Ranking Friendly Result Composition
for XML Keyword Search

Ziyang Liu', Yichuang Cai2, Yi Shan®*®™) and Yi Chen*

! LinkedIn, Mountain View, CA, USA
ziliu@linkedin.com
2 Microsoft, Redmond, WA, USA
yica@microsoft.com
3 School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, AZ, USA
yshanl@asu.edu
* School of Management, New Jersey Institute of Technology, Newark, NJ, USA
yi.chen@njit.edu

Abstract. This paper addresses an open problem of keyword search in
XML trees: given relevant matches to keywords, how to compose query
results properly so that they can be effectively ranked and easily under-
stood by users. The approaches adopted in the literature are oblivious to
user search intention, making ranking schemes ineffective on such results.
Intuitively, each query has a search target and each result should contain
exactly one instance of the search target along with its evidence about its
relevance to the query. In this paper, we design algorithms that compose
atomic and intact query results driven by users’ search targets. To infer
search targets, we analyze return specifications in the query, the modify-
ing relationship among keyword matches and the entities involved in the
search. Experimental evaluationsvalidate the effectiveness and efficiency
of our approach.

Keywords: Keyword search - XML Tree * Search intent

1 Introduction

Keyword search provides a simple and friendly mechanism to access the informa-
tion in XML documents for users who do not know structured query languages,
or for the applications in which data schemas are too complex or fast-changing.
To generate results for XML keyword search, we need to (1) Identify relevant
matches to input keywords. (2) Compose query results based on the relevant
matches. (3) Rank the results according to their relevance to input keywords.
Much research has been performed to address the challenges in the first and
third steps. For identifying relevant matches, existing approaches use Variants
of Lowest Common Ancestors to connect keyword matches, referred as VLCA in
this paper [1-9]. For example, consider a query “Arizona, state” on the XML tree
in Fig. 1. In Fig. 1, we assign integer IDs to some nodes to facilitate illustration.

© Springer International Publishing Switzerland 2015
P. Johannesson et al. (Eds.): ER 2015, LNCS 9381, pp. 441-449, 2015.
DOI: 10.1007/978-3-319-25264-3_33

442 Z. Liu et al.

States 1
State 2 State 3
/\
name 4 name 5 stores 6
n +
7 Arizona stores 8 9 California
store 10 store 11 store 12
name address product - name address product -- product name address product -
1 1 1 + + 3 1 < 1 1
Barnes Lidia’s Fry's " canon Olympus BBESt Fujifilm
& Favorite 13 D90 VR350 w X100
Noble Recipe Camera Camera 14 Camera

Fig. 1. Sample XML tree about stores

Although there are many matches to state, only the one (with ID 2) that corre-
sponds to the Arizona match is considered relevant. For result ranking, a variety of
ranking factors were proposed [2], including result size, keyword proximity, num-
ber of keyword matches in the result, as well as IR-style ranking functions.

However, little study has been done on the second problem: composing query
results. In text search, a retrieval unit is a document in the repository, and thus
the problem of result composition is inapplicable. In contrast, XML keyword
search engines returns subtrees in the XML data tree in order to provide finer-
grained query results and to better satisfy the users’ needs. Given relevant key-
word matches, how to dynamically extract a right subtree from the original data
tree as a query result is not trivial. At the same time, the way of composing
results in XML keyword search has crucial effects on result ranking and user
search experience, as to be shown in the following examples.

Example 1. A user seeking the stores selling cameras in Arizona would issue a
query “Arizona, camera, store’. Consider the XML tree in Fig. 1 as a fragment
of the XML data.

One popular query result composition methods is named as Subtree Result
in this paper, adopted in many existing work [4,10,11]. Subtree Result defines a
query result as a tree rooted at a VLCA node consisting of all relevant matches
that are descendants of this VLCA node and the paths connecting them.

For this query, Subtree Result only returns one result: the tree rooted at a
state node (0.0) that contains the match to Arizona and all the matches to store
and camera, as shown in Fig. 2(a).

