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Abstract. We study the problem of exploration of a tree by mobile
agents (robots) that have limited energy. The energy constraint bounds
the number of edges that can be traversed by a single agent. Thus we
need a team of agents to completely explore the tree and the objective
is to minimize the size of this team. The agents start at a single node,
the designated root of the tree and the height of the tree is bounded by
the energy bound B. We provide an exploration algorithm without any
knowledge about the tree and we compare our algorithm with the optimal
offline algorithm that has complete knowledge of the tree. Our algorithm
has a competitive ratio of O(logB), independent of the number of nodes
in the tree. We also show that this is the best possible competitive ratio
for exploration of unknown trees.

1 Introduction

Overview: Graph exploration is a well studied problem in computer science
with a wide range of applications from searching the internet to navigation of
robots in unknown environments. The objective is to discover an initially un-
known graph by visiting all nodes in a systematic manner starting from a given
node of the graph. The problem has been well studied for a single agent exploring
a graph [16] or a digraph [1] with the aim of minimizing the exploration time
or equivalently the number of edges traversed. Others have studied the problem
from the perspective of minimizing the memory needed by the agents for explo-
ration [8,13]. When the nodes of the graph do not have identifiers, the agent may
need to mark nodes with a pebble to recognize them and thus, another research
direction is to minimize the number of pebbles used for exploration [4].

When the exploration is performed by physical robots, one of the major is-
sues is the energy consumed during the exploration, since each robot may have
a limited amount of energy for movement. Surprisingly, most previous studies
on exploration have not considered this limitation. Betke et al. [5] and later
Awerbuch et al. [2] have studied the problem of exploration with an energy con-
strained agent. Their solution requires a fuelling station at the starting node and
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the agent periodically returns there to refuel. Between two visits to the starting
node, the agent can make at most B edge traversals. Thus the diameter of graphs
that can be explored is restricted to B/2. When refuelling is not allowed, multi-
ple agents may be needed to explore even graphs of restricted diameter. Given
a graph G, determining whether a team of k agents, each having an energy con-
straint of B can explore G is known to be an NP-hard problem, even when the
graph G is a tree [12]. When the graph (or the tree) is unknown, there are two
possible approaches for online exploration. One approach is to fix the number k
of agents and try to bound the amount of energy B required by each agent, as
in Dynia et al. [10,11]. In this paper, we take the other approach of fixing the
available energy B for each agent and bounding the number of agents used for
exploration. Indeed, according to recent trends in robotics [17], it is preferable
to use a large number of small robots rather than a few bulky ones and our line
of research goes in this direction. In our model, each agent has a limited energy
resource without the ability to recharge, thus allowing the agent to traverse at
most B edges, and our objective is to limit the total number of such agents
used for exploration. We measure the efficiency of the solution in terms of the
competitive ratio which is defined as the worst case ratio of the cost of the online
algorithm for some graph G over the cost of the optimal offline algorithm for the
same graph. We restrict ourselves to exploration of trees. The agents start at
the designated root of an unknown tree T and they must collectively visit every
node of T .

If the height of T i.e. the longest path between the root and a leaf, is
greater than B, then T cannot be fully explored, even by an unbounded
number of agents.

On the other hand, if the height of the tree is exactly B then each leaf at depth
B must be visited by a separate agent. Once the tree is completely explored
and known up to depth B − 1 then we can send one additional agent to explore
each leaf at depth B. Thus it is sufficient to consider algorithms for exploring
trees of height at most B − 1. Note that the previous results [2,10] for energy-
constrained agents were restricted to exploring trees of height at most B/2 (or
graphs of diameter at most B/2).

Related Work: The graph exploration problem has been previously studied
with the objective of minimizing the time for exploration. For exploration of
undirected graphs by a single agent, the algorithm given by Panaite and Pelc [16]
requiresm+O(n) time for a graph ofm edges and n nodes. For exploration of an
unknown tree, exploration in the optimal time of 2(n−1) can be achieved by the
depth-first search algorithm. Using multiple agents can speedup the exploration
and Fraigniaud et al. [12] have presented an algorithm for a team of k mobile
agents that explores a tree of height D in O(D+n/ log k) time. They also showed
that any algorithm for k-agent exploration of a tree has a (2 − 1/k) overhead
over the optimal offline algorithm. While the above results are for small team
of agents (where k ≤ √

n), Dereniowski et al. [7] used a large team of agents to
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reduce the exploration time to O(D) and their solution also works for general
graphs where all nodes are within distance D from the starting node. Ortolf et
al. [15] gave bounds on the competitive ratio for multiple agent exploration of
grid graphs with obstacles. For general graphs, Megow et al. [14] presented a
single-agent exploration algorithm having a constant competitive ratio.

