
Simple Distributed Δ + 1 Coloring

in the SINR Model∗

Fabian Fuchs and Roman Prutkin

Karlsruhe Institute for Technology (KIT)
Karlsruhe, Germany

{fabian.fuchs,roman.prutkin}@kit.edu

Abstract. In wireless ad hoc networks, distributed node coloring is a
fundamental problem closely related to establishing efficient communica-
tion through TDMA schedules. For networks with maximum degree Δ,
a Δ+ 1 coloring is the ultimate goal in the distributed setting as this is
always possible. In this work we propose a very simple 4Δ coloring along
with a color reduction technique to achieve Δ+ 1 colors. All algorithms
have a runtime of O(Δ log n) time slots. This improves on previous al-
gorithms for the SINR model either in terms of the number of required
colors or the runtime, and matches the runtime of local broadcasting in
the SINR model (which can be seen as an asymptotical lower bound).

1 Introduction

One of the most fundamental problems in wireless ad hoc or sensor networks is
efficient communication. Indeed, most algorithms concerned with the physical
or Signal-to-Interference-and-Noise-Ratio (SINR) model consider algorithms to
establish initial communication right after the network begins to operate. How-
ever, those initial methods of communication are not very efficient, as there are
either frequent collisions and reception failures due to interference, or time is
wasted in order to provably avoid such collisions and failures. If local broadcast-
ing [10, 13, 18] is used, a multiplicative O(Δ log n) factor is required to execute
message-passing algorithms in the SINR model, where Δ is the maximum de-
gree in the network (we use a broadcasting range to define neighborhood in the
SINR model, cf. Section 2). Thus, wireless networks often use a more refined
transmission schedule as part of the Medium Access Control (MAC) layer. One
of the most popular solutions to the medium access problem are Time-Division-
Multiple-Access (TDMA) schedules, which provide efficient communication by
assigning nodes to time slots. The main problem in establishing a TDMA sched-
ule can be reduced to a distributed node coloring. Given a node coloring, we can
establish a transmission schedule by simply associating each color with one time
slot. The node coloring considered in this work ensures that two nodes capable of
communicating directly with each other do not select the same color. Note that a
TDMA schedule based on such a coloring is not yet feasible in the SINR model.

∗ The full version of this work is available as [6].

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 149–163, 2015.
DOI: 10.1007/978-3-319-25258-2_11

150 F. Fuchs and R. Prutkin

However, a feasible TDMA schedule can be computed based on our coloring, for
example as shown in [3, 7].

The problem of distributed node coloring dates back to the early days of
distributed computing in the mid-1980s. In contrast to the centralized setting,
a Δ + 1 coloring is considered to be the ultimate goal in distributed node col-
oring as it is already NP-complete to compute the chromatic number (i.e., the
minimum number of colors required to color the graph) in the centralized set-
ting [9]. There is a rich line of research in this area, however, most of the work
has been done for message-passing models like the LOCAL model. Such models
are designed for wired networks and do not fit the specifics of wireless networks.

In the SINR model, also denoted as the physical model due to its common
use in electrical engineering, wireless communication is modelled based on the
signal transmission and a geometric decay of the signal strength. It improves
on other models for wireless communication, such as the protocol model, which
considers interference as a local and binary property by declaring a transmission
to be successful iff it is not in the interference range of another transmitting
node. It has been shown that such models are quite limited, as protocols de-
signed for the SINR model surpass the theoretically achievable performance of
protocols designed for the protocol model [15]. In this work, we use two simple
and well-known algorithms (covered for example in [2]) designed for message-
passing models, and show that we can efficiently execute the algorithms in the
SINR model. However, this cannot be achieved by a simple simulation of each
round of the message passing algorithm by one execution of local broadcasting
as this results in a runtime of O(Δ log2 n) time slots. Instead, we modify both
the communication rounds in the SINR model and the algorithms to perfectly fit
together. The synergy effect of our careful adjustments is that the coloring algo-
rithm runs in O(Δ log n) time slots, which is asymptotically exactly the runtime
of one local broadcast [10]. This matches the runtime of current O(Δ) coloring
algorithms [3], and improves on current Δ+1 coloring algorithms for the SINR
model which require O(Δ logn+ log2 n) or O(Δ log2 n) time slots [19].

The communication between nodes in our algorithm is based on the local
broadcasting algorithm proposed by Goussevskaia et al. [10]. Thus, we require
the nodes to know an upper bound on the maximum number of nodes in a node’s
surroundings (which we call proximity area, cf. Section 2), an upper bound on
the number of nodes in the network, as well as some model-related hardware
constants in order to enable initial communication. All our results hold with
high probability (w.h.p.), i.e., with probability at least 1 − 1

nc , where n is the
number of nodes, and c ≥ 1 a constant. As union bounding a w.h.p. event only
decreases the constant c, resulting in a constant increase in the runtime, we
refrain from stating exact w.h.p. bounds in our analysis to simplify notation.
Note that such requirements and assumptions are common in the SINR model.