Such a result is not informative to the user. As we would imagine, there
are hundreds of stores in Arizona that sells cameras. Instead of checking all of
them, a user would want to find the top ranked stores to visit, where the ranking
might consider store reputation (mimic to page-rank), the number of cameras
sold (related to TFIDF ranking), location (related to local search), among other

Ranking Friendly Result Composition for XML Keyword Search 443

factors. However, with all the camera stores in Arizona in a single result, none
of the existing ranking methods can rank the stores. With such a query result, a
user would have to spend prohibitive amount of efforts to check the information
of every store, design a ranking method herself to rank the stores in order to
decide which few of them to visit.

Besides Subtree Return, the other commonly used result composition method
is called Pattern Match, used in [2,3]. Pattern Match defines a query result as
a tree rooted at a VLCA node consisting of exactly one relevant match to each
query keyword and the paths connecting them.

For the query “Arizona, camera, store” on the XML tree in Fig.1, some
sample results generated by Pattern Match are shown in Fig.2(b). As we can
see, each result has information of exactly one camera.

Such results can be annoying. The data may have thousands of cameras, sold
by hundreds of stores. The query user looks for stores that sells cameras, not
cameras. It’s much more desirable to have all distinct stores ranked automati-
cally, rather than having the user to read tens of cameras sold by the same store
and to manually rank the stores in order to find the top ranked ones.

In contrast to the two existing approaches, this paper presents techniques
that compose query results based on the inferred search semantics. For the same
query “Arizona, camera, store”, we identify that the user is looking for camera
stores in Arizona, and compose query results such that each result contains
information of one distinct store, along with the related matches to Arizona
and camera as evidence of its relevance, such as the two query results shown in
Fig. 2(c). In this way, when results are properly ranked, a user obtains the top
ranked stores.

(1) - (1) (2) - (1) (2)
State State
State State State
name stores name stores name stores name stores name stores
s T~ 1 1 1 1 i i 1 1
Arizona store store Arizona store Arizona store Arizona store Arizona store
name product product name product — ¢ namuct name product
n 3 1 name product p name product product
s Best ooyt + b m il +
Fry’s jifi B Fujifilm|
Canon Olympus v Fujifilm Fry’s Canon Fry’s Olympus Fry’s Canon Olympus est I
D90 VR350 X100 D90 VR350 D90 VR350 Buy X100
Camera Camera Camera Camera Camera Camera Camera Camerq
(a) Subtree Results (b) Pattern Match Results (c) Desirable Results

Fig. 2. Results of query “Arizona, camera, store”

Intuitively, each keyword search has a goal, either a real world entity or
relationship among entities, as observed in [12]. We use term search target to refer
to the information that the user is looking for in a query, and target instance to
denote each instance of the search target in the data. Each desirable query result
should have exactly one target instance along with all associated evidence that

444 Z. Liu et al.

shows the relevance to the user query, so that top-k ranked results corresponds
to top-k ranked search target instances.

Based on this intuition, we propose a novel technique to automatically com-
pose atomic and intact query results for XML keyword searches. Unlike the exist-
ing approaches, which are oblivious to users’ search intentions, the proposed query
result composition is driven by the user search target and hence is ranking friendly.
Experimental evaluations validate the effectiveness and efficiency of our approach.

2 Target Driven Query Result Composition

Users who issue queries often desire the information of one or a set of entities that
satisfy certain conditions. We name such entities as target entities. In this section
we first introduce the data model and then discuss how to automatically infer tar-
get entities from user query and data. Then we discuss how to compose meaningful
query results based on relevant matches and inferred target entities. We propose
strategies to compose query result centred around the inferred search target.

2.1 Identifying Target Entities

We first introduce the data model of an XML tree. We consider a node in the
XML data tree has one of three categories: entities that represent real world
objects, attributes that describe the corresponding entities, and connection nodes
which connect other nodes but do not have much meaning. Our system adopts
the heuristics developed in [10] to infer node categories. For example, in Fig. 1,
state is entity and name is its attribute. stores is a connection node. A Keyword
Query is a set of words. A Query Result is a tree that consists of a set of relevant
matches as well as the edges connecting them. Relevant keyword matches and
VLCA nodes can be identified by applying one of the existing works introduced
in Sect.1. An entity instance is a relevant entity instance if it is on the path
from a VLCA node to a relevant match in XML tree. The types of such data
nodes are relevant entities. Consider query “Arizona, camera, store” on the data
in Fig. 1. The relevant entities are state, store and product.

