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Abstract. Billions of RDF triples are currently available on the Web
through the Linked Open Data cloud (e.g., DBpedia, LinkedGeoData
and New York Times). Governments, universities as well as companies
(e.g., BBC, CNN) are also producing huge collections of RDF triples and
exchanging them through different serialization formats (e.g., RDF/XML,
Turtle, N-Triple, etc.). However, RDF descriptions (i.e., graphs and seri-
alizations) are verbose in syntax, often contain redundancies, and could
be generated differently even when describing the same resources, which
would have a negative impact on their processing. Hence, we propose
here an approach to clean and eliminate redundancies from such RDF
descriptions as a means of transforming different descriptions of the same
information into one representation, which can then be tuned, depend-
ing on the target application (information retrieval, compression, etc.).
Experimental tests show significant improvements, namely in reducing
RDF description loading time and file size.
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1 Introduction

Since several years, the Web has evolved from a Web of linked documents to
a Web of linked data. As a result, a huge amount of RDF statements, in the
form of < Subject, Predicate,Object > triples, are currently available online
through the Linked Open Data cloud thanks to different projects1(e.g., DBpedia,
LinkedGeoData, New York Times, etc.). These triples are usually stored in RDF
datasets after being serialized into several machine readable formats such as
RDF/XML, N-Triple, Turtle, N3 or JSON-LD. Therefore, RDF descriptions can
be represented in different ways and formats as shown in Fig. 1.

However, in different scenarios (e.g., collaborative RDF graph generation [6],
automatic RDF serialization [12,16], etc.), RDF descriptions might be verbose
and contain several redundancies in terms of both: the structure of the graph
and/or the serialization format of the resulting RDF-based file. For instance,
1 http://linkedgeodata.org, http://data.nytimes.com/, http://dbpedia.org.
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UX

…
<rdf:Description rdf:nodeID="UX">
 <ex:first_name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Sebastien </ex:first_name>
 <ex:last_name xml:lang="fr">  Durand </ex:last_name>
 </rdf:Description>
 …

…
"@id": "_:Nf6a5c38b4f1049bf8aff884fdd714ec9",
"http://example.org/stuff/1.0/first_name": [{
"@type": "http://www.w3.org/2001/XMLSchema#string",
"@value": "Sebastien"}].
“http://example.org/stuff/1.0/last_name": [{
”@language": "fr", 
"@value": "Durand"}
...

...
@prefix ex1: <http://example.org/stuff/1.0/>
<http://www.univ-pau.fr> ex1:lab <http://liuppa.univ-pau.fr/live/> ;
ex:nameprof [ ex:first_name 
"Sebastien"^^<http://www.w3.org/2001/XMLSchema#string>;
ex:last_name "Durand"@fr ]

_:N17 http://example.org/stuff/1.0/first_name 
"Sebastien"^^<http://www.w3.org/2001/XMLSchema#string>
_:N17 <http://example.org/stuff/1.0/last_name> "Durand"@fr
<http://www.univ-pau.fr> <http://example.org/stuff/1.0/nameprof> 
_:N17 <http://www.univ-pau.fr> <http://example.org/stuff/1.0/lab> 
<http://liuppa.univ-pau.fr/live/>

(1) RDF/XML

(2) JSON-LD

(3) N3

(4) N-Triple

(a) RDF Graphs (b) RDF Serializations of Graph 1

(1) RDF Graph 1
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Fig. 1. RDF description (graph and serialization) examples

graphs 1 and 2 in Fig. 1, which have been created by two different users, describe
the same RDF information even though they have different structures (e.g.,
duplication of nodes and edges). Additionally, even more redundancies and dis-
parities2 will occur when serializing both graphs (e.g., the same RDF resource
or blank node can be serialized in different ways, language and data-type dec-
larations can be specified or omitted, namespaces can have different/duplicate
prefixes, etc.). Consequently, such RDF redundancies and disparities would nat-
urally have a negative impact on the processing of RDF databases (including
storage, querying, mapping, annotating, versioning, etc.).

