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Abstract. Referential integrity is one of the three inherent integrity
rules and can be enforced in databases using foreign keys. However, in
many real world applications referential integrity is not enforced since
foreign keys remain disabled to ease data acquisition. Important applica-
tions such as anomaly detection, data integration, data modeling, index-
ing, reverse engineering, schema design, and query optimization all ben-
efit from the discovery of foreign keys. Therefore, the profiling of foreign
keys from dirty data is an important yet challenging task. We raise the
challenge further by diverting from previous research in which null mark-
ers have been ignored. We propose algorithms for profiling unary and
multi-column foreign keys in the real world, that is, under the different
semantics for null markers of the SQL standard. While state of the art
algorithms perform well in the absence of null markers, it is shown that
they perform poorly in their presence. Extensive experiments demon-
strate that our algorithms perform as well in the real world as state
of the art algorithms perform in the idealized special case where null
markers are ignored.
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1 Introduction

Motivation. Domain, entity, and referential integrity form the three inher-
ent integrity constraints in relational database systems [5]. Entity integrity is
enforced by primary keys to ensure that entities of an application domain are
uniquely represented within a database [12]. Referential integrity is enforced by
foreign keys to ensure that the intrinsic links between entities of an application
domain are correctly represented within a database [12]. In the TPC-C database,
the Order table contains the foreign key o c id, o d id, o w id, which references
the primary key c id, c d id, c w id of the Customer table. The primary key
uniquely identifies a customer c id within a district c d id of a warehouse c w id.
The foreign key references the unique customer in a district of a warehouse who
placed the order. Primary and foreign keys are fundamental building blocks of
database system, and are indispensable for most database applications [5,12].

In practice, designers fail to specify primary and foreign keys for various
reasons. For example, they do not comprehend well enough the intrinsic links
between data in the application domain, it is infeasible to enforce integrity due
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to inconsistencies arising from data integration or database evolution over time,
or because integrity enforcement will inhibit data acquisition [17]. Databases at
enterprise level frequently contain hundreds of tables and thousands of columns,
and are often insufficiently documented. In such situations it difficult to identify
foreign keys. As a consequence, the discovery of primary and foreign keys is an
important yet challenging core activity of data profiling [13]. This is due to the
large number of candidates and the fact that the given data source may not
even satisfy the meaningful primary and foreign keys; since these are not always
enforced. Previous work on profiling primary and foreign keys has exclusively
focused on purely relational databases, in which null markers are treated naively
as any other domain value [17]. In the real world, null markers occur frequently
and the SQL standard recommends a designated treatment for them.

Goal. This background motivates our objective to establish algorithms that effi-
ciently profile unary and multi-column foreign keys from dirty and incomplete
data. Efficiency refers to the following factors: (i) there should be a different
algorithm for each of the semantics for foreign keys as proposed by the SQL
standard, i.e. simple, full, and partial; (ii) the precision and recall of the algo-
rithms should be similar to those of the state of the art algorithm for the idealized
special case in which null markers are treated naively, and (iii) the profiling time
of our algorithms should be similar to that of the state of the art algorithm.

Key Idea. Let X denote the sequence of distinct foreign key columns on table
R1 and Y the equal-length sequence of distinct primary key columns on R2.
Then we write R1[X] ⊆ R2[Y ] to denote the foreign key on R1. For example,
Order[o c id, o d id, o w id] ⊆Customer[c id, c d id, c w id] denotes the for-
eign key on Order from the TPC-C benchmark. For the projection r[Z] of a
table instance r over table R onto the columns in sequence Z over R, the inclu-
sion coefficient between r1[X] and r2[Y ] has been defined as σ(r1[X], r2[Y ]) =
|r1[X] ∩ r2[Y ]|/|r1[X]| where |S| denotes the number of elements in S. Intu-
itively, the inclusion coefficient σ(r1[X], r2[Y ]) measures the proportion of values
in r1[X] that are also in r2[Y ]. The higher σ(r1[X], r2[Y ]) the more likely it is
that R1[X] ⊆ R2[Y ] forms a true foreign key. However, the inclusion coefficient
has only been defined for relations in which no null markers occur [14,17]. The
SQL standard recommends three different options for the semantics of foreign
keys, which can be declared in the Match clause as simple, full, and partial [12].
The semantics differ in how they treat tuples with occurrences of Null in for-
eign key columns. Simple semantics regards such tuples as non-offensive, while
full semantics regards them as offensive. Finally, partial semantics regards tuples
t ∈ r1[A1, . . . , An] only as offensive if there is no tuple t′ ∈ r2[B1, . . . , Bn] that
subsumes t, i.e., where t[Ai] = t′[Bi] on all attributes Ai where t[Ai] �= Null. We
say that a tuple t is X-total on a sequence X of distinct attributes, if t[A] �= Null
on all A ∈ X. Furthermore, we call the tuple t over table R total if it is R-total,
and a relation r over R total if all tuples in r are total. We thus obtain the
notions of simple σs, full σf , and partial inclusion coefficients σp by defining
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Table 1. TPC-C foreign key and its different inclusion coefficients

