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Abstract. Probabilistic databases address well the requirements of an
increasing number of modern applications that produce large collec-
tions of uncertain data. We propose probabilistic cardinality constraints
as a principled tool for controlling the occurrences of data patterns
in probabilistic databases. Our constraints help organizations balance
their targets for different data quality dimensions, and infer probabili-
ties on the number of query answers. These applications are unlocked
by developing algorithms to reason efficiently about probabilistic cardi-
nality constraints, and to help analysts acquire the marginal probability
by which cardinality constraints hold in a given application domain. For
this purpose, we overcome technical challenges to compute Armstrong
PC-sketches as succinct data samples that perfectly visualize any given
perceptions about these marginal probabilities.

Keywords: Data and knowledge visualization · Data models · Data-
base semantics · Management of integrity constraints · Requirements
engineering

1 Introduction

Background. The notion of cardinality constraints is fundamental for under-
standing the structure and semantics of data. In traditional conceptual model-
ing, cardinality constraints were already introduced in Chen’s seminal paper [3].
They have attracted significant interest and tool support ever since. Intuitively,
a cardinality constraint card(X) ≤ b stipulates for an attribute set X and a
positive integer b that a relation must not contain more than b different tuples
that all have matching values on all the attributes in X. For example, bank cus-
tomers with no more than 5 withdrawals from their bank account per month may
qualify for a special interest rate. Traditionally, cardinality constraints empower
applications to control the occurrences of certain data, and have applications in
data cleaning, integration, modeling, processing, and retrieval among others.

Example. Relational databases target applications with certain data, such as
accounting, inventory and payroll. Modern applications, such as data integration,
information extraction, scientific data management, and financial risk assessment
produce large amounts uncertain data. For instance, RFID (radio frequency iden-
tification) is used to track movements of endangered species of animals, such as
wolverines. Here it is sensible to apply probabilistic databases. Table 1 shows a
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Table 1. Probabilistic relationprobabilistic relation (p-
relation) over Track-
ing = {rfid, time, zone},
which is a probability dis-
tribution over a finite set
of possible worlds, each
being a relation. Data
patterns occur with dif-
ferent frequency in dif-
ferent worlds. That is,
different worlds satisfy
different cardinality con-
straints. For example, the
cardinality constraint c1 =
card(time, zone) ≤ 1 holds
in the world w1 and
{time, zone} is therefore
a key in this world, and
c2 = card(time, zone) ≤ 2 holds in the world w1 and w2. Typically, the like-
lihood of a cardinality constraint to hold in a given application domain, i.e.
the constraint’s degree of meaningfulness, should be reflected by its marginal
probability. In the example above, c1 and c2 have marginal probability 0.75
and 0.9, respectively, and we may write (card(time, zone) ≤ 1,≥ 0.75) and
(card(time, zone) ≤ 2,≥ 0.9) to denote the probabilistic cardinality constraints
(pCCs) that c1 holds at least with probability 0.75 and c2 holds at least with
probability 0.9.

Applications. PCCs have important applications. Data quality: Foremost, they
can express desirable properties of modern application domains that must accom-
modate uncertain data. This raises the ability of database systems to enforce
higher levels of consistency in probabilistic databases, as updates to data are
questioned when they result in violations of some pCC. Enforcing hard con-
straints, holding with probability 1, may remove plausible worlds and lead to an
incomplete representation. The marginal probability of cardinality constraints
can balance the consistency and completeness targets for the quality of an orga-
nization’s data. Query estimation: PCCs can be used to obtain lower bounds on
the probability by which a given maximum number of answers to a given query
will be returned, without having to evaluate the query on any portion of the
given, potentially big, database. For example, the query

SELECT rfid FROM Tracking WHERE zone=‘z2’ AND time=‘09’

asks for the rfid of wolverines recorded in zone z2 at 09am. Reasoning about our
pCCs tells us that at most 3 answers will be returned with probability 1, at most
2 answers will be returned with minimum probability 0.9, and at most 1 answer
will be returned with minimum probability 0.75. A service provider may return
these numbers, or approximate costs derived from them, to a customer, who can
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make a more informed decision whether to pay for the service. The provider,
on the other hand, does not need to utilize unpaid resources for querying the
potentially big data source to return the feedback.