In this paper, we address the problem of cleaning RDF descriptions by intro-
ducing a new method as a means of transforming different RDF descriptions
of the same RDF statements into one single (normalized) representation. Our
method targets RDF modeling on two levels: (1) the structure/graph (logical)
level, by eliminating redundancies in RDF graphs, which is typically useful in
graph-based RDF querying, mapping, and versioning applications, and (2) the
serialization (physical) level, by eliminating redundancies and disparities in the
syntactic structure, and adapting it to the application domain, in order to opti-
mize storage space and loading time.

The rest of this article is organized as follows. Section 2 reviews background
and related work in RDF normalization. Section 3 presents motivating examples,
highlighting different normalization features left unaddressed by most existing
approaches. Our method for normalizing RDF descriptions (graphs and serial-
izations) is detailed in Sect. 4. In Sect. 5, we present our prototype and illustrate
experimental results. We finally conclude in Sect. 6.
2 We use disparities to designate different serializations of the same information.
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2 Background and Related Work

2.1 Basic Notions

Definition 1 (Statement [st]). An RDF statement expresses a relationship
between two resources, two blank nodes, or one resource and one blank node.
It is defined as an atomic structure consisting of a triple with a Subject (s), a
Predicate (p) and an Object (o), noted st:< s, p, o >, w.r.t. a specific vocabulary
V (see Definition 3), where: (a) s ∈ U ∪ BN is the subject to be described (U is
a set of Internationalized Resource Identifiers and BN is a set of Blank Nodes),
(b) p ∈ U refers to the properties of the subject, and (c) o ∈ U ∪ BN ∪ L is the
object (L is a set of Literals) �

The example presented in Fig. 1.1.a underlines 4 statements with different
resources, properties, and blank nodes such as st1: <http://www.univ-pau.fr,
ex:nameProf , UX >, st2: < UX, ex:first name, “Sebastien”ˆ̂xsd : string >,
st3: < UX, ex : last name, “Durand”>, and st4: <http://www.univ-pau.fr,
ex:lab, http://www.univ-pau.fr>.

Definition 2 (RDF Graph [G]). An RDG graph is a directed labeled graph
made of a set of < s,p,o> statements in which each one is represented as a
node-edge-node link �

In the remainder of the paper, “RDF graph” and “RDF logical representa-
tion” are used interchangeably.

Definition 3 (RDF Graph Vocabulary [V]). An RDF Graph Vocabulary is
the set of all values occurring in the RDF graph, i.e., V = U ∪ L ∪ BN �

Definition 4 (External Vocabulary [QN]). An RDF External Vocabulary
is a set of QNames3 (QN) to represent IRI references {qn1, qn2,. . . , qnn}. Each
qni is a tuple < pxi, nsi > where pxi is a prefix4 (e.g., foaf, ex, dc,. . . ) and nsi
is a namespace �

For instance QN={(ex, http://example.org/stuff/1.0), (mypx, http://ucsp.
edu.pe)}, where “ex” is a standard prefix, “mypx” is a local prefix, and http://
example.org/stuff/1.0 and http://ucsp.edu.pe/ are namespaces.

Definition 5 (RDF File [F]). An RDF file is defined as an encoding of either
a set of RDF statements or an RDF graph, using a predefined serialization for-
mat (e.g., RDF/XML, Turtle, N3, etc.) �

In the remainder of the paper, RDF file, RDF serialization and RDF physical
representation are used interchangeably. Also, the following functions R, U, L,
BN, ST, NS and Px will be used respectively to return all the Resources (IRIs
and literals), IRIs, Literals, Blank Nodes, statements, namespaces and prefixes
of a graph G or a file F.
3 http://www.w3.org/TR/REC-xml-names/.
4 Following the W3C Recommendation, we consider that all the prefixes have to be

unique for each namespace.

http://www.univ-pau.fr
http://www.univ-pau.fr
http://www.univ-pau.fr
http://example.org/stuff/1.0
http://ucsp.edu.pe
http://ucsp.edu.pe
http://example.org/stuff/1.0
http://example.org/stuff/1.0
http://ucsp.edu.pe/
http://www.w3.org/TR/REC-xml-names/
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2.2 Related Work

The need for RDF normalization has been identified and discussed in various
domains, ranging over knowledge representation, data integration, and service
and semantic data mediation. Yet, few existing studies have addressed the issues
of logical (graph) and physical (syntax) RDF normalization.

