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Abstract. This paper investigates an open problem introduced in [14].
Two or more mobile agents start from different nodes of a network and
have to accomplish the task of gathering which consists in getting all
together at the same node at the same time. An adversary chooses the
initial nodes of the agents and assigns a different positive integer (called
label) to each of them. Initially, each agent knows its label but does
not know the labels of the other agents or their positions relative to its
own. Agents move in synchronous rounds and can communicate with
each other only when located at the same node. Up to f of the agents
are Byzantine. A Byzantine agent can choose an arbitrary port when it
moves, can convey arbitrary information to other agents and can change
its label in every round, in particular by forging the label of another
agent or by creating a completely new one. What is the minimum num-
ber M of good agents that guarantees deterministic gathering of all of
them, with termination? We provide exact answers to this open problem
by considering the case when the agents initially know the size of the
network and the case when they do not. In the former case, we prove
M = f + 1 while in the latter, we prove M = f + 2. More precisely,
for networks of known size, we design a deterministic algorithm gather-
ing all good agents in any network provided that the number of good
agents is at least f + 1. For networks of unknown size, we also design
a deterministic algorithm ensuring the gathering of all good agents in
any network but provided that the number of good agents is at least
f + 2. Both of our algorithms are optimal in terms of required number
of good agents, as each of them perfectly matches the respective lower
bound on M shown in [14], which is of f + 1 when the size of the net-
work is known and of f + 2 when it is unknown. Perhaps surprisingly,
our results highlight an interesting feature when put in perspective with
known results concerning a relaxed variant of this problem in which the
Byzantine agents cannot change their initial labels. Indeed under this
variant M = 1 for networks of known size and M = f + 2 for networks
of unknown size. Following this perspective, it turns out that when the
size of the network is known, the ability for the Byzantine agents to
change their labels significantly impacts the value of M. However, the
relevance for M of such an ability completely disappears in the most
general case where the size of the network is unknown, as M = f + 2
regardless of whether Byzantine agents can change their labels or not.
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1 Introduction

1.1 Context

Gathering is one of the most fundamental tasks in the field of distributed and
mobile systems in the sense that, the ability to gather is in fact a building
block to achieve more complex cooperative works. Loosely speaking, the task of
gathering consists in ensuring that a group of mobile entities, initially located
in different places, ends up meeting at the same place at the same time. These
mobile entities, hereinafter called agents, can vary considerably in nature ranging
from human beings and robots to animals and software agents. The environment
in which the agents are supposed to evolve can vary considerably as well: it may
be a terrain, a network modeled as a graph, a three-dimensional space, etc. We
can also consider that the sequences of instructions followed by the agents in
order to ensure their gathering are either deterministic or randomized.

In this paper, we consider the problem of gathering in a deterministic way
in a network modeled as a graph. Thus, the agents initially start from different
nodes of the graph and have to meet at the same node by applying deterministic
rules. We assume that among the agents, some are Byzantine. A Byzantine
agent is an agent subject to unpredictable and arbitrary faults. For instance
such an agent may choose to never stop or to never move. It may also convey
arbitrary information to the other agents, etc. The case of Byzantine fault is
very interesting because it is the worst fault that can occur to agents. As a
consequence, gathering in such a context is challenging.

1.2 Model and Problem

The distributed system considered in this paper consists of a group of mobile
agents that are initially placed by an adversary at arbitrary but distinct nodes
of a network modeled as a finite, connected, undirected graph G = (V,E). We
assume that |V | = n. In the sequel n is also called the size of the network.
Two assumptions are made about the labelling of the two main components
of the graph that are nodes and edges. The first assumption is that nodes are
anonymous i.e., they do not have any kind of labels or identifiers allowing them to
be distinguished from one another. The second assumption is that edges incident
to a node v are locally ordered with a fixed port numbering ranging from 0 to
deg(v)− 1 where deg(v) is the degree of v. Therefore, each edge has exactly two
port numbers, one for each of both nodes it links. The port numbering is not
supposed to be consistent: a given edge (u, v) ∈ E may be the i-th edge of u but
the j-th edge of v, where i �= j. These two assumptions are not fortuitous. The
primary motivation of the first one is that if each node could be identified by
a label, gathering would become quite easy to solve as it would be tantamount
to explore the graph (via e.g. a breadth-first search) and then meet in the node
having the smallest label. While the first assumption is made so as to avoid
making the problem trivial, the second assumption is made in order to avoid
making the problem impossible to solve. Indeed, in the absence of a way allowing
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an agent to distinguish locally the edges incident to a node, gathering could be
proven as impossible to solve deterministically in view of the fact that some
agents could be precluded from traversing some edges and visit some parts of
the graph.

