of the Generic type}

Remove these most similar types profile from the setOfTypeProfile
end if

end while
return setOfHierarchicalLinks

Hierarchical links. Two types Ti, Tj can be linked by a hierarchical property
(rdfs:subClassOf), such as “Organizer” and “Person” in Fig. 1(b). We can use a
hierarchical clustering algorithm on the entire dataset to generate these links but
this would be very costly; to find the best partition, all the generated hierarchy
has to be explored. In addition, the result would consist in many hierarchical links,
not all of them being meaningful. We generate instead the hierarchy from the type
profiles, which is less expensive because the number of profiles is small compared
to the size of the entire dataset. Our procedure is given in Algorithm 3. We have
adapted an ascending hierarchical clustering algorithm; the profile of the generic
type is built at each step of the hierarchy. We define a similarity measure between

Schema Discovery in RDF Data Sources 489

two type profiles TPi, TPj , inspired from the Jaccard similarity and based on the
probability of a property pk for two classes Ci and Cj. It is defined as follows:

ProfileSim(TPi, TPj) =

∑
∀pk∈{TPi∩TPj} Probi,j(pk)

∑
∀pk∈{TPi∪TPj} Probi,j(pk)

(1)

where:

Probi,j(pk) =
αik × |Ci| + αjk × |Cj |

|Ci| + |Cj | (2)

A generic type is defined from the two most similar type profiles at each level
of the hierarchy. The corresponding profile is composed of all the properties of
the two types, the probability of a property is calculated as in (2).

Fig. 4. Eliminating generic type redundancy in a hierarchy.

This approach generates a hierarchy by grouping types in pairs to find their
generic type. However, some generic types can be composed of more than two
sub-types as in Fig. 4(a). In this case, the user can detect easily intermediate
redundant generic types and eliminate them (as in Fig. 4(b)), since the number
of types in a dataset is generally not very high.

7 Evaluation

This section presents some experimentation results using our approach. We have
evaluated the quality of the generated schema using well-known information
retrieval metrics in different real datasets, described in the following section.

7.1 Datasets

For our experiments, we have used three datasets: the Conference2 dataset, which
exposes data for several Semantic Web conferences and workshops with 1430
triples; the BNF3 dataset which contains data about the French National Library
(Bibliothèque Nationale de France) with 381 triples and a dataset extracted
from DBpedia4 with 19696 triples considering the following types: Politician,
SoccerPlayer, Museum, Movie, Book and Country.
2 Conference: data.semanticweb.org/dumps/conferences/dc-2010-complete.rdf.
3 BNF: datahub.io/fr/dataset/data-bnf-fr.
4 DBpedia: dbpedia.org.

http://data.semanticweb.org/dumps/conferences/dc-2010-complete.rdf
http://datahub.io/fr/dataset/data-bnf-fr
http://dbpedia.org

490 K. Kellou-Menouer and Z. Kedad

7.2 Metrics and Experimental Methodology

In order to evaluate the quality of the results provided by our algorithms, we have
extracted the existing type definitions from our datasets and considered them
as a gold standard. We have then run our algorithm on the datasets without
the type definitions and evaluated the precision and recall for the inferred types.
We have annotated each inferred class Ci with the most frequent type label
associated to its entities. For each type label Li corresponding to type Ti in
the dataset and each class Ci inferred by our algorithm, such that Li is the
label of Ci, we have evaluated the precision Pi(Ti, Ci) = |Ti ∩ Ci|/|Ci| and the
recall Ri(Ti, Ci) = |Ti ∩ Ci|/|Ti|. We have set MinPts = 1 so that an entity
is considered as noise if it has no neighbors. For the Conference dataset, we
have empirically set ε = 0.75, which leads to very homogeneous classes. We
have empirically stated that ε = 0.72 provides a number of classes equal to the
number of types initially declared in the BNF dataset; the value is ε = 0.5 for
the DBpedia dataset. Note that the determination of the similarity threshold ε
is an open issue for clustering algorithms [3,13].

To provide the overall quality of types, semantic and hierarchical links, we
have used the precision and recall metrics. The number of generated classes is
denoted k, and the number of entities in the dataset, n. To assess the overall
type quality, each type is weighted according to its number of entities as follows:

P =
∑k

i=1
|Ci|
n × Pi(Ti, Ci) R =

∑k
i=1

|Ci|
n × Ri(Ti, Ci)

Precision and recall of the generated links are evaluated considering the
true/false positives and the false negatives. We have compared the inferred
schema to the one of the dataset when it was provided, as for the BNF dataset.
If no schema was provided, we have manually designed it based on the informa-
tion provided in the dataset; to this end, we have built the set DP as defined
in Sect. 3.

7.3 Results

The quality of each discovered type in the Conference dataset is shown in
Fig. 5(a). Our approach gives good precision and recall and detects types which
were not declared in the dataset: classes 6, 10, 11 and 12 are manually labeled
“AuthorList”, “PublicationPage”, “HomePage” and “City” respectively.