The above results do not consider any energy limitation for the agent. For a
single, energy constrained agent, the problem of exploration with refuelling, has
been studied for grid graphs [5] and also for general graphs [2]. The optimal time
algorithm for exploration with refuelling was given by Duncan et al. [9], who also
studied exploration under a different type of constraint where the agent is tied
to the starting node with a string of fixed length.

For a team of k agents, the problem of exploring a tree using limited energy
resources was investigated by Dynia et al. [10] who presented an algorithm that
is 8-competitive in terms of the energy consumed by each agent. This was later
improved to a competitive ratio of (4−2/k) by Dynia et al. [11]. Other problems
that have been considered for energy constrained agents (that may not start at
the same node) include broadcast and convergecast [3] as well as data-delivery
from a source node to a target node in the graph [6]. These are mainly offline
solutions where the graph and the starting locations are given as input. The
algorithm in the present paper can be seen as an online solution to the problem
of data-delivery from the root to the leaves or vice versa, for the special case of
colocated agents.

Our Results: We consider the problem of exploration of an unknown tree by
a team of mobile agents initially located at the root of the tree. Each agent is
equipped with a battery of size B which bounds the total number of edges the
agent can traverse during its lifetime. We assume the height of the tree to be
at most B − 1, and our objective is to find an exploration strategy where every
node of the tree is visited by at least one agent, and we wish to minimize the
total number of agents used. We study this problem first assuming a global com-
munication model (where agents communicate to each other instantaneously)
and provide an algorithm for online exploration, that has a competitive ratio of
O(logB). We then show how to remove the assumption of global communication
and achieve the same result in the local communication model, with a constant
overhead. Finally we provide a lower bound of Ω(logB) on the competitive ratio
of any online exploration algorithm for energy-constrained agents, showing that
our result is tight. We conclude with some open questions for future research.
Due to the space constraint, proofs of some of the lemmas and theorems have
been omitted.

2 The Model

The environment to be explored is a rooted tree T . The root r0 contains an
infinite supply of mobile agents, each of which has a limited energy B, allowing
it to traverse at most B edges during its lifetime. There is a total order among
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the agents (i.e. they have distinct identities). The nodes of the tree may be
assumed to be anonymous (i.e. we do not require unique identifiers for the nodes
of T ). Each agent has unlimited memory. When two agents are at the same
node, they can freely exchange information. However the agents may not write
any information on the nodes of the tree. We call this the local communication
model. In contrast, in a global communication model an agent can communicate
instantaneously with any other agent irrespective of their location in the tree.

All agents start at the same time, in the same state. At each time unit, any
agent can move to an adjacent node or stay at its current node. Each move costs
one unit of time and one unit of energy, while computation and communication
between agents are instantaneous and do not consume any energy. The agents
cannot exchange their energy resources or recharge their batteries.

The height of the tree (i.e. the distance to the furthest leaf from the designated
root r0) is at most B− 1. The size and structure of the tree is initially unknown
to the agents. The edges incident at each node are locally ordered with port
numbers, allowing the agents to choose edges to visit in a deterministic manner.
An exploration strategy for the team of agents is successful if each node of
the tree visited by at least one agent. The cost of the exploration strategy is
the number of agents which made any non-null moves during the exploration.
We denote by OPT the cost of the optimal offline strategy that has complete
knowledge of the tree.

For any node r ∈ T we denote by Tr the subtree of T, rooted at r. Further for
any node v ∈ Tr, we define the depth of node v as the length of the path from r
to v. We denote by T δ

r the subtree rooted at r truncated to depth δ from r. We
denote by |T |, the number of edges in T .

