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Abstract. We consider the rotor-router mechanism for distributing par-
ticles in an undirected graph. If the last particle passing through a vertex
v took an edge (v, u), then the next time a particle is at v, it will leave
v along the next edge (v, w) according to a fixed cyclic order of edges
adjacent to v. The system works in synchronized steps and when two or
more particles meet at the same vertex, they coalesce into one particle.
A k-particle configuration of such a system is stable, if it does not lead to
any coalescing. For 2 ≤ k ≤ n, we give the full characterization of stable
k-particle configurations for cycles. We also show sufficient conditions for
regular graphs with n vertices to admit n-particle stable configurations.

1 Introduction

We consider an undirected connected graph G = (V,E) and the rotor-router
mechanism which keeps moving simple entities along the edges of G in synchro-
nized steps. We call these entities particles, but terms like agents, tokens or chips
may be used by others. Each edge {v, u} is viewed as a pair of opposite arcs (v, u)
and (u, v), and for each vertex, the arcs outgoing from this vertex are kept in a
fixed cyclic order. In each step, each particle moves from its current vertex to
an adjacent vertex. For each vertex v, if (v, u) is the most recently traversed arc
outgoing from v, then the next particle leaving v will traverse the next arc (v, w).
This is implemented by maintaining at each vertex v the vertex pointer πv which
indicates which arc outgoing from v should be taken next. While particles keep
passing through v, the pointer πv is the ”rotor” moving around the cyclic order
of arcs outgoing from v. This model was introduced by Priezzhev et al. [17], was
further studied and popularised by James Propp, and hence also referred to as
the Propp machine.

The rotor-router mechanism can be viewed as a model of graph exploration
by simple mobile entities and the efficiency of such exploration has been exten-
sively studied. While the earlier works refer mostly to single-particle rotor-router
exploration, there are now also a few recent results concerning the multi-particle
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case. In both the single-particle and the multi-particle cases, some similarities
with graph exploration by random walks have been observed. This further mo-
tivates investigations of the rotor-router mechanism as a possible deterministic
alternative to random walks. For example, one random walk on a cycle of length
n covers (visits) all vertices in expected Θ(n2) time and a single-particle rotor-
router does this in deterministic Θ(n2) worst-case time. Wagner et al. [18, 19]
showed that for an arbitrary connected n-vertex m-edge graph and an arbitrary
initial configuration of the single-particle rotor-router system (arbitrary cyclic
orders of arcs, arbitrary initial setting of the vertex pointers and an arbitrary
starting vertex for the particle) the particle visits all vertices of this graph in
O(nm) steps. Subsequently a number of more detailed analyses of single-particle
rotor-router systems in various types of graphs have been published [4–6,20], but
it can be shown that Θ(nm) is the worst-case bound for the general graphs. The
expected cover time by a random walk has the same general bound O(nm).
More recently the cover time by (parallel) k random walks has been analyzed
and speedups over a single random walk between Θ(log k) and Θ(k) have been
shown for various classes of graphs and various initial settings [3, 9, 11, 12]. The
similar range of speedups for k-particle rotor router (over the single-particle
system) have been demonstrated in [10, 14].

In this paper we look at another aspect of multi-particle systems: coalescence
of particles. Whenever two or more particles meet at the same step in the same
vertex of the graph, then they coalesce (merge) into one particle. This parti-
cle continues moving through the graph, following the underlying protocol (for
example, the random-walk protocol or the rotor-router mechanism). Coalescing
random walks is a long established topic, attracting research interest partly due
to its close relation to the randomized pull-voting process [1]. The main case
considered is when initially each vertex has one particle and the question is to
provide good bounds on the expected time (number of steps) until full coalesc-
ing into one particle. Aldous [2] conjectured that this expected full-coalescence
time is at most of the order of the maximum hitting time of a single random
walk. This conjecture has not been fully settled yet, but considerable progress
has been made [8, 16].

Systems with coalescing particles may find applications in parallel comput-
ing. For example, Israeli and Jalfon [13] proposed coalescing random walks as
the basis of a self-stabilizing mutual exclusion algorithm. In a network of inter-
connected processing units (PUs) competing for access to some resource, each
PU creates a token and sends it for a random walk through the network. Tokens
coalesce whenever they meet at the same PU, eventually only one token remains
in the network (provided the network is connected and non-bipartite) and the
PU with the token gets exclusive access to some resource.

