
Scheideler (E
d.)

Structural Inform
ation and

Com
m

unication Com
plexity

LNCS
9439

Christian Scheideler (Ed.)

 123

LN
CS

 9
43

9

22nd International Colloquium, SIROCCO 2015
Montserrat, Spain, July 14–16, 2015
Post-Proceedings

Structural Information
and Communication
Complexity

Lecture Notes in Computer Science 9439

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Christian Scheideler (Ed.)

Structural Information
and Communication
Complexity
22nd International Colloquium, SIROCCO 2015
Montserrat, Spain, July 14–16, 2015
Post-Proceedings

ABC

Editor
Christian Scheideler
Department of Computer Science
University of Paderborn
Paderborn
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-25257-5 ISBN 978-3-319-25258-2 (eBook)
DOI 10.1007/978-3-319-25258-2

Library of Congress Control Number: 2015950867

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at SIROCCO 2015, the 22nd
International Colloquium on Structural Information and Communication Com-
plexity, held during July 14-16, 2015, in Montserrat. Financial support was pro-
vided by the Catalan Society of Mathematics and the Spanish Royal Society of
Mathematics.

SIROCCO is devoted to the study of the interplay between communica-
tion and knowledge in multi-processor systems from both the qualitative and
quantitative viewpoints. Special emphasis is given to innovative approaches and
fundamental understanding, in addition to efforts to optimize current designs.
SIROCCO has a tradition of interesting and productive scientific meetings in a
relaxed and pleasant atmosphere, attracting leading researchers in a variety of
fields in which communication and knowledge play a significant role. This time,
there were 78 submissions from 26 countries. Each submission was reviewed by
at least three Program Committee members with the help of external review-
ers, and the committee decided to accept 30 papers after electronic discussions.
Of these papers, the papers “Under the Hood of the Bakery Algorithm: Mutual
Exclusion as a Matter of Priority”by Katia Patkin and Yoram Moses and “Ran-
domized OBDD-Based Graph Algorithms” by Marc Bury won the Best Student
Paper Awards. The program also includes six keynotes from Michel Raynal,
Miquel Angel Fiol, Nati Linial, Saket Navlakha, Bernhard Haeupler, and Amos
Korman.

As the program chair of SIROCCO 2015, I would very much like to thank
the Program Committee for all of their hard work during the paper selection
process, which ran on a very tight schedule this time. I am also grateful to the
external reviewers for their valuable and insightful comments and to EasyChair
for providing a system that was indeed easy to use. Also many thanks to the
invited speakers for accepting my invitations and giving very interesting and
inspiring talks. Finally, I am very grateful to the chair of the Steering Committee,
Shay Kutten, for his valuable advice, and the Organizing Committee headed by
Xavier Munoz for their time and effort to ensure a successful meeting. Without
all of these people it would not have been possible to come up with such a great
event.

August 2015 Christian Scheideler

Organization

Program Committee

James Aspnes Yale University, USA
Ioannis Chatzigiannakis Sapienza University of Rome, Italy
Andrea Clementi University of Rome Tor Vergata, Italy
Colin Cooper King’s College London, UK
Faith Ellen University of Toronto, Canada
Robert Elsässer University of Salzburg, Austria
Yuval Emek Technion, Israel
Sándor Fekete Technical University of Braunschweig,

Germany
Pascal Felber University of Neuchatel, Switzerland
Pierre Fraigniaud CNRS and University Paris Diderot, France
Taisuke Izumi Nagoya Institute of Technology, Japan
Adrian Kosowski Inria Paris, France
Christoph Lenzen MPI Saarbrücken, Germany
Boaz Patt-Shamir Tel Aviv University, Israel
Sriram Pemmaraju University of Iowa, USA
Seth Pettie University of Michigan, USA
Sergio Rajsbaum UNAM, Mexico
Andrea Richa Arizona State University, USA
Harald Räcke TU München, Germany
Nicola Santoro Carleton University, Canada
Christian Scheideler University of Paderborn, Germany
Christian Schindelhauer University of Freiburg, Germany
Philippas Tsigas Chalmers University of Technology, Sweden
Roger Wattenhofer ETH Zürich, Switzerland
Philipp Woelfel University of Calgary, Canada

Additional Reviewers

Aghazadeh, Zahra
Avin, Chen
Bal, Deepak
Bampas, Evangelos
Barenboim, Leonid
Becchetti, Luca
Berenbrink, Petra
Bonato, Anthony

Brahma, Siddhartha
Carmel, Yuval
Casteigts, Arnaud
Cord-Landwehr, Andreas
Czygrinow, Andrzej
Das, Shantanu
Denysyuk, Oksana
Di Luna, Giuseppe Antonio

VIII Organization

Eren, Tolga
Even, Guy
Fekete, Sándor
Gasieniec, Leszek
Gavoille, Cyril
Georgiou, Chryssis
Georgiou, Konstantinos
Godard, Emmanuel
Hadzilacos, Vassos
Haeupler, Bernhard
Hegeman, James
Ilcinkas, David
Jakoby, Andreas
Jurdzinski, Tomasz
Klasing, Ralf
Kuhn, Fabian
Labourel, Arnaud
Larrea, Mikel
Leucci, Stefano
Lotker, Zvi
Mallmann-Trenn, Frederik
Markou, Euripides
Martin, Russell
Mercier, Hugues
Michail, Othon
Miller, Avery
Monaco, Gianpiero

Natale, Emanuele
Navarra, Alfredo
Ortolf, Christian
Palfrader, Peter
Panagopoulou, Panagiota
Pasquale, Francesco
Pavlogiannis, Andreas
Pelc, Andrzej
Peleg, David
Podlipyan, Pavel
Rivera, Nicolás
Rivière, Etienne
Rossi, Gianluca
Ruppert, Eric
Różański, Micha�l
Scalosub, Gabriel
Schmidt, Christiane
Stauffer, Alexandre
Sutra, Pierre
Tanigawa, Shin-Ichi
Trinker, Horst
Uznański, Przemys�law
Vaccaro, Ugo
Viglietta, Giovanni
Westermann, Matthias
Yamauchi, Yukiko

Contents

Communication Patterns and Input Patterns in Distributed
Computing (Invited Talk) . 1

Michel Raynal

Clock Synchronization and Estimation in Highly Dynamic Networks:
An Information Theoretic Approach . 16

Ofer Feinerman and Amos Korman

Node Labels in Local Decision . 31
Pierre Fraigniaud, Juho Hirvonen, and Jukka Suomela

Exact Bounds for Distributed Graph Colouring . 46
Joel Rybicki and Jukka Suomela

Essential Traffic Parameters for Shared Memory Switch Performance . . . 61
Patrick Eugster, Alex Kesselman, Kirill Kogan, Sergey Nikolenko,
and Alexander Sirotkin

Scheduling Multipacket Frames with Frame Deadlines 76
�Lukasz Jeż, Yishay Mansour, and Boaz Patt-Shamir

A Randomized Algorithm for Online Scheduling with Interval
Conflicts . 91

Marcin Bienkowski, Artur Kraska, and Pawe�l Schmidt

Online Admission Control and Embedding of Service Chains 104
Tamás Lukovszki and Stefan Schmid

Optimizing Spread of Influence in Social Networks via
Partial Incentives . 119

Gennaro Cordasco, Luisa Gargano, Adele A. Rescigno,
and Ugo Vaccaro

Approximation Algorithms for Multi-budgeted Network Design
Problems . 135

Georgios Stamoulis

Simple Distributed Δ+ 1 Coloring in the SINR Model 149
Fabian Fuchs and Roman Prutkin

Nearly Optimal Local Broadcasting in the SINR Model
with Feedback . 164

Leonid Barenboim and David Peleg

Byzantine Gathering in Networks . 179
Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial

X Contents

Signature-Free Asynchronous Byzantine Systems: From Multivalued to
Binary Consensus with t < n/3, O(n2) Messages, and Constant Time . . . 194

Achour Mostéfaoui and Michel Raynal

A Fast Network-Decomposition Algorithm and Its Applications to
Constant-Time Distributed Computation (Extended Abstract) 209

Leonid Barenboim, Michael Elkin, and Cyril Gavoille

Path-Fault-Tolerant Approximate Shortest-Path Trees 224
Annalisa D’Andrea, Mattia D’Emidio, Daniele Frigioni,
Stefano Leucci, and Guido Proietti

A Faster Computation of All the Best Swap Edges of a Tree Spanner . . . 239
Davide Bilò, Feliciano Colella, Luciano Gualà, Stefano Leucci,
and Guido Proietti

Randomized OBDD-Based Graph Algorithms . 254
Marc Bury

On Fast and Robust Information Spreading in the Vertex-Congest
Model . 270

Keren Censor-Hillel and Tariq Toukan

Information Spreading by Mobile Particles on a Line 285
Jurek Czyzowicz, Evangelos Kranakis, Eduardo Pacheco,
and Dominik Paj ↪ak

On Space and Time Complexity of Loosely-Stabilizing Leader
Election . 299

Taisuke Izumi

Wait-Free Gathering Without Chirality . 313
Quentin Bramas and Sébastien Tixeuil

Treasure Hunt with Advice . 328
Dennis Komm, Rastislav Královič, Richard Královič,
and Jasmin Smula

Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond . . . 342
Klaus-Tycho Förster, Rijad Nuridini, Jara Uitto,
and Roger Wattenhofer

Collaborative Exploration by Energy-Constrained Mobile Robots 357
Shantanu Das, Dariusz Dereniowski, and Christina Karousatou

Solving the Induced Subgraph Problem in the Randomized
Multiparty Simultaneous Messages Model . 370

Jarkko Kari, Martin Matamala, Ivan Rapaport, and Ville Salo

Contents XI

A Separation of n-consensus and (n + 1)-consensus Based on Process
Scheduling . 385

Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg

Under the Hood of the Bakery Algorithm: Mutual Exclusion as a
Matter of Priority . 399

Yoram Moses and Katia Patkin

The Computability of Relaxed Data Structures: Queues and Stacks as
Examples . 414

Nir Shavit and Gadi Taubenfeld

Comparison-Based Interactive Collaborative Filtering 429
Yuval Carmel and Boaz Patt-Shamir

Coalescing Walks on Rotor-Router Systems . 444
Colin Cooper, Tomasz Radzik, Nicolás Rivera, and Takeharu Shiraga

Secure Multi-party Shuffling . 459
Mahnush Movahedi, Jared Saia, and Mahdi Zamani

Author Index . 475

Communication Patterns and Input Patterns
in Distributed Computing

(Invited Talk)

Michel Raynal

Institut Universitaire de France &
IRISA, Université de Rennes, France &

Department of Computing, Polytechnic University, Hong Kong
raynal@irisa.fr

This paper was written during the week January 5-9, 2014.

“Je suis Charlie...” (January 7, 2014)

Abstract. A communication pattern is a pattern on messages exchanged in a
distributed computation. An input pattern is a vector made up of the input pa-
rameters of the processes involved in a distributed computation. This paper in-
vestigates three such patterns. The first two, which are related to the causality
relation associated with a distributed execution, are on causal message delivery
and the capture of consistent global states, respectively. The last one, which con-
cerns the consensus problem, is on vectors defined by the input values proposed
by processes (this is also called the “condition-based” approach).

An aim of the paper is to promote the concept of pattern in distributed com-
puting, both as a way to provide higher abstraction levels (as it is the case in
communication patterns), or a tool to investigate computability or optimality is-
sues (as it is the case with input patterns).

Keywords: Agreement problem, Byzantine failure, Causality, Causal message
order, Checkpointing, Consensus, Crash failure, Error-correcting code, Input vec-
tor, Message pattern, Zigzag path.

1 Introduction

On Patterns Encountered in Computing. In this paper a pattern is seen as a specific
arrangement of objects (messages, control flows, processes, input data, etc.) whose aim
is to provide either regular structures, or an appropriate abstraction level, or an appro-
priate setting, which facilitate the design of algorithms solving distributed computing
problems1.

Maybe one of the most famous patterns encountered in computing science is the
pattern used by William George Horner (1786-1837) to compute a polynomial, namely,

(· · · (((an ∗ x+ an−1) ∗ x+ an−2) ∗ x+ an−3) ∗ x+ · · ·+ a1) ∗ x+ a0.

1 In the SIROCCO context, a pattern can be seen as a specific type of structural information.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 1–15, 2015.
DOI: 10.1007/978-3-319-25258-2_1

2 M. Raynal

The basic pattern A ∗ x+ ai is iteratively used to obtain a very simple algorithm, which
uses n multiplications and n additions (let us notice that this pattern-based method was
known and used by Zhu Shijie, 1270-1330, under the name fan fa [40]).

More generally, all control structures of sequential computing (such as loops, and
predicate-based statements) can be seen as familiar computation patterns. In the domain
of parallel computing, where one has to solve problems whose solutions can be based on
a regular structure, the pattern-based approach called systolic programming has proved
to be both easy to use and efficient [10].

When considering the distributed setting, the situation is different. Only a few basic
patterns have been abstracted and are now recognized as fundamental. One of them, in-
troduced to help structure distributed computations, is called round-based computation.
This pattern generalizes the notion of iteration to (both synchronous and asynchronous)
distributed computing.

Content of the Paper. This paper is a short scientific essay on patterns in distributed
computing. As it is an essay, its aim is neither to be exhaustive, nor to give research
directions. More precisely, the paper considers two kinds of patterns, one related to the
causality created by messages exchanged by computing entities (processes), while an
other is related to the input data from which the processes have to agree.

Patterns Related to Message Exchange. In addition to the data they carry, messages
create a causality relation (from causes to effects) among the events produced by the
processes defining a distributed computation. This relation, expressed for the first time
in 1978 by Lamport [21], is a master key to solve causality-related problems [35].

The paper presents two causality-based problems related to message exchange pat-
terns. The first one, called causal message delivery, is addressed in Section 2. As in-
dicated by its name, its aim is to reduce the asynchrony (noise) in message delivery,
namely, for any process p, the delivery of the messages sent to p has to respect their
causal sending order. Hence, the aim is here to provide processes with a higher abstrac-
tion level where message delivery is always in agreement with the causality relation on
their sending.

The second problem, which is related to the computation of consistent global states
(also global checkpoints), is addressed in Section 3. As a global state is made up of a
local state per process, its consistency requires that no two of its local states causally
depend on one another. An important issue is then to ensure that any local state defined
as local checkpoint belongs to a consistent global state. The difficulty here is related to
the existence of hidden dependencies (captured with the notion of a zigzag path [29]).
The paper will show how it is possible to cope with these hidden dependencies by de-
manding processes to take additional local checkpoints so that all checkpoints patterns
are such that any local checkpoint belongs to a consistent global state/checkpoint.

Patterns Related to Input Data. The second type of pattern investigated is related to
the consensus problem in asynchronous systems where processes may crash, or even
commit Byzantine failures. As consensus is impossible to solve in asynchronous sys-
tems where even only one process may crash [12], it remains impossible to solve in

Communication Patterns and Input Patterns in Distributed Computing 3

the presence of Byzantine processes. The paper presents in Section 4 the condition-
based approach to solve consensus in such a context [25], which may actually be seen
as a pattern-based approach. Let the input data (one per process) define what is usually
called an input vector. The approach consists in defining the greatest set of input vectors
such that, if the present input vector belongs to this set, then consensus can be solved.
Hence, such sets define “good” input patterns. Interestingly, the paper shows that, as
far as the consensus problem is concerned, these input patterns can be characterized
as error-correcting codes. Finally, it also shows that if a set S of input patterns is such
that consensus can solved in an asynchronous system for any input vector of S, then
it is possible to design a round-based algorithm that solves consensus optimally (with
respect to the number of rounds) in a synchronous system, for any input vector of S.
Hence, what is a computability issue in asynchronous system translates as an optimality
issue in a synchronous system.

2 Ensuring the Causal Delivery Message Pattern

Causal message delivery was introduced by Birman and Joseph [5]. This message pat-
tern, which can be be seen as the “triangle inequality” of message-passing distributed
computing, reduces the asynchrony of the underlying communication network by en-
suring that any two messages sent (by the same or different processes) to the same
destination process are delivered in their causal sending order. Hence, the causal mes-
sage delivery pattern provides the processes with a communication abstraction of higher
level than send/receive.

To simplify the presentation, we consider here broadcast communication, and we say
that, at the application layer, messages are broadcast and delivered.

Definition. Let
ev−→ denote the causality relation on the events produced by the pro-

cesses of a distributed execution, as defined by Lamport in [21]. Let us remind that this
relation is a partial order. Considering a message m broadcast by a process, let bc(m)
denote its broadcast event, and recj(m) denotes is delivery event at a process pj .

The causal message delivery pattern is defined as follows. For any pair of messages
m and m′ we have:

(
bc(m)

ev−→ bc(m′)
) ⇒ [∀j : (recj(m)

ev−→ recj(m
′)
)
].

It is easy to see that, if causal message delivery is restricted to messages sent by the
same sender, we obtain the FIFO delivery order. In that sense, causal delivery extends
FIFO delivery to any pair of messages whose sending are causally related. Let also
observe that, as

ev−→ is a partial order, it is possible that for two messages m and m′

not related by
ev−→, m is delivered before m′ at some process pj , while m′ is delivered

before m at another process pk.
A simple example is given in Figure 1. The execution on the left side does not satisfy

causal delivery because, while m1
ev−→ m3, m3 is delivered before m1 at p3. Differ-

ently, the execution on the right side satisfies causal delivery. Let us observe that, as the
broadcast of m1 and m2 are not causally related, these messages can be delivered in
different order at any process.

4 M. Raynal

p1

p2

p3

m3

m1

m2

m1

m2

m3

m3

m3
m1

m1
m3

Fig. 1. Illustration of causal message delivery

operation broadcast(m) is
(1) for each j ∈ {1, ..., n} \ {i} do send(m, broadcasti[1..n]) to pj end for;
(2) delivery of m to the application layer;
(3) broadcasti[i] ← broadcasti[i] + 1.

when (m, broadcast[1..n]) is received from pj do
(4) wait

(∀k : broadcasti[k] ≥ broadcast[k]
)
;

(5) delivery of m to the application layer;
(6) broadcasti[j] ← broadcasti[j] + 1.

Fig. 2. An algorithm for causal message delivery (code for pi)

Ensuring Causal Message Delivery. A very simple algorithm ensuring causal mes-
sage delivery is presented in Figure 2. This algorithm is due to Raynal, Schiper and
Toueg [37].

Each process pi manages a local array broadcasti[1..n], initialized to [0, . . . , 0],
such that broadcasti[j] counts the number of messages broadcast by pj which have
been delivered by pi. When pi invokes broadcast(m), it sends to each other process
pj a protocol message including m and the current value of broadcasti[1..n] (line 1).
This indicates to each destination process pj that m causally depends on, for any x, the
yx = broadcasti[x] first messages broadcast by px. Said differently, the current value
of broadcasti[1..n] captures the causal past of the message m. Then, pi delivers the
message to itself, and consequently increments broadcasti[i] to take into account this
delivery (lines 2-3).

When pi receives (at the underlying level) a protocol message (m, broadcast) from
a process pj , it waits until an appropriate delivery condition DC(m) is satisfied.
When DC(m) becomes true, pi delivers m and increases consequently broadcasti[j].
DC(m) is a simple requirement that all the messages broadcast in the causal past of m
(these messages are “encoded” in the control data broadcast[1..n]) must be delivered
before m, which translates as ∀k : broadcasti[k] ≥ broadcast[k] (line 4).

A proof of this algorithm, and more efficient algorithms ensuring causal message
delivery, can be found in Chapter 12 of [35]. Among several application domains, this
message pattern is used in cooperative work and data consistency.

Communication Patterns and Input Patterns in Distributed Computing 5

3 Message Pattern: Coping with Hidden Dependencies

3.1 The Concept of a Consistent Global State

Distributed Computation = Partial Order on Local States. An event produced by a
process pi entails its progress from its previous local to its current local state. It follows
that, it is possible to deduce from the partial order relation

ev−→, defined on events, a
partial order relation

σ−→ on the set of the local states produced by the processes. Let
σi and σj be two local states of processes pi and pj , respectively (possibly i = j).
Intuitively, σi

σ−→ σj if the local state σi causally precedes the local state σj , namely,
there then a causal path starting at σi including local states and messages that ends at
σj (see Chapters 6 and 8 in [35] for formal definitions).

Consistent Global State. We consider here that the communication channels are di-
rected; c(i, j) denotes the channel form pi to pj . Moreover, it is assumed that the com-
munication graph connecting the processes is strongly connected.

A full global state of a distributed computation is a pair (Σ,C) where Σ is a vector
made up of a local state per process, [σ1, . . . , σn], and C is a set including the state
of each directed communication channel c(i, j). We use the terminology “global state”
when we are interested only in Σ.

A global state Σ = [σ1, . . . , σn] is consistent if for any pair of local states (σi, σj)

we have ¬(σi
σ−→ σj) ∧ ¬(σj

σ−→ σi) (i.e., none of its local states causally depends
on another of its local states).

A full global state Σ,C is consistent if (1) Σ is consistent and (2) each (directed)
channel state c(i, j) ∈ C contains all the messages -and only them– sent by pi to pj
before σi and not received by pj before σj (those are the messages that are in-transit
with respect to the directed pair 〈σi, σj〉).

When computing a full global state, each process has to save one of its local states
(sometimes called local checkpoint), and each directed pair of processes has to compute
the state of the corresponding channel (if any). In order for the resulting full global state
to be consistent, the processes have to cooperate in one way or another. The first algo-
rithm to compute a consistent global state of a distributed computation was proposed
by Chandy and Lamport [9] (this algorithm assumes FIFO channels).

m1 m2

m4

m5

m6

m7

m3

I33

p1

p2

p3

c01 I11 I21 c21 I31 c31

c02 c12 c22

I12

c03
c13 c23 c33

I13 I23

c32

c11

Fig. 3. A checkpoint and communication pattern (CCP)

6 M. Raynal

A distributed computation where processes have saved local states, whose aim is to
belong to consistent global states, is represented in Figure 3. Such a space-time diagram
is an abstraction of the distributed computation taking into account the causality relation
σ−→ (or equivalently

ev−→) and the subset of local states defined as local checkpoints by
the processes. Such an abstraction is called a checkpoint and communication pattern
(CCP).

The local states saved by the processes (local checkpoints) are identified cxi , where i
refers to the corresponding process pi, and x is a sequence number. It is easy to see that,
in Figure 3, the global state [c11, c

1
2, c

1
3] is consistent (m3 is an in-transit message with

respect to directed pair 〈c13, c11〉), while [c21, c
2
2, c

1
3] is not consistent (the message m5 is

received from the point of view of c22 and not yet sent from the point of view of c21).

3.2 A Few Fundamental Questions and Their Answers

Questions. When considering local checkpoints taken by processes, several questions
come to mind.

– Given a set of x (1 ≤ x ≤ n) local checkpoints, each from a distinct process, do
they belong to a same consistent global state (i.e., is it possible to add to this set
(n− x) local checkpoints, one from each of the missing processes, so that they all
together constitute a consistent global state)?
As an example, considering Figure 3, is it possible to determine on the fly if the
singleton {c11} can be extended (by adding a local checkpoint from p2 and one
from p3) to obtain a consistent global state?

– Given a local checkpoint cxi , is it possible to determine on the fly, a consistent global
state to which it belongs? (“On the fly” means that, if any, the consistent global state
must be known by pi when it locally saves cxi).

Definitions. The answer to the previous questions is based on the notion of a zigzag
path (in short Z-path) introduced in [29], generalized in [18], and used in [15,16,17]
to design a generic family of checkpointing/snapshot algorithms which are free from
additional control messages (e.g., such as markers).

let an interval Ixi of a process pi be the set of events produced by pi between cx−1
i

and cxi . A few intervals are indicated in Figure 3. Let sd(m) and rec(m) denote the
event “send of m” and “reception of m”, respectively.

There is a Z-path connecting a local checkpoint cxi to a local checkpoint cyj (this path

is denoted cxi
zz−→ cyj) if (i = j)∧ (x < y) or i �= j and there is a sequence of messages

〈m1;m2; · · · ;mq〉, q ≥ 1, such that:
- sd(m1) occurs after cxi , and rec(mq) occurs before cyj ,
- for any � ∈ [1, q), if rec(m�) occurs in the interval Izk (at process pk), then sd(m�+1)

occurs in an interval Iz
′

k , where z′ ≥ z.
Let us notice that m�+1 can be sent by pk before it has received m�. Hence, while

all causal paths are Z-paths, there are Z-paths that are not causal paths. Such Z-paths
characterize hidden dependencies, as captured by Theorem 1. When looking at Figure 3,
〈m1;m4〉 and 〈m5;m6〉 are Z-paths which are causal paths, while 〈m3;m2〉, 〈m5;m4〉,
and 〈m7;m5;m6〉 are Z-paths which are not causal paths.

Communication Patterns and Input Patterns in Distributed Computing 7

Theorem 1. [18,29] Let C = {c(1), . . . , c(x)} be a set of x local checkpoints, 1 ≤
x ≤ n. C can be extended to obtain a consistent global state iff ∀ k, � ∈ {1, . . . , x}:
¬(c(k) zz−→ c(�)

)
.

The following corollary is an immediate consequence of the previous theorem.

Corollary 1. A local checkpoint cxi such that cxi
zz−→ cxi cannot belong to a consistent

global state (it is useless).

When looking at Figure 3, Due to the Z-path 〈m5;m2〉, we have c21
zz−→ c21, from which

we conclude that the local checkpoint c21 cannot be part of a consistent global state. We
have the same for c23. These local checkpoints are useless.

3.3 Consistent Checkpoint and Communication Pattern

Consistency Definitions. As previously seen, given a distributed execution defined by
its causality relation

ev−→ (or
σ−→) and the set S of local checkpoints taken by the pro-

cesses, we obtain a CCP abstraction denoted (S,
zz−→).

A fundamental question is then: “Is a CCP abstraction (S,
σ−→) consistent?” To an-

swer this question, two consistency conditions suited to CCPs have been defined in the
literature.

– Z-cycle-freedom [16,18,29]. This condition states that a CCP is consistent if it has
no Z-cycle (i.e., there is no c ∈ S such that c

zz−→ c (such a CCP has no useless
local checkpoint).
From an operational point of view, this consistency condition states that no domino
effect [32] can occur when when one wants to compute a consistent global state
from local checkpoints.

– RDT-consistency [1,2,39] (RDT stands for Rollback-Dependency Trackability [39]).
This is a stronger condition than Z-cycle-freedom. It states that a CCP is consistent
if each of its hidden dependency (as captured by

zz−→) is “doubled” by a causal de-
pendency. More formally, ∀c1, c2 ∈ S : (c1

zz−→ c2) ⇒ (c1
σ−→ c2).

When considering Figure 3, we have c03
zz−→ c21 but we do not have c03

σ−→ c21,
hence the CCP is not RDT-consistent. Differently, we have both c21

zz−→ c23 and
c21

σ−→ c23.
From an operational point of view, if the CCP is RDT-consistent, it is possible to
associate with each local checkpoint c ∈ S a consistent global state including c,
this determination being done on the fly and without communicating with other
processes. More precisely, given any local checkpoint c, a vector clock value can
be associated on the fly with c, which defines a consistent global state.

A Simple Algorithm Ensuring Z-cycle-Freedom. Algorithms computing consistent (full
or not) global states of a CCP are described in many papers. A structured presentation
of some of them is given in Chapter 8 of [35]. All these algorithms demand the pro-
cesses to take additional checkpoints (those are called forced checkpoints) so that the
CCP including both spontaneous and forced checkpoints be consistent with respect to the

8 M. Raynal

selected consistency condition (a spontaneous local checkpoint is one that is taken by a
process on its own initiative).

An important issue in these algorithms is to direct the processes to take as few as
possible forced checkpoints, which is a difficult problem (see for example [16] as far
as Z-cycle-freedom is concerned, and [2] as far as RDT-consistency is concerned). So,
in the following, we consider only Z-cycle-freedom and present a very simple “brute
force” algorithm, which is far from being efficient. This algorithm, presented in Fig-
ure 4, is based on the following theorem, which assumes that a Lamport’s clock date
c.date is associated with each local checkpoint c ∈ S.

Theorem 2. [16,35]
[∀c1, c2 ∈ S : (c1

zz−→ c2) ⇒ (c1.date < c2.date)] ⇔ [(S,
zz−→) is Z-cycle-free].

internal operation take local checkpoint() is
(1) c ← copy of current local state; c.date ← clocki;
(2) save c and its date c.date.

when pi decides to take a spontaneous checkpoint do
(3) clocki ← clocki + 1; take local checkpoint().

when sending MSG(m) to pj do
(4) send MSG(m, clocki) to pj .

when receiving MSG(m,sd) from pj do
(5) if (clocki < sd) then
(6) clocki ← sd; take local checkpoint() % forced local checkpoint
(7) end if;
(8) Deliver the message m to the application process.

Fig. 4. Building z-cycle-free CCPs (code for pi)

Each process manages a scalar local clock denoted clocki, which is related only
to local checkpoints. When a process pi defines a local state as a local checkpoint,
it timestamps it with its current local date, and saves it (lines 1-2). Each message is
required to carry its local date (line 4). Finally, when a message m carrying its sending
date sd is received by pi, it ensures that the first predicate in Theorem 2 is satisfied.
Hence, if clocki < sd, pi updates its clock to sd and takes a forced local checkpoint
whose date is then sd (lines 5-7), and consequently logical time increases along all
paths including local checkpoints.

Figure 5 presents the previous algorithm is action when the computation with only
spontaneous checkpoints is the one of Figure 3. The forced checkpoints are indicated
with white rectangles. Clock values are explicitly represented.

To summarize the aim of this section was to show how “bad” patterns can be trans-
formed into “good” patterns when one has to ensure the capture of consistent global states
defined from local checkpoints defined on the fly during a distributed computation.

Communication Patterns and Input Patterns in Distributed Computing 9

1 2 3

1 2

1 2

4 5

4

clockj = 1

3

(m4, 2)(m3, 1) (m6, 3)

(m1, 1) (m2, 2) (m5, 3)

(m7, 4)

4 5

p1

p2

p3

clock1 = 2

clock2 = 2

clock3 = 2

clock1 = 3

clock2 = 3

clock3 = 3

clock1 = 4

clock3 = 5

Fig. 5. An example of Z-cycle prevention

4 Input Patterns: The Condition-Based Approach for Agreement

4.1 The Consensus Problem and Its Solvability

The Consensus Problem with Process Crash Failures. The consensus problem is one of
the most important problems of fault-tolerant distributed computing. Let us consider the
case where up to t processes may unexpectedly crash (premature stop). The consensus
problem (a) assumes that each process proposes a value and (b) requires that each non-
faulty process decides a value in such a way that the three following properties are
satisfied.

– Termination. Any non-faulty process decides a value.
– Validity. A decided value is a value proposed by a process.
– Agreement. No two processes decide different values.

An instance of this problem occurs each time processes have to agree in a “strong” way.
Hence, consensus is a basic building block of distributed agreement problems.

Consensus Solvability in Synchronous Systems. The consensus problem was introduced
by Lamport, Shostak and Pease more than thirty years ago [22,30] in the context of
synchronous systems where processes may commit Byzantine failures (i.e., may behave
arbitrarily). In a synchronous system, the processes proceed by executing synchronous
rounds. During each round, a process first sends messages, then receives messages,
and finally executes local computation. The fundamental property that characterizes a
synchronous system is the fact that a message sent during a round is received during the
very same round.

It is shown in [22,30] that t < n/3 is a necessary and sufficient requirement to
solve the consensus problem in synchronous systems prone to Byzantine failures. In
synchronous systems with process crash failure model, there is no constraint on t (i.e.,
t < n).

Consensus Solvability in Asynchronous Systems. The situation is different in asyn-
chronous systems, namely, it is impossible to design a deterministic consensus algo-
rithm in the presence of even a single process that may crash, and this is indepen-
dent of the communication medium, namely, message-passing [12] or atomic read/write
registers [23].

10 M. Raynal

Several approaches have been proposed to circumvent the previous impossibility.
One of them consists in enriching the underlying systems with eventual synchrony
properties [11]. Another consists in enriching the asynchronous system with an ora-
cle called failure detector [8]. Such a device is a distributed module that provides each
process with (possibly unreliable) information on failures. According to the quality of
the information supplied by these modules, several classes of failure detectors can be
defined. The aim is then to find the weakest failure detector class that allows consensus
to be solved [7]. Failure detector-based algorithms that allows consensus to be solved
are described in [34].

Another approach consists in weakening the termination property and looking for
a randomized algorithm. In this case, the termination property becomes: any correct
process eventually decides with probability 1. Randomized consensus algorithms can
be found in [4,24,31,34].

4.2 The Condition-Based Approach

A Pattern-Based Approach: Definitions. Another approach to circumvent consensus
impossibility in asynchronous systems was proposed in [25], and investigated in
[20,27,26]. This approach, which is a pattern-based approach, is called condition-based.
Initially designed to address the consensus problem, it was extended to the k-set agree-
ment problem in [6,28].

An input vector is a vector I[1..n] with an entry per process, such that I[i] contains
the value proposed by process pi. A condition is a set of input vectors defined from
the same pattern. The idea that underlies the condition-based approach comes from the
following question: “Is it possible to characterize sets of input vectors (i.e., conditions)
for which consensus can be solved despite asynchrony and up to t faulty processes?”

Due to impossibility results related to consensus in asynchronous systems prone to
failures [12,23], not any setC of input vectors allows to solve consensus in such a context.
The notion of x-legality was introduced in [25] to capture vector patterns that allow the
previous question to be answered. The following notations are used.
- V denotes the set of values that can be proposed.
- #(a, I) denotes the number of occurrences of the value a ∈ V in the vector I[1..n].
- dist(I1, I2) denotes the Hamming distance between the vectors I1 and I2 (i.e., the
number of entries in which they differ).

Definition 1. A condition C is x-legal if there is a function h : C �→ V such that:

– ∀I ∈ C: #(h(I), I) > x, and
– ∀I1, I2 ∈ C:

(
h(I1) �= h(I2) ⇒ dist(I1, I2) > x

)
.

The parameter x is called the degree of the condition. Its value is related on the failure
model (crash on Byzantine failure).

The intuition that underlies this definition is the following. For each of its input vec-
tors, a condition C must allows a value to be unambiguously selected in order for it to
become the decided value. The function h() is the selection function. The first constraint
of x-legality states that the decided value has to be present “enough”, where “enough”
is captured by “more than x times”. The aim of the second constraint is to ensure that

Communication Patterns and Input Patterns in Distributed Computing 11

no two non-faulty processes, which –due to failures– may obtain different views of the
actual input vector, do not decide differently. This is captured by the statement that any
two input vectors of the condition, from which different values are decided, must be far
apart “enough” from each other.

Let C[x] be the set of all x-legal conditions. A simple example of a condition C ∈
C[x] is the following. DenotedCx

max, this condition is defined as follows, where max(I)
denote the greatest element of the input vector I:

Cx
max

def
= {I : #(max(I), I) > x}.

It is easy to show that this condition is both not empty and x-legal. Simpler of more
sophisticated conditions can be defined (see [25,27]).

The x-legal conditions, for all x ≥ 0, define a strict hierarchy on classes of condi-
tions. Considering vectors of size n, we have:

C[n− 1] ⊂ · · · ⊂ C[x] ⊂ C[x− 1] ⊂ · · · ⊂ C[0],
where C[0] is the set including all possible conditions (the largest of them being the
condition including all the vectors of Vn).

Asynchronous Systems: At the Limit of Solvability. A main result of the condition-based
approach is the following.

Theorem 3. [25] Let us consider an asynchronous distributed system made up of n
processes, where at most t processes may commit crash failures and where t < n if
communication is through atomic read/write registers, and t < n/2 if communication
is by message passing. The consensus problem can be solved using a condition C in
such a system iff C is t-legal.

Hence, from a condition-based point of view, t-legality is the necessary and sufficient
requirement to bypass the impossibility of consensus in crash-prone asynchronous sys-
tems.

Another important result, published in [27], establishes a complexity hierarchy relat-
ing classes of conditions, when processes communicate through atomic read/write reg-
isters and at most t of them may crash. The complexity is measured here by the num-
ber of shared memory accesses, called step complexity. More precisely, let C1 and C2
be two conditions, defined from the same function h(), such that C1 is y-legal (hence,
C1 ∈ C[y]) and C2 is y′-legal (hence, C2 ∈ C[y′]), where t ≤ y′ < y ≤ min(n− t, 2t).
A generic condition-based algorithm is presented in [27], which solves consensus more
efficiently when the underlying condition is C1 than when it is C2. More precisely,
when instantiated with C1 ∈ C[y], this algorithm directs a process to issue at most
O(n log2(� 2t−y

2 �+ 1)) read/write operations to atomic shared read/write registers.
This means that conditions (sets of input vectors) with smaller sizes allow for more

and more efficient algorithms. Hence, the following complexity hierarchy in crash-prone
asynchronous read/write systems (where condition inclusion is from more efficient algo-
rithms to less efficient algorithms): C[min(n− t, 2t)] ⊂ · · · C[y + 1] ⊂ C[y] · · · ⊂ C[t].
The degree y, min(n − t, 2t) ≤ y ≤ t represents the difficulty of the class C[y] (the
greater y, the more efficient the condition-based approach).

12 M. Raynal

A side-effect of this hierarchy lies in the observation that, using more restricted con-
ditions than the one which are (min(n − t, 2t))-legal, does not provide more efficient
condition-based read/write consensus algorithms.

Synchronous Systems: At the Limit of Efficiency. The condition-based approach was
extended to synchronous message-passing systems in [26]. As consensus can be solved
in such systems for any input vector despite up to t < n process crash failures, the aim
was not to address computability issues, but complexity issues, measured as the lowest
number of synchronous rounds for the processes to decide in worst case scenarios.

This paper shows the following. It is possible to solve consensus more an more ef-
ficiently when the degree x of the condition increases from 0 to t. More precisely,
the algorithm presented in [26] directs the processes to decide in at most (t + 1 − x)
rounds, when instantiated with a condition C ∈ C[x] (i.e., an x-legal condition) where
0 ≤ x ≤ t.

Synchronous Systems vs Asynchronous Systems. It is worth remarking that the class of
conditions that allow for the most efficient consensus algorithm in synchronous sys-
tems, namely the class C[t] made up of all t-legal conditions, is the largest one that al-
lows to bypass the consensus impossibility in pure asynchronous read/write or message-
passing systems. It follows that optimality on the synchronous side, and decidability on
the asynchronous side, are the two faces of the very same coin. This discussion is sum-
marized in Figure 6.

C[0] C[x] C[t]

0 tx y min(n− t, 2t)

C[min(n− t, 2t)]C[t + 1]

legality degree t ≤ y ≤ min(n− t, 2t)

complexity in read/write asynchronous systems

(t + 1)− x rounds

legality degree 0 ≤ x ≤ t

complexity in msg-passing synchronous systems

optimal efficiency in msg-passing synchronous systems
decidabilty bound in asynchronous systems

C[y]

O(n log2(�2t−y
2 � + 1)) read/write accesses

Fig. 6. Hierarchy on the condition classes C[z], 0 ≤ z ≤ min(n− t, 2t)

Communication Patterns and Input Patterns in Distributed Computing 13

4.3 Input Patterns vs Error-Correcting Codes

One way to address a distributed agreement problem such as consensus is to consider
that an input vector encodes a value, namely the value that has to be decided from this
input vector (an input vector is then seen as as a codeword).

Error-Correcting Codes: A Short Reminder. 2 An error-correcting code (ECC) problem
arises when one wants to transmit a message m over a channel that can introduce errors.
The universe of values V is the alphabet over which messages are constructed. There
is a universe of possible messages from which m is selected, then a coding function
c() is applied to obtain a codeword c = c(m), which is transmitted over the channel.
The channel can introduce value errors by changing at most fv symbols of c, or erasure
errors (an erasure occurs when the received symbol does not belong to the alphabet) by
changing at most fc symbols of c to some value ⊥. The resulting word, c′, is received
at the other end of the channel, where a decoding function d() is applied to c′, and the
original message is recovered, m = d(c′).

We assume all codewords are of the same length, n, over the alphabet V (i.e., a
block code). A code C is a set of codewords. The problem is then, given the universe
of possible messages, to design a coding function c(), an associated decoding function
d(), and a code C that allow the receiver to recover the word sent from the word it
receives. It is said that the code is (fv, fc)-error/erasure decoding. The ECC theory has
been widely studied and has applications in many diverse branches of mathematics and
engineering (see any textbook, e.g., [3]). A basic theorem is the following:

Theorem 4. [3] A code C is (fv, fc)-error/erasure decoding iff its minimal Hamming
distance is ≥ 2fv + fc + 1.

Error-Correcting Codes vs Consensus. It appears that an erasure error corresponds
to a process crash, while a value error corresponds to a Byzantine behavior. As a re-
sult, it follows that it is possible to adapt the condition-based approach to Byzantine
failures, as shown in [13]. This paper provided also a new proof of the impossibility
to build (fc, fv)-perfect codes. This proof reduces the construction of such codes to a
distributed agreement problem in a distributed asynchronous system prone to process
failures. The impossibility follows then directly from the consensus impossibility in
such systems [12,23].

5 Conclusion

Aim of the Paper. The aim of this paper was to show that the notion of a pattern can
be a useful notion in the distributed computing area. To this end, two communication
patterns and one input pattern have been presented.

Personal Remark. This paper was written to be the companion paper of the SIROCCO
invited talk associated with the Prize “Innovation in Distributed Computing”. I choose
to present three of my works, which were done at different periods, 1991, 1997-2002,

2 The text of this paragraph is from [13].

14 M. Raynal

and 2003-2007. As, we have seen, two of them are related to causality, and one to
distributed agreement, but all of them are based on the notion of a pattern.

More generally, I think that algorithmics lies at the core of computing science [14],
and that, in addition to automata, synchronization and non-determinism are among its
fundamental concepts [19,36,38].