Contributions. The applications motivate us to stipulate lower bounds on the
marginal probability of cardinality constraints. The main inhibitor for the uptake
of pCCs is the identification of the right lower bounds on their marginal probabil-
ities. While it is already challenging to identify traditional cardinality constraints
which are semantically meaningful in a given application domain, identifying
the right probabilities is an even harder problem. Lower bounds appear to be
a realistic compromise here. Our contributions can be summarized as follows.
(1) Modeling: We propose pCCs as a natural class of semantic integrity con-
straints over uncertain data. Their main target is to help organizations derive
more value from data by ensuring higher levels of data quality and assist with
data processing. (2) Reasoning: We characterize the implication problem of pCCs
by a simple finite set of Horn rules, as well as a linear time decision algorithm.
This enables organizations to reduce the overhead of data quality management by
pCCs to a minimal level necessary. For example, enforcing (card(rfid) ≤ 3,≥ 0.9),
(card(zone) ≤ 4,≥ 0.9) and (card(rfid, zone) ≤ 3,≥ 0.75) would be redundant
as the enforcement of (card(rfid, zone) ≤ 3,≥ 0.75) is already implicitly done by
enforcing (card(rfid) ≤ 3,≥ 0.9).

Table 2. PC-sketch of Table 1(3) Acquisition: For acquiring
the right marginal probabilities
by which pCCs hold, we show
how to visualize concisely any
given system of pCCs in the
form of an Armstrong PC-sketch.
Recall that every p-relation can
be represented by some PC-table.
Here, we introduce Armstrong
PC-sketches as finite semantic
representations of some possibly
infinite p-relation which satisfies every cardinality constraint with the exact mar-
ginal probability by which it is currently perceived to hold. Problems with such
perceptions are explicitly pointed out by the PC-sketch. For example, Fig. 2
shows a PC-sketch for the p-relation from Table 1, which is Armstrong for the
pCCs satisfied by the p-relation. The sketch shows which patterns of data must
occur in how many rows (represented in column card) in which possible worlds
(represented by the world identifiers in column ι). The symbol ∗ represents some
data value that is unique within each world of the p-relations derived from the
sketch. Π defines the probability distribution over the resulting possible worlds.
Even when they represent finite p-relations, PC-sketches are still more concise
since they only show patterns that matter and how often these occur.

Organization. We discuss related work in Sect. 2. PCCs are introduced in
Sect. 3, and reasoning tools for them are established in Sect. 4. These form the



Probabilistic Cardinality Constraints 217

foundation for computational support to acquire the correct marginal probabil-
ities in Sect. 5. We conclude and outline future work in Sect. 6. Due to lack of
space, all proofs have been made available in the technical report [16].

2 Related Work

Cardinality constraints are one of the most influential contributions conceptual
modeling has made to the study of database constraints. They were already
present in Chen’s seminal paper [3]. It is no surprise that today they are part
of all major languages for data and knowledge modeling, including UML, EER,
ORM, XSD, and OWL. Cardinality constraints have been extensively studied in
database design [4–9,12,14,15,18]. For a recent survey, see [19].

Probabilistic cardinality constraints card(X) ≤ b, introduced in this paper,
subsume the class of probabilistic keys [2] as the special case where b = 1.

For possibilistic cardinality constraints [10], tuples are attributed some degree
of possibility and cardinality constraints some degree of certainty saying to
which tuples they apply. In general, possibility theory is a qualitative approach
while probability theory is a quantitative approach to uncertainty. Our research
thereby complements the qualitative approach to cardinality constraints in [10]
by a quantitative approach.

Our contribution extends results on cardinality constraints from traditional
relations, which are covered by our framework as the special case where the
p-relation consists of only one possible world [1,6]. As pCCs form a new class
of integrity constraints, their associated implication problem and properties of
Armstrong p-relations have not been investigated before.

There is also a large body of work on the discovery of “approximate” business
rules, such as keys, functional and inclusion dependencies [13]. Here, approximate
means that almost all tuples satisfy the given rule; hence allowing for very few
exceptions. Our constraints are not approximate since they are either satisfied
or violated by the given p-relation or the PC-sketch that represents it.

3 Cardinality Constraints on Probabilistic Databases

Next we introduce some preliminary concepts from probabilistic databases and
the central notion of a probabilistic cardinality constraint. We use the symbol
N

∞
1 to denote the positive integers together with the symbol ∞ for infinity.