3 Exploration with Global Communication

In this section we describe and analyze a recursive algorithm for tree exploration
under the global communication model. The algorithm is called Global Commu-
nication Tree Exploration (GCTE). The main idea of the algorithm is to explore
the tree up until a certain depth and afterwards take advantage of the already
known part of the tree to continue the exploration. More specifically, this al-
gorithm proceeds by levels. Each level of the algorithm is a set of nodes which
are located at a certain depth of the tree. The first level consists of the root r0.
At each level i, agents having energy bi, expand the explored part of the tree
further by increasing its depth by ε · bi where ε is a parameter of the algorithm
such that 0 < ε < 1

4 . The new frontier of the explored part defines the next level
of the algorithm. The algorithm GCTEε is then recursively called at each node of
the newly created level i.

Definition 1. For i = 1, level i of algorithm GCTEε consists of the root node r0;
the depth di of the level i is d1 = 0, the energy bi at this level is b1 = B. For
i > 1, level i of GCTEε consists of all nodes at depth di = di−1 + �ε · bi−1�, and
bi = B − di.
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For any two nodes u and v at the same level, we would like the exploration of
the trees Tu and Tv to proceed independently, using disjoint sets of agents. To
this end, we allow some overlap between successive levels of the algorithm. More
precisely, at each level i, the exploration is extended to the depth of (12 + ε) · bi,
although the next level still starts at depth ε · bi from the current level. This
additional extension at each level i allows the algorithm to look ahead at the start
of the next level (i+1). Thus, at the start of a recursive call to Algorithm GCTEε
at a node r at level i+ 1, the subtree Tr has been already partially explored to
some depth. We show below (c.f. Lemma 1) that the exploration of this partially
explored subtree Tr can be done independently to any other subtree at the same
level.

Definition 2. Two partially explored subtrees Tu and Tv, rooted at nodes u and
v located at the same depth from r0, are said to be independent if no single agent
can visit nodes in the unexplored part of both subtrees.

Informally, this independence means that disjoint teams of agents can be used
for exploring such subtrees during the algorithm. We now formally describe our
algorithm GCTEε .

Algorithm GCTEε . An algorithm for tree exploration, 0 < ε < 1
4

Input: The root r of the tree and an integer b that equals the size of the available
energy the agents have.

1: Uncover(r,
⌊
( 1
2
+ ε)b

⌋
)

2: Let r1, r2, . . . be nodes at depth �ε · b� from r, such that Tri has some unexplored
edges.

3: For each ri, call Algorithm GCTEε (ri, (b− �ε · b�)).

Procedure Uncover(r, δ) with input node r and an integer δ works as follows.
During this procedure, the agents explore the unexplored part of subtree Tr

rooted at r, using a Depth First Search (DFS) traversal restricted to a depth
of δ from r. An agent initially located at the root r0 arrives at the current root
r, having b units of energy and begins to explore the subtree T δ

r performing
DFS. First, this agent goes to the next unexplored node in the DFS traversal.
At this node, the agent resumes the DFS traversal. Finally, when the agent has
x(ε) = 1

2 (
1
2 − ε)b units of energy left, it interrupts the exploration (it saves the

remaining energy for later use, as explained later in the next section). If the point
where the agent is supposed to interrupt the DFS traversal is the middle of an
edge, then the agent finishes before traversing this edge. Note that in the global
communication model, at any point of exploration, each agent possesses the full
knowledge of the part of the tree explored to date and the current locations of all
agents. Hence, another agent will arrive at r and continue the DFS exploration
by visiting the unexplored node that is supposed to be visited next according to
the DFS traversal. This procedure ends when all nodes at depth δ or less have
been visited.
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Lemma 1. The subtrees that are created in step 2 of GCTEε are pairwise inde-
pendent. Moreover, for any such subtree Tr rooted at a node r any agent that
reaches the unexplored part of Tr cannot return to node r.

Theorem 1. For any ε, 0 < ε < 1
4 , Algorithm GCTEε called for r0 and B

correctly explores the tree.

