
Inferring Versioned Schemas from NoSQL
Databases and Its Applications

Diego Sevilla Ruiz(B), Severino Feliciano Morales,
and Jesús Garćıa Molina

Faculty of Computer Science, University of Murcia, Campus Espinardo,
Murcia, Spain

{dsevilla,severino.feliciano,jmolina}@um.es

Abstract. While the concept of database schema plays a central role
in relational database systems, most NoSQL systems are schemaless:
these databases are created without having to formally define its schema.
Instead, it is implicit in the stored data. This lack of schema defini-
tion offers a greater flexibility; more specifically, the schemaless data-
bases ease both the recording of non-uniform data and data evolution.
However, this comes at the cost of losing some of the benefits provided
by schemas. In this article, a MDE-based reverse engineering approach
for inferring the schema of aggregate-oriented NoSQL databases is pre-
sented. We show how the obtained schemas can be used to build data-
base utilities that tackle some of the problems encountered using implicit
schemas: a schema diagram viewer and a data validator generator are
presented.

Keywords: NoSQL databases · Schemaless databases · Schema infer-
ence ·Model-driven data reverse engineering · JSON

1 Introduction

Modern applications that have to deal with huge collections of data have evi-
denced the limitations of relational database management systems. This has
motivated the development of a continuously growing number of non-relational
systems, with the purpose of tackling the requirements of such applications. Spe-
cially, the ability to represent complex data and achieving scalability to manage
both large data sets and the increase in data traffic. The NoSQL (Not SQL/Not
only SQL) term is used to denote this new generation of database systems.

The lack of an explicit data schema (schemaless) is probably the most attrac-
tive NoSQL feature for database developers. While relational systems require the
definition of the database schema in order to determine the data organization, in
NoSQL databases data is stored without the need of having previously defined a

Work partially supported by the Cátedra SAES of the University of Murcia (http://
www.catedrasaes.org), a research lab sponsored by the SAES company (http://www.
electronica-submarina.com/).

c© Springer International Publishing Switzerland 2015
P. Johannesson et al. (Eds.): ER 2015, LNCS 9381, pp. 467–480, 2015.
DOI: 10.1007/978-3-319-25264-3 35

http://www.catedrasaes.org
http://www.catedrasaes.org
http://www.electronica-submarina.com/
http://www.electronica-submarina.com/

468 D. Sevilla Ruiz et al.

schema. Being schemaless, a larger flexibility is provided: the database can store
data with different structure for the same entity type (non-uniform data), and
data evolution is favoured due to the lack of restrictions imposed on the data
structure. However, removing the need of declaring explicit schemas does not
have to be confused with the absence of a schema, since a schema is implicit
into data and database applications. The developers must always keep in mind
the schema when they write code that accesses the database. For instance, they
have to honor the names and types of the fields when writing insert or query
operations. This is an error-prone task, more so when the existence of several
versions of each entity is probable. Therefore, the idea is emerging of combining
a schemaless approach with mechanisms (e.g. data validations against schemas)
that guarantee a correct access to data [6,10]. On the other hand, some NoSQL
database tools and utilities need to know the schema to offer functionality such as
performing SQL-like queries or automatically migrating data. A growing interest
in managing explicit NoSQL schemas is therefore arising [9,10,12,15].

This article presents a reverse engineering strategy to infer the implicit
schema in NoSQL databases, which takes into account the different versions
of the entities. We call these schemas Versioned Schemas. The usefulness of
the inferred versioned schemas is illustrated through two possible applications:
schema visualization, and automated generation of data validators. The app-
roach has been designed to be applied to NoSQL systems whose data model is
aggregate-oriented [13], which is the data model of the three most widely used
types of NoSQL stores: document , key-value, and column family stores. Model-
Driven Engineering (MDE) techniques, such as metamodeling and model trans-
formations, have been used to implement both the schema inference strategy and
the applications, in order to take advantage of the abstraction and automation
capabilities that they provide.