A relation schema is a finite set R of attributes A. Each attribute A is
associated with a domain dom(A) of values. A tuple t over R is a function that
assigns to each attribute A of R an element t(A) from the domain dom(A).
A relation over R is a finite set of tuples over R. Relations over R are also
called possible worlds of R here. An expression card(X) ≤ b with some non-
empty subset X ⊆ R and b ∈ N

∞
1 is called a cardinality constraint over R. In

what follows, we will always assume that a subset of R is non-empty without
mentioning it explicitly. A cardinality constraint card(X) ≤ b over R is said to
hold in a possible world w of R, denoted by w |= card(X) ≤ b, if and only if there
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are not b + 1 different tuples t1, · · · , tb+1 ∈ W such that for all 1 ≤ i < j ≤ b+1,
ti �= tj and ti(X) = tj(X).

A probabilistic relation (p-relation) over R is a pair r = (W,P ) of a finite
non-empty set W of possible worlds over R and a probability distribution P :
W → (0, 1] such that

∑
w∈W P (w) = 1 holds.

Table 1 shows a p-relation over relation schema Wolverine= {rfid,time,
zone}. World w2 satisfies the CCs card(rfid) ≤ 3, card(time) ≤ 3, card(zone) ≤ 4,
card(rfid, time) ≤ 3, card(rfid, zone) ≤ 3, and card(time, zone) ≤ 2 but violates
the CC card(time, zone) ≤ 1.

A cardinality constraint card(X) ≤ b over R is said to hold with probability
p ∈ [0, 1] in the p-relation r = (W,P ) if and only if

∑
w∈W,w|=card(X)≤b P (w) = p.

In other words, the probability of a cardinality constraint in a p-relation is the
marginal probability with which it holds in the p-relation. We will now introduce
the central notion of a cardinality constraint on probabilistic databases.

Definition 1. A probabilistic cardinality constraint, or pCC for short, over
relation schema R is an expression (card(X) ≤ b,≥ p) where X ⊆ R, b ∈
N

∞
1 and p ∈ [0, 1] . The pCC (card(X) ≤ b,≥ p) over R is said to hold in

the p-relation r over R if and only if the probability with which the cardinality
constraint card(X) ≤ b holds in r is at least p.

Example 1. In our running example over relation schema Wolverine, the p-
relation from Table 1 satisfies the set Σ of the following pCCs (card(rfid) ≤
3,≥ 1), (card(time) ≤ 3,≥ 1), (card(zone) ≤ 4,≥ 1), (card(time, zone) ≤ 2,≥
0.9), (card(rfid, time) ≤ 1,≥ 0.75), (card(rfid, zone) ≤ 2,≥ 0.75), as well as
(card(time, zone) ≤ 1,≥ 0.75). It violates the pCC (card(rfid, time) ≤ 1,≥ 0.9).

4 Reasoning Tools

When enforcing sets of pCCs to improve data quality, the overhead they cause
must be reduced to a minimal level necessary. In practice, this requires us to
reason about pCCs efficiently. We will now establish basic tools for this purpose.

Implication. Let Σ ∪{ϕ} denote a finite set of constraints over relation schema
R, in particular Σ is always finite. We say Σ (finitely) implies ϕ, denoted by
Σ |=(f) ϕ, if every (finite) p-relation r over R that satisfies Σ, also satisfies ϕ.
We use Σ∗

(f) = {ϕ | Σ |=(f) ϕ} to denote the (finite) semantic closure of Σ. For
a class C of constraints, the (finite) C-implication problem is to decide for a given
relation schema R and a given set Σ ∪{ϕ} of constraints in C over R, whether Σ
(finitely) implies ϕ. Finite implication problem and implication problem coincide
for the class of pCCs, and we thus speak of the implication problem.

Axioms. We determine the semantic closure by applying inference rules of

the form
premise

conclusion
. For a set R of inference rules let Σ �R ϕ denote the

inference of ϕ from Σ by R. That is, there is some sequence σ1, . . . , σn such
that σn = ϕ and every σi is an element of Σ or is the conclusion that results
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from an application of an inference rule in R to some premises in {σ1, . . . , σi−1}.
Let Σ+

R = {ϕ | Σ �R ϕ} be the syntactic closure of Σ under inferences by R.
R is sound (complete) if for every set Σ over every (R,S) we have Σ+

R ⊆ Σ∗

(Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if R is both sound and

complete. In the set P of inference rules from Table 3, R denotes the underlying
relation schema, X and Y form attribute subsets of R, b, b′ ∈ N

∞
1 , and p, q as

well as p + q are probabilities. Due to lack of space we omit the soundness and
completeness proof of the following theorem, see [16].