Proof. To prove the correctness of GCTEε , we first show that procedure
Uncover(r, δ) with δ =

⌊
(12 + ε)b

⌋
correctly explores the subtree rooted at node

r up to depth δ. Note that by a simple induction on the distance of r from r0,
any agent that arrives at node r, to execute Uncover(r, δ), has exactly b units of
energy. Further any such agent Aj has complete knowledge of the part of subtree
Tr already explored by previous agents and thus agent Aj knows the path from
r to the next unexplored node v in the DFS traversal of T δ

r . This node v must
be at distance at most δ from r. According to the algorithm, the agent uses

l := b− �x(ε)� = �b− x(ε)� = �δ + x(ε)�

units of energy during the DFS traversal. Since l ≥ δ the agent does succeed
in reaching the node v. Hence, each agent used in Uncover visits at least one
previously unexplored node in T δ

r . This implies that eventually all nodes within
depth δ in Tr are visited during the DFS exploration. This proves the correctness
of procedure Uncover.

In order to complete the proof of the correctness of GCTEε, we note that the
algorithm makes progress at each level i, that is, level i+1 is at strictly greater
depth than level i. Indeed, this follows from εbi > 0 for ε > 0, which gives
�εbi� ≥ 1. 
�
Lemma 2. The number of levels in Algorithm GCTEε is at most log( 1

1−ε )
B.

Before proceeding to calculating the cost of Algorithm GCTEε , let us make
the following useful remark. During the procedure Uncover, each participating
agent uses at most δ energy to reach the starting node for its DFS exploration
and uses at least b − δ − �x(ε)� =

⌊
1
2 (

1
2 − ε)b

⌋
units of energy to contribute to

the DFS exploration of unexplored nodes.

Lemma 3. Procedure Uncover(r,δ) for r = r0 and δ = (1/2+ε)B uses SOLr ≤
4

( 1
2−ε)

·OPT agents.

Theorem 2. Algorithm GCTEε has a competitive ratio of 4
( 1
2−ε)

· log( 1
1−ε )

B.

Proof. Consider a call to GCTEε(r, bi) at some level i > 1, where r is at depth
di > 0 from the global root. Let SOLr denote the number of agents used by
the algorithm to explore edges of the subtree Tr during level i. A DFS explo-
ration walk of Tr that starts and ends at r has length 2 · |Tr|. As explained before
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each of the SOLr agents (except the last one) use at least 1
2 (

1
2 − ε)bi of their

available energy to contribute to the DFS exploration. The last agent may have
some available energy after visiting the last unexplored edge in Tr but it does
not have enough energy to return to node r (by Lemma 1). Thus if we assume
that the last agent attempts to reach the root r with its remaining energy, we
can say that the path traversed in total by the agents is at most 2 · |Tr|. Thus,

1

2
(
1

2
− ε)bi · SOLr ≤ 2 · |Tr| =⇒ SOLr ≤ 4

bi(
1
2 − ε)

|Tr|

Furthermore, due to Lemma 1, we know the subtrees at the same level are
independent so we can sum up over all subtrees at level i:

∑

r∈r1,r2,...

SOLr ≤ 4

bi(
1
2 − ε)

∑

r∈r1,r2,...

|Tr|

SOL(i) ≤ 4

bi(
1
2 − ε)

|T \ T di|

where SOL(i) denotes the number of agents used by the algorithm at level i.
The optimal algorithm uses OPT agents to explore the tree. Any agent that
reaches to depth di of T has bi units of energy remaining. Thus, each agent can
traverse at most bi edges below this depth. Hence

bi · OPT ≥ |T \ T di|

Combining the above two equations, we have

SOL(i) ≤ 4
1
2 − ε

OPT

The above bound holds for any level i > 1. Moreover, due to Lemma 3, we have
exactly the same bound for level i = 1 of the algorithm. Since there are at most
log( 1

1−ε )
B levels in the algorithm (due to Lemma 2), we obtain the total cost

SOL of the algorithm,

SOL ≤ 4
1
2 − ε

· log( 1
1−ε )

B · OPT


�
Note that on the termination of algorithm GCTEε , each agent that participated

in the exploration at level i has at least xi(ε) = 1
2 (

1
2 − ε) · bi units of unused

energy. This remaining energy would be used by the algorithm presented in the
next section.
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4 Exploration with Local Communication