– r1[X] ∩s r2[Y ] := {t ∈ r1[X] | if t is X-total, then t ∈ r2[Y ]},
– r1[X] ∩f r2[Y ] := {t ∈ r1[X] | t is X-total and t ∈ r2[Y ]}, and
– r1[X] ∩p r2[Y ] := {t ∈ r1[X] | ∃t′ ∈ r2[Y ] such that t is subsumed by t′}.

Indeed, when r1[X] and r2[Y ] are total relations, simple σs, full σf , and par-
tial inclusion coefficients σp all coincide with the standard inclusion coefficient.

Example 1. For illustration consider the foreign key FK Order[o c id, o d id,
o w id]⊆Customer[c id, c d id, c w id] of the TPC-C schema. Table 1 shows
sample data that violates the foreign key under all three semantics, since the fifth
tuple - which is total - is not present in Customer. An intriguing question is if
FK can still be discovered as a good foreign key candidate. For total relations
this question has been answered affirmatively [17], but our data features Null.

Indeed, ∩f consists of only four tuples since full semantics regards incomplete
tuples as offensive, ∩s consists of nine tuples since simple semantics regards
incomplete tuples as non-offensive, and ∩p consists of eight tuples since the
fourth and fifth Order tuples are not subsumed by any Customer tuple. ��

Example 1 illustrates that the three null marker semantics, proposed by the
SQL standard, require different techniques to profile foreign keys.

Contributions. Firstly, we demonstrate that current methods for foreign key
profiling over complete data are not suitable for incomplete data. These methods
already exhibit poor precision and recall when few null markers occur. Secondly,
based on the recommended semantics of foreign keys by the SQL standard, we
propose three notions of inclusion coefficients. Each notion leads to a different
algorithm for profiling SQL foreign keys in dirty and incomplete data. We focus
on foreign keys that reference a primary key, the most common case in practice.
Thirdly, experiments with benchmark data demonstrate that our algorithms for
simple and partial semantics perform as well for dirty and incomplete data as
the current state of the art algorithm performs in the idealized special case
where incomplete data is absent. Our results for precision and recall are robust
under different rates of incompleteness. The penalty for sustaining strong profil-
ing results for dirty and incomplete data is only marginal when comparing our
profiling time to that of the state of the art for complete data.
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Organization. In Sect. 2 we recall the three semantics the SQL standard pro-
poses for foreign keys. Our profiling algorithms are proposed in Sect. 3. The
algorithms are evaluated in Sect. 4. Their combination with schema-driven tech-
niques is evaluated in Sect. 5. Related work is discussed in Sect. 6 before we
conclude and comment on future work in Sect. 7.

2 Referential Integrity and the SQL Standard

Inclusion dependencies, and foreign keys in particular, are referential integrity
constraints that enforce the intrinsic links between data items of an application
domain within a database system [8,11]. An inclusion dependency (IND) over
a database schema R is an expression of the form R1[X] ⊆ R2[Y ], where R1,
R2 are relation schemata of R, and X and Y are equal-length sequences of
distinct columns from R1 and R2, respectively. Having X = f1, . . . , fn and Y =
k1, . . . , kn, the inclusion dependency holds in the given database over R if for
every tuple t in the relation over R1 there is some tuple t′ in the relation over R2

such that t[fi] = t′[ki] for 1 ≤ i ≤ n. An inclusion dependency R1[X] ⊆ R2[Y ]
is a foreign key if Y forms a key of R2 [11].