An adversary chooses the starting nodes of the agents. The starting nodes are
chosen so that there are not two agents sharing initially the same node. At the
beginning, an agent has a little knowledge about its surroundings: it does not
know either the graph topology, or the number of other agents, or the positions
of the others relative to its own. Still regarding agents’ knowledge, we will study
two scenarios: one in which the agents initially know the parameter n and one in
which the agents do not initially know this parameter or even any upper bound
on it.

Time is discretized into an infinite sequence of rounds. In each round, every
agent, which has been previously woken up (this notion is detailed in the next
paragraph), is allowed to stay in place at its current node or to traverse an edge
according to a deterministic algorithm. The algorithm is the same for all agents:
only the input, whose nature is specified further in the subsection, varies among
agents.

Before being woken up, an agent is said to be dormant. A dormant agent may
be woken up only in two different ways: either by the adversary that wakes some
of the agents at possibly different rounds, or as soon as another agent enters the
starting node of the dormant agent. We assume that the adversary wakes up at
least one agent. When an agent is woken up in a round r, it is told the degree
of its starting node. As mentioned above, in each round r′ ≥ r, the executed
algorithm can ask the agent to stay idle or to traverse an edge. In the latter
case, this takes the following form: the algorithm ask the agent, located at node
u, to traverse the edge having port number i, where 0 ≤ i < deg(u)− 1. Let us
denote by (u, v) ∈ E this traversed edge. In round r′ +1, the agents enters node
v: it then learns the degree deg(v) as well as the local port number j of (u, v) at
node v (recall that in general i �= j). An agent cannot leave any kind of tokens
or markers at the nodes it visits or the edges it traverses.

In the beginning, the adversary also assigns a different positive integer (called
label) to each agent. Each agent knows its label but does not know the labels of
the other agents. When several agents are at the same node in the same round,
they see the labels of the other agents and can exchange all the information
they currently have. This exchange is done in a “shouting” mode in one round:
all the exchanged information becomes common knowledge for agents that are
currently at the node. On the other hand when two agents are not at the same
node in the same round they cannot see or talk to each other: in particular,
two agents traversing simultaneously the same edge but in opposite directions,
and thus crossing each other on the same edge, do not notice this fact. In every
round, the input of the algorithm executed by an agent a is made up of the label
of agent a and the up-to-date memory of what agent a has seen and learnt since
its waking up. Note that in the absence of a way of distinguishing the agents, the
gathering problem would have no deterministic solution in some graphs. This is
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especially the case in a ring in which at each node the edge going clockwise has
port number 0 and the edge going anti-clockwise has port 1: if all agents are
woken up in the same round and start from different nodes, they will always
have the same input and will always follow the same deterministic rules leading
to a situation where the agents will always be at distinct nodes no matter what
they do.

Within the team, it is assumed that up to f of the agents are Byzantine. The
parameter f is known to all agents. A Byzantine agent has a high capacity of
nuisance: it can choose an arbitrary port when it moves, can convey arbitrary
information to other agents and can change its label in every round, in particular
by forging the label of another agent or by creating a completely new one. All
the agents that are not Byzantine are called good. We consider the task of f -
Byzantine gathering which is stated as follows. The adversary wakes up at least
one good agent and all good agents must eventually be in the same node in the
same round, simultaneously declare termination and stop, provided that there
are at most f Byzantine agents. Regarding this task, it is worth mentioning that
we cannot require the Byzantine agents to cooperate as they may always refuse
to be with some agents. Thus, gathering all good agents with termination is the
strongest requirement we can make in such a context.

What is the minimum number M of good agents that guarantees f -Byzantine
gathering?