In this paper we want to initiate investigation of rotor-router systems with
coalescing particles. While the coalescing random walks will always eventually
merge into a single walk (or two walks in the case of bipartite graphs), and good
bounds for expected coalescence time are known, it is not difficult to come up
with examples of rotor-router configurations with multiple particles which do
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not lead to any coalescence. Thus a reasonable first question is to characterize
such stable multiple-particle configurations. Other interesting questions are to
bound the probability that a random initial configuration (defined, for example,
by random initial settings of the vertex pointers) leads to full coalescing, and
to analyze the coalescence time. We give some answers to the first question,
leaving the other two as directions for further research. In particular, we give
a full characterization of stable configurations in cycles. This characterization
implies that if the length n of the cycle is prime, then any initial configuration
with k < n particles leads to full coalescing. We also show that all n-vertex
even-degree regular graphs admit n-particle stable configurations and give a
sufficient condition for odd-degree regular graphs to admit such configurations.
For graphs which have vertices of degree greater than 2 and for k < n particles,
the full coalescence may depend more on the structure of the graph than on the
primality of the number of edges or the number of vertices. As an example of this,
we show a graph with m edges and constant maximum degree, which admits k-
particle stable configuration, for any sufficiently largem and any 2 ≤ k ≤ 3

√
m/6.

The important property of non-coalescing rotor-router systems which we use
in our work is the long run behaviour of such systems. For single-particle rotor-
router systems, Bhatt et al. [6] showed that within O(nm) steps, the particle
enters (establishes) an Eulerian cycle. More precisely, after the initial stabilisa-
tion period of O(nm) steps, the particle keeps repeating the same Eulerian cycle

of the whole set
−→
E of directed arcs. The long run behaviour of multiple-particle

rotor-routers was open for a long time, but has been recently settled by Chalopin
et al. [7]. They showed that in polynomial number of steps the system reaches
a stable configuration S, that is a configuration which will be repeated after
some (potentially exponential) number of steps. Most importantly, they provide
a strong characterization of the way the particles will be moving around the

graph starting from a stable configuration. The set
−→
E can be partitioned into

arc-disjoint Eulerian circuits and the particles can be assigned to these circuits
such that each particle will be perpetually following the circuit it is assigned
to. The circuits are arc disjoint, but may share vertices, and two or more parti-
cles can be assigned to the same circuit. Our analysis of coalescing rotor-router
systems is directly based this characterization of the stable configurations of
non-coalescing rotor-router systems.

2 Preliminaries

We consider an undirected, simple (no loops or multiple edges), connected graph

G = (V,E) with n ≥ 3 vertices and m edges. We define
−→
E = {(v, w), (w, v) :

{v, w} ∈ E} as the set of (directed) arcs in G. For each v ∈ V , the arcs outgoing
from v are arranged in a fixed cyclic order. The vertex pointer πv indicates the
arc outgoing from v which will be taken by the next particle leaving v. When a
particle leaves v along the arc indicated by the pointer πv, the pointer advances
to the next arc outgoing from v. The system works in synchronised steps and
each particle moves in each step (that is, a particle never waits in the same
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vertex). In a coalescing rotor-router system, if two or more particles arrive at
the same vertex v at the same step, they coalesce into one particle, which moves
out of v in the next step in the direction indicated by the vertex pointer. In a
non-coalescing system, if q ≥ 2 particles arrive at the same vertex v at the same
time, they all leave v in the next step taking the q consecutive arcs outgoing from
v, starting from the arc indicated by the vertex pointer and wrapping-around,
if q is greater than the degree of v. The vertex pointer changes to the arc next
after the last arc taken by a particle. We do not distinguish among particles, so
the order in which the particles leave vertex v in the same step is not important.

A k-particle configuration S is defined by the values of the vertex pointers
and the position of the particles. For a configuration S, we denote by σ(S) the
set of all configurations visited starting from S (we assume the system works
perpetually). We say that a configuration S is stable, if after starting from S we
eventually return to S. Clearly, a configuration S is stable, if and only if, for
each S′ ∈ σ(S), σ(S′) = σ(S). A set of configurations is stable, if it is equal to
σ(S) for a stable configuration S. Two configurations of a rotor-router system
are isomorphic, if there is a one-to-one mapping on V which preserves the cyclic
orders of arcs, the vertex pointers and the particle counts at vertices. We say
that a graph G admits a k-particle stable configuration, if there exist cyclic
orders of arcs at the vertices of G, the initial positions of vertex pointers and
the initial locations of k particles, which define a k-particle stable configuration
of the coalescing rotor-router system.