Match Options to Handle Nulls. An exception to the semantics of foreign
keys are occurrences of the null marker Null. If some foreign key column features
an occurrence of Null, then the semantics of a foreign key is defined by the
Match clause of the SQL standard [12]. Available options are full, simple and
partial, each proposing different ways to handle occurrences of Null.

Under full semantics, the foreign key R1[f1, . . . , fn] ⊆ R2[k1, . . . , kn] is sat-
isfied if every tuple t ∈ r1 over R1 is {f1, . . . , fn}-total and there is some tuple
t′ ∈ r2 over R2 such that t[fi] = t′[ki] for all i = 1, . . . , n. Hence, full semantics
does not permit any occurrences of Null on any of the foreign key columns.

Under simple semantics, the foreign key R1[f1, . . . , fn] ⊆ R2[k1, . . . , kn] is
satisfied if for every tuple t ∈ r1 over R1, either t[fi] = Null for some i ∈
{1, . . . , n}, or there is some tuple t′ ∈ r2 over R2 such that t[fi] = t′[ki] for all
i = 1, . . . , n. Hence, simple referential integrity is never violated by tuples that
are partially defined on the foreign key columns.

Under partial semantics, the foreign key R1[f1, . . . , fn] ⊆ R2[k1, . . . , kn] is
satisfied if for every tuple t ∈ r1 over R1 there is some tuple t′ ∈ r2 over R2

such that t[f1, . . . , fn] is subsumed by t′[k1, . . . , kn]. Hence, partial referential
integrity may also be violated by tuples that are partially defined on the foreign
key columns. It can be understood as a compromise that balances the pessimistic
full semantics and the optimistic simple semantics.

In Table 1, only tuples 1, 3, 6, and 8 of the Order table satisfy full semantics,
while all tuples except for tuple 5 satisfy simple semantics, and all tuples except
for tuples 4 and 5 satisfy partial semantics.

3 Profiling Foreign Keys from Dirty and Incomplete Data

We propose two-step algorithms for profiling full, simple, and partial foreign keys
from dirty and incomplete data. In phase one, we apply full, simple, and partial
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inclusion coefficients to identify good candidates for foreign keys. In phase two,
a randomness test validates whether the distribution of the foreign key values is
similar to that of the key values.

Inclusion Coefficients for Incomplete Data. The first challenge is to find
reasonable candidates from data that may violate meaningful foreign keys. Sim-
ilar to [2,6,17], a foreign key is a candidate when its inclusion coefficient meets
a user-defined threshold θ. We introduce three different inclusion coefficients,
resulting from the SQL standard semantics for null markers.

Example 2. When θ = 0.8, 20 % inconsistencies in the given data are consid-
ered acceptable. The simple and partial coefficients of the foreign key FK from
Example 1 meet θ, but the full inclusion coefficient does not. ��

Exact computations of inclusion coefficients are infeasible for big data sizes,
so we approximate them by bottom-k sketches [17]. A bottom-k sketch consists
of those values of a given data set that have the k smallest ranks assigned to
them by a hash function. For a bottom-k sketch of a multi-column key, the hash
function is applied to the concatenation of the values on each column [17].