At first glance, the question might appear as not being really interesting
since, after all, the good agents might always be able to gather in some node,
regardless of the number of Byzantine agents evolving in the graph. However,
this is not the case as pointed out by the study that introduced this question
in [14]. More specifically, when this size is initially known to the agents, the
authors of this study described a deterministic algorithm gathering all good
agents in any network provided that there are at 2f + 1 of them, and gave a
lower bound of f + 1 on M by showing that if the number of good agents is
not larger than f , then there are some graphs in which the good agents are not
able to gather deterministically with termination. When the size of the network
is unknown, they did a similar thing but with different bounds: they gave an
algorithm working for a team including at least 4f +2 good agents, and showed
a lower bound of f + 2 on M. However, the question of what the tight bounds
are was left as an open problem.

1.3 Our Results

In this paper, we solve this open problem by proving that the lower bounds of
f +1 and f+2 on M, shown in [14], are actually also upper bounds respectively
when the size of the network is known and when it is unknown. More precisely,
we design deterministic algorithms allowing to gather all good agents provided
that the number of good agents is at least f + 1 when the size of the network is
initially known to agents, and at least f +2 when this size is initially unknown.

Perhaps surprisingly, our results highlight an interesting feature when put
in perspective with results concerning a relaxed variant of this problem (also
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introduced in [14]) in which the Byzantine agents cannot change their initial
labels. Indeed under this variant M = 1 for networks of known size and M =
f+2 for networks of unknown size1. Following this perspective, it turns out that
when the size of the network is known, the ability for the Byzantine agents to
change their labels significantly impacts the value of M. However, the relevance
for M of such an ability completely disappears in the most general case where
the size of the network is unknown, asM = f+2 regardless of whether Byzantine
agents can change their labels or not.

1.4 Related Works

Historically, the first mention of the gathering problem appeared in [28] under the
appellation of rendezvous problem. Rendezvous is the term which is usually used
when the studied task of gathering is restricted to a team of exactly two agents.
From this publication until now, the problem has been extensively studied so that
there is henceforth a huge literature about this subject. This is mainly due to the
fact that there is a lot of alternatives for the combinations we can make when
approaching the problem, e.g., by playing on the environment in which the agents
are supposed to evolve, the way of applying the sequences of instructions (i.e.,
deterministic or randomized) or the ability to leave some traces in the visited
locations, etc. Naturally, in this paper we are more interested in the research
works that are related to deterministic gathering in networks modeled as graphs.
This is why we will mostly dwell on this scenario in the rest of this subsection.
However, for the curious reader wishing to consider the matter in greater depth,
we invite him to consult [7,1,19] that address the problem in the plane via
various scenarios, especially in a system affected by the occurrence of faults or
inaccuracies for the last two references. Regarding randomized rendezvous, a
good starting point is to go through [2,3,21].

Concerning the context of this paper, the closest work to ours is obviously [14].
Nonetheless, in similar settings but without Byzantine agents, there are some
papers that should be cited here. This is in particular the case of [13] in which the
author presented a deterministic protocol for solving the rendezvous problem,
which guarantees a meeting of the two involved agents after a number of rounds
that is polynomial in the size n of the graph, the length l of the shorter of the two
labels and the time interval τ between their wake-up times. As an open problem,
the authors ask whether it is possible to obtain a polynomial solution to this
problem which would be independent of τ . A positive answer to this question
was given, independently of each other, in [20] and [29]. While these algorithms
ensure rendezvous in polynomial time (i.e., a polynomial number of rounds),

1 The proof that both of these values are enough, under their respective assumptions
regarding the knowledge of the network size, relies on algorithms using a mechanism
of blacklists that are, informally speaking, lists of labels corresponding to agents
having exhibited an “inconsistent” behavior. Of course, in the context of our paper,
we cannot use such blacklists as the Byzantine agents can change their labels and in
particular steal the identities of good agents.
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they also ensure it at polynomial cost since the cost of a rendezvous protocol is
the number of edge traversals that are made by the agents until meeting and
since each agent can make at most one edge traversal per round. However, it
should be noted that despite the fact a polynomial time implies a polynomial
cost, the reciprocal is not always true as the agents can have very long waiting
periods sometimes interrupted by a movement. Thus these parameters of cost
and time are not always linked to each other. This was highlighted in [25] where
the authors studied the tradeoffs between cost and time for the deterministic
rendezvous problem. More recently, some efforts have been dedicated to analyse
the impact on time complexity of rendezvous when in every round the agents
are brought with some pieces of information by making a query to some device
or some oracle, see, e.g., [11,24]. Along with the works aiming at optimizing the
parameters of time and/or cost of rendezvous, some other works have examined
the amount of memory that is required to achieve deterministic rendezvous e.g.,
in [16,17] for tree networks and in [9] for general networks.