By definition, the rotor-router system is locally fair, sending, in the long run,
the same number of particles into each of the arcs outgoing from the same vertex.
More precisely, if S is a stable configuration and it takes T steps to return to
S, then during these T steps each of the arcs outgoing from the same vertex
is traversed the same number of times (otherwise the vertex pointer does not
return to its initial position). This local fairness implies the global fairness.

Lemma 1. If S is a stable configuration and it takes T steps to return to S,
then during these T steps each arc has been traversed the same number of times.

Proof. For each vertex v, during these T steps each arc outgoing from v has
been traversed the same number of times. Let α(v) denote this number, let
αmin = min{α(v) : v ∈ V } and assume, by contradiction, that U = {v ∈
V : α(v) = αmin} �= V . Each arc from U to V \ U has been traversed αmin

times but each arc from V \ U to U has been traversed more than αmin times.
This contradicts the assumption that after T steps we are back in the initial
configuration S, so the number of traversals from U to V \ U must have been
the same as the number of traversals from V \ U to U .

Chalopin et al. [7] proved the following strong characterization of stable con-
figurations of non-coalescing rotor-router systems, which is valid also for the
coalescing systems.

Theorem 1. [7] A configuration S is stable, if and only if, there exists a decom-

position of
−→
E into arc-disjoint Eulerian circuits and an assignment of particles
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to circuits (possibly with more than one particle assigned to the same circuit)
such that starting from S, each particle follows perpetually the circuit to which
it is assigned.

This theorem says that while a rotor-router system keeps changing from con-
figuration to configuration within a stable set, each particle keeps tracing the
same Eulerian circuit. The circuits are arc disjoint and cover the whole set of

arcs
−→
E . Two or more particles can trace the same circuit and each circuit must

be traced by at least one particle (see Lemma 1). Note that opposite arcs (v, w)
and (w, v) may belong to the same circuit or to two different circuits.

Corollary 1. Let C0, C1, . . . , Cq−1 be a circuit decomposition associated with a
stable set σ and let ki ≥ 1 denote the number of particles which follow the circuit
Ci. Then the ratio |Ci|/ki is the same for each circuit.

For a stable configuration of a coalescing rotor-router system, the Eulerian
circuit decomposition of Theorem 1 must be unique. Note also that while each
stable configuration has an associated Eulerian circuit decomposition, the con-

verse is not true. A decomposition of
−→
E into arc-disjoint Eulerian circuits might

not correspond to any stable configuration, because it might not be possible
to set up the vertex pointers and the initial positions of particles to make the
particles follow the circuits.

3 Stable Configurations in a Cycle

We consider the coalescing rotor-router system based on the n-vertex cycle
Cn. We first show various types of stable k-particle configurations and then
prove that these are the only possible stable configurations. Throughout this
section we assume that n ≥ 3 and k ≥ 2. Let Cn = (v0, . . . , vn−1, v0), so−→
E = {(vi, vi+1), (vi+1, vi) : i = 0, 1, . . . , n − 1}, assuming vn ≡ v0. Each de-

compositions of
−→
E into arc-disjoint Eulerian circuits is either of the Cycle type

(the C type) or the Path type (the P type), with the latter split further into two
categories P1 and P2.

C: Two Eulerian circuits (v0, . . . , vn−1, v0) and (v0, vn−1, vn−2, . . . , v0).
P: The Eulerian circuits are defined by a partitioning of the edges of the cycle

Cn into edge-disjoint paths P0, ..., Pq−1, q ≥ 1. The last vertex of path Pi is
the first vertex of path Pi+1, for i = 0, 1, . . . , q − 1, with Pq ≡ P0. Each of
these paths P = (w0, w1, ..., wj) defines the Eulerian circuit
(w0, w1, · · · , wj−1, wj , wj−1, · · · , w1, w0).