There are therefore two main contributions in this work. To our knowledge,
this is the first approach that infers conceptual schemas from NoSQL databases
discovering all the versions of the inferred entities and relationships. Moreover,
we show how the inferred schemas can be used to automatically generate different
software artifacts, which help to improve the productivity and code quality.
The approach proposed has been validated for the MongoDB, CouchDB, and
HBase stores, and the tools implemented may be downloaded from http://www.
catedrasaes.org/wiki/NoSQLSchemaVersions.

This article is organized as follows. The following Section explains the notion
of aggregate-oriented data model, and presents a running example. Section 3
gives an overview of the approach proposed, and Sect. 4 describes in detail the
schema inference strategy. The utilities that have been built are described in
Sect. 5, and the related work is discussed in Sect. 6. Finally, conclusions and
future work are presented in Sect. 7.

2 Background

This section introduces some key concepts that are used throughout the article
and motivates the work. Moreover, a simple NoSQL database is shown, which
will be used as a running example.

http://www.catedrasaes.org/wiki/NoSQLSchemaVersions
http://www.catedrasaes.org/wiki/NoSQLSchemaVersions

Inferring Versioned Schemas from NoSQL Databases 469

2.1 Semi-structured Data and the JSON Format

Semi-structured data is mainly characterized by the fact that it has a non-
uniform and an implicit structure, which can evolve rapidly [1]. This data is
expressed in formats, such as XML and JSON, which allow the representation
of information in hierarchical form (i.e. a tree-like structure) by using tags or
symbols as separator elements.

JSON (JavaScript Object Notation)1 is a standard human-readable text for-
mat widely used to represent semi-structured data. This notation is taking the
place of XML as primary data interchange format because it is more simple
and legible. A JSON object or document is formed by a set of key-value pairs
(fields). The type of a JSON value may be a primitive type (Number, String, or
Boolean), an object, or an array of values. null is used to indicate that a key
has no value.

Fig. 1. Example database used and a tree representation of a book.

As indicated in [4], a piece of semi-structured data can be formalized as a
tree whose leaf nodes are atomic values of primitive types (e.g. string, integer,
float, or boolean) and the root and intermediate nodes are objects (i.e. tuples)
or either arrays of objects or values. The edges are labelled with the names of
the attributes. A root or intermediate node has a child node by each attribute
of the object associated. For instance, Fig. 1(a) shows the tree that corresponds
to the JSON object that represent the book with id=2 in Fig. 1(b). References
1 http://json.org/.

http://json.org/

470 D. Sevilla Ruiz et al.

among data may be expressed in a similar way as foreign keys in relational
databases, that is, the atomic value of an attribute (e.g. publisher id in book)
matches a value in another attribute of a different object (e.g. id in publisher).

The term aggregate is normally used to refer to the object structure that
consists of a root object that recursively embeds other objects, so that the tree-
like structure of an semi-structured data is aggregate-oriented. In Fig. 1(a), the
book object aggregates an author object, which aggregates, in turn, a company .

2.2 Aggregate-Oriented Data Models

While complex data is addressed in relational databases through joins by means
of foreign keys (i.e. references between tables), object references and aggregate
objects are more appropriate ways to represent such data. Unlike object-oriented
databases, aggregate objects are usually preferred to object references in the case
of NoSQL databases, because the data is distributed through clusters to achieve
scalability, and object references may involve contacting remote nodes. Thus,
aggregate-orientation has been identified as a characteristic shared by the data
models of the three most widely used NoSQL systems [13]. They organize the
storage in form of collections of key-value pairs in which the values can also be
collections of key-value pairs, and the “aggregate-oriented data model” has been
proposed to refer these three data models.

Actually, these systems store semi-structured data, and they are therefore
characterized by the fact that explicit schemas do not have to be defined to
specify the structure of the data, which provides them greater flexibility. Thus,
data that has different structure for the same entity could be stored (i.e. non-
uniform data). The evolution of the data is also easier because there is no need
of a schema evolution, and different versions of data can coexist.