Knowledge Representation, Integration and Semantic Mediation. Var-
ious approaches have been developed to normalize knowledge representation in
RDF, namely in the bioinformatics domain [1,6,10,11,14]. In [14], the authors
provide an approach to map LexGrid [11], a distributed network of lexical
resources for storing, representing and querying biomedical ontologies and vocab-
ularies, to various Semantic Web (SW) standards, namely RDF. They introduce
the LexRDF project which leverages LexGrid, mapping its concepts and proper-
ties to standard - normalized - RDF tagging, thus providing a unified RDF based
model (using a common terminology) for both semantic and lexical information
describing biomedical data. In a related study [10], the authors introduce the
Bio2RDF project, aiming to create a network of coherent linked data across life
sciences databases. The authors address URI normalization, as a necessary pre-
requisite to build an integrated bioinformatics data warehouse on the SW, where
resources are assigned URIs normalized around the bio2rdf.org namespace. Sev-
eral approaches have developed semantic mediators (translators), in order to
convert information from one data source to another following the data format
which each system understands [7,8]. Most studies consider the original data
to be well organized (normalized), thus the resulting RDF data would allegedly
follow. Note that in most of these projects, issues of redundancies in RDF logical
and syntax representations are mostly left unaddressed.

RDF Graph (Logical) Normalization. In [5], the authors discuss some
of the redundancies which can occur in a traditional RDF directed labeled
graphs. Namely, an RDF graph edge label (i.e., a predicate) can occur redun-
dantly as the subject or the object of another statement (e.g., < dbpedia :
Researcher, dbpedia : Workplace, dbpedia : University > and < dbpedia :
Workplace, rdf : type, dbpedia : Professional >). Hence, the authors in [5]
introduce an RDF graph model as a special bipartite graph where RDF triples
are represented as ordered 3-uniform hypergraphs where edge nodes correspond
to the < subject, predicate, object > triplet constituents, ordered following the
statement’s logical triplet ordering. The new model is proven effective in reducing
the predicate-node duplication redundancies identified by the authors. In subse-
quent studies [3,4], the authors address the problem of producing RDF normal
forms and evaluating the equivalence among them. The studies in [3,4] specifi-
cally target the RDFS vocabulary with a set of reserved words to describe the
relationships between resources (e.g., rdfs:type, rdfs:range, rdfs:domain, etc.).
They provide a full-fledged theoretical model including notions such as: RDF
lean (minimal) graph as a graph preserving all URIs of its origin graph while
having fewer blank nodes, and RDF normal form as a minimal and unique rep-
resentation of an RDF graph, among others. In [9,13], the authors introduce an
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algorithm allowing to transform an RDF graph into a standard form, arranged in
a deterministic way, generating a cryptographically-strong hash identifier for the
graph, or digitally signing it. The algorithm takes a JSON-LD input format, and
provides an output in N-triple serialization while relabeling certain nodes and
erasing certain redundancies. Our approach completes the latter studies by tar-
geting logical (graph) redundancies being out of the scope of [3–5,9,13], namely
distinct edge (predicate) duplication, blank node (subject/object) duplication,
and combined edge and node duplication.

RDF Syntax (Physical) Normalization. At the physical (syntactic) level,
the authors in [16] introduce a method to normalize the serialization of an RDF
graph using XML grammar (DTD) definitions. The process consists of two steps:
(a) Defining an XML grammar (DTD) to which all generated RDF/XML seri-
alizations should comply, (b) Defining SPARQL query statements to query the
RDF dataset in order to return results, consisting of serializations compliant
with the grammar (DTD) at hand. This is comparable to the concept of seman-
tic mediation using SPARQL queries [8]. Note that the SPARQL statements are
automatically generated based on the grammar (DTD).