P1: There is only one path, which covers the whole cycle, that is, there is

only one Eulerian circuit, which covers all arcs in
−→
E . Each such circuit is

isomorphic to the circuit (v0, v1, · · · , vn−1, v0, vn−1, · · · , v1, v0).
P2: There are at least two paths, so there are at least two circuits in the de-

composition.
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Fig. 1. Stable k-particle configurations of type C, with k = 2q and n = k(r + 1), for
integers q ≥ 1, r ≥ 0. The particles on one circuit are passing the particles on the other
circuit when traversing the ”passing edges.” There are r edges between two consecutive
passing edges. (a) The case r ≥ 1. (b) The case r = 0: each edge is a passing edge.

We say that a stable configuration, or a stable set, is of type X, if the associated
circuit decomposition is of type X. Figure 1 shows configurations representing
stable sets of type C. There are k = 2q particles, for an integer q ≥ 1, which
are marked on the diagrams with small black squares. Particles x0, x1, . . . , xq−1

are assigned to the anti-clockwise circuit and the particles y0, y1, . . . , yq−1 are
assigned to the clockwise circuit. The particles are evenly spaced along both
circuits, with 2(r+1) edges between each two consecutive particles on one circuit,
for an integer r ≥ 0 (in Figure 1(a), r = 3). Thus the length of the cycle is
n = k(r + 1). Consider the relative positions of particles x and y as shown in
Figure 1, when the particles x0 and y0 are about to traverse the same edge in
opposite directions. The arrow at a vertex shows the direction where the next
particle will leave this vertex. In this configuration, each pair of particles xi and
yq−i, for i = 0, 1, . . . , q − 1 (with yq ≡ y0), is about to traverse the same edge
in opposite directions. Such traversing of the same edge in opposite directions
is repeated every r + 1 steps, and each edge which is traversed at some step by
a particle xi in one direction and a particle yj in the other direction is called
a passing edge. There are n/(r + 1) = k passing edges, evenly spaced along the
cycle. In the case r = 0 (shown in Figure 1(b)), there are n particles in total,
one on each vertex, and each edge is a passing edge.

We now show two different stable sets of type P2, one with one particle as-
signed to each circuit and one with two particles assigned to each circuit. We
refer to these two types of stable sets as types P2.1 and P2.2, respectively. Sta-
ble sets of type P2.1 are illustrated in Figure 2. The cycle has n = kr vertices,
for an integer r ≥ 1, the circuit decomposition is defined by k paths of equal
length r, and each circuit has one particle assigned to it. Consider one config-
uration, which is defined by the positions of the particles in their circuits. To
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avoid collisions, these positions are restricted by the following condition. Let Ci

and Ci+1 be adjacent circuits which share vertex ui+1, and let xi and xi+1 be
the particles assigned to these circuits. The distance from xi to ui+1 along the
circuit Ci must be different than the distance from xi+1 to ui+1 along the circuit
Ci+1. Figure 2 shows two stable configurations of type P2.1, which belong to
two different (non-isomorphic) stable sets.

r
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x0

x1
x2

xk−1
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u0

u k−1

u3

u2u1

u0 x0
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Fig. 2. Stable k-particle configurations of type P2.1; n = kr and r ≥ 1. Configurations
(a) and (b) belong to two different (non-isomorphic) stable sets. In (a), each particle
xi is in the same position within its Eulerian circuits, that is, within the same distance
from vertex ui, moving in the same direction along the cycle (all clock-wise or all anti-
clockwise). In (b), the particles are in different positions within their Eulerian circuits.

Figure 3 illustrates stable sets of type P2.2: the Path type, at least 2 circuits
and exactly 2 particles in each circuit. The cycle has n = q(2r + 1) vertices,
for integers q ≥ 2 and r ≥ 1, and the circuit decomposition is defined by q
paths of equal length 2r + 1. Each circuit has two particles assigned to it, so
k = 2q ≥ 4. The two particles xi and yi assigned to the same circuit Ci are
exactly half-way around the circuit from each other. They will pass each other
every 2r+1 steps, traversing in opposite directions the middle edge of the path
which defines this circuit. To avoid collisions, we have a condition restricting the
relative positions of particles on the adjacent circuits, which is analogous as in
the stable configurations of type P2.1 described above.

The following theorem, proven in Sections 3.1 and 3.2, gives a full character-
ization of the stable sets in a cycle.