In some cases, types have been inferred relying on incoming properties only.
Indeed, for containers, such as “AuthorList”, it is necessary to consider these
properties as they do not have any outgoing property. Classes 1 and 7 do not
have a good precision because they contain entities with different types in the
dataset. However, these types have the same structure, it is therefore impossible
to distinguish between them. The recall for “Person” is not good because it
is split into three classes: class 8 represents persons who have both published
and played a role in the conference; class 2 represents persons who have only
played a role (e.g. Chair, Committee Member); class 5 represents persons who
have only published. Overlapping types are generated based on the analysis of
type profiles. This has led to the results shown in Fig. 5(b). Class 8 is associated

Schema Discovery in RDF Data Sources 491

Fig. 5. Quality of the generated types (a) and overlapping types (b) in the conference
dataset.

to two types: the one of class 2 (manually labeled “Organizer”) and the one of
class 5 (manually labeled “Author”), which indeed conforms to the entities of
the dataset. Note that finding the labels of classes is an open problem that we
will address in future works.

Fig. 6. Evaluation of schema discovery in conference (a) BNF (b) and DBpedia (c).

We can see in Fig. 6 that the approach gives good precision and recall for
the generated schema, composed of types, semantic and hierarchical links. For
the Conference dataset (see Fig. 6(a)) the precision is not maximum because
of classes 1 and 7 as discussed before. The recall is not maximum because the
“Person” type is split in three as discussed above. The results for the BNF
(see Fig. 6(b)) and DBpedia datasets (see Fig. 6(c)) show that the assignment
of types to entities has achieved good precision and recall. The recall is not
maximum because noisy instances were detected. For the BNF dataset, some of
the semantic links were not declared in the provided schema, which is why the
recall is not maximum. However, after checking the entities of the dataset, we
found out that these semantic links were valid. For the DBpedia dataset, our
algorithm was able to differentiate between entities of the two types “Politician”
and “SoccerPlayer” even if they have similar property sets, as it is shown by the
corresponding type profiles generated by our algorithm and presented below.

492 K. Kellou-Menouer and Z. Kedad

The generated type profiles reflect the heterogeneity of the dataset, e.g. 6 % of
the entities of “SoccerPlayer” have a “deathDate” outgoing property, and yet
the generated grouping was good. The results achieved by our approach are good
even when the dataset is heterogeneous.

– Politician: < (
→

name, 1), (
→

party, 0.73), (
→

children, 0.21), (
→

birthDate, 0.94), (
→

nationality, 0.15),

(
←

successor, 0.78), (
→

deathDate, 0.68), ...>.

– SoccerPlayer: < (
→

name, 1), (
→

height, 0.46), (
→

surname, 0.93), (
→

birthDate, 1), (
→

nationalteam,

0.86), (
←

currentMember, 0.8), (
→

deathDate, 0.06), ...>.

Fig. 7. Hierarchical links generation for conference (a), BNF (b) and DBpedia (c).

The hierarchical links generated for DBpedia are correct as they conform to
the existing rdfs:subClassOf declarations (see Fig. 7(c)). The BNF dataset has
no hierarchical links, the values of both precision and recall are therefore null.
When the similarity between two profiles is low, the semantic of the generic
type is unclear. This is represented by a question mark in Fig. 7(b). It is the
same for some of the hierarchical links generated for the Conference dataset (see
Fig. 7(a)): a generic type has been generated for “Person” and “Organization”,
however, the similarity between their type profiles is low. Our algorithm could
not identify a generic type for “HomePage” and “PublicationPage” because their
type profiles do not share any property, which explains the recall.

8 Related Works

Schema discovery from semi-structured data has been addressed by some research
works. In [16], an approximate DataGuide based on the COBWEB hierarchical

Schema Discovery in RDF Data Sources 493

clustering algorithm is proposed. The incoming/outgoing edges are considered in
the same way, which could be a problem in RDF datasets as it will not differen-
tiate between the domain and the range of properties. The resulting classes are
disjoint, and the approach is not deterministic as it is based on COBWEB. In [8],
several types are inferred for an entity, but only when a type is more general
than another, such as “Employee” and a “Person”. The approach distinguishes
between incoming and outgoing edges: incoming edges are considered as roles,
and potential labels for the inferred types. This is suitable for the OEM [11]
model used in the approach, but not to RDF, where incoming edges do not
necessarily reflect the type of an entity. The proposed algorithm requires the
threshold of the jump which is not easy to define as it depends on the regularity
of the data; this parameter is not known in our context. The approach presented
in [9] uses bottom-up grouping providing a set of disjoint classes. Unlike in our
approach, the number of classes is required. In [2], standard ascending hierarchi-
cal clustering is used to build structural summaries of linked data. Each instance
is represented by its outgoing properties and the property set of a class is the
union of the properties of its entities, while in our approach, the probability of
each property is computed for a type. The algorithm provides disjoint classes;
the hierarchical clustering tree is explored to assess the best cutoff level, which
can be costly. SchemEX [6] finds the relevant data sources for a query by building
an RDF triple index. Unlike in our approach, rdf:type declarations are required
to find classes. The approach in [5] adds structural information to a database
from a set of available databases. It searches for a similar database among the
set of existing ones in order to make design decisions.