Acknowledgments. I want to thank all my co-authors and my PhD students, with
whom (a) I had long discussions on distributed computing, and (b) I enjoyed both the
simplicity and the beauty of some distributed algorithms. Among them, a warm thank
to A. Mostéfaoui and S. Rajsbaum.

References

1. Baldoni, R., Hélary, J.M., Mostéfaoui, A., Raynal, M.: A communication-induced check-
pointing protocol that ensures rollback-dependency trackability. In: Proc. 27th IEEE Sympo-
sium on Fault-Tolerant Computing (FTCS-27), pp. 68–77. IEEE Press (1997)

2. Baldoni, R., Hélary, J.M., Raynal, M.: Rollback-dependency trackability: a minimal charac-
terization and its protocol. Information and Computation 165(2), 144–173 (2001)

3. Baylis, J.: Error-Correcting Codes: a Mathematical Introduction, p. 219. Chapman & Hall
Mathematics (1998)

4. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement proto-
cols. In: Proc. 2nd Annual ACM Symposium on Principles of Distributed Computing(PODC
1983), pp. 27–30. ACM Press (1983)

5. Birman, K.P., Joseph, T.A.: Reliable communication in presence of failures. ACM Transac-
tions on Computer Systems 5(1), 47–76 (1987)

6. Bonnet, F., Raynal, M.: Conditions for set agreement with an application to synchronous sys-
tems. Springer Journal Computer Science and Technology 24(3), 418–433 (2009)

7. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus.
Journal of the ACM 43(4), 685–722 (1996)

8. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225–267 (1996)

9. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed
systems. ACM Transactions on Computer Systems 3(1), 63–75 (1985)

10. Chandy, K.M., Misra, J.: Systolic algorithms as programs. Distributed Computing 1(3),
177–183 (1986)

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Jour-
nal of the ACM 35(2), 288–323 (1988)

12. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

13. Friedman, R., Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Distributed agreement problems
and their connection with error-correcting codes. IEEE Transactions on Computers 56(7),
865–875 (2007)

14. Harel, D., Feldman, Y.: Algorithmics, the spirit of computing, 572 p. Springer (2012)
15. Hélary, J.-M., Mostéfaoui, A., Raynal, M.: Communication-induced determination of con-

sistent snapshots. IEEE Trans. on Parallel and Distributed Systems 10(9), 865–877 (1999)
16. Hélary, J.-M., Mostéfaoui, A., Netzer, R.H.B., Raynal, M.: Communication-based prevention

of useless checkpoints in distributed computations. Distr. Comput. 13(1), 29–43 (2000)

Communication Patterns and Input Patterns in Distributed Computing 15

17. Hélary, J.-M., Mostéfaoui, A., Raynal, M.: Interval consistency of asynchronous distributed
computations. Journal of Computer and System Sciences 64(2), 329–349 (2002)

18. Hélary, J.-M., Netzer, R.H.B., Raynal, M.: Consistency issues in distributed checkpoints.
IEEE Transactions on Software Engineering 25(4), 274–281 (1999)

19. Herlihy, M., Shavit, N.: The art of multiprocessor programming, 508 p. Morgan Kaufmann
(2008). ISBN 978-0-12-370591-4

20. Izumi, T., Masuzawa, T.: Condition adaptation in synchronous consensus. IEEE Transactions
on Computers 55(7), 843–853 (2006)

21. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

22. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems 4(3), 382–401 (1982)

23. Loui, M., Abu-Amara, H.: Memory requirements for for agreement among Unreliable Asyn-
chronous processes. Adv. Computing Research 4, 163–183 (1987)

24. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous Byzantine consen-
sus with t < n/3 and O(n2) messages. In: Proc. 33th ACM Symposium on Principles of
Distributed Computing (PODC 2014), pp. 2–9. ACM Press (2014)

25. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Conditions on input vectors for consensus solv-
ability in asynchronous distributed systems. Journal of the ACM 50(6), 922–954 (2003)

26. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Synchronous condition-based Consensus. Dis-
tributed Computing 18(5), 325–343 (2006)

27. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Roy, M.: Condition-based consensus solvability:
a hierarchy of conditions and efficient protocols. Distr. Computing 17(1), 1–20 (2004)

28. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: The combined power of conditions
and information on failures to solve asynchronous set agreement. SIAM Journal of Comput-
ing 38(4), 1574–1601 (2008)

29. Netzer, R.H.B., Xu, J.: Necessary and sufficient conditions for consistent global snapshots.
IEEE Transactions on Parallel and Distributed Systems 6(2), 165–169 (1995)

30. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal
of the ACM 27, 228–234 (1980)

31. Rabin, M.: Randomized Byzantine generals. In: Proc. 24th IEEE Symposium on Foundations
of Computer Science (FOCS 1983), pp. 116–124. IEEE Computer Society Press (1983)

32. Randell, B.: System structure for software fault-tolerance. IEEE Transactions on Software
Engineering SE1(2), 220–232 (1975)

33. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems, 165 p. Mor-
gan & Claypool Publishers (2010). ISBN 978-1-60845-525-6

34. Raynal, M.: Communication and agreement abstractions for fault-tolerant asynchronous dis-
tributed systems, 251 p. Morgan & Claypool Publ. (2010). ISBN 978-1-60845-293-4

35. Raynal, M.: Distributed algorithms for message-passing systems, 515 p. Springer (2013).
ISBN 978-3-642-38122-5

36. Raynal, M.: Concurrent programming: algorithms, principles, and foundations, p. 530.
Springer (2013). ISBN 978-3-642-32026-2

37. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple way to
implement it. Information Processing Letters 39(6), 343–350 (1991)

38. Taubenfeld, G.: Synchronization algorithms and concurrent programming, 423 p. Pearson
Education/Prentice Hall (2006). ISBN 0-131-97259-6

39. Wang, Y.-M.: Consistent global checkpoints that contain a given set of local checkpoints.
IEEE Transactions on Computers 46(4), 456–468 (1997)

40. Zhu, S.: Jade mirror of the four unknowns (1303), Chinese and English bilingual, vol. 1 & 2.
Liaoning Education Press, China (2006). ISBN 7-5382-6923-1

Clock Synchronization and Estimation

in Highly Dynamic Networks:
An Information Theoretic Approach

Ofer Feinerman1,� and Amos Korman2

1 The Shlomo and Michla Tomarin Career Development Chair,
The Weizmann Institute of Science, Rehovot, Israel

ofer.feinerman@weizmann.ac.il
2 CNRS and University Paris Diderot, Paris, 75013, France

amos.korman@liafa.univ-paris-diderot.fr

Abstract. We consider the External Clock Synchronization problem in
dynamic sensor networks. Initially, sensors obtain inaccurate estimations
of an external time reference and subsequently collaborate in order to
synchronize their internal clocks with the external time. For simplicity,
we adopt the drift-free assumption, where internal clocks are assumed to
tick at the same pace. Hence, the problem is reduced to an estimation
problem, in which the sensors need to estimate the initial external time.
In this context of distributed estimation, this work is further relevant
to the problem of collective approximation of environmental values by
biological groups.

Unlike most works on clock synchronization that assume static net-
works, this paper focuses on an extreme case of highly dynamic networks.
We do however impose a restriction on the dynamicity of the network.
Specifically, we assume a non-adaptive scheduler adversary that dictates
an arbitrary, yet independent, meeting pattern. Such meeting patterns
fit, for example, with short-time scenarios in highly dynamic settings,
where each sensor interacts with only few other arbitrary sensors.

We propose an extremely simple clock synchronization (or an estima-
tion) algorithm that is based on weighted averages, and prove that its
performance on any given independent meeting pattern is highly com-
petitive with that of the best possible algorithm, which operates without
any resource or computational restrictions, and further knows the whole
meeting pattern in advance. In particular, when all distributions involved
are Gaussian, the performances of our scheme coincide with the optimal
performances. Our proofs rely on an extensive use of the concept of
Fisher information. We use the Cramér-Rao bound and our definition of
a Fisher Channel Capacity to quantify information flows and to obtain
lower bounds on collective performance. This opens the door for further
rigorous quantifications of information flows within collaborative sensors.

� O.F. has been supported in part by the Clore Foundation, the Israel Science Foun-
dation (FIRST grant no. 1694/10) and the Minerva Foundation. A.K. has been
supported in part by the ANR project DISPLEXITY. This work has received fund-
ing from the European Research Council (ERC) under the European Unions Horizon
2020 research and innovation programme (grant agreement No 648032).

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 16–30, 2015.
DOI: 10.1007/978-3-319-25258-2_2

Clock Synchronization and Estimation in Highly Dynamic Networks 17

1 Introduction

1.1 Background and Motivation

Representing and communicating information is a main interest of theoretical
distributed computing. However, such studies often seem disjoint from what may
be the largest body of work regarding coding and communication: Information
theory [7,33]. Perhaps the main reason for this stems from the fact that dis-
tributed computing studies are traditionally concerned with noiseless models of
communication, in which the content of a message that passes from one node
to another is not distorted. This reliability in transmission relies on an implicit
assumption that error-corrections is guaranteed by a lower level protocol that is
responsible for implementing communication. Indeed, when bandwidth is suffi-
ciently large, one can encode a message with a large number of error-correcting
bits in a way that makes communication noise practically a non-issue.

In some distributed scenarios, however, distortion in communication is un-
avoidable. One example concerns the classical problem of clock synchronization,
which has attracted much attention from both theoreticians in distributed com-
puting [2,25,22,30], as well as engineers [10,15,34], see [32,37,24,39] for compre-
hensive surveys. In this problem, processors need to synchronize their clocks
(either among themselves only or with respect to a global time reference) rely-
ing on relative time measurements between clocks. Due to unavoidable unknown
delays in communication, such measurements are inherently noisy. Furthermore,
since the source of the noise is the delays, error-correction does not seem to be
of any use for reducing the noise. The situation becomes even more complex
when processors are mobile, preventing them from reducing errors by averaging
repeated measurements to the same processors, and from contacting reliable pro-
cessors. Indeed, the clock synchronization problem is particularly challenging in
the context of wireless sensor networks and ad hoc networks which are typically
formed by autonomous, and often mobile, sensors without central control.

Distributed computing models which include noisy communication call for a
rigorous comprehensive study that employs information theoretical tools. Indeed,
a recent trend in the engineering community is to view the clock synchronization
problem from a signal processing point of view, and adopt tools from informa-
tion theory (e.g., the Cramér-Rao bound) to bound the affect/impact of inherent
noise [6,15], see [39] for a survey. However, this perspective has hardly received
any attention by theoreticians in distributed computing that mostly focused on
worst case message delays [2,25,22,4], which do not seem to be suitable for infor-
mation theoretic considerations. In fact, very few works on clock synchronisation
consider a system with random delays and analyse it following a rigorous theo-
retical distributed algorithmic type of analysis. An exception to that is the work
of Lenzen el al. [23], but also that work does not involve information theory.
In this current paper, we study the clock synchronization problem through the
purely theoretical distributed algorithmic perspective while adopting the signal
processing and information theoretic point of view. In particular, we adopt tools
from Fisher Information theory [35,40].

18 O. Feinerman and A. Korman

We consider the external version of the problem [8,28,30,37] in which proces-
sors (referred to as sensors hereafter) collaborate in order to synchronize their
clocks with an external global clock. Informally, sensors initially obtain inaccurate
estimates of a global (external) time τ∗ ∈ R reference, and subsequently collab-
orate to align their internal clocks to be as close as possible to the external clock.
To this end, sensors communicate through uni-directional pairwise interactions
that include inherently noisy measurements of the relative deviation between
their internal clocks and, possibly, some complementary information. To focus on
the problems caused by the initial inaccurate estimations of τ∗ and the noise in
the communication we restrict our attention to drift-free settings [2,25], in which
all clocks tick at the same rate. This setting essentially reduces the problem to
the problem of estimating τ∗. See, e.g., [14,36,38] for works on estimation in the
engineering community. In this context of distributed estimation, our model is
further relevant to collective approximation of environmental values by biological
groups [19,26].

With very few exceptions that effectively deal with dynamic settings [9,20],
almost all works on clock synchronization (and distributed estimation) consid-
ered static networks. Indeed, the construction of efficient clock synchronization
algorithms for dynamic networks is considered as a very important and chal-
lenging task1 [32,37]. This paper addresses this challenge by considering highly
dynamic networks in which sensors have little or no control on who they interact
with. Specifically, we assume a non-adaptive scheduler adversary that dictates in
advance a meeting-pattern for the sensors. However, the adversary we assume is
not unlimited. Specifically, in this initial work2 we restrict the adversary to pro-
vide independent-meeting patterns only, in which it is guaranteed that whenever
a sensor views another sensor, their transitive histories are disjoint3. Although
they are not very good representatives of communication in static networks, inde-
pendent meeting patterns fit well with highly stochastic communication patterns
during short-time scales, in which each sensor observes only few other arbitrary
sensors (see discussion in Section 2). Given such a meeting-pattern, we are con-
cerned with minimizing the deviation of each internal clock from the global time.

As our objective is to model small and simple sensors, we are interested in
algorithms that employ elementary computations and economic use of communi-
cation. We use competitive analysis to evaluate the performances of algorithms,
comparing them to the best possible algorithm that operates under the most

1 For example, dynamic meeting patterns prevent the use of classical external clock
synchronization algorithms (e.g., [27,30]) that are based on one or few source sensors
that obtain accurate estimation of the global time and govern the synchronization
of other sensors.

2 We assume independence for simplicity. As evident by this work, the independent
case is already rather complex. We leave it to future work to handle more complex
dependent scenarios.

3 Another informal way to view such patterns is that they guarantee that, given the
global time, whenever a sensor views another sensor, their local clocks are indepen-
dent; see Section 2 for a formal definition.

Clock Synchronization and Estimation in Highly Dynamic Networks 19

liberal version of the model that allows for unrestricted resources in terms of
memory and communication capacities, and individual computational ability.

Due to space considerations, throughout this paper, most proofs are omitted.
These proofs can be found in [12].

1.2 Our Contribution

Lower Bounds on Optimal Performance. We first consider algorithm Opt,
the best possible algorithm operating on the given independent meeting pat-
tern. We note that specifying Opt seems challenging, especially since we do not
assume a prior distribution on the starting global time, and hence the use of
Bayesian statistics seems difficult. Fortunately, for our purposes, we are merely
interested in lower bounding the performances of that algorithm. We achieved
that by relating the smallest possible variance of a sensor at a given time to the
largest possible Fisher Information (FI) of the sensor at that time. This mea-
sure quantifies the sensor’s current knowledge regarding the relative deviation
between its local time and the global time. We provide a recursive formula to
calculate Ja, the FI at sensor a, for any sensor a. Specifically, initially, the FI at
a sensor is the FI in the distribution family governing its initial deviation from
the global time (see Section 2 for the formal definitions). When sensor a observes
sensor b, the FI at a after this observation (denoted by J ′

a) satisfies:

J ′
a ≤ Ja +

1
1
Jb

+ 1
JN

, (1)

where JN is the Fisher Information in the noise distribution related to the ob-
servation. To obtain this formula we prove a generalized version of the Fisher
information inequality [35,40]. Relying on the Cramér-Rao bound [7], this for-
mula is then used to bound the corresponding variance under algorithm Opt.
Specifically, the variance of the internal clock of sensor a is at least 1/Ja.

Equation 1 provides immediate bounds on the convergence time. Specifically,
the inequality sets a bound of JN for the increase in the FI per interaction. In
analogy to Channel Capacity as defined by Shannon [7] we term this upper bound
as the Fisher Channel Capacity. Given small ε > 0, we define the convergence
time T (ε) as the minimal number of observations required by the typical sensor
until its variance drops below ε2 (see Section 2 for the formal definition). Let
J0 denote the median initial Fisher Information of sensors. Based on the Fisher
Channel Capacity we prove the following.

Theorem 1. Let J0 � 1/ε2 for some ε > 0. Then T (ε) ≥ (1
ε2 − J0)/JN .

A Highly Competitive Elementary Algorithm. We propose a simple clock
synchronization algorithm and prove that its performance on any given indepen-
dent meeting pattern is highly competitive with that of the optimal one. That is,
estimations of global time at each sensor remain unbiased throughout the execu-
tion and the variance at any given time is Δ0-competitive with the best possible

20 O. Feinerman and A. Korman

variance, where Δ0 is initial Fisher-tightness (see definition in Section 2). In
contrast to the optimal algorithm that may be based on transmitting complex
functions in each interaction, and on performing complex internal computations,
our simple algorithm is based on far more basic rules. First, transmission is re-
stricted to a single accuracy parameter. Second, using the noisy measurement
of deviation from the observed sensor, and the accuracy of that sensor, the ob-
serving sensor updates its internal clock and accuracy parameter by careful, yet
elementary, weighted-averaging procedures.

Our weighted-average algorithm is designed to maximize the flow of Fisher In-
formation in interactions. This is proved by showing that the accuracy parameter
is, at all times, both representative of the reciprocal of the sensor’s variance and
close to the Fisher Information upper bound. In short, we prove the following.

Theorem 2. There exists a simple weighted-average based clock synchronization
algorithm which is Δ0-competitive (at any sensor and at any time).

We note that our algorithm does not require the use of sensor identities and
can thus be also employed in anonymous networks [1,11], yielding the same
performances.

Two important corollaries of Theorem 2 follow directly from the definition of
the initial Fisher-tightness Δ0.

Corollary 1. If the number of distributions governing the initial clocks is a con-
stant (independent of n), then our algorithm is O(1)-competitive, at any sensor
and at any time.

Corollary 2. If all distributions involved are Gaussians, then the variances
of our algorithm coincide with those of the optimal one, for each sensor and
at any time.

2 Preliminaries

We consider a collection of n sensors that collaborate in order to synchronize
their internal clocks with an external global clock reference. We consider a set F
of sufficiently smooth (see definition in Section 2), probability density distribu-
tions (pdf) centered at zero. One specific distribution among the pdfs in F is
the noise distribution, referred to as N(η). Each sensor a is associated with a
distribution Φa(x) ∈ F which governs the initialization deviation of its inter-
nal clock from the global time as described in the next paragraph. Depending
on the specific model, we assume that sensor a knows various properties of Φa.
In the most restricted model, sensor a knows only the variance of Φa and in the
most liberal model (considered for the sake of lower bounds), a knows the full
description of Φa. Execution is initiated when the global time is some τ∗ ∈ R,
chosen by an adversary.

Clock Synchronization and Estimation in Highly Dynamic Networks 21

Two important cases are (1) when F contains a constant number of distribu-
tions (independent of the number of sensors) and (2) when all distributions in F
are Gaussian. Both cases serve as reasonable assumptions for realistic scenarios.
For the former case we shall show asymptotically optimal performances and for
the latter case we shall show strict optimal (non-asymptotical) performance.

Local Clocks. Each sensor a is initialized with a local clock �a(0) ∈ R, randomly
chosen according to Φa(x − τ∗), independently of all other sensors. That is, as
Φa(x) is centred around zero, the initial local time �a(0) is distributed around τ∗,
and this distribution is governed by Φa. We stress that sensor a does not know
the value τ∗ and from its own local perspective the execution started at time
�a(0). Sensors rely on both social interactions and further environmental cues4

to improve their estimates of the global time. In between such events sensors are
free to perform “shift” operations to adjust their local clocks. To focus on the
problems occurred by the initial inaccurate estimations of τ∗ and the noise in
the communication we restrict our attention to drift-free settings [2,25], in which
all clocks tick at the same rate, consistent with the global time.

Opinions. The drift-free assumption reduces the external clock-synchronization
problem to the problem of estimating τ∗. Indeed, recall that local clocks are
initialized to different values but progress at the same rate. Because sensor a
can keep the precise time since the beginning of the execution, its deviation
from the global time can be corrected had it known the difference between,
�a(0), the initial local clock of a, and τ∗, the global time when the execution
started. Hence, one can view the goal of sensor a as estimating τ∗. That is,
without loss of generality, we may assume that all shifts performed by sensor a
throughout the execution are shifts of its initial position �a(0) aiming to align
it to be as close as possible to τ∗. Taking this perspective, we associate with
each sensor an opinion variable xa, initialized to xa(0) := �a(0), and the goal of
a is to have its opinion be as close as possible to τ∗. We view the opinion xa

as an estimator of τ∗, and note that initially, due to the properties of Φa, this
estimator is unbiased, i.e., mean(xa(0)−τ∗) = 0. It is required that at any point
in the execution, the opinion xa remains an unbiased estimator of τ∗, and the
goal of a is to minimize its Mean Square Error (MSE).

Due to this simple relation between internal clocks and opinions, in the re-
maining of this paper, we shall adopt the latter perspective and concern ourselves
only with optimizing the opinions of sensors as estimators for τ∗, without dis-
cussing further the internal clocks.

Rounds. For simplicity of presentation, we assume that the execution proceeds
in discrete rounds. We stress however that the rounds represent the order in
which communication events occur (as determined by the meeting-pattern, see

4 In order for the model to include environmental cues, one or more of the sensors
can be taken to represent the global clock. The initial times of these sensors are
chosen according to highly concentrated distributions, Φa, around τ∗ and remain
fixed thereafter.

22 O. Feinerman and A. Korman

below), and do not necessarily correspond to the actual time. Given an algorithm
A, the opinion maintained by the algorithm at round t (where t is a non-negative
integer) at sensor a is denoted by xa(t, A). As mentioned, the algorithm aims to
keep this value as close as possible to τ∗. When A is clear from the context, we
may omit writing it and use the term xa(t) instead.

In each round t ≥ 1, a sensor may first choose to shift (or not) its opinion, and
then, if specified in the meeting pattern, it observes another specified sensor, thus
obtaining some information. To summarize, in each round, a sensor executes the
following consecutive actions: (1) Perform internal computation; (2) Perform an
opinion-shift: xa(t) = xa(t− 1)+Δ(x); and (3) Observe (or not) another sensor.
For simplicity, all these three operations are assumed to occur instantaneously,
that is, in zero time.

Mobility and Adversarial Independent Meeting Patterns. In cases where
sensors are embedded in a Euclidian space, distances between positioning of
sensors may impact the possible interactions. To account for physical mobility,
and be as general as possible, we assume that an oblivious adversary controls the
meeting pattern. That is, the adversary decides (before the execution starts), for
each round, which sensor observes which other sensor.

A model that includes an unlimited adversary that controls the meeting pat-
tern appears to be too general. In this preliminary work on the subject, we
restrict the adversary to provide only independent meeting patterns, in which
the set of sensors in the transitive history of each observing sensor is disjoint
from the one of the observed sensor.

Formally, given a pattern of meetings P , sensor a and round t, we first define
the set of relevant sensors of a at time t, denoted by Ra(t,P). At time zero, we
define Ra(0,P) := {a}, and at round t, Ra(t,P) := Ra(t−1,P)∪R(b, t−1,P) if
a observes b at time t−1 (otherwise Ra(t,P) := Ra(t−1,P)). A meeting pattern
P is called independent if whenever some sensor a observes a sensor b at some
time t, then Ra(t−1,P)∩R(b, t−1,P) = ∅ . Note that an independent meeting
pattern guarantees that given τ∗, the internal clocks of two interacting sensors
are independent. However, given τ∗ and the internal clock of a, the internal clock
of b and the relative time measurement between them are dependent.

Note that independent-meeting patterns are not very good representatives
of communication in static networks5. On the other hand, independent meeting
patterns fit well with highly stochastic short-time scales communication patterns,

5 Indeed, in such patterns a sensor will not contact the same sensor twice, which con-
tradicts many natural communication schemes in static networks. We note, however,
that in some cases, a sequence of multiple consecutive observations between sensors
can be compressed into a single observation of higher accuracy thus reducing the
dependencies between observations, and possibly converting a dependent meeting
pattern into an independent one. For example, if sensors have unique identities and
sensor a observes sensor b several times is a row, and it is guaranteed that sensor b
did not change its state during these observations, then these observations can be
treated by a as a single, more accurate, observation of b.

Clock Synchronization and Estimation in Highly Dynamic Networks 23

in which each sensor observes only few other arbitrary sensors. In this sense, such
patterns can be considered as representing an extreme case of dynamic systems.

Because sensors have no control of when their next interaction will occur, or
if it will occur at all, we require that estimates at each sensor be as accurate
as possible at any point in time. This requirement is stronger than the liveness
property that is typically required from distributed algorithms [21].

Convergence Time. Consider a meeting pattern P . Given small ε > 0, the
convergence time T (ε) of an algorithm A is defined as the minimal number
of observations made by the typical sensor until its variance is less than ε2.
More formally, let ρ denote the first round when we have more than half of the
population satisfying var(Xa(t, A)) < ε2. For each sensor a, let R(a) denote the
number of observations made by a until time ρ. The convergence time T (ε) is
defined as the median of R(a) over all sensors a. Note that T (ε) is a lower bound
on ρ, since since each sensor observes at most one sensor in a round.

Communication. We assume that sensors are anonymous and hence, in par-
ticular, they do not know who they observe. Conversely, for the sake of lower
bounds, we allow a much more liberal setting, in which sensors have unique
identifiers and know who they interact with.

When a sensor a observes another sensor b at some round t, the information
transferred in this interaction contains a passive component and, possibly, a
complementary active one. The passive component is a noisy relative deviation
measurement between their opinions:

d̃ab(t) = xb(t)− xa(t) + η,

where the additive noise term, η, is chosen from the noise probability distribution
N(η) ∈ F whose variance is known to the sensors. (Note that this measurement
is equivalent to the relative deviation measurement between the sensors’ current
local times because all clocks tick at the same pace.)

Elementary Algorithms. Our reference for evaluating performances is algo-
rithm Opt which operates under the most liberal version of our model, which
carries no restrictions on memory, communication capacities or internal compu-
tational power, and provides the best possible estimators at any sensor and at
any time (we further assume that sensors acting under Opt know the meeting
pattern in advance). In general, algorithm Opt may use complex calculations
over very wasteful memories that include detailed distribution density functions,
and possibly, accumulated measurements. Our main goal is to identify an algo-
rithm whose performance is highly competitive with that of Opt but wherein
communication and memory are economically used, and the local computations
simple. Indeed, when it comes to applications to tiny and limited processors,
simplicity and economic use of communication are crucial restrictions.

24 O. Feinerman and A. Korman

An algorithm is called elementary if the internal state of each sensor a contains
a constant number of real6 numbers, and the internal computations that a sensor
can perform consist of a constant number of basic arithmetic operations, namely:
addition, subtraction, multiplication, and division.

Competitive Analysis. Fix a finite family F of smooth pdf ’s centered at zero
(see the definition for smoothness in the next paragraph), and fix an assignment
of a distribution Φa ∈ F to each sensor a. For an algorithm A and an indepen-
dent meeting pattern P , let Xa(t, A,P) denote the random variable indicating
the opinion of sensor a at round t. Let mean(Xa(t, A,P)) and var(Xa(t, A,P))
denote, respectively, the mean and variance of Xa(t, A,P), where these are taken
over all possible random initial opinions, communication errors, and possibly,
coins flipped by the algorithm. Note that the unbiased assumption requires that
mean(Xa(t, A,P)) = τ∗. An algorithm A is called λ-competitive, if for any in-
dependent pattern of meetings P , any sensor a, and at any time t, we have:
var(Xa(t, A,P)) ≤ λ · var(Xa(t,Opt,P)).

Fisher Information and the Cramér-Rao Bound. The Fisher information
is a standard way of evaluating the amount of information that a set of ran-
dom measurements holds about an unknown parameter τ of the distribution
from which these measurements were taken. We provide some definitions for
this notion; for more information the reader may refer to [7,40].

A single variable probability distribution function (pdf) Φ is called smooth
if it satisfies the following conditions, as stated by Stam [35]: (1) Φ(x) > 0 for
any x ∈ R, (2) the derivative Φ′ exists, and (3) the integral

∫
1

Φ(y)(Φ
′(y))2dy

exists, i.e., Φ′(y) → 0 rapidly enough for |y| → ∞. Note that, in particular,
these conditions hold for natural distributions such as the Gaussian distribution.
Recall that we consider a finite set F of smooth one variable pdfs, one of them
being the noise distribution N(η), and all of which are centered at zero.

For a smooth pdf Φ, let Jτ
Φ :=

∫
1

Φ(y)(Φ
′(y))2dy denote the Fisher infor-

mation in the parameterized family {(Φ(x, τ)}τ∈R = {(Φ(x − τ)}τ∈R with
respect to τ . In particular, let JN = Jτ

N denote the Fisher information in
the parameterized family {N(η − τ)}τ∈R. More generally, consider a multi-
variable pdf family {(Φ(z1 − τ, z2 . . . zk))}τ∈R where τ is a translation param-
eter. The Fisher information in this family with respect to τ is defined as:

Jτ
Φ =

∫
1

Φ(z1−τ,z2...zk)

[
dΦ(z1−τ,z2...zk)

dτ

]2
dz1, dz2 . . . dzk if the integral exists.

As previously noted [40], since τ is a translation parameter, Fisher informa-
tion is both unique (there is no freedom in choosing the parametrization) and
independent of τ .

The Fisher information derives its importance by association with the Cramér-
Rao inequality [7]. This inequality lower bounds the variance of the best possible

6 We assume real numbers for simplicity. It seems reasonable to assume that when
sufficiently accurate approximation is stored instead of the real numbers similar
results could be obtained.

Clock Synchronization and Estimation in Highly Dynamic Networks 25

estimator of τ∗ by the reciprocal of the Fisher information that corresponds to
the random variables on which this estimator is based.

Theorem 3. [The Cramér-Rao inequality] Let X̂ be any unbiased estimator
of τ∗ ∈ R which is based on a multi-variable sample z̄ = (z1, z2 . . . zk) taken
from Φ(z1 − τ∗, z2 . . . zk). Then var(X̂) ≥ 1/Jτ

Φ.

Initial Fisher-Tightness: To define the initial Fisher-tightness parameter Δ0,
we first define the Fisher-tightness of a single variable smooth distribution Φ
centered at zero, as Δ(Φ) = var(Φ) · Jτ

Φ . Note that, by the Cramér-Rao bound,
Δ(Φ) ≥ 1 for any such distribution Φ. Moreover, equality holds if Φ is Gaussian
[7]. Recall that F is the finite collection of the smooth distributions containing
the distributions Φa governing the initial opinions of sensors. The initial Fisher-
tightness Δ0 is the maximum of the Fisher-tightness over all distributions in
F and the noise distribution. Specifically, let Δ0 = max{Δ(Φ) | Φ ∈ F}. Two
important observations are:

– If F contains a constant number of distributions then Δ0 is a constant.
– If the distributions in F are all Gaussians then Δ0 = 1.

3 Lower Bounds on the Variance of Opt

In this section we provide lower bounds on the performances of algorithm Opt
over a fixed independent pattern of meetings P . Note that we are interested
in bounding the performances of Opt and not in specifying its instructions.
Identifying the details of Opt may still be of interest, but it is beyond the scope
of this paper.

For simplicity of presentation, we assume that the rules of Opt are determin-
istic. We note, however, that our results can easily be extended to the case that
Opt is probabilistic. For simplicity of notations, since this section deals only
with algorithm Opt acting over P , we use variables, such as the opinion Xa(t)
and the memory Ya(t) of sensor a, without parametrizing them by neither Opt
nor by P .

Under algorithm Opt, we assume that each sensor holds initially, in addition
to the variance of Φa, the precise functional form of the distribution Φa (recall, Φa

is centered at zero). In addition, we assume that sensors have unique identifiers
and that each sensor knows the whole pattern P in advance. Moreover, we assume
that each sensor a knows for each other sensor b, the pdf Φb governing b’s initial
opinion. All this information is stored in one designated part of the memory of a.

Since Opt does not have any bandwidth constrains, we may assume, without
loss of generality, that whenever some sensor a observes another sensor b, it
obtains the whole memory content of b. Since Opt is deterministic, its previous
opinion-shifts can be extracted from its interaction history, which is, without
loss of generality, encoded in its memory7. Hence, when sensor a observes sensor

7 In case Opt is probabilistic, previous shifts can be extracted from the memory plus
the results of coin flips which may be encoded in the memory of the sensor as well.

26 O. Feinerman and A. Korman

b at some round t, and receives b’s memory together with the noisy measurement
d̃ab(t) = xb(t) − xa(t) + η, sensor a may extract all previous opinion-shifts of
both itself and b, treating the measurement d̃ab(t) as a noisy measurement of the
deviation between the initial opinions, i.e., d̃ab(0) = xb(0)− xa(0) + η. In other
words, to understand the behavior of Opt at round t, one may assume that
sensors never shift their opinions until round t, when they use all memory they
gathered to shift their opinion in the best possible manner8. It follows that apart
from the designated memory part that all sensors share, the memory Ma(t) of
sensor a at round t contains the initial opinionXa(0) and a collection Ya(t−1) :=
{d̃bc(0)}bc of relative deviation measurements between initial opinions. That is,
Ma(t) = (X0(t), Ya(t − 1)). This multi-valued memory variable Ma(t) contains
all the information available to a at round t. In turn, this information is used by
the sensor to obtain its opinion Xa(t) which is required to serve as an unbiased
estimator of τ∗.

The Fisher Information of Sensors. We now define the notion of the Fisher
Information associated with a sensor a at round t. This definition will be used
to bound from below the variance of Xa(t) under algorithm Opt.

Consider the multi-valued memory variable Ma(t) = (X0(t), Ya(t − 1)) of
sensor a that at round t. Note that Ya(t− 1) is independent of τ∗. Indeed, once
the adversary decides on the value τ∗, all sensors’ initial opinions are chosen with
respect to τ∗. Hence, since sensors’ memories contains only relative deviations
between opinions, the memories by themselves do not contain any information
regarding τ∗. In contrast, given τ∗, the random variables Ya(t − 1) and Xa(0)
are, in general, dependent. Furthermore, in contrast to Ya(t − 1), the value of
Xa(0) depends on τ∗, as it is chosen according to Φa(x − τ∗). Hence, Ma(t) is
distributed according to a pdf family {(ma(t), τ)} parameterized by a translation
parameter τ . Based on Ma(t), the sensor produces an unbiased estimation Xa(t)
of τ∗, that is, it should hold that: mean(Xa(t) − τ∗) = 0, where the mean is
taken with respect to the distribution of the random multi-variable Ma(t).

Definition: The Fisher Information (FI) of sensor a at round t, termed Ja(t),
is the the Fisher information in the parameterized family {(ma(t), τ)}τ∈R with
respect to τ .

By the Cramér-Rao bound, the variance of any unbiased estimator used by
the sensor a at round t is bounded from below by the reciprocal of the FI of
sensor a at that time. That is, we have:

Lemma 1. var(Xa(t)) ≥ 1/Ja(t).

8 This observation implies, in particular, that previous opinion-shifts of sensors do
not affect subsequent estimators in a way that may cause a conflict (a conflict may
arise, e.g., when optimizing one sensor at one time necessarily makes estimators at
another sensor, at a later time, sub-optimal), hence algorithm Opt is well-defined.

Clock Synchronization and Estimation in Highly Dynamic Networks 27

3.1 An Upper Bound on the Fisher Information Ja(t)

Lemma 1 implies that lower bounds on the variance of the opinion of a sensor
can be obtained by bounding from above the corresponding FI. To this end,
we prove the following recursive inequality. To establish the proof we had to
extends the Fisher information inequality [35,40] to our multi-variable (possibly
dependent) convolution case.

Theorem 4. The FI of sensor a under algorithm Opt satisfies: Ja(t + 1) ≤
Ja(t) + 1/(1

Jb(t)
+ 1

JN
).

4 A Highly-Competitive Elementary Algorithm

We define an elementary algorithm, termed ALG, and prove that its perfor-
mances are highly-competitive with those of Opt. In this algorithm, each sensor
a stores in its memory a single parameter ca ∈ R that represents its accuracy
regarding the quality of its current opinion with respect to τ∗. The initial accu-
racy of sensor a is set to ca(0) = 1/var(Φa). When sensor a observes sensor b at
some round t, it receives cb(t) and d̃ab(t), and acts as follows. Sensor a first com-
putes the value ĉb(t) = cb(t)/(1 + cb(t) · var(N)), a reduced accuracy parameter
for sensor b that takes measurement noise into account, and then proceeds as
follows:

Algorithm ALG

– Update opinion: xa(t+ 1) = xa(t) +
d̃ab(t)·ĉb(t)
ca(t)+ĉb(t)

.

– Update accuracy : ca(t+ 1) = ca(t) + ĉb(t).

Fix an independent meeting pattern. First, algorithm ALG is designed such
that at all times, the opinion is preserved as an unbiased estimator of τ∗ and
the accuracy, ca(t), remains equal to the reciprocal of the current variance of the
opinion Xa(t,ALG). That is, we have:

Lemma 2. At any round t and for any sensor a: (1) the opinion Xa(t,ALG)
serves as an unbiased estimator of τ∗, and (2) ca(t) = 1/var(Xa(t,ALG)).

We are now ready to analyze the competitiveness of algorithmALG, by relat-
ing the variance of a sensor a at round t to the corresponding FI, namely, Ja(t).
Recall that Lemma 1 gives a lower bound on the variance of algorithm Opt at
a sensor a, which depends on the corresponding FI at the sensor. Specifically,
we have: var(Xa(t,Opt)) ≥ 1/Ja(t). Initially, Ja(0), the FI at a sensor a, equals
the Fisher information in the parameterized family Φa(x− τ) with respect to τ ,
and hence is at most the initial accuracy ca(0) times Δ0. We show that the gain
in accuracy following an interaction is always at least as large the correspond-
ing upper bound on the gain in Fisher information as given in Theorem 4, divided

28 O. Feinerman and A. Korman

by the initial Fisher-tightness. That is: ca(t+1)−ca(t) ≥
(
1/(1

Jb(t)
+ 1

JN
)
)
/Δ0.

Informally, this property of ALG can be interpreted as maximizing the Fisher
information flow in each interaction up to an approximation factor of Δ0. By
induction, we obtain the following.

Lemma 3. At every round t, we have ca(t) ≥ Ja(t)/Δ0.

Lemmas 1, 2 and 3 can now be combined to yield the following inequality:
var(Xa(t,ALG)) ≤ Δ0 · var(Xa(t,Opt)). This establishes Theorem 2. ��

Note that if |F | = O(1) (i.e., F contains a constant number of distributions,
independent of the number of sensors) then initial Fisher-tightness Δ0 is a con-
stant, and hence Theorem 2 states that ALG is constant-competitive at any
sensor and at any time. In some other natural cases the performances of ALG
are even better. One such case is when the distributions in F as well as the
noise distribution N(η) are all Gaussians. In this case Δ0 = 1 and Theorem 2
therefore states that the variance of ALG equals that of Opt, for any sensor
at at any time. Another case is when |F | is a constant, the noise is Gaussian,
and both the population size n and the round t go to infinity. In this case, the
performances of ALG become arbitrarily close to those of Opt.

5 The Fisher Channel Capacity and Convergence Times

For a fixed independent meeting pattern, Ja(t), the FI at a sensor a and round t,
was defined in Section 3 with respect to algorithm Opt. We note that this
definition applies to any algorithm A as long as it is sufficiently smooth so that
the corresponding Fisher informations are well-defined. This quantity Ja(t, A)
would respect the same recursive inequality as state in Theorem 4, that is, we
have: Ja(t+ 1, A) ≤ Ja(t, A) +

1
1

Jb(t,A)
+ 1

JN

. This directly implies the following:

Ja(t+ 1, A)− Ja(t, A) ≤ JN . (2)

The inequality above sets a bound of JN for the increase in FI per round. In
analogy to Channel Capacity as defined by Shannon [7] we term this upper
bound as the Fisher Channel Capacity.

The restriction on information flow as given by the Fisher Channel Capacity
can be translated into lower bounds for convergence time of algorithm Opt
(and hence also apply for any algorithm). Recall, ρ is the first round when we
have more than half of the population satisfying var(Xa(t)) < ε2. By Lemma 1,
a sensor, a, with variance smaller than ε2 must have a large FI, specifically,
Ja(ρ) ≥ 1/ε2. To get some intuition on the convergence time, assume that the
number of sensors is odd, and let J0 denote the median initial FI of sensors
(this is the median of the FI, JΦa , over all sensors a), and assume J0 � 1/ε2.
By definition, more than a half of the population have initial Fisher information
at most J0. By the Pigeon-hole principle, at least one sensor has an FI of, at

Clock Synchronization and Estimation in Highly Dynamic Networks 29

most, J0 at t = 0 and, at least, 1/ε2 at t = ρ. Theorem 1 follows by the fact
that, by Equation 2, this sensor could increase its FI by, at most, JN in each
observation.