1.1 Related Work and Contributions

Due to the rich amount of work on distributed node coloring in the message-
passing model, we refer to a recent monograph by Barenboim and Elkin [2] for

Simple Distributed Δ+ 1 Coloring in the SINR Model 151

a thorough overview on distributed graph coloring. In wireless networks, the
SINR model received increasing attention first in the electrical engineering com-
munity, and was picked up by the algorithms community due to a seminal work
by Gupta and Kumar [12]. An overview of works regarding transmission schedul-
ing in the SINR model can be found in a survey by Goussevskaia, Pignolet and
Wattenhofer [11]. A coloring algorithm due to Moscibroda and Wattenhofer [14]
has been adapted to the SINR model by Derbel and Talbi [3], and extended to
support directed communication by Fuchs and Wagner [8]. Derbel and Talbi
provide an algorithm that computes an O(Δ) coloring in O(Δ log n) time slots.
Their algorithm first computes a set of leaders using a maximal independent set
(MIS, cf. Section 2) algorithm, then leader nodes assign colors to non-leaders,
which again compete for their final color with a restricted number of neighbor-
ing nodes that may have received the same assignment. Yu et al. [19] propose
two Δ+ 1 coloring algorithms that do not require the knowledge of the maxi-
mum node degree Δ. Their first algorithm runs in O(Δ log n+ log2 n) time slots
and assumes that nodes are able to increase their transmission power for the
computation. This prevents conflicts between non-leader nodes by allowing the
set of leaders to directly communicate to other leaders outside the transmission
region and thus coordinating the assignment process. Their second algorithm
does not require this assumption, and runs in O(Δ log2 n) time slots.

Our main contributions are 1. a simple and efficient 4Δ coloring algorithm,
requiring O(Δ log n) time slots; 2. an abstract method that has the potential of
improving the runtime of other randomized algorithms in the SINR model by
a logn factor; and 3. an asynchronous color reduction scheme, which, combined
with known coloring algorithms computes a Δ+1 coloring in overall O(Δ log n)
time slots. Also, the color reduction simplifies to an almost trivial color reduction
scheme yielding the same results restricted to the synchronous setting.

The coloring algorithms improve current algorithms in the same setting (cf.
Derbel and Talbi [3]) regarding the number of colors, and achieve the declared
goal ofΔ+1 colors, while the runtime is matched. OtherΔ+1 coloring algorithms
in the SINR model require at least O(Δ log n + log2 n) time slots (under non-
comparable assumptions). Our new method to improve the runtime by a logn
factor carefully combines the uncertainty in randomized algorithms with the
uncertainty in the SINR model to handle them simultaneously in the analysis.
For more details, we refer to the Analysis of Algorithm 1 in Section 3.1.

Roadmap: In the next section we state the model along with required defini-
tions. In Section 3 the simple 4Δ coloring algorithm is described and analyzed.
We introduce and analyse the color reduction scheme in Section 4.

2 Model and Preliminaries

The Signal-to-Interference-and-Noise-Ratio (SINR) model is used to model if a
transmission in a wireless network can be successfully decoded at the intended
receivers or not. We say that a transmission from a sender to a receiver is feasible
if it can be decoded by the receiver. In the SINR model it depends on the ratio

152 F. Fuchs and R. Prutkin

between the desired signal and the sum of interference from other nodes plus the
background noise whether a certain transmission is successful. Let each node v
in the network use the same transmission power P . Then a transmission from u

to v is feasible if and only if
P

dist(u,v)α∑
w∈I

P
dist(w,v)α

+N
≥ β, where α, β are constants

depending on the hardware, N reflects the environmental noise, dist(u, v) the
Euclidean distance between two nodes u and v, and I ⊆ V is the set of nodes
transmitting simultaneously to u. The broadcasting range rB of a node v defines
the range around v up to which v’s messages should be received. We denote the
set of neighbors of v byNv := {w ∈ V \{v}| dist(v, w) ≤ rB} andN+

v := Nv∪{v}.
Based on the SINR constraint, the transmission range of rT ≤ (P

βN)
1/α is an

upper bound for the broadcasting range (with rB < rT to allow multiple simul-
taneous transmissions). Let the broadcasting region Bv be the disk with range rB
centered at v. To prove successful communication within the broadcasting range,
we need the concept of a proximity range rA > 2rB around a node v as intro-
duced in [10]. Let Δv

A be the number of nodes with distance less than rA to v,
and ΔA := maxv∈V Δv

A. It holds that ΔA ∈ O(Δ). As further technical details
of the proximity range are not required in our analysis, we refer to [10] or [6] for
the exact definitions.

The communication graph G = (V,E) is defined as follows. The set of ver-
tices V in the graph corresponds to the set of nodes in the network, while
there is an edge (u, v) ∈ E if and only if u and v are neighbors (i.e., they are
within each other’s broadcasting range). The maximum degree in the network
is Δ := maxv∈V |Nv|. Note that since rB < rT , a node v may successfully re-
ceive transmissions from nodes that are not its neighbors in the communication
graph, although successful transmission from those nodes cannot be guaranteed.
As the signal strength decreases geometrically in the SINR model, we assume
that messages from outside the broadcasting range are discarded by considering
the signal strength of a received message (usually provided by wireless receivers
as the Received-Signal-Strength-Indication (RSSI) value [1]). Thus, the maxi-
mum degree is defined as for the Δ + 1 coloring in [19]. In a more practical
setting, one could also define the communication graph based on the actual
communication between two nodes.

We call two nodes v, u ∈ V independent if they are not neighbors. A set S ⊆ V
such that the nodes in S are pairwise independent is called independent set. Ob-
viously, S ⊆ V is a maximal independent set (MIS) if S is independent and there
is no v ∈ V \S with S∪{v} independent. We denote the set of integers {0, . . . , i}
by [i]. Let us now define the coloring problem. Given a set of nodes V so that
each node v ∈ V has a color cv, and let d be an integer. Then V has a valid d+1
coloring, if for each node v holds ∀w ∈ Nv : cv 	= cw and cv ∈ [d]. Observe that
in a valid coloring each color in the network forms a independent set.