Theorem 2. Assume n ≥ 3 and 2 ≤ k ≤ n, and consider the coalescing rotor-
router system based on the cycle Cn.
(i) If k is odd and n is a multiple of k, then there exist k-particle stable sets

and they all are of type P2.1 shown in Figure 2.
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(ii) If k is even and n is a multiple of k, then there exist k-particle stable sets
and each stable set is either of type C shown in Figure 1, or of type P2.1
shown in Figure 2.

(iii) If k ≥ 4 is even and n is an odd multiple of k/2, then there exist k-particle
stable sets and they all are of type P2.2 shown in Figure 3.

(iv) For any other combination of n and k, each k-particle configuration leads
to at least one coalescing.

Corollary 2. Consider the coalescing rotor-router system based on the cycle Cn,
where n ≥ 3 is prime. If 2 ≤ k ≤ n− 1, then each k-particle configuration leads
to full coalescing (into one particle). For k = n, there is only one unique (up to
isomorphism) stable configuration, which is shown in Figure 2(a) with r = 1.

Proof. The first part follows by repeatedly applying the case (iv) of Theorem 2,
while k > 1. The second part follows from the case (i) of Theorem 2.
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Fig. 3. Stable k-particle configurations of type P2.2, with k = 2q and n = q(2r + 1),
for integers q ≥ 2 and r ≥ 1. (a) The general case r ≥ 1. (b) The case r = 1, where
each circuit is in one of three states, illustrated by the three circuits with particles x0

and y0, x1 and y1, and x2 and y2.

3.1 Stable Configurations of the Cycle Type

Lemma 2. If n is odd or k is odd, then there is no stable set with Eulerian
decomposition of type C.

Proof. Let σ be a k-particle stable set for Cn with an Eulerian decomposition of
type C. Corollary 1 implies that the same number of particles must be assigned
to each of the two circuits, so k must be even. Let C1 and C2 denote the two
circuits and let x be a particle assigned to C1 and y a particle assigned to C2.
Consider a configuration S ∈ σ such that x and y face each other along an edge
{v, u}: x is at v and will move to u in the next step, while y is at u and will
move to v in the next step. If n were odd, then after (n+ 1)/2 steps particles x
and y would collide on the opposite side of the cycle.
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Lemma 3. For n and k both even, if there is a stable set with Eulerian de-
composition of type C, then each of the two circuits has the same number of
particles assigned to it, and the particles assigned to the same circuit must be
evenly spaced along this circuit.

Proof. The condition that each of the two circuits has the same number of
particles assigned to it follows from Lemma 1. To prove the second part of
the lemma, assume by contradiction that particles on one of the circuits (or on
both of them) are not evenly spaced. This implies that there are two consecutive
particles x1 and x2 on C1 (x1 next after x2 in the direction of C1) and two
consecutive particles y1 and y2 on C2 (y1 next after y2 in the direction of C2)
such that x1 is ahead of x2 by l1 arcs and y1 is ahead of y2 by l2 arcs, for some
l1 �= l2. Assume by symmetry that l1 < l2 and consider the step when particles
x1 and y1 have just passed each other, as shown in Figure 4. Particle x1 is at
a vertex v and will be moving towards particle y2, which is at distance l2 − 1
from x1. Particle y1 is at the vertex u next after to vertex v in the direction of
circuit C2, and will be moving towards particle x2, which is at distance l1 − 1
from y1. If l2 = l1 + 1, then either l2 − 1 or l1 − 1 is even, so either particles x1

and y2 or particles y1 and x2 collide: contradiction. If l2 ≥ l1 + 2, then particle
x2 reaches vertex v before particle y2 gets there, so x2 turns back at v, switching
from circuit C1 to C2: contradiction.

u
1

1y

x2

y2

l2

l1

v

x

Fig. 4. For the proof of Lemma 3: Eulerian decomposition of type C and particles are
not evenly spaced along the circuits.

Lemma 4. For n and k both even and k � n, there is no stable set with Eulerian
decomposition of type C.

Proof. Let n and k be both even and k � n, that is, k = 2q and n = pk + 2r,
for some positive integers q, p, r such that r < q. Observe that we must have
q ≥ 2. Assume, by contradiction, that there is a stable set σ with an Eulerian
decomposition {C1, C2} of type C, and start in a configuration S ∈ σ. Each of the
two circuits has q particles assigned to it and they are evenly spaced along the
circuit (Lemma 3). This implies that q | n, so we must have q = 2r. The distance
between two consecutive particles on the same circuit is equal to n/q = 2p+ 1,
so it is odd. Consider a particle x on circuit C1 and two consecutive particles y1
and y2 on the other circuit. Since the distance between y1 and y2 is odd, then
either the distance along circuit C1 from x to y1 is even or the distance along
C1 from x to y2 is even. Thus x will collide with y1 or y2: contradiction.
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Lemma 5. For n and k both even and k | n, there exists a unique (up to isomor-
phism) stable set with an Eulerian decomposition of type C. This unique stable
set is illustrated in Figure 1.