References

1. Angluin, D.: Local and global properties in networks of processors. In: STOC,
pp. 82–93 (1980)

2. Attiya, H., Herzberg, A., Rajsbaum, S.: Optimal Clock Synchronization under
Different Delay Assumptions. SIAM J. Comput. 25(2), 369–389 (1996)

3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: Info. Theory Methods in
Comm. Complexity. IEEE Conf. on Computational Complexity, 93–102 (2002)

4. Biaz, S., Welch, J.L.: Closed form bounds for clock synchronization under simple
uncertainty assumptions. Inf. Process. Lett. 80(3), 151–157 (2001)

5. Blachman, N.M.: The convolution inequality for entropy powers. IEEE Transac-
tions on Information Theory 11(2), 267–271 (1965)

6. Chaudhari, Q., Serpedin, E., Wu, Y.C.: Improved estimation of clock offset in
sensor networks. In: ICC (2009)

7. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley
& Sons (2006)

8. Cristian, F.: Probabilistic Clock Synchronization. Distributed Computing 3(3),
146–158 (1989)

9. Dolev, D., Halpern, J., Simons, B., Strong, R.: Dynamic fault-tolerant clock syn-
chronization. Journal of the ACM 42(1), 143–185 (1995)

10. Elson, J., Girod, L., Estrin, D.: Fine-Grained Network Time Synchronization Using
Reference Broadcasts. Operating Systems Review 36, 147–163 (2002)

11. Feinerman, O., Haeupler, B., Korman, A.: Breathe before speaking: efficient in-
formation dissemination despite noisy, limited and anonymous communication. In:
PODC, pp. 114–123 (2014)

12. Feinerman, O., Korman, A.: Clock Synchronization and Estimation in Highly
Dynamic Networks: An Information Theoretic Approach (An Arxiv version).
http://arxiv.org/pdf/1504.08247v1.pdf

13. El Gamal, A., Kim, Y.: Network Information Theory, 709 p. Cambridge University
Press (2012)

14. Gubner, J.: Distributed Estimation and Quantization. IEEE Tran. on Information
Theory 39(4) (1993)

15. Jeske, D.: On the maximum likelihood estimation of clock offset. IEEE Trans.
Commun. 53(1) (2005)

16. Kar, S., Moura, J.M.F.: Distributed Consensus Algorithms in Sensor Networks
With Imperfect Communication: Link Failures and Channel Noise. IEEE Tran. on
SIgnal Processing 57(1), 355–369 (2009)

17. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: FOCS 2003, pp. 482–449 (2003)

18. Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network
coding. IEEE Transactions on Info. Theory 54(8), 3579–3591 (2008)

19. Korman, A., Greenwald, E., Feinerman, O.: Confidence Sharing: an Economic
Strategy for Efficient Information Flows in Animal Groups. PLOS Computational
Biology 10(10) (2014)

http://arxiv.org/pdf/1504.08247v1.pdf

30 O. Feinerman and A. Korman

20. Kuhn, F., Lenzen, C., Locher, T., Oshman, R.: Optimal gradient clock synchro-
nization in dynamic networks. In: PODC, pp. 430–439 (2010)

21. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transac-
tions on Software Engineering (2), 125–143 (1977)

22. Lenzen, C., Locher, T., Wattenhofer, R.: Tight Bounds for Clock Synchronization.
JACM 57(2) (2010)

23. Lenzen, C., Sommer, P., Wattenhofer, R.: PulseSync: An Efficient and Scalable
Clock Synchronization Protocol. ACM/IEEE Transactions on Networking (2014)

24. Lenzen, C., Locher, T., Sommer, P., Wattenhofer, R.: Clock synchronization:
Open problems in theory and practice. In: van Leeuwen, J., Muscholl, A., Pe-
leg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 61–70.
Springer, Heidelberg (2010)

25. Lundelius, J., Lynch, N.: An Upper and Lower Bound for Clock Synchronization.
Information and Control 62, 190–204 (1984)

26. McNamara, J.M., Houston, A.I.: Memory and the efficient use of information.
Journal of Theoretical Biology 125(4), 385–395 (1987)

27. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans-
actions of Communications 39(10), 1482–1493 (1991)

28. Mills, D.L.: Improved algorithms for synchronizing computer network clocks. Net-
works 3, 3 (1995)

29. Ostrovsky, R., Patt-Shamir, B.: Optimal and efficient clock synchronization under
drifting clocks. In: PODC 1999, pp. 3–12 (1999)

30. Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchronization. In: STOC 1994,
pp. 810–819 (1994)

31. Rioul, O.: Information theoretic proofs of entropy power inequalities. IEEE Trans-
actions on Information Theory 57(1), 33–55 (2011)

32. Sivrikaya, F., Yener, B.: Time synchronization in sensor networks: a survey. IEEE
Network 18(4) (2004)

33. Shannon, C.: A Mathematical Theory of Communication. Technical Journal 27(3),
379–423 (1948)

34. Solis, R., Borkar, V., Kumar, P.R.: A new distributed time synchronization protocol
for multihop wireless networks. In: Proc. 45th IEEE Conference on Decision and
Control (CDC) (2006)

35. Stam, A.J.: Some inequalities satisfied by the quantities of information of Fisher
and Shannon. Inform. and Control 2, 101–112 (1959)

36. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on
average consensus. In: Proc. of the 4th International Symposium on Information
Processing in Sensor Networks (IPSN) (2005)

37. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wire-
less sensor networks: a survey. Ad Hoc Networks 3, 281–323 (2005)

38. Viswanathan, R., Varshney, P.K.: Distributed detection with multiple sensors I.
Fundamentals. Proceedings of the IEEE (1997)

39. Wu, Y.C., Chaudhari, Q.M., Serpedin, E.: Clock Synchronization of Wireless Sen-
sor Networks. IEEE Signal Process. Mag. 28(1), 124–138 (2011)

40. Zamir, R.: A proof of the Fisher Information inequality via a data processing
arguement. IEEE Trans. Inf. Theory, 482–491 (2003)

Node Labels in Local Decision

Pierre Fraigniaud1, Juho Hirvonen2, and Jukka Suomela2

1 Theoretical Computer Science Federation
CNRS and University Paris Diderot, France

pierre.fraigniaud@liafa.univ-paris-diderot.fr
2 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, Aalto University, Finland
{juho.hirvonen,jukka.suomela}@aalto.fi

Abstract. The role of unique node identifiers in network computing
is well understood as far as symmetry breaking is concerned. How-
ever, the unique identifiers also leak information about the computing
environment—in particular, they provide some nodes with information
related to the size of the network. It was recently proved that in the con-
text of local decision, there are some decision problems such that (1) they
cannot be solved without unique identifiers, and (2) unique node iden-
tifiers leak a sufficient amount of information such that the problem
becomes solvable (PODC 2013).

In this work we study what is the minimal amount of information
that we need to leak from the environment to the nodes in order to solve
local decision problems. Our key results are related to scalar oracles
f that, for any given n, provide a multiset f(n) of n labels; then the
adversary assigns the labels to the n nodes in the network. This is a
direct generalisation of the usual assumption of unique node identifiers.
We give a complete characterisation of the weakest oracle that leaks at
least as much information as the unique identifiers.

Our main result is the following dichotomy: we classify scalar oracles
as large and small, depending on their asymptotic behaviour, and show
that (1) any large oracle is at least as powerful as the unique identifiers
in the context of local decision problems, while (2) for any small oracle
there are local decision problems that still benefit from unique identifiers.

1 Introduction

This work studies the role of unique node identifiers in the context of local
decision problems in distributed systems. We generalise the concept of node
identifiers by introducing scalar oracles that choose the labels of the nodes,
depending on the size of the network n—in essence, we let the oracle leak some
information on n to the nodes—and ask what is the weakest scalar oracle that
we could use instead of unique identifiers. We prove the following dichotomy:
we classify each scalar oracle as small or large, depending on its asymptotic
behaviour, and we show that the large oracles are precisely those oracles that
are at least as strong as unique identifiers.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 31–45, 2015.
DOI: 10.1007/978-3-319-25258-2_3

32 P. Fraigniaud, J. Hirvonen, and J. Suomela

1.1 Context and Background

The research trends within the framework of distributed computing are most
often pragmatic. Problems closely related to real world applications are tackled
under computational assumptions reflecting existing systems, or systems whose
future existence is plausible. Unfortunately, small variations in the model set-
tings may lead to huge gaps in terms of computational power. Typically, some
problems are unsolvable in one model but may well be efficiently solvable in
a slight variant of that model. In the context of network computing, this com-
monly happens depending on whether the model assumes that pairwise distinct
identifiers are assigned to the nodes. While the presence of distinct identifiers
is inherent to some systems (typically, those composed of artificial devices), the
presence of such identifiers is questionable in others (typically, those composed
of biological or chemical elements). Even if the identifiers are present, they may
not necessarily be directly visible, e.g., for privacy reasons.

The absence of identifiers, or the difficulty of accessing the identifiers, limits
the power of computation. Indeed, it is known that the presence of identifiers
ensures two crucial properties, which are both used in the design of efficient algo-
rithms. One such property is symmetry breaking. The absence of identifiers
makes symmetry breaking far more difficult to achieve, or even impossible if
asymmetry cannot be extracted from the inputs of the nodes, from the structure
of the network, or from some source of random bits. The role of the identifiers in
the framework of network computing, as far as symmetry breaking is concerned,
has been investigated in depth, and is now well understood [1–8,14,16–24,27–29].

The other crucial property of the identifiers is their ability to leak global
information about the framework in which the computation takes place. In
particular, the presence of pairwise distinct identifiers guarantees that at least
one node has an identifier at least n in n-node networks. This apparently very
weak property was proven to actually play an important role when one is in-
terested in checking the correctness of a system configuration in a decentralised
manner. Indeed, it was shown in prior work [10] that the ability to check the
legality of a system configuration with respect to some given Boolean predicate
differs significantly according to the ability of the nodes to use their identifiers.
This phenomenon is of a nature different from symmetry breaking, and is far
less understood than the latter.

More precisely, let us define a distributed language as a set of system configura-
tions (e.g., the set of properly coloured networks, or the set of networks each with
a unique leader). Then let LD be the class of distributed languages that are locally
decidable. That is, LD is the set of distributed languages for which there exists a
distributed algorithm where every node inspects its neighbourhood at constant
distance in the network, and outputs yes or no according to the following rule:
all nodes output yes if and only if the instance is legal. Equivalently, the instance
is illegal if and only if at least one node outputs no. Let LDO be defined as LD
with the restriction the local algorithm is required to be identifier oblivious, that
is, the output of every node is the same regardless of the identifiers assigned to the
nodes. By definition, LDO ⊆ LD, but [10] proved that this inclusion is strict: there

Node Labels in Local Decision 33

are languages in LD \ LDO. This strict inclusion was obtained by constructing a
distributed language that can be decided by an algorithm whose outputs depend
heavily on the identifiers assigned to the nodes, and in particular on the fact that
at least one node has an identifier whose value is at least n.

The gap between LD and LDO has little to do with symmetry breaking. Indeed,
decision tasks do not require that some nodes act differently from the others:
on legal instances, all nodes must output yes, while on illegal instances, it is
permitted (but not required) that all nodes output no. The gap between LD
and LDO is entirely due to the fact that the identifiers leak information about
the size n of the network. Moreover, it is known that the gap between LD and
LDO is strongly related to computability issues: there is an identifier-oblivious
non-computable simulation A′ of every local algorithm A that uses identifiers to
decide a distributed language [10]. Informally, for every language in LD \ LDO,
the unique identifiers are precisely as helpful as providing the nodes with the
capability of solving undecidable problems.

1.2 Objective

One objective of this paper is to measure the amount of information provided
to a distributed system via the labels given to its nodes. For this purpose, we
consider the classes LD and LDO enhanced with oracles, where an oracle f is a
function that provides every node with information about its environment.

We focus on the class of scalar oracles, which are functions over the positive
integers. Given an n ≥ 1, a scalar oracle f returns a list f(n) = (f1, . . . , fn) of
n labels (bit strings) that are assigned arbitrarily to the nodes of any n-node
network in a one-to-one manner. The class LDf (resp., LDOf) is then defined as
the class of distributed languages decidable locally by an algorithm (resp., by an
identifier-oblivious algorithm) in networks labelled with oracle f .

If, for every n ≥ 1, the n values in the list f(n) are pairwise distinct, then
LD ⊆ LDOf since the nodes can use the values provided to them by the ora-
cle as identifiers. However, as we shall demonstrate in the paper, this pairwise
distinctness condition is not necessary.

Our goal is to identify the interplay between the classes LD, LDO, LDf , and
LDOf , with respect to any scalar oracle f , and to characterise the power of iden-
tifiers in distributed systems as far as leaking information about the environment
is concerned.

1.3 Our Results

Our first result is a characterisation of the weakest oracles providing the same
power as unique node identifiers. We say that a scalar oracle f is large if, roughly,
f ensures that, for any set of k nodes, the largest value provided by f to the
nodes in this set grows with k (see Section 2.3 for the precise definition). We
show the following theorem.

Theorem 1. For any computable scalar oracle f , we have LDOf = LDf if and
only if f is large.

34 P. Fraigniaud, J. Hirvonen, and J. Suomela

Theorem 1 is a consequence of the following two lemmas. The first says that
small oracles (i.e. non-large oracles) do not capture the power of unique identi-
fiers. Note that the following separation result holds for any small oracle, includ-
ing uncomputable oracles.

Lemma 1. For any small oracle f , there exists a language L ∈ LD \ LDOf .

The second is a simulation result, showing that any local decision algorithm
using identifiers can be simulated by an identifier-oblivious algorithm with the
help of any large oracle, as long as the oracle itself is computable. Essentially
large oracles capture the power of unique identifiers.

Lemma 2. For any large computable oracle f , we have LD ⊆ LDOf = LDf .

Theorem 1 holds despite the fact that small oracles can still produce some
large values, and that there exist small oracles guaranteeing that, in any n-node
network, at least one node has a value at least n. Such a small oracle would be
sufficient to decide the language L ∈ LD \ LDO presented in [10]. However, it is
not sufficient to decide all languages in LD.

Our second result is a complete description of the hierarchy of the four classes
LD, LDO, LDf , and LDOf of local decision, using identifiers or not, with or
without oracles. The pictures for small and large oracles are radically different.

– For any large oracle f , the hierarchy yields a total order :

LDO � LD ⊆ LDOf = LDf .

The strict inclusion LDO � LD follows from [10]. The second inclusion LD ⊆
LDOf may or may not be strict depending on oracle f .

– For any small oracle f , the hierarchy yields a partial order. We have LDOf
�

LDf as a consequence of Lemma 1. However, LD and LDOf are incomparable,
in the sense that there is a language L ∈ LD \ LDOf for any small oracle f ,
and there is a language L ∈ LDOf \ LD for some small oracles f . Hence, the
relationships of the four classes can be represented as the following diagram:

LDf

↗ ↖
LDOf LD

↖ ↗
LDO

All inclusions (represented by arrows) can be strict.

1.4 Additional Related Work

In the context of network computing, oracles and advice commonly appear in
the form of labelling schemes [9, 15]. A typical example is a distance labelling
scheme, which is a labelling of the nodes so that the distance between any pair

Node Labels in Local Decision 35

of nodes can be computed or approximated based on the labels. Other examples
are routing schemes that label the nodes with information that helps in finding
a short path between any given source and destination. For graph problems, one
could of course encode the entire solution in the advice string—hence the key
question is whether a very small amount of advice helps with solving a given
problem.

In prior work, it is commonly assumed that the oracle can give a specific piece
of advice for each individual node. The advice is localised, and entirely controlled
by the oracle. Moreover, the oracle can see the entire problem instance and it
can tailor the advice for any given task.

In the present work, we study a much weaker setting: the oracle is only given n,
and it cannot choose which label goes to which node. This is a generalisation of,
among others, typical models of networks with unique identifiers : one commonly
assumes that the unique identifiers are a permutation of {1, 2, . . . , n} [21], which
in our case is exactly captured by the large scalar oracle

f(n) = (1, 2, . . . , n),

or that the unique identifiers are a subset of {1, 2, . . . , nc} for some constant c [26],
which in our case is captured by a subfamily of large scalar oracles. Our model
is also a generalisation of anonymous networks with a unique leader [14]—the
assumption that there is a unique leader is captured by the small scalar oracle

f(n) = (0, 0, . . . , 0, 1).

2 Model and Definitions

In this work, we augment the usual definitions of locally checkable labellings [23]
and local distributed decision [10, 11, 13] with scalar oracles.

2.1 Computational Model

We deal with the standard LOCAL model [26] for distributed graph algorithms.
In this model, the network is a simple connected graph G = (V,E). Each node
v ∈ V has an identifier id(v) ∈ N, and all identifiers of the nodes in the network
are pairwise distinct. Computation proceeds in synchronous rounds. During a
round, each node communicates with its neighbours in the graph, and performs
some local computation. There are no limits to the amount of communication
done in a single round. Hence, in r communication rounds, each node can learn
the complete topology of its radius-r neighbourhood, including the inputs and
the identifiers of the nodes in this neighbourhood. In a distributed algorithm,
all nodes start at the same time, and each node must halt after some number
of rounds, and produce its individual output. The collection of individual out-
puts then forms the global output of the computation. The running time of the
algorithm is the number of communication rounds until all nodes have halted.

36 P. Fraigniaud, J. Hirvonen, and J. Suomela

We consider local algorithms, i.e., constant-time algorithms [27]. That is, we
focus on algorithms with a running time that does not depend on the size n of the
graph. Any such algorithm, with running time r, can be seen as a function from
the set of all possible radius-r neighbourhoods to the set of all possible outputs.
An identifier-oblivious algorithm is an algorithm whose outputs are independent
of the identifiers assigned to the nodes. Note that, from the perspective of an
identifier-oblivious algorithm, the set of all possible radius-r degree-d neighbour-
hoods is finite. This is not the case for every algorithm since there are infinitely
many identifier assignments to the nodes in a radius-r degree-d neighbourhood.

Although the LOCAL model does not put any restriction on the amount of
individual computation performed at each node, we only consider algorithms
that are computable.

2.2 Local Decision Tasks

We are interested in the power of constant-time algorithms for local decision.
A labelled graph is a pair (G, x), where G is a simple connected graph, and
x : V (G) → {0, 1}∗ is a function assigning a label to each node ofG. A distributed
language L is a set of labelled graphs. Examples of distributed languages include:

– 2-colouring, the language where G is a bipartite graph and x(v) ∈ {0, 1} for
all v ∈ V (G) such that x(v) �= x(u) whenever {u, v} ∈ E(G);

– parity, the language of graphs with an even number of nodes;
– planarity, the language that consists of all planar graphs.

We say that algorithm A decides L if and only if the output of A at every
node is either yes or no, and, for every instance (G, x), A satisfies:

(G, x) ∈ L ⇐⇒ all nodes output yes.

Hence, for an instance (G, x) /∈ L, the algorithm A must ensure that at least one
node outputs no. We consider two main distributed complexity classes:

– LD (for local decision) is the set of languages decidable by constant-time
algorithms in the LOCAL model.

– LDO (for local decision oblivious) is the set of languages decidable by constant-
time identifier-oblivious algorithms in the LOCAL model.

By definition, LDO ⊆ LD, and it is known [10] that this inclusion is strict: there
are languages L ∈ LD \ LDO. The fact that we consider only computable algo-
rithms is crucial here—without this restriction we would have LDO = LD [10].

2.3 Distributed Oracles

We study the relationship of classes LD and LDO with respect to scalar oracles.
Such an oracle f is a function that assigns a list of n values to every positive
integer n, i.e.,

f(n) = (f1, f2, . . . , fn)

Node Labels in Local Decision 37

with fi ∈ {0, 1}∗. In essence, oracle f can provide some information related to
n to the nodes. In an n-node graph, each of the n nodes will receive a value
fi ∈ f(n), i ∈ [n]. These values are arbitrarily assigned to the nodes in a one-
to-one manner. Two different nodes will thus receive fi and fj with i �= j.
Note that fi may or may not be different from fj for i �= j; this is up to the
choice of the oracle. The way the values provided by the oracles are assigned
to the nodes is under the control of an adversary. One example of an oracle is
f(n) = (1, 2, . . . , n), which provides the nodes with identifiers. Another example
is f(n) = (0, 0, . . . , 0), which provides no information to the nodes.

W.l.o.g., let us assume that fi ≤ fi+1 for every i. We use the shorthand f
(n)
k

for the kth label provided by f on input n, that is, f(n) = (f
(n)
1 , f

(n)
2 , . . . , f

(n)
n).

For a fixed oracle f , we consider two main distributed complexity classes:

– LDf is the set of languages decidable by constant-time algorithms in networks
that are labelled with oracle f .

– LDOf is the set of languages decidable by constant-time identifier-oblivious
algorithms in networks that are labelled with oracle f .

We will separate oracles in two classes, which play a crucial role in the way the
four classes LDO, LD, LDOf , and LDf interact.

Definition 1. An oracle f is said to be large if

∀c > 0, ∃k ≥ 1, ∀n ≥ k, f
(n)
k ≥ c.

An oracle is small if it is not large.

Hence, a large oracle f satisfies that, for any value c > 0, there exists a large
enough k, such that, in every graph G of size at least k, for every set of nodes
S ⊆ V (G) of size |S| ≥ k, oracle f is providing at least one node of S with a
value at least as large as c. In short: every large set of nodes must include at
least one node that receives a large value.

Conversely, a small oracle f satisfies that there exists a value c > 0 such that,
for every k, we can find n ≥ k such that, in every n-node graph G, and for every
set of nodes S ⊆ V (G) of size |S| ≥ k, there is an assignment of the values
provided by f such that every node in S receives a value smaller that c. In short:
there are arbitrarily large sets of nodes which all receive a small value.

For example, oracles f(n) = (1, 2, . . . , n) and f(n) = (n, n, . . . , n) are large,
while oracles f(n) = (0, 0, . . . , 0, 1) and f(n) = (0, 0, . . . , 0, 2n) are small. We
emphasise that small oracles can output very large values.

3 Proof of the Main Theorem

In this section we give the proof of our main result that characterises the power
of weak and large oracles with respect to identifier-oblivious local decision.

38 P. Fraigniaud, J. Hirvonen, and J. Suomela

G(M, r, N)

H(M, r)

Q = G(M, r, 2r)

TF

pivot

T

S(2r+1, N)S(1, 2r)

F

low-degree nodes labelled with
M, r, and some constant-size data

nodes with
large labels

Fig. 1. The construction of Section 3.1.

3.1 Small Oracles Do Not Capture the Power of Unique Identifiers

Fraigniaud et al. [10] showed that there exists a language L ∈ LD \ LDO. We use
a very similar Turing machine construction as in the proof of their Theorem 1.
However, we must take into account the additional concern of the values that
the oracle assigns to the nodes. We handle this by forcing any small oracle to
always give many copies of the same constant label c so that the adversary can
cover the interesting parts of the construction with this unhelpful label c. We
can then use uncomputability arguments to show that if a certain language were
in LDOf , then we could get a sequential algorithm for uncomputable problems.
See Figure 1 for illustrations.

Lemma 1. For any small oracle f , there exists a language L ∈ LD \ LDOf .

Node Labels in Local Decision 39

Proof. We assume that for each halting Turing machine M and each locality
parameter r ∈ N, there exists a labelled graph H(M, r) with the following prop-
erties:

(P1) There is an identifier-oblivious local checker that verifies that a given la-
belled graph is a equal to H(M, r) for some M and r.

(P2) The number of nodes in the graph H(M, r) is at least as large as the
number of steps M takes on an empty tape.

(P3) Given H(M, r), an identifier-oblivious local checker A with a running time
of r cannot decide if M outputs 0 or 1.

(P4) Each label ofH(M, r) is a triple x(v) = (M, r, x′(v)). The maximum degree
of H and the maximum size of x′(v) are constants that only depend on r.

(P5) Graph H(M, r) can be padded with additional nodes without violating
properties (P1)–(P4).

The construction of Fraigniaud et al. [10] satisfies these properties. They show
how to construct a labelled graph H(M, r) that encodes the execution table of
a given Turing machine M such that a local checker with running time r cannot
decide ifM halts with 0 or 1. The original construction (H,x) = H(M, r) consists
of three main parts.

(i) The execution table T of the Turing machine M . Let s be the number of
steps M takes on an empty tape. Then table T is an (s + 1) × (s + 1)
grid, where node (i, j) holds the contents of the tape at position j after
computation step i, and its own coordinates (i, j) modulo 3. Node (i, j)
also knows if the head is at position j after step i, and if so, what is the
state of M after step i. Node (0, 0) representing the first position of the
empty tape is called the pivot. The execution table exists essentially to
guarantee (P2).

(ii) The fragment collection F . This is a collection of subgrids labelled with
all syntactically possible ways that are consistent with being in some ex-
ecution table of M . The dimensions of the fragments are linear in r and
independent of M . In each fragment, every 2×2 subgrid is consistent with
a state transition of M . It is crucial to observe that there is a finite number
of such fragments. Each fragment is connected to the pivot in a way that
supports the local verification of the structure. The fragment collection is
added to ensure (P3). Informally, if we only had T , then some node (i, s)
at the last row of the grid would be able to see the stopping state of M ;
however, F will contain some fragments in which M halts with output
0 and some fragments in which M halts with output 1, and the nodes
at the last row of T are locally indistinguishable from the nodes in such
fragments.

(iii) Pyramid structure. This is added to the execution table and to the frag-
ments to ensure (P1). Without any additional structure, a grid with co-
ordinates modulo 3 is locally indistinguishable from, e.g., a grid that is
wrapped into a torus. The pyramid structure guarantees that at least one
node is able to detect invalid instances.

40 P. Fraigniaud, J. Hirvonen, and J. Suomela

Finally, since all labellings can be made constant-size, we can ensure (P4).
In particular, for any (M, r), there are constantly many syntactically possible
r-neighbourhoods of H(M, r). This is a crucial property as it guarantees that
there is a sequential algorithm that on all inputs (M, r) halts and, if M halts,
outputs all possible labelled r-neighbourhoods of H(M, r).

Let S(a, b) be the labelled path (sa, sa+1, . . . , sb) in which node si is labelled
with value i. We augment the construction H(M, r) as follows: labelled graph
G(M, r,N) consists of H(M, r), plus S(1, N), plus an edge between the pivot of
H(M, r) and the first node s1 of the path S(1, N); we call S(1, N) the tail of the
construction. The structure ofG(M, r,N) is still locally checkable in LDO: any tail
must eventually connect to the pivot, and the pivot can detect if there are multi-
ple tails. The key property of the construction is that the nodes in the tail S(1, N)
with large labels are far from the nodes of G(M, r) that are aware of M .

We will separate LD and LDOf using the following language:

L = {G(M, r,N) : r ≥ 1, N ≥ 1, and Turing machine M outputs 0}.
We have L ∈ LD as there will be a node v with id(v) ≥ s which can simulate M
for s steps and output no if M does not output 0. Next we will argue that L
cannot be in LDOf for any small f .

Let f be a small oracle. For any M and r, we can choose a sufficiently large N
as follows. By definition, there exists a c such that for all k oracle f outputs some
label i ∈ [c] at least �k/c� times on some n ≥ k. Moreover, we can find an infinite
sequence of values k0, k1, . . . such that the most common value is some fixed i0.
We select w.l.o.g. the smallest kj and a suitable n such that f(n) contains at least
kj/c ≥ |H(M, r)| + 2r labels equal to i0. Let N = n − |H(M, r)|, and consider
G(M, r,N). Now the adversary can construct the following worst-case labelling:
every node of G(M, r, 2r) ⊆ G(M, r,N) receives the constant input i0 ∈ [c]; all
other labels as assigned to the nodes in S(2r + 1, N) ⊆ G(M, r,N).

It is known that separating the following languages is undecidable (see e.g. [25,
p. 65]):

Li = {M : Turing machine M outputs i} : i ∈ {0, 1}. (1)

For the sake of contradiction, we assume that there is an LDOf -algorithm A that
decides L. We will use algorithm A and constant i0 defined above to construct
a sequential algorithm B that separates L0 and L1.

Let r be the running time of A, and consider the execution of A on an instance
G(M, r,N) for some M and N . It follows that each node in S(r + 1, N) ⊆
G(M, r,N) must always output yes. To see this, note that the claim is trivial if
M halts with 0. Otherwise we can always construct another instance G(M0, r, N)
such that M0 halts with 0 and both G(M, r,N) and G(M0, r, N) have the same
number of nodes. Hence the oracle and the adversary can assign the same labels
to S(r+ 1, N) in both G(M, r,N) and G(M0, r, N). If any of these nodes would
answer no in G(M, r,N), then A would also incorrectly reject the yes-instance
G(M0, r, N) ∈ L.

Now given a Turing machineM , algorithmB proceeds as follows. Consider the
subgraph Q = G(M, r, 2r) ⊆ G(M, r,N), and assume the worst-case labelling

Node Labels in Local Decision 41

of G(M, r,N) in which all nodes of Q have the constant label i0. Algorithm
B cannot construct Q; indeed, M might not halt, in which case G(M, r,N)
would not even exist. However, B can do the following: it can assume that M
halts, and then generate a collection Q that would contain all possible radius-r
neighbourhoods of the nodes in G(M, r, r). Collection Q is finite, its size only
depends on r andM , and the key observation is that Q is computable (in essence,
B enumerates all syntactically possible fixed-size fragments of partial execution
tables of M).

Then B will simulate A in each neighbourhood of Q. If M halts with 1, then
G(M, r,N) /∈ L, and therefore one of the nodes in G(M, r, r) has to output no;
in this case B outputs 1. If M halts with 0, then G(M, r,N) ∈ L, and therefore
one of the nodes in G(M, r, r) has to output yes ; in this case B outputs 0. The
key observation is that B will always halt with some (meaningless) output even
if we are given an input M /∈ L0 ∪ L1; hence B is a computable function that
separates L0 and L1. As such a B cannot exist, A cannot exist either. ��

3.2 Large Oracles Capture the Power of Unique Identifiers

In this section we will show that a computable large oracle f is sufficient to have
LD ⊆ LDOf = LDf . This result holds even if f only has access to an upper
bound N ≥ n, and the adversary gets to pick an n-subset of labels from f(N).
Note that the oracle has to be computable in order for us to invert it locally.

Lemma 2. For any large computable oracle f , we have LD ⊆ LDOf = LDf .

Proof. We begin by showing how to recover an oracle f̂ with f̂
(N)
k ≥ k, for all

k and N ≥ k, from a large oracle f . We want to guarantee that each node v
receives a label � ≥ i if in the initial labelling it had the ith smallest label.

By definition, it holds for large oracles that for each natural number � there is

a largest index i such that f
(N)
i ≤ �; we denote the index by g(�). By assumption,

a node with label � can locally compute the value g(�). We now claim that

f̂ : N �→ {
g(f1), g(f2), . . . , g(fN)

}

has the property f̂
(N)
k ≥ k. To see this, assume that we have f

(N)
k = � for an

arbitrary k. Seeing label �, node v knows that, in the worst case, its own label is
the g(�)th smallest. Thus for every k, the node with the kth smallest label will
compute a new label at least k.

Now given f̂ , we can simulate any r-round LD-algorithm A as follows.

1. Each node v with label �v locally computes the new label g(�v).
2. Each node gathers all labels g(�u) in its r-neighbourhood. Denote by g∗v the

maximum value in the neighbourhood of v.
3. Each node v simulates A on every unique identifier assignment to its local

r-neighbourhood from {1, 2, . . . , g∗v}. If for some assignment A outputs no,
then v outputs no, and otherwise it outputs yes.

42 P. Fraigniaud, J. Hirvonen, and J. Suomela

Because of how the decision problem is defined, it is always safe to output no
when some simulation of A outputs no. It remains to be argued that it is safe to
say yes, if all simulations say yes. This requires that some subset of simulations
of A, one for each node, looks as if there had been a consistent setting of unique
identifiers on the graph. Now let id be one identifier assignment with id(v) = i
for the v with ith smallest label, for all i (breaking ties arbitrarily). Since by
construction g(�v) ≥ id(v) for all v, there will be a simulation of A for every
node v with local identifier assignment idv such that for all u in the radius-r
neighbourhood of v we have idv(u) = id(u).

So far we have seen how to simulate any LD-algorithmA with LDOf -algorithms.
We can apply the same reasoning to simulate any LDf -algorithm A with LDOf -
algorithms; the only difference is that each node in the simulation has now access
to the original oracle labels as well. ��

4 Full Characterisation of LDf , LDOf , LD, and LDO

Our goal in this section is to complete the characterisation of the power of scalar
oracles with respect to the classes LD and LDO. We aim at giving a robust
characterisation that holds also for minor variations in the definition of a scalar
oracle. In particular, all of the key results can be adapted to weaker oracles that
only receive an upper bound N ≥ n on the size of the graph.

4.1 Large Oracles Can Be Stronger than Identifiers

Let us first consider large oracles. By prior work [10] and Lemma 2 we already
know that for any computable large oracle f we have a linear order

LDO � LD ⊆ LDOf = LDf .

Trivially, there is a large computable oracle f(n) = (1, 2, . . . , n) such that

LDO � LD = LDOf = LDf .

We will now show that there is also a large computable oracle f such that

LDO � LD � LDOf = LDf .

For a simple proof, we could consider the large oracle f(n) = (n, n, . . . , n).
Now the parity language L that consists of graphs with an even number of
nodes is clearly in LDOf but not in LD. However, this separation is not robust
with respect to minor changes in the model of scalar oracles. In particular, if the
oracle only knows an upper bound on n, we cannot use the parity language to
separate LDOf from LD.

In what follows, we will show that the upper bound oracle f that labels all nodes
with some upper bound onN ≥ n can be used to separate LDOf from LD.

Theorem 2. For the upper bound oracle f there exists a language L such that
L ∈ LDOf \ LD.
Proof. The proof uses computability arguments—see the full version [12] for the
details.

Node Labels in Local Decision 43

Fig. 2. There is a small oracle f such that each of the languages Li exists.

4.2 Small Oracles and Identifiers Are Incomparable

In the case of small oracles, we already know that LDOf
� LDf for any small

oracle f by Lemma 1. Next we characterise the relationship of LDOf and LD. In
essence, we show that these classes are incomparable.

Theorem 3. There is a single small oracle f so that each of the languages L1,
L2, and L3 shown in Figure 2 exist.

Proof. Let f be the small oracle

f(n) = (0, 0, . . . , 0, bn),

where bn is an n-bit string such that the ith bit tells whether the ith Turing
machine halts. We construct the languages as follows:

L1: Let P (n) denote the labelled path of length n such that each node has two
input labels: n and the distance to a specified leaf node v0. The correct
structure of P (n) is in LDO. Now let

L1 = {P (M) : Turing machine M halts}.
The node that receives the n-bit oracle label can use it to decide whether the
nth Turing machine halts, and therefore L1 ∈ LDOf . Conversely, we have
L1 /∈ LD; otherwise we would have a sequential algorithm that solves the
halting problem for each Turing machine M by constructing the path P (M)
with some fixed identifier assignment and simulating the local verifier.

L2: We can use the same language

L2 = {H(M, r) : r ≥ 1 and Turing machine M outputs 0}
that we used in the proof of Lemma 1. It is known that L2 ∈ LD and
L2 /∈ LDO [10]. Since checking the structure of H(M, r) is in LDO, it suffices
to note that the node that receives the bit vector bn of length n can use the
length of the vector as an upper bound in simulating M . Thus L2 ∈ LDOf .

L3: Apply Lemma 1. ��
We conclude by noting that Theorem 3 is also robust to minor variations in

the definitions. In particular, the oracle does not need to know the exact value of
n; it is sufficient that at least one node receives the bit string bN , where N ≥ n
is some upper bound on n.

44 P. Fraigniaud, J. Hirvonen, and J. Suomela

Acknowledgements. Thanks to Laurent Feuilloley for discussions.

References

1. Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th
Annual ACM Symposium on Theory of Computing (STOC 1980), pp. 82–93. ACM
Press (1980). doi:10.1145/800141.804655

2. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

3. Chalopin, J., Das, S., Santoro, N.: Groupings and pairings in anonymous networks.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 105–119. Springer, Heidelberg
(2006)

4. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92.
Springer, Heidelberg (2008)

5. Diks, K., Kranakis, E., Malinowski, A., Pelc, A.: Anonymous wireless
rings. Theoretical Computer Science 145(1–2), 95–109 (1995). doi:10.1016/0304-
3975(94)00178-L

6. Emek, Y., Pfister, C., Seidel, J., Wattenhofer, R.: Anonymous networks: random-
ization = 2-hop coloring. In: Proc. 33rd ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC 2014), pp. 96–105. ACM Press (2014).
doi:10.1145/2611462.2611478

7. Emek, Y., Seidel, J., Wattenhofer, R.: Computability in anonymous networks: Re-
vocable vs. Irrecovable outputs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Kout-
soupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 183–195. Springer,
Heidelberg (2014)

8. Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing.
Distributed Computing 16(2–3), 121–163 (2003), doi:10.1007/s00446-003-0091-y

9. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with ad-
vice: Information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Hei-
delberg (2007)

10. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: Proc. 32nd Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC 2013), pp. 157–165. ACM Press, New York (2013).
doi:10.1145/2484239.2484264

11. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on
local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS,
vol. 7702, pp. 224–238. Springer, Heidelberg (2012)

12. Fraigniaud, P., Hirvonen, J., Suomela, J.: Node Labels in Local Decision (2015).
arXiv:1507.00909v1

13. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: Proc. 52nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011). IEEE
Computer Society Press (2011). doi:10.1109/FOCS.2011.17

14. Fraigniaud, P., Pelc, A., Peleg, D., Pérennes, S.: Assigning labels in an unknown
anonymous network with a leader. Distributed Computing 14(3), 163–183 (2001).
doi:10.1007/PL00008935

15. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Dis-
tributed Computing 16(2–3), 111–120 (2003). doi:10.1007/s00446-002-0073-5

Node Labels in Local Decision 45

16. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. Journal
of the ACM 60(5) 39, 1–23 (2013). doi:10.1145/2528405

17. Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J.: Deterministic local algo-
rithms, unique identifiers, and fractional graph colouring. Theoretical Computer
Science (2014) (to appear). doi:10.1016/j.tcs.2014.06.044

18. Hella, L., Järvisalo, M., Kuusisto, A., Laurinharju, J., Lempiäinen, T., Luosto, K.,
Suomela, J., Virtema, J.: Weak models of distributed computing, with connections
to modal logic. Distributed Computing 28(1), 31–53 (2015). doi:10.1007/s00446-
013-0202-3

19. Kranakis, E.: Symmetry and computability in anonymous networks: a brief survey.
In: Proc. 3rd Colloquium on Structural Information and Communication Complex-
ity (SIROCCO 1996), pp. 1–16. Carleton University Press (1997)

20. Lenzen, C., Wattenhofer, R.: Leveraging linial’s locality limit. In: Taubenfeld, G.
(ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)

21. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992). doi:10.1137/0221015

22. Mayer, A., Naor, M., Stockmeyer, L.: Local computations on static and dynamic
graphs. In: Proc. 3rd Israel Symposium on the Theory of Computing and Systems
(ISTCS 1995), pp. 268–278. IEEE (1995). doi:10.1109/ISTCS.1995.377023

23. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24(6), 1259–1277 (1995). doi:10.1137/S0097539793254571

24. Norris, N.: Classifying anonymous networks: when can two networks compute the
same set of vector-valued functions? In: Proc.1st Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO 1994), pp. 83–98. Carleton
University Press (1995)

25. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing
Company (1994)

26. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and Ap-
plied Mathematics, Philadelphia (2000)

27. Suomela, J.: Survey of local algorithms. ACM Computing Surveys 45(2) 24:1–40
(2013). doi:10.1145/2431211.2431223

28. Yamashita, M., Kameda, T.: Computing on anonymous networks: part I—
characterizing the solvable cases. IEEE Transactions on Parallel and Distributed
Systems 7(1), 69–89 (1996). doi:10.1109/71.481599

29. Yamashita, M., Kameda, T.: Leader election problem on networks in which pro-
cessor identity numbers are not distinct. IEEE Transactions on Parallel and Dis-
tributed Systems 10(9), 878–887 (1999). doi:10.1109/71.798313

Exact Bounds for Distributed Graph Colouring

Joel Rybicki1,2 and Jukka Suomela1

1 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University, Saarbrücken, Germany

2 Department of Algorithms and Complexity, Max Planck Institute for Informatics,
Saarbrücken, Germany

Abstract We prove exact bounds on the time complexity of distributed
graph colouring. If we are given a directed path that is properly coloured
with n colours, by prior work it is known that we can find a proper 3-
colouring in 1

2
log∗(n) ± O(1) communication rounds. We close the gap

between upper and lower bounds: we show that for infinitely many n the
time complexity is precisely 1

2
log∗ n communication rounds.

1 Introduction

One of the key primitives in the area of distributed graph algorithms is graph col-
ouring in directed paths. This is a fundamental symmetry-breaking task, widely
studied since the 1980s—it is used as a subroutine in numerous efficient dis-
tributed algorithms, and it also serves as a convenient starting point in many
lower-bound proofs. In the 1990s it was already established that the distributed
computational complexity of this problem is 1

2 log
∗(n) ± O(1) communication

rounds [3,13,20]. We are now able to give exact bounds on the distributed time
complexity of this problem, and the answer turns out to take a surprisingly
elegant form:

Theorem 1. For infinitely many values of n, it takes exactly 1
2 log

∗ n rounds to
compute a 3-colouring of a directed n-coloured path.

1.1 Problem Setting

Throughout this work we focus on deterministic distributed algorithms. As is
common in this context, what actually matters is not the number of nodes but
the range of their labels. For the sake of concreteness, we study precisely the
following problem setting:

We have a path or a cycle with any number of nodes, and the nodes are
properly coloured with colours from [n] = {1, 2, . . . , n}.

The techniques that we present in this work can also be used to analyse other
variants of the problem—for example, a cycle with n nodes that are labelled with
some permutation of [n], or a path with at most n nodes that are labelled with
unique identifiers from [n]. However, the exact bounds on the time complexity
will slightly depend on such details.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 46–60, 2015.
DOI: 10.1007/978-3-319-25258-2_4

Exact Bounds for Distributed Graph Colouring 47

We will assume that there is a globally consistent orientation in the path: each
node has at most one predecessor and at most one successor. Our task is to find
a proper colouring of the path with c colours, for some number c ≥ 3. We will
call this task colour reduction from n to c.

We will use the following model of distributed computing. Each node of the
graph is a computational entity. Initially, each node knows the global parameters
n and c, its own label from [n], its degree, and the orientations of its incident
edges. Computation takes place in synchronous communication rounds. In each
round, each node can send a message to each of its neighbours, receive a message
from each of its neighbours, update its state, and possibly stop and output
its colour. The running time of an algorithm is defined to be the number of
communication rounds until all nodes have stopped. We will use the following
notation:

– C(n, c) is the time complexity of colour reduction from n to c.
– T (n, c) is the time complexity of colour reduction from n to c if we restrict

the algorithm so that a node can only send messages to its successor. We call
such an algorithm one-sided, while unrestricted algorithms are two-sided.

We can compose colour reduction algorithms, yielding C(a, c) ≤ C(a, b)+C(b, c)
and T (a, c) ≤ T (a, b) + T (b, c) for any a ≥ b ≥ c. Using a simple simulation
argument, it is easy to see that

C(n, c) = �T (n, c)/2�.

We will be interested primarily in C(n, c), but function T (n, c) is much more
convenient to analyse when we prove upper and lower bounds.