In the synchronous setting, we assume that nodes start the algorithm at the
same time. In the more realistic asynchronous setting, arbitrary wake-up of nodes
is allowed, and we do not require synchronized time slots; precise clocks, however,
are assumed. With the so-called ALOHA trick [16], e.g. as used in [10], we use
time slots in our analysis, although the nodes do not assume common time slots.

Simple Distributed Δ+ 1 Coloring in the SINR Model 153

The nodes use two different transmission probabilities in order to adapt to the
requirements of the corresponding algorithms. Probability p1 := 1

2ΔA is used in
Algorithm 1, while Algorithm 2 uses p1 and p2 := 1

180 . If p ≥ c for probability p
and a constant c, we say that p is at least constant, or simply constant. Let c be
an arbitrary constant with c > 1. Throughout the paper, we use the following
definitions: κ� := cλ lnn/p� for � = 1, 2, κ0 := λ ln 12/p1, and λ a constant
(for more details, we refer to [6]). Note that κ0 ∈ O(Δ), κ1 ∈ O(Δ log n),
and κ2 ∈ O(log n).

Extending Local Broadcasting: We show that local broadcasting with con-
stant success probability in time reversely proportional to the transmission prob-
ability can be achieved. This extends known results regarding local broadcasting,
which guarantee local broadcasting with high probability for a fixed number of
time slots. Although we are the first to use local broadcasting with constant suc-
cess probability, the proof of the following lemma is mainly based on standard
techniques. Thus, we defer it to [6] due to space constraints.

Lemma 1. Let v be a node transmitting with probability p1, then it successfully
transmits to its neighbors with probability ≥ 11/12 within κ0 time slots. Trans-
missions with probability p� for κ� time slots are successful w.h.p. for � ∈ {1, 2}.

3 Simple 4Δ Coloring

The algorithm we propose is at its heart a very simple and well-known random-
ized coloring algorithm. The underlying approach is well-known, and for example
covered in [2, Chapter 10]. Essentially, this kind of algorithms draw a random
color whenever two neighboring nodes have the same color (i.e., there is a conflict
between them). Our first algorithm, Rand4DeltaColoring (Algorithm 1), is
a simple, phase-based coloring algorithm. We say that two neighbors v, w have
a conflict if cv = cw and denote the temporary color of v in phase t by ctv.
In each phase t the node v checks whether it knows of a conflict with one of
its neighbors. The set of neighbors that are in a conflict with v in phase t
is Xt(v) := {w ∈ Nv|ctv = ctw}. We call Xt(v) the conflict set of v in phase t,
and denote the event that v is in a conflict in phase t by Et

confl(v) := ∃w ∈ Xt(v).
Note that there may be nodes in Xt(v), for which v is not aware of the conflict
(due to the uncertainty in the nodes communication), however, this does not
affect the event. If a conflict is detected by v, the node randomly draws a new

Algorithm 1. Rand4DeltaColoring for node v

11 Fv ← [4Δ], c−1
v ← Fv.rand()

22 for t ← 0; t ≤ 6(c + 3) lnn; t ← t + 1 do // each one phase

33 if ct−1
v �∈ Fv then ctv ← Fv .rand() // if conflict, new color

44 else ctv ← ct−1
v // otherwise, keep it

55 Fv ← [4Δ]

66 Transmit ctv with probability p1 for κ0 time slots

77 foreach received color ctw from neighbor w ∈ Nv do Fv ← Fv\{ctw}

154 F. Fuchs and R. Prutkin

color from the set Fv of colors not taken by a neighbor in the previous phase and
transmits this color in the current phase. The event that a transmission from v
to all neighbors Nv of v in phase t is successful is Et

succ(v). A transmission from v
to its neighbors in phase t is not successful or fails if at least one neighbor was
unable to receive the message. The corresponding event is Et

fail(v). We replace E
by P to denote the probability of an event, e.g. Pt

succ(v) for Et
succ(v). Note that

although the events Et
succ(v), and Et

fail(v) may not be independent of events hap-
pening at other nodes, our bounds on the corresponding probabilities P

t
succ(v)

and P
t
fail(v) are independent from the node v and possible events at other nodes.

Also, our bounds P
t
succ(v) and P

t
fail(v) on these events include the event that v

reaches some but not all of its neighbors, as P
t
fail(v) ≤ 1 − P

t
succ(v) ≤ 1/12

and 11/12 ≤ P
t
succ(v) ≤ 1 (see Lemma 1). Finally, the phase is concluded by

transmitting the current color. This computes a valid coloring with 4Δ colors
in O(log n) phases, while each phase takes O(Δ) time slots. In contrast to pre-
vious algorithms of this kind, we do not assume that successful communication
is guaranteed by lower layers. Instead we allow the uncertainty in the random-
ized algorithm to be combined with the uncertainty in the communication in the
SINR model, which is jointly handled in the analysis. Thereby we can reduce the
number of time slots required for each phase by a logn factor (from O(Δ log n)
for the trivial analysis to O(Δ)), making this simple approach viable in the
SINR model. Thus, Algorithm 1 solves the node coloring problem using 4Δ col-
ors in O(Δ log n) time slots, which matches the runtime of local broadcasting in
the SINR model and improves the state-of-the-art O(Δ) coloring in [3]. Let us
now state the main results of this section.

Theorem 2. Let all nodes start executing Algorithm 1 simultaneously. After the
execution, all nodes have a valid color cv ≤ 4Δ w.h.p.