Proof. Let k = 2q and n = k(r + 1) for an integer r ≥ 0. From Lemma 3, a
stable set with an Eulerian decomposition of type C has q particles assigned to
each circuit and the distance between any two consecutive particles on the same
circuit is equal to 2(r + 1). This is the stable set illustrated in Figure 1.

3.2 Stable Configurations of the P Type

Lemma 6. Let σ be a stable set of type P and let C be one of the circuits in
the Eulerian decomposition associated with σ. Then no more than two particles
are assigned to C.

Proof. Recall that C spans a path P in the cycle and the particles assigned to
C keep walking along the path from one end to another. For any two particles x
and y assigned to C, the parity of the distance along P between these particles
remains constant. This distance must be odd, because if it were even, then
particles x and y would eventually meet. If there were three particles assigned
to C, then not all three pairwise distances between these particles could be odd,
so two of the three particle would have to meet.

Lemma 7. Let σ be a stable set of type P and let C be one of the circuits of
the Eulerian decomposition associated with σ, and assume that two particles are
assigned to C. Then (i) the two particles are at the same time at the opposite
ends of the path P which is spanned by C, (ii) path P has an odd number of
edges and (iii) the two particles on C always pass each other when traversing (in
the opposite directions) the middle edge of the path.

Proof. Let x and y be the particles assigned to C and let u and v be the end
vertices of the path P . To show (i), assume by contradiction that at some step
particle x is at vertex v but particle y is not at the other end u. Assume that
y is moving towards vertex v. (If y is moving towards u, wait until y reaches
u to get an analogous arrangement: y at u and x not at the other end of the
path and moving towards u.) Particles x and y will now be moving towards
each other, eventually overpassing at step t along some edge {w, r}: particle x
traverses this edge from r to w while particle y traverses from w to r. When now
x leaves vertex w to go towards u, the pointer at w is changed to arc (w, r). The
distance between w and u is at least the distance between w and v, so the next
time a particle comes to w, it will be particle y and it will go back from w to r,
contradicting the movement of both particles along the circuit C.

We have shown that at some step particles x and y are the opposite ends of
path P . If P had an even 2q number of edges, then the particles would meet
after the next q steps. The particles must be passing each other when traversing
(in the opposite directions) the middle edge of the path, or otherwise they would
not be at the end vertices of the path at the same time.
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Corollary 3. There is no stable set of type P1, that is, for each stable set of
type P, its Eulerian circuit decomposition must have at least two circuits.

Lemma 8. Suppose σ is a stable set of type P2. Then all circuits of the Eulerian
decomposition associated with σ have the same length and the same number of
particles. That is, each stable set of type P2 is either of type P2.1 shown in
Figure 2, or of type P2.2 shown in Figure 3.

Proof. Assume that the Eulerian decomposition contains a circuit C1 with one
particle and a circuit C2 with two particles. Then Corollary 1 implies that |C1| =
|C2|/2, but |C1| is even while Lemma 7 implies that |C2|/2 is odd; contradiction.
Thus all circuits in the Eulerian decompositions must have the same number of
particles, either one or two, and Corollary 1 further implies that they all must
have the same length.

Lemma 9.

(i) If n is a multiple of k, then each stable set of type P2 is of type P2.1.
(ii) If k is even and n is an odd multiple of k/2, then each stable set of type

the P2 is of type P2.2.

Proof. Lemma 8 says that each stable set of type P2 must be either P2.1 or
P2.2. Part (i) holds because if we have a stable set of type P2.2, then k is even
and Lemma 7 implies that n = (k/2)(2r+1), for some integer r ≥ 0, so n is not
a multiple of k. Part (ii) holds because if we have a stable set of type P2.1, then
Lemma 8 implies that n is a multiple of k.