1.2 Prior Work

The asymptotically optimal bounds of

log∗(n)−O(1) ≤ T (n, 3) ≤ log∗(n) +O(1)

are covered in numerous textbooks and courses on distributed and parallel com-
puting [2, 4, 17, 19, 21]. The proof is almost unanimously based on the following
classical results:

Cole–Vishkin Colour Reduction (CV): The upper bound was presented in
the modern form by Goldberg, Plotkin, and Shannon [9] and it is based on
the technique first introduced by Cole and Vishkin [3]. The key ingredients
are a fast colour reduction algorithm that shows that T (2k, 2k) ≤ 1 for any
k ≥ 3, and a slow colour reduction algorithm that show that T (k+1, k) ≤ 2
for any k ≥ 3. By iterating the fast colour reduction algorithm, we can reduce
the number of colours from n to 6 in log∗(n)±O(1) rounds, and by iterating
the slow colour reduction algorithm, we can reduce the number of colours
from 6 to 3 in 6 rounds (with one-sided algorithms).

48 J. Rybicki and J. Suomela

Linial’s Lower Bound: The lower bound is the seminal result by Linial [13].
The key ingredient is a speed-up lemma that shows that T (n, 2c) ≤ T (n, c)−1
when T (n, c) ≥ 1. By iterating the speed-up lemma for log∗(n)− 3 times, we
have T (n, 4) ≥ T (n, k) + log∗(n) − 3 for a k < n. Clearly T (n, 3) ≥ T (n, 4)
and T (n, k) ≥ 1, and hence T (n, 3) ≥ log∗(n)− 2.

In the upper bound, many sources—including the original papers by Cole and
Vishkin and Goldberg et al.—are happy with the asymptotic bounds of log∗(n)+
O(1) or O(log∗ n). However, there are some sources that provide a more careful
analysis. The analysis by Barenboim and Elkin [2] yields T (n, 3) ≤ log∗(n) + 9,
and the analysis in the textbook by Cormen et al. [4] yields T (n, 3) ≤ log∗(n)+7.
In our lecture course [19] we had an exercise that shows how to push it down to

T (n, 3) ≤ log∗(n) + 6.

In the lower bound, there is less variation. Linial’s original proof [13] yields
T (n, 3) ≥ log∗(n)− 3, and many sources [2, 11, 19] prove a bound of

T (n, 3) ≥ log∗(n)− 2.

On the side of lower bounds, nothing stronger than Linial’s result is known.
There are alternative proofs based on Ramsey’s theorem [5] that yield the same
asymptotic bound of T (n, 3) = Ω(log∗ n), but the constants one gets this way
are worse than in Linial’s proof.

On the side of upper bounds, however, there is an algorithm that is strictly
better than CV: Naor–Stockmeyer colour reduction (NS) [15]. While CV
yields T (2k, 2k) ≤ 1 for any k ≥ 3, NS yields a strictly stronger claim of
T (

(
2k
k

)
, 2k) ≤ 1 for any k ≥ 2. However, the exact bounds that we get from

NS are apparently not analysed anywhere. Szegedy and Vishwanathan [20] de-
scribe a very similar algorithm, but exact bounds for their algorithm are not
given either. Hence the state of the art appears to be

log∗(n)− 2 ≤ T (n, 3) ≤ log∗(n) + 6,

1

2
log∗(n)− 1 ≤ C(n, 3) ≤ 1

2
log∗(n) + 3.

Note that we have log∗ n ≤ 5 for all n < 1019728, and hence in practice the
constant term 6 dominates the term log∗ n in the upper bound.

1.3 Contributions

In this work we derive exact bounds on C(n, 3) for infinitely many values of
n, and near-tight bounds for all values of n. We prove that for infinitely many
values of n

C(n, 3) =
1

2
log∗ n,

Exact Bounds for Distributed Graph Colouring 49

and for all sufficiently large values of n

log∗(n)− 1 ≤ T (n, 3) ≤ log∗(n) + 1.

With C(n, 3) = �T (n, 3)/2� this gives a near-complete picture of the exact com-
plexity of colouring directed paths. The key new techniques are as follows:

1. We give a new analysis of NS colour reduction.
2. We give a new lower-bound proof that is strictly stronger than Linial’s lower

bound.
3. We show that computational techniques can be used to prove not only upper

bounds but also lower bounds on T (n, c), also for the case of a general n
and not just for fixed small values of n and c. We introduce successor graphs
Si that are defined so that a graph colouring of Si with a small number of
colours implies an improved bound on T (n, 3).

This work focuses on colour reduction, i.e., the setting in which we are given
a proper colouring as an input. Our upper bounds naturally apply directly in
more restricted problems (e.g., the input labels are unique identifiers). Our lower
bounds results do not hold directly, but the key techniques are still applicable: in
particular, the successor graph technique can be used also in the case of unique
identifiers.

1.4 Applications

Graph colouring in paths, and the related problems of graph colouring in rooted
trees and directed pseudoforests, are key symmetry-breaking primitives that ap-
pear as subroutines in numerous distributed algorithms for various graph prob-
lems [1, 5, 8, 9, 12, 16].

One of the most direct application of our results is related to colouring trees :
In essence, colour reduction from n to c in trees with arbitrary algorithms is the
same problem as colour reduction from n to c in paths with one-sided algorithms.
Informally, in the worst case the children contain all possible coloured subtrees
and hence “looking down” in the tree is unhelpful, and we can equally well
restrict ourselves to “looking up” towards the root. Hence our bounds on T (n, 3)
can be directly interpreted as bounds on colour reduction from n to 3 in trees.

The bounds have also applications outside distributed computing. A result by
Fich and Ramachandran [6] demonstrates that bounds on C(n, 3) have direct
implications in the context of decision trees and parallel computing.

Indeed, the fastest known parallel algorithms for colouring linked lists are just
adaptations of CV and NS colour reduction algorithms. These algorithms reduce
the number of colours very rapidly to a relatively small number (e.g., dozens of
colours), and the key bottleneck has been pushing the number of colours down
to 3. In particular, reducing the number of colours down to 3 with state-of-the-
art algorithms has been much more expensive than reducing it to 4, but this
phenomenon has not been understood so far. Prior bounds on T (n, c) have not
been able to show that the case of c = 3 is necessarily more expensive than c = 4.
Our improved bounds are strong enough to separate T (n, 4) and T (n, 3).

50 J. Rybicki and J. Suomela

x0 x1 x2 x3 x4

x0 x1 x2

u outputs B(x0, . . . , x2)

v outputs A(x0, . . . , x4)

v
(a)

(b)
u

Fig. 1. The difference of two-sided and one-sided algorithms. (a) A two-sided algorithm
A that runs for 2 rounds. (b) A one-sided algorithm B that runs for 2 rounds.

From the perspective of practical algorithm engineering and programming,
this work shows that we should avoid CV colour reduction, but we can be content
with NS colour reduction; the former incurs a significant overhead (e.g., in terms
of linear scans over the data in parallel computing), but the latter is near-optimal.

2 Preliminaries

Sets and Functions. For any positive integer k, we use [k] to denote the set
{1, 2, . . . , k}. For any set X , we use 2X = {Y ⊆ X} to denote the powerset of
X . Define the iterated logarithm as

log(0)(x) = x,

log(i+1)(x) = log(i)(log x) for all i ≥ 0.

In this work, all logarithms are in base 2. Moreover, the log-star function is

log∗ x = min{i : log(i) x ≤ 1}.

Finally, we define the tetration, or a power tower, with base 2 as

02 = 1,

i+12 = 2(
i2) for all i ≥ 0.

Algorithms. In this work, we focus on algorithms that run on directed paths.
We distinguish between two-sided and one-sided algorithms; see Figure 1. Two-
sided algorithms correspond to the usual notion of an algorithm in the LOCAL
model: an algorithm running for t rounds has to decide on its output using the
information available at most t hops away. Formally, a two-sided c-colouring
algorithm corresponds to a function

A : [n]2t+1 → [c].

Exact Bounds for Distributed Graph Colouring 51

x0 x1 x2 x3 x4

v outputs A(x0, . . . , x4)

v
(a)

(b)
x0 x1 x2 x3 x4

u

u outputs B(x0, . . . , x4)

Fig. 2. The correspondence between two-sided and one-sided algorithms. (a) A two-
sided algorithm A that runs for 2 rounds. (b) A one-sided algorithm that runs in 4
rounds. Both nodes see the same information, so v can easily simulate B and u can
simulate A.

Moreover, asA outputs a proper colouring, the function satisfiesA(x0, . . . , x2t) �=
A(x1, . . . , x2t+1) when xi �= xi+1 for all i ≥ 0. Note that an end point of the
path can always simulate a properly coloured virtual path that extends from it
to get exactly 2t+ 1 input values for A.

In contrast to two-sided algorithms, one-sided algorithms are algorithms in
which nodes can only send messages to successors. Therefore, a one-sided al-
gorithm that runs in t rounds can only gather information from at most t pre-
decessors. Formally, a one-sided c-colouring algorithm B that runs for t steps
corresponds to a function

B : [n]t+1 → [c],

which satisfies B(x0, . . . , xt) �= B(x1, . . . , xt+1) when xi �= xi+1 for all i ≥ 0.
It is now easy to see that C(n, c) = �T (n, c)/2� holds. For example, Figure 2

illustrates how a t-time two-sided algorithm can gather the same information as
a 2t-time one-sided algorithm. We refer to this identity as the following lemma:

Lemma 1. C(n, c) = �T (n, c)/2�.

3 The Upper Bound

In this section, we bound T (n, c) from above. To do this, we analyse the Naor–
Stockmeyer (NS) colour reduction algorithm [15]. The NS algorithm is one-sided,
thus yielding upper bounds for T (n, c).

Let us first recall the NS colour reduction algorithm. Let n ≤ (
2k
k

)
for some

k ≥ 2 and fix an injection f : [n] → X , where X = {Y ⊆ [2k] : |Y | = k}. That
is, we interpret all colours from [n] as distinct k-subsets of [2k].

The algorithm works as follows. First, all nodes send their colour to the suc-
cessor. Then a node with colour v receiving colour u from its predecessor will
output

A(u, v) = min f(u) \ f(v).

52 J. Rybicki and J. Suomela

It is easy to show that if u �= v �= w, then A(u, v) ∈ [2k] and A(u, v) �= A(v, w)
holds. Thus, A is a one-sided colour reduction algorithm that reduces the number
of colours from

(
2k
k

)
to 2k colours in one round and we have that T

((
2k
k

)
, 2k

)
= 1

for any k ≥ 2.
The above algorithm cannot reduce the number of colours below 4. To reduce

the number of colours from four to three, we can use the following one-sided
algorithm B that outputs

B(u, v, w) =

{
min{1, 2, 3} \ {u,w} if v = 4,

v otherwise.

The algorithm uses two rounds and this is optimal by Lemma 5 in Section 4.
We now show the following upper bounds for T (n, c) using the NS colour

reduction algorithm.

Lemma 2. The function T satisfies the following:

(a) T
(
3
2 · 2c, 3

2 · c) = 1 for any c = 4h, where h > 1,

(b) T
(
3
2 · r+42, 3

2 · 42) ≤ r for any r ≥ 0,

(c) T
(
3
2 · 42, 3

) ≤ 5.

Proof.

(a) As discussed, the NS colour reduction algorithm shows that T
((

2k
k

)
, 2k

)
= 1

for k ≥ 2. Recall the following bound for the central binomial coefficent

(
2k

k

)
≥ 4k√

4k

and let 2k = 3c/2. Since c ≥ 8 it follows that

(
2k

k

)
≥ (2 · 2)3c/4√

3c
=

2c/2√
3c

· 2c > 3

2
· 2c.

(b) To show the claim, it suffices to apply part (a) for r times.
(c) As

(
20
10

)
> 3

2 · 42, we can reduce the number of colours to 4 in three rounds

as follows:
(
20
10

)
�

(
6
3

)
�

(
4
2

)
� 4. By previous discussion, the remaining two

rounds can be used to remove the fourth colour.

Theorem 2. T (h2, 3) ≤ T (h2 + 1, 3) ≤ h+ 1 holds for any h > 1.

Proof. The cases 2 ≤ h ≤ 4 follow from the proof of Lemma 2c. Suppose h = r+4
for some r > 0. By Lemma 2b and c we can get a 3-colouring in r + 5 = h + 1
rounds.

Exact Bounds for Distributed Graph Colouring 53

4 The Lower Bound

In this section, we give a new lower bound for the time complexity of one-sided
colour reduction algorithms. The proof follows the basic idea of Linial’s proof [13]
adapted to the case of colour reduction, but we show a new lemma that can be
used to tighten the bound.

The proof is structured as follows. First, we show that T (n, 2c−2) ≤ T (n, c)−1,
that is, given a c-colouring algorithm, we can devise a faster algorithm that
uses at most 2c − 2 colours; this is just a minor tightening of the usual
standard bound, and should be fairly well-known. Second, we prove that a
fast 3-colouring algorithm implies a fast 16-colouring algorithm, more precisely,
T (n, 16) ≤ T (n, 3)−2; this is the key contribution of this section. Together these
yield the following new bound:

Theorem 3. For any h > 1, we have T (h2, 3) ≥ h.

4.1 The Speed-Up Lemma

Lemma 3. If T (n, c) ≥ 1, then T (n, 2c − 2) ≤ T (n, c)− 1.

Proof. Let t = T (n, c) and A : [n]t+1 → [c] be a one-sided c-colouring algorithm.
We will construct a faster one-sided algorithm B as follows. Consider a node u
and its successor v. In t− 1 rounds, node u can find out the colours of its t− 1
predecessors and its own colour, that is, some vector (x0, . . . , xt−1) ∈ [n]t. In
particular, node u now knows what information node v can gather in t rounds
except the colour of v since A is one-sided. However, u can enumerate all the
possible outputs of v which give the set

B(x0, . . . , xt−1) =
{
A(x0, . . . , xt−1, y) : y �= xt−1, y ∈ [n]

} ⊆ [c].

Clearly B(x0, . . . , xt−1) �= ∅. We also have B(x0, . . . , xt−1) �= [c]: For the sake
of contradiction, suppose otherwise. This would imply that v could output any
value in [c]. In particular, if u outputs A(z, x0, . . . , xt−1) = a for some z ∈ [n],
we could pick y ∈ [n] such that A(x0, . . . , xt−1, y) = a as well. However, this
would contradict the fact that A was a colouring algorithm. Hence there exists
an injection f that maps any possible set B(·) to a value in [2c − 2].

It remains to argue that no two adjacent nodes construct the same set. Sup-
pose a node u outputs set X and its successor v also outputs X . Now we can
pick k ∈ X such that

A(x0, . . . , xt−1, y) = k = A(x1, . . . , xt−1, y, y
′)

for some xt−1 �= y �= y′ contradicting that A outputs a proper colouring.
Therefore, f ◦ B is a one-sided (2c − 2)-colouring algorithm that runs in time
t− 1 = T (n, c)− 1.

Lemma 4. For any r > 0, we have T (r+32, 16) ≥ r + 1.

54 J. Rybicki and J. Suomela

Proof. Fix r > 0. We repeatedly apply Lemma 3. Now suppose we have an
algorithm that reduces the number of colours from n to 16 = 32 in r rounds.
That is, T (n, 32) ≤ r holds for some n ≥ 3. From Lemma 3 it follows that

T (n, 32) ≤ r =⇒ T (n, 42− 2) ≤ r − 1 =⇒ · · ·
=⇒ T (n, 3+r2− 2) ≤ 0,

but as T (k, k−1) ≥ 1 for any k it follows that n < 3+r2. Thus, T (r+32, 16) ≥ r+1.

4.2 Proof of Theorem 3

In addition to the speed-up lemma, we need a few more lemmas that bound
T (n, 3) below for small values of n.

Lemma 5. T (4, 3) ≥ 2.

Proof. Let B′ be a one-sided 3-colouring algorithm that runs in one round. Now
B′ yields a partitioning of the possible input pairs (u, v) where u �= v. It is simple
to check that there always exists a pair (u, v) with u �= v such that there also
exists some w �= v satisfying B′(u, v) = B′(v, w).

Lemma 6. T (16, 3) ≥ 3.

Proof. As observed by Linial [13], we can show C(n, c) = t if the so-called
neighbourhood graph Nn,t has a chromatic number of c. While Linial analytic-
ally bounded the chromatic number of such graphs, we can also compute their
chromatic numbers exactly for small values of n, c, and t; see [18] for a detailed
discussion. We use the latter technique to show the claimed bound. That is, the
neighbourhood graph N7,1 is not 3-colourable.

The neighbourhood graph N7,1 = (V,E) is defined as follows. The set of
vertices is

V = {(x0, x1, x2) ∈ [n]3 : x0 �= x1 �= x2, x0 �= x2},
where n = 7 and the set of edges is

E = {{u, v} : u, v ∈ V, u = (x0, x1, x2), v = (x1, x2, x3)}.
It is easy to check with a computer (e.g. using any off-the-shelf SAT or an IP
solver) that the graph N7,1 is not 3-colourable. Therefore, C(7, 3) > 1 and in
particular T (16, 3) ≥ T (7, 3) > 2.

To get a lower bound for 3-colouring, we show in the following sections that
the existence of a t-time one-sided 3-colouring algorithm implies a (t − 2)-time
one-sided 16-colouring algorithm.

Lemma 7. For any n ≥ 16, it holds that T (n, 16) ≤ T (n, 3)− 2.

Now we have all the results for showing the lower bound.

Exact Bounds for Distributed Graph Colouring 55

Theorem 3. For any h > 1, we have T (h2, 3) ≥ h.

Proof. The cases r = 2 and r = 3 follow from Lemmas 5 and 6. For the remaining
cases, let h = r + 3 for some r > 0. Suppose T (h2, 3) = T (r+32, 3) < h. Then
by Lemma 7 we would get that T (r+32, 16) < h − 2 = r + 1 which contradicts
Lemma 4.

4.3 Proof of Lemma 7 via Successor Graphs

To prove Lemma 7, we analyse the chromatic number of so-called successor
graphs—a notion similar to Linial’s neighbourhood graphs [13]. In the following,
given a binary relation R, we will write x ∈ R(y) to mean (y, x) ∈ R.

Colouring Relations. Suppose A = A0 is a one-sided 3-colouring algorithm that
runs in t rounds. Let A1, . . . , At denote the one-sided algorithms given by iter-
ating Lemma 3 and Ck+1 ⊆ 2Ck be the set of colours output by algorithm Ak+1.
As before, we can interpret a set of colours X ∈ Ck+1 as a colour in 2|Ck| using
an appropriate injection.

In the following, let t′ = t − k. Define the potential successor relation Sk ⊆
Ck×Ck to be a binary relation such that (x, y) ∈ Sk if there exist x0, . . . , xt′+1 ∈
Ck−1 where xi �= xi+1 such that

Ak(x0, . . . , xt′) = x and Ak(x1, . . . , xt′+1) = y.

That is, in the output of algorithm Ak there can be an x-coloured node with a
successor of colour y. Moreover, define the output relation Rk ⊆ Ck ×Ck+1 such
that (x,X) ∈ Rk if

Ak+1(x0, . . . , xt′ , x) = X

for some x0, . . . , xt′ where xi �= xi+1. That is, a node with colour x can output
colourX when executing Ak+1. From the construction of Ak+1 given in Lemma 3,
we get that Rk = {(x,X) : X ⊆ Sk(x), X �= ∅}.
Lemma 8. Suppose X ∈ Rk(x), Y ∈ Rk(y), and y ∈ X for some x, y ∈ Ck,
then (X,Y) ∈ Sk+1 holds. Moreover, the converse holds.

Proof. As we have y ∈ X ⊆ Sk(x), this means that a node with colour x may
have a successor of colour y after executing algorithm Ak. Moreover, as X ∈
Rk(x) and Y ∈ Rk(y) hold, then a node with colour x may output X and node
with colour y may output Y when executing Ak+1. Thus, after executing Ak+1

we may have a node with colour X that has a successor with colour Y . Therefore,
(X,Y) ∈ Sk+1.

To show the converse, suppose that (X,Y) ∈ Sk+1, that is, in some output of
Ak+1 a node u with colourX having a successor v with colour Y . Now there must
exist some colour x that X ∈ Rk(x) and some colour y such that Y ∈ Rk(y).
As v is a successor of u, the algorithm Ak+1 outputs a set X consisting of all
possible colours for any successor of u, and thus, we have y ∈ X .

56 J. Rybicki and J. Suomela

Successor Graphs. For any choice of A = A0, we can construct the successor
relation Sk and using this relation, we can define the successor graph of A to be
the graph Sk(A) = (Ck, Ek), where Ek = {{x, y} : (x, y) ∈ Sk}. These graphs
have the following property:

Lemma 9. Let Sk = (Ck, Sk) be the successor graph of A, and let t be the
running time of A. If f : Ck → [χ] is a proper colouring of Sk, then f ◦Ak is a
one-sided χ-colouring algorithm that runs in t−k rounds. That is, T (n, χ) ≤ t−k.

Proof. Let u be the predecessor of v on a directed path. Now by definition,

Ak(x0, . . . , xt−k−1, u) = x �= y = Ak(x1, . . . , xt−k−1, u, v)

=⇒ (x, y) ∈ Sk =⇒ f(x) �= f(y).

Therefore, f ◦Ak is a one-sided χ-colouring algorithm.

In the next section, we show the following lemma from which Lemma 7 follows.

Lemma 10. For any t-time 3-colouring algorithm A, the successor graph S2(A)
can be coloured with 16 colours.

In particular, this holds for an optimal algorithm A with a running time of
t = T (n, 3). Together with Lemma 9, this implies Lemma 7. We next show how
to prove Lemma 10 in two ways: with computers, and without them.

4.4 A Human-Readable Proof of Lemma 10

We start by sketching a traditional human-readable proof for Lemma 10. The
main argument is that for any one-sided 3-colouring algorithm A = A0 the
successor graph S2(A) can be coloured with 16 colours. Later in Section 4.5, we
give a computational proof of the same result. In the following, we fix A and
denote S2 = S2(A) for brevity.

Structural Properties. We start with the following observations.

Remark 1. Sets C0 and C1 satisfy

C0 ⊆ {1, 2, 3},
C1 ⊆ {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

Remark 2. Relation S1 satisfies

S1(i) ⊆
{
X ∈ C1 : i /∈ X

}
,

S1({i, j}) ⊆
{
X ∈ C1 : {i, j} � X

}
.

Remark 3. Consider any X ⊆ C1 with
{{1, 2}, {1, 3}, {2, 3}} ⊆ X . Then there

is no x ∈ C1 with X ⊆ S1(x). Therefore A2 cannot output colour X , and hence
X /∈ C2.

Hence graph S2 has |C2| ≤ 55 nodes: out of the 26 = 64 candidate colours, we
can exclude the empty set and 8 other sets identified in Remark 3. We will now
partition the remaining nodes in 16 colour classes (independent sets).

Exact Bounds for Distributed Graph Colouring 57

Fig. 3. This illustrations shows the complement of a graph we call S∗
2 . For any al-

gorithm A, the successor graph S2(A) is a subgraph of S∗
2 , and hence, a proper col-

ouring of S∗
2 is a proper colouring of S2(A). Each clique in the figure corresponds to a

colour class in S∗
2 . We use a shorthand notation: for example, the circle labelled with

“1 2 12” is the node {{1}, {2}, {1, 2}}.

Colour Classes. There are four types of colour classes. First, for each ∅ �= X ⊆ [3]
we define a singleton colour class

X0(X) =
{{{x} : x ∈ X

}}
,

that is, an independent set of size 1. Then for each triple

(i, j, k) ∈ {
(1, 2, 3), (1, 3, 2), (2, 3, 1)}

we have three colour classes:

X1(i, j, k) =
{
X ∈ C2 :

{{i, j}, {i, k}} ⊆ X ⊆ {{i, j}, {i, k}, {i}, {j}, {k}}
}

X2(i, j, k) =
{
X ∈ C2 :

{{i, j}, {k}} ⊆ X ⊆ {{i, j}, {i}, {j}, {k}}
}
,

X3(i, j, k) =
{
X ∈ C2 :

{{i, j}} ⊆ X ⊆ {{i, j}, {i}, {j}}
}
.

In total, there are 7 singleton colour classes, and 3×3 other colour classes, giving
in total 16 colour classes. Figure 3 shows the complement of a supergraph of S2;
each of the above colour classes correspond to a clique in the complement graph.

It can be verified that each of the 55 possible nodes of S2 is included in exactly
one of the colour classes. Now it suffices to show that each colour class is indeed
an independent set of S2. This is a relatively straightforward, albeit slightly
tedious task to do by hand.

4.5 Computational Proof of Lemma 10

We now give a computational proof of Lemma 10, that is, we show how to easily
verify with a computer that the claim holds. Essentially this amounts to checking

58 J. Rybicki and J. Suomela

that for every choice of A = A0, the successor graph S2(A) is colourable with 16
colours. However, since any successor graph S2(A) depends on the choice of the
initial one-sided 3-colouring algorithm A = A0, and there are potentially many
choices for A, we instead bound the chromatic number of a closely-related graph
S∗
2 that contains S2(A) for any A as a subgraph.
To construct the graph S∗

2 , we consider the successor graph of a “worst-case”
algorithm that may output “all possible” colours in its output set. Specifically,
this means that we simply replace the subset relation in Remarks 1 and 2 with
an equality. Therefore, the graph S∗

2 can be constructed using a fairly straightfor-
ward computer program, with a mechanical application of the definitions. The
end result is a dense graph on 55 nodes; its complement is shown in Figure 3.

It is now easy to discover a colouring of graph S∗
2 that uses 16 colours with

the help of e.g. modern SAT solvers. This implies that any subgraph S2(A) can
also be coloured with 16 colours and Lemma 10 follows.

5 Main Theorems

We now have all the pieces for proving Theorem 1:

Theorem 1. For infinitely many values of n, it takes exactly 1
2 log

∗ n rounds to
compute a 3-colouring of a directed n-coloured path.

Proof. Let n = 2k+12 + 1 for any k ≥ 2. By Lemma 1 we have the identity

C(n, 3) = �T (n, 3)/2� (1)

and from Theorems 2 and 3 we get that

2k + 1 ≤ T (n, 3) ≤ 2k + 2,

which together with (1) yields C(n, 3) = k + 1. Since log∗ n = 2k + 2 it follows
that C(n, 3) = k + 1 = log∗ n/2.

For the remaining values of n we get almost-tight bounds. There remains a
slack of one communication round in the upper and lower bounds for C(n, 3).

Theorem 4. For any n ≥ 4,

⌈
1

2
(log∗ n− 1)

⌉
≤ C(n, 3) ≤

⌈
1

2
(log∗ n+ 1)

⌉
.

Proof. For n = 4, we have shown that T (4, 3) = 2 so the bounds follow. Fix
n > 4. Now there exists some h > 1 such that n ∈ {h2 + 1, . . . , h+12} and
h = log∗ n− 1. Theorems 2 and 3 give us the bounds

log∗ n− 1 = h ≤ T (n, 3) ≤ h+ 2 = log∗ n+ 1

and since C(n, 3) = �T (n, 3)/2�, the claimed bounds follow.

Exact Bounds for Distributed Graph Colouring 59

6 Conclusions and Discussion

In this work we gave exact and near-exact bounds on the complexity of distrib-
uted graph colouring. The key result is that the complexity of colour reduction
from n to 3 on directed paths and cycles is exactly 1

2 log
∗ n rounds for infinitely

many values of n, and very close to it for all values of n.
In essence, we have shown that the colour reduction algorithm by Naor and

Stockmeyer (and Szegedy and Vishwanathan) is near-optimal, while the al-
gorithm by Cole and Vishkin is suboptimal. We have also seen that Linial’s
lower bound had still some room for improvements.

One of the novel techniques of this work was the use of computers in lower-
bound proofs. Two key elements are results of a computer search:

– Lemma 6: The proof of T (16, 3) ≥ 3 is based on the analysis of the chromatic
number of the neighbourhood graph N7,1.

– Lemma 7: The proof of T (n, 16) ≤ T (n, 3)− 2 is based on the analysis of the
chromatic number of the successor graph S2.

In both cases we used computers to analyse the chromatic numbers of various
successor graphs and neighbourhood graphs, in order to find the right parameters
for our needs.

The idea of analysing neighbourhood graphs and their chromatic numbers
is commonly used in the context of human-designed lower-bound proofs [7,10,13,
14]. It is also fairly straightforward to construct neighbourhood graphs so that
we can use computers and graph-colouring algorithms to discover new upper
bounds [18], and the same technique can be used to prove lower bounds on
T (n, c) for small, fixed values of n and c; in our case we used it to bound T (16, 3).
However, this does not yield bounds on, e.g., T (n, 3) for large values of n.

The key novelty of our work is that we can use the chromatic number of
successor graphs to give improved bounds on T (n, 3) for all values of n. To do
that, it is sufficient to find a successor graph Sk with a small chromatic number,
and apply Lemma 9. The same technique can be also used to study T (n, c) for
any fixed c ≥ 3.

Acknowledgements. We thank Juho Hirvonen and anonymous reviewers for
helpful comments. Parts of this work are based on the first author’s MSc thesis
[18]. Computer resources were provided by the Aalto University School of Sci-
ence “Science-IT” project, and by the Department of Computer Science at the
University of Helsinki.

References

1. Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In: Proc. 22nd Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA 2010), pp. 294–302.
ACM Press (2010)

60 J. Rybicki and J. Suomela

2. Barenboim, L., Elkin, M.: Distributed graph coloring: Fundamentals and recent
Developments. Morgan & Claypool (2013)

3. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Information and Control 70(1), 32–53 (1986)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT
Press, Cambridge (1990)

5. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92.
Springer, Heidelberg (2008)

6. Fich, F.E., Ramachandran, V.: Lower bounds for parallel computation on linked
structures. In: Proc. 2nd Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA 1990), pp. 109–116. ACM Press (1990)

7. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with ad-
vice: Information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidel-
berg (2007)

8. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal on Computing 27(1), 302–316
(1998)

9. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in
sparse graphs. SIAM Journal on Discrete Mathematics 1(4), 434–446 (1988)

10. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In:
Proc. 25th Annual ACM Symposium on Principles of Distributed Computing
(PODC 2006), pp. 7–15. ACM Press (2006)

11. Laurinharju, J., Suomela, J.: Brief announcement: Linial’s lower bound made easy.
In: Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC 2014), pp. 377–378. ACM Press (2014)

12. Lenzen, C., Patt-Shamir, B.: Improved distributed Steiner forest construction. In:
Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting (PODC 2014), pp. 262–271. ACM Press (2014)

13. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

14. Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring.
SIAM Journal on Discrete Mathematics 4(3), 409–412 (1991)

15. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24(6), 1259–1277 (1995)

16. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Distributed Computing 14(2), 97–100 (2001)

17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and Ap-
plied Mathematics, Philadelphia (2000)

18. Rybicki, J.: Exact bounds for distributed graph colouring. Master’s thesis, Univer-
sity of Helsinki, May 2011. http://urn.fi/URN:NBN:fi-fe201106091715.

19. Suomela, J.: Distributed Algorithms (2014).
http://users.ics.aalto.fi/suomela/da/

20. Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: Proc. 25th An-
nual ACM Symposium on Theory of Computing (STOC 1993), pp. 201–207. ACM
Press (1993)

21. Wattenhofer, R.: Lecture notes on principles of distributed computing (2013).
http://dcg.ethz.ch/lectures/podc_allstars/

http://urn.fi/URN:NBN:fi-fe201106091715
http://users.ics.aalto.fi/suomela/da/
http://dcg.ethz.ch/lectures/podc_allstars/

Essential Traffic Parameters for Shared Memory Switch
Performance

Patrick Eugster1,2,�, Alex Kesselman3,
Kirill Kogan4, Sergey Nikolenko5,6,��, and Alexander Sirotkin7,8

1 Purdue University, Lafayette, IN, USA
p@cs.purdue.edu

2 Technical University of Darmstadt, Darmstadt, Germany
3 Google Inc., California, USA

alx@google.com
4 IMDEA Networks Institute, Madrid, Spain

kirill.kogan@imdea.org
5 National Research University Higher School of Economics, St. Petersburg, Russia

6 Steklov Institute of Mathematics at St.Petersburg, Russia
sergey@logic.pdmi.ras.ru

7 International Laboratory for Applied Network Research
National Research University Higher School of Economics, Moscow, Russia

8 St. Petersburg Institute for Informatics and Automation of the RAS, St. Petersburg, Russia
alexander.sirotkin@gmail.com

Abstract. Cloud applications bring new challenges to the design of network
elements, in particular accommodating for the burstiness of traffic workloads.
Shared memory switches represent the best candidate architecture to exploit buffer
capacity; we analyze the performance of this architecture. Our goal is to ex-
plore the impact of additional traffic characteristics such as varying processing
requirements and packet values on objective functions. The outcome of this work
is a better understanding of the relevant parameters for buffer management to
achieve better performance in dynamic environments of data centers. We consider
a model that captures more of the properties of the target architecture than pre-
vious work and consider several scheduling and buffer management algorithms
that are specifically designed to optimize its performance. In particular, we pro-
vide analytic guarantees for the throughput performance of our algorithms that
are independent from specific distributions of packet arrivals. We furthermore
report on a comprehensive simulation study which validates our analytic results.

1 Introduction

Cloud data centers are faced with workloads which evolve rapidly, driven by high vol-
umes of end users, application types, cluster nodes, and overall data movement (e.g., big

� P. Eugster was partially supported by the German Research Foundation (DFG) under project
MAKI (“Multi-mechanism Adaptation for the Future Internet”).

�� The work of Sergey Nikolenko was partially supported by the Government of the Russian
Federation grant 14.Z50.31.0030 and the Presidential Grant for Leading Scientific Schools,
NSh-3856.2014.1.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 61–75, 2015.
DOI: 10.1007/978-3-319-25258-2_5

62 P. Eugster et al.

data processing [4,10]). A primary design challenge in this context consists in selecting
and deploying network switches that scale application performance, in a way which is
robust and cost-effective. A network switch receives packets on ingress ports, applies
specific policies to them, identifies destination ports, and sends them out through egress
ports. When application-induced traffic bursts create an imbalance between incoming
and outgoing packet rates for a given port, packets must be queued in the switch packet
buffer. The available queue size on a port determines the port’s ability to hold packets
until the egress port can emit it. When buffer queue is full, packets are dropped. The
allocation and availability of buffer resources to the ports, determined by the buffering
architecture, affects burst absorption capabilities and performance characteristics of the
network switch. Overprovisioning in terms of buffer capacity at each network node to
absorb bursty behavior is not viable, as networks do not have unlimited resources; con-
versely, cloud data centers can only scale out as fast as the effective per-port cost and
power consumption. These factors, in turn, are driven by the chosen buffering archi-
tecture. The shared memory switch allows to absorb traffic bursts in the best way since
the whole buffer can be utilized by a same output port if needed. Since this is an actual
choice in practice [13], here we focus our efforts on this type of buffer architecture.

The buffer management policy is a key element in meeting network design chal-
lenges. It directly impacts a switch’s ability to transfer data at line rate and optimize
desired objectives during congestion under various traffic conditions. Most existing
buffer management policies are based on a simple characteristic such as buffer occu-
pancy [9, 16], whereas traffic workloads have additional important characteristics such
as processing requirements or value that are not explicitly taken into account. Efficient
methods for buffer management incorporating new characteristics in admission deci-
sions beyond fairness objective functions lead to new challenges in performance and
implementation for traditional switch architectures. Inherited from the Internet, fairness
is in fact a design choice which can conflict with other objectives in various economic
models (e.g., utilization of network infrastructure or profit [7, 19, 20]).

We thus consider a shared memory switch where a buffer of size B is shared among
all types of traffic. Each arriving packet is labeled with an output queue. Arrivals can
be adversarial. During arrival, packets concurrently “access” the shared memory. Each
input port decides if its arriving packets should be admitted based on information
computed by output ports in a distributed manner. In this work we consider (possi-
bly weighted) throughput optimization since relevant objectives such as better reuse
of underlying infrastructure or profit maximization can be reduced to throughput op-
timization [19, 20]. However, in stark contrast to the seminal work of Aiello et al. [1]
where packets have uniform values and processing requirements, in our model each
arriving packet has an intrinsic value (“worth”) or processing requirement. Moreover,
we remove a strong constraint from the recent work of Eugster et al. [15] by allowing
packets for the same output port to have distinct processing requirements. We consider
the paradigm of competitive analysis [8, 36]: an algorithm ALG is α-competitive for
some α ≥ 1 if for any arrival sequence the number of packets transmitted by ALG is
at least 1/α times the number of packets transmitted by an optimal offline clairvoyant
algorithm OPT. Worst case analysis shows whether additional workload characteristics
should be taken into account in buffer management. Since all policies we consider are

Essential Traffic Parameters for Shared Memory Switch Performance 63

greedy (they accept and transmit all traffic if there is no congestion), we need to con-
sider extreme cases during congestion periods that can actually happen in scenarios like
big data processing [12,37,38]. Worst case results help define buffer management “rules
of thumb” that are independent of specific arrival distributions.

The goal of this paper is to offer designs with proven performance guarantees for
the shared memory switch; we analyze the performance of buffer management poli-
cies and provide guarantees for their worst-case throughput. We consider two different
traffic characteristics: (a) required processing and (b) values for packet transmission.
Intuitively, they should have similar impacts on the desired objective. In the case of a
single queue, both of them reach optima when all packets are ordered by required pro-
cessing [21] or values with push-out1. However, generalizing them to a shared memory
buffering architecture is challenging: the case of heterogeneous values was presented
as an open question in SIGACT News [18, p. 22].

In the first part of this paper every incoming packet has unit value (and an output
port label) but has processing requirement varying from 1 to k. In this case the ob-
jective comes down to maximizing the number of transmitted packets. We show that
LQD is at least (n/2− o(n))-competitive for sufficiently large buffer size B and max-
imal required processing k; besides that we show that Biggest-Packet-Drop (BPD, a
policy that pushes out packets with maximal processing requirement in case of con-
gestion) degrades to at least (n + 1)/2-competitiveness. In addition we introduce a
natural Biggest-Average-Drop policy (that pushes out a packet with maximal required
processing from a queue with maximal average processing requirements in the case of
congestion) that achieves the same lower bound as BPD. All lower bounds hold even
for PQ (priority queueing) processing order, where packets are ordered according to
processing requirements. The main result of this work is the 2-competitiveness of a
semi-greedy variant of the Longest-Work-Drop (LWD) policy of [15] that holds in our
general model when packets with heterogeneous processing requirements are processed
in PQ order in each queue (Section 5). In addition we show that in the FIFO case of our
general model, LWD is at least (logB/n k)(1 − 1/B) + 1-competitive. In the second
part of this paper (b) we consider a model where each incoming packet has, in addition
to an output port label, a heterogeneous value from 1 to V (and uniform processing).
In this case the objective is to maximize transmitted value. Intuitively, the model with
values should be similar to the model with required processing. However, we show that
the Maximal-Total-Value-Drop (MTVD) policy, which is similar to LWD, is at least V -
competitive. We also turn to policies that combine several characteristics and consider
the Minimal-Ratio-Drop (MRD) policy introduced in [15] that considers both queue
occupancy and the average value in the same queue. MRD was conjectured in [15] to
have constant competitiveness. We show that the model with values has a different na-
ture as a generalization from the single-queue case (where both models have optimal
online algorithms) to the shared memory switch, and it is not enough to simply consider
the total value. In particular, we prove that MRD is at least V -competitive.

The paper is organized as follows. Section 2 discusses related prior art. Section 3
details the model underlying our work. Section 4 considers lower bounds of several

1 In case of packets with values, the optimality of the greedy algorithm with pushout is trivial:
order the queue by value.

64 P. Eugster et al.

algorithms for packets with heterogeneous processing requirements to understand prop-
erties of an “ideal” policy. The main result of this paper — 2-competitiveness of LWD
policy for packets with heterogeneous requirements — is presented in Section 5. Sec-
tion 6 considers a model with heterogeneous packet values. Section 7 concludes the
paper.

2 Related Work

Aiello et al. [27] propose a non-push-out buffer management policy called Harmonic
that is at most O(log n)-competitive and establish a lower bound of Ω(logn

log logn) on the
performance of any online non-push-out deterministic policy, where n is the number of
output ports. Kesselman and Mansour [1] demonstrate that the LQD policy is at most
2- and at least

√
2-competitive. Both works consider homogeneous packet processing,

i.e., each packet requires a single processing cycle. Eugster et al. [15] consider a lim-
ited variant of our model where all incoming packets for the same output port have
identical processing requirements. But even in this case it was shown there that LQD

is at least
(√

k − o(
√
k)
)

-competitive. Fortunately, in [15] a generalization of LQD,

namely Longest-Work-Drop (LWD), was proposed for this limited model; LWD is at
most 2-competitive in case when packets are processed with minimal current required
processing first (PQ order). Besides, it was shown in [15] that Biggest-Packet-Drop
(BPD, a policy that pushes out packets with maximal processing requirement in case
of congestion) is at least log k competitive for B > k(k+1)

2 . Unlike the model in [15]
the model we consider in this paper however allows for packets with heterogeneous
processing requirements to be admitted to the same queue. This generalization over the
model in [15] has a significant impact on the efficiency of considered policies and appli-
cability to real-world scenarios. In particular, we can open a separate queue per process-
ing requirement per output port but in this case the scalability of maximal number of
supported queues can become a strong constraint once k and n are growing. Our current
work can be viewed as part of a larger research effort concentrated on studying compet-
itive algorithms for management of bounded buffers. Surveys by Goldwasser [18] and
later by Nikolenko and Kogan [35] provide an excellent overview of this field. Initiated
in [26,34], this line of research has received tremendous attention over the past decade.
Various models have been proposed and studied, including QoS-oriented models where
packets have individual weights [2,14,26,34]. A related field that has recently attracted
much attention focuses on various switch architectures and aims to design competitive
algorithms for various scenarios therein (cf. [3,5,6,22–25,33]). However, none of these
models cover the case of packets with heterogeneous processing requirements, and our
work extends and generalizes previous models to heterogeneous processing. The sin-
gle queue case with heterogeneous processing requirements is considered in [21,31,32].
Kogan et al. considered the multiple separated queues case with heterogeneous process-
ing requirements in [29]. The single queue case with packets containing a combination
of heterogeneous processing with packet lengths or values has considered in [11, 30].