For the asynchronous setting, the bound on the runtime holds for node v only
after all nodes in v’s logn neighborhood are awake

Corollary 3. Let a node v execute Algorithm 1 in the asynchronous setting.
Then v has a valid color cv ≤ 4Δ w.h.p., at most O(Δ log n) time slots after all
nodes in its O(logn)-neighborhood started executing the algorithm.

In the following section we prove the result for the synchronous setting. In
Section 3.2 we briefly discuss extending it to the asynchronous setting. Our
experiments in Section 3.3 show that the algorithm is very fast and robust even
in the asynchronous setting.

3.1 Analysis of Rand4DeltaColoring

Despite the fact that the underlying coloring algorithm is well-known, our anal-
ysis is new and quite involved. The main reason for this is the uncertainty in
whether a message is successfully delivered in one phase of Algorithm 1. In con-
trast to guaranteed message delivery, based for example on local broadcasting,
message delivery with constant probability can be achieved a logarithmic factor

Simple Distributed Δ+ 1 Coloring in the SINR Model 155

faster, see Lemma 1. However, this reduction in runtime comes at a cost: While
in the guaranteed message delivery setting, a node v can finalize its color once
a phase without a conflict at v happened, this is not possible in our setting. We
cannot guarantee the validity of the colors even if a node did not receive a mes-
sage implying a conflict in one phase, as message transmission is successful only
with constant probability. Nevertheless, we can show that after O(log n) phases
of transmitting the selected color and resolving eventual conflicts, the coloring
is valid in the entire network w.h.p.

In order to prove correctness of Algorithm 1 (Rand4DeltaColoring) we
shall first bound the probability of a conflict propagating from one phase of the
algorithm to the next. This is the foundation for the result that our algorithm
computes a valid 4Δ coloring in O(Δ log n) time slots w.h.p. for both the syn-
chronous and the asynchronous setting. Assuming that a node v has a conflict in
phase t, there are only two cases that may lead to a conflict at v in phase t+ 1:

1. Node v had a conflict in phase t, and it did not get resolved (either due to
being unaware of the conflict or since the new color implies a conflict as well).

2. A neighbor of v had a conflict in phase t and introduced the conflict by
randomly selecting v’s color.

We shall show that the probability for both cases is at most constant (see
Lemma 4). Thus, after O(log n) phases it holds with high probability that a
valid color has been found. Note that the results in this section are restricted
to the synchronous setting, however, they can be extended to the asynchronous
case, cf. Section 3.2.

Lemma 4. Let v be an arbitrary node and P
t
confl(v) the probability of a conflict

at v in phase t. Then the probability of a conflict at v in phase t+ 1 is at most

P
t+1
confl(v) ≤

5

6
· max
w∈Nv

P
t
confl(w).

Proof. We shall prove the lemma by considering the two cases that may lead to
a conflict at node v in phase t+1. The first case is that v has a conflict with at
least one of its neighbors. Depending on which transmissions are successful there
are 3 subcases. Note that → denotes Et

succ(v), while ← denotes ∃w ∈ Xt(v) :
Et
succ(w)—with negations accordingly1.

(a) 	→, 	←: It is not guaranteed that any of the conflict partners know of the
conflict, as the transmissions from v and the nodes in the conflict set Xt(v) 	= ∅
failed at least partially. There is at least one neighbor u ∈ Xt(v) that failed
to transmit its color successfully to v, which happens with probability P

t
fail(u).

Combined with v’s failure to transmit its color successfully, case 1(a) happens

1 A partial success of transmission is often sufficient to trigger dealing with a conflict.
We do not consider this in our notation, however, as we evaluate P

t
succ(v) to be at

most 1 for all v and since Pr(transmission from v to u fails) ≤ P
t
fail(v) ≤ 1/12, our

analysis covers this case.

156 F. Fuchs and R. Prutkin

with probability at most P
t
confl(v)(P

t
fail(v) Pr(←)) ≤ P

t
confl(v)P

t
fail(v)P

t
fail(u) ≤

P
t
confl(v)(1/12)

2. If any conflict partner knows of the conflict, the conflict would
be resolved with a certain probability (as in the following cases). However, as
this is not guaranteed, we account for the worst case: the conflict is not resolved
and propagates to the next phase. Note that since this case happens only with
a small probability, it holds that the total probability of case (a) and conflict
at v in phase t+ 1 is small.
(b) →, 	←: All nodes in Xt(v) failed to transmit successfully, but v transmit-
ted successfully to all neighbors. Thus, all nodes in Xt(v) know of the con-
flict, while v might be unaware of it. This case happens with probability at
most Pt

confl(v) · (Pt
succ(v) · Pr(←)). The probability that a node w ∈ Xt(v) se-

lects v’s color in phase t+ 1 is at most
∑

w∈Xt(v) 1/|Fw| (even if v knows of a

conflict and itself selects a new color). This results in an overall probability of
at most

P
t
confl(v) · (Pt

succ(v) · Pr(←)) ·
∑

w∈Xt(v)

1

|Fw|

≤ P
t
confl(v)

⎛

⎝
∏

w∈Xt(v)

P
t
fail(w)

⎞

⎠ ·
∑

w∈Xt(v)

1

|Fw |
x:=|Xt(v)|

≤ P
t
confl(v)

(
P
t
fail

)x · x

3Δ
≤ 1

3Δ
P
t
confl · x

(
1

12

)x

≤ 1

24
P
t
confl

where the first inequality holds since the event 	← is equivalent to ∀w ∈ Xt(v) :
Et
fail(w) and P

t
succ(v) ≤ 1. The second inequality holds since |Fw| ≥ 3Δ as w

and v are uncolored and by setting x = |Xt(v)|. The last inequality holds
since x(1/12)x ≤ 1/12 for all x ∈ {1, . . . , Δ}, and Δ ≥ 1.
(c) ←: It holds that v knows of the conflict. Whether v’s neighbors know of it
or not is not guaranteed. This case happens with probability at most Pt

confl(v) ·
(Pr(←)). The probability that at least one neighbor of v has or selects the same
color as v is at most

∑
w∈Nv

1
|Fv| ≤ |Nv| 1

3Δ ≤ 1
3 .