We infer target entities by analyzing the matches to input keywords and
the XML data structure.Often a query has two parts: the information that a
user is looking for, referred as return node, and the constraints that should be
satisfied, referred as search predicates. These are analogous to the select clause
versus where clause in SQL queries. For example, a user may look for stores in
Arizona and issue a query “Arizona, store”. In this query, store is a return node,
and Arizona is a search predicate.

To automatically detect return nodes and search predicates from a user query,
we observe that if an entity or attribute node name is specified in a query without
information about its associated attribute values, then likely this node name
represents a return node, and its attribute values are what the user is looking
for. On the other hand, an attribute value node (e.g., Arizona), or a pair of
attribute name and value (e.g., state, Arizona) is likely to be a search predicate.

Ranking Friendly Result Composition for XML Keyword Search 445

In a query @, we consider a keyword k to be a return node if one of the
following conditions holds, otherwise is a search predicate. (1) k matches an
entity e, and there is no keyword k' that matches its attribute or attribute
value. (2) k matches a connection or attribute node u, and there is no keyword
k' matching a node v, such that u is an ancestor of v.

Next we can infer target entities from return nodes. If a return node is an entity
node, then it is a target entity. If a return node is an attribute (e.g., address),
then the associated entity (e.g., store) is considered as a target entity. Otherwise,
a return node is a connection node (e.g., stores in sample XML document), then
its nearest descendant entities are considered as target entities (e.g., store).

However, not all user queries provide hints for return nodes. In case the
query keywords do not contain return nodes, we exam all the relevant entities
and the relationships between search predicates and theses entities to identify
target entities. We have two observations. First, a user may use the attribute
values to modify an entity (e.g. find stores that are named Fry’s), or attribute
values of a related entity to modify an entity (e.g. find stores that are in the state
of Arizona). Second, each search predicate keyword shall modify the instances
of the target entity. In other words, removing any keyword from the query will
return different target instances. For example, users will not use query “Arizona,
Store” to search for states that are named as “Arizona” and that have a store,
because every state has stores, and keyword “store” does not modify instances
of state. We propose modifier to represent a keyword match of search predicate
and modifying relationship to represent the relationship between the match and
an entity. Based on observation 1, we define modifier to be any attribute value
or name-value pair A connected to entity F. Furthermore, based on observation
2 A is a modifier if there is at least one instance of E in the XML tree which
does not have A connected. Otherwise A cannot be used to further describe E.
So E is a target entity when all search predicates can modify it. Due to limited
space, we refer readers to [13] for details.

When there is only a single target entity, it is called the center entity of the
query result which is the search target of the keyword query. When there are no
target entities found, we consider all relevant entities as target entities. When
there are multiple target entities found, besides these entities we further consider
the relationships between them as search targets.

2.2 Composing a Query Result

As illustrated by examples in Sect. 1, results of XML keyword search should be
atomic, i.e., consist of a single target instance; and intact, i.e., contain the whole
target instance together with all its supporting information. For example, in
Example 1, each query result should correspond to a distinct store. Atomicity
enables the ranking method to rank the target instances and show the top-k
most relevant ones to the user. Also, each query result should have all supporting
information, all cameras sold by the store. With intactness, a ranking method
can have the whole view of each target instance to give a fair ranking. A keyword

446 Z. Liu et al.

match of k is supporting information of a target instance e if there are no other
keyword matches of k with closer relationship to e [13].

When a query has multiple target entities, we observe that atomicity and
intactness may not be simultaneously achievable. Consider Fig.1 for example.
If both state and store are known as target entities, then all store nodes in the
subtree of a state node constitute the supporting information of the state node.
According to intactness, they should all be included in the result that contains
this state node. However, according to atomicity, only one store node can be
included in one result. In this case, since atomicity and intactness are not both
achievable, we choose to achieve intactness using subtree result. The reason is
that subtree result can be achieved much more efficiently and scalably than
pattern match.