The absence of a schema, however, has some drawbacks for developers and
tool implementors. When a schema is formally defined (e.g. a relational schema),
a static checking assures that only data that fits the schema can be manipulated
in application code, and mistakes made by developers in writing code are stati-
cally spotted. In fact, the analogy to statically and dynamically typed languages
is commonly used to note the difference among databases with and without a
schema [4]. On the other hand, a number of tools need the information contained
into schemas in order to implement their functionality (e.g. query engines and
validator generators). Therefore, an increasing attention is being paid to the topic
of the NoSQL schema inference and some approaches has been proposed [12,15].

A schema of an aggregate-oriented data model is basically formed by a set of
entities connected through two types of relationships: aggregation and reference.
Each entity will have one or more fields that are specified by its name and its
data type. Several versions of an entity can exist due to the non-uniformity
characteristic and the database evolution.

2.3 A NoSQL Database for the Running Example

For the purposes of this work, we consider a NoSQL database as an arbitrarily
large array (i.e. a collection) of JSON objects that include: (a) a field (e.g. type)

Inferring Versioned Schemas from NoSQL Databases 471

that describes its entity type; and (b) some form of unique identifier for the
object (in our case the id field). This format is non-compromising, and provides
system independence. In fact, it is very similar to what it is actually used in most
NoSQL database implementations. For example, CouchDB guides recommend
the usage of the type field. MongoDB creates one collection for each type of
object, so that the collection name could provide the type field. In HBase, the
type field of an object could be the name of its column family. If the value of the
type field is not directly obtainable, some heuristics could be used. However, in
some cases it may require the user to provide it.

Figure 1(b) shows a simple database that stores objects for the Book , Pub-
lisher , and Journal entities. The first Book object aggregates an array of authors
(authors field) and an embedded object for the content (content field). In turn,
the author field aggregates an embedded object that records the company for
which he or she works (company field). With regards to object references, both
Book and Publisher objects show examples of them. The Book objects have a ref-
erence to its publisher (publisher id field) and Publisher objects hold a reference
to the list of journals published (journal field).

It is worth noting that aggregates and references are implicit: a parser could
identify the embedded objects. However, references require some kind of heuris-
tics if conventions are not used. Some idioms have been therefore proposed to
express references in NoSQL databases, some of them considered in Sect. 4.

3 Overview

We shall here outline the general arquitecture of the proposed approach to infer
schemas. Moreover, we shall describe the metamodel created to represent NoSQL
schemas.

Reverse engineering can take advantage of MDE techniques. Metamodels pro-
vide a formalism to represent the knowledge harvested at a high-level of abstrac-
tion, and automation is facilitated by using model transformations. Therefore,
we have devised an MDE solution to reverse engineer versioned schemas from
aggregate-oriented NoSQL databases that we use to create database utilities.

Figure 2 shows the architecture of the solution, which is organized in three
stages. Firstly, a Map-Reduce operation is applied in order to extract a collection
of JSON objects that contains one object for each version of an entity, i.e. the
minimum number of objects that are needed to perform the inference process.
Map-Reduce is germane to most NoSQL databases, and gives an advantage in
performance, as it is the native processing method when an algorithm has to
deal with all the objects in a database. Secondly, that collection is injected
into a model that conforms to a JSON metamodel, which is easily obtained by
mapping the JSON grammar elements into the metamodel elements. Thirdly, the
reverse engineering process is implemented as a model-to-model transformation
whose input is the JSON model, and that generates a model that conforms to the
NoSQL-Schema metamodel (Fig. 3). The inferred NoSQL-Schema models may be
used to build tools that could be classified in two categories: (i) database utilities

472 D. Sevilla Ruiz et al.

Fig. 2. Overview of the proposed MDE architecture.