4 General Graphs

For general graphs, we first look at the case k = n. We saw that in cycles there
can be only two different n-particle stable sets. One requires an even n and is
shown in Figure 1(b), while the other applies to an arbitrary n ≥ 3 and is shown
in Figure 2(a) with r = 1. The stable set in Figure 1(b) can be viewed in the
following way. The set of edges E of an even-length cycle is partitioned into two
perfect matchings M1 and M2. For any configuration in this stable set, either all
vertex pointers are set onto the edges in M1 or all of them are set onto the edges
in M2. We describe now a generalization of such stable sets to graphs with higher
vertex degrees, considering perfect matchings as well as 2-factors (collections of
vertex-disjoint cycles covering all vertices). We show first that n-particle stable
sets can exist only in regular graphs.

Theorem 3. If a connected n-vertex graph has an n-particle stable set, then the
graph must be regular.

Proof. Consider a connected n-vertex graph G = (V,E) which has an n-particle
stable set. Let C be a circuit in the Eulerian decomposition for this stable set.
In each step one particle leaves each vertex, so in each step each vertex pointer
advances to the next arc. Therefore, if a particle x assigned to C passes in the
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current step through an arc (v, w), then the next particle on C will pass through
(v, w) in exactly deg(v) steps, where deg(v) is the degree of v in G. This means
that the particles assigned to C must be equally spaced around C, with distance
deg(v) between the consecutive particles. Since v is an arbitrary vertex on C,
all vertices on C must have the same degree. Thus if two circuits share a vertex,
then all vertices on these two circuits have the same degree. Since the graph is
connected, all vertices must have the same degree.

Lemma 10. A connected d-regular n-vertex graph has an n-particle stable con-

figuration if and only if the set of arcs
−→
E can be partitioned into sets H1,

H2, . . . , Hd, such that each Hi is a collection of vertex-disjoint simple arc-cycles.

Proof. If there is an n-particle stable configuration S in a d-regular graph, then
denote by Si, for i = 1, 2, . . . , d, the configuration at the beginning of step i,
starting form configuraton S = S1. Let Hi be the set of pointer arcs in con-
figuration Si. Each Hi is a collection of vertex-disjoint simple arc-cycles (the
movement of the n particles in a given step defines a one-to-one mapping on V )
and each arc belongs to exactly one Hi (from the rotor-router property).

Conversely, if H1, H2, . . . , Hd are collections of vertex-disjoint simple arc-

cycles and these collections partition
−→
E , then the d arcs outgoing from any

vertex belong to different collections. For each vertex v, set the order of the arcs
outgoing from v so that the i-th arc is the arc belonging to Hi, and initialize the
vertex pointer to the first arc. These orders of arcs, the vertex pointers, and the
assignment of one particle to each vertex define an n-vertex stable configuration.

Lemma 11. If the edges of a connected regular graph can be partition into 2-
factors and perfect matchings, then this graph admits an n-particle stable con-
figuration.

Proof. Each perfect matching defines one vertex-disjoint collection of simple
arc-cycles covering V : each edge of the matching defines one two-arc cycle. Each
2-factor gives two vertex-disjoint collections of arc-cycles: for each cycle in the
2-factor, one orientation of this cycle is included in one collection and the other
orientation in the other collection.

Corollary 4. Let d be a positive integer. Each n-vertex, (2d)-regular graph ad-
mits an n-particle stable configuration. Each n-vertex, (2d + 1)-regular graph
which has a perfect matching admits an n-particle stable configuration. These
graphs include all (2d+ 1)-regular (2d)-connected graphs.

Proof. Petersen’s 2-factor theorem says that every regular graph of even degree
has a 2-factor, so (by iterating this theorem) it can be partitioned into 2-factors
(see [15]). If a (2d + 1)-regular graph has a perfect matching, then the edges
which are not in this perfect matching form a (2d)-regular graph.

Petersen’s matching theorem says that every 3-regular, 2-connected graph
has a perfect matching. Babler’s generalization of this theorem says that every
(2d+ 1)-regular, (2d)-connected graph has a perfect matching (see [15]).
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We now consider the case when k < n. In cycles, k-particle stable configura-
tions exist only if n is a multiple of k, or a multiple of k/2 for an even k ≥ 4.
Thus in a cycle of prime length any initial configuration leads to full coalescing.
There are no similar strong conditions for general graphs. Actually, if we allow
vertices of degree 3 or higher, then the coalescence seems to depend more on the
structure of the graph than on the primality of n or m. As an example, we show
that for each sufficiently large m (which can be prime) and each 2 ≤ k ≤ 3

√
m/6,

there is a connected graph with m edges which admits a k-particle stable con-
figuration. Both the number of edges and the number of nodes in this example
can be co-prime with the number of particles.