Using Pr(←) ≤ 1, this results in a probability for a conflict at v in phase t+1
of at most Pt

confl(v) · (1/144 + 1/24 + 1/3 · Pr(←)) <
(
1
2

) · Pt
confl.

In the second case, there was no conflict at v in phase t, but a neighbor w of v
selected v’s color due to a conflict at w, which happens with probability at most

∑

w∈Nv

Pr(ct+1
v = ct+1

w)
︸ ︷︷ ︸

v’s neighbor w selects v’s color

∑

u∈Nw

Pr(ctu = ctw)︸ ︷︷ ︸
u ∈ N(w) told w

about their conflict

≤
∑

w∈Nv

Pr(ct+1
v = ct+1

w)Pt
confl(w)

≤
∑

w∈Nv

1

|Fw|P
t
confl(w) ≤

(
1

3

)

max
w∈Nv

P
t
confl(w)

Simple Distributed Δ+ 1 Coloring in the SINR Model 157

The last inequality holds since
∑

w∈Nv

1
|Fw| ≤ ∑

w∈Nv

1
3Δ ≤ 1

3 . Combining all

events that could lead to a conflict at v in phase t+1 it holds that the probability
of the union of the events is at most

P
t+1
confl(v) ≤

(
1

2

)

P
t
confl(v) +

(
1

3

)

max
w∈Nv

P
t
confl(w) ≤ 5

6
· max
w∈N+

v

P
t
confl(w),

which concludes the proof. ��
Note that the second case could be avoided if message delivery in each phase

would be guaranteed, as a node v that does not have a conflict in phase t, would
simply finalize its current color and communicate this. Thus, v could not be
forced into a conflict anymore. We shall now show that a set of nodes executing
Algorithm 1 computes a valid coloring, and hence prove Theorem 2.

Proof (of Theorem 2). Let us consider the probability of a conflict at an arbi-
trary node v ∈ V in phase t = 6(c+ 3) lnn. It holds that

P
t
confl(v) ≤

(
5

6

)

max
w∈Nv

P
t−1
confl(w) ≤

(
5

6

)

max
w∈V

P
t−1
confl(w)

≤
(
5

6

)t

max
w∈V

P
0
confl(w) ≤

(

1− 1

6

)6(c+3) lnn

≤ 1

nc+3
,

where the first inequality is due to Lemma 4. The third inequality holds since
all nodes are in the same phase due to the synchronous start of the algorithm.
Note that the upper bound on the probability that a conflict propagates holds
for all nodes. The fourth inequality holds as P

0
confl(v) ≤ 1 for all nodes v. The

last inequality holds due to a well-known mathematical fact (cf. [6]). Thus, the
probability for a conflict at an arbitrary node v is small. A union bound over
all nodes in the network implies that the coloring is valid w.h.p. The runtime of
Algorithm 1 is O(Δ log n), as it consists of 6(c+ 3) lnn = O(log n) phases, and
each phase takes κ0 = O(Δ) time slots according to Lemma 1. ��

3.2 Asynchronous Simple Coloring

Let us now briefly consider the asynchronous setting. For this section, we call all
nodes that can reach v within O(log n) rounds the neighborhood of v, and say
that this neighborhood is stable if those nodes are all awake. If the neighborhood
of a node v is stable, Lemma 4 holds as well, with only small changes to some
constants in the proof [5]. Thus, once all nodes in v’s neighborhood are awake,
we can bound the probability using said lemma, and prove Corollary 3 analog
to the proof of Theorem 2.

3.3 Experimental Evaluation

In our experiments, we evaluate Rand4DeltaColoringusing the well-known
network simulator sinalgo [4]. We use between 500 and 2500 nodes, uniformly

158 F. Fuchs and R. Prutkin

0 500 1000 1500 2000 2500 3000 3500

Time Slots

400

600

800

1000

Rand1.25DeltaColoring

Rand1DeltaColoring

Rand2DeltaColoring

Rand4DeltaColoring

Rand1.1DeltaColoring

Rand8DeltaColoring

Rand1.5DeltaColoring

N
u
m
b
er

of
n
o
d
es

w
it
h
va
li
d
co
lo
r

500 1000 1500 2000 2500 3000

Time Slots

600

800

1000

0

no mobility

0.25
0.5

1.0

Node speed / round

2.0

4.0N
u
m
b
er

of
n
o
d
es

w
it
h
va
li
d
co
lo
r

500 1000 1500 2000 2500

Number of Nodes

200

500

1000

2000

5000

10000

20000

T
im

e
Sl

ot
s

(l
og

-s
ca

le
)