To sum up, our approach completes and builds on existing methods to nor-
malize RDF information, namely [3–5,9,13,16], by handling logical and physical
redundancies and disparities which were (partially) unaddressed in the latter.

3 Motivating Example

We discuss here the motivations of our work, highlighting two different levels:
(i) logical redundancies, and (ii) physical redundancies and disparities.

3.1 Logical (Graph) Redundancies

Consider the example given in Fig. 1.a.2. One can easily see several kinds of
redundancies:

– Problem 1 - Edge Duplication: where identical edges, designating identical
RDF predicates, appear more than once,

– Problem 2 - Node duplication: where identical nodes, designating iden-
tical RDF subjects and/or objects, appear more than once, e.g., in Fig. 1.a.2
highlighting Blank Node duplication and Literal duplication respectively.

3.2 Physical (Serialization) Disparities

Consider now Fig. 2.a which represents a possible serialization of the RDF graph
in Fig. 1.a.2 encoded in the RDF/XML format. One can see that several types of
redundancies and disparities are introduced: some are inherited from the logical
level, while others appear at the physical (serialization) level:

– Problem 3 - Namespace duplication: where two different prefixes are
used to designate the same namespaces (ex and ex1 in lines 4–5 in Fig. 2.a),
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(a) Of the RDF graph in Fig. 1.a.2 (b) With syntactic disparities

Fig. 2. RDF/XML serializations

– Problem 4 - Unused namespace: where the namespaces are declared but
never called in the body of the document (dc in line 3 in Fig. 2.a).

– Problem 5 - Node order variation: i.e., node siblings in the RDF descrip-
tion might be ordered differently when serialized (e.g., nodes in lines 6–16
in Fig. 2.b follow the order of appearance of XML elements, which can be
re-ordered differently in another serializations).

– Problem 6 - Handling typed elements: objects (literals) elements can be
typed or not (lines 9–12 in Fig. 2.b).

– Problem 7 - Handling language tags: Distinguishing between identical
literals having different language tags (lines 10–11 in Fig. 2.b).

One can clearly realize the compound effect of missing logical and physical nor-
malization when contrasting the serialization in Fig. 1.b.1 with those in Fig. 2, all
of which represent the same RDF information (cf. Sect. 1). In the following, we
develop our proposal addressing the above problems.Due to space limitations, only
RDF/XML format is used in what follows to illustrate RDF serialization results.

4 RDF Normalization Proposal

We first provide a set of definitions, rules, and properties before developing our
process.

4.1 Definitions

Definition 6 (Extended Statement [st+]). An extended statement is a more
expressive representation of a statement ( st), denoted as: st+:< s′,p′,o′ > where:

– s′:< s, ts > is composed of the subject value (s) and its type (ts ∈ {u, bn})
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– p′:< p, dt, lng > is composed of the predicate value (p), its datatype dt ∈ DT5 ∪
{⊥}, and the language tag lng ∈ Lang6 ∪ {⊥}. ⊥ represents a “null” value.

– o′:< o, to > is composed of the object value (o) and its type to ∈ {u, bn, l}
The following notation is adopted to represent an extended statement:

st+ :< sts∈{u,bn}, p
lng
dt , oto∈{u,bn,l}�

Based on the example of Fig. 1.1.a, st1 becomes st+1 : <http://www.univ-pau.
fru, ex:nameProf⊥⊥, UXbn >. The function ST+ will be used in the following to
return all the (extended) statements of an RDF Description.

Definition 7 (Extended Statement Equality [=st]). Two extended state-
ments st+i and st+j are equal, noted st+i =st st+j , if and only if: (1) st+i .s

′ =
st+j .s

′, (2) st+i .p
′ =st+j .p

′, and (3) st+i .o
′ = st+j .o

′ �

In Fig. 3.a, st+3 =st st
+
4 since they share the same subject (i.e., u1), the same

predicate (i.e., p4), and the same object (i.e., u2).