Essential Traffic Parameters for Shared Memory Switch Performance 65

3 Model Description

We consider an n × n shared memory switch with n input and n output ports and a
buffer of size B, that is, the total length of all queues is bounded by B. We assume
that B ≥ n. Each output port manages a single output queue, denoted Qi for port i,
1 ≤ i ≤ n; the number of packets in Qi is denoted by |Qi|. Each packet p(d, w)
arriving at an input port is labeled with the output port number d and its required work
w in processing cycles (1 ≤ d ≤ n and 1 ≤ w ≤ k), where k denotes the global upper
bound on required work per packet. Each Qi implements either (i) priority queueing
(PQ) processing order, where packets are ordered in non-decreasing order of required
processing, or (ii) first-in-first-out (FIFO) processing order, where packets are ordered

in the order of arrival. In what follows, we denote by w | i a packet with required

work w intended for output port i; by h× w | i , a burst of h w | i packets arriving at

the same time. We also denote by rt(p) the remaining required processing of a packet
p at time unit t. Time is slotted; we divide each time slot into two phases (see Fig. 1).
During the (1) arrival phase a burst of new packets arrives at each input port that
decides which ones should be admitted based on the state computed by each output port
in the distributed manner. The arrivals are adversarial and do not assume any specific
traffic distribution (more than n arrivals are allowed at the same time slot). An accepted
packet can be later dropped from the buffer when another packet is accepted instead;
in this case we say that a packet p is pushed out by another packet q, and a policy that
allows this is called a push-out policy. During the (2) transmission phase, required work
of the head-of-line packet according to the supported processing order (PQ or FIFO) at
each non-empty queue is reduced by one, and every packet with zero residual work is
transmitted.

To facilitate our proofs, we use some properties of ordered (multi-)sets. These no-
tions, as well as the properties we recall in this section, will enable us to compare the
performance of our proposed algorithms. In the following, we consider multi-sets of
real numbers, where we assume each multi-set is ordered in non-decreasing order. We
will refer to such multi-sets as ordered sets. For every 1 ≤ i ≤ |A|, we will further refer
to element ai ∈ A or to A[i] as the i-th element in the set A, as induced by the order.
Given two ordered sets A and B, we say A ≥ B, if for every i for which both ai and
bi exist, ai ≥ bi. The following lemma, and its corollary, will be used in our analysis;
their proofs can be found in [28] (Lemma 1 and Corollary 2).

Lemma 1. For any two ordered sets A and B satisfying A ≥ B, and any two real
numbers a, b such that a ≥ b, if (i) b ≤ b|B| or (ii) |A| ≤ |B| then the ordered sets
A′ = A ∪ {a}, B′ = B ∪ {b} satisfy A′ ≥ B′.

Corollary 1. For any two ordered sets A,B satisfying A ≥ B, and any real number b,
if (i) b ≤ b|B| or (ii) |A| ≤ |B| then the ordered set B′ = B ∪ {b} satisfies A ≥ B′.

4 The Quest for an Ideal Policy with Heterogeneous Processing

In this section, we consider several possible candidates for the “ideal” policy that might
provide constant competitiveness in the model presented above. These algorithms either

66 P. Eugster et al.

look like natural candidates or have been proven to be efficient for uniform process-
ing [1,27]. Note that in our model, each algorithm has two versions, with PQ and FIFO
processing order in each output queue. By default, we assume that every queue imple-
ments PQ order. Lower bounds on the competitive ratio represent specific sequences of
packets on which the optimal algorithm is much better than the one in question. they
are easier to prove than upper bounds since it suffices to present a hard instance of an
input sequence, but lower bounds can still provide important information regarding the
comparative quality of online algorithms.

Longest-Queue-Drop (LQD): during the arrival of a packet p with output port i, denote
by j∗ = arg maxj{|Qj| + [i = j]} where [i = j] = 1 if i = j and 0 otherwise (i.e.,
Qj∗ is the longest queue once we virtually add p to Qi; we choose one with largest
required processing if there are several); then do the following: (1) if the buffer is not
full, accept p into Qi; (2) if the buffer is full and i �= j∗, push out last packet from Qj∗

and accept p into Qi; else drop p.
Note that the proposed here version of LQD is not fully oblivious to processing

requirements since it will drop a packet with a maximal processing from the longest
queue in the case of congestion. In case of homogeneous processing, LQD is at least√
2- and at most 2-competitive [1]. For heterogeneous required processing, the situation

is worse. Proofs of all theorems in this section are given in the Appendix.

Theorem 1. For sufficiently large B and k ≥ n(n− 1), LQD is at least (n/2− o(n))-
competitive.

Proof. Over the first burst, there arriveB packets of each of the following kinds: 1 | 1 ,

k | 2 , k | 3 , . . . , k | n . LQD evenly distributes the packets among queues and has

B/n packets in each of its nonempty queues (throughout the proof we assume that B is

large and is divisible by everything we need it to be). OPT accepts (B−n+1)× 1 | 1
and one each in the remaining queues. Every k processing cycles there arrive 1× k | 2 ,

1× k | 3 , . . . , 1× k | n , so OPT always has packets in these queues to work on, but

there are no more 1 | 1 s. OPT spends (B − n + 1) time to process all 1 | 1 s (after
that the arrival iteration is restarted); let us estimate the number of processed packets
by this time. OPT will have processed (B − n + 1) in queue 1 and (B − n + 1)/k in
each one of n − 1 other queues. LQD will have the same (B − n + 1)/k processed
packets in each queue but the first, and in the first queue LQD will have processed
B/n since there are no more packets in first queue. Thus, the overall competitive ratio

is (B−n+1)+(n−1)×B−n+1
k

B
n +(n−1)×B−n+1

k

, and for k = n(n − 1) we get
(B−n+1)+(n−1)×B−n+1

n(n−1)

B
n +(n−1)×B−n+1

n(n−1)

=

(B−n+1)+B−n+1
n

B
n +B−n+1

n

≥ (B−n+1)

2B
n

≈ n/2.

The next two algorithms drop packets with the largest processing requirement in case
of congestion.

Biggest-Packet-Drop (BPD): during the arrival of a packet p with required work w and
output port i, denote by Qj the nonempty queue that contains a packet pmax with the

Essential Traffic Parameters for Shared Memory Switch Performance 67

Fig. 1. A sample time slot of Longest Queue Drop (LQD), Biggest Packet Drop (BPD), Biggest
Average Drop (BAD), and Largest Work Drop (LWD) policies with maximal processing k = 4,
n = 4 output ports, and a shared buffer of size B = 8. Queues for each output port are shown
horizontally. Shaded packets are dropped during arrival.

largest processing requirement wmax; then do the following: (1) if the buffer is not full,
accept p into Qi; (2) if the buffer is full and w < wmax, push out pmax from Qj and
accept p into Qi; (3) if the buffer is full and w > wmax, drop p.

Biggest-Average-Drop (BAD): during the arrival of a packet p with required work w
and output port i, denote by Qj the nonempty queue with largest average processing
requirement w̄max; then do the following: (1) if the buffer is not full, accept p into Qi;
(2) if the buffer is full and w < w̄max, push out packet with maximal work from Qj

and accept p into Qi; (3) if the buffer is full and w > w̄max, drop p.

Theorem 2. BPD and BAD are both at least (n+ 1)/2-competitive.

Proof. The counterexample is as follows: every time slot, there arrive B × 1 | 1 fol-

lowed by B× 2 | 2 , . . . , B× 2 | n (a full set of packets); BPD and BAD both accept

only B× 1 | 1 and keep processing one packet per time slot, i.e., 2 packets per 2 time

slots, while OPT is free to accept the packets evenly and get 2+2/2+ . . .+2/2 packets
per 2 time slots, getting the bound as n+1

2 .

Largest-Work-Drop (LWD): during the arrival of a packet p with output port i and
required processing w, denote by j∗ = arg maxj{Wj + �i=jw} where �i=j = 1 if
i = j and 0 otherwise, and Wj is the total required processing of all packets in queue
Qj (i.e., Qj∗ is the queue with the largest total required processing once we virtually
add p to Qi; we choose the one with the largest single packet if there are several queues
with largest work); then do the following: (1) if the buffer is not full, accept p into
Qi; (2) if the buffer is full and w is smaller than the required processing of at least one
packet in Qi, push out the largest packet from Qj∗ and accept p into Qi; else drop p.

Theorem 3. LWD with FIFO processing order is at least (logB/n k)(1 − n/B) + 1-
competitive.

Proof. Consider LWD with n output ports and suppose that n divides B. Let a = B/n.

For every output port i, there arrive 1 × k | i followed by (a − 1) × k/a | i . OPT

discards k | i and accepts all k/a | i . After (a − 1)k/a processing steps, LWD has

a × k/a | i in every queue and has not yet transmitted any packets, while OPT has

68 P. Eugster et al.

transmitted all (a − 1) packets. The next arrival is (a − 1) × k/a2 | i for every i.

Since the processing order is FIFO, after accepting all these packets LWD has k/a | i
as HOL (head of line packet) followed by (a − 1) × k/a2 | i and OPT has only

(a − 1) × k/a2 | i in every queue. After (a − 1)k/a2 processing steps, LWD has

a × k/a2 | i in each queue and has not yet transmitted any packets, but OPT has

transmitted all (a − 1) packets. Next we repeat the above arrival sequence for packets
of size k/a3, . . . , k/am, until k/am = 1, i.e., for loga(k) steps. On every step, OPT

transmits (a−1)×n packets and LWD transmits nothing. After all these steps, a× 1 | i
has arrived in every queue, so after a processing cycles both OPT and LWD transmit
B packets and finish with empty buffers. Thus, the total number of packets that LWD
transmits is B, and the total number of packets transmitted by OPT is n(a−1) loga k+

B, getting the ratio n·((a−1) loga k)
B + 1. Recall that we had a = B/n, so the final ratio

is
n·(B/n−1) logB/n k

B + 1 = (logB/n k)(1 − n/B) + 1.

5 Scheduling with Heterogeneous Processing

To avoid ambiguity during the arrival phase, a reference time t should be interpreted as
the arrival of a single packet. If several packets arrive at the same time slot, we consider
them independently, in the sequence in which they arrive. A time slot is divided into
time units; arrival of each packet is a separate time unit (so the arrival phase takes up
several time units), while processing and transmission phases both use only a single
time unit (we do not separate them). We introduce the class of semi-greedy algorithms
SG. A semi-greedy algorithm G ∈ SG accepts a packet if G’s buffer is not full; G is
defined by an iteration. An iteration begins during the first time unit ts when G’s buffer
is congested and ends on the first time unit te when G has transmitted at least B packets
since ts. To simplify analysis, G drops the content of its buffer at the end of an iteration
at time td, te ≤ td < te + 1, without gain to its throughput; in this section we show an
upper bound, so weakening the algorithm only makes things worse for us.

In what follows we consider an artificially enhanced version of OPT: (1) OPT never
pushes out admitted packets (since OPT is offline, it is clear that this property can be
satisfied); (2) at the end of an iteration, OPT flushes out all packets residing in its buffer
with extra gain to its throughput (in this case, the throughput of OPT is no worse than
any other optimal algorithm); (3) if at time t G transmits out of port i, the first packet
q (in PQ order) is transmitted out of the i-th port of OPT (if q exists) regardless of its
remaining work value rt(q) with extra gain to OPT’s throughput (again, clearly we only
make OPT better). Note that by definition, for a given sequence of inputs all algorithms
in SG with the same processing order accept and transmit the same number of packets
between starting with an empty buffer and the first moment of congestion. With PQ
processing order, moreover, no algorithm can transmit more packets from this sequence
over this time. And, by definition, at the end of an iteration an SG algorithm has an
empty buffer. The difference in the number of packets remaining at the end of an iter-
ation (just before td) is irrelevant since all these packets are dropped at time td. Since

Essential Traffic Parameters for Shared Memory Switch Performance 69

during [ts, td) any semi-greedy algorithm G transmits B plus at most n − 1 packets,
dropping all buffered packets at time td adds at most 1 to the competitiveness of G. The
general idea of our analysis here is similar to [27] but the definition of an iteration and
the analysis of what happens during an iteration and between two consecutive iterations
are completely new. We denote by tb the first time unit after the end of a previous iter-
ation or the time unit of the first arrival in the system. Since a semi-greedy G and OPT
both clean their buffers at time td, it suffices to compare performance of G versus OPT
only during [tb, te]. The class of semi-greedy algorithms is based on a well-structured
accounting infrastructure that significantly simplifies analysis of online buffer manage-
ment policies with various characteristics. The major question that we will soon answer
is: is there a policy with a constant competitiveness in the model where each packet
has both required processing and output port (admission of heterogeneous packets to
the same queue is allowed)? Note that the processing order implemented in each queue
has significant impact on the performance of a scheduling policy. We assume that every
queue implements priority queueing (PQ), where all packets in the same queue are or-
dered in non-decreasing order of required processing. For simplicity, we denote queue
Qi of an algorithm ALG by Ai, where A is the the first letter of the name of the consid-
ered algorithm (e.g,Oi andGi are the i-th queue of OPT and a semi-greedyG). We treat
queues as ordered sets in the sense of Lemma 1 and correspondingly write Ai ≤ Bi for
two queues if for every slot in the queue where both Ai and Bi have packets pA and pB
respectively, w(pA) ≤ w(pB).

The latency latAt (p) of a packet p ∈ Ai at time t is the number of time slots currently
needed to transmit p out of Ai. We define the latency of an already transmitted packet
as −1 and the latency of a packet that has not yet arrived as ∞. An i-th port or queue of
ALG’s buffer is called active at time unit t if it transmits during t; otherwise, it is called
idle. To show that OPT does not transmit more packets than a semi-greedy algorithm G
during [tb, ts), we formulate the following lemma (proven in the Appendix). Actually,
we prove an even stronger result that will be used in the proof of the key Lemma 3. Con-
sider an interval of time I , I ⊆ [tb, td). We denote by SA

I the set of packets transmitted
by an algorithm A during I .

Lemma 2. For a semi-greedy algorithmG with PQ processing and time unit t ∈ [tb, ts)
between two consecutive iterations, (1) SOPT

[tb,t]
≤ SG

[tb,t]
; (2) for any i ∈ [1, n], at time t

Gi ≤ Oi and |Gi| ≥ |Oi|.
Proof. The proof proceeds by induction on the number of time units. Base: During the
first arrival of a packet p to Qi at time tb, since G is greedy,G accepts p, so the induction
base follows. Hypothesis: Assume that the lemma holds during [tb, t), t ∈ [tb, ts − 1].
Step: We are to show that the lemma holds during t.

Processing and Transmission: the induction step holds by induction hypothesis for
all empty queues or queues with head-of-line packet whose remaining processing is at
least one. Consider any active queue Qj in OPT or G, 1 ≤ j ≤ n. If both Oj and Gj

are nonempty just before t, by the induction hypothesis we have Oj [1] ≥ Gj [1]. If Gj

is active at time unit t + 1, then by definition of OPT (property (3)) Oj is also active
(even if there are additional processing cycles in the HOL packet), and the induction
step follows.

70 P. Eugster et al.

A Packet p Arrives to Qi: during the arrival phase, the number of transmitted packets
is unchanged, so condition (1) follows. Since there is no congestion during [tb, ts), G
accepts all arrivals. By the induction hypothesis, at the end of time unit t − 1 we had
Gi ≤ Oi and |Gi| ≥ |Oi|. Thus, if OPT accepts (G accepts since G is greedy and
there is no congestion between two consecutive iterations), by Lemma 1(ii) condition
(2) follows at time unit t. If OPT does not accept p to Oi, condition (2) follows by
Corollary 1(ii).

Note that due to property (3) in the definition of OPT, at this point it is unclear if
our version of OPT can transmit more packets than a semi-greedy G during [tb, ts), and
theoretically it can happen, so we have to prove (1) in Lemma 2. Part (2) of Lemma 2
will be used in the proof of Lemma 3.

The Largest Work Drop (LWD) policy belongs to the SG class. The rationale behind
LWD is to minimize the duration of an iteration. It can be done by optimizing a “local”
state of LWD buffer, and that is why we suggest to drop packets from a queue with
the largest total required processing. Our plan is as follows. By Lemma 2, between two
consecutive iterations OPT does not transmit more than LWD. We denote by T the
number of packets transmitted by LWD between two consecutive iterations. Later we
are to show that during [ts, td) LWD transmits B packets no later than OPT transmits
B packets. Since at td OPT contains at most B packets, during [tb, te] OPT transmits
at most T + 2B, whereas LWD transmits T + B packets. For any time interval I ′ =
[ts − 1, t], t ∈ [ts − 1, td), during an iteration we say that B − SLWD

I′ packets with
minimal latency in LWD buffer are colored in red; any other packet in LWD buffer
is colored in white. Note that packets that ceased to be red are immediately recolored
in white again. We denote by Ri the set of all red packets in Li. Lemma 3 contains
the main ideas of this upper bound; due to space constraints, its proof is given in the
Appendix.

Observation 4. If a packet pj ∈ Li is red then every pl ∈ Li is red for l ∈ [1, j − 1].

Lemma 3. For every OPT packet pj ∈ Oi, j ∈ [1, |Oi|] and i ∈ [1, n], at time unit
t ∈ (ts, te) either (1) there is a red packet qj ∈ Li, rt(pj) ≥ rt(qj) (Ri ≤ Oi), or (2)
for any red packet q at LWD buffer, rt(pj) +W (Ri) ≥ latt(q).

Proof. The proof is by induction on time units. Base: Consider time unit ts − 1. By
definition of iteration, at the end of ts − 1 LWD’s buffer is full. Since LWD is semi-
greedy, by Lemma 2 at time ts−1Li ≤ Oi and, therefore,Ri ≤ Oi for every i ∈ [1, n].
Thus, the induction base follows. Hypothesis: Assume that the lemma holds for every
time unit t′ ∈ [ts−1, t), t < td. We are to show that it holds at the t-th time unit.

Induction step. Processing and Transmission: suppose that the t-th time unit is
devoted to processing all HOL packets and transmitting fully processed packets. In this
case, either every nonempty queue Lj is active (in this case Oj is active too regardless
of how many processing cycles remains in HOL packet of Oj by definition of OPT
(property (3))) or the processing cycles of HOL packets of Li and Oi are decreased by
one. Assume that during t ∈ (ts, te), Oj is active and transmits a packet p; while Li

is idle. In this case by condition (2) LWD’s buffer does not contain any red packet that
means the iteration is already over, hence, t ≥ te, which is a contradiction.

Essential Traffic Parameters for Shared Memory Switch Performance 71

Arrival of a Packet p to Qi: Note that if OPT accepts p, its buffer has free space since
by definition OPT never pushes out already accepted packets.

OPT and LWD Reject p: The induction hypothesis holds at time t.

OPT Accepts p, but LWD Rejects: LWD’s buffer is congested. Furthermore, since p
is rejected by LWD, its required processing exceeds that of any packet in Li. Suppose
that p is at the l’s position in Oi after acceptance, l ≤ |Oi|. If ql ∈ Li is red, condition
(1) holds (the required processing of p is at least the required processing of any packet
in Li, including all red packets in Li). If ql ∈ Li is white or l > |Li|, assume that
there is a red packet whose latency is more than rt(p) + W (Ri). If l > |Li|, rt(p) +
W (Ri) = rt(p) + W (Li) that is (by definition of LWD) at least W (Lj) since p is
rejected. Thus, condition (2) holds. If ql ∈ Li is white then rt(ql) +W (Ri) ≥ W (Rj),
for any j ∈ [1, n] (by definition of red packet); rt(ql) ≤ rt(p) (otherwise, LWD will
not drop p). Therefore, condition (2) holds, and the induction hypothesis holds too.

OPT and LWD Accept p: 1. If rt(p) is less than at least one red packet in Li then
p is recolored in red and the last red packet in Li is recolored in white. Since no new
red packets are added to the queues other than Li, condition (1) holds in these queues.
By Theorem 1(i), condition (1) holds for any red packet in Ri. Next we show that
condition (2) continues to hold for any OPT packet that is not covered by condition (1).
Since the maximal latency among red packets does not increase for any queue except
j, condition (2) holds. Consider a packet ul ∈ Oj corresponding to ql recolored from
red to white; by condition (1) of the induction hypothesis, rt(ul) ≥ rt(ql). Therefore,
rt(ul) +W (Rj) ≥ rt(ql) +W (Rj), and (2) holds.

2. If the value of rt(p) is at least the required processing of any red packet in Li then
if rt(p) +W (Ri) is less than the latency of some red packet in LWD’s buffer, recolor p
in red, but the red packet ql with a maximal latency in LWD’s buffer recolor in white.
Otherwise, p remains white.

If p is white then condition (1) follows by induction hypothesis. Since p is white,
rt(p)+W (Ri) is at least the latency of any red packet in LWD’s buffer (otherwise, p is
recolored in red). If p is recolored in red, condition (2) follows similar to case 1.Since
only Qi is affected, condition (1) is satisfied for any Qm, m �= i and holds for Qi by
Lemma 1(ii).

OPT Rejects, LWD Accepts: 1. Consider the case when LWD’s buffer is not congested.
(i) If rt(p) is at least the remaining processing of some white packet in Qi, the set of
the red packets is not changed. Also since OPT rejects p the set of OPT’s packets is not
changed also. Hence, conditions (1) and (2) hold. (ii) Otherwise, if rt(p) + W (Ri) is
less than the latency of the red packet q with a maximal latency in LWD’s buffer then
recolor p in red and q in white. Denote by p an OPT packet in the position |Ri| + 1 of
Oi. If |Oi| > |Ri| just before p is arrived, rt(p) +W (Ri) is more than the latency of q.
Hence, rt(p)+W (Ri) > rt(p)+W (Ri) and therefore, rt(p) > rt(p). Thus, condition
(1) holds. Condition (2) holds similar to case 1.2. LWD’s buffer is congested. If a white
packet is pushed out, we can drop it and run the case when the congestion did not occur
as in case 1. If the pushed out packet is red then recolor a new packet p in red and apply
case (ii).

The main result of this section is the following theorem (see proof in Appendix).

72 P. Eugster et al.

Theorem 5. For a shared memory n × n switch with a buffer B, LWD is at most 1 +
B

T+B -competitive, where T is the minimal number of packets transmitted between any
two consecutive iterations.

Proof. By Lemma 3, during (ts, te) OPT cannot transmit more packets than LWD. Note
that during te it is possible that OPT transmits L more packets than LWD, 0 ≤ L < N .
By definition of OPT, at the end of an iteration OPT gets all remaining B − L packets
for free, and its buffer is empty. By Lemma 2, between two consecutive iterations OPT
cannot transmit more than LWD. So if OPT transmits T ≥ 0 packets between two
consecutive iterations, P packets during the iteration, the OPT’s throughput is at most
T + P + B − L = T + 2B, whereas LWD transmits T + P − L = T + B. Thus,
LWD is at most 1 + B

T+B -competitive.

6 Scheduling with Heterogeneous Values

In this section, we consider a model with values: each incoming packet has an output
port from 1 to n and an intrinsic value from 1 to V ; in this model all packets have
uniform processing requirements. The objective is to maximize the total transmitted
value. Similar to the model with heterogeneous processing requirements, the work [15]

showed that in the model with values LQD is at least
(

3
√
k − o

(
3
√
k
))

-competitive. In

Section 5, we have shown that LWD with PQ processing is 2-competitive in the model
with heterogeneous processing requirements. Therefore, we begin with LWD’s counter-
part for this model: the Minimal-Total-Value-Drop policy (MTVD) that has packets in
each queue sorted in non-increasing order of values; MTVD tries to process and trans-
mit packets with maximal value first but in case of congestion MTVD drops a packet
with minimal value. Proofs of all results in this section can be found in the Appendix.

Minimal-Total-Value-Drop (MTVD): during the arrival of a packet p with output port
i and value v, (1) if the buffer is not full, accept p into Qi; (2) if the buffer is full and
v exceeds the minimal value of some packet, push out a packet with the smallest value
from the buffer and accept p into Qi; else drop p.

For a single queue, MTVD is optimal by reasoning similar to LWD. Unfortunately,
this does not generalize to the shared memory switch, as the following theorem shows.

Theorem 6. The Minimal-Total-Value-Drop (MTVD) algorithm is at least V n−(n−1)
V -

competitive in the model with values (this is n− o(n) unless V = o(n)).

Proof. In the first burst, there arrive B packets with value V for output port 1 and B
packets with value V − 1 for every other output port 2..n. MTVD accepts B packets to
the first queue, while OPT accepts B/n packets to each queue. In B/n steps, MTVD
will have transmitted total value BV/n, while OPT will have transmitted total value
(V + (V − 1)(n− 1))B/n, and the first burst repeats, getting the bound.

Theorem 6 shows that in the model with values the total value characteristic is in-
sufficient and additional parameters should be included if an “ideal” online policy that
achieves a constant competitiveness exists. This is why the work [15] introduced the

Essential Traffic Parameters for Shared Memory Switch Performance 73

Maximal-Ratio-Drop policy that considers both buffer occupancy and values as a po-
tential policy that achieves constant competitiveness.

Maximal-Ratio-Drop (MRD): during the arrival of a packet p with output port i and
value v, denote j∗ = arg maxj{|Qj|/Vj}, where Vj is the total value of packets in
queue j and |Qj | is the queue length; then: (1) if buffer is not full, accept p into Qi;
(2) if buffer is full and v exceeds the minimal value of a packet from queue Qj∗ , push
out a packet from Qj∗ with minimal value and accept p into Qi; else drop p.

Theorem 7. The Maximal-Ratio-Drop (MRD) algorithm is at least V -competitive if
n ≥ B − V 2 + 1.

Proof. In the first burst, there arrive 2(m−1) packets of value 1 destined to output ports
[1,m− 1], 2 packets per port, followed by B packets of value V destined to output port
m, where B > V is the buffer size and m = B − V 2 + 1. OPT accepts only packets
of value V accruing the total value of BV . On the other hand, MRD accepts just V
packets of value V at which point the ratio of the length to the average value becomes
1 and it retains m− 1 packets of value 1 gaining the total value of V 2 +m− 1. Thus,
the competitive ratio of MRD is BV

V 2+m−1 = V .

Unfortunately, the MRD example shows that even both values and buffer occupancy
together are not enough to achieve constant competitiveness. As a result, we are more
pessimistic regarding the existence of a policy in this model with constant competitive-
ness (the open problem posed in SIGACT News [18, p. 22]).

7 Conclusion

Over the recent years, there has been a growing interest in understanding the impact
of buffer architecture on network performance. The needs and (bursty) behavior of
many modern data center applications further add incentive to fill this knowledge gap.
In this work, we study the tradeoffs inevitable on the path to a “perfect” policy in a
shared memory switch, both analytically and with simulations. Recent research advo-
cates smaller buffers in routers, aiming to reduce queueing delay in the presence of
(mostly) TCP traffic; however, it sidesteps the issue that as buffers get smaller, the ef-
fect of processing delay becomes much more pronounced. The majority of currently
deployed admission control policies do not take into account (at least explicitly) the
importance of heterogeneous packet processing. In this work, we study the impact
of heterogeneous processing on throughput in the shared memory switch architecture.
We demonstrate that policies attractive under uniform processing requirements perform
poorly in the worst case, which provides new insights to the practice of admission con-
trol policies. Our main result is a constant upper bound on the competitiveness of the
LWD policy that drops packets from the queues with largest total processing in case
of congestion; this is a significant improvement over [15], as our generalized model
requires different proof methods. In addition, we consider a model with heterogeneous
packet values and provide preliminary results on whether a policy with constant compet-
itiveness can exist. Simulations confirm our analytical findings and in particular demon-
strate the relevance of worst-case analysis results for understanding overall (average)
performance.

74 P. Eugster et al.

References

1. Aiello, W., Kesselman, A., Mansour, Y.: Competitive buffer management for shared-memory
switches. ACM Transactions on Algorithms 5(1) (2008)

2. Aiello, W., Mansour, Y., Rajagopolan, S., Rosén, A.: Competitive queue policies for differ-
entiated services. J. Algorithms 55(2), 113–141 (2005)

3. Albers, S., Schmidt, M.: On the performance of greedy algorithms in packet buffering. SIAM
Journal on Computing 35(2), 278–304 (2005)

4. Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K., Fingerhut, A., Lam,
V.T., Matus, F., Pan, R., Yadav, N., Varghese, G.: CONGA: distributed congestion-aware load
balancing for datacenters. In: ACM SIGCOMM 2014 Conference, pp. 503–514 (2014)

5. Azar, Y., Litichevskey, A.: Maximizing throughput in multi-queue switches. Algorith-
mica 45(1), 69–90 (2006)

6. Azar, Y., Richter, Y.: An improved algorithm for CIOQ switches. ACM Transactions on
Algorithms 2(2), 282–295 (2006)

7. BBC News. US Watchdog to Propose New Net Neutrality Rules (2014).
http://www.bbc.com/news/technology-27141121.

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge Uni-
versity Press (1998)

9. Feng, W.C., Kandlur, D.D., Saha, D., Shin, K.G.: Stochastic fair blue: A queue management
algorithm for enforcing fairness. In: INFOCOM, pp. 1520–1529 (2001)

10. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with varys. In: SIG-
COMM, pp. 443–454 (2014)

11. Chuprikov, P., Nikolenko, S.I., Kogan, K.: Priority queueing with multiple packet character-
istics. In: INFOCOM, pp. 1–9 (2015)

12. Costa, P., Donnelly, A., Rowstron, A.I.T., O’Shea, G.: Camdoop: Exploiting in-network ag-
gregation for big data applications. In: Proc. 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 2012), pp. 29–42 (2012)

13. Das, S., Sankar, R.: Broadcom smart-buffer technology in data center switches for cost-
effective performance scaling of cloud applications (2012).
https://www.broadcom.com/collateral/etp/SBT-ETP100.pdf

14. Englert, M., Westermann, M.: Lower and upper bounds on FIFO buffer management in QoS
switches. Algorithmica 53(4), 523–548 (2009)

15. Eugster, P., Kogan, K., Nikolenko, S., Sirotkin, A.: Shared memory buffer management for
heterogeneous packet processing. In: ICDCS (2014)

16. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance,
pp. 397–413 (1993)

17. CAIDA The Cooperative Association for Internet Data Analysis.
http://www.caida.org/

18. Goldwasser, M.: A survey of buffer management policies for packet switches. SIGACT
News 41(1), 100–128 (2010)

19. Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., Wattenhofer, R.:
Achieving high utilization with software-driven WAN. In: ACM SIGCOMM 2013 Confer-
ence, pp. 15–26 (2013)

20. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer,
J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4: experience with a
globally-deployed software defined wan. In: ACM SIGCOMM 2013 Conference, pp. 3–14
(2013)

21. Keslassy, I., Kogan, K., Scalosub, G., Segal, M.: Providing performance guarantees in mul-
tipass network processors. IEEE/ACM Trans. Netw. 20(6), 1895–1909 (2012)

http://www.bbc.com/news/technology-27141121
https://www.broadcom.com/collateral/etp/SBT-ETP100.pdf
http://www.caida.org/

Essential Traffic Parameters for Shared Memory Switch Performance 75

22. Kesselman, A., Kogan, K., Segal, M.: Packet mode and QoS algorithms for buffered crossbar
switches with FIFO queuing. Distributed Computing 23(3), 163–175 (2010)

23. Kesselman, A., Kogan, K., Segal, M.: Improved competitive performance bounds for CIOQ
switches. Algorithmica 63(1-2), 411–424 (2012)

24. Kesselman, A., Kogan, K., Segal, M.: Best Effort and Priority Queuing Policies for Buffered
Crossbar Switches. Chicago Journal of Theoretical Computer Science (2012)

25. Kesselman, A., Kogan, K.: Nonpreemptive Scheduling of Optical Switches. IEEE Transac-
tions on Communications 55(6), 1212–1219 (2007)

26. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko, M.: Buffer
overflow management in QoS switches. SIAM Journal on Computing 33(3), 563–583 (2004)

27. Kesselman, A., Mansour, Y.: Harmonic buffer management policy for shared memory
switches. Theor. Comput. Sci. 324(2-3), 161–182 (2004)

28. Kogan, K., López-Ortiz, A., Nikolenko, S., Scalosub, G., Segal, M.: Large profits or fast
gains: A dilemma in maximizing throughput with applications to network processors. CoRR,
abs/1202.5755 (2013)

29. Kogan, K., López-Ortiz, A., Nikolenko, S., Sirotkin, A.: Multi-queued network processors
for packets with heterogeneous processing requirements. In: COMSNETS, pp. 1–10 (2013)

30. Kogan, K., López-Ortiz, A., Nikolenko, S., Scalosub, G., Segal, M.: Balancing work and size
with bounded buffers. In: COMSNETS, pp. 1–8 (2014)

31. Kogan, K., López-Ortiz, A., Nikolenko, S.I., Sirotkin, A.V., Tugaryov, D.: FIFO queue-
ing policies for packets with heterogeneous processing. In: Even, G., Rawitz, D. (eds.)
MedAlg 2012. LNCS, vol. 7659, pp. 248–260. Springer, Heidelberg (2012)

32. Kogan, K., López-Ortiz, A., Nikolenko, S., Sirotkin, A.: A taxonomy of semi-FIFO policies.
In: IPCCC, pp. 295–304 (2012)

33. Kogan, K., Nikolenko, S., Keshav, S., López-Ortiz, A.: Efficient demand assignment in multi-
connected microgrids with a shared central grid. In: SustainIT, pp. 1–5 (2013)

34. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-time streams.
Distributed Computing 17(1), 77–89 (2004)

35. Nikolenko, S.I., Kogan, K.: Single and multiple buffer processing. In: Encyclopedia of Al-
gorithms. Springer (2015)

36. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communi-
cations of the ACM 28(2), 202–208 (1985)

37. Yang, H.-C., Dasdan, A., Hsiao, R.-L., Parker Jr., D.S.: Map-reduce-merge: simplified rela-
tional data processing on large clusters. In: Proc. ACM SIGMOD International Conference
on Management of Data, pp. 1029–1040 (2007)

38. Yu, Y., Gunda, P.K., Isard, M.: Distributed aggregation for data-parallel computing: inter-
faces and implementations. In: SOSP, pp. 247–260 (2009)

Scheduling Multipacket Frames
with Frame Deadlines�

�Lukasz Jeż1,2, Yishay Mansour3,4, and Boaz Patt-Shamir5

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Institute of Computer Science, University of Wroc�law, Wroc�law, Poland

3 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
4 Microsoft Research, Hertezelia, Israel

5 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

Abstract. We consider scheduling information units called frames, each
with a delivery deadline. Frames consist of packets, which arrive on-line
in a roughly-periodic fashion, and compete on allocation of transmis-
sion slots. A frame is deemed useful only if all its packets are delivered
before its deadline. Using standard techniques, one can derive polylog-
competitive algorithms for this model; in this paper we study special
cases which allow for better results. Specifically, we present constant-
competitive algorithms for two important cases: in one, the value of a
frame is proportional to its size and all frames have (roughly) the same
period, and in the other, each frame may have its own period but all
frames have the same value and size. The former result also implies bet-
ter polylog-competitive algorithm for the general case.

1 Introduction

In many networking settings the ingress flows to the network has a nice periodic,
or almost periodic, structure. The network would like to guarantee the flows a
pre-specified Quality of Service (QoS), where one of the most basic QoS guar-
antees is a deadline by which the transfer would be completed. The uncertainty
regarding the arrival of future flows motivates the online setting. We study this
setting from the competitive analysis viewpoint. Let us start by giving a few
motivating examples.

Consider a switch with multiple incoming video streaming flows competing
for the same output link. Each flow consists of frames, and each frame consists
of a variable number of packets. The video source is completely periodic, but due
� The 1st author is partially supported by the NWO Vidi grant 639.022.211, the

Israeli Centers of Research Excellence (I-CORE) program, Center No.4/11, and the
Polish National Science Center (NCN) Grant DEC-2013/09/B/ST6/01538. The 2nd
author is partially supported by the Israeli Centers of Research Excellence (I-CORE)
program, Center No. 4/11, a grant from the Israel Science Foundation (ISF), and
a grant from United States-Israel Binational Science Foundation (BSF). The 3rd
author is partially supported by the Israel Science Foundation (grant No. 1444/14)
and by a grant from Israel Ministry of Science and Technology. This work was carried
out while the first author was visiting Tel Aviv University.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 76–90, 2015.
DOI: 10.1007/978-3-319-25258-2_6

Scheduling Multipacket Frames with Frame Deadlines 77

to compression, different frames may consist of a different number of packets.
On top of that, asynchronous network transfer typically adds some jitter, so the
input at the switch is only approximately periodic. In order for a frame to be
useful, all its packets must be delivered before the frame’s deadline. A frame is
considered completed if all its packets are delivered before the frame’s deadline,
and the goal of a scheduling algorithm is to maximize the number of completed
frames. Partially completed frames are considered worthless.

As another example, consider a Voice over IP (VoIP) setting. Voice calls gen-
erate samples at a relatively fast rate. Samples are wrapped in packets which
are aggregated in logical frames with lower-granularity deadlines. Frames dead-
lines are more lax due to the tolerance of the human ear. Completed frames
are reconstructed and replayed at the receiver’s side; incomplete frames are dis-
carded, resulting in an audible interruption (click) of the call. Our focus is on
an oversubscribed link on the path of many such calls.

As a last example, consider a database (or data center) engaged in transferring
truly huge files (e.g., petabytes of data) for replication purposes. It is common in
such a scenario that the transfer must be completed by a certain given deadline.
Typically, the transmission of such files is done piecemeal by breaking the file into
smaller units, which are transmitted periodically so as to avoid overwhelming the
network resources. We are interested in scenarios where multiple such transfers
cross a common congested link.

Motivated by the above examples, we define the following abstract model.
There are data units called frames, each with a deadline and a value. Each frame
consists of several packets. Time is slotted. Packets arrive in an approximately
periodic rate at a link, and can be transmitted (served) one packet at a step.
A scheduling algorithm needs to decide which packet to transmit at each time
slot. The goal of the algorithm is to maximize the total value of delivered frames,
where a frame is considered delivered only if all its packets are transmitted before
the frame’s deadline.

The scheduling algorithm may be preemptive or non-preemptive. An algorithm
is called non-preemptive if any packet it transmits belongs to a frame which is
eventually delivered, whereas a preemptive algorithm may transmit a packet
from some frame but later decide not to complete that frame.

Our performance measure is the competitive ratio, i.e., the worst case ratio
between the value delivered by the online algorithm and the best possible value
that can be delivered by an optimal (offline) schedule for a given arrival sequence.

Our Approach and Results. Our model assumes that the arrival sequence is
not arbitrary. Studying restricted instance classes and/or adversaries is com-
mon, and related work typically assumes specific order of frames and packets
or restricted bursts. Instead, we assume that once the first packet of a frame
arrives, the arrival times of the remaining packets are predictable within a
given bounded jitter. Under this assumption, using the classify and select tech-
nique [1], it is relatively straightforward to guarantee a poly-logarithmic compet-
itive ratio, cf. Section 2.2. The conceptual contribution of this work is to identify
interesting and important special cases where a constant competitive ratio can

78 �L. Jeż, Y. Mansour, and B. Patt-Shamir

be achieved. Moreover, one of them results in improved polylog guarantees for
the general case, cf. Section 3. Technically, the main results in this paper are
constant-competitive, deterministic algorithms for the following cases.
– All frames have (roughly) the same period but arbitrary sizes, where the size

of the frame is the number of its packets. The frame value is its size.
– All frames have the same size but possibly different periods, and they are

perfectly periodic (no jitter, frame deadline determined by its period; cf. Sec-
tion 2). The value of all frames is identical (say, 1).

In fact, the first result is more general: the periods can be arbitrary but the
competitive ratio is proportional to the min-to-max period ratio. (And clearly,
the same holds in general for “densities” of frames, i.e., their value-to-size ratios.)

We also consider similar case (common period, different size) assuming unit
value per frame. By same token, there is a simple randomized algorithm whose
competitive ratio (reciprocal) is logarithmic in the maximum number of packets
in a frame. We show that in this case a few natural algorithms, such as Earliest
Deadline First (EDF) or Shortest Remaining Processing Time (SRPT), cannot
guarantee significantly better competitive ratio.

Related Work. The first multipacket-frame on-line model was introduced in [7],
and further studied in [10]. Emek at al. [3] consider the basic model where the
main difficulty is not deadlines but rather limited buffer space. Their results
express the competitive ratio as a function of the maximum burst size and the
number of packets in a frame. Subsequent work considered extension to the basic
model, including redundancy [8], and hierarchically structured frames [8,10].

Possibly the work closest to ours is [9], which essentially uses the same model,
except that in [9], each packet has its deadline, and the packet arrivals may be
arbitrary (whereas we assume that packets arrive approximately periodically).
It is shown in [9] that the competitive ratio of the problem (both a lower and an
upper bound) is exponential in the number of packets in a frame. One can view
our results as showing that adding the extra assumptions that (1) packet arrival
is approximately periodic, and that (2) the deadlines are per frame rather than
per packet, allows for significantly better competitive ratio, namely constant.

We note that the classic preemptive job scheduling problem of maximizing
(weighted) throughput on a single machine [5,6,2] corresponds to a special case
of the problem we study in which all frames have period 1 and have no jitter.
Thus strong upper bounds (almost tight in the job scheduling problem) follow for
the general setting of our problem if frame values are either unit or arbitrary [2].
However, none of the known results, neither upper nor lower bounds, apply or
easily extend to special cases of our problem motivated by network applications.

Paper Organization: Section 2 introduces the model and a few basic properties.
In Section 3, we study the model where the value of a frame is proportional to its
size. In Section 4, we consider frames with common size and value but different
periods. Section 5 discusses the case of different number of packets for each frame,
assuming unit value and identical period. Some proofs are omitted due to lack of
space.