Local Broadcasting
RAND4ΔCOLORING

Fig. 1. Top left: Progress for varying number of available colors; Bottom left: Robust-
ness under mobility constraints; Right: Runtime compared with local broadcasting

deployed on a square area of 1000× 1000 meters. The SINR constants are set to
α = 4, β = 10, N = 1−9, P = 1, resulting in a transmission range of 100 meters.
We set the broadcasting range to 84 meters, with average degree values ranging
from 10 to about 50. We generally use asynchronous simulation and the nodes
start at a random within the first 10 time slots. However, as sinalgo requires
synchronous simulation for the mobility models, this experiment uses synchro-
nized time slots. The time required to transmit one message is set to 1 time
slot. We measure the number of time slots, and the number of nodes that have
a valid color. The nodes do not know the global Δ value, but use the number of
neighbors (plus one) as an estimate. More experiments are shown in the full ver-
sion [6]. We observe three main points in Fig. 1. First, Rand4DeltaColoring
is very fast, requiring less time than one round of local broadcasting. Second, the
algorithm is relatively robust, even under moderate mobility values of 1 meter
per time slot, more than 90% of the nodes have a valid color (note that using
mobile nodes, some color conflicts cannot be avoided). Finally, we can see that
although our theoretical guarantees hold only for 4Δ colors, the algorithm can
compute a valid coloring with only Δ+ 1 colors in our setting.

4 Asynchronous Color Reduction

In the following section we assume a valid node coloring with d ∈ O(Δ) colors to
be given and reduce the number of colors to Δ+1 in O(d log n) time slots. Let us
first consider a very simple synchronous variant, which is also well known in the
LOCALmodel, cf. [2, Section 3.2]. In this variant, each node transmits its current
color at the beginning of each round. Then, in the first round all nodes with color
d select a color from the set [Δ], in the second round all those with color d− 1,
etc. This translates to an almost trivial (but new) color reduction scheme for the
synchronous case, which we defer to [6] due to space constraints. The algorithm
we present in this section circumvents the synchronization problem, essentially,
by using two levels of MIS executions. Our algorithm is illustrated in Fig. 2,

Simple Distributed Δ+ 1 Coloring in the SINR Model 159

One MIS execution with
all nodes: O(Δ log n) O(1) MIS executions, each O(log n)

wait for active interval

leader

non-leader
. . .request

answering O(Δ) schedule requests,
O(log n) slots each

active interval

O(Δ log n) O(Δ log n)

Coloring,
O(log n)

Coloring,
O(log n)

Fig. 2. Runtime. Overall O(Δ log n), given a O(Δ) coloring.

the corresponding pseudocode can be found as Algorithms 2 to 5. We reference
the MIS (Algorithm 3) executed with parameter � = 1 by first level MIS, and
MIS(� = 2) by second level MIS.

Let us now describe the algorithm in more detail. The algorithm starts by
executing the first level MIS algorithm that determines a set of independent
nodes, which we call leaders. Each leader node transitions to Algorithm 4, selects
and transmits the color 0 it selected and initializes its periodic leader schedule.
This schedule assigns each color an active interval of length O(log n) time slots
to allow the nodes of this color to select their final color from [Δ].

Each node vi that is not in the first level MIS selects a leader from its broad-
casting range and requests the relative time until it is vi’s turn to be active.
Upon receipt of its active intervall, the node waits until the interval starts and
then executes a second level MIS algorithm (which does not interfere with the
first level MIS) for a constant number of times. In this second level MIS the
algorithm benefits from fewer active nodes, and hence more efficient communi-
cation to allow each node to achieve successful transmission of a message to all
neighbors in O(logn) time slots. Moreover, we can speed up the MIS algorithm
by the same factor of Δ to execute it in O(logn) time slots, as only a constant
number of nodes compete to be in each second level MIS. For each node that
wins the second level MIS, there is no other node of the second level MIS in
its broadcasting range. Thus, the winning node can select a valid color from
{1, . . . , Δ} and transmit its choice to its neighbors without a conflict. If a node
does not succeed to be in the second level MIS, it simply executes MIS(2) again.
As each node succeeds in such an MIS within its active interval, each node selects
one of the Δ+ 1 colors.

4.1 MIS, and Notation for AsyncColorReduction

Let us now describe the notation used in the algorithm. We denote the set of
available colors by Fv. Note that throughout the algorithm, each node deletes the
final colors it received from Fv. The MIS algorithm (Algorithm 3) aims at allow-
ing exactly one node in each neighborhood to succeed to Algorithm Colored,
select a color, and annouce its success in the MIS algorithm to its competitors.
There are minor differences depending on the two levels � = 1 and � = 2, how-
ever, the algorithm remains the same. A description of the MIS algorithm can
be found in [3], and the full version [6]. In Algorithm 4, v is a leader, colv denotes
the final color from [Δ], and Q is a queue used to store nodes w along with their
initial color coltmp

w that request an active interval. The remaining time is based

160 F. Fuchs and R. Prutkin

Algorithm 2. AsyncCol-

orReduction for node v
11 Fv ← [Δ]\{0}
22 foreach received colw do

continuously
3 Fv ← Fv\{colw}
44 MIS(1)

Algorithm 4.Colored(�)
for node v
11 if � = 1 then // Level 1 leader
22 colv ← 0, Q ← ∅, c′v = 0

33 announce M1
C(v, colv) with

prob. p2 for κ2 slots
44 Set τ(col, cv) ≡ col · μ − cv

mod Δμ neg., max., with
|τ(col, cv)| > κ2

55 while protocol is executed do
66 // serve requests

77 c′v ← c′v + 1

88 transmit M1
C(v, colv) with

probability p1

99 foreach received request
from neighbor w:
MR(w, v, coltmp

w) do
continuously

1010 Q.push((w, coltmp
w))

1111 if Q not empty then
1212 (w, coltmp

w) ← Q.pop(),

t ← τ(coltmp
w , c′v)