All the aforementioned studies that are related to gathering in graphs take
place in a synchronous scenario i.e., a scenario in which the agents traverse
the edges in synchronous rounds. Some efforts have been also dedicated to the
scenario in which the agents move asynchronously: the speed of agents may
then vary and is controlled by the adversary. For more details about rendezvous
under such a context, the reader is referred to [23,10,15,18] for rendezvous in
finite graphs and [4,8] for rendezvous in infinite grids.

Aside from the gathering problem, our work is also in conjunction with the
field of fault tolerance via the assumption of Byzantine faults to which some
agents are subjected. First introduced in [26], a Byzantine fault is an arbitrary
fault occurring in an unpredictable way during the execution of a protocol. Due
to its arbitrary nature, such a fault is considered as the worst fault that can oc-
cur. Byzantine faults have been extensively studied for “classical” networks i.e.,
in which the entities are fixed nodes of the graph (cf., e.g., the book [22] or the
survey [5]). To a lesser extend, the occurrence of Byzantine faults has been also
studied in the context of mobile entities evolving in the plane, cf. [1,12]. Prior to
our work, gathering in arbitrary graphs in presence of Byzantine agents was con-
sidered only in [14]. As mentioned in the previous section, it is proven in [14] that
the minimum number M of good agents that guarantees f -Byzantine gathering
is precisely 1 for networks of known size and f +2 for networks of unknown size,
provided that the Byzantine agents cannot lie about their labels. The proof that
both of these values are enough, under their respective assumptions regarding
the knowledge of the network size, relies on algorithms using a mechanism of
blacklists that are, informally speaking, lists of labels corresponding to agents
having exhibited an “inconsistent” behavior. Of course, in the context of our
paper, we cannot use such blacklists as the Byzantine agents can change their
labels and in particular steal the identities of good agents.
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2 Preliminaries

Throughout the paper, the number of nodes of a graph is called its size. In
this section we present two procedures, that will be used as building blocks in
our algorithms. The aim of both of them is graph exploration, i.e., visiting all
nodes of the graph by a single agent. The first procedure, based on universal
exploration sequences (UXS), is a corollary of the result of Reingold [27]. Given
any positive integer N , this procedure allows the agent to traverse all nodes of
any graph of size at most N , starting from any node of this graph, using P (N)
edge traversals, where P is some polynomial. After entering a node of degree d
by some port p, the agent can compute the port q by which it has to exit; more
precisely q = (p+ xi) mod d, where xi is the corresponding term of the UXS of
length P (N).

The second procedure [6] needs no assumption on the size of the network but
it is performed by an agent using a fixed token placed at a node of the graph.
It works in time polynomial in the size of the graph. (It is well known that a
terminating exploration even of all anonymous rings of unknown size by a single
agent without a token is impossible.) In our applications the roles of the token
and of the exploring agent will be played by agents or by groups of agents. At
the end of this second procedure, the agent has visited all nodes and determined
a BFS tree of the underlying graph.

We call the first procedure EXPLO(N) and the second procedure EST , for
exploration with a stationary token. We denote by T (EXPLO(n)) the execution
time of procedure EXPLO with parameter n (note that T (EXPLO(n)) =
P (n) + 1). We denote by T (EST (N)) the maximum time of execution of the
procedure EST in a graph of size at most N .

3 Known Graph Size

This section aims at proving the following theorem

Theorem 1. Deterministic f -Byzantine gathering of k good agents is possible
in any graph of known size if, and only if k ≥ f + 1.

As mentioned in Subsection 1.2, we know from [14] that:

Theorem 2 ([14]). Deterministic f -Byzantine gathering of k good agents is
not possible in some graph of known size if k ≤ f .

Thus, to prove Theorem 1, it is enough to show the following theorem.

Theorem 3. Deterministic f -Byzantine gathering of k good agents is possible
in any graph of known size if k ≥ f + 1.