Algorithm 3.1. Discovery(C,T,Pu,Pm, θ, O)

main

for all C ∈ C : Ĉ ← BottomK[C]
for all P = {C1, . . . , Cn} ∈ (Pu ∪ Pm)

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

for p ← 1 to n

do

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

for all Ĉf ∈ C

do

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ :=

{
output (Inclusion-S(Ĉf , Ĉp)), if O = s or O = p

output (Inclusion-F(Ĉf , Ĉp)), if O = f
if σ ≥ θ

then

{
Fu ← (Cp, Cf ), if n = 1
S[P, Cp] ← Cf , if n > 1

for all P = {C1, . . . , Cn} ∈ Pm

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for all T ∈ schema
do Fm ← ({{C′

1, . . . , C′
n}|C′

i ∈ S[P, Ci] ∩ T}, P )
for all F = ({C′

1, . . . , C′
n}, P ) ∈ Fm

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̂ ← BottomK[F ]

P̂ ← BottomK[P ]

σ :=

⎧
⎨

⎩

output (InclusionS(F̂ , P̂ )), if O = s

output (InclusionF(F̂ , P̂ )), if O = f

output (InclusionP(F̂ , P̂ )), if O = p

if σ(F̂ , P̂ ) ≥ θ
then Fm ← (F, P )

return (Fu ∪ Fm)

Algorithm 3.1 shows the pseudo-code of our proposed algorithm. Like in [17]
we assume that a set of unary (Pu) and multi-column (Pm) primary keys has
been obtained already. C and T, respectively, refer to the set of columns and
tables in the given schema. The option O for the Match clause of the SQL
standard are denoted by f for full, s for simple, and p for partial. Ĉ refers to the
bottom-k sketch of column C. For O ∈ {f , s,p}, Inclusion-O(F̂ , P̂ ) computes
an approximation of the full, simple, or partial inclusion coefficient by counting
the number of foreign key tuples in the current bottom-k sketch F̂ that meet
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the requirements of full, simple, or partial semantics, respectively, and dividing
this number by the total number of foreign key tuples in F̂ . If fj denotes the
jth foreign key tuple in F̂ , then fj meets the requirements of (i) full semantics,
when fj [C ′] �= Null for all columns C ′ and fj occurs in P̂ ; (ii) simple semantics,
when either fj [C ′] = Null for some column C ′ or fj occurs in P̂ ; and (iii) partial
semantics, when there is some p ∈ P̂ that subsumes fj .

Algorithm 3.1 starts by profiling unary inclusion dependencies as in [6,17].
The novel idea is to profile foreign keys under different SQL semantics. For unary
candidates, simple and partial semantics coincide. Thus, Inclusion-S computes
unary inclusion coefficients under simple and partial semantics.

All candidates for unary inclusion dependencies are stored in memory for
profiling multi-column foreign keys. If a unary inclusion dependency references
some P ∈ Pu, it is stored as a unary foreign key in Fu. If there is some multi-
column primary key, Algorithm 3.1 calculates the inclusion coefficient for a set of
unary inclusion dependencies which occur in one table and pair-wisely reference
the columns of this primary key. Finally, all pairs (F, P ) which pass the inclusion
test are stored in Fm. Algorithm 3.1 returns a set Fu ∪ Fm of unary and multi-
column candidate foreign keys.

Example 3. Consider the TPC-C data set from Example 1 and a threshold of
θ = 0.9. Algorithm 3.1 calculates inclusion coefficients for unary candidates first:

|Order[o c id, o d id, o w id]| σp σs σf

O[o c id] ⊆ C[c id] 5 1 1 0.9

O[o d id] ⊆ C[c d id] 5 1 1 0.9

O[o w id] ⊆ C[c w id] 4 1 1 0.75

FK 10 0.8 0.9

In particular, σf (o w id, c w id) = 0.75 < θ, which means this unary inclu-
sion dependency does not meet the requirements of full semantics. Therefore,
our FK Order[o c id, o d id, o w id] ⊆ Customer[c id, c d id, c w id] is not
further considered under full semantics. Final results show that this foreign key
is profiled under simple but not under partial semantics, since σp = 0.8 < θ. ��
Testing Randomness on Dirty and Incomplete Data. The randomness
test from [14,17] checks if the distinct values of the referencing column set X
have the same distribution as the distinct values in the referenced column set Y .
This test is good for eliminating false positives [14,17]. For complete data the
Earth Mover’s Distance (EMD) represents the least amount of work required to
move the set of values in the candidate foreign key to the set of values in the
referenced primary key. The smaller the EMD the closer the distributions for
the candidate foreign and primary key values. We extend the randomness test of
[14,17] from complete to incomplete data. Our method measures the likelihood of
the candidate pair (F, P ) dependent on either full, simple, or partial semantics.