1313 for O(logn) slots do
1414 transmit M1

C(v, w, t)
with probability p2

// inc. c′v, t

15 else // Level 2 / Non-leader node
1616 colv ← Fv .rand() // valid

1717 announce M2
C(c, colv) with

prob. p2 for κ2 slots
1818 while protocol is executed do
1919 // keep color valid
2020 transmit colv with prob. p1

Algorithm 3. MIS(�) for node v,

based on MW-coloring [3,17]

11 Pv = ∅, Next =

{
Level2 if � = 1

MIS(2) otherwise

22 for κ� time slots do // Listen first
33 foreach w ∈ Pv do

dv(w) = dv(w) + 1

44 if M�
A(w, cw) received then

Pv = Pv ∪ {w}; dv(w) = cw

55 if M�
C(w) received then Next(w)

66 cv = Ξ(Pv) // minimal, non-positive,
not conflicting with competing counters
in Pv

77 while true do // then compete for MIS
88 cv = cv + 1
99 if cv > κ� then Colored(�)

// success
1010 foreach w ∈ Pv do

dv(w) = dv(w) + 1

1111 if M�
C(w) received then Next(w)

11 transmit M�
A(v, cv) with probability

p�

1212 if M�
A(w, cw) received then

// received competing counter
1313 Pv = Pv ∪ {w}; dv(w) = cw
1414 if |cv − cw| ≤ κ� then cv = Ξ(Pv)

Algorithm 5. Level2(w) for

node v with leader w
11 while true do
22 if M1

C(w, v, t) received then
33 while t < 0 do // wait for interval
44 t ← t + 1 // one time slot each

55 while t < 2k2κ2 do // active
interval

66 // increase t by one in each
time slot during MIS(2)

77 MIS(2)

8 else // transmit request
99 transmit MR(v, w, coltmp

v) with
probability p1

on v’s periodic schedule, which is defined by its counter value c′v, and w’s color.
We set k = 90, which corresponds to the maximum number of active nodes in
a broadcasting range, see Lemma 7. The function τ(colw, cv) intuitively sets t
to the start of the next interval corresponding to w’s color in v’s schedule, so
that the starting time of w can be communicated by v w.h.p. before w’s active
interval starts. During the transmission interval, t is decreased appropriately.

Adapting the MIS Algorithm. We assume in the analysis that the MIS
algorithm indeed computes a maximal independent set. Algorithm 3 is a sim-
plification of the MIS part of the coloring algorithm in [3, 17], and therefore
computes an MIS. Apart from constant changes, the lemma follows directly

Simple Distributed Δ+ 1 Coloring in the SINR Model 161

from Theorems 1 and 2 in [3] if � = 1, and from Lemma 1 along with setting Δ
to a constant in the proofs of both theorems for � = 2.

Lemma 5. Algorithm 3 computes an MIS among participating nodes in δ�κ2 ∈
O(δ� logn) time slots, where δ� =

{
Δ if � = 1

k if � = 2
w.h.p.

4.2 Analysis

Let us first state the main result of this section.

Theorem 6. Given a valid node coloring with d ≥ Δ colors, Algorithm 2 com-
putes a valid Δ+ 1 coloring in O(d logn).

As the algorithm is essentially a simple color reduction scheme, each node selects
a valid color if the communication can be realized as claimed. To prove this we
show that in the second level indeed only a constant number of nodes are active in
each broadcasting range (cf. Fig. 3). We use this to achieve message transmission
from active nodes to all their neighbors in O(logn) time slots, and show that
the second level MIS can be executed in O(log n) time slots. Finally, we prove
that each non-leader node v succeeds in a second level MIS, and thus colors itself
with a color from [Δ], within the active interval v is assigned by its leader. The
proofs of the following lemmas are only given in the full version [6].

vv

Fig. 3. Left: Node v with its broadcasting region in a network with valid coloring;
Nodes in the first level MIS are squares. Right: Nodes in v’s broadcasting range are
connected to their selected leader by a dashed line. Nodes currently active in the second
level are surrounded by a square.

Lemma 7. In the second level, at most k nodes are active in each broadcasting
range.

The lemma follows from a geometric argument regarding the number of first
level MIS nodes within a certain distance of each node. We use Lemma 7 to
prove our bounds on the communication in Lemma 1. It allows us to increase
the transmission probability in the second level MIS by a factor of Δ compared
to classical local broadcasting, leading to a decrease in the time required for
successful message transmission by the same factor of Δ to O(log n). Based on
this result we can bound the runtime of our algorithm, starting with Algorithm 5.

162 F. Fuchs and R. Prutkin

Lemma 8. Let v execute Algorithm 5 with leader w. Then a) v transmits the
request message successfully within κ1 time slots w.h.p.; b) v receives its active
interval after at most another κ1 time slots w.h.p.; and c) the wait-time t until
v’s active interval starts is at most Δ2k2κ2 ∈ O(Δ log n).

We shall now argue that each non-leader node succeeds to win a second level
MIS in its active interval.

Lemma 9. Given a node v executing Algorithm 5. Once t = 0, v wins a second
level MIS set within 2k2κ2 time slots.

Essentially, this holds as there are multiple consecutive MIS executions, each
allowing one node per broadcast range to win MIS, select a final color and
withdraw. In the next MIS execution, another node wins, selects a color, etc.
until all active nodes are colored. As a final step we show that the final color
selected by each node is valid w.h.p.

Lemma 10. Given a node v entering Algorithm 4. It holds that a) while v
transmits its final color no neighbor of v succeeds in a second level MIS w.h.p.;
and b) the color v selects is not selected by one of v’s neighbors w.h.p.