This section is devoted to adaptation of GCTEε for the model with local communi-
cation between agents. This is done in two steps. In the first step we introduce an
intermediate stage between two models of global and local communication. We
call this a semi-local communication model and we define it as follows: two agents
performing the DFS exploration in Step 1 of an instance of GCTEε can communi-
cate only locally, that is, they can communicate only when present at the same
node; on the other hand, the algorithm may call for a new agent that is placed
at the root r of a subtree explored by an instance of GCTEε. Note that, when an
instance of GCTEε calls for a new agent to arrive at the input node r, this agent
is initially present at the ‘global’ root of the entire tree and needs to traverse the
path from the global root to r. Thus, in our semi-local communication model
this mechanism of calling for agents uses the global communication model. In
Section 4.1 we adopt GCTEε so that it operates in the semi-local communication
model and we calculate the cost of this modification in terms of the number of
agents used. In particular, we prove that with respect to the original algorithm,
the total number of agents increases by a constant factor (depending only on ε).
Then, in Section 4.2, we add to our algorithm a mechanism for calling for new
agents at local roots so that this part is also done via local communication.

4.1 Semi-local Communication Model

We start this section by providing some intuition. We consider an arbitrary
execution of GCTEε(r, b) for an input node r and energy level b. Recall Step 1 of
GCTEε, where the agents, one by one, perform the DFS traversal up to a certain
depth of the subtree Tr. Suppose that the agents that perform this traversal
are A1, . . . , Ak and that they are ordered according to the precedence of their
movements, i.e., Ai traverses its path prior to Ai+1 for each i ∈ {1, . . . , k−1}. For
each agent Ai we will add a constant number of c(ε) additional agents denoted

A1
i , . . . , A

c(ε)
i , where

c(ε) = 2 ·
⌈
1/2 + ε

1/2− ε

⌉
, 0 < ε < 1/4. (1)

To simplify some statements we sometimes write A0
i in place of Ai. The agents

Ai, A
1
i , . . . , A

c(ε)
i are called the i-th team for each i ∈ {1, . . . , k}. For the purposes

of the analysis we introduce some additional notation that allows us to describe
the behavior of agents during this DFS traversal in more details. We denote by
brevity

x(ε) =
1

2

(
1

2
− ε

)
b. (2)

We also say that an agent heads towards a node v if in each of the following
consecutive time units the agent makes a move that gets it closer to v until
either v is reached or the agent runs out of energy. It is said that the i-th team
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is successful if: (i) the agent Ai visited a superset of nodes with respect to its

original behavior in Step 1 of GCTEε, and (ii) the agent A
c(ε)
i reaches the root r

and possesses the information about all moves performed by agents A1, . . . , Ai.

We now describe the modification of the DFS traversal from Step 1 of GCTEε
by describing how Ai and A1

i , . . . , A
c(ε)
i operate for each i ∈ {1, . . . , k}.

Behavior of Ai. Recall that in Step 1 of GCTEε, each agent Ai, i ∈ {1, . . . , k},
finishes its part of DFS traversal having at least x(ε) energy left. We now use
this energy as follows: the agent heads towards the root r in the next �x(ε)� time
units.

Behavior of Aj
i ’s. For each i ∈ {1, . . . , k} and j ∈ {1, . . . , c(ε)}, the agent Aj

i

follows the movements of Ai up to the depth

dj(ε) = �j · x(ε)�
until the completion of the movement of Ai. More precisely, the agent Aj

i mimics
each move of Ai from node u to node v if both u and v are within depth (from r)
at most dj(ε). If, on the other hand, either u or v is at depth greater than dj(ε),

then Aj
i stays idle in this given time unit. Finally, the agent Aj

i heads towards
the root r; we will describe below in which time unit this action is triggered.

Order of Movements. Having described the movements of Ai and Aj
i for each

i ∈ {1, . . . , k} and j ∈ {1, . . . , c(ε)}, we specify the order of their actions. The
agent A1 starts its movement once all agents of the 1-st team are at r. For

each i ∈ {2, . . . , k}, the agent Ai starts its movement once A
c(ε)
i−1 completed its

movement by arriving at r and once all agents of the i-th team are at r. (We will

argue later that A
c(ε)
i−1 indeed returns to the root r.) In other words, once A

c(ε)
i−1

completes its movement, all agents of the i-th team are called to appear at r.
For each j ∈ {1, . . . , c(ε)}, we only need to describe how they operate once Ai

runs out of energy, as their preceding movements are specified above. The agent
Aj

i heads towards the root r in time unit in which he occupies the same node as

Aj−1
i and the latter agent is heading towards r. (Thus, it may happen that for

a number of time units both agents will head towards r together.)