Fig. 3. NoSQL-Schema metamodel representing NoSQL schemas.

that require knowledge of the database structure, and (ii) helping developers to
deal with problems caused by the absence of an explicit schema, for instance the
tools presented below, which are able of generating data validators, migration
scripts or schema diagrams.

Figure 3 shows the NoSQL-Schema metamodel that represents schemas of
aggregate-oriented NoSQL databases according to the notion of NoSQL schema
presented in Sect. 2.2. A schema (metaclass NoSQLSchema) is formed by a
collection of entities (Entity); one or more versions (EntityVersion) exist for
each entity. A version is defined by a set of properties (Property) that may
be Attributes or Associations, depending on whether the property represents a
type (either a PrimitiveType or a Tuple) or a relationship between two entities.

Inferring Versioned Schemas from NoSQL Databases 473

A tuple denotes a collection that may contain primitive types and tuples. An
association can be either an Aggregation or a Reference. The cardinality of an
association is captured by the lowerBound and upperBound attributes, which
can take values 0, 1, and −1.

Note that an aggregate is connected to one or more entity versions
([1..*]refTo) because an embedded object may aggregate an array with objects
of different versions. Instead, a reference is connected to one entity ([1..1]refTo),
since we need to know that a version holds references to a certain entity, but
we decided not to cross object boundaries. The opposite self-reference in the
Reference metaclass is used to make the relationship bidirectional, and specifies
the other end.

4 Reverse Engineering Process

Extracting Versioned Schemas from aggregate-oriented NoSQL databases
involves discovering entities, versions of each entity, the attributes of each
version, and relationships between entities (aggregations and references). The
reverse engineering algorithm should traverse all the stored objects (i.e. root
entities), and analyze their properties in order to identify all the schema ele-
ments.

4.1 Building the Raw Schema of an Object

The first step in discovering the versioned schemas is obtaining what we call
the raw schema of an object, which is a JSON object built honoring two rules:
(i) it has the same structure as the described object with respect to fields, nested
objects and arrays, and (ii) each primitive value in the described object is sub-
stituted in the raw schema by its JSON type (e.g. String or Number).

In our running example (Fig. 1(b)), {name:String, city:String} would be the
raw schema for the Publisher entity with id=123451, and {title:String, pub-
lisher id:String, author:{name:String, company:{country:String, name:String}}}
would be the raw schema of the Book with id=2. More visually:

4.2 Obtaining the Version Collection

To improve the efficiency, we have considered a preliminary stage to the reverse
engineering process. In this stage, a Map-Reduce operation is applied to obtain

474 D. Sevilla Ruiz et al.

a collection that only contains one object for each entity version, which will be
referred to as the Version Collection.

For each object, the map() operation performs a two-step process. First, it
generates the version identifier: the string obtained by concatenating the value
of the special type field with a textual representation of the object’s raw schema.
Secondly, the <version identifier, object> key/value pair is emitted.

Then, the reduce() operation is performed once for each version identifier.
It receives a set of objects that share the same version identifier and selects one
of the objects as the archetype for the group, adding it to the output list. The
result is an array of JSON objects following the format explained in Sect. 2.3,
and shown in Fig. 1(b), but now containing just one object per object version.

4.3 Obtaining the Schema

The JSON object collection obtained in the previous stage is injected into a
JSON model, from which a model-to-model transformation generates the Schema
model. The transformation discovers the elements of the schema, and works as
follows:

Discovering Entities and Entity Versions. For each JSON object in the
model, an EntityVersion is considered. This usually leads to a new EntityVer-
sion, but not in all cases, because a similar EntityVersion may exist already
that only differs with the considered one with respect to cardinalities. If this is
the case, the cardinalities of the existing EntityVersion are adjusted to include
both specifications, and no new EntityVersion is created. When the created Enti-
tyVersion is the first one discovered for a particular entity, an Entity element
is also generated. Each Entity holds a list of entity versions, in which each new
EntityVersion is added. Obtaining an entity name differs for root and embed-
ded objects. For root objects, the name is given by the type field of the object;
for embedded objects, the name is given by the key of a pair whose value is a
JSON object. If the value is an array of objects and the name is plural, then the
singular name is used.