Table 3. Axiomatization P = {D, Z, U , S, B, P}

Theorem 1. P forms a finite axiomatization for the implication of probabilistic
cardinality constraints.

Example 2. The set Σ of pCCs from Example 1 implies ϕ = (card(rfid, time) ≤
4,≥ 0.8), but not ϕ′ = (card(rfid, time) ≤ 1,≥ 0.8). In fact, ϕ can be inferred
from Σ by applying S to (card(rfid) ≤ 3,≥ 1) to infer (card(rfid, time) ≤
3,≥ 1), applying B to this pCC to infer (card(rfid, time) ≤ 4,≥ 1), and then
applying P.

If a data set is validated against a set Σ of pCCs, then the data set does not
need to be validated against any pCC ϕ implied by Σ. The larger the data set,
the more time is saved by avoiding redundant validation checks.

Algorithms. In practice it is often unnecessary to determine all implied pCCs.
In fact, the implication problem for pCCs has as input Σ ∪{ϕ} and the question
is whether Σ implies ϕ. Computing Σ∗ and checking whether ϕ ∈ Σ∗ is hardly
efficient. Indeed, we will now establish a linear-time algorithm for computing the
maximum probability p, such that ϕ = (card(X) ≤ b,≥ p) is implied by Σ. The
following theorem provides the foundation for the algorithm [16].

Theorem 2. Let Σ ∪ {(card(X) ≤ b,≥ p)} denote a set of pCCs over relation
schema R. Then Σ implies (card(X) ≤ b,≥ p) if and only if (i) X = R or (ii)
p = 0 or (iii) b = ∞ or (iv) there is some (card(Z) ≤ b′,≥ q) ∈ Σ such that
Z ⊆ X, b′ ≤ b, and q ≥ p.
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Example 3. Continuing Example 2, we can apply Theorem 2 directly to see that
Σ implies ϕ = (card(rfid, time) ≤ 4,≥ 0.8). Indeed, the pCC (card(rfid) ≤
3,≥ 1) ∈ Σ satisfies the sufficient conditions of Theorem 2 to imply ϕ, since
{rfid} ⊆ {rfid, time}, 3 ≤ 4 , and 1 ≥ 0.8.

Theorem 2 motivates the following algorithm that returns for a given cardi-
nality constraint card(X) ≤ b the maximum probability p by which (card(X) ≤
b,≥ p) is implied by a given set Σ of pCCs over R: If X = R or b = ∞, then
we return probability 1; Otherwise, starting with p = 0 the algorithm scans all
input pCCs (card(Z) ≤ b′,≥ q) ∈ Σ and sets p to q whenever q is larger than the
current p, X contains Z and b′ ≤ b. ||Σ|| denotes the total number of attributes
together with the logarithm of the integer bounds in Σ. Here, we assume without
loss of generality that ∞ does not occur.

Theorem 3. On input (R,Σ, card(X) ≤ b) our algorithm returns in O(||Σ ∪
{(card(X) ≤ b,≥ p)}||) time the maximum probability p with which (card(X) ≤
b,≥ p) is implied by Σ.

Example 4. Continuing Example 1, we can apply our algorithm to the schema
Wolverine, pCC set Σ, and the cardinality constraint card(rfid, time) ≤ 4,
which gives us the maximum probability 1 for which it is implied by Σ.

Theorem 3 allows us to decide the associated implication problem efficiently,
too. Given R,Σ, (card(X) ≤ b,≥ p) as an input to the implication problem, we
use our algorithm to compute p′ := max{q : Σ |= card(X) ≤ b,≥ q} and return
an affirmative answer if and only if p′ ≥ p.

Corollary 1. The implication problem of probabilistic cardinality constraints
can be decided in linear time.

Example 5. Continuing Example 4 we can see directly that Σ implies the pCC
ϕ = (card(rfid, time) ≤ 4,≥ 0.8) since our algorithm returned 1 as the maxi-
mum probability for which card(rfid, time) ≤ 4 is implied by Σ. Since the given
probability of 0.8 does not exceed p = 1, ϕ is indeed implied.