In the following we prove that the above actions of agents are valid under
the assumption that they have to communicate locally. Considering the order of
movements of agents it suffices to argue that each team is successful. We refer to
all movements of the agents Aj

i , i ∈ {1, . . . , k}, j ∈ {1, . . . , c(ε)}, as the extended
DFS traversal of T .

Lemma 4. For each i ∈ {1, . . . , k}, the i-th team is successful.

As a consequence of the above, we obtain the following.

Lemma 5. The extended DFS traversal correctly explores Tr to a depth of (12 +
ε)B using k(c(ε) + 1) agents that communicate locally, where k is the number of
agents used in the DFS traversal performed in Step 1 of Algorithm GCTEε.

Proof. The fact that the k teams, each of size c(ε) + 1, explore the tree to the
required depth follows directly from Lemma 4. 
�
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4.2 Local Communication between Levels

We start this section with an informal description, also pointing out the obstacles
we need to overcome. The mechanism of communication between two consecu-
tive levels will be handled by special agents that we call managing agents (see
below for a formal definition). A managing agent arrives at a root r for which a
call to GCTEε is performed. This agent is not used for the extended DFS traversal
of Tr but will play a crucial role while conducting recursive calls for descendants
r1, r2, . . .. More precisely, this agent will keep track of which subtrees have been
already explored and for which one the recursive call is ‘in progress’. By a re-
cursive call, made say for ri, being in progress we mean that the exploration
of Tri is in progress. Thus, until the exploration of that subtree is completed,
the managing agent for Tr is responsible for redirecting all agents arriving at
r to this subtree Tri . Once the exploration of Tri is completed, the managing
agent for Tri will report this fact to the managing agent for Tr and the latter
one may initiate the process of exploration of the next subtree Tri+1 . Once all
subtrees Tr1 , Tr2 , . . . are explored the managing agent for Tr returns ‘one level
up’ to report this event to appropriate managing agent.

Observe that the above scheme should be performed in such a way that each
subtree Tr ‘receives’ just enough agents needed for its exploration and not more.
This includes one managing agent for the subtree itself, the agents performing
the extended DFS traversal of Tr and the agents needed for recursive calls, if
any. This is regulated by introducing the agents slowly at the global root so
that, within predefined time intervals new agents appear at the global root and
are directed gradually by managing agents precisely to the subtree for which the
current extended DFS traversal is performed. The time intervals are set up in
such a way that if an exploration of a particular subtree is completed then this
information has enough time to be carried by the managing agent to the one
residing one level up. In this way the flow of agents to a particular subtree is
stopped and redirected to the next one supplying the exact amount of agents
needed for each of the subtrees. Intuitively, the measurement of time is used
indirectly as a communication tool: if a managing agent does not receive for a
given amount of time a signal that a recursive call to a subtree is completed,
then this means that the exploration of that subtree is not completed and more
agents are needed to finish it — hence another agent will be sent to that subtree.

Now we give a detailed description of the modifications to the exploration
strategy described in Section 4.1 so that it is valid for agents communicating
locally. At the beginning of exploration (i.e., when GCTEε is called for a tree T ),
one distinguished agent is selected to be constantly present at the root r0 of the
entire tree T . This agent is called the managing agent for T . Similarly, whenever
a recursive call of GCTEε is made for any input node r, the first agent that arrives
at r is the managing agent for Tr and it stays at r until the entire subtree Tr is
explored.

Extension of Step 1 of GCTEε. Once all c(ε) + 1 members of the i-th team
are present at the root r of a subtree for which the extended DFS traversal is
performed, the i-th team operates exactly as described in Section 4.1. Recall
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that the i-th team finishes its work with one of its agents being at the root.
The beginning of the operation of the (i+1)-th team is postponed until exactly
c(ε) + 1 new agents, each with energy b, appear at r. Then, the (i+ 1)-th team
resumes the extended DFS traversal. We note that the agents forming each team
will arrive at r directly from the global root of the tree and this will become
clear after description of the extension of Step 3 of GCTEε.