An EntityVersion is named by appending, to the entity name, a suffix with an
underscore and a counter of the number of version. For instance, three EntityVer-
sion would be generated for the Publisher root objects of the running example,
named Publisher 1, Publisher 2, and Publisher 3, and Author 1 and Author 2
would be generated for the Author embedded object. Figure 4(b) shows a tex-
tual report with all the entity versions.

Discovering Attributes. An Attribute is generated for each object’s pair whose
value is either atomic or an array of either primitive types or nested arrays of
primitive types. The attribute name is given by the pair name. With regard to the
type, a PrimitiveType or a Tuple is generated depending on whether the value is
atomic or an array. Each created Attribute is added to the collection of attributes
of the corresponding EntityVersion. For instance, the pair “title”: “The Unified
Modeling Language” in a version of Book would lead to the Attribute named

Inferring Versioned Schemas from NoSQL Databases 475

“title” and a PrimitiveType named “String”; and the pair “issn”: [“0928-8910”,
“1573-7535”] in a version of Journal would generate an Attribute named “issn”
and a Tuple, as shown in Fig. 4(b).

Discovering Aggregation Relationships. A pair results in an Aggregate
(i.e. an aggregation relationship) if its value is an object. Each created Aggre-
gate must be connected to the EntityVersion that corresponds to the object
value. Several EntityVersions may embed the same aggregated Entity . For this,
the transformation is organized in two stages. Firstly, Entities, EntityVersions,
Attributes, Types and Pairs are created, and then Aggregates and References are
created in a second stage, once all the EntityVersions have been created.

Regarding to the cardinality, the lowerBound and upperBound attributes
take their values depending on the multiplicity of the Pair, e.g. it is one-to-one
(lowerBound=1 and upperBound=1) if the pair value is an object that can be
null, and the cardinality is zero-to-many (lowerBound=0 and upperBound=−1)
if the pair value is an array of objects that can take the null value.

The Aggregate name is the same as the pair name but there are some excep-
tions. For instance, if the cardinality is zero-to-many or one-to-many, a singular
name is converted into a plural name. In the database example, the Book 1
entity version would aggregate several Authors, so the Aggregate name would
be authors, with cardinality one-to-many. The three aggregation relationships
discovered for the running example are shown in the diagram of the Fig. 4(a).

Discovering Reference Relationships. A reference implies that a entity’s
pair identifies to an object of another entity, that is, the pair values of the
referencing entity match the values of another pair in the referenced entity. These
identifier values are Strings, Integer numbers or arrays of these two primitive
types. Two strategies are applied to discover references (i.e. Reference elements):

– Some conventions commonly used to express references are checked, such as:
• If a pair name has the entityName id suffix, then, a entity named entity-

Name would be referenced if it exists.
• MongoDB itself suggests to use a construct like {$ref:“entityName”,
$id:“reference id”} to express references to objects of the entity named
“entityName” [11].

– If a pair name is the name of an existing entity and the pair values match the
values of a id pair of such an entity.

For instance, the journal field of a Publisher version references to an array of
Journal objects and the publisher id field of a Book version references a Publisher
object (Fig. 4(a)).

As in the case of aggregations, the references are connected to the correspond-
ing entity in the second stage of the transformation. The cardinality is obtained
for references as explained above for the aggregation relationships. Once all the
references have been generated, the opposite relationship is resolved.

476 D. Sevilla Ruiz et al.

Fig. 4. Graphical representation of all the entities with the sum of all fields, and the
textual report of versions.