(a) With equal and different extended
statements

(b) Of extended statement contain-
ment depicting the graph in Fig. 1.a.2

Fig. 3. RDF statement examples

Definition 8 (Outgoings [O]). Given an extended RDF statement st+i , the
outgoings of st+i , noted O(st+i ), designate the set of extended statements having
for subject the object element o′

i of st
+
i :

O(st+i :< s′
i, p

′
i, o

′
i >) = {st+j :< (o′

i, p
′
j , o

′
j >, ..., st+n :< o′

i, p
′
n, o

′
n >}�

In Fig. 3.b, we identify the following outgoings of st+1 : O(st+1 ) = {st+5 , st+6 }
= {< bn 1bn, p2⊥

string, l1l >, < bn 1bn, p3
fr
⊥ , l2l >}

Definition 9 (Statement Containment [�]). An extended statement st+i is
said to be contained in another extended statement st+j , noted st+i � st+j , if: (1)
O(st+i ) ⊆ O(st+j ), (2) both st+i and st+j have the same subject and predicate,
and (3) the object type ( to) in both statements is a blank node (bn) �
5 DT is a set of datatypes: string, number, date, etc.
6 Lang is a set of language tags: @fr, @en, etc.

http://www.univ-pau.fr
http://www.univ-pau.fr


268 R. Ticona-Herrera et al.

In Fig. 3.b7, st+1 � st+2 since they share the same subject (i.e., s1) and the
same predicate (i.e., p1), and have O(st+1 ) ⊆ O(st+2 ) w.r.t. their outgoings.

Definition 10 (RDF Equality [=RDF ]). TwoRDF graphsGi andGj are equal,
Gi =RDF Gj, if all the statements ofGi occurs inGj and vice versa. Similarly, two
RDF files Fi and Fj are equal, Fi =RDF Fj, if: (1) the corresponding graphs are
equal, and (2) Fi has the same encoding format (ei) as Fj in (ej) �

4.2 Normalization Rules

In this section, we provide a set of rules to resolve the problems listed in Sect. 3.

Solving Logical Redundancies. Given an input RDF graph G, logical redun-
dancies related to node duplication, edge duplication and node/edge duplications
(presented in Sect. 3.1) can be eliminated from G by applying the following
transformation rules (proofs are provided in [15]):

Rule 1 - Statement Equality Elimination: It is designed to eliminate edge
duplications and/or node duplications using equality between statements. More
precisely, ∀st+i , st+j ∈ ST+(G) ∧ i 	= j, if st+i =st st

+
j =⇒ remove st+j . Applying

this rule on G produces an RDF Graph G’ where G’ =RDF G.

Rule 2 - Statement Containment Elimination: It is designed to eliminate
edge duplications between IRIs or blank nodes in the outgoing statements, and
node duplications where the objects of extended statements are blank nodes and
linked to other outgoing statements). More precisely: ∀st+i , st+j ∈ ST+(G)∧i 	= j,
if st+j � st+i =⇒ remove st+j ∪O(st+j ). Applying Rule 2 on G produces another
RDF graph G’ where G’ =RDF G.

Solving Physical Disparities. Given an input RDF file F, physical disparities
related to namespace duplication, unused namespaces, and node order variation
(presented in Sect. 3.2) can be eliminated from F by applying the following
transformation rules:

Rule 3 - Namespace Duplication Elimination: It is designed to eliminate
namespace duplications along with corresponding namespace prefixes such as:
∀qni, qnj ∈ QN(F ) ∧ i 	= j, if qni.nsi = qnj .nsj =⇒ remove qnj ∧ replace
qnj .pxj by qni.pxi in (F ). Applying Rule 3 on F produces another equal RDF
file since duplicated qnj .nsj and its corresponding prefix qnj .pxj have been
removed, while replacing qnj .pxj by qni.pxi in the whole file.