Hence, the rest of this section is devoted to proving Theorem 3. To do so, we show
a deterministic algorithm that gathers all good agents in an arbitrary network
of known size, provided there are at least f + 1 of them.
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Before presenting the algorithm, we first give the high level idea which is
behind it. Let us assume an ideal situation in which each agent would have
as input, besides its label and the network size n, a parameter ρ = (G∗, L∗)
corresponding to the initial configuration of the agents in the graph such that:

– G∗ represents the n-node graph with all port numbers, in which each node
are assigned an identifier belonging to {1, · · · , n}. The node identifiers are
pairwise distinct. Note that the representation G∗ contains more information
than there is in the actual graph G as it also includes node identifiers which
do not exist in G.

– L∗ = {(v1, l1), (v2, l2), · · · , (vk, lk)} where (vi, li) ∈ L∗ iff there is a good
agent having label li which is initially placed in G at the node having iden-
tifier vi in G∗. Remark that k ≥ f + 1.

Let us also assume that all the agents in the graph are woken up at the same
time by the adversary. In such ideal situation, gathering all good agents can be
easily achieved by ensuring that each agent moves towards the node v where
the agent having the smallest label is located. Each agent can indeed do that
by using the knowledge of ρ = (G∗, L∗) and its own label. Of course, all the
good agents do not necessarily reach node v at the same time. However, each
agent can compute the remaining time which is required to wait at node v in
order to be sure that all good agents are at node v: again this time can be
computed using ρ = (G∗, L∗) and the fact that all agents are woken up in the
same round. Unfortunately, the agents are not in such ideal situation. First, ev-
ery agent is not necessarily woken up by the adversary, and for those that are
woken by the adversary, this is not necessarily in the same round. Second, the
agents do not have configuration ρ as input of the algorithm. In our algorithm
we cope with the first constraint by requiring the first action to be a traversal
of the entire graph (using procedure EXPLO(n)) which allows to wake up all
encountered agents that are still dormant. In this way, the agents are “almost
synchronized” as the delay between the starting times of any two agents is at
most T (EXPLO(n)): the waiting time periods can be adjusted regarding this
maximum delay. The second constraint i.e., the non-knowledge of ρ, is more com-
plicated to deal with. To handle the lack of information about ρ, agents make
successive assumptions about it that are “tested” one by one. More precisely, let
P be the recursively enumerable set of all the configurations ρi = (G∗

i , L
∗
i ) such

that G∗
i is a connected n-node graph and |L∗

i | ≥ f + 1. Let Θ = (ρ1, ρ2, ρ3, · · · )
be a fixed enumeration of P (all good agents agree on this enumeration). Each
agent proceeds in phases numbered 1, 2, 3, · · · . In each phase i, an agent sup-
poses that ρ = ρi and, similarly as in the ideal situation, tries to go to the node
which is supposed to correspond to node v, where v is the node where the agent
having the smallest label is initially located (according to ρi). For some reasons
detailed in the algorithm (refer to the description of state setup), when ρi �= ρ
some agents may be unable to make such a motion. As a consequence, these
agents will consider that, rightly, ρi �= ρ. On the other hand, whether ρi �= ρ
or not, some other good agents may reach a node for which they had no reason
to think it is not v (and thus ρi �= ρ). The danger here is that when reaching
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the supposed node v these successful agents could see all the |L∗
i | labels of ρi

(with the possible “help” of some Byzantine agents). At this point, it may be
tempting to consider that gathering is over but this could be wrong especially in
the case where ρi �= ρ and some good agents did not reach a supposed node v in
phase i. To circumvent this problem, the idea is to get the good agents thinking
that ρi = ρ to fetch the (possible) others for which ρi �= ρ via a traversal of
the entire graph using procedure EXPLO(n) (refer to the description of state
tower). To allow this, an agent for which ρi �= ρ will wait a prescribed amount of
rounds in order to leave enough time for possible good agents to fetch it (refer to
the description of state wait-for-a-tower). For our purposes, it is important
to prevent the agents from being fetched any old how by any group, especially
those containing only Byzantine agents. Hence our algorithm is designed in such
a way that within each phase at most one group, called a tower and made up of
at least f+1 agents, will be unambiguously recognized as such and be allowed to
fetch the other agents via an entire traversal of the graph (this guarantee princi-
pally results from the rules that are prescribed in the description of state tower