5 Acquiring Probabilistic Cardinality Constraints

Data quality, and therefore largely the success of data-driven organizations,
depend on the ability of analysts to identify the semantic integrity constraints
that govern the data. For cardinality constraints (card(X) ≤ b,≥ p) the “right”
marginal probability p and the “right” upper bound b must be identified for a
given set X of attributes. Choosing p too big or b too small prevents the entry of
clean data, resulting in a lower level of data completeness. Choosing p too small
or b too high can lead to the entry of dirty data, resulting in a lower level of
data consistency. Analysts benefit from computational support to improve upon
their ad-hoc perceptions on an appropriate probability p and bound b.
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Goal. Armstrong relations are a useful tool for consolidating the perception of
analysts about the cardinality constraints (CCs) of a given application domain.
Starting with a set Σ, the tool creates a small relation r that satisfies Σ and
violates all CCs not implied by Σ. This property makes r a perfect sample for
Σ: any CC is satisfied by the relation if and only if it is implied by Σ.

Our goal is to develop the tool of Armstrong p-relations for a given set Σ of
pCCs: the marginal probability by which a traditional constraint card(X) ≤ b
holds on the Armstrong p-relation is the maximum probability p by which the
pCC (card(X) ≤ b,≥ p) is implied by Σ. So, if an analyst wants to check for an
arbitrary pCC (card(X) ≤ b,≥ p) whether it is implied by Σ, she can compute
the marginal probability p′ by which the CC card(X) ≤ b holds on the Armstrong
p-relation and verify that p ≥ p′. For the remainder of this section, we will
review Armstrong relations, add new results, and then devise our construction
of Armstrong p-relations and more concise representations thereof.

Armstrong Relations. An Armstrong relation w for a given set Σ of CCs over
relation schema R violates all CCs card(X) ≤ b over R which are not implied
by Σ. However, Σ |= card(X) ≤ b if and only if X = R or b = ∞ or there is
some card(Z) ≤ b′ ∈ Σ where Z ⊆ X and b′ ≤ b. Hence, if Σ �|= card(X) ≤ b,
then X �= R, b < ∞ and for all card(Z) ≤ b′ ∈ Σ where Z ⊆ X we have b′ > b.
Our strategy is therefore to find for all subsets X, the smallest upper bound
bX that applies to the set X. In other words, bX = inf{b | Σ |= card(X) ≤ b}.
Moreover, if bXY = bX for some attribute sets X,Y , then it suffices to violate
card(XY ) ≤ bXY −1. For this reason, the set dupΣ(R) of duplicate sets is defined
as dupΣ(R) = {∅ ⊂ X ⊂ R | bX > 1 ∧ (∀A ∈ R − X(bXA < bX))}. For each
duplicate set X ∈ dupΣ(R), we introduce bX new tuples tX1 , . . . , tXbX that all
have matching values on all the attributes in X and all have unique values on
all the attributes in R − X. An Armstrong relation for Σ is obtained by taking
the disjoint union of {tX1 , . . . , tXbX} for all duplicate sets X.

Example 6. For a probability p and a given set Σ of pCCs let Σp = {card(X) ≤
b | ∃p′ ∈ (0, 1](card(X) ≤ b,≥ p′) ∈ Σ}. Continuing Example 1 consider the sets
Σ0.75, Σ0.9 and Σ1 of traditional cardinality constraints on Wolverine. The
attribute subsets which are duplicate with respect to these sets are illustrated
in Fig. 1, together with their associated cardinalities. The worlds w1, w2 and w3

in Table 1 are Armstrong relations for Σ0.75, Σ0.9 and Σ1, respectively.

Armstrong Sketches. While this construction works well in theory, a problem
occurs with the actual use of these Armstrong relations in practice. In some
cases, the Armstrong relation will be infinite and therefore of no use. These
cases occur exactly if there is some attribute A ∈ R for which bA = ∞, in
other words, if there is some attribute for which no finite upper bound has been
specified. For a practical solution we introduce Armstrong sketches, which are
finite representations of possibly infinite Armstrong relations.
Let R∗ denote a relation schema resulting from R by extending the domain of
each attribute of R by the distinguished symbol ∗. A sketch ς = (card, ω) over
R consists of a finite relation ω = {τ1, . . . , τn} over R∗, and a function card that