3 Algorithms

In this section, we present the indexes and algorithms to efficiently identify target
entities and generate meaningful query results.

3.1 Indexes

A core operation in the query composition is to identify target entities. There
are three indexes we use: Label Index, Node Index, and Modifier Index. Label
Index is an inverted index, which retrieves a list of data nodes given a keyword.

As discussed in Sect.2, we have different strategies for determining target
entities in two different situations. If there are return nodes specified in input
keywords, target entities are the entities associated with the return nodes. Oth-
erwise, if return nodes are not specified, we check the modifying relationship
between each attribute value that matches a keyword and each relevant entity
involved in the query.

For the first case, we need to quickly determine a return node’s associated
entity. To support this, we build a node index for all entity and attribute nodes.
For an entity node, the entry includes all its attribute values. For an attribute
node, the entry includes its value and its parent entity.

For the second case, we need to quickly determine whether a predicate is
a modifier of an entity type. To support it, we build a Modifier index that
records the modifying relationship between attribute values (more accurately,
attribute name value pairs) and entities. In this index, each attribute value has
an associated list that records the entities that are not modified by this attribute
value. Since the entities that are modified by an attribute value are far more than
those that are not modified by it, we record the negative cases.

3.2 Generating Query Results

Now we present our algorithms, which takes relevant matches to a keyword query
(which are obtained by adopting one of the existing approaches [2—4,14]) and
indexes as input, and composes meaningful query results.

Ranking Friendly Result Composition for XML Keyword Search 447

Based on Sect.2, first we need to identify target entities based on return
nodes and search predicates. Second, we use target entities to construct query
results which are atomic and intact.

For a keyword search, first we use the label index to retrieve all nodes matched
by a query keyword. Second, we compute VLCA nodes, each of which is the
root of one or more query result trees, for which purpose we use the algorithm
proposed in XKSearch [4]. Third, we find relevant entity instances by checking
whether they are on the paths from a VLCA to a relevant match (Sect.2.1).
Fourth, using node index, we can determine the node category of each keyword
match and then infer the return nodes and search predicates of the query. To
achieve that, we first retrieve the entry for each keyword. If it is matched by an
entity or attribute name, we further exam whether other keywords match a value
of an attribute of the entity or a value of the attribute. If a keyword is matched
by an entity or attribute name but no other keywords match its value, then this
keyword is a return node, otherwise search predicate. If return nodes are present,
we can find the corresponding target entity instances by accessing the node
index as well. Otherwise, we find the modifying relationship and consequently
the target entity instances using the modifier index by checking whether each
search predicate modifies the target entity instance or not. Next, if a center
entity exists, then each relevant entity instance that is an instance of the center
entity leads to a query result. For each such entity instance e, a query result
is generated consisting of e and its supporting information (Sect.2.2), together
with their connections. Such a result is atomic and intact. If there is no center
entity, it takes the default mode, which requires the result to be intact. To achieve
that, it generates query results by returning the relevant matches in the subtrees
rooted at VLCA nodes.

3 1

=)

Times (s)

.1
0.

0.001 - 1 LN
0

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0 QI Q12 Q13 Q14 QI5
Targeted Return Pattern Match Subtree Result Turgeted Return * Subtree Result O Pattern Match

=)

Fig. 3. User scores of query results Fig. 4. Processing time on Baseball data

4 Experiments

In this section we present experimental study of our approach for composing
query results, Targeted Return.