Rule 4 - Unused Namespace Elimination: It is designed to eliminate the
unused namespaces8 with their respective prefixes such as: ∀qni.nsi ∈ NS+(F ),
if qni.nsi /∈ NS+(G) =⇒ remove qni. Applying Rule 4 on F produces another
equal file where unused qni.nsi and respective prefix pxi have been removed.
7 st+i , ui, pi, bni, and li represent corresponding extended statements, IRIs, predicates,

blank nodes, and literals.
8 An unused namespace is a namespace which is mention in the serialization file but

which is not use in any of the statements, i.e., it will not appear in the Graph.
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Rule 5 - Reordering: It is designed to solve the varying node order problem by
imposing a predefined (user-chosen) order on all statements of an RDF File F .
More formally: ∀st+i , st+j ∈ ST+(F ) =⇒ st+i <p̃ st+j where p̃ :< iorder, sortc >
is a tuple composed of an indexing order “iorder” and a sorting criterion “sortc”.
For iorder, we follow the six indexing schemes presented in [17] (SPO, SOP,
PSO, POS, OSP, OPS) since it is the combination of the three elements of
the statement (subject, predicate, object) in an RDF Description. For sortc, we
adopt asc and des to represent ascending and descending order respectively. The
default value for the parameter p̃ is < sop, asc > representing an ascending order
of statements w.r.t. their subjects / objects / predicates (sop). Applying Rule
5 on F produces an equal RDF file where all the statements have been ordered
following the (user-chosen) order type parameter p̃.

4.3 Normalization Properties

Our approach verifies the following properties characterizing the quality of the
normalization process. This corresponds to the notion of Information Reusability
discussed in existing studies9. Proofs are provided in [15].

Property 1 (Completeness). An RDF Description Di (graph or file) is said
to be complete regarding Dj if Di preserves and does not lose any information
in Dj, i.e., each resource, statement and namespace of Dj has a corresponding
resource, statement and namespace in Di •
Property 2 (Minimality). An RDF Description Di is said to be minimal if
all the resources, statements and namespaces of Di are unique (i.e., they do not
have duplicates in Di) and all the namespaces are used •
Property 3 (Compliance). An RDF File Fi is said to be compliant if it veri-
fies all the rules of the W3C standard in producing a valid file based on an RDF
Graph Gi, i.e., its structure remains compliant with RDF serialization standards
(e.g., RDF/XML) •
Property 4 (Consistency). An RDF Description Di is said to be consistent
if Di verifies the completeness, minimality and compliance properties to ensure
the data quality of the description •

4.4 Normalization Process

The inputs of our RDF normalization process are: (a) an RDF graph (logical rep-
resentation) or an RDF file (physical representation) to be normalized, and (b)
user parameters related to the RDF output form and prefix renaming, enabling
the user to tune the results according to her requirements (see Fig. 4). In the
following, we detail each step of the normalization process.
9 This is comparable to the notion of map function in [4] except that the authors do

not consider namespaces.
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Fig. 4. Architecture of our RDF normalization process

Logical Normalization. Algorithm 1 provides the pseudo-code to remove
redundancies from an RDF graph. It starts by erasing the statement redun-
dancies having IRIs or literals. Consequently, it removes the equal statements as
well as contained ones with duplicated blank nodes (bn) (and all the outgoings
O derived of the bn) following Definition 9.

Algorithm 1. Removing Redundancy
Require: st+[] //List of Extended Statements of the RDF Description

Ensure: st+[] //List of Extended Statements without duplication

1: N=st+.length(); //Number of Statements in the list
2: for i=1, i ≤ N, i++ do
3: for j=i+1, j ≤ N, j++ do
4: if st+[i].to = “IRI” or st+[i].to = “Literal” and st+[i] =st st+[j] then

5: Remove st+[j]; // remove statement duplication following Rule 1
6: else
7: if st+[j].to = “bn” and st+[i].to = “bn” and st+[i].s = st+[j].s and st+[i].p = st+[j].p

and (st+[i] � st+[j] or st+[j] � st+[i]) then

8: Remove st+[j] and all its outgoings // remove blank node duplication - Rule 2
9: else
10: if st+[i].o = st+[j].o then

11: Remove st+[j] // remove statement duplication following Rule 1

Physical Normalization. It is divided into three components based on the
types of physical disparities being processed:

1. Namespaces Controller (NC): it controls namespace duplication by
eliminating the redundancies (Rule 3) and the unused namespaces (Rule
4) in the RDF File. The input of this component is the prefix renaming
parameter, which allows to customize the renaming of the prefixes while
providing a unique way to normalize them.