Algorithm 3.2 returns a set of candidates ranked in increasing order of their
EMDs. Firstly, Algorithm 3.2 applies the extended randomness test to further
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prune the candidates found by Algorithm3.1. As in [17], we apply quantile his-
tograms to approximate EMDs. The histogram is calculated by a user-defined
quantile constant for every column of a primary key. For multi-column keys, a
quantile grid is constructed from the quantile histogram of each column. The grid
for a candidate foreign key is constructed by populating the associated primary
key grid with the values in its sketch. The approximate EMD is computed from
the distance between the quantile grids of primary and foreign key. We empower
this method to deal with real world data by imputing null markers with actual
domain values that are consistent with simple and partial semantics, respec-
tively. The procedure Simple replaces the incomplete bottom-k sketch F̂ of the
given foreign key F by the completed sketch F̂total in which Null occurrences
in F̂ have been imputed with randomly chosen domain values from the refer-
enced primary key sketch P̂ . This is consistent with the simple semantics. The
procedure Partial imputes Null occurrences in subsumed foreign key tuples
t with randomly chosen domain values from tuples of the primary key sketch
that subsume t. This is consistent with the partial semantics. Based on the com-
pleted sketches, Algorithm 3.2 proceeds by approximating the EMD of candidate
foreign keys based on quantiles of F̂total.

Algorithm 3.2. Randomness Test(C,T,Pu,Pm, θ, O)

procedure Partial(F̂ , P̂ )
Ftotal ← ∅
for all j ← 1 to |F̂ |

do

⎧
⎨

⎩

if {C′
i ∈ C′|f̂j [C

′
i] = Null} 
= ∅ and ∃p̂ ∈ P̂ (p̂ subsumes f̂j)

then f̂j [C
′] ← p̂[C]

Ftotal ← Ftotal ∪ {f̂j [C
′]}

return (Ftotal)

procedure Simple(F̂ , P̂ )
Ftotal ← ∅
for all j ← 1 to |F̂ |

do

⎧
⎨

⎩

if ∃C′
i(f̂j [C

′
i] = Null)

then f̂j [C
′] ← p̂[C]

Ftotal ← Ftotal ∪ {f̂j [C
′]}

return (Ftotal)

main
Fu ∪ Fm ← output (Discovery(C,T,Pu,Pm, θ, O))
for all P = {C1, . . . , Cn} ∈ {Fm, Pm} ∪ {Fu, Pu}

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q[P̂ ] ← Quantile[P̂ ]
for all F ∈ {Fm, Pm}

do

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F̂total :=

⎧
⎨

⎩

output (Partial(F̂ , P̂ )), if O = p

output (Simple(F̂ , P̂ )), if O = s

F̂ , if O = u

Q[F̂total] ← Quantile[F̂total]

L ← (Fm, EMDn(Q[F̂total], Q[P̂ ]))
for all F ∈ {Fu, Pu}
do

{
Q[F̂ ] ← Quantile[F̂ ]

L ← (Fu, EMDn(Q[F̂ ], Q[P̂ ]))
return (L)

Example 4. Applying Partial from Algorithm 3.2 to Example 1 may yield the
following completed sketch: {(1,2,1), (1,2,2), (3,3,3), (Null,5,3), (2,3,2), (3,6,3),



236 M. Memari et al.

(4,2,2), (4,9,2), (2,5,2)}. An alternative is {(1,2,1), (4,2,2), (3,3,3), (Null,5,3),
(2,3,2), (3,6,3), (2,5,1)}. In each completion, all partial tuples are replaced by
complete tuples that subsume them. Tuple (Null,5,3) is not subsumed by any
primary key tuple and violates partial semantics. Applying Simple produces
a completed sketch in which all Null occurrences of (Null,2,2), (Null,5,3),
(3,Null,3), (4,Null,2), (2,5,Null) are imputed by random domain values from
the referenced primary key, for example by (1,2,2), (3,5,3), (4,5,2), (2,5,3). Even
(Null,5,3) is replaced, in consistency with simple semantics. ��

4 Evaluation of Data-Driven Profiling Techniques

We evaluate the data-driven profiling of foreign keys from real world data sets.