5 Versioned NoSQL-Schema Applications

The inferred schemas are useful to build a number of tools intended to help
developers that make use of NoSQL databases. There are tools that require
knowledge of the schema in order to provide certain functionality (e.g. SQL query
engines). On the other hand, the schema inference may be used to mitigate the
problems due to the lack of an explicit schema. For instance, reports, diagrams,
validators, and version migration scripts could be automatically generated from
the NoSQL Schema models. As a proof of concept, we have created a schema
viewer and a validator generator in order to illustrate the possible applications of
the inferred schemas. We shall describe these utilities in this Section, and other
applications will be outlined in Sect. 7.

Several benefits are gained by representing NoSQL schemas: both reason-
ing about them and its communication are facilitated, and a documentation
separated from the code is obtained. Figure 4(b) shows a textual report of all
the entity versions in our running example; attributes (name and type), and
aggregate and reference relationships are indicated for each entity version. These
reports are automatically generated by a model-to-text transformation that has
the schema model as its input. As shown in Fig. 4, the inferred schemas have
been also visualized as UML class diagrams. Entities are shown as classes, field
as attributes, aggregate as composite associations, and references as associations
that are navigable at the end owned by the referenced entity. Note that entity

Inferring Versioned Schemas from NoSQL Databases 477

Fig. 5. TypeRelations metamodel and a simplified code for a specific version.

versions cannot be explicitly represented in class diagrams, but a new kind of
representation is needed. Instead, it is possible to show the elements inferred for
the different versions of a pair, for instance, the Book entity contains the authors
attribute whose type is a collection of strings along with an aggregate to Author.
To generate these class diagrams, we have taken advantage of the tooling pro-
vided by EMF/Ecore [14] to represent metamodels as UML class diagrams. This
illustrates the benefits of representing models and metamodels uniformly.

Validation is often needed when dealing with NoSQL databases. For instance,
a developer would want to assure that all the objects retrieved and stored by a
given application conform to a given entity version. When developing a new ver-
sion of an application, for example, object validators (a.k.a. schema predicates)
could be created so that the programmer can check each object that transfers
to and from the database. Another scenario could be removing a given version
of objects. Validators allow characterizing objects to perform a filter operation
on the database.

Figure 5(a) show the metamodel used to specify relations between versions
of an entity type with respect to the JSON object structure (TypeRelations).
These models are obtained via a model-to-model transformation from the NoSQL
Schema, and then a model-to-text transformation generates the validator func-
tions that check the entity version of a given JSON object. Figure 5(b) shows
a simplified code to assert a given entity version. The same approach could be
used to generate specialized queries for specific versions. The metamodel defines
a type discrimination (TypeDiff) as a set of hints (TypeHint) that a given JSON
object should fulfill to be considered of a given entity version. For example, it has
to contain a given field (HasField), or a field with a value (HasFieldWithValue)
(e.g. “type” should be “Book”).

6 Related Work

The extraction of explicit schemas for JSON-based technologies and applications
is gaining attention as JSON is emerging as a lingua franca for information

478 D. Sevilla Ruiz et al.

interchange. Web services and NoSQL systems are two examples of technologies
for which some proposals have been presented. This research effort is related to
the works published over the years on schema inference and schema versioning
for semi-structured data, specially XML documents.

In [10], an algorithm to extract schemas from aggregate-oriented NoSQL
databases is presented. This algorithm adapts strategies proposed for extracting
XML DTDs to JSON documents. A JSON schema is obtained as output. The
authors suggest some database utilities similar to those proposed in this work,
such as validators and objects mapper classes. They focus on calculating sta-
tistics and finding outliers in the data. Our work differs from this approach in
several essential aspects: (i) the algorithm identifies the required and optional
properties, but object versions are not obtained; (ii) an schema involves only
a type of objects, and reference and aggregation relations are not considered;
(iii) they do not specify how to cope with huge amounts of data; and (iv) we
obtain a model that conforms to a metamodel, instead of a JSON Schema.