builder). When a tower has finished the execution of procedure EXPLO(n) in
some phase i, our algorithm guarantees that all good agents are together and
declare gathering is over at the same time (whether the assumed configuration ρi
corresponds to the real initial configuration or not). On the other hand, in every
phase i, if a tower is not created or “vanishes” (because there at not at least
f +1 agents inside of it anymore) before the completion of its traversal, no good
agent will declare that gathering is over in phase i. In the worst case, the good
agents will have to wait until assuming a good hypothesis about the real initial
configuration, in order to witness the creation of a tower which will proceed to
an entire traversal of the network (and thus declare gathering is over). We now
give a detailed description of the algorithm. (Due to the lack of space, the proof
of correctness of the algorithm is omitted but will appear in the journal version
of the paper).

Algorithm Byz-Known-Size with parameter n (known size of the graph)

The algorithm is made up of two parts. The first part aims at ensuring that
all agents are woken up before proceeding to the second part which is actually
the heart of the algorithm.

Part 1. As soon as an agent is woken up by the adversary or another agent, it
starts proceeding to a traversal of the entire graph and wakes up all encountered
agents that are still dormant. This is done using procedure EXPLO(n) where
n is the size of the network which is initially known to all agents. Once the
execution of EXPLO(n) is accomplished, the agent backtracks to its starting
node by traversing all edges traversed in EXPLO(n) in the reverse order and
the reverse direction.

Part 2. In this part, the agent works in phases numbered 1, 2, 3, · · · . During
the execution of each phase, the agent can be in one of the following five states:
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setup, tower builder, tower, wait-for-a-tower, failure. Below we describe
the actions of an agent A in each of the states as well as the transitions between
these states within phase i. We assume that in every round agent A tells the
others (sharing the same node as agent A) in which state it is. In some states,
the agent will be required to tell more than just its current state: we will mention
it in the description of these states. Moreover, in the description of every state
X, when we say “agent A transits to state Y”, we exactly mean agent A remains
in state X until the end of the current round and is in state Y in the following
round. Thus, in each round of this part, agent A is always exactly in one state.

At the beginning of phase i, agent A enters state setup.
State setup.

Let ρi be the i-th configuration of enumeration Θ (refer to above). If the label
l of agent A is not in ρi, then it transits to state wait-for-a-tower. Otherwise,
let X be the set of the shortest paths in ρi leading from the node containing the
agent having label l, to the node containing the smallest label of the supposed
configuration. Each path belonging to X is represented as the corresponding se-
quence of port numbers. Let π be the lexicographically smallest path in X (the
lexicographic order can be defined using the total order on the port numbers).
Agent A follows path π in the real network. If , following path π, agent A has
to leave by a port number that does not exist in the node where it currently
resides, then it transits to state wait-for-a-tower. In the same way, it also
transits to state wait-for-a-tower if, following path π, agent A enters at some
point a node by a port number which is not the same as that of path π. Once
path π is entirely followed by agent A, it transits to state tower builder.

State tower builder.
When in state tower builder, agent A can be in one of the following three

substates: yellow, orange, red. In all of these substates the agent does not make
any move: it stays at the same node denoted by v. At the beginning, agent A
enters substate yellow. By misuse of language, in the rest of this paper we will
sometimes say that an agent “is yellow” instead of “is in substate yellow”. We
will also use the same kind of shortcut for the two other colors. In addition to
its state, we also assume that in every round agent A tells the others in which
substate it is.

Substate yellow

Let k be the number of labels in configuration ρi. Agent A waits
T (EXPLO(n)) + n rounds. If during this waiting period, there are at some
point at least k orange agents at node v then agent A transits to substate red.
Otherwise, if at the end of this waiting period there are not at least k agents
residing at node v such that each of them is either yellow or orange, then agent
A transits to state wait-for-a-tower, else it transits to substate orange.