Extension of Step 3 of GCTEε. For this part we need to describe how a recursive
call is performed by an instance of GCTEε. This includes two actions: initiating
the call and receiving information that a recursive call is completed, i.e., that the
exploration of the subtree for which the call was conducted is finished. Suppose
that an instance of GCTEε with input r and b performs a call for a subtree rooted
at a node ri. Recall that the managing agent for Tr, denoted by A(r) is present
at r during exploration of Tr. First, A(r) waits until a new agent, denoted by
A(ri), appears at r and after this event this agent is sent to ri and it becomes
the managing agent for Tri. Then, the algorithm sends each agent arriving at r
to the node ri until the agent A(ri) returns to r. This completes the recursive
call for ri and A(ri) stays idle at r indefinitely (and will not play any role in
the remaining part of the exploration). Then, the next recursive call, if any, that
needs to be done is performed. The information about the current status of each
recursive call made by the instance of GCTEε(r, b), is maintained by A(r), the
managing agent for Tr, and once all recursive calls are completed this managing
agent returns to the node that is the ancestor of r from which the instance of
GCTEε(r, b) was called.

Distribution of agents at the global root. Note that the above description
defines the operation of agents for each instance of GCTEε except for the managing
agent at the global root r0 for the first call to GCTEε. The managing agent at
the global root has all agents at its disposal from the first step and does not
need to wait for the arrival of an agent. Therefore we introduce an artificial
delay denoted by d(ε) as defined below. The d(ε) is an integer and it will be
understood that the agents will appear at the global root r in time intervals of
d(ε). This time interval is defined as

d(ε) = (c(ε) + 2)B. (3)

The exploration strategy modified as above is called LCTEε (Local Communi-
cation Tree Exploration). We now prove that LCTEε works correctly in the local
communication model.

Lemma 6. For 0 < ε < 1/4, Algorithm LCTEε correctly explores any tree T
using local communication between agents.

Theorem 3. Algorithm LCTEε explores T using at most O(logB) ·OPT agents.

5 Competitive Ratio of Online Exploration

We now show a lower bound on the competitive ratio of any online exploration
algorithm in the local communication model. The following result implies that
the competitive ratio of algorithm LCTEε is asymptotically optimal.
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Theorem 4. Any online exploration algorithm for exploring a tree of depth D =
B − 1 has a worst case competitive ratio of at least Ω(logB).

Proof. We consider the family of trees which consist of a line of length D − 1
connected to the center of a star with p leaves. Thus all the p leaves of the tree
are at distance D = B − 1 from the root and there is only one node at distance
D−1. An offline algorithm would use exactly p agents for exploring this tree. An
online algorithm for exploring this tree can be of two types: We say an algorithm
is type-1 if during the algorithm there is no transfer of information from the node
at depth D− 1 to the root; All other algorithms are of type-2. First notice that
if an algorithm of type-1, uses k agents for exploration then k is independent of
p, since p remains unknown to the root. Thus, by taking p > k, we can make the
algorithm fail. So we need to consider only type-2 algorithms where information
from the node at depth D− 1 is transferred to the root. Any agent visiting this
node has at most B − (D − 1) = 2 units of energy remaining, so it can return
back to depth D − 3 = B − 4. Similarly, any agent visiting the node at depth
B− 4 can return back to depth B− 8, and so on. Thus, at least Ω(logB) agents
are needed to carry the information from the node at depth D − 1 back to the
root. So any type-2 algorithm would use at least Ω(logB) agents. By taking
p = 1, we get a competitive ratio of Ω(logB) for any such algorithm. 
�

6 Conclusions

We studied the problem of exploring a tree with a team of agents, each of which
can traverse at most B edges. We gave matching lower and upper bound of
Θ(logB) on the competitive ratio of the cost of tree exploration. Unlike previous
algorithms for energy constrained agents, the agents in our algorithm do not
necessarily return to the root after exploration. This fact allows us to explore
trees of larger depth. However there is still a transfer of information from the
leaves to the root. Thus the algorithm can be used e.g. to collect information
from the leaves of a tree, or to search for a resource and bring it back to the root.
Note that the lower bound of Ω(logB) on the competitive ratio holds only in
the local communication model. An interesting question is whether more efficient
algorithms are possible for tree exploration in the global communication model.
Another open question is the cost of exploring general graphs or other specific
classes of graphs.
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