We have tested one data set: Baseball [15] with 15 real user queries.! We
compare Targeted Return with Subtree Result and Pattern Match. For each

! https://db.tt/omJcnxdX.

https://db.tt/omJcnxdX

448 Z. Liu et al.

query, the users were given the results generated by the three approaches with
shuffled order, and were asked to give an overall satisfaction score based on
their impression of each query result of scale [1, 3]: 3 means I have no trouble
finding what I am looking for; 2 means I need efforts to extract the desired
information from the results; 1 means I cannot find what I am looking for without
re-organizing the results. The average scores of the three approaches of all 15 test
queries given by the user is shown in Fig. 3. Targeted Return got the best score
of 2.76, followed by Pattern Match 1.92 and Subtree Result 1.15. This indicates
that the organization of query results by Targeted Return is closest to users’
expectations. Response time of all three systems over the 15 queries are shown
in Fig.4. e indicates that the system Pattern Match fails to return any query
results because of its data size limit. As we can see, Targeted Return achieves
comparable processing time with other systems.

5 Conclusions

Our approach of composing query results is driven by search targets, and pro-
duces atomic and intact results. To identify user search targets, we infer return
nodes for keyword searches and the modifying relationship among attribute val-
ues and entities in the data. Then we determine the target entities and center
entity for a keyword search, based on which query results are composed. Exper-
imental evaluation has shown the effectiveness and efficiency of our approach.

Acknowledgements. This work is partially supported by NSF CAREER Award IIS-
0845647, Google Cloud Service Award and the Leir Charitable Foundations.

References

1. Liu, Z., Cai, Y., Chen, Y.: TargetSearch: a ranking friendly XML keyword search
engine. In: ICDE (2010)

2. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: a semantic search engine
for XML. In: VLDB (2003)

3. Li, Y., Yu, C., Jagadish, H.V.: Schema-free XQuery. In: VLDB (2004)

4. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest LCAs in XML
databases. In: SIGMOD (2005)

5. Zhou, J., Bao, Z., Wang, W., Zhao, J., Meng, X.: Efficient query processing for
XML keyword queries based on the IDList index. VLDB J. 23(1), 25-50 (2014)

6. Zeng, Y., Bao, Z., Ling, T.W., Li, G.: Removing the mismatch headache in XML
Keyword search. In: SIGIR (2013)

7. Le, T.N., Bao, Z., Ling, T.W.: Schema-independence in XML keyword search. In:
Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp.
71-85. Springer, Heidelberg (2014)

8. Zeng, Y., Bao, Z., Ling, T.W., Li, G.: Efficient XML keyword search: from graph
model to tree model. In: Decker, H., Lhotska, L., Link, S., Basl, J., Tjoa, A.M.
(eds.) DEXA 2013, Part I. LNCS, vol. 8055, pp. 25-39. Springer, Heidelberg (2013)

10.

11.

12.

13.

14.

15.

Ranking Friendly Result Composition for XML Keyword Search 449

Shi, J., Lu, H., Lu, J., Liao, C.: A skylining approach to optimize influence and cost
in location selection. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L.,
Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part II. LNCS, vol. 8422, pp.
61-76. Springer, Heidelberg (2014)

Liu, Z., Chen, Y.: Identifying meaningful return information for XML keyword
search. In: SIGMOD (2007)

Lin, R.-R., Chang, Y.-H., Chao, K.-M.: Improving the performance of identifying
contributors for XML keyword search. SIGMOD Rec. 40(1), 5-10 (2011)

Cheng, T., Chang, K.C.-C.: Entity search engine: towards agile best-effort infor-
mation integration over the Web. In: CIDR, (2007)

Liu, Z., Cai, Y., Chen, Y.: Ranking friendly result composition for XML keyword
search, ASUCIDSE-2015-001. Technical report, Arizona State University (2015)
Li, G., Feng, J., Wang, J., Zhou, L.: Effective keyword search for valuable LCAs
over XML documents. In: CIKM (2007)

Baseball Dataset. http://www.ibiblio.org/xml/books/biblegold /examples/
baseball

http://www.ibiblio.org/xml/books/biblegold/examples/baseball
http://www.ibiblio.org/xml/books/biblegold/examples/baseball

	Ranking Friendly Result Composition for XML Keyword Search
	1 Introduction
	2 Target Driven Query Result Composition
	2.1 Identifying Target Entities
	2.2 Composing a Query Result

	3 Algorithms
	3.1 Indexes
	3.2 Generating Query Results

	4 Experiments
	5 Conclusions
	References