Substate orange

Agent A waits at most T (EXPLO(n))+n rounds to see the occurrence of one
of the following two events. The first event is that there are not at least k agents
residing at node v such that each of them is either yellow or orange. The second
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event is that there are at least k orange agents residing at node v. Note that the
two events cannot occur in the same round. If during this waiting period, the first
(resp. second) event occurs, then agent A transits to state wait-for-a-tower

(resp. substate red). If at the end of the waiting period, none of these events
has occurred, then agent A transits to substate wait-for-a-tower.

Substate red

Agent A waits T (EXPLO(n)) + n rounds. If at each round of this waiting
period there are at least k red agents at node v, then at the end of the waiting
period, agent A transits to state tower. Otherwise, there is a round during the
waiting period in which there are not at least k red agents at node v: agent A
then transits to state wait-for-a-tower as soon as it notices this fact.
State tower.

Agent A can enter state tower either from state tower builder or state
wait-for-a-tower. While in this state, agent A will execute all or part of pro-
cedure EXPLO(n). In both cases we assume that, in every round, agent A tells
the others the edge traversal number of EXPLO(n) it has just made (in addition
to its state). We call this number the index of the agent. Below, we distinguish
and detail the two cases.

When agent A enters state tower from state tower builder, it starts execut-
ing procedure EXPLO(n). In the first round, its index is 0. Just after making
the j-th edge traversal of EXPLO(n), its index is j. Agent A carries out the
execution of EXPLO(n) until its term, except if at some round of the execution
the following condition is not satisfied, in which case agent A transits to state
failure. Here is the condition: the node where agent A is currently located
contains a group S of at least f +1 agents in state tower having the same index
as agent A. S includes agent A but every agent that is in the same node as agent
A is not necessarily in S. If at some point this condition is satisfied and the
index of agent A is equal to P (n), which is the total number of edge traversals
in EXPLO(n) (refer to Section 2), then agent A declares that gathering is over.

When agent A enters state tower from state wait-for-a-tower, it has just
made the s-th edge traversal of EXPLO(n) for some s
(cf. state wait-for-a-tower) and thus, its index is s. Agent A executes the next
edge traversals i.e., the s+ 1-th, s+ 2-th, · · · , and then its index is successively
s + 1, s + 2, etc. Agent A carries out this execution until the end of procedure
EXPLO(n), except if the same condition as above is not fulfilled at some round
of the execution of the procedure, in which case agent A also transits to state
failure. As in the first case, if at some point the node where agent A is cur-
rently located contains a group S of at least f + 1 agents in state tower having
an index equal to P (n), then agent A declares that gathering is over.

State wait-for-a-tower.
Agent A waits at most 5T (EXPLO(n))+ 4n rounds to see the occurrence of

the following event: the node where it is currently located contains a group of at
least f +1 agents in state tower having the same index t. If during this waiting
period, agent A sees such an event, we distinguish two cases. If t < P (n), then it
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makes the t+1-th edge traversal of procedure EXPLO(n) and transits to state
tower. If t = P (n), then it declares that gathering is over.

Otherwise, at the end of the waiting period, agent A has not seen such an
event, and thus it transits to state failure.

State failure. Agent A backtracks to the node where it was located at the
beginning of phase i. To do this, agent A traverses in the reverse order and
the reverse direction all edges it has traversed in phase i before entering state
failure. Once at its starting node, agent A waits 10T (EXPLO(n)) + 9n − p
rounds where p is the number of elapsed rounds between the beginning of phase
i and the end of the backtrack it has just made. At the end of the waiting period,
phase i is over. In the next round, agent A will start phase i+ 1.

4 Unknown Graph Size

In this section, we consider the same problem, except we assume that the agents
are not initially given the size of the graph. Under this harder scenario, we aim
at proving the following theorem.

Theorem 4. Deterministic f -Byzantine gathering of k good agents is possible
in any graph of unknown size if, and only if k ≥ f + 2.

As mentioned in Subsection 1.2, we know from [14] that:

Theorem 5 ([14]). Deterministic f -Byzantine gathering of k good agents is
not possible in some graphs of unknown size if k ≤ f + 1.

In view of Theorem 5, it is then enough to show the following theorem in order
to prove Theorem 4.

Theorem 6. Deterministic f -Byzantine gathering of k good agents is possible
in any graph of unknown size if k ≥ f + 2.

Hence, similarly as in Section 3, the rest of this section is devoted to showing a
deterministic algorithm that gathers all good agents, but this time in an arbitrary
network of unknown size and provided there are at least f + 2 good agents.