2. Sorting Process (SP): Rule 5 establishes the node order variation, to
have a unique specification of the statements in the output serialization. It
considers the parameter p̃ :< iorder, sortc > given by the user according to
the targeted applications.

3. Formatting Process (FP): it allows to: (a) choose a specific form for
the output RDF file, (b) manage the variety of blank node serializations,
and (c) manage the datatypes and the languages. Our current solution
allows three different output forms (other forms could be devised based on
user/application requirements):
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Flat: it develops each RDF description one by one as a single declaration,
i.e., each subject has one declaration in the file.

Compact: it nests the RDF description, i.e., each description may have
another description nested in its declaration.

Full compact: dedicated to RDF/XML format, it nests the RDF description,
uses the ENTITY XML construct to reduce space by providing an abbrevia-
tion for IRIs10, reuses the variables in the RDF file, and uses attributes instead
of properties for the blank node serialization.
Providing different output types is necessary to satisfy the requirements
of different kinds of RDF-based applications (e.g., compact representations
are usually of interest to human users when running RDF queries [4], yet
less compact/more structured representations could be useful in automated
processing, such as in RDF annotation recommendation [12]).

5 Experimental Evaluation

5.1 Experimental Environment

An online prototype system: RDF2NormRDF 11, implemented using PHP and
Java, was developed to test, evaluate and validate our RDF Normalization app-
roach. It was used to perform a large battery of experiments to evaluate: (i) the
effectiveness (in performing normalization), and (ii) the performance (execution
time) and storage space of our approach in comparison with its most recent
alternatives. To do so, we considered three large datasets: (i) Real DS made of
real RDF files from LinkedGeoData, (ii) Syn DS1 made of synthetic RDF files
generated from the real dataset by including additional random logical redun-
dancies and physical disparities, and (iii) Syn DS2 consisting of a variation of
Syn DS1 files including more heterogeneity (more duplications and disparities)
than Syn SD1 (cf. Table 1).

Table 1. Features of files in each dataset

Datasets
Features Size

kb
IRIs BNs Lit. St BN

Dup.
Lit.
Dup.

St
Dup.

Log.
Red. %

Ns
Dup.

Non-used
Ns

Phys.
Dis. %

Real DS
Max 7.2 9 0 40 77 0 34 63 77 7 8 55
Min 2.8 9 0 7 25 0 1 11 29 1 2 40
Avg 4.5 9 0 20 45 0 14 30 57 3 5 48

Syn DS1
Max 4.3 17 12 26 63 3 7 18 69 4 2 78
Min 0.5 2 1 3 5 0 0 0 0 0 0 0
Avg 2.2 6 6 14 30 2 5 12 32 2 1 60

Syn DS2
Max 48.6 47 129 320 784 123 307 753 98 126 3 98
Min 0.5 2 1 3 5 0 0 0 0 0 0 0
Avg 7.9 6 19 50 116 16 43 98 64 14 2 70

Experiments were undertaken on an Intel�Core(TM) i7 - 2600 + 3.4 GHz
with 8.00 GB RAM, running a MS Windows 7 Professional OS and using a Sun
JDK 1.7 programming environment.
10 http://www.w3.org/TR/xml-entity-names/.
11 Available at http://rdfn.sigappfr.org/.

http://www.w3.org/TR/xml-entity-names/
http://rdfn.sigappfr.org/
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5.2 Experimental Results

We evaluated the effectiveness and performance of our method, called in this
section R2NR, in comparison with alternative methods, namely the JSON-LD
normalization approach [9,13] and the HDT technique [2].