Scheduling Multipacket Frames with Frame Deadlines 79

2 Model and Preliminary Observations

We consider a standard scheduling model at the ingress of a link. Time is slotted,
packets arrive on-line, and in each time slot at most one packet can be transmit-
ted (meaning implicitly that we assume that all packets have the same length).
The idiosyncrasies of our model are our assumptions about the arrival pattern
and about the way the algorithm is rewarded for delivering packets.

Input: Packets and Frames. The basic entities in our model are frames and
packets. Each frame f consists of kf ∈ N packets, and has a value vf ∈ N. We
assume that packets of frame f arrive with periodicity df and jitter Δf , namely
if packet 1 of f arrives at time t, then packet i ∈ {2, . . . , kf } arrives in the time
interval t + (i − 1)df ± Δf . Each frame f has a slack sf ≥ 1, which determines
the deadline of f (see “output” paragraph below). A frame f is called perfectly
periodic if Δf = 0 and sf = df . The parameters of a frame f (i.e., size kf , value
vf , period df , jitter Δf and slack sf) are made known to the algorithm when
the first packet of f arrives; it is also convenient to introduce a frame’s density,
ρf := vf /kf . We denote the actual arrival time of the i-th packet of frame f ,
for i ∈ {1, . . . , kf }, by ti(f) ∈ N. The arrival time of the first packet of frame f ,
t1(f), is also called the arrival time of f .

We assume that the algorithm knows nothing about a frame f before its
arrival, and even then, it does not know the exact arrival times of the remaining
packets: let τi(f) def= t1(f) + (i − 1)df . Then the guarantee is that the actual
arrival time satisfies that ti(f) ∈ [τi(f) − Δf , τi(f) + Δf] for i > 1.

For a given instance, and a parameter π ∈ {Δ, s, k, d, v, ρ}, we let πmax =
maxf (πf) and πmin = minf (πf), both taken over all frames in the instance, and
extend these to instance classes. We assume that there is a constant c ≥ 0 such
that Δf ≤ c · sf holds for all frames f (cf. Section 2.1 for its necessity).

Output: Delivered Frames. A schedule says which packet is transmitted in each
time step. The deadline of frame f is Df

def= τkf
(f) + Δf + sf , and a frame f is

said to be delivered in a given schedule if all its packets are transmitted before
the frame deadline (we use sf instead of sf − 1 to reduce clutter later.) Given
a schedule, the value delivered by that schedule is the sum of values of frames
delivered by that schedule. A schedule is called work conserving if it always
transmits a packet if some packet is pending .

Algorithms. The duty of an algorithm is to produce a schedule for any given
arrival sequence, and the goal is to maximize the sum of values of delivered
frames. An algorithm is called on-line if its decision at any time t depends only
on the arrivals and transmissions before time t. We assume that the buffer space
is unbounded, which means that the only contention is for the transmission slots.

The competitive ratio of an algorithm A is the worst-case ratio, over all arrival
sequences σ, between the value delivered on σ by A and by the optimal off-line
schedule . Formally, the competitive ratio of A is

ρ(A) def= inf
σ∈M(smax,Δmax)

A(σ)
OPT(σ)

80 �L. Jeż, Y. Mansour, and B. Patt-Shamir

where A(σ) and OPT(σ) denote the gain of A on σ and the optimum gain on
σ respectively, M(smax, Δmax) is the set of arrival sequences with jitter at most
Δmax and slack of at most smax. Note that ρ(A) ∈ [0, 1] by definition.

2.1 On the Relation between s and Δ

Some settings of the parameters are uninteresting. In particular, we observe that
if s � Δ (in words: the slack is much smaller than the input jitter), then one
cannot expect good worst-case performance from any on-line algorithm, even if
all frames have identical period, jitter, slack, value, and size. Specifically, we show
that in such a case, denoting the common frame size by k, every on-line algorithm
has competitive ratio at most O(1/k), and that Ω(1/k)-competitiveness is easily
achievable if k < s (see appendix for proofs).

Theorem 1. No randomized algorithm on instances with all frames of size k,
jitter Δ, slack s, and period d ≥ 2Δ+s has competitive ratio larger than s+2Δ/k

2Δ+s .

Note that Theorem 1 is meaningless for instances with 0 jitter.

Theorem 2. If all frames have size k and each frame f has slack sf > k, then
there exists a 1/(2k)-competitive deterministic on-line algorithm.

Theorems 1 and 2 motivate our assumption that Δf /sf is bounded from above
by a constant: otherwise there is no way to attain a non-trivial competitive ratio.

2.2 Uniform Instances and Polylog Competitiveness

For a tuple Πn = (π1, π2, . . . , πn) of frame parameters, such as size, value, period,
or density, and a set Γn = (γ1, γ2, . . . , γn) of real numbers no smaller than 1,
we call an instance (Π, Γ)-uniform if for every 1 ≤ i ≤ n, the ratio of the max-
to-min value of parameter πi over all frames in the instance is at most γi. In
case of uniform instances, we generally assume that the extreme values of frame
parameters in Π are known to the algorithm. In such case, using the classify and
randomly select paradigm [1] extends any algorithm for nearly uniform instances
to general instances in the following sense.

Lemma 1. Let γ > 1 and let A be a ρ-competitive algorithm for ((π), (γ))-
uniform instances. Then, given a ((π), (γ′))-uniform class of instances I with
πmin and πmax the minimum and maximum values of π in I, B(A, πmin, πmax)
(defined below) is a

(
ρ/(�logγ γ′� + 1)

)
-competitive randomized algorithm for I.

Algorithm B(A, πmin, πmax):
1. Classify each frame f in class

⌊
logγ πf − logγ πmin

⌋
.

2. Randomly select a class i with uniform distribution, and run A on frames of this
class only, discarding packets of frames from all other classes.

Proof. The expected contribution of the chosen class of frames to the optimum
throughput is clearly 1/ξ, where ξ = �logγ γ′� + 1 is the number of classes. �

Scheduling Multipacket Frames with Frame Deadlines 81

Lemma 1 can be applied iteratively over successive parameters, yielding ratio
Ω(1/

∏n
i=1 logγi

γ′
i) for (Πn, Γ ′

n)-uniform instances if only we have a constant-
competitive algorithm for (Πn, Γn)-uniform instances. Fortunately, there is a
simple Ω(1)-competitive deterministic algorithm for instances that are nearly
uniform in terms of frame size, value, and period. As a warm-up, to illustrate
our approach, we state such algorithm instances with no jitter and slack s ≥ dmin.

The state of the algorithm consists of a set of up to dmin active frames, initially
empty. (Recall that dmin, the minimum period of frames in the instance, is known
to the algorithm.) When a new frame arrives, it enters the set of active frames iff
there are strictly less than dmin active frames at the time. A frame remains active
until its deadline. The algorithm transmits available packets of active frames in
FIFO order, and discards all packets of all inactive frames.

Theorem 3. The algorithm above is
((

2·kmax·dmax·vmax
kmin·dmin·vmin

+ 1
)−1

)
-competitive.

Moreover, each packet of an active frame is transmitted within dmin steps of
its arrival.

Proof. We begin with proving that each packet of an active frame is transmitted
within dmin steps of its arrival. Suppose it does not hold, and let p be the first
packet for which it fails. Then p is delayed by at least dmin active packets that
were already in the buffer when it arrived. This implies that there are more than
dmin active packets (counting p as well), so two of them must belong to the same
frame f . This is a contradiction to the choice of p, since the earlier of those
packets could not have been transmitted within df ≥ dmin steps of its arrival.

We prove the competitive ratio by a charging scheme. For simplicity, we ig-
nore frame values: as the worst case is that each frame of OPT has value vmax
whereas each frame of the algorithm vmin, this contributes the vmin

vmax
factor to the

competitive ratio. Firstly, each frame completed by both OPT and the algorithm
is charged to itself. Moreover, each active frame f , accepted at its arrival time
t, provides a credit of (kmin · dmin)−1 to each time slot in [t, Df + kmax · dmax).
Each f thus provides a credit of kf ·df+kmax·dmax

kmin·dmin
≤ 2 · kmax·dmax

kmin·dmin
. Taking the self-

charges into account, this establishes the ratio. It remains to show how frames
completed by OPT but rejected by the algorithm are charged to the credit. Let
f ′ be such frame and t′ be its arrival time. Then each packet of f ′ charges 1/kf ′

to the credit of the time slot in which OPT sends it out. As f ′ is rejected, there
were dmin active frames at time t′, each of them contributing credit to each slot
in [t′, t′ +kmax ·dmax) ⊇ [t′, Df ′). Hence, each slot that f ′ may charge to receives
a credit of at least 1/kmin ≥ 1/kf ′ . The theorem follows. �

In the next section, we give an improved algorithm for instances that may have
(larger) jitter and smaller slack, and that are nearly uniform in frame period and
density. I.e., not only is the class of instances less restrictive in terms of jitter
and slack, but also the extension to general instances via iterative application of
Lemma 1 results in improved competitive ratio. Specifically, rather than losing
a log(vmax/vmin) · log(kmax/kmin) term for value and size parameters, we only

82 �L. Jeż, Y. Mansour, and B. Patt-Shamir

lose a log(ρmax/ρmin) = log(vmax/vmin)+log(kmax/kmin) term in the competitive
ratio, for density, which combines size and value.

3 Similar Periods, Uniform Density

In this section we consider ((d, ρ), (δ, 1))-uniform instances, i.e., with peri-
ods between dmin and dmax = δdmin and uniform density, assumed to be 1.
We give an algorithm with competitive ratio depending on c, δ, and α :=
max{0, Δmax+smax

dmax
− 1)}, i.e., Ω(1)-competitive when all these are bounded by

constants.

3.1 The Algorithm

Our approach is as follows. A packet is said to be of type 1 if it must be trans-
mitted in less than dmin steps since its latest possible arrival time; other packets
are type 2. Type 1 packets are exactly all last packets of frames whose slack is
smaller than dmin. Packets of the two types will be scheduled differently. We ex-
tend these types to frames and let them inherit the types of their last packets. At
every point in time, the algorithm maintains up to dmin/2 active frames. The al-
gorithm guarantees that each type 2 packet of an active frame is delivered within
the dmin steps following its latest possible arrival time. Limiting the number of
active frames makes this invariant easy to maintain using greedy scheduling, but
this cannot be applied to type 1 packets, because these must be transmitted
in fewer than dmin steps after their latest possible arrival. To schedule type 1
packets, the algorithm maintains explicit slot reservations. To make sure that
these do not interfere with type 2 packets, type 1 frames remain (quasi-)active
for a short time after their completion and prevent accepting new type 1 size 1
frames, which could result in delaying type 2 packets too much.

Algorithm Specification. The algorithm maintains a set Act of up to dmin/2
active frames. Each active frame f with sf < dmin has a reserved slot for its last
packet in the interval [τk(f) + Δf , τk(f) + Δf + sf). The algorithm consists of
two subroutines. Subroutine A decides, for each new frame f , whether to add
it to Act or not. In the former case we say that f is accepted, and in the latter
that f is rejected. When a frame f is accepted, the algorithm may remove a
previously active frame f ′ from Act, in which case we say that f ′ is preempted.
For conciseness, Subroutine A always preempts some f ′ when a new frame f
is accepted, but f ′ may be “virtual”, in which case so is the preemption. We
also maintain a set Act1 where active frames of type 1 remain for dmin − 1 steps
after they have been completed. This set, rather than Act, determines whether an
arriving type 1 frame of size 1 is accepted. All packets of non-active frames (those
rejected or preempted) are dropped. Subroutine S schedules packets, deciding
which one to transmit next. The following notions are used in the subroutines:

Scheduling Multipacket Frames with Frame Deadlines 83

Sf
def=

[
τkf

(f) + Δf , τkf
(f) + Δf + sf

)
slack interval of type 1 frame f

Df (i) def= τi(f) + Δf + dmin deadline of packet i of type 2 frame f

If (i) def= [τi(f) + Δf , Df (i)) designated interval of packet i of type 2 frame f

Subroutine A. Upon arrival of a new frame f :
– If f is type 1 and kf = 1 and |Act1| ≥ dmin/2: reject f and return.
– (Otherwise) If f is type 1 (and kf > 1) and all slots in Sf are reserved:

• let f ′ be the smallest frame with a reserved slot in Sf

– Else:
• let f ′ be a virtual type 2 frame of size 0

– If f ′ has size 0 and |Act| ≥ dmin/2, let f ′ be the smallest frame in Act.
– If kf < 2kf ′ : reject f and return
– (Otherwise):

• If f ′ is type 1, remove f ′ from Act1 and cancel its reservation for last packet
• If f is type 1, add it to Act1 and make a reservation for its last packet in Sf

• remove f ′ (if real) from Act, add f to Act, and return

Subroutine S. In each step t:
– If slot t is reserved for the last packet p of a frame f :

• remove f from Act now and mark it for deletion from Act1 at time t + dmin
• transmit p and return

– Else:
• let p be the earliest deadline packet in {packet i of f | f ∈ Act ∧ t ∈ If (i)}
• if p is the last packet of a frame f , remove f from Act
• transmit p and return

3.2 Analysis

Intuitively, the analysis is an extension of Theorem 3, whose two claims corre-
spond to Theorem 4 and Lemma 2 respectively. Proving these is somewhat more
involved: the latter due to the extra constraints and special treatment of type 1
packets, and the former due to varying sizes (and values) of frames.

Lemma 2. Every packet p of an active frame is sent out during its reserved slot
if it is type 1 or during its designated interval I if it is type 2.

To analyze the competitive ratio, we define chains of frames inductively as
follows. Each completed frame f is in a distinct chain Cf , and if a frame f ′ was

84 �L. Jeż, Y. Mansour, and B. Patt-Shamir

preempted by a frame f , and f is in a chain C, then f ′ belongs to C as well,
preceding f in it. All chains start with a frame that did not preempt any other
frame, and end with a frame that was not preempted. We note that our chains
are virtually the same as in the analyses of online interval scheduling [11,4], and
part of our analysis is reminiscent of those.

The high level overview of the charging scheme is as follows. There are three
kinds of charges: a self-charge of f to itself if both OPT and the algorithm
completed it and two further kinds of charges for the frames completed only
by OPT. Here, we distinguish the cause of rejection. If f is a type 2 frame or
a type 1 frames of size 1, it has been rejected due to too many active frames
in Act and Act1 respectively. Then each active frame from the respective set
had at least half the size of f , so f can be charged to any of such frames. If f
is type 1 of size greater than 1, then f has been rejected due to lack of slots
for its last packet in Sf . Namely, each slot in Sf was reserved for a last packet
of another frame of at least half f ’s size, since otherwise f would preempt the
smallest of those. Thus f can be charged to one of those frames. Note that in
both cases the frame we charge to may not be completed by the algorithm in
the end. But as it is a part of some chain, and frame sizes in a chain increase
geometrically, all charges can be relayed to the last frames of chains, which the
algorithm completes. For both kinds of charges, we show that globally there are
sufficiently many active frames to be charged, rather than identify a particular
active frame to be charged. To this end, both charges are towards a “credit” that
the chain(s) provide, and in the end, this credit is charged to the last frame of
a chain. We note that the jitter of last packets of frames effectively contribute
to the frame sizes; as the jitter does not scale with frame size, the maximum
effective sizes of frames preceding the last one in a chain do not form an exact
geometric progression.

Theorem 4. The algorithm is (2 (5 + 2c + 4δ + 2αδ))−1-competitive.

Proof. We define chains of frames. Each completed frame f defines a chain Cf

that ends with f . Moreover, if a frame f that belongs to a chain C preempted
a frame f ′, then f ′ belongs to C as well, preceding f in it; if f did not preempt
any frame, then the chain C starts with f .

Let us now define the credits associated with chains. For a given chain C,
let f ′

C and fC denote its first and last frame respectively, and let T(fC) denote
the time fC was removed from both Act and Act1. In other words, T(fC) is
the completion time of fC if it is type 2, or its completion time plus dmin −
1 if it is type 1. We give a credit of 2/dmin to all time slots since the ar-
rival of f ′

C until 2(kfC − 1)dmax + Δmax + smax time slots past T (fC), i.e., to
[t1(f ′

C), T (fC) + 2(kfC − 1)dmax + (Δmax + smax)). We stress that the credits
granted to a time slot from different chains add up.

We are now ready to describe the preliminary charging scheme, i.e., the
charges that are later relayed to last frames of chains. Let f be a frame de-
livered by OPT. The charging is as follows:

Scheduling Multipacket Frames with Frame Deadlines 85

1. If f was accepted by the algorithm, f is charged to itself.
2. If f was rejected by the algorithm due to lack of slot for its last packet, f is

charged to the frames that prevented its acceptance; details are given later.
3. If f was rejected by the algorithm due to too many active frames, f is charged

as follows: for each packet p of f , charge p to the credit associated with the
time slot in which OPT sends p. Each such slot has a credit of at least 1:
When f arrived at time t1(f), the algorithm had dmin/2 active frames, each
of size at least kf /2. (If f is type 1 of size 1, these are the frames from
Act1.) Thus our credit rule guarantees that each slot in [t1(f), t1(f) + (kf −
1)dmax +Δf +sf), i.e., from t1(f) until the deadline of f , receives a credit of
2/dmin from each of the dmin/2 chains corresponding to the active frames.

We now describe the charging for a frame f that was rejected due to lack of
reservation space for the last packet. Then at f ’s arrival time, t1(f), all the slots
that f ’s last packet could have used were already reserved for other frames, all
of size at least kf /2. We charge f to those frames as follows.

Let Ai denote the set of frames of size at least i that OPT delivers and the
algorithm rejects due to lack of slot for their last packets. Consider all maximal
intervals Li

1, Li
2, . . . , Li

mi
of time such that

⋃
j Li

j is the (maximal) set of slots
that the algorithm had ever reserved (i.e., these reservations may have been
canceled later) for last packets of frames of size at least i. For each interval Li

j ,
let Li

j = [ai
j , bi

j) and |Li
j | = bi

j − ai
j.

Let t0 be the time when OPT delivered f ’s last packet. Then f is charged
to the L

kf

j where j is minimum such that t0 < b
kf

j , i.e., to the L
kf

j whose right
end is the first one after t0. (Note that we are not guaranteed that t0 ∈ L

kf

j

since OPT might deliver the last packet before τkf
(f) + Δf .) Next, for each

Li
j, we distribute the charge it receives evenly between all the frames of size at

least i that ever made reservation for their last packets within Li
j. Denote the

set of frames charged to Li
j by F i

j , and let f0 = argmaxg∈F i
j

Δg. Then for any
g ∈ F i

j , the following hold: Dg ≤ bi
j , tkg (g) ≥ ai

j − 2Δf0 , and |Li
j| ≥ sf0 . Thus

|F i
j |/|Li

j | ≤ (sf0 + 2Δf0)/sf0 ≤ 1 + 2c.
To summarize, for each Ai, there is a corresponding set Bi of frames of size at

least i/2 that made reservations for last packets in the union of intervals allowed
for the last packets of frames in Ai such that |Ai| ≤ (1+2c)|Bi|. We charge

⋃
Ai

to
⋃

Bi. Despite different frame sizes, the charging ratio is at most 2 (1 + 2c), as

kmax∑

i=1
i|Ai \ Ai+1| =

kmax∑

i=1
i(|Ai| − |Ai+1|) =

kmax∑

i=1
|Ai| ≤

kmax∑

i=1
(1 + 2c)|Bi|

= (1 + 2c)
kmax∑

i=1
i(|Bi| − |Bi+1|)(1 + 2c)

kmax∑

i=1
i(|Bi \ Bi+1|) .

We now bound the total charge that the last frame fC of a chain C can receive.
Each frame f belonging to the chain may receive a charge of the first type (a
self-charge) of value kf and a charge of the second type (from frames rejected

86 �L. Jeż, Y. Mansour, and B. Patt-Shamir

due to lack of slots for their last packet) of value at most 2(1 + 2c)kf . For each
f in C, these are relayed to fC . As each frame in C is at least twice as large
as its predecessor (the one it preempted), the total charge of the first two types
relayed to fC is at most 2(5 + 2c)kf .

It remains to do similar calculations for the charges of the last type, namely
frames that are rejected due to too many active frames. These are slightly dif-
ferent, because now instead of summing the sizes of all frames in a chain, we
need to determine to how many slots a chain might grant credit. I.e., we need to
account for gaps between successive frames of the chain, which could be as large
as Δmax + smax, and the extra credit that is granted past the end of a chain.

Each frame f that belongs to a chain C may provide credit of 2/dmin per slot
for up to (kf − 1) · df + Δf + sf ≤ (kf − 1) · dmax + Δmax + smax time slots, plus
additional 2(kfC − 1)dmax + Δmax + smax slots in case of fC , and dmin − 1 more
slots if fC is type 1, due to fC ’s remaining longer in Act1 — we call this last
term spare type 1 credit and ignore it for the time being. As each frame in C is
at least twice as large as the one it preempted, the total credit provided by the
chain C of length iC is at most

2
dmin

(
4kfC dmax + (iC + 1)(Δmax + smax − dmax)

)

= 8δkfC +
2

dmin
(iC + 1)(Δmax + smax − dmax)

≤ 2δ (4kfC + α(iC + 1)) ,

since Δmax + smax − dmax ≤ αdmax = αδdmin. We can now justify why the spare
type 1 credit can be ignored: the term 4kfC dmax in the above bound is an (over-
)estimation of kfC (2 + 1 + 1

2 . . .), which corresponds to sum of sizes of frames
in C. However, all frames have integer sizes, and thus their total size if at most
4kfC − 1. Thus, we are overestimating the credit by at least 2

dmin
dmax, which is

larger than the unaccounted for spare type 1 credit.
Overall, the total charge to fC is thus at most

2 (kfC (5 + 2c + 4δ) + αδ(iC + 1)) ≤ 2 (kfC (5 + 2c + 4δ) + 2kfCαδ)
= 2kfC (5 + 2c + 4δ + 2αδ) ,

since iC ≤ 1 + �log2 kfC � due to the sizes of successive frames in a chain, and
finally since �log2 kfC � + 2 ≤ 2kfC for every positive integer kfC . �

4 Common Size, Different Periods

In this section, we consider instances in which all frames have the same size k
and same value v (w.l.o.g., v = 1), but each frame f has a possibly different
period df , focusing on the perfectly periodic instances. Surprisingly, we were
unable to provide any impossibility result for this setting. Instead, we propose
a Θ(1)-competitive non-preemptive algorithm. We assume that each and every
packet of a frame has a deadline that coincides with the deadline of the frame.

Scheduling Multipacket Frames with Frame Deadlines 87

4.1 A Non-preemptive Algorithm

As in Section 3, our algorithm consists of two subroutines. The first decides,
for each newly arriving frame, whether to accept or reject it, and the second
schedules for transmission packets of accepted frames. Unlike the algorithm in
Section 3, however, accepted frames are never preempted. The algorithm classi-
fies every frame as either completed, accepted, or rejected.
– Frame Arrival: When a new frame f arrives, the algorithm accepts it if and

only if the set of all accepted frames together with f has a feasible schedule.
– Packet Transmission: The algorithm always transmits the packet with the

earliest deadline from the set of all pending packets of accepted frames. Once
all packets of a frame have been sent, the frame is marked “completed.”

Let us comment briefly on the feasibility test and the algorithm’s correctness
(i.e., why the deadlines are met). The feasibility test considers packets rather
than frames: the set of packets in question is that of all pending packets and those
yet to arrive that belong either to an accepted frame or the frame f whose status
is being decided. Note that by our assumption of perfectly periodic instances, the
exact arrival time of all packets considered is known. Thus testing the feasibility
of a set of packets (which are just unit-length jobs) can be done by running EDF
on that set, since EDF produces a (single machine) feasible schedule if there is
one. Similarly, our algorithm observes all deadlines because it produces an EDF
schedule for a feasible set of packets.

Alternatively, the schedule for packets can be viewed as a bipartite matching
of packets to time slots. Hence, one can test for feasibility with a new arriving
frame f by using any dynamic matching algorithm that checks whether the
current matching (schedule) can be augmented to match all packets of f as well.
If so, the resulting schedule can then be reordered to become an EDF schedule.

The algorithm is non-preemptive. As only packets belonging to accepted
frames are ever transmitted, the algorithm never “wastes” a slot. This, and
the fact that all frames have the same size, allows for counting the number of
transmitted packets instead of frames in the analysis.

We further note that the algorithm is “eager” in the sense that acceptance of
an arriving frame is decided immediately. One can also consider a similar “lazy”
algorithm that decides to either accept or reject a frame only when its first packet
would be scheduled by EDF. At such point, if the set of accepted frames together
with f is feasible, then f is accepted and the packet is transmitted. Otherwise, f
is rejected and another EDF packet is chosen for inspection. Intuitively, the lazy
algorithm should perform no worse than the eager one. However, we analyze the
eager variant due to its immediate decisions. Moreover, in the next section we
show that neither variant is 1-competitive.

4.2 Upper Bound for the Algorithm

We do not know of any impossibility result for perfectly periodic instances.
However, we can show that neither variant of our algorithm is 1-competitive.

88 �L. Jeż, Y. Mansour, and B. Patt-Shamir

Theorem 5. On perfectly periodic instances with periods d and d/2 such that
k > 2(d + 1), both variants of the algorithm have competitive ratios at most 1 −
1/d. Moreover, no non-preemptive work-conserving algorithm is 1-competitive.

4.3 Analysis of the Algorithm

For convenience, we extend the arrival time and deadline notation to packets:
for a packet p, these are denoted t(p) and Dp respectively; recall that a packet is
assigned the deadline of its frame. To reason about intervals, we denote the left
and the right endpoint of an interval I by l(I) and r(I) respectively. Moreover,
for any family of intervals F , we let u(F) = | ⋃

I∈F I| and s(F) =
∑

I∈F |I|.

Analysis Outline. To analyze the algorithm, we establish a charging scheme.
As before, we charge a frame f delivered both by OPT and the algorithm to
itself. Thus we can restrict our attention to frames delivered by OPT that the
algorithm rejected. We observe in Lemma 3 that for every rejected frame f , there
is an interval If that covers f , i.e., spans both its arrival time and deadline, such
that the algorithm delivers a packet in roughly a constant fraction of If ’s slots.
We call such an If a busy interval.

Intuitively, this should yield a constant competitive ratio since we can count
packets rather than frames as noted in Section 4.1. Specifically, every frame f
delivered by OPT that is not covered by a busy interval is delivered by the algo-
rithm as well. And in each busy interval I, OPT can deliver at most |I| packets,
which is proportional to the number of packets that the algorithm delivers in I.

However, there are two issues. First, Lemma 3 states that the algorithm sends
packets in |I|/2 − k slots of a busy interval I, which means that we have a
constant ratio on a packet basis only if I is sufficiently large. Fortunately, it
follows from Lemma 3 that short busy intervals correspond to rejected frames
of small periods, and we can deal with such frames separately.

Second, busy intervals may overlap, leading to overcounting the packets de-
livered by the algorithm (and OPT). Thus, we need a claim similar to Lemma 3
for the union of all busy intervals. We remedy this by showing that there is a
subset of the busy intervals that covers every rejected frame, with an additional
property that, when ordered by either endpoint, no three successive intervals
in the subset intersect. Clearly, the number of packets that OPT sends in any
busy interval is no larger than the total length of the intervals in the subset.
Thus, if we charge these packets of OPT to those sent by the algorithm in either
all odd-numbered or all or even-numbered intervals from the subset, whichever
maximizes the total length, we do not charge a single slot twice, as these intervals
are disjoint, and we lose only a factor of 2 in the total length of the intervals.

We note that each rejected frame is covered a “busy” interval.

Lemma 3. If the algorithm rejects a frame f0 upon its arrival at time t1(f0),
then there exists T ≥ Df0 such that in [t1(f0), T), i.e., the interval of T − t1(f0)
slots starting at t1(f0), the algorithm delivers strictly more than (T −t1(f0))/2−k
packets, each with a deadline no larger than T , within [t1(f0), T). Moreover, if

Scheduling Multipacket Frames with Frame Deadlines 89

df0 = 1, then the algorithm delivers strictly more than T − t1(f0) − k packets,
each with a deadline no larger than T , within [t1(f0), T).

It is an intriguing question whether the theorem can be strengthened: is it true
that there exists a T ≥ Df0 such that the algorithm delivers strictly more than
T − t1(f0) − k packets in the interval [t1(f0), T)?

Next, we construct a good family of busy intervals that underpins our analysis.
Again, one of the properties we guarantee is covering all rejected frames. Note
that when we say that a family F of intervals covers a frame, we mean that the
frame is covered by

⋃
I∈F I, rather than a particular I ∈ F .

Lemma 4. There exists a family I0 of busy intervals of length at least 3k and
a subset I ′

0 ⊆ I0 with the following properties.
1. Every rejected frame of period at least 3 is covered by

⋃ I0.
2. u(I0) ≤ s(I0) ≤ 2 · u(I0).
3. u(I ′

0) = s(I ′
0) ≥ 1

2 · s(I0).
In particular, the last property implies that I ′

0 is a family of disjoint intervals.

Together, Lemmas 3 and 4 imply the following.

Theorem 6. The algorithm is 1
17 -competitive on perfectly periodic instances.

5 Common Period, Unit Value

In this section we consider instances in which all frames have the same period
d and unit value, but arbitrary sizes. Combining Lemma 1 with either of the
algorithms from Sections 2.2 or 3 yields the following result.

Corollary 1. There is a Ω(1/ log kmax)-competitive randomized algorithm for
instances with common period and unit value.

We could not find a better algorithm. In fact, two natural algorithms, EDF
and SRPT, cannot perform much better: we prove an O(log log kmax/ log kmax)
upper bound on their competitive ratios. We do not provide any guarantees for
either of them. One could expect SRPT to be Ω(1/ log kmax)-competitive as it
attains this ratio for single machine preemptive throughput maximization [6,2],
which corresponds exactly to our setting with d = 1 and arbitrary sf values.
However, we do not know if its analysis can be extended to our problem.

EDF and SRPT are defined as follows. At any given time t, we say that a
frame f with deadline Df is feasible if the number of remaining packets of f
(ones that were not yet transmitted, including those that did not arrive yet) is
no more than Df − t. Clearly, an infeasible frame cannot be delivered. At step t,
both algorithms examine the set of all available packets of feasible frames, and
transmits one chosen as follows. EDF chooses a packet of the frame with the
earliest deadline. SRPT chooses a packet of the frame with the smallest number
of remaining packets. Ties can be broken arbitrarily in both algorithms.

Since a frame’s deadline is roughly its arrival time plus d times its size, these
algorithms behave similarly. In particular, they share the following property: If

90 �L. Jeż, Y. Mansour, and B. Patt-Shamir

the algorithm starts transmitting packets of a frame whose deadline is tf , then
by time tf at least one frame is completed. However, ignoring long frames may
not be the right choice, as the following theorem, which also stated a rather weak
impossibility result for any algorithm, shows.

Theorem 7. The competitive ratio of any randomized algorithm on perfectly
uniform instances is at most 0.75. Moreover, the competitive ratios of both EDF
and SRPT on such instances are O(log log kmax/ log kmax).

References

1. Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: Proc. of the 5th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 312–320 (1994)

2. Dürr, C., Jeż, �L., Thang, N.K.: Online scheduling of bounded length jobs to max-
imize throughput. J. Scheduling 15(5), 653–664 (2012). Also appeared in Proc. of
the 7th Workshop on Approx. and Online Algorithms (WAOA), pp. 116–127 (2009)

3. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J.,
Rawitz, D.: Online set packing. SIAM J. Comput 41(4), 728–746 (2010). Also
appeared in Proc. of the 29th ACM Symp. on Principles of Distributed Comput.
(PODC), pp. 440–449 (2010)

4. Epstein, L., Jeż, �L., Sgall, J., van Stee, R.: Online Scheduling of Jobs with fixed
start times on related machines. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R.
(eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 134–145. Springer, Heidel-
berg (2012), To appear in Algorithmica:
http://dx.doi.org/10.1007/s00453-014-9940-2

5. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000). Also appeared in Proc. of the 36th Symp. on Foun-
dations of Comp. Sci (FOCS), pp. 214–221 (1995)

6. Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. J. Algo-
rithms 49(1), 63–85 (1998). Also appeared in Proc. of the 6th European Symp. on
Algorithms (ESA), pp. 235–246 (1998)

7. Kesselman, A., Patt-Shamir, B., Scalosub, G.: Competitive buffer management
with packet dependencies. Theor. Comput. Sci. 489-489, 75–87 (2013). Also ap-
peared in 23rd IEEE Int. Parallel and Distributed Processing Symp. (IPDPS),
pp. 1–12 (2009)

8. Mansour, Y., Patt-Shamir, B., Rawitz, D.: Overflow management with multipart
packets. Computer Networks 56(15), 3456–3467 (2011). Also appeared in Proc. of the
30th IEEE Int. Conf. on Computer Communications (INFOCOM), pp. 2606–2614
(2011)

9. Markovitch, M., Scalosub, G.: Bounded delay scheduling with packet dependencies.
In: Proc. of the IEEE INFOCOM Workshops, pp. 257–262 (2014)

10. Scalosub, G., Marbach, P., Liebeherr, J.: Buffer management for aggregated
streaming data with packet dependencies. IEEE Trans. Parallel Distrib. Syst. 24(3),
439–449 (2010). Also appeared in Proc. of the 29th IEEE Int. Conf. on Computer
Communications (INFOCOM), pp. 241–245 (2010)

11. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor.
Comput. Sci. 130(1), 5–16 (1994)

http://dx.doi.org/10.1007/s00453-014-9940-2

A Randomized Algorithm for Online Scheduling

with Interval Conflicts�

Marcin Bienkowski, Artur Kraska, and Pawe�l Schmidt

Institute of Computer Science, University of Wroc�law, Poland

Abstract. In the contiguous variant of the Scheduling with Interval
Conflicts problem, there is a universe U consisting of elements being
consecutive positive integers. An input is a sequence of conflicts in the
form of intervals of length at most σ. For each conflict, an algorithm has
to choose at most one surviving element, with the ultimate goal of max-
imizing the number of elements that survived all conflicts. We present
an O(log σ/ log log σ)-competitive randomized algorithm for this prob-
lem, beating known lower bound of Ω(log σ) that holds for deterministic
algorithms.

Keywords: online algorithms, competitive analysis, interval conflicts,
online scheduling.

1 Introduction

In the contiguous variant of the Scheduling with Interval Conflicts problem
(SIC), an algorithm is given a universe U consisting of n consecutive positive
integers. All elements are initially active. The input consists of conflicts in the
form of intervals [a, b] where a, b ∈ U . The conflict means that at most one el-
ement from the set [a, b] may remain active; it is up to an algorithm to choose
this element. Once an element becomes inactive, it remains in this state till the
end. The goal of the algorithm is to maintain, in online manner, a set of active
elements, with the ultimate goal of maximizing their number.

This problem, introduced by Halldórsson, Patt-Shamir and Rawitz [9], has
an interesting set of applications: choosing transmissions in wireless stations,
maximizing the number of processed tasks by bounded-capacity servers, or max-
imizing the goodput (number of data or video frames) that are successfully for-
warded by a router.

The problem is analyzed in the framework of competitive-analysis [3], where
the gain of an online algorithm (the final number of surviving elements) is com-
pared to the gain of the optimal offline algorithm Opt. The ratio of these two
is called competitive ratio and is subject to minimization.

The authors of [9] presented a deterministic O(log σ)-competitive algorithm
Priority for this problem, where σ is an upper bound on the number of elements
in any conflict. Their algorithm is oblivious, i.e., an active element is chosen

� Supported by Polish National Science Centre grant DEC-2013/09/B/ST6/01538.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 91–103, 2015.
DOI: 10.1007/978-3-319-25258-2_7

92 M. Bienkowski, A. Kraska, and P. Schmidt

for each conflict independently of other conflicts. They also showed that the
competitive ratio of any deterministic strategy is at least Ω(log σ).

1.1 Our Result

One of the open questions of [9] was whether the competitive ratio can be im-
proved using randomization. We answer this question affirmatively, presenting
a O(log σ/ log log σ)-competitive algorithm Random Priority (Rand) for the
contiguous variant of SIC. We also show that our analysis is asymptotically tight.

1.2 Related Work

Another variant of SIC is a so-called non-contiguous model, where U consists
of integers that are not necessarily consecutive. Halldórsson et al. [9] presented
an O(log σ)-competitive deterministic algorithm also for this variant. It is worth
noting that in contrast to the contiguous model, here the competitive ratio of
any oblivious algorithm is at least Ω(n). A further generalization, called Online
Set Packing, where conflicts are not required to be intervals, was considered by
Emek et al. [5].

A natural minimization problem, dual to SIC, is to find minimum number of
points intersecting all input intervals. For this problem, an optimal 2-competitive
algorithm is known [11]. A variant in which intervals arrive sorted from left to
right is equivalent to the deadline variant of the TCP acknowledgement problem
and is solvable optimally online [4].

Another related maximization problem, known as the call admission problem
on a line graph [1, 2, 6, 7, 12], is to choose maximum subset of non-intersecting
intervals. Algorithms achieving logarithmic competitive ratios were given for
various flavors of this problem.

The randomized algorithm presented in this paper is barely random, i.e., it
uses random bits only at the beginning and their number is independent of the
length of an input sequence (number of conflicts). The algorithm is basically
a random shift of the deterministic algorithm Priority [9]. It is worth noting
that a natural randomized approach for this problem, where we make random
independent decisions for each conflict separately, leads to an algorithm that
is not competitive at all. Similar phenomenon was observed also in other areas
of competitive analysis. For example, for the list accessing problem [14, 10],
there are two natural randomizations of the optimal deterministic algorithm
Move-To-Front [14]: a barely random algorithm Bit [13] and an algorithm
Random-Move-To-Front [8] that makes a random decision for each input
element. The former approach substantially outperforms the latter.

1.3 Preliminaries

Throughout this text, for two integers a < b, [a, b] denotes the set {a, a+1, . . . , b}
and is called interval [a, b]. Let U be our universe, consisting of n initially active
elements being consecutive positive integers.

A Randomized Algorithm for Online Scheduling with Interval Conflicts 93

An input is a sequence of conflicts, each represented by an interval [a, b].
The choice of an algorithm is to pick an (active or inactive) element x ∈ [a, b],
and the remaining elements from [a, b] become inactive. If x is active, it is called
surviving. (It can be assumed without loss of generality that if a conflict contains
at least one active element, an algorithm picks it.) The gain of an algorithm is
the number of elements that are active at the end of the input sequence.

A conflict c = [a, b] is usually treated as a set of respective elements from [a, b].
In particular, |c| = b− a+1 is the number of elements that are in conflict c, and
is called size of conflict c.

Let σ denote the maximum size of any conflict occurring in the input. We
emphasize that σ is not known a priori to an online algorithm. Throughout this
paper, we assume that σ ≥ 4.

2 Randomized Algorithm

Our randomized algorithmRandom Priority is closely related to the O(log σ)-
competitive deterministic algorithm by Halldórsson et al. [9] and can be viewed
as a random shift variant of their algorithm.

As already stated, without loss of generality, one may assume that an algo-
rithm picks an active element whenever a conflict contains at least one active
element. However, to ensure that the order of the intervals in the input does not
matter (cf. Observation 1), Rand will not have this property.

We assume that the algorithm knows M that is a power of two and is an up-
per bound on n. (In the following subsection, we show how to get rid of this
assumption.) At the beginning, Rand chooses r uniformly at random from the
set {0, 1, . . . ,M − 1} . To each element u ∈ U , it assigns a priority

p(u) = max{� ∈ Z : u+ r is divisible by 2�} . (1)

Note that u + r is always positive, so p(u) is well defined. When processing
a conflict [a, b], Rand picks (possibly inactive) x to be the element from [a, b]
with the maximum priority. Note that the maximum priority element is unique
for each conflict (cf. Observation 2 from [9]), and thus Rand is well defined.

2.1 Unknown Value of n

When n is not known a priori to the algorithm, the algorithm may still set M
to be the smallest power of two that is larger than any conflict element seen so
far; the initial value of M is set to be 1.

What remains is to show how to choose appropriate values of r. WhenM = 2a,
r is equivalent to an a-bit string. When Rand increases M from 2a to 2b, r has
to become a b-bit string. The algorithm leaves a least significant bits of r intact
and chooses randomly remaining b−a most significant ones. It is easy to observe
that the choices made by Rand so far using the a-bit value of r would have been
the same if it had worked with the b-bit value of r from the very beginning.

94 M. Bienkowski, A. Kraska, and P. Schmidt

3 Analysis

In this section, we bound the competitive ratio of Rand. We start with a few
basic observations.

As elements that are not in any conflict remain active in a solution of any
algorithm, for the analysis, we assume that each element of U belongs to some
conflict. Then, the gain of an algorithm can be also defined as the number of
elements that survived in all conflicts they belonged to.

Once Rand picks the random shift r, it becomes the deterministic algorithm
Priority by Halldórsson et al. [9]. In particular, this implies the following ob-
servation that holds also for their algorithm.

Observation 1. Rand is order-oblivious, i.e., the final set of active elements
does not depend on the order in which conflicts are presented to the algorithm.

Observation 1 has some immediate consequences. First, we may assume that
the input sequence does not contain two intervals that are equal or properly
contained in each other. Indeed, if [a′, b′] ⊆ [a, b], then Rand may process [a, b]
first and then conflict [a′, b′] does not change the set of active elements.

In the following, we assume that the input sequence I contains the intervals
sorted by their left ends (by the observation above, we may assume that their
left ends are all different and their right ends are then sorted as well). After
sorting, we may assume that any two consecutive conflicts overlap. Otherwise,
we may treat the corresponding multiple disjoint sets of intervals separately as
acting on disjoint parts of U and derive competitiveness of Rand on each part
separately.

3.1 Core Subsequence

From any sorted input sequence I, we pick a sparse subset core(I) with the
following properties, and analyze both Opt and Rand using this subset.