The JSON Schema initiative [7] has recently emerged to provide standard
specifications for describing JSON schemas. Although its adoption is still very
limited, some tools (e.g. validators, schema generators, documentation gener-
ators) have evidenced the usefulness of having JSON schemas. The notion of
NoSQL schema presented in our work is more expressive than the JSON schemas
in the standard, since NoSQL schemas contain aggregate and reference relation-
ships between entities, and also entity versions are represented.

Some tools able of discovering a schema from NoSQL databases have recently
emerged. For instance, Spark SQL query engines [15] and Drill [2] are examples
of such tools. In Spark SQL, a schema is described as a set of Scala algebraic
types and can be inferred for a given set of JSON objects. Spark addresses object
versions by means of “sum types”, that is, creating types that contain all the keys
in all the objects of an entity type, allowing them to be null in the objects created
or received. As for conflicting types, it generalizes to a String type, that is able
to represent any value. This may allow these conflicting types to be addressed
without crashing, but it does not offer any guarantee regarding the consistency
of the data. Instead, our approach discovers and represents the exact set of
versions existing for each object type. Thus, versioned schemas are complete,
and allow having a more fine grained control of the objects that enter to and
are obtained from a database. Moreover, the reference and aggregation relations
between entities are not made explicit in Spark SQL. Drill dynamically discovers
the schema during the processing of a query, but it cannot cope with conflicting
objects (those that do not comply with the schema). Also, the discovered schema
is just used for the purposes of Drill, and cannot be reused by other applications.

MongoDB-Schema [12] is an early prototype of a tool whose purpose is to
infer schemas from JSON objects and MongoDB collections. Given a set of
objects of the same collection, the inference algorithm obtains an schema that is
represented by a JSON document similar to the raw schemas in Sect. 4.1. More-
over, metadata is added to each field in the root and embedded objects in form
of a key/value pair. For instance “type” indicates the object type (e.g. Number,

Inferring Versioned Schemas from NoSQL Databases 479

String, or Boolean) and “count” indicates the number of objects that contains
a field. Note that this approach has the same limitations of Spark SQL.

A MDE-based approach to infer JSON schemas from REST web services is
proposed in [5]. A three-step process is performed to discover the domain model
of the services. Firstly, the JSON data for a service is injected into models
which conforms to a metamodel similar to that used here. In the second step,
a mapping between the JSON metamodel and the Ecore meta-metamodel is
established in order to transform the JSON model into a domain model. This
JSON-to-Ecore mapping is similar to the one applied here for obtaining a visual
representation of NoSQL schemas. In our case, Schema models are represented as
Ecore metamodels, which is a more direct mapping. Finally, the domain models
obtained for each service are integrated by superposing the common classes.
This work is clearly close to our approach but there are however some significant
differences between them, namely JSON Discoverer does not tackle the existence
of data versions, and the references between objects are not discovered.

In [8] a strategy to infer schemas from heterogeneous XML databases is pre-
sented. The schema is provided as a Schema Extended Context-Free Grammar,
and the different versions are integrated into a single grammar which is mapped
to a relational database schema. In our case, we have used a metamodel to rep-
resent the schemas, which has allowed us to apply MDE techniques, and we keep
the different versions instead of obtaining a single schema. As in previous related
works, our schema is richer, taking into account aggregations and references.

Finally, a design method for aggregate-based NoSQL database is proposed
in [3]. This method defines the NoAM model to represent these databases in
a system-independent way. NoAM is similar to our Schema metamodel, but it
does not consider the possible existence of database object versions. Moreover,
the model is simply proposed but it is not implemented in form of a metamodel.

7 Conclusions and Future Work

To bring the well-known benefits of schemas to NoSQL databases, several
approaches have been proposed to infer the schema from the data. However,
these tools do not cope well with the variability of the schemaless data: they
either do not support variation in the structure of the objects of a given type,
or they overgeneralize the schema to embrace all the possible variations. In our
proposal, the schema takes into account the existing versions of each type: the
Versioned Schema has the unique characteristic of completely defining the struc-
ture of the data, also showing the high-level relationships, such as aggregation
and reference.