222 T. Roblot and S. Link

Fig. 1. Duplicate sets X in bold font and their cardinalities bX for Example 6

maps each tuple τi ∈ ω to a value bi = card(τi) ∈ N
∞
1 . An expansion of ς is a

relation w over R such that

– w =
⋃n

i=1{t1i , . . . , t
bi
i },

– (preservation of domain values) for all i = 1, . . . , n, for all k = 1, . . . , bi, for
all A ∈ R, if τi(A) �= ∗, then tki (A) = τi(A),

– (uniqueness of values substituted for ∗) for all i = 1, . . . , n, for all A ∈ R, if
τi(A) = ∗, then for all k = 1, . . . , bi, for all j = 1, . . . , n, and for all l = 1, . . . , bj

(where l �= k, if j = i), tki (A) �= tlj(A).

We call ς an Armstrong sketch for Σ, if every expansion of ς is an Armstrong
relation for Σ. The following simple algorithm can be used to construct an
Armstrong sketch ς = (card, ω) for Σ: for each duplicate set X ∈ dupΣ(R) we
introduce a tuple τX into ω such that, for all A ∈ X, τX(A) has some unique
domain value from dom(A) − {∗}, and for all A ∈ R − X, τX(A) = ∗, and
card(τX) = bX . The main advantage of Armstrong sketches over Armstrong
relations is their smaller number of tuples. In fact, this number coincides with
the number of duplicate sets which is guaranteed to be finite. In contrast, if some
bX = ∞, then every Armstrong relation must be infinite.

Example 7. Continuing Example 6 the following tables show Armstrong sketches
(A-sketches) for the sets Σ0.75, Σ0.9, and Σ1, which have expansions w1, w2, and
w3 as shown in Table 1, respectively.

Armstrong p-sketches. An Armstrong p-relation for a set Σ of pCCs over R
is a p-relation r over R such that for all pCCs ϕ over R the following holds:
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Σ |= ϕ if and only if r satisfies ϕ. As relations are the idealized special case of
p-relations in which the relation forms the only possible world of the p-relation,
there are sets of pCCs for which no finite Armstrong p-relation exists, i.e., the
Armstrong p-relation contains some possible world that is infinite. For this reason
we introduce probabilistic sketches and their expansions, as well as Armstrong
p-sketches which are guaranteed to be finite p-relations.

A probabilistic sketch (p-sketch) over R is a probabilistic relation s = (W,P)
over R∗ where the possible worlds in W are sketches over R. A probabilistic
expansion (p-expansion) of s is a p-relation r = (W,P ) where W contains for
every sketch ς ∈ W a single expansion w over R of ς, and P (w) = P(ς).

An Armstrong p-sketch for a set Σ of pCCs over R is a p-sketch over R such
that each of its p-expansions is an Armstrong p-relation for Σ.

Example 8. Continuing Example 1 the following table shows an Armstrong p-
sketch s for the given set Σ of pCCs.

A p-expansion of s is the finite Armstrong p-relation of Table 1.

Naturally the question arises whether Armstrong p-sketches exist for any
given set of pCCs over any given relation schema. The next theorem shows that
every distribution of probabilities to a finite set of cardinality constraints, that
follows the inference rules from Table 3, can be represented by a single p-relation
which exhibits this distribution in the form of marginal probabilities [16].

Theorem 4. Let l : 2R × N
∞
1 → [0, 1] be a function such that the image of l

is a finite subset of [0,1], l(R, 1) = 1 and for all X ⊆ R, l(X,∞) = 1, and for
all X,Y ⊆ R and b, b′ ∈ N1, l(X, b) ≤ l(XY, b + b′) holds. Then there is some
p-sketch s over R such that every p-expansion r of s satisfies (card(X) ≤ b,≥
l(X, b)), and for all X ⊆ R, b ∈ N

∞
1 and p ∈ [0, 1] such that p > l(X, b), r

violates (card(X) ≤ b,≥ p).

We say that pCCs enjoy Armstrong p-sketches, if for every relation schema
R and for every finite set Σ of pCCs over R there is some p-sketch over R that
is Armstrong for Σ [16].

Theorem 5. Prob. cardinality constraints enjoy Armstrong p-sketches.

Armstrong PC-sketches. Probabilistic databases can have huge numbers of
possible worlds. It is therefore important to represent and process probabilistic
data concisely. Probabilistic conditional databases, or short PC-tables [17] are a
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popular system that can represent any given probabilistic database. Considering
our aim of finding concise data samples of pCCs, we would like to compute
Armstrong p-sketches in the form of Armstrong PC-sketches.