Characteristics of Experiments. Our algorithms are evaluated on two bench-
mark databases TPC-C and TPC-H1. The characteristics of the data sets are
summarized as follows:

Data set #tables #rows Data set size #unary FKs #multi-column FKs

TPC-C 9 2.41M 0.39G 3 7

TPC-H 9 9.42M 1.43G 7 1

Algorithms were implemented in C++ and run on an Intel Core i5 CPU
3.3 GHz with 8 GB RAM. The operating system was 64-bit Windows 7 Enter-
prise, Service pack 1. The database management system we used was MySQL
version 5.5. Our algorithms are evaluated in terms of accuracy and time with
respect to increasing levels of incompleteness in the data, starting with com-
plete data. We use three well-known measures of accuracy: precision, recall and
f-measure. For each data set, we consider the constraints which are explicitly
declared in the schema as the golden standard for determining the accuracy of
our algorithms. This ensures that we can compare our results to those of [17] who
followed the same approach. In TPC-C, there are three single-column, three 2-
column (Cu ⊆ Di, Hi ⊆ Di, OL ⊆ St) and four 3-column (Hi ⊆ Cu, Or ⊆ Cu,
OL ⊆ Or, NO ⊆ Or) foreign keys (FKs). In TPC-H, 7 of the 8 foreign keys are
single-column and the only composite foreign key has 2-columns. We randomly
generated null marker occurrences in the foreign key columns. Starting from the
given complete data set, null marker occurrences were randomly generated for
foreign key columns, and in different percentages of tuples to pinpoint the impact
of different levels of incompleteness on our measures. The names of the result-
ing data sets originate from the original data set augmented by the percentage
of nullified tuples. For example, TPC-C2 results from TPC-C where 2 % of the
tuples had null markers in their foreign key columns.

Profiling Accuracy and Time. We applied Algorithm3.2 to the benchmark
data sets with increasing levels of incompleteness under simple, partial and full
1 http://www.tpc.org/tpcc/ and http://www.tpc.org/tpch/.

http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/
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Table 2. Data profiling of SQL foreign keys from incomplete benchmark variants

semantics, respectively. As in [17] we applied θ = 0.9, bottom-256 sketches, 256-
quantiles for unary, and 16-quantiles for multi-column foreign key candidates.
The results are summarized in Fig. 1 and Table 2. Here, tp denotes the number
of true positives, fp the number of false positives, T3.2 the overall time of run-
ning Algorithm 3.2 in hours and minutes (hr:mn), and T3.1 indicates the time
spent on Algorithm 3.1 as part of running Algorithm3.2. Partial-PK denotes an
optimization technique discussed in Sect. 5.

Our first observation is that on the original data sets TPC-C and TPC-H,
respectively, all accuracy measures agree under all 3 different semantics. The
sweet spot for balancing precision and recall is given by the top-20 % ranked
foreign keys discovered from TPC-C, which yield an f-measure of 0.36. For
TPC-H, the f-measure is around 0.4 when the sweet spots of top-55 % or -60 %
ranked foreign keys are considered, see Table 3.

Our second observation is that full semantics is inadequate for SQL data
profiling of foreign keys. Since this is the semantics applied by [17], their good
performance for complete data does not carry over to incomplete data. The poor
performance is more pronounced for TPC-C, since there are more multi-column
foreign keys. Just having null markers present in 2 % of all tuples, lowers the recall
for full semantics from 0.9 to 0.3. Introducing null markers in 5 % of all tuples
brings the recall down to 0.1, and this foreign key no longer features amongst
the top-25 %. On TPC-H with 7 unary foreign keys and 1 binary foreign key, the
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TPC-C: TOP-20% TPC-C: TOP-25%

TPC-H: TOP-55% TPC-H: TOP-60%

Fig. 1. F-measure: TPC-C and TPC-H

f-measure under full semantics also declines as soon as null markers occur. In
particular, the binary foreign key is never profiled under full semantics on any
data set with some level of incompleteness.