The presented approach has proved useful in generating specifications that
describe the data, as well as in generating useful applications within the devel-
opment technical space of the NoSQL databases, such as type validators.

After this initial effort, future directions include generating data visualiza-
tions that take into account the type and version of the objects in the database,
allowing to visually identify the quantities of objects of each type and version.

480 D. Sevilla Ruiz et al.

If a data base has evolved over time, it would be interesting to show which data
belong to each version.

Generating object version transformers could also be interesting. A developer
can describe, by means of a specialized DSL, the necessary steps to convert one
version of an object to another version. These could be used in at least two ways:

– A new application that uses the stored old data may require that all the
recovered objects comply with the new version. A version transformer could
be generated that removes the unneeded fields, and gives values to new, non-
existing fields. This would guarantee that the application would always use
object with the correct (new) version, giving all the process more robustness.

– Batch database migration. Map-Reduce jobs could be generated to transform
old version objects into new versions. This is possible given the precise version
information stored in the schema.

References

1. Abiteboul, S.: Querying semi-structured data. Technical report 1996–19, Stanford
InfoLab (1996). http://ilpubs.stanford.edu:8090/144/

2. Apache Foundation: Apache Drill, Visited April 2015. http://drill.apache.org/
3. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL

systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol.
8824, pp. 223–231. Springer, Heidelberg (2014)

4. Buneman, P.: Semistructured data. In: Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 117–121. ACM (1997)

5. Cánovas Izquierdo, J.L., Cabot, J.: Discovering implicit schemas in JSON data.
In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68–83.
Springer, Heidelberg (2013)

6. Fowler, M.: Schemaless Data Structures, January 2013. http://martinfowler.com/
articles/schemaless/

7. IETF: JSON Schema Specification, Visited April 2015. http://json-schema.org/
8. Janga, P., Davis, K.C.: Mapping heterogeneous XML document collections to rela-

tional databases. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS,
vol. 8824, pp. 86–99. Springer, Heidelberg (2014)

9. Karpov, V.: Mongoose NPM package, Visited April 2015. https://www.npmjs.
com/package/mongoose

10. Klettke, M., Störl, U., Scherzinger, S.: Schema extraction and structural outlier
detection for JSON-based NoSQL data stores. In: BTW 2105, pp. 425–444 (2015)

11. Redmond, E., Wilson, J.R.: Seven Databases in Seven Weeks. A Guide to Modern
Databases and the NoSQL Movement, Pragmatic Programmers (2013)

12. Rückstieß, T.: mongodb-schema NPM package, Visited April 2015. https://www.
npmjs.com/package/mongodb-schema

13. Sadalage, P., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley, Reading (2012)

14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work. Addison-Wesley, Reading (2008)

15. Zaharia, M., Chowdhury, M., et al.: Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: NSDI, April 2012. http://spark.
apache.org

http://ilpubs.stanford.edu:8090/144/
http://drill.apache.org/
http://martinfowler.com/articles/schemaless/
http://martinfowler.com/articles/schemaless/
http://json-schema.org/
https://www.npmjs.com/package/mongoose
https://www.npmjs.com/package/mongoose
https://www.npmjs.com/package/mongodb-schema
https://www.npmjs.com/package/mongodb-schema
http://spark.apache.org
http://spark.apache.org

	Inferring Versioned Schemas from NoSQL Databases and Its Applications
	1 Introduction
	2 Background
	2.1 Semi-structured Data and the JSON Format
	2.2 Aggregate-Oriented Data Models
	2.3 A NoSQL Database for the Running Example

	3 Overview
	4 Reverse Engineering Process
	4.1 Building the Raw Schema of an Object
	4.2 Obtaining the Version Collection
	4.3 Obtaining the Schema

	5 Versioned NoSQL-Schema Applications
	6 Related Work
	7 Conclusions and Future Work
	References