For this purpose, we first adapt the standard definition of PC-tables [17]
to that of PC-sketches. A conditional sketch or c-sketch, is a tuple Γ = 〈ς, ι〉,
where ς = (card, ω) is a sketch (where ω may contain duplicate tuples), and
ι assigns to each tuple τ in ω a finite set ιτ of positive integers. The set of
world identifiers of Γ is the union of the sets ιτ for all tuples τ of ω. Given a
world identifier i of Γ , the possible world sketch ςi = (cardi, ωi) associated with
i is ωi = {τ |τ ∈ ω and i ∈ ιτ} and cardi is the restriction of card to ωi. The
representation of a c-sketch Γ = 〈ς, ι〉 is the set W of possible world sketches
ςi where i denotes some world identifier of Γ . A probabilistic conditional sketch
or PC-sketch, is a pair 〈Γ,Π〉 where Γ is a c-sketch, and Π is a probability
distribution over the set of world identifiers of Γ . The representation of a PC-
sketch 〈Γ,Π〉 is the p-sketch s = (W,P) where W is the set of possible world
sketches associated with Γ and the probability P of each possible world sketch
ςi ∈ W is defined as the probability Π(i) of its world identifier i.

It is simple to see that every p-sketch can be represented as a PC-sketch [16].

Theorem 6. Every p-sketch can be represented as a PC-sketch.

A PC-sketch is called an Armstrong PC-sketch for Σ if and only if its repre-
sentation is an Armstrong p-sketch for Σ.

Example 9. Table 2 shows a PC-sketch 〈Γ,Π〉 that is Armstrong for the set Σ
of pCCs from Example 1.

Algorithm 1 contains the pseudo-code and comments how to compute an
Armstrong PC-sketch for any given set Σ of pCCs over any given relation schema
R. In particular, line (5) uses the definition of the cardinality bi

X := inf{b |
card(Y ) ≤ b ∈ Σpi

∧ Y ⊆ X} to compute them.

Theorem 7. For every set Σ of pCCs over relation schema R, Algorithm1
computes an Armstrong PC-sketch for Σ.

Finally, we derive some bounds on the time complexity of finding Armstrong
PC-sketches. Since the relational model is subsumed there are cases, where the
number of tuples in every Armstrong PC-sketch for Σ over R is exponential in
||Σ||. Such a case is given by Rn = {A1, . . . , A2n} and Σn = {(card(A2i−1, A2i) ≤
1,≥ 1) | i = 1, . . . , n} with ||Σn|| = 2 ·n. Indeed, every Armstrong PC-sketch for
Σn must feature 2n different tuples to accommodate the 2n different duplicate
sets X with associated cardinality b1X = ∞, and there is only one possible world.
Algorithm 1 was designed with the goal that the worst-case time bound from the
traditional relational case does not deteriorate in our more general setting. This
is indeed achieved, as the computationally most demanding part of Algorithm1
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Algorithm 1. Armstrong PC-sketch
Require: R, Σ
Ensure: Armstrong PC-sketch 〈〈(card, ω), ι〉, Π〉 for Σ
1: Let p1 < · · · < pn be the probabilities in Σ; � If pn < 1, n ← n + 1 and pn ← 1
2: p0 ← 0; Π ← ∅;
3: for i = 1, . . . , n do � Process one possible world sketch at a time
4: Π ← Π ∪ {(i, pi − pi−1)}; � World i has probability pi − pi−1

5: Compute {biX | X ⊆ R}; � Smallest upper bound for each X in world i
6: dupi ← Set of duplicate sets for Σpi ; � Duplicate sets to realize in world i
7: ω ← ∅; k ← 0;
8: dup ← {(X, {i | X ∈ dupi}) | X ∈ dupi for some i};
9: for all (X, W ) ∈ dup do � For each X that is a duplicate set in every world in W

10: b ← 0; j ← k + 1;
11: for i = 1, . . . , n do � Add some τk that realizes X in every world in W
12: if X ∈ dupi and biX > b then � if there are any remaining cardinalities
13: k ← k + 1;
14: for all A ∈ R do � Define τk with...
15: if A ∈ X then
16: τk(A) ← j; � ...fixed values on X
17: else
18: τk(A) ← ∗; � ...and unique values outside of X
19: ω ← ω ∪ {τk}; � Add new tuple
20: card(τk) ← biX − b; � Stipulate remaining cardinality
21: ι(τk) ← W − {1, . . . , i − 1}; � Worlds that require this cardinality
22: b ← biX ; � Mark cardinalities as already realized
23: return 〈〈(card, ω), ι〉, Π〉;

is the computation of the cardinalities in line (5) which is achieved in time
exponential in max(||Σ||, |R|), where |R| denotes the number of attributes in R.