Definition 2. For any sorted input sequence I = {d1, d2, . . . , d|I|}, a subse-
quence core(I) = {c1, c2, . . . , cm} ⊆ I satisfies the following three properties:

1.
⋃m

i=1 ci =
⋃

d∈I d.
2. Any u ∈ U belongs to at most two conflicts from core(I).
3. For ci ∈ core(I), a conflict from I intersecting ci is contained in

⋃i+1
j=i−2 cj.

We assumed that c−1 = c0 = cm+1 = ∅.
Lemma 3. Set core(I) exists for any sorted input sequence I.
Proof. We include elements in core(I) starting from d1 and iterating over con-
flicts d2, d3, . . . , d|I|. Assume that we already added elements c1, . . . , ci = dj to
core(I) and j < |I|. Then, ci+1 is chosen as the rightmost interval from the set
{dj+1, . . . , d|I|} that has a nonempty intersection with ci or, equivalently, as the

A Randomized Algorithm for Online Scheduling with Interval Conflicts 95

interval from the set {dj+1, . . . , d|I|} that has minimal nonempty intersection
with ci.

The first property of Definition 2 holds trivially for the chosen subset (ci)i; it
remains to show that (ci)i satisfies also the remaining two properties.

Assume that the second property does not hold, i.e., that ci ∩ ci+2 �= ∅ for
some i. Conflict ci+2 has smaller intersection with ci than ci+1, which contradicts
the choice of ci+1.

For showing the third property, we choose any conflict [p, q] ∈ I intersecting ci.
For any conflict cj let aj and bj denote its beginning and end, respectively, i.e.,
cj = [aj , bj]. We consider two cases.

1. Interval [p, q] is before ci in the sorted sequence I, i.e. p < ai ≤ q < bi.
Assume that the third property does not hold, i.e. p < ai−2. As ci−2∩ci = ∅,
bi−2 < ai, and thus p < ai−2 < bi−2 < ai < q, which means that ci−2

is completely contained in [p, q], a contradiction. (We showed that [p, q] ⊆
cj−2∪cj−1∪cj ; note that [p, q] ⊆ cj−1∪cj need not hold for our construction
of (ci)i.)

2. Interval [p, q] is after ci in the sorted sequence I, i.e. ai < p ≤ bi < q. As ci+1

has the minimum possible overlap with ci among all intervals from I that are
after ci, p ≤ ai+1. This means that q ≤ bi+1, and thus [p, q] ⊆ ci ∪ ci+1.
�

Lemma 4. For any input sequence I with subsequence core(I), it holds that
Opt(I) ≤ |core(I)|.
Proof. From the first property of Definition 2, it follows that we can cover U =⋃

d∈I d with |core(I)| intervals. Opt may choose at most one element from each
of these conflicts, and hence Opt(I) ≤ |core(I)|.
�

3.2 Crucial Lemma

In this section, we lower-bound the gain of Rand (the number of surviving
elements) from an interval that corresponds to a conflict in core(I). We start
with the following technical observation on the priorities of elements picked from
any conflict by Rand.

Lemma 5. Fix a conflict c and an integer � ≤ logM , such that |c| ≤ 2�. For
an element u picked by Rand from c, it holds that Pr[p(u) ≥ �] = |c|/2�.
Proof. Fix any element x ∈ c and let

Sx = {r ∈ [0,M − 1] : x+ r is divisible by 2�} .

That is, Sx is the set of all random shifts for which p(x) ≥ �. It means that the
element picked from c by Rand has priority at least � if and only if r belongs
to

⋃
x∈c Sx. Hence,

Pr[p(u) ≥ �] =
|⋃x∈c Sx|

M
.

For � ≤ logM each Sx contains exactly M/2� elements and for |c| ≤ 2� all these
sets are disjoint. Therefore, Pr[p(u) ≥ �] = (|c| ·M/2�)/M = |c|/2�.
�

96 M. Bienkowski, A. Kraska, and P. Schmidt

Lemma 6. Fix an input I, its subsequence core(I) = (ci)
m
i=1, and any conflict

ci ∈ core(I). The expected number of surviving elements from the interval ci is

at least 1
2 · |ci|/

∑i+1
j=i−2 |cj |.

Proof. Let A be the set of all intervals from I (including ci itself) that intersect
with ci and let span(A) =

⋃
d∈A d be the smallest interval containing all these

conflicts. Let � be an integer satisfying 2�−1 < span(A) ≤ 2�.
The expected number of surviving elements from ci is equal to the probability

that the element picked from ci by Rand, say u, survives, i.e., it is picked also
in other conflicts it belongs to. A sufficient condition for u’s survival is that its
priority is at least �. (In such case, u is the only element in span(A) with this
property, any conflict containing u is contained in span(A), and hence u is picked
by Rand from any conflict u belongs to.) Using Lemma 5, the probability that
u survives is then at least

Pr [p(u) ≥ �] =
|ci|
2�

≥ |ci|
2 · |span(A)| ≥

1

2
· |ci|∣
∣
∣
⋃i+1

j=i−2 cj

∣
∣
∣
≥ 1

2
· |ci|
∑i+1

j=i−2 |cj |
.

Above, we used the third property of Definition 2, i.e., span(A) ⊆ ⋃i+1
j=i−2 cj .
�

3.3 Bounding the Gain of RAND

For any sequence (xj)
m
j=1 of positive integers and any index i ∈ {1, . . . ,m}, we

define
γx(i) =

xi
∑i+1

j=i−2 xj

, (2)

where we assume that x−1 = x0 = xm+1 = 0. In the next section, we prove the
following lemma.

Lemma 7. For any sequence of positive integers (xi)
m
i=1 whose all elements are

at most σ, it holds that
∑m

i=1 γx(i) ≥ 2−8 ·m · log log σ/ log σ.
Theorem 8. On input sequences where the size of any conflict is at most σ,
Random Priority is O(log σ/ log log σ)-competitive.

Proof. Fix any sorted input I with set core(I) = (ci)
m
i=1 consisting of m con-

flicts. By Lemma 6, in the schedule of Rand, the expected number of surviving
elements from any conflict ci ∈ core(I) is at least γx(i)/2. If we sum it over
all conflicts, we calculate the gain from each element of the universe at most
twice (because of the second property of Definition 2), and hence the number of
surviving elements is at least

E[Rand(I)] ≥ 1

2
·

m∑

i=1

γx(i)/2 ≥ log log σ

210 · log σ ·m ≥ log log σ

210 · log σ ·Opt(I) ,

where the second inequality above follows by Lemma 7 and the third one follows
by Lemma 4.
�

A Randomized Algorithm for Online Scheduling with Interval Conflicts 97

3.4 Integer Sequences (Proof of Lemma 7)

Proof Plan. To sketch our proof plan, we assume for a while that γx(i) is

defined as xi/
∑i+1

j=i−1 xj . In our description, we say that γx(i) is γ-value of the
i-th element.

For the analysis, we cover the sequence (xi)
m
i=1 with monotonic subsequences;

two consecutive subsequences share a single element. We now focus on a sin-
gle increasing subsequence (xi)

g+t−1
i=g of length t and neglect constant factors.

Lemma 7 would follow by summing over all monotonic subsequences if we could
show the following relation:

∑g+t−1
i=g γx(i) = Ω(t · log log σ/ log σ).

As xg+t−1 is a local maximum of the sequence, γx(g + t− 1) = Ω(1). Hence,
if t = O(log σ/ log log σ), then the relation follows trivially. Otherwise, t =

Ω(log σ/ log log σ) and we analyze the sum
∑g+t−2

i=g γx(i) = Ω(
∑g+t−2

i=g xi/xi+1).
As there are many elements in the increasing subsequence, many pairs of consec-
utive elements will be quite close to each other. For example, if the subsequence
(xi)

g+t−1
i=g increased geometrically, then xi/xi+1 = Ω(log log σ/ log σ) for any

i ∈ {g, . . . , g+ t− 2} and the relation would follow. In fact, we are able to show

that
∑g+t−2

i=g xi/xi+1 = Ω(t · log log σ/ log σ) for any increasing sequence, not
necessarily geometrically growing.

Up to this point, in our informal description, we assumed that γx(i) =

xi/
∑i+1

j=i−1 xj . For the actual definition of γx(i), i.e., γx(i) = xi/
∑i+1

j=i−2 xj ,
it turns out that the bound γx(g + t − 1) = Ω(1) is no longer true. For exam-
ple, in an increasing subsequence (xg , xg+1) (of length two), it may happen that
γx(g + 1) = o(1), because xg−1 � xg+1.

To alleviate this issue, we preprocess (xi)
m
i=1, dropping some elements from

this sequence. We ensure that the sum of γ-values does not change much and
the resulting sequence (yi)

m′
i=1 has the desired property: γx(k) = Ω(1) for the

maximal element xk from each monotonic subsequence of (yi)
m′
i=1. This will allow

us to show that the sums of γ-values for any monotonic subsequence of length t
can be lower bounded by Ω(t · log log σ/ log σ).

Zigzags. In the reasoning below, we assume that if we refer to a sequence ele-
ment with index that does not exist in the given sequence, then the corresponding
element is equal to zero. In particular, for a sequence (xi)

m
i=1, we assume that

x−1 = x0 = xm+1 = 0.

Definition 9. Let (xi)
m
i=1 be a sequence of positive integers. A (contiguous)

subsequence xg, xg+1, . . . , xh is called proper if

– it is either non-decreasing or non-increasing and
– xk ≥ max{xk−2, xk−1, xk+1}, where xk is the first element for non-increasing

subsequence and the last element for non-decreasing subsequence (if there are
no ties, then xk is simply the maximum element).

Definition 10. Let (xi)
m
i=1 be a sequence of positive integers. A zigzag at posi-

tion i is a subsequence of four integers xi, . . . , xi+3, such that xi > xi+2 > xi+1

and xi+2 ≥ xi+3. We call element xi+1 a zigzag dent.

98 M. Bienkowski, A. Kraska, and P. Schmidt

Fig. 1. An example sequence of integers with three zigzags (in rectangles). Zigzag dents
are marked with triangles.

Removing Zigzags. An example sequence with zigzags marked is given in
Fig. 1. Note that two zigzags can share at most two points. We now verify what
happens if we remove a zigzag dent (marked with a triangle in Fig. 1) from the
sequence.

Lemma 11. Let (xj)
m
j=1 be a sequence of positive integers with a zigzag at po-

sition i− 1. Assume we remove zigzag dent (xi) from (xj)
m
j=1 and we denote the

resulting sequence (yj)
m−1
j=1 . Then, the following relations hold:

– γx(j) ≥ γy(j) for all j < i;
– γx(i) ≥ 0;
– γx(i+ 1) ≥ γy(i)/2;
– γx(j) ≥ γy(j − 1) for all j > i+ 1.

Proof. By the definition of the sequence (yj)
m−1
j=1 , it holds that xj = yj for any

j < i and xj = yj−1 for any j > i. Therefore, γx(j) = γy(j) for any j < i − 1
and γx(j) = γy(j − 1) for any j > i+ 2.

Now we consider the remaining four indices. As (xj)
m
j=1 contains a zigzag at

position i− 1, xi−1 > xi+1 > xi, and thus

– γx(i− 1) ≥ xi−1/(xi−3 + xi−2 + xi−1 + xi+1) = γy(i− 1),
– γx(i) ≥ 0,
– γx(i+ 1) ≥ xi+1/(2xi−1 + xi+1 + xi+2) ≥ γy(i)/2,
– γx(i+ 2) ≥ xi+2/(xi−1 + xi+1 + xi+2 + xi+3) = γy(i + 1).
�

Lemma 12. From any sequence (xj)
m
j=1 of positive integers, it is possible to

remove at most half of the elements, so that the resulting sequence (yj)
m′
j=1 does

not contain zigzags and
∑m′

i=1 γy(i) ≤ 2 ·∑m
i=1 γx(i).

Proof. We first identify all the places in (xi)
m
i=1 where some zigzag exist. Note

that the position of each zigzag is uniquely defined by the position of its dent.
Furthermore, each dent is followed by an element that is not a dent of another
zigzag. Therefore, the number of dents is at most m/2. We show that the se-
quence (yi)

m′
i=1 created by removing all dents from (xi)

m
i=1 satisfies the conditions

of the lemma.

A Randomized Algorithm for Online Scheduling with Interval Conflicts 99

We proceed iteratively from right to left and we remove dents, one at a time.
We show that such removal destroys a current zigzag and does not create a new
one. Assume now that there was a zigzag starting at position i and that we
removed its dent at position i + 1. If a new zigzag appears, then certainly it
contains a pair of (now adjacent) elements xi and xi+2. We consider three cases:

– There is no zigzag xi, xi+2, xi+3, xi+4, because xi+2 ≥ xi+3.
– There is no zigzag xi−1, xi, xi+2, xi+3, because xi > xi+2.
– If xi−2, xi−1, xi, xi+2 is a zigzag, then xi−2, xi−1, xi, xi+1 was already a zigzag

before removal of element xi+1.

By Lemma 11, when we remove a single dent at position i, the γ-values do not
increase at any element but the removed one and at element at i+1, where it may
increase twofold. After such removal, to find the next dent, we have to move at
least two positions to the left in the sequence, and thus the next possible increase

of γ-value occurs at a different element. Hence,
∑m′

i=1 γy(i) ≤ 2 ·∑m
i=1 γx(i).
�

Zigzag-free Sequences. We now show that a sequence without zigzags (ob-
tained for example using Lemma 12) can be covered with proper sequences.
Later, we analyze the sum of γ-values on a single proper sequence and finally we
combine the pieces to obtain the proof of Lemma 7.

Lemma 13. Any sequence (yj)
m′
j=1 not containing zigzags can be covered by

proper subsequences, so that each element is in at least one and at most two
such subsequences.

Proof. We assume that not all elements of (yj)
m′
j=1 are equal as otherwise the

whole (yj)
m′
j=1 would be a single proper sequence. We first cover the sequence

with monotonic subsequences and later show that they are proper.
A straightforward routine for choosing a monotonic contiguous subsequence of

a given type (non-increasing or non-decreasing) starts from a chosen element yg
and greedily adds as many consecutive elements as possible. To cover (yj)

m′
j=1

with monotonic subsequences, we start with finding the first two consecutive non-
equal pair of elements: the first subsequence will be of non-decreasing type if this
pair is increasing and non-increasing type otherwise. We use the greedy routine
above to choose a monotonic sequence starting from y1. If the subsequence ends
at yg, we choose the next sequence (of the opposite type) starting from yg (that
is, two consecutive subsequences share exactly one element). We proceed this
way, till all elements of (yj)

m′
j=1 are covered.

It now remains to show that the chosen subsequences are proper. We only have
to prove the second property of Definition 9, i.e., that for the maximal element
yk of any sequence, it holds that yk ≥ max{yk−2, yk−1, yk+1}. The condition
follows trivially for the two special cases: when the first subsequence is a non-
increasing one (and k = 1) and when the last subsequence is a non-decreasing
one (and k = m′).

100 M. Bienkowski, A. Kraska, and P. Schmidt

Otherwise, we have to verify this condition for an element yk that is ending
a non-decreasing subsequence and starting the following non-increasing subse-
quence. By the choice of k, yk ≥ yk−1 and yk ≥ yk+1. For showing yk ≥ yk−2,
we consider two cases. If yk−2, yk−1, yk belong to a single non-decreasing subse-
quence, we are done. Otherwise, yk−2, yk−1 is a part of a non-increasing sequence
and yk−1, yk is a two element non-decreasing sequence. In such case, yk−1 < yk
as otherwise the non-decreasing sequence containing yk−2 and yk−1 would also
contain yk. But as the sequence does not contain a zigzag starting at yk−2, it
holds that yk−2 ≤ yk. Thus, the corresponding subsequences are proper.
�
Lemma 14. Fix a sequence (yi)

m′
i=1 of positive integers not greater than σ. For

any proper subsequence yg, yg+1, . . . , yh, it holds that
∑h

i=g γy(i) ≥ (1/32) · (h−
g + 1) · log log σ/ log σ.
Proof. First, we observe that

γy(i) =
yi

∑i+1
j=i−2 yj

≥ yi
4 ·max{yi−2, yi−1, yi, yi+1} .

Let k = h be the rightmost element if the subsequence is non-decreasing and
k = g if the subsequence is non-increasing. By the definition of a proper sequence,
γy(k) ≥ 1/4. If h− g + 1 ≤ 8 logσ/ log log σ, then the lemma follows trivially.

Hence, from now on, we assume that h− g+1 ≥ 8 log σ/ log log σ. We use the
relation between geometric and harmonic means: for any t positive real numbers

a1, . . . , at it holds that
∏t

i=1 a
1/t
i ≥ t/

∑t
i=1(1/ai), or equivalently,

t∑

i=1

(1/ai) ≥ t ·
t∏

i=1

a
−1/t
i . (3)

Let t = h− g − 2 ≥ (h− g + 1)/2 ≥ 4 log σ/ log log σ. Our goal is now to lower-

bound the sum of t terms,
∑h−1

i=g+2 γy(i). If the subsequence is non-decreasing,
then γy(i) ≥ (1/4) · (yi/yi+1) for any i ∈ {g + 2, . . . , h− 1}, and thus

h∑

i=g

γy(i) ≥
h−1∑

i=g+2

γy(i) ≥ 1

4
·

h−1∑

i=g+2

yi
yi+1

≥ t

4
·

h−1∏

i=g+2

(
yi+1

yi

)−1/t

≥ t

4
·
(

yh
yg+2

)−1/t

. (4)

Similarly, if the subsequence is non-increasing, then γy(i) ≥ (1/4) · (yi/yi−2) for
any i ∈ {g + 2, . . . , h− 1}, and thus

h∑

i=g

γy(i) ≥
h−1∑

i=g+2

γy(i) ≥ 1

4
·

h−1∑

i=g+2

yi
yi−2

≥ t

4
·

h−1∏

i=g+2

(
yi−2

yi

)−1/t

≥ t

4
·
(

yg · yg+1

yh−2 · yh−1

)−1/t

. (5)

A Randomized Algorithm for Online Scheduling with Interval Conflicts 101

We combine both cases ((4) and (5)), using that 1 ≤ yj ≤ σ for all j, obtaining

h∑

i=g

γy(i) ≥ t

4
· σ−2/t ≥ t

4
· σ− log log σ

2 log σ =
t

4 · √log σ
≥ h− g + 1

16 · log σ
log log σ

.

The last inequality follows as 2 · √log σ ≥ log log σ for σ ≥ 4.
�

Putting Pieces Together. We may now combine the results above to show
Lemma 7.

Proof (of Lemma 7). Let (xj)
m
j=1 be a sequence of positive integers smaller

than σ. We want to lower-bound
∑m

i=1 γx(i).

By Lemma 12, it is possible to construct a sequence (yj)
m′
j=1 of length m′ ≥

m/2 not containing zigzags, such that
∑m

i=1 γx(i) ≥ (1/2) ·∑m′

i=1 γy(i).

By Lemma 13, we may cover sequence (yj)
m′
j=1 with proper subsequences.

For any such proper subsequence yg, yg+1, . . . , yh, Lemma 14 yields the relation
∑h

i=g γy(i) ≥ (1/32)·(h−g+1)· log log σ/ log σ. If we sum this inequality over all

proper subsequences covering (yj)
m′
y=1, the left hand side is at most 2 ·∑m′

i=1 γy(i)
because each element is in at most two subsequences, and the right hand side is
at least (1/32) ·m′ · log log σ/ log σ. Hence,

m∑

i=1

γx(i) ≥ 1

2
·

m′
∑

i=1

γy(i) ≥ 1

4 · 32 ·m′ · log log σ
log σ

≥ 2−8 ·m · log log σ
log σ

,

which concludes the proof.
�

4 Lower Bound

In this section, we show that our analysis of the algorithm Random Priority
presented in the previous section is asymptotically tight, i.e., the competitive
ratio of Rand is Ω(log σ/ log log σ).

To this end, we need the following technical observation that bounds the
probability of picking an element from a subset of a given conflict.

Lemma 15. Fix a conflict c and let b be a subset of elements of c. For an ele-
ment u picked by Rand from c, it holds that Pr[u ∈ b] ≤ 2 · |b|/|c|.
Proof. Fix an element x ∈ c. Let k be the maximal integer, such that 2k ≤ |c|.
Let Sx = {r ∈ [0,M − 1] : x + r is divisible by 2k}. Note that there is always
an element of priority k inside c. A condition necessary for an element x to be
picked by Rand is that p(x) ≥ k, i.e. r ∈ Sx. Therefore, Pr[u = x] ≤ |Sx|/M =
1/2k. Summing over all elements from b, we obtain that

Pr[u ∈ b] =
∑

x∈b

Pr[u = x] ≤ |b|/2k ≤ 2 · |b|/|c| ,

which concludes the proof.
�

102 M. Bienkowski, A. Kraska, and P. Schmidt

Lemma 16. On input sequences where the size of any conflict is at most σ, the
competitive ratio of Random Priority is Ω(log σ/ log log σ).

Proof. Fix any σ ≥ 4 and let R = �log σ/ log log σ�. We show that there exists
an input sequence I, such that the size of any conflict in I is at most RR ≤ σ
and Opt(I) = Ω(R) ·Rand(I).

Let U = {2, . . . , RR} be the universe. The sequence I contains R− 1 conflicts
c1, . . . , cR−1 where ci = [Ri−1+1, Ri+1] for each i ∈ {1, . . . , R−1}. Note that any
conflict ci intersects only ci−1 and ci+1. Elements that are right ends of conflicts
c1, c3, c5, . . . form a feasible solution set: there is no conflict that contains two
such elements. Hence, Opt(I) ≥ �R/2� ≥ R/2.

Now we analyze the gain of Rand. Each element of the universe is contained
in some conflict, i.e. U =

⋃R−1
i=1 ci. By the definition of conflicts, it is possible to

partition U into disjoint chunks:

c1 \ c2, c1 ∩ c2, c2 ∩ c3, . . . cR−3 ∩ cR−2, cR−2 ∩ cR−1, cR−1 \ cR−2 .

At most one element survives from the first and the last chunk. Now we bound
the expected gain on any other chunk ci ∩ ci+1. An element from ci ∩ ci+1

survives only if it is picked by Rand both in ci and in ci+1. The probability of
the latter event can be upper-bounded using Lemma 15 by 2 · |ci∩ ci+1|/|ci+1| =
2 · (Ri+1 −Ri)/(Ri+2 −Ri) ≤ 2/R, and thus the expected gain of Rand on
chunk ci ∩ ci+1 is at most 2/R.

Summing up, the total gain of Rand on I is E[Rand(I)] ≤ 1 + (R − 2) ·
2/R + 1 ≤ 4, and hence the competitive ratio of Rand is at least Opt(I) ≥
(R/8) ·Rand(I).
�

References

[1] Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: Proc. of the 5th ACM-SIAM Symp. on Discrete Algorithms (SODA),
pp. 312–320 (1994)

[2] Bachmann, U.T., Halldórsson, M.M., Shachnai, H.: Online selection of intervals
and t-intervals. Information and Computation 233, 1–11 (2013); Also appeared in
Proc. of the 12th SWAT, pp. 383–394 (2010)

[3] Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press (1998)

[4] Chrobak, M.: Online aggregation problems. SIGACT News 45(1), 91–102 (2014)
[5] Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan,

J., Rawitz, D.: Online set packing. SIAM Journal on Computing 41(4), 728–746
(2012); Also appeared as Online set packing and competitive scheduling of multi-
part tasks. In: Proc. of the 29th PODC, pp. 440–449 (2010)

[6] Garay, J.A., Gopal, I.S.: Call preemption in communication networks. In: Proc. of
the 11th IEEE Int. Conference on Computer Communications (INFOCOM),
pp. 1043–1050 (1992)

[7] Garay, J.A., Gopal, I.S., Kutten, S., Mansour, Y., Yung, M.: Efficient on-line call
control algorithms. Journal of Algorithms 23(1), 180–194 (1997)

A Randomized Algorithm for Online Scheduling with Interval Conflicts 103

[8] Garefalakis, T.: A new family of randomized algorithms for list accessing. In:
Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 200–216.
Springer, Heidelberg (1997)

[9] Halldórsson, M.M., Patt-Shamir, B., Rawitz, D.: Online scheduling with interval
conflicts. Theory of Computing Systems 53(2), 300–317 (2013); Also appeared in
Proc. of the 28th STACS, pp. 472–483 (2011)

[10] Irani, S.: Two results on the list update problem. Information Processing Let-
ters 38(6), 301–306 (1991)

[11] Jaromczyk, J.W., Pezarski, A., Ślusarek, M.: An optimal competitive on-line al-
gorithm for the minimal clique cover problem in interval and circular-arc graphs.
In: Proc. of the 19th European Workshop on Computational Geometry, EWCG
(2003)

[12] Lipton, R.J., Tomkins, A.: Online interval scheduling. In: Proc. of the 5th ACM-
SIAM Symp. on Discrete Algorithms (SODA), pp. 302–311 (1994)

[13] Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms
for the list update problem. Algorithmica 11(1), 15–32 (1994)

[14] Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

Online Admission Control

and Embedding of Service Chains�

Tamás Lukovszki1 and Stefan Schmid2

1 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
lukovszki@inf.elte.hu

2 TU Berlin & Telekom Innovation Laboratories, Berlin, Germany
stefan.schmid@tu-berlin.de

Abstract. The virtualization and softwarization of modern computer
networks enables the definition and fast deployment of novel network
services called service chains: sequences of virtualized network functions
(e.g., firewalls, caches, traffic optimizers) through which traffic is routed
between source and destination. This paper attends to the problem of
admitting and embedding a maximum number of service chains, i.e., a
maximum number of source-destination pairs which are routed via a se-
quence of � to-be-allocated, capacitated network functions. We consider
an Online variant of this maximum Service Chain Embedding Problem,
short OSCEP, where requests arrive over time, in a worst-case manner.
Our main contribution is a deterministic O(log �)-competitive online al-
gorithm, under the assumption that capacities are at least logarithmic
in �. We show that this is asymptotically optimal within the class of
deterministic and randomized online algorithms. We also explore lower
bounds for offline approximation algorithms, and prove that the offline
problem is APX-hard for unit capacities and small � ≥ 3, and even Poly-
APX-hard in general, when there is no bound on �. These approximation
lower bounds may be of independent interest, as they also extend to other
problems such as Virtual Circuit Routing. Finally, we present an exact
algorithm based on 0-1 programming, implying that the general offline
SCEP is in NP and, by the above hardness results, it is NP-complete for
constant �.

Keywords: Computer Networks, Network Virtualization, Virtual Cir-
cuit Routing, Online Call Admission, Competitive Analysis.

1 Introduction

Today’s computer networks provide a rich set of in-network functions, including
access control, firewall, intrusion detection, network address translation, traffic
shaping and optimization, caching, among many more. While such functionality

� Supported by the FP7 EU project UNIFY and the DFG SFB 901 project: Part of
this research was done when the first author visited the Heinz Nixdorf Institute,
Germany.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 104–118, 2015.
DOI: 10.1007/978-3-319-25258-2_8

Online Admission Control and Embedding of Service Chains 105

is traditionally implemented in hardware middleboxes, computer networks be-
come more and more virtualized [12,24]: Network Function Virtualization (NFV)
enables a flexible instantiation of network functions on network nodes, e.g., run-
ning in a virtual machine on a commodity x86 server.

Modern computer networks also offer new flexibilities in terms of how traffic
can be routed through such network functions. In particular, using Software-
Defined Networking (SDN) [19] technology, traffic can be steered along arbitrary
routes, i.e., along routes which depend on the application [13], and which are
not necessarily shortest paths or destination-based, or not even loop-free [11].

These trends enable the realization of interesting new in-network communi-
cation services called service chains [8,14,25,26]: sequences of network functions
which are allocated and stitched together in a flexible manner. For example, a
service chain ci could define that traffic originating at source si is first steered
through an intrusion detection system for security (1st network function), next
through a traffic optimizer (2nd network function), and only then is routed to-
wards the destination ti. Such advanced network services open an interesting
new market for Internet Service Providers, which can become “miniature cloud
providers” [27], specialized for in-network processing.

1.1 Paper Scope

In this paper, we study the problem of how to optimally admit and embed
service chain requests. Given a redundant distribution of network functions and
a sequence σ = (σ1, σ2, . . . , σk), where each σi = (si, ti) for i ∈ [1, k] defines a
source-destination pair (si, ti) which needs to be routed via a sequence of network
function instances, we ask: Which requests σi to admit and where to allocate
their service chains ci? The service chain embedding should respect capacity
constraints as well as constraints on the length (or stretch) of the route from si
to ti via its service chain ci.

Our objective is to maximize the number of admitted requests. We are par-
ticularly interested in the Online Service Chain Embedding Problem (OSCEP),
where σ is only revealed over time. We assume that a request cannot be de-
layed and once admitted, cannot be preempted again. Sometimes, we are also
interested in the general (offline) problem, henceforth denoted by SCEP.

1.2 Our Contribution

We formulate the online and offline problems OSCEP and SCEP, and make the
following contributions:

1. We present a deterministic online algorithm ACE1 which, given that node
capacities are at least logarithmic, achieves a competitive ratio O(log �) for
OSCEP. This result is practically interesting, as the number of to be tra-
versed network functions � is likely to be small in practice. In our analysis,
we adapt a proof strategy known from virtual circuit routing [22]. Note how-
ever that in contrast to virtual circuit routing, where the end nodes have to

1 Admission control and Chain Embedding.

106 T. Lukovszki and S. Schmid

be connected by a path in the network, in the SCEP, the path must traverse
a sequence of � nodes, such that the ith node of this sequence hosts network
function fi. Furhermore, in the SCEP, the path length must be bounded by
r hops. So far, only heuristic and offline approaches to solve the service chain
embedding problem have been considered [6,4,20,26].

2. We prove that ACE is asymptotically optimal in the class of both determin-
istic and randomized online algorithms, by adapting a proof strategy from
virtual circuit routing in [2]. Moreover, we initiate the study of lower bounds
for the offline version of our problem, and show that no good approximation
algorithms exist, unless P = NP : for unit capacities and already small �,
the offline problem SCEP is APX-hard. For arbitrary �, the problem can
even become Poly-APX-hard. These results also apply to the offline version
of classic online call control problems, which to the best of our knowledge
have not been studied before.

3. We present a 0-1 program for SCEP, which also shows that SCEP is in NP
for constant � and, taking into account our hardness result, that SCEP is NP-
complete for constant �. More precisely, if the number of all possible chains
that can be constructed over the network function instances is polynomial in
the network size n, then the number of variables in the 0-1 program is also
polynomial, and thus the problem is in NP. If mi is the number of instances
of network function fi in the network, i = 1, ..., �, and m = maxi{mi}, then
the size of the 0-1 program is polynomial for m� = poly(n). For example,
this always holds for constant �. When m is constant, then it holds for
� = O(log n).

1.3 Outline

This paper is organized as follows. Section 2 introduces our model and puts
the model into perspective with respect to classic online optimization problems.
Section 3 presents and analyzes the O(log �)-competitive algorithm, Section 4
presents our lower bound, and in Section 5 we present the 0-1 linear program.
We summarize our results and conclude our work in Section 6.

2 Model

We are given an undirected network G = (V,E) with n = |V | nodes and
m = |E| edges. On this graph, we need to route a sequence of requests
σ = (σ1, σ2, . . . , σk): σi for any i represents a node pair σi = (si, ti) ∈ V × V .
Each pair σi needs to be routed (from si to ti) via a sequence of � network
functions (F1, . . . , F�). For each network function type Fi, there exist multiple

instantiations f
(1)
i , f

(2)
i , . . . in the network. (We will omit the superscript if it is

irrelevant or clear in the context.) Each of these instances can be applied to σi

along the route from si to ti. However, in order to minimize the detour via these
functions and in order to keep the route from si to ti short, a “nearby instance”

f
(j)
i should be chosen, for each i. A service chain instance for (si, ti) is denoted

by ci = (f
(x1)
1 , f

(x2)
2 , . . . , f

(x�)
�), for some function instances f

(xy)
j , j ∈ [1, �].

Online Admission Control and Embedding of Service Chains 107

f2

f2

f1

s1

t1

s2

t2

Fig. 1. Illustration of the model: The communication from s1 to t1 and from s2 to t2
needs to be routed via a service chain (F1, F2). In this example, function F1 is instan-
tiated once, and function F2 is instantiated twice. Resources for (s1, t1) are allocated
only at the second instance of F2 (the upper one).

For ease of presentation, we will initially assume that requests σi are of infinite
duration. We will later show how to generalize our results to scenarios where
requests can have arbitrary and unknown durations.

Concretely, in order to satisfy a request σi = (si, ti), a route of the following
form must be computed:

1. The route must start at si, traverse a sequence of network functions

(f
(x1)
1 , f

(x2)
2 , . . . , f

(x�)
�), and end at ti. Here, f

(xy)
j , j ∈ [1, �] is an instance of

the network function of type Fj .
2. The route must not violate capacity constraints on any node v ∈ V . Nodes

v ∈ V are capacitated and resources need to be allocated for each network
function which is used, for any (si, ti) pair. Multiple network functions may
be available on the same physical machine, and only consume resources once
they are used in certain service chains. The capacity κ(v) of each node v ∈ V
hence defines the maximum number of requests σi for which v can apply its
network functions. However, node v can always simply serve as a regular
forwarding node for other requests, without applying the function.

3. The route should be of (hop) length at most r (or have a bounded stretch).

Otherwise, a request σi must be rejected. For ease of notation, in the following, we
will sometimes assume that for a rejected request σi, ci = ∅. Also note that the
resulting route may not form a simple path, but more generally describes a walk :
it may contain forwarding loops (e.g., visit a network function and come back).

Our objective is to maximize the number of satisfied requests σi, resp. to
embed a maximum number of service chains. We are mainly interested in the
online variant of the problem, where σ is revealed over time. More precisely, and
as usual in the realm of online algorithms and competitive analysis, we seek to

108 T. Lukovszki and S. Schmid

devise an online algorithm which minimizes the so-called competitive ratio: Let
ON(σ) denote the number of accepted requests of a given online algorithm for
σ and let OFF(σ) denote the number of accepted requests of an optimal offline
algorithm. The competitive ratio ρ is defined as the worst ratio (over all possible
σ) of the value of ON compared to OFF. Formally, ρ = maxσ OFF(σ)/ON(σ).

Note that solving this optimization problem consists of two subtasks:

1. Admission control: Which requests σi to admit, and which to reject?
2. Assignment and routing: We need to assign σi = (si, ti) pairs to a sequence

of network functions and route the flow through them accordingly.

See Figure 2 for an illustration of our model.

2.1 Putting the Model into Perspective

From an algorithmic perspective, the models closest to ours occur in the context
of online call admission respectively virtual circuit routing. There, the fundamen-
tal problem is to decide, in an online manner, which “calls” resp. “virtual cir-
cuits” or entire networks, to admit and how to route them, in a link-capacitated
graph. [2,3,9,10,22]

Instead of routes, in our model, service functions have to be allocated and
connected to form service chains. In particular, in our model, nodes have a lim-
ited capacity and can only serve as network functions for a bounded number
of source-destination pairs. The actual routes taken in the network play a sec-
ondary role, and may even contain loops. In particular, our model supports the
specification of explicit constraints on the length of a route, but also on the
stretch: the factor by which the length of a route from a source to a destination
can be increased due to the need to visit certain network functions.

Nevertheless, as this paper shows, several techniques from classic literature
on online call control can be applied to our model. At the same time, to the
best of our knowledge, some of our results also provide new insights into the
classic variants of call admission control. For example, our lower bounds on the
approximation ratio also translate to classic problems, which so far have mainly
been studied from an online perspective.

3 Competitive Online Algorithm

We present an online algorithm ACE for OSCEP. ACE admits and embeds
at least a Ω(log �)-fraction of the number of requests embedded by an optimal
offline algorithm OFF.

Let us first introduce some notation. LetAj be the set of indices of the requests
admitted by ACE just before considering the jth request σj . The index set of all
admitted requests after processing all k requests in σ, will be denoted by Ak+1

resp. A.
The relative load λv(j) at node v before processing the jth request, is defined

by the number of service chains ci in which v participates, divided by v’s capacity:

λv(j) =
|{ci : i ∈ Aj , v ∈ ci}|

κ(v)
.

Online Admission Control and Embedding of Service Chains 109

We seek to ensure the invariant that capacity constraints are enforced at each
node, i.e., ∀ v ∈ V, j ≤ k + 1 : λv(j) ≤ 1.

We define μ = 2�+ 2, and in the following, will assume that

min
v

{κ(v)} ≥ logμ (1)

3.1 Algorithm

In a preprocessing step we compute the length d(u, v) of the shortest path be-
tween all pairs of nodes u, v ∈ V in the network G. Then we compute the set
of all possible chains C that can be constructed from the network function in-
stances C = {c = (f1, ..., f�) :

∑�
i=2 d(fi−1, fi) ≤ r, f1 ∈ F1, ..., f� ∈ F�}.

For a request σj = (sj , tj), let Cj be the set of chains, such that σj can
be routed through the chains c ∈ Cj on a path of length at most r, i.e.

Cj = {c = (f1, ..., f�) ∈ C : d(sj , f1) + d(f�, tj) +
∑�

i=2 d(fi−1, fi) ≤ r}.
The key idea of ACE is to assign to each node, a cost which is exponential in

the relative node load. More precisely, with each node we associate a cost wv(j)
just before processing the jth request σj :

wv(j) = κ(v)(μλv(j) − 1).

Our online algorithm ACE simply proceeds as follows:

– When request σj arrives,ACE checks if there exists a chain cj ∈ Cj satisfying
the following condition:

∑

v∈cj

wv(j)

κ(v)
≤ � (2)

– If such a chain cj exists, then admit σj and assign it to cj . Otherwise,
reject σj .

In order to ensure that chains selected for Condition 2 also fulfill the constraint
on the maximal route length, ACE simply uses preprocessing. We maintain at
each node its relative load. When a new request arrives, ACE has to test the
costs of at most O(n�) chains, and the cost can be computed in O(�) time per
chain. The overall runtime of ACE per step is hence bounded by O(� ·n�), which
is polynomial for constant �.

3.2 Analysis

For the analysis of ACE, we adapt the proof strategy used in [22] in the con-
text of virtual circuit routing. First, in Lemma 1 we prove that the set A of
requests admitted by ACE are feasible and respect capacity constraints. Sec-
ond, in Lemma 2, we show that at any moment in time, the sum of node costs is
within a factor O(� · log μ) of the number of requests already admitted by ACE.

110 T. Lukovszki and S. Schmid

Third, in Lemma 3, we prove that the number of requests admitted by the opti-
mal offline algorithm OFF but rejected by the online algorithm, is bounded by
the sum of node costs after processing all requests.

Let W be the sum of the node costs after ACE processed all k request, let
AOFF be the indices of the requests admitted by OFF, and let A∗ = AOFF \A.
Then, from Lemma 2 we will obtain a bound |A| ≥ W/(2� · logμ), and from
Lemma 3 that |A∗| ≤ W/�.

Thus, even by conservatively ignoring all the requests which ACE might have
admitted which OFF did not, we obtain that the competitive ratio of ACE is
at most O(log �).

Let us now have a closer look at the first helper lemma.

Lemma 1. For all nodes v ∈ V :
∑

j∈A:v∈cj

1 ≤ κ(v).

Proof. Let σj be the first request admitted by ACE, such that the relative load
λv(j + 1) at some node v ∈ cj exceeds 1. By definition of the relative load we
have λv(j) > 1− 1/κ(v).

By the assumption that logμ ≤ κ(v), we get

wv(j)

κ(v)
= μλv(j) − 1 > μ1−1/ logμ − 1 = μ/2− 1 = �.

Therefore, by Condition (2), the request σj could not be assigned to cj . We
established a contradiction. ��

Next we show that the sum of node costs is within an O(� · log μ) factor of
the number of already admitted requests.

Lemma 2. Let A be the set of indices of requests admitted by the online algo-
rithm. Let k be the index of the last request. Then

(2� logμ)|A| ≥
∑

v

wv(k + 1).

Proof. We show the claim by induction on k. For k = 0, both sides of the
inequality are zero, thus the claim is trivially true. Rejected requests do not
change either side of the inequality. Thus, it is enough to show that, for each
j ≤ k, if we admit σj , we get:

∑

v

(wv(j + 1)− wv(j)) ≤ 2� logμ.

Consider a node v ∈ cj . Then by definition of the costs:

wv(j + 1)− wv(j) = κ(v)(μλv(j)+1/κ(v) − μλv(j))

= κ(v)(μλv(j)(μ1/κ(v) − 1))

= κ(v)(μλv(j)(2(logμ)·1/κ(v) − 1))

Online Admission Control and Embedding of Service Chains 111

By Assumption (1), 1 ≤ κ(v)/ logμ. Since 2x − 1 ≤ x, for 0 ≤ x ≤ 1, it follows:

wv(j + 1)− wv(j) ≤ μλv(j) logμ = logμ(wv(j)/κ(v) + 1).

Summing up over all the nodes and using the fact that the request σj was
admitted and chain cj was assigned, and that the number of nodes |cj | in cj is
�, we get: ∑

v

(wv(j + 1)− wv(j)) ≤ logμ(� + |cj |) = 2� logμ.

This proves the claim. ��
We finally prove that � times the number of requests rejected by ACE but

admitted by the optimal offline algorithm OFF is bounded by the sum of node
costs after processing all requests.

Lemma 3. Let AOFF be the set of indices of the requests that were admitted by
the optimal offline algorithm, and let A∗ = AOFF \ A be the set of indices of
requests admitted by AOFF but rejected by the online algorithm. Then:

|A∗| · � ≤
∑

v

wv(k + 1).

Proof. For j ∈ A∗, let c∗j be the chain assigned to request σj by the optimal
offline algorithm. By the fact that σj was rejected by the online algorithm, we
have:

� <
∑

v∈c∗j

wv(j)

κ(v)
.