Our example is illustrated in Figure 5. The set of edges E is partitioned into
k + 2 components: a tree T with k + 1 leaves r0, r1, . . . , rk, and at most k − 1
internal vertices, each of degree at least 3, and vertex-disjoint connected sub-
graphs H0, H1, . . . , Hk. Sub-graph Hi shares vertex ri with T and has either �h	
or 
h� edges, where h = (m − |T |)/(k + 1) and |T | ≤ 2k − 1 is the number of
edges in T . We now show a k-particle stable configuration in this graph. Fix an

Eulerian cycle C of the whole set
−→
E . The arcs of Hi form one segment of C,

which is an Eulerian circuit Ci of the arcs of Hi. If we remove all circuits Ci

from C, then the remaining arcs form an Eulerian tour of T . The numbering
r0, r1, . . . , rk of leaves of T is consistent with the reverse order of this Eulerian
tour of T . For each component Hi, we set the cyclic orders of arcs and the vertex
pointers in such a way that one particle starting from vertex ri would first follow
the whole circuit Ci before entering tree T . The positions of the pointers are not
final yet; they will be adjusted. The (cyclic) order (v, w1), . . . , (v, wdeg(v)) of the
arcs outgoing from an internal vertex v in T is consistent with the numbering of
the leaves of T : if arcs (v, w1), . . . , (v, wj) lead to leaves ri1 , . . . , rij , respectively,
then ri1 < ri2 < · · · < rij (the anti-clockwise order in Figure 5). The pointers at
the internal vertices in T are set in the direction of vertex rk.

The final stage of our construction of a stable configuration is the placement
of the k particles x0, x1, . . . , xk−1 and the adjustment of the vertex pointers.
All particles will be following the Eulerian circuit C and we show their initial
positions in relation to this circuit. We place particle x0 at vertex r0 and change
the vertex pointer at r0 to the arc (r0, p) of the tree T . This will be the next arc
on C taken by x0. We place particle x1 on C at distance either �g	 or 
g� arcs
behind particle x0, where g = 2m/k. Generally, we place particles x1, x2, . . . , xk

so that each distance from xi to xi−1 (including from x0 to xk−1) is either �g	 or

g�. Thus the distance from xi to x0 is between i�g	 and i
g�. The values h and
g and the assumption that k ≤ 3

√
m/6 imply that for each i = 1, 2, . . . , k − 1,

i�g	 ≥ 2(|H0|+|H1|+· · ·+|Hi−1|+|T |) and i
g� ≤ 2(|H0|+|H1|+· · ·+|Hi|). This
means that particle xi is in Hi and Hk is empty (does not have any particle).
Finally, for each i = 1, 2, . . . , k − 1, we adjust the vertex pointers in Hi by
simulating the rotor-routermovement of a ”ghost” particle from ri to the position
of particle xi. With this adjustment of vertex pointers in Hi, particle xi will
complete traversing circuit Ci (the traversing started by the ghost particle) and
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then will enter tree T (assuming no interference from other particles). This
completes the construction of a stable configuration.

Starting from the constructed configuration, the particles will move according
to the following pattern. First particle x0 moves to rk along the r0 − rk path in
T in O(k) steps, while the other particles move inside their initial H sub-graphs.
Then particle x1 completes the traversing of H1, arrives at vertex r1 and is
ready to enter tree T . This completes the first phase and at this point, we have
a configuration similar to the initial configuration, but now H0 is empty. In the
next phase, first particle x1 moves to r0 along the r1 − r0 path in T , while the
other particles move inside their current H sub-graphs and x2 reaches r2. In
the subsequent phases, particle x2 moves from H2 to H1, then particle x3 moves
from H3 to H2, and so on. After k(k+1) phases, the system is back in the initial
configuration. It can be shown that no two particles will be at the same time in
T or in the same H component, so no two particles ever collide.

T
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xk−1rr

r r
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k0

H

H H
H

H

0

1 2
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x

Fig. 5. A graph withm edges and a stable k-particle configuration, where k = Θ(m1/3).
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