We are now able to prove the main theorem. Note that runtime bounds hold
for each node once the node starts executing the algorithm.

Proof (Proof of Theorem 6). It follows from Lemma 10 and the fact that each
node succeeds in an MIS (and hence enters Algorithm 4 and selects a final color),
that the final color of each node is valid w.h.p. Only Δ+1 final colors are used,
and a union bound over all nodes implies that the coloring is valid w.h.p. The
first level MIS takes O(Δ log n) time slots according to Lemma 5. Algorithm 5
requires another O(Δ log n) slots until starting the active interval, which is of
length O(logn), resulting in O(Δ log n) time slots. ��
Corollary 11. Let each node in the asynchronous network execute the MW-
coloring algorithm [3], followed by Algorithm 2. Then O(Δ logn) time slots after
a node started executing the algorithms it selected a valid color from [Δ].

5 Conclusion

We conclude that the proposed distributed 4Δ coloring algorithm is simple and
very fast. Rand4DeltaColoring performs well in our simulations, even in the
asynchronous and mobile setting. Additionally, our color reduction scheme is the
first Δ + 1 coloring algorithm achieving a runtime of O(Δ log n), matching one
round of local broadcasting.

Acknowledgements. We thank Magnús M. Halldórsson for helpful discussions
on an early stage of this work, and the German Research Foundation (DFG),
which supported this work within the Research Training Group GRK 1194 ”Self-
organizing Sensor-Actuator Networks”.

Simple Distributed Δ+ 1 Coloring in the SINR Model 163

References

1. Bardwell, J.: Converting signal strength percentage to dbm values. WildPackets’
White Paper (2002)

2. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers (2013)

3. Derbel, B., Talbi, E.G.: Distributed Node Coloring in the SINR Model. In: Proc.
30th Internat. Conf. onDistributed Computing Systems (ICDCS 2010). pp. 708–717.
IEEE (2010)

4. Distributed Computing Group, ETH Zurich: Sinalgo - simulator for network algo-
rithms (2008), http://sourceforge.net/projects/sinalgo/ , version 0.75.3

5. Fuchs, F.: On asynchronous node coloring in the SINR model (2015),
http://i11www.iti.kit.edu/f-oancs-15.pdf (unpublished manuscript)

6. Fuchs, F., Prutkin, R.: Simple distributed delta + 1 coloring in the SINR model.
CoRR abs/1502.02426 (2015), http://arxiv.org/abs/1502.02426

7. Fuchs, F., Wagner, D.: On Local Broadcasting Schedules and CONGEST Algo-
rithms in the SINR Model. In: Proc. 9th Internat. Workshop on Algorithmic As-
pects of WSN (ALGOSENSORS 2013). pp. 170–184. Springer (2013)

8. Fuchs, F., Wagner, D.: Local broadcasting with arbitrary transmission power in
the SINR model. In: Proc. 21st Internat. Colloq. Structural Inform. and Comm.
Complexity (SIROCCO 2014), pp. 180–193. Springer (2014)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. (1979)

10. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local Broadcasting in the
Physical Interference Model. In: Proc. 5th ACM Internat. Workshop on Founda-
tions of Mobile Computing (DialM-POMC 2008), pp. 35–44. ACM (2008)

11. Goussevskaia, O., Pignolet, Y.A., Wattenhofer, R.: Efficiency of wireless networks:
Approximation algorithms for the physical interference model. Foundations and
Trends in Networking 4(3) (November 2010)

12. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. on Inform.
Theory 46(2), 388–404 (2000)

13. Halldórsson, M.M., Mitra, P.: Towards Tight Bounds for Local Broadcasting.
In: Proc. 8th ACM Internat. Workshop on Foundations of Mobile Computing
(FOMC 2012). ACM (2012)

14. Moscibroda, T., Wattenhofer, M.: Coloring Unstructured Radio Networks. J. Distr.
Comp. 21(4), 271–284 (2008)

15. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol design beyond graph-based
models. In: Proc. of the ACM Workshop on Hot Topics in Networks (HotNets-V),
pp. 25–30 (2006)

16. Roberts, L.G.: Aloha packet system with and without slots and capture. SIG-
COMM Comput. Commun. Rev. 5(2), 28–42 (1975)

17. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks.
In: Proc. 28th ACM Symp. on Principles of Distributed Computing (PODC 2009),
pp. 210–219. ACM (2009)

18. Yu, D., Hua, Q.S., Wang, Y., Lau, F.C.M.: An O(log n) Distributed Approximation
Algorithm for Local Broadcasting in Unstructured Wireless Networks. In: Proc.
8th Internat. Conf. on Distributed Computing in Sensor Systems (DCOSS 2012),
pp. 132–139. IEEE (2012)

19. Yu, D., Wang, Y., Hua, Q.S., Lau, F.C.M.: Distributed (Δ + 1) Coloring in the
Physical Model. Theoret. Comput. Sci. 553, 37–56 (2014)

http://sourceforge.net/projects/sinalgo/
http://i11www.iti.kit.edu/f-oancs-15.pdf
http://arxiv.org/abs/1502.02426

	Simple Distributed +1 Coloring in the SINR Model
	1 Introduction
	1.1 Related Work and Contributions

	2 Model and Preliminaries
	3 Simple 4 Coloring
	3.1 Analysis of Rand4DeltaColoring
	3.2 Asynchronous Simple Coloring
	3.3 Experimental Evaluation

	4 Asynchronous Color Reduction
	4.1 MIS, and Notation for AsyncColorReduction
	4.2 Analysis

	5 Conclusion
	References