Before giving the algorithm, which we call Algorithm Byz-Unknown-Size, let
us provide some intuitive ingredients on which our solution is based.

The algorithm of this section displays a number of similarities with the algo-
rithm of the previous section, but there are also a number of changes to tackle
the non-knowledge of the network size. Among the most notable changes, there
is firstly the way of enumerating the configurations. Previously, the agents were
considering the enumeration Θ = (ρ1, ρ2, ρ3, · · · ) of P where P is the set of every
configuration corresponding to a n-node graph in which there are at least f + 1
robots with pairwise distinct labels. Now, instead of considering Θ, the agents
will consider the enumeration Ω = (φ1, φ2, φ3, · · · ) of Q where Q is the set of
all configurations corresponding to a graph of any size (instead of size n only)
in which there are at least f + 2 agents (instead of at least f + 1) with pairwise



Byzantine Gathering in Networks 191

distinct labels. Note that, as for set P , set Q is also recursively enumerable.
Another change stems from the function performed by a tower, which we also
find here. In Algorithm Byz-Known-Size, the role of a tower was to fetch all
awaiting good agents (which know that the tested configuration is not good) via
procedure EXPLO(n): in the new algorithm, we keep the exact same strategy.
However, to be able to use procedure EXPLO with a parameter corresponding
to the size of the network, it is necessary, for the good agents that are members
of a tower, to know this size. Hence, in our solution, before being considered
as a tower and then authorized to make a traversal of the graph, a group of
agents will have to learn the size of the graph. To do this, at least each good
agent of the group will be required to make a simulation of procedure EST by
playing the role of an explorer and using the others as its token. To carry out
these simulations, it is also required for the group of agents to contain initially
at least f + 2 members (explorer + token), even if subsequently it is required
for a group of agents forming a tower to contain at least f + 1 members. Our
algorithm is designed in such a way that if during the simulation of procedure
EST by an agent playing the role of an explorer, we have the guarantee there
are always at least f + 1 agents playing the role of its token, then the explorer
will be able to recognize its own token without any ambiguity (and thus will
act as if it performed procedure EST with a “genuine” token). Of course, the
agents will not always have such a guarantee (especially due to the possible bad
behavior of Byzantine agents when testing a wrong configuration) and will not
be able to detect in advance whether they will have it or not. Besides, some
other problems can arise including, for example, some Byzantine explorer which
takes too much time to explore the graph (or worse still, “never finishes” the
exploration). However we will show that in all cases, the good agents can never
learn an erroneous size of the graph (even with the duplicity of Byzantine agents
when testing a wrong configuration). We also show that good agents are assured
of learning the size of the network when testing a good configuration at the
latest (in particular as the creation of a group of at least f + 2 agents and the
aforementioned guarantee are ensured when testing a good configuration). As
for Algorithm Byz-known-Size, in the worst case the good agents will have to
wait until assuming a good hypothesis about the real initial configuration, in
order to declare gathering is over. The details of Algorithm Byz-Unknown-Size
(sketched above) and its analysis will appear in the journal version of the paper.

5 Conclusion

We provided a deterministic f -Byzantine gathering algorithm for arbitrary con-
nected graphs of known size (resp. unknown size) provided that the number of
good agents is at least f+1 (resp. f+2). By providing these algorithms, we closed
the open question of what minimum number of good agents M is required to
solve the problem, as each of our algorithms perfectly matches the corresponding
lower bound on M stated in [14], which is of f +1 when the size of the network
is known and of f + 2 when it is unknown. Our work also highlighted the fact
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that the ability for the Byzantine agents to change their labels has no impact
in terms of feasibility when the size of the network is initially unknown, since it
was proven in [14] that M is also equal to f + 2 when the Byzantine agents do
not have this ability.

While we gave algorithms that are optimal in terms of required number of
good agents, we did not try to optimize their time complexity. Actually, the
time complexity of both our solutions depends on the enumerations of the initial
configurations, which clearly makes them exponential in n and the labels of the
good agents in the worst case. Hence, the question of whether there is a way to
obtain algorithms that are polynomial in n and in the labels of the good agents
(with the same bounds on M) remains an open problem.
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