Theorem 8. The time complexity to find an Armstrong PC-sketch for a given
set Σ of pCCs over schema R is precisely exponential in max(||Σ||, |R|).

There are also cases where the number of tuples in some Armstrong PC-
sketch for Σ over R is logarithmic in ||Σ||. Such a case is given by Rn =
{A1, . . . , A2n} and Σn = {(card(X1 · · · Xn) ≤ 1,≥ 1) | Xi ∈ {A2i−1, A2i} for i =
1, . . . , n} with ||Σn|| = n · 2n. There is an Armstrong PC-sketch for Σ that con-
tains only one tuple for each of the n duplicate sets X = R − {A2i−1, A2i} with
associated cardinality b1X = ∞.

In practice we recommend to use both representations of business rules: one
in the form of the set Σ of pCCs itself and one in the form of an Armstrong
PC-sketch for Σ. This is always possible by our results. We think Armstrong PC-
sketches help identify bounds b that are too low or probabilities p that are too
high, while the set Σ helps identify bounds b that are too high or probabilities
p that are too low.
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Fig. 2. Screenshot of the GUI Fortuna

Graphical User Inter-
face. We have imple-
mented Algorithm 1 in
the form of a graphi-
cal user interface (GUI)
called Fortuna1. A user
can enter some attributes
and specify probabilis-
tic cardinality constraints
using any combination of
these. The GUI shows
an Armstrong PC-sketch
for the specified input,
sketches of the possible
worlds can be brought up, and their individual tuples can be expanded at will.
Figure 2 shows a partial screenshot of our GUI Fortuna with some outputs for
our running example.

6 Conclusion and Future Work

Probabilistic cardinality constraints were introduced to stipulate lower bounds
on the marginal probability by which a maximum number of the same data
pattern can occur in sets of uncertain data. As shown in Fig. 3 the marginal
probability can be used to balance the consistency and completeness targets for
the quality of data, enabling organizations to derive more value from it.

Fig. 3. Control mechanism p

Axiomatic and algorithmic tools were
developed to reason efficiently about proba-
bilistic cardinality constraints. This can help
minimize the overhead in using them for data
quality purposes or deriving probabilities on
the maximum number of query answers with-
out querying any data. These applications are
effectively unlocked by developing computa-
tional support in the form of probabilistic
Armstrong samples for identifying the right
marginal probabilities by which cardinality
constraints should hold in a given applica-
tion domain. Analysts and domain experts
can jointly inspect Armstrong samples which
point out any flaws in the current perception
of the marginal probabilities. Our tool Fortuna can be used to generate Arm-
strong samples for any input, and to explore the possible worlds it represents.

Our results constitute the core foundation for probabilistic cardinality con-
straints, which can be extended into various directions in future work. It will
1 Available for download at https://www.cs.auckland.ac.nz/∼tkr/fortuna.html.

https://www.cs.auckland.ac.nz/~tkr/fortuna.html
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be interesting to raise the expressivity of probabilistic cardinality constraints
by allowing the stipulation of lower bounds on the number of the same data
patterns, and/or upper bounds on the marginal probabilities, for examples. For
a given PC-table it would be interesting to develop efficient algorithms that
compute the marginal probability by which cardinality constraints hold on the
data the table represents. Experiments with our implementation are expected to
provide further insight into the average case performance of Algorithm1 in rela-
tionship to the worst- and best-cases discussed. Finally, it would be interesting
to conduct an empirical investigation into the usefulness of our framework for
acquiring the right marginal probabilities of cardinality constraints in a given
application domain. This will also require us to extend empirical measures from
certain [11] to probabilistic data sets. Particularly intriguing will be the question
which of Armstrong PC-sketches and Armstrong p-sketches are actually more
useful. While Armstrong PC-sketches are more concise, they may prove to be
too concise to draw the attention of analysts and domain experts to critical
constraint violations.
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