Table 2. Goals/properties achieved in datasets after normalization processes

Goals/Properties Real DS Syn DS1 Syn DS2
JSON-LD HDT R2NR JSON-LD HDT R2NR JSON-LD HDT R2NR

Solving log. redundancies 57% 57% 57% 5% 32% 32% 12% 64% 64%
Solving phys. disparities 48% 48% 48% 60% 60% 60% 70% 70% 70%
Preserving completeness True True True True False True True False True
Preserving minimality True True True False False True False False True
Preserving compliance True True True True True True True True True
Preserving consistency True True True False False True False False True

1. Effectiveness: Results in Table 2 show that our method produces normal-
ized RDF files that fulfill all our normalization properties and goals, in com-
parison with JSON-LD and HDT which miss certain logical and physical
redundancies/disparities. On one hand, the JSON-LD method preserves
some of the redundancies, i.e., JSON-LD removes only 5 % over a 32 % aver-
age of logical redundancies in Syn DS1 and 12 % over a 64 % average of
logical redundancies in Syn DS2. However, it removes all logical redundan-
cies from the Real DS (all 57 % of logical redundancies and 48 % of physi-
cal disparities were removed). A careful inspection of JSON-LD shows that
it preserves blank node duplication and certain literal duplications, which
explains the results obtained with the Real DS (since it does not contain any
blank nodes). As a result, the JSON-LD approach does not satisfy the min-
imality and consistency properties. On the other hand, the HDT method
results show, at first glance, that it successfully eliminates all logical redun-
dancies and physical disparities. Nonetheless, a closer look at the results
revealed that the HDT technique actually preserves blank node redundan-
cies by assigning them different identifiers and/or representing them as IRIs.
Hence, the HDT method actually keeps the logical redundancies (and cor-
responding physical disparities) and does not consequently satisfy the com-
pleteness, minimality and consistency properties.

2. Performance : In addition, we verified our approach’ performance in terms
of loading time and storage space, in comparison with JSON-LD and HDT.

(a) Jena loading time: The complexity of our method comes down to
worst case O(N2) time where N represents the number of RDF statements
in the document (cf. [15]). Jena loading time results depicted in Figs. 5 and
6 confirm our approach’ polynomial (almost linear) time w.r.t. document
size. Also, results in Figs. 5.a and 5.b demonstrate that our method executes
faster than JSON-LD’s. Note that redundancy reduction using of JSON-LD
amounts to 5 % on average file size in Syn DS1, while our method reaches
an average 27 % size reduction ratio, which explains the reduction in loading
time. In addition, results in Figs. 6.a and 6.b show that our method remains
also faster than the HDT method. In fact, as shown in Table 2, the datasets
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Fig. 5. Average Jena loading time comparison with JSON-LD method

Fig. 6. Average Jena loading time comparison with HDT method

Fig. 7. Average reduction in datasets Syn DS1 and Syn DS2 w.r.t. the output format

generated by HDT do not have redundancies and disparities, yet contain
a larger number of IRIs with no (zero) BNs. This confirms that HDT is
transforming BNs into IRIs, which shows that RDF compression does not
always guarantee normalization. Note that we are currently investigating
this issue in more details in a dedicated experimental study.

(b) Storage: Neither JSON-LD nor HDT methods provide parameters to
customize output format requirements as we do. They work with their pre-
defined outputs, i.e., the JSON-LD method with N-triples, and the HDT
method with Bitmap Triples (BT), in comparison with our method which
handles the standard formats and thus allows developing different outputs
w.r.t the target application. Figure 7 shows that our normalization method
improves (reduces) the size of the RDF files in all formats of the datasets
processed by JSON-LD and HDT methods.
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6 Conclusion

We proposed here an RDF normalization method RDF2NormRDF able to: (i)
preserve all the information in RDF descriptions, (ii) eliminate all the logical
redundancies and physical disparities in the output RDF description, (iii) estab-
lish a unique specification of the statements in the RDF output description, and
(iv) consider user parameters to handle the application requirements. To our
knowledge, this is the first attempt to study and integrate RDF normalization in
two aspects: logical redundancies and physical disparities. Understanding that
the presence of logical redundancies in the RDF descriptions causes a heavy
impact in the storage and processing of information, our theoretical proposal
and experimental evaluation showed that our approach yields improved nor-
malization results with respect to existing alternatives. Ongoing works include
exploiting semantic normalization to improve, not only the structure of RDF
descriptions, but also their information content (as IRIs, blank nodes, and liter-
als). Future directions also include the semantic disambiguation of RDF literals
and IRIs.
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