Some works have addressed the problem of enriching an existing schema by
adding more structure through RDF(S)/OWL primitives. SDType [12] enriches
an entity by several types using inference rules, provided that these types exist in
the dataset, and it computes the confidence of each type for an entity. The focus
of the approach is therefore on the evaluation of the relevance of the assigned
types. In addition, rdfs:domain, rdfs:range and rdfs:subClassOf properties are
required. Works in [4,10] infer types for DBpedia only: [10] uses K-NN and [4]
finds the most appropriate type for an entity in DBpedia based on descriptions
from Wikipedia and links with WordNet and the Dolce ontology. The statistical
schema induction approach [15] enriches an RDF dataset with some RDFS/OWL
primitives, however type information must be provided. The approach in [17] uses
an ascending hierarchical clustering to form classes by exploiting the existing
rdf:type declarations. The approach finds hierarchical links, but is specific to the
bio-medical ontologies DrugBank and Diseasome. In [7], a reverse engineering
method dealing with the derivation of inheritance links embedded in a relational
database is presented. Decision rules for detecting existence dependencies and
translating them into hierarchies among entities are defined.

9 Conclusion

We have proposed an approach for schema discovery in RDF(S)/OWL datasets.
In order to generate several types for an entity, we have adapted a density-based

494 K. Kellou-Menouer and Z. Kedad

clustering algorithm. Each generated type is described by a profile, consisting
of a property vector where each property is associated to a probability. These
type profiles are used to generate overlapping types as well as semantic and
hierarchical links. Our experiments show that our approach achieves good quality
results regarding both types and links in the generated schema, even when the
entities are very heterogeneous, such as in DBpedia. One important problem that
we plan to address is the annotation of the inferred types. Indeed, in addition
to identifying a cluster of entities having the same type, it is also useful to find
the labels which best capture the semantics of this cluster.

Acknowledgements. This work was partially funded by the French National Research
Agency through the CAIR ANR-14-CE23-0006 project.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
a nucleus for a Web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

2. Christodoulou, K., Paton, N.W., Fernandes, A.A.: Structure inference for linked
data sources using clustering. In: EDBT/ICDT 2013 Workshops (2013)

3. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Kdd (1996)

4. Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini,
P.: Automatic typing of DBpedia entities. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012, Part I. LNCS, vol. 7649, pp. 65–81. Springer, Heidelberg (2012)

5. Klettke, M.: Reuse of database design decisions. In: Kouloumdjian, J., Roddick,
J., Chen, P.P., Embley, D.W., Liddle, S.W. (eds.) ER Workshops 1999. LNCS, vol.
1727, pp. 213–224. Springer, Heidelberg (1999)

6. Konrath, M., Gottron, T., Staab, S., Scherp, A.: Schemex: efficient construction of
a data catalogue by stream-based indexing of linked data. WWW 16, 52–58 (2012)

7. Lammari, N., Comyn-Wattiau, I., Akoka, J.: Extracting generalization hierarchies
from relational databases: a reverse engineering approach. Data Knowl. Eng. 63(2),
568–589 (2007)

8. Nestorov, S., Abiteboul, S., Motwani, R.: Inferring structure in semistructured
data. ACM SIGMOD Rec. 26(4), 39–43 (1997)

9. Nestorov, S., Abiteboul, S., Motwani, R.: Extracting schema from semistructured
data. ACM SIGMOD Rec. 27, 295–306 (1998). ACM

10. Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Type inference through
the analysis of Wikipedia links. In: LDOW (2012)

11. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object exchange across het-
erogeneous information sources. In: Proceedings of the Eleventh International Con-
ference on Data Engineering, pp. 251–260. IEEE (1995)

12. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al.
(eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg
(2013)

13. Sánchez-Dı́az, G., Mart́ınez-Trinidad, J.F.: Determination of similarity threshold
in clustering problems for large data sets. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.)
CIARP 2003. LNCS, vol. 2905, pp. 611–618. Springer, Heidelberg (2003)

Schema Discovery in RDF Data Sources 495

14. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of the 16th International Conference on World Wide Web (2007)

15. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik,
M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

16. Wang, Q.Y., Yu, J.X., Wong, K.-F.: Approximate graph schema extraction for
semi-structured data. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C.
(eds.) EDBT 2000. LNCS, vol. 1777, pp. 302–316. Springer, Heidelberg (2000)

17. Zong, N., Im, D.-H., Yang, S., Namgoon, H., Kim, H.-G.: Dynamic generation of
concepts hierarchies for knowledge discovering in bio-medical linked data sets. In:
ICUIMC. ACM (2012)

	Schema Discovery in RDF Data Sources
	1 Introduction
	2 Problem Statement
	3 Entity Description
	4 Generating Types
	5 Generating Overlapping Types
	6 Generating Links
	7 Evaluation
	7.1 Datasets
	7.2 Metrics and Experimental Methodology
	7.3 Results

	8 Related Works
	9 Conclusion
	References