Our third observation is that both simple and partial semantics perform very
well in profiling foreign keys. Their measures of accuracy remain robust under
increasing levels of incompleteness and are competitive with the corresponding
measures on complete data, as Fig. 1 and Table 2 show.

Our final observation is that the robustness of simple and partial semantics
under incomplete data comes at a very reasonable increase in profiling time,
when compared to the state of the art algorithm for complete data. It is natural
that the profiling time increases with the recall. However, spending 3hr:47mn -
which is already the worst case - instead of 2hr:44mn is well worth the increase
in accuracy, considering the purpose of data profiling.

Comparing Precision of Simple and Partial Semantics. While simple
semantics outperforms partial semantics in recall, the roles change for precision
and f-measure. Table 3 shows for each data set and semantics, the lowest percent-
age that captures all discovered foreign keys from the golden standard. Hence,
partial semantics ranks meaningful foreign keys higher.
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Table 3. Partial semantics ranks meaningful foreign keys higher

Partial Simple Full

tp X% EMD tp X% EMD tp X% EMD

TPC-C2 9 25 0.026 9 29 0.028 3 37 0.004

TPC-C5 9 31 0.04 9 36 0.047 1 27 0.033

TPC-C10 8 35 0.05 8 37 0.05 1 32 0.001

TPC-C25 9 33 0.059 9 37 0.07 1 29 0.001

TPC-C50 9 35 0.05 9 36 0.05 1 29 0.001

TPC-C75 7 36 0.054 9 38 0.062 1 38 0.001

Table 4. Semantics with lower EMD for TPC-C multi-column foreign keys

TPC-C2 TPC-C5 TPC-C10 TPC-C25 TPC-C50 TPC-C75

Cu ⊆ Di S P P S P P

Hi ⊆ Di S S P P S P

OL ⊆ St S S - S S S

Hi ⊆ Cu P P P P P P

Or ⊆ Cu P P P P P P

OL ⊆ Or P P S P S P

Table 5. Profiling benchmarks with different sample sizes under partial semantics

Table 4 shows for each of the meaningful multi-column foreign keys of
TPC-C, which of simple (S) and partial (P) semantics resulted in a lower EMD.
In about two thirds of the cases (23 out of 35) this was partial semantics.

Size of Sketches. As in [17] we observe that bottom-256 sketches are a sweet
spot for the experiments. Bottom-128 sketches lead to drops in recall, and
bottom-k sketches for k = 512, 1024, 10K lead to minor improvements in recall,
more false positives, and higher profiling time, see Table 5 for example.

Other Experiments. We have applied our algorithms to the CM data set about
employer costs for employee compensation from US government data http://
catalog.data.gov/. It consists of 11 tables featuring 11 one-attribute foreign keys
and two 3-column foreign keys. On total data, we obtain a recall of 0.85 and

http://catalog.data.gov/
http://catalog.data.gov/
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Table 6. TPC-C and TPC-H with partial-PK, 256-bottom sketch

Partial Partial-PK

tp fp T a
3.1 Recall F-measureb tp fp T3.1 Recall F-measureb

TPC-C75 7 145 1:05 0.7 0.25 9 152 1:07 0.9 0.28

TPC-H75 4 38 1:06 0.5 0.24 5 41 1:06 0.63 0.28
ahr:mn: Running time (hour & minute) of Algorithm 3.1
bIn top-20 % for TPC-C and top-60 % for TPC-H

precision of 0.3 under all semantics. Adding 2 %, 5 % and 10 % null values, respec-
tively, simple and partial semantics maintain these rates, while full semantics
drops to a recall of 0.31 and precision of 0.2.

5 Optimization Strategies

We propose and evaluate two strategies for improving our algorithms.

Increasing Recall. Recall under partial semantics can be improved to the level
of recall for simple semantics. Under partial semantics, our algorithm is looking
for a matching reference in the bottom-256 sketch of the primary key. If a match
does not exist in the sketch, it may still exist in the whole table. Referring to
this strategy as Partial-PK, Fig. 1 shows its increase in f-measure in comparison
to scanning only the bottom-256 sketch of the referenced primary key. Moreover,
Table 6 gives an indication of the very minor penalty in profiling time, resulting
from the presence of the index for the referenced primary key.

Schema-Driven Strategies. We add two schema-driven techniques leading to
significant improvements of our measures, as in [17].

The first technique concerns the golden standard. So far, it comprises only
those foreign keys that were explicitly specified in the benchmark documentation.
In reality, these foreign keys logically imply other foreign keys [3], which our cur-
rent algorithms treat (incorrectly) as false positives. On the TPC-C schema, for
example, the two foreign keys Order[o c id, o d id, o w id]⊆Customer[c id,
c d id, c w id] and Customer[c d id, c w id] ⊆District[d id,d w id] logically
imply the foreign key Order[o d id, o w id]⊆District[d id,d w id]. Adding
all implied foreign keys to the golden standard is more realistic and leads to an
improvement of our accuracy measures.

Our second technique applies a pruning strategy from [17] regarding the sim-
ilarity of column names. Finding good measures for string similarity in database
schemata is an open problem and can easily lead to false positives [17]. How-
ever, the documentation for the benchmark databases is extensive and explains
the naming conventions. For TPC-C, for example, we can apply string identity
after removing table name prefixes from column names. The resulting names are
identical only if the candidate is an implied foreign key.
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Adding these techniques to our algorithms results in a perfect precision score
of 1, and more than doubles our f-measure in comparison to applying the data-
driven algorithms only, see Fig. 2.

Fig. 2. F-measures after adding schema-driven techniques to TPC-C using the Top-
20 % of candidates on the left and the Top-25 % of candidates on the right

6 Related Work

Previous algorithms for profiling referential integrity constraints do not consider
incomplete data. The state of the art algorithm that considers dirty data is
presented in [17]. The authors established a randomness test that reduces a large
number of false positives and can profile foreign keys efficiently from complete
data. Our evaluation on the original TPC-C data set, without introducing null
markers, provides further evidence for the efficiency of those techniques [17],
which did not consider TPC-C despite its high number of multi-column foreign
keys compared to TPC-H and TPC-E.

State of the art algorithms for efficiently profiling uniqueness constraints are
described in [7,16]. Profiling inclusion dependencies is an effective pre-cursor for
profiling foreign keys [14,17]. In fact, the discovery of unary foreign keys from
unary inclusion dependencies has been studied by several authors [2,6,8,11].
Data summaries and random sampling, cliques, min-hash sketches and Jaccard
coefficient all constitute pruning techniques from previous work [2,4,6,9,17].
Lopes et al. [10] profile foreign keys from given SQL query workloads. Approx-
imate inclusion dependencies constitute a different popular approach to accom-
modate dirty data within the data profiling framework [2,6,17]. The profiling of
data quality semantics is important for big data [15].

7 Conclusion and Future Work

We have proposed the first algorithms for profiling foreign keys from dirty and
incomplete data. Our techniques target the three different semantics for null
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marker occurrences as proposed by the SQL standard. On complete data, all
three semantics coincide with the strictly relational semantics. Our detailed eval-
uation demonstrates several insights. Firstly, full semantics is not suitable for
profiling foreign keys from incomplete data, even when only a few null markers
occur. Secondly, our purely data-driven algorithms for simple and partial seman-
tics perform as well as the state of the art algorithm does for complete data.
Thirdly, the robustness of profiling with simple and partial semantics under dif-
ferent levels of incompleteness incurs very reasonable penalties in profiling time.
Finally, combining data- with schema-driven techniques optimizes performances
significantly, which is consistent with previous work on complete data.

In future work we will look at other strategies for imputing null markers
during EMD calculation. Identifying thresholds of inclusion coefficients that work
well for our profiling techniques is an interesting goal. We will also consider the
less frequently observed case in which null markers also occur in referenced
columns. Our preliminary observations suggest only marginal changes to the
overall trend we have described. The extension of our techniques to profiling
conditional foreign keys from dirty and incomplete data is an interesting goal
for data cleaning. So far, all approaches to this problem do not address dirty
data or different semantics for null markers [1].
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