Since the costs wv(j) are monotonically increasing in j, we have

� <
∑

v∈c∗j

wv(j)

κ(v)
≤

∑

v∈c∗j

wv(k + 1)

κ(v)
.

Summing over all j ∈ A∗, we get

|A∗|� ≤
∑

j∈A∗

∑

v∈c∗j

wv(k + 1)

κ(v)
≤

∑

v

wv(k + 1) ·
∑

j∈A∗:v∈c∗j

1

κ(v)
≤

∑

v

wv(k + 1).

The last inequality follows from the fact that capacity constraints need to be
met at any time. ��
Theorem 1. ACE is O(log �)-competitive.

Proof. By Lemma 1, capacity constraints are never violated. It remains to
show that the number of requests admitted by the online algorithm is at least
1/(2 log 2μ) times the number of requests admitted by the optimal offline algo-
rithm. The number of requests admitted by the optimal offline algorithm |AOFF|

112 T. Lukovszki and S. Schmid

can be bounded by the number of requests admitted by the online algorithm |A|
plus the number of requests in A∗ = AOFF \A. Therefore,

|AOFF| ≤ |A|+ |A∗|.
By Lemma 3 this is bounded by

|AOFF| ≤ |A|+ 1

�

∑

v

wv(k + 1).

By Lemma 2 this is bounded by

|AOFF| ≤ |A|+ 2 · (log μ) · |A| = (1 + 2 logμ)|A|
Therefore, the number of requests admitted by the optimal offline algorithm is
at most (1 + 2 logμ) times the number of requests admitted by ACE. ��
Remarks. We conclude with some remarks. First, we note that our approach
leaves us with many flexibilities in terms of constraining the routes through the
network functions. For instance, we can support maximal path length require-
ments: the maximal length of the route from s to t via the network functions.
A natural alternative model is to define a limit on the stretch: the factor by
which the “detour” via the network functions can be longer than the shortest
path from s to t. Moreover, so far, we focused on a model where requests, once
admitted, stay forever. Our approach can also be used to support service chain
requests of bounded or even unknown duration. In particular, by redefining μ
to take into account the duration of a request, we can for example apply the
technique from [22] to obtain competitive ratios for more general models.

4 Optimality and Approximation

It turns out that ACE is asymptotically optimal within the class of online al-
gorithms (Theorem 2). This section also initiates the study of lower bounds for
(offline) approximation algorithms, and shows that for low capacities, the prob-
lem is APX-hard even for short chains (Theorem 3), and even Poly-APX-hard
in general, that is, it is as hard as any problem that can be approximated to a
polynomial factor in polynomial time (Theorem 4).

Theorem 2. Any deterministic or randomized online algorithm for OSCEP
must have a competitive ratio of at least Ω(log �).

Proof. We can adapt the proof strategy of Lemma 4.1 in [2] for our model. We
consider a capacity of κ ≥ log �, and we divide the requests in σ into log � + 1
phases. We assume that n ≥ 2�2, and only focus on a subset L of � = |L| nodes
which are connected as a chain (v1, . . . , v�) and at which the different service
chains will overlap. In phase 0, a group of κ service chains are requested, all of
which need to be embedded across the nodes L = {v1, . . . , v�}. In phases i ≥ 1,
2i groups of κ identical requests will need to share subsets of L of size �/2i, that

Online Admission Control and Embedding of Service Chains 113

Fig. 2. Illustration of lower bound construction: The adversary issues service chain
requests in 1+log � phases, where each phase i consists of 2i groups of κ ≥ log � requests.
In phase 0 the adversary issues requests that can be assigned to L = (v1, ..., v�). As
intersections of chains in phase i with L are becoming shorter over time, the online
algorithm needs to decide whether to admit service service chain requests in phases,
where each phase consists of groups with κ chains. As chains are becoming shorter over
time, the online algorithm faces the problem whether to admit service chains early (and
hence block precious resources), or late (in which case the adversary stops issuing new
requests).

is, the jth group, 0 ≤ j < 2i, consists of κ requests to be embedded across nodes
[vj�/2i+1, v(j+1)�/2i]. See Figure 2 for an illustration.

Let xi denote the number of requests an online algorithm ON admits in phase
i. Each request accepted in phase i will occupy �/2i units of capacities of nodes
in L. Overall, the nodes in L have a capacity of � · κ, so it must hold that

log �∑

i=0

�

2i
· xi ≤ � · κ.

Now, for 0 ≤ j ≤ log �, define Sj = �
2j ·∑j

i=0 xi. Sj is a lower bound on the
occupied capacity on the nodes of L after phase j. Then:

log �∑

j=0

Sj =

log �∑

j=0

�

2j

j∑

i=0

xi =

log �∑

i=0

xi

log �∑

j=i

�

2j
≤

log �∑

i=0

xi2
�

2i
= 2�κ.

Hence there must exist a j such that Sj ≤ 2�κ/ log �. Then after phase j, the
number of requests admitted by the online algorithm ON is

j∑

i=0

xi =
2j

�
Sj ≤ 2j

�
2�κ/ log � = 2 · 2jκ/ log �.

114 T. Lukovszki and S. Schmid

The optimal offline algorithm OFF can reject all requests except for those of
phase j. The number of requests in phase j, and thus, the number of requests
admitted by OFF is 2jκ. ��

In the following, we also show that for networks with low capacities, it is not
even possible to approximate the offline version of the Service Chain Embedding
Problem, SCEP, in polynomial time. These lower bounds on the approximation
ratio naturally also constitute lower bounds on the competitive ratio which can
be achieved for OSCEP by any online algorithm.

In particular, we first show that already for short chains in scenarios with unit
capacities, SCEP cannot be approximated well.

Theorem 3. In scenarios where service chains have length � ≥ 3 and where
capacities are κ(v) = 1, for all v, the offline problem is APX-hard.

Proof. The proof follows from an approximation-preserving reduction fromMax-
imum k-Set Packing Problem (KSP). The Maximum Set Packing (SP) is one of
Karp’s 21 NP-complete problems, where for a given collection C of finite sets
a collection of disjoint sets C′ ⊆ C of maximum cardinality has to be found.
The KSP is the variation of the SP in which the cardinality of all sets in C are
bounded from above by any constant k ≥ 3, is APX-complete [15]. We refer to
such sets as k-sets.

KSP can be reduced to our problem as follows. Let U be the universe and C
be a collection of k-sets of U in the KSP. W.l.o.g., we assume that each k-set
contains exactly k elements, otherwise we can add disjoint auxiliary elements to
the sets in order to obtain exactly k elements in each set in C. For each u ∈ U
in the KSP instance we construct a node vu in the SCEP instance. Furthermore,
for each k-set S in C, we construct a service chain cS , such that cS contains
exactly the nodes {vu : u ∈ S}. Let C be the set of obtained service chains.
For the set of requests σ we require that |σ| ≥ |C| and that each request can
be assigned to each service chain. Due to the unit capacity assumption, the set
of admitted request must be assigned to mutually disjoint service chains. Thus,
the maximum number of admitted requests is at most the maximum number of
disjoint service chains. Since each request can be assigned to each service chain
and |σ| ≥ |C|, an optimal solution for the SCEP determines a maximum set
of mutually disjoint service chains. This maximum set of disjoint service chains
determines a maximum number of disjoint k-sets, and thus, an optimal solution
for the KSP. ��

It turns out that in general, with unit capacities, SCEP cannot even be ap-
proximated within polylogarithmic factors.

Theorem 4. In general scenarios where capacities are κ(v) = 1, for all nodes
v, and chain lengths � ≥ 3, the SCEP is APX-hard, and not approximable within
�ε for some ε > 0. Without a bound on the chain length the SCEP with κ(v) = 1,
for all nodes v, is Poly-APX-hard.

Proof. We reduce the Maximum Independent Set (MIS) problem with maximum
degree � to the SCEP with capacity κ(v) = 1, for all v ∈ V and chain length �.

Online Admission Control and Embedding of Service Chains 115

For graphs with bounded degree � ≥ 3, the MIS is APX-complete [21] and cannot
be approximated within �ε for some ε > 0 [1]. By our reduction we obtain the
APX-hardness and non-approximability within �ε for some ε > 0 for the SCEP.
In general, for graphs without degree bound, the MIS is Poly-APX-complete [5],
i.e., it is as hard as any problem that can be approximated to a polynomial
factor. By our reduction we obtain that the SCEP without chain length bound
is Poly-APX-hard.

For an instance G = (V,E) of the MIS problem with maximum degree �, we
construct an instance of the SCEP with capacity κ = 1 and chain length � as
follows. For each node v ∈ G, let cv be the chain whose nodes correspond to
the edges in G incident to v. If degG(v) < � then we complete the chain with
� − degG(v) unique auxiliary nodes, in order to have � nodes in the chain. The
chain set is C = {cv : v ∈ G}. For the set of requests σ, we require that |σ| ≥ |C|
and each request σi ∈ σ can be assigned to each c ∈ C. Assigning a σi to a chain
c ∈ C fills the capacity of all nodes in c and the capacity of all chains c′ ∈ C that
contain a common node with c. Therefore, no further request σj , j
= i, can be
assigned to those chains. The chains having a common node with cv correspond
exactly the neighbors of v in G. Therefore, nodes u and v are independent in
the MIS instance iff chains cu and cv do not have a common node in the SCEP
instance. Since each request σi can be assigned to each c ∈ C and |σ| ≥ |C|,
a maximum number of admitted requests is determined by a maximum chain
set C′, such that for all cu, cv ∈ C′, cu and cv do not contain a common node.
Therefore, C′ determines a maximum independent set in G. Consequently, an
α-approximation for the SCEP would imply an α-approximation for the MIS
problem. ��

5 Optimal 0-1 Program and NP-Completeness

SCEP can be formulated as a 0-1 integer linear program. If the number of all
possible chains that can be constructed over the network function instances is
polynomial in the network size, then the number of variables in the 0-1 program is
also polynomial, and thus the problem is in NP. 0-1 integer linear programming
is one of Karp’s NP-complete problems [17]. This together with our hardness
results also proves NP-completeness for constant �.

Let σ = {σi = (si, ti) : si, ti ∈ V } be the set of requests, and let C be the set
of possible chains over the network function instances, respecting route length
constraints. We refer by c ∈ C to a potential chain. For all potential chains c ∈ C,
let Sc be the set of connection requests in σ that can be routed through c on a
path of length at most r, i.e., for c = (v1, ..., v�), let Sc = {σi = (si, ti) ∈ σ :

d(si, v1) +
∑k

i=2 d(vi−1, vi) + d(vk, ti) ≤ r}, where d(u, v) denotes the length of
the shortest path between nodes u, v ∈ V in the network G. The shortest paths
between nodes can be computed in a preprocessing step.

For all connection requests σi ∈ σ, we introduce the binary variable xi ∈
{0, 1}. The variable xi = 1 indicates that the request i is admitted in the solution.
For all potential network function chains c ∈ C, we introduce the binary variable

116 T. Lukovszki and S. Schmid

xc ∈ {0, 1}. The variable xc = 1 indicates that c is selected in the solution. For
all c ∈ C and σi ∈ σ, we introduce the binary variable xc,i ∈ {0, 1}. The variable
xc,i indicates that the request σi = (si, ti) ∈ σ is routed through the nodes of c,
such that the length of the walk from si to ti through c has length at most r.

maximize
∑

σi∈σ

xi (3)

s.t. xi −
∑

c∈C
xc,i = 0 ∀ σi ∈ σ (4)

∑

c∈C:σi �∈Sc

xc,i = 0 ∀ σi ∈ σ (5)

xc ≤ xv ∀ v ∈ V, ∀ c ∈ C : v ∈ c (6)
∑

c∈C:v∈c

xc ≥ xv ∀ v ∈ V (7)

∑

σi∈σ

∑

c∈C:v∈c

xc,i ≤ κ(v) · xv ∀ v ∈ V (8)

xi, xv, xc, xc,i ∈ {0, 1} ∀ v ∈ V, ∀ c ∈ C, ∀ σi ∈ σ (9)

The objective function (3) asks for admitting a request set of maximum cardi-
nality. The Constraints (4) enforce that each admitted request σi ∈ σ is assigned
to exactly one chain c ∈ C, and rejected requests are not assigned to any chain,
i.e., for each σi with xi = 1, there is exactly one chain c with xc,i = 1, and for
each i with xi = 0, we have xc,i = 0 for all c. Constraints (5) state that each
σi ∈ σ can only be assigned to a chain c ∈ C with σi ∈ Sc. By definition of
Sc, the nodes si and ti can be routed through c by a path of length at most r.
Constraints (6) ensure that if a node v ∈ V is contained in a selected chain c
(i.e., xc = 1), then xv = 1. Constraints (7) enforce that if a node v ∈ V is not
contained in any selected chain, i.e., xc = 0 for all chains c with v ∈ c, then
xv = 0. Therefore, Constraints (6) and (7) together imply that xv = 1 iff v
is contained in a selected chain c. Constraints (8) describe that the number of
requests routed through a node v of a selected chain is limited by the capacity
κ(v) of v. Furthermore, (8) ensures that if v is not contained in any selected
chain (i.e., xv = 0) then no request q is assigned to any chain c with v ∈ c.

The solution of this 0-1 program defines a maximum cardinality set of ad-
mitted requests σadmit = {σi : xi = 1}, and an assignment of each request
σi ∈ σadmit to a chain c ∈ C. Each request σi ∈ σadmit is assigned to a chain
c ∈ C iff xc,i = 1. This assignment guarantees that (i) the request σi = (si, ti)
can be routed through c on a path of length at most r, (ii) the number of pairs
routed through any node v ∈ V of a selected chain is limited by the capacity κ(v)
of v, and (iii) none of the requests σi ∈ σadmit are assigned to a non selected
chain. Furthermore, it is guaranteed that rejected requests σi ∈ σ \ σadmit are
not assigned to any chain.

Online Admission Control and Embedding of Service Chains 117

6 Summary and Conclusion

Over the last decades, a large number of middleboxes have been deployed in
computer networks, to increase security and application performance, as well as
to offer new services in the form of static and dynamic in-network processing (see
the services by Akamai, Google Global Cache, Netflix Open Connect). However,
the increasing cost and inflexibility of hardware middleboxes (slow deployment,
complex upgrades, lack of scalability), motivated the advent of Network Func-
tion Virtualization (NFV) [7,12,16,18,23], which aims to run the functionality
provided by middleboxes as software on commodity hardware. The transition to
NFV is discussed within standardization groups such as ETSI, and we currently
also witness first deployments, e.g., TeraStream [28]. Especially the possibility to
chain individual network functions to form more complex services has recently
attracted much interest, both in academia [20,26], as well as in industry [25].

Our paper made a first step towards a better understanding of the algorithmic
problem underlying the embedding of service chains. Our main contribution is a
deterministic and asymptotically optimal online algorithm ACE which achieves
a competitive ratio of O(log �) for OSCEP. This is an encouraging result, as the
number � of to-be-chained network functions is likely to be a small constant in
practice.

References

1. Alon, N., Feige, U., Wigderson, A., Zuckerman, D.: Derandomized graph products.
Computational Complexity 5, 60–75 (1995)

2. Awerbuch, B., Azar, Y., Plotkin, S.A.: Throughput-competitive on-line routing.
In: Proc. 34th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 32–40 (1993)

3. Awerbuch, B., Azar, Y., Plotkin, S.A., Waarts, O.: Competitive routing of virtual
circuits with unknown duration. In: Proc. 5th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 321–327 (1994)

4. Bari, F., Chowdhury, S.R., Ahmed, R., Boutaba, R.: On orchestrating virtual net-
work functions in NFV. CoRR (2015)

5. Bazgan, C., Escoffier, B., Paschos, V.T.: Completeness in standard and differential
approximation classes: Poly-(d)apx- and (d)ptas-completeness. Theoretical Com-
puter Science 339(2-3), 272–292 (2005)

6. Dietrich, D., Abujoda, A., Papadimitriou, P.: Network Service Embedding Across
Multiple Providers with Nestor. In: Proc. IFIP Networking (2015)

7. Dobrescu, M., Egi, N., Argyraki, K., Chun, B.G., Fall, K., Iannaccone, G., Knies,
A., Manesh, M., Ratnasamy, S.: Routebricks: Exploiting parallelism to scale soft-
ware routers. In: Proc. ACM SOSP, pp. 15–28 (2009)

8. ETSI: Network functions virtualisation (nfv); use cases (2014),
http://www.etsi.org/deliver/etsi gs/NFV/001 099/001/01.01.01 60/

gs NFV001v010101p.pdf

9. Even, G., Medina, M.: A nonmonotone analysis with the primal-dual approach:
Online routing of virtual circuits with unknown durations. In: Moscibroda, T.,
Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 104–115. Springer,
Heidelberg (2013)

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf

118 T. Lukovszki and S. Schmid

10. Even, G., Medina, M., Schaffrath, G., Schmid, S.: Competitive and determinis-
tic embeddings of virtual networks. Elsevier Theoretical Computer Science (TCS)
(2013)

11. Fayazbakhsh, S., et al.: Flowtags: Enforcing network-wide policies in the presence
of dynamic middlebox actions. In: Proc. ACM HotSDN (2013)

12. Gember-Jacobson, A., et al.: OpenNF: Enabling innovation in network function
control. In: Proc. ACM SIGCOMM (2014)

13. Gupta, A., Vanbever, L., Shahbaz, M., Donovan, S.P., Schlinker, B., Feamster,
N., Rexford, J., Shenker, S., Clark, R., Katz-Bassett, E.: Sdx: A software defined
internet exchange. In: Proc. ACM SIGCOMM, pp. 551–562 (2014)

14. Hartert, R., et al.: Declarative and expressive approach to control forwarding paths
in carrier-grade networks. In: Proc. ACM SIGCOMM (2015)

15. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Comput. Complex. 15(1), 20–39 (2006)

16. Joseph, D., Stoica, I.: Modeling middleboxes. IEEE Network: The Magazine of
Global Internetworking 22(5), 20–25 (2008)

17. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations (1972)

18. Martins, J., Ahmed, M., Raiciu, C., Huici, F.: Enabling fast, dynamic network
processing with clickos. In: Proc. HotSDN, pp. 67–72 (2013)

19. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

20. Mehraghdam, S., Keller, M., Karl, H.: Specifying and placing chains of virtual net-
work functions. In: Proc. 3rd IEEE International Conference on Cloud Networking
(CloudNet), pp. 7–13 (2014)

21. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. System Sci. 43, 425–440 (1991)

22. Plotkin, S.A.: Competitive routing of virtual circuits in ATM networks. IEEE Jour-
nal on Selected Areas in Communications 13(6), 1128–1136 (1995)

23. Schulz-Zander, J., et al.: OpenSDWN: Programmatic control over home and en-
terprise WiFi. In: ACM Sigcomm Symposium on SDN Research, SOSR (2015)

24. Sekar, V., Ratnasamy, S., Reiter, M.K., Egi, N., Shi, G.: The middlebox manifesto:
Enabling innovation in middlebox deployment. In: Proc. HotNets, pp. 21:1–21:6
(2011)

25. Skoldstrom, P., et al.: Towards unified programmability of cloud and carrier infras-
tructure. In: Proc. European Workshop on Software Defined Networking, EWSDN
(2014)

26. Soulé, R., Basu, S., Marandi, P.J., Pedone, F., Kleinberg, R., Sirer, E.G., Foster,
N.: Merlin: A language for provisioning network resources. In: Proc. 10th ACM In-
ternational on Conference on Emerging Networking Experiments and Technologies
(CoNEXT), pp. 213–226 (2014)

27. Stoenescu, R., Popovici, M., Olteanu, V., Martins, J., Bifulco, R., Huici, F., Ahmed,
M., Smaragdakis, G., Handley, M., Raiciu, C.: In-net: Enabling in-network process-
ing for the masses. In: Proc. ACM EuroSys (2015)

28. Telekom, D.: Terastream (2013), http://www.a10networks.com/resources/files/
A10-CS-80103-EN.pdf#search=

http://www.a10networks.com/resources/files/A10-CS-80103-EN.pdf#search=
http://www.a10networks.com/resources/files/A10-CS-80103-EN.pdf#search=

Optimizing Spread of Influence

in Social Networks via Partial Incentives

Gennaro Cordasco2, Luisa Gargano1, Adele A. Rescigno1, and Ugo Vaccaro1

1 Department of Informatics, University of Salerno, Italy,
2 Department of Psychology, Second University of Naples, Italy

Abstract. A widely studied process of influence diffusion in social net-
works posits that the dynamics of influence diffusion evolves as follows:
Given a graph G = (V,E), representing the network, initially only the
members of a given S ⊆ V are influenced; subsequently, at each round,
the set of influenced nodes is augmented by all the nodes in the network
that have a sufficiently large number of already influenced neighbors. The
general problem is to find a small initial set of nodes that influences the
whole network. In this paper we extend the previously described basic
model in the following ways: firstly, we assume that there are non nega-
tive values c(v) associated to each node v ∈ V , measuring how much it
costs to initially influence node v, and the algorithmic problem is to find
a set of nodes of minimum total cost that influences the whole network;
successively, we study the consequences of giving incentives to member
of the networks, and we quantify how this affects (i.e., reduces) the total
costs of starting an influence diffusion process that influence the whole
network. For the two above problems we provide both hardness results
and algorithms. We also experimentally validate our algorithms via ex-
tensive simulations on real life networks.

1 Introduction

Social influence is the process by which individuals adjust their opinions, revise
their beliefs, or change their behaviors as a result of interactions with other
people. It has not escaped the attention of advertisers that the natural human
tendency to conform can be exploited in viral marketing [24]. Viral marketing
refers to the spread of information about products and behaviors, and their
adoption by people. For what strictly concerns us, the intent of maximizing the
spread of viral information across a network naturally suggests many interesting
optimization problems. Some of them were first articulated in the seminal papers
[22, 23], under various adoption paradigms. The recent monograph [8] contains
an excellent description of the area. In the next section, we will explain and
motivate our model of information diffusion, state the problems that we plan
to investigate, describe our results, and discuss how they relate to the existing
literature.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 119–134, 2015.
DOI: 10.1007/978-3-319-25258-2_9

120 G. Cordasco et al.

1.1 The Model

Let G = (V,E) be a graph modeling a social network. We denote by ΓG(v) and
by dG(v) = |ΓG(v)|, respectively, the neighborhood and the degree of vertex v
in G. Let S ⊆ V , and let t : V → N = {1, 2, . . .} be a function assigning integer
thresholds to the vertices of G; we assume w.l.o.g. that 1 ≤ t(u) ≤ d(u) holds
for all v ∈ V . For each node v ∈ V , the value t(v) quantifies how hard it is
to influence node v, in the sense that easy-to-influence elements of the network
have “low” t(·) values, and hard-to-influence elements have “high” t(·) values
[21]. An activation process in G starting at S ⊆ V is a sequence

ActiveG[S, 0] ⊆ ActiveG[S, 1] ⊆ . . . ⊆ ActiveG[S, �] ⊆ . . . ⊆ V
of vertex subsets1, with ActiveG[S, 0] = S, and such that for all � > 0,

ActiveG[S, �] = ActiveG[S, �− 1] ∪
{
u :

∣∣ΓG(u) ∩ ActiveG[S, �− 1]
∣∣ ≥ t(u)

}
.

In words, at each round � the set of active (i.e, influenced) nodes is augmented
by the set of nodes u that have a number of already activated neighbors greater
or equal to u’s threshold t(u). We say that v is activated at round � > 0 if
v ∈ ActiveG[S, �] \ActiveG[S, �− 1]. A target set for G is a set S such that it will
activate the whole network, that is, for which it holds that ActiveG[S, �] = V , for
some � ≥ 0. The classical Target Set Selection (TSS) problem (see e.g. [1, 13])
is defined as follows:

Target Set Selection.
Instance: A network G = (V,E) with thresholds t : V −→ N.
Problem: Find a target set S ⊆ V of minimum size for G.

The TSS Problem has roots in the general study of the spread of influence in
Social Networks (see [8, 18]). For instance, in the area of viral marketing [17],
companies wanting to promote products or behaviors might initially try to target
and convince a set of individuals (by offering free copies of the products or some
equivalent monetary rewards) who, by word-of-mouth, can successively trigger a
cascade of influence in the network leading to an adoption of the products by a
much larger number of individuals. In order to make the model more realistic, we
extend the previously described basic model in two ways: First, we assume that
there are non negative values c(v) associated to each vertex v ∈ V , measuring
how much it costs to initially convince the member v of the network to endorse
a given product/behavior. Indeed, that different members of the network have
different activation costs (see [2], for example) is justified by the observation that
celebrities or public figures can charge more for their endorsements of products.
Therefore, we are lead to our first extension of the TSS problem:

Weighted Target Set Selection (WTSS).
Instance: A network G = (V,E), thresholds t : V → N, costs c : V → N.
Problem: Find a target set S ⊆ V of minimum cost C(S) =

∑
v∈S c(v)

Our second, and more technically challenging, extension of the classical TSS
problem is inspired by the recent interesting paper [16]. In it, the authors ob-
served that the basic model misses a crucial feature of practical applications.

1 We will omit the subscript G whenever the graph G is clear from the context.

Optimizing Spread of Influence in Social Networks via Partial Incentives 121

Indeed, it forces the optimizer to make a binary choice of either zero or com-
plete influence on each individual (for example, either not offering or offering
a free copy of the product to individuals in order to initially convince them to
adopt the product and influence their friends about it). In realistic scenarios,
there could be more reasonable and effective options. For example, a company
promoting a new product may find that offering for free ten copies of a product
is far less effective than offering a discount of ten percent to a hundred of people.
Therefore, we formulate our second extension of the basic model as follows.

Targeting with Partial Incentives. An assignment of partial incentives to
the vertices of a network G = (V,E), with V = {v1, . . . , vn}, is a vector s =
(s(v1), . . . , s(vn)), where s(v) ∈ N0 = {0, 1, 2, . . .} represents the amount of
influence we initially apply on v ∈ V . The effect of applying incentive s(v) on
node v is to decrease its threshold, i.e., to make individual v more susceptible to
future influence. It is clear that to start the process, there should be an initial
number of nodes v’s to which the amount of exercised influence s(v) is at least
equal to their thresholds t(v). Therefore, an activation process in G starting with
incentives s is a sequence of vertex subsets

Active[s, 0] ⊆ Active[s, 1] ⊆ . . . ⊆ Active[s, �] ⊆ . . . ⊆ V ,
with Active[s, 0] = {v | s(v) ≥ t(v)}, and such that for all � > 0,

Active[s, �] = Active[s, �− 1] ∪
{
u :

∣
∣ΓG(u) ∩ Active[s, �− 1]

∣
∣ ≥ t(u)− s(u)

}
.

A target vector s is an assignment of partial incentives that triggers an activation
process influencing the whole network, that is, such that Active[s, �] = V for some
� ≥ 0. The Targeting with Partial Incentive problem can be defined as follows:

Targeting with Partial Incentives (TPI).
Instance: A network G = (V,E), thresholds t : V −→ N.
Problem: Find target vector s which minimizes C(s) =

∑
v∈V s(v).

Notice that the Weighted Target Set Selection problem, when the costs c(v) are
always equal to the thresholds t(v), for each v ∈ V , can be seen as a particular
case of Targeting with Partial Incentives in which the incentives s(v) are set
either to 0 or to t(v). Therefore, in a certain sense, the Targeting with Partial
Incentives can be seen as a kind of “fractional” counterpart of the Weighted Tar-
get Set Selection problem (notice, however, that the incentives s(v) are integer
as well). In general, the two optimization problems are quite different since ar-
bitrarily large gaps are possible between the costs of the solutions of the WTSS
and TPI problems, as the following example shows.

Example 1. Consider the complete graph on n vertices v1, . . . , vn, with thresh-
olds t(v1) = . . . = t(vn−2) = 1, t(vn−1) = t(vn) = n − 1. An optimal solution
to the WTSS problem consists of either vertex vn−1 or vertex vn, hence of total
cost equal to n− 1. On the other hand, if partial incentives are possible one can
assign incentives s(v1) = s(vn) = 1 and s(vi) = 0 for i = 2, . . . , n− 1, and have
an optimal solution of value equal to 2. Indeed, we have

Active[s, 0] = {v1}, since t(v1) = s(v1), Active[s, 1] = {v1, v2, . . . , vn−2}, since
t(vi) = 1 for i = 2, . . . , n − 2, Active[s, 2] = {v1, v2, . . . , vn−2, vn}, since t(vn) −
s(vn) = n− 2, and Active[s, 3] = {v1, v2, . . . , vn−1, vn}, since t(vn−1) = n− 1.

122 G. Cordasco et al.

1.2 Related Works

The algorithmic problems we have articulated have roots in the general study
of the spread of influence in Social Networks (see [8, 18] and references quoted
therein). The first authors to study problems of spread of influence in networks
from an algorithmic point of view were Kempe et al. [22, 23]. They introduced the
Influence Maximization problem, where the goal is to identify a set S ⊆ V such
that its cardinality is bounded by a certain budget β and the activation process
activates as much vertices as possible. However, they were mostly interested
in networks with randomly chosen thresholds. Chen [10] studied the following
minimization problem: Given a graph G and fixed arbitrary thresholds t(v),
∀v ∈ V , find a target set of minimum size that eventually activates all (or a fixed
fraction of) nodes of G. He proved a strong inapproximability result that makes
unlikely the existence of an algorithm with approximation factor better than
O(2log

1−ε |V |). Chen’s result stimulated a series of papers [1, 3–6, 12, 11, 13, 14, 7,
20, 27, 28, 30] that isolated many interesting scenarios in which the problem (and
variants thereof) become tractable. The Influence Maximization problem with
partial incentives was introduced in [16]. In this model the authors assume that
the thresholds are randomly chosen values in [0, 1] and they aim to understand
how a fractional version of the Influence Maximization problem differs from the
original version. To that purpose, they introduced the concept of partial influence
and show that, from a theoretical point of view, the fractional version retains
essentially the same computational hardness as the integral version but, on the
practical side, the solutions computed, using heuristics, are more efficient in the
fractional setting.

1.3 Our Results

Our main contributions are the following. We first show, in Section 2, that there
exists a (gap-preserving) reduction from the classical TSS problem to our TPI
and WTSS problems (for the WTSS problem, the gap preserving reduction holds
also in the case particular case in which c(v) = t(v), for each v ∈ V). Using the
important results by [10], this implies the TPI and WTSS problems cannot

be approximated to within a ratio of O(2log
1−ε n), for any fixed ε > 0, unless

NP ⊆ DTIME(npolylog(n)) (again, for the latter problem this inapproximability
result holds also in the case c(v) = t(v), for each v ∈ V). Moreover, since the
WTSS problem is equivalent to the TSS problem when all thresholds are equal,
the reduction also show that the particular case in which c(v) = t(v), for each
v ∈ V , of the WTSS problem is NP-hard. Again, this is due to the corresponding
hardness result of TSS given in [10]. In Section 3 we present a polynomial time
algorithm that, given a weighted network and vertices thresholds, computes
a cost efficient target set. Our algorithm exhibits the following features: 1) for

general graphs, it always return a solution of cost at most equal to
∑

v∈V
c(v)t(v)
dG(v)+1 .

It is interesting to note that, when c(v) = 1 for each v ∈ V , we recover the
same upper bound on the cardinality of an optimal target set given in [1], and
proved therein by means of the probabilistic method. 2) For complete graphs

Optimizing Spread of Influence in Social Networks via Partial Incentives 123

our algorithm always returns a solution of minimum cost. In Section 4 we turn
our attention to the problem with incentives and we propose a polynomial
time algorithm that, given a network and vertices thresholds, computes a cost
efficient target vector. Our algorithm has the following properties: 1) for general
graphs, it always return a solution s (i.e., a target vector) for G such that C(s) =
∑

v∈V s(v) ≤ ∑
v∈V

t(v)(t(v)+1)
2(dG(v)+1) . 2) For trees and complete graphs our algorithm

always returns an optimal target vector. Finally, in Section 5 we experimentally
validate our algorithms by running them on real life networks, and we compare
the obtained results with that of well known heuristics in the area (especially
tuned to our scenarios). The experiments shows that our algorithms consistently
outperform those heuristics.

Due to the space limit, some proofs are omitted and given in the Appendix.

2 Hardness of WTSS and TPI

We prove the following result

Theorem 1. WTSS and TPI cannot be approximated within a ratio of
O(2log

1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Proof. We first construct a gap-preserving reduction from the TSS problem. The
claim of the theorem follows from the inapproximability of TSS proved in [10].
In the following, we give details for only for the TPI problem. Starting from
an arbitrary graph G = (V,E) and threshold function t, input instances of the
TSS problem, we build a graph G′ = (V ′, E′) as follows:

• V ′ =
⋃

v∈V V ′
v where V ′

v = {v′, v′′, v1, . . . vdG(v)}. In particular,
− we replace each v ∈ V by the gadget Λv (cfr. Fig. 1) in which the vertex

set is V ′
v and v′ and v′′ are connected by the disjoint paths (v′, vi, v′′) for

i = 1, . . . , dG(v);
− the threshold of v′ in G′ is equal to the threshold t(v) of v in G, while each

other vertex in V ′
v has threshold set to 1.

• E′ = {(v′, u′) | (v, u) ∈ E}⋃v∈V {(v′, vi), (vi, v′′), for i = 1, . . . , dG(v)}.
Summarizing, G′ is constructed in such a way that for each gadget Λv, the

vertex v′ plays the role of v and is connected to all the gadgets representing
neighbors of v in G. Hence, G corresponds to the subgraph of G′ induced by the
set {v′ ∈ V ′

v | v ∈ V }. It is worth mentioning that during an activation process if
any vertex that belongs to a gadget Λv is active, then all the vertices in Λv will
be activate within the next 3 rounds.
We claim that there is a target set S ⊆ V for G of cardinality |S| = k if and
only if there is a target vector s for G′ and C(s) =

∑
u∈V ′ s(u) = k.

Assume that S ⊆ V is a target set for G, we can easily build an assignation of
partial incentives s as follows:

s(u) =

{
1 if u is the extremal vertex v′′ in the gadget Λv and v ∈ S;

0 otherwise.

124 G. Cordasco et al.

Clearly, C(s) =
∑

v∈S 1 = |S|. To see that s is a target vector we notice that
ActiveG′ [s, 2] = {u | u ∈ V ′

v , v ∈ S}, consequently since S is a target set and G is
isomorphic to the subgraph of G′ induced by {v′ ∈ V ′

v | v ∈ V }, all the vertices
v ∈ V ′ will be activated.
On the other hand, assume that s is a target vector for G′ and C(s) = k, we can
easily build a target set S

S = {v ∈ V | ∃u ∈ V ′
v such that s(u) > 0}.

By construction |S| ≤ ∑
u∈V ′ s(u) = C(s). To see that S is a target set for G,

for each v ∈ V we consider two cases on the values s(·):
If there exists u ∈ V ′

v such that s(u) > 0 then, by construction v ∈ S.
Suppose otherwise s(u) = 0 for each u ∈ V ′

v . We have that in order to activate
v′ (and then any other vertex in Λv) there must exist a round i such that
ActiveG′ [s, i − 1] ∩ (V ′ − V ′

v) contains t(v) neighbors of v
′. Recall that G is the

subgraph of G′ induced by the set {v′ ∈ V ′
v | v ∈ V }. Then each round i ≥ 0

and for each v′ ∈ ActiveG′ [s, i], we get that the set ActiveG[S, i] contains the
corresponding vertex v. Consequently v will be activated in G. One can see
that the same graph G′ can be used to derive a similar reduction from TSS to
WTSS. ��

Fig. 1. The gadget Λv : (left) a generic vertex v ∈ V having degree dG(v) and threshold
t(v); (right) the gadget Λv , having dG(v) + 2 vertices, associated to v.

3 An Algorithm for Weighted Target Set Selection

The algorithm works by iteratively deleting vertices from the input graph G. At
each iteration, the vertex to be deleted is chosen as to maximize a certain function
(Case 3). During the deletion process, some vertex v in the surviving graph may
remain with less neighbors than its threshold; in such a case (Case 2) v is added
to the target set and deleted from the graph while its neighbors thresholds are
decreased by 1 (since they receive v’s influence). It can also happen that the
surviving graph contains a vertex v whose threshold has been decreased down
to 0 (e.g., the deleted vertices are able to activate v); in such a case (Case 1) v
is deleted from the graph and its neighbors thresholds are decreased by 1 (since
once v activates, they will receive vs influence). The proofs of the following
Theorems are given in Appendix A.

Theorem 2. For any graph G and threshold function t, the algorithm WTSS(G)
outputs a target set for G. The algorithm can be implemented so to run in
O(|E| log |V |) time.

Optimizing Spread of Influence in Social Networks via Partial Incentives 125

Theorem 3. For any G = (V,E), the algorithm WTSS(G) returns a target set
S with

C(S) ≤
∑

v∈V

c(v)t(v)

dG(v) + 1
. (1)

Theorem 4. The algorithm WTSS(G) outputs an optimal target set if G is a
complete graph such that c(v) ≤ c(u) whenever t(v) ≤ t(u).

Algorithm WTSS(G)
Input: A graph G = (V,E) with thresholds t(v) and costs c(v), for v ∈ V .
Output: A target set S for G.
1. S = ∅; U = V
2. for each v ∈ V do { δ(v) = dG(v); k(v) = t(v); N(v) = ΓG(v)}
3. while U �= ∅ do
4. [Select one vertex and eliminate it from the graph]
5. if there exists v ∈ U s.t. k(v) = 0 then
6. [Case 1: The selected vertex v is activated by the influence of its
7. neighbors in V − U only;
8. it can then influence its neighbors in U]
9. for each u ∈ N(v) do k(u) = max{0, k(u)− 1}
10. else
11. if there exists v ∈ U s.t. δ(v) < k(v) then
12. [Case 2: The vertex v is added to S, since no sufficient neighbors
13. remain in U to activate it;
14. v can then influence its neighbors in U]
15. S = S ∪ {v}
16. for each u ∈ N(v) do k(u) = k(u)− 1
17. else [Case 3: The selected vertex v will be activated by
18. its neighbors in U]

19. v = argmaxu∈U

{
c(u) k(u)

δ(u)(δ(u)+1)

}

20. [Remove the selected vertex v from the graph]
21. for each u ∈ N(v) do { δ(u) = δ(u)− 1; N(u) = N(u)− {v}}
22. U = U − {v}

4 Targeting with Partial Incentives

In this section, we design an algorithm to efficiently allocate incentives to nodes of
a network, in such a way that it triggers an influence diffusion process that influ-
ences the whole network. The algorithm is close in spirit to AlgorithmWTSS(G),
with some crucial differences. Again the algorithm proceeds by iteratively delet-
ing nodes from the graph and at each iteration the vertex to be deleted it is
chosen as to maximize a certain parameter (Case 2). If, during the deletion
process, a vertex v in the surviving graph remains with less neighbors than its
remaining threshold (Case 1), then v’s partial incentive is increased so that the
v’s remaining threshold is at least as large as the number of v’s neighbors.

126 G. Cordasco et al.

Example 2. Consider a complete graph on 7 vertices with thresholds t(v1) =
. . . = t(v5) = 1, t(v6) = t(v7) = 6. A possible execution of the algorithm is
summarized below. At each iteration of the while loop, the algorithm considers
the vertices in the order shown in the table below, where we also indicate for
each vertex whether Cases 1 or 2 applies and the updated value of the partial
incentive for the selected vertex:

Iteration 1 2 3 4 5 6 7 8

vertex v7 v6 v6 v1 v2 v3 v4 v5
Case 2 1 2 2 2 2 2 1

Incentive s(v7) = 0 s(v6) = 1 s(v6) = 1 s(v1)=0 s(v2)=0 s(v3)=0 s(v4)=0 s(v5)=1

The algorithm TPI(G) outputs the vector of partial incentives having non zero ele-
ments s(v5) = s(v6) = 1, for which we have
Active[s, 0] = {v5} (since s(v5) = 1 = t(v5)),
Active[s, 1] = Active[s, 0] ∪ {v1, v2, v3, v4} = {v1, v2, v3, v4, v5},
Active[s, 2] = {v1, v2, v3, v4, v5, v6} (since s(v6) = 1), Active[s, 3] = V.

Algorithm TPI(G)
Input: A graph G = (V,E) with thresholds t(v), for each v ∈ V .
Output: s a target vector for G.
1. U = V
2. for each v ∈ V do
3. s(v) = 0 [Partial incentive initially assigned to v]
4. δ(v) = dG(v)
5. k(v) = t(v)
6. N(v) = ΓG(v)
7. while U �= ∅ do
8. [Select one vertex and either update its incentive or remove it from the graph]
9. if there exists v ∈ U s.t. k(v) > δ(v)
10. then [Case 1: Increase s(v) and update k(v)]
11. s(v) = s(v) + k(v)− δ(v)
12. k(v) = δ(v)
13. if k(v) = 0 then U = U − {v} [here δ(v) = 0]
14. else [Case 2: Choose a vertex v to eliminate from the graph]

15. v = argmaxu∈U

{
k(u)(k(u)+1)
δ(u)(δ(u)+1)

}

16. for each u ∈ N(v) do {δ(u) = δ(u)− 1; N(u) = N(u)− {v}}
17. U = U − {v}

We first prove the algorithm correctness, next we give a general upper bound on
the size

∑
v∈V s(v) of its output and prove its optimality for trees and cliques.

To this aim we will use the following notation.
Let � be the number of iterations of the while loop in TPI(G). For each

iteration j, with 1 ≤ j ≤ �, of the while loop we denote
− by Uj the set U at the beginning of the j-th iteration (cfr. line 8 of TPI(G)),

in particular U1 = V (G) and U�+1 = ∅;
− by G(j) the subgraph of G induced by the vertices in Uj ,

Optimizing Spread of Influence in Social Networks via Partial Incentives 127

− by vj the vertex selected during the j-th iteration2,
− by δj(v) the degree of vertex v in G(j),
− by kj(v) the value of the remaining threshold of vertex v in G(j), that is, as

it is updated at the beginning of the j-th iteration, in particular k1(v) = t(v)
for each v ∈ V ,

− by sj(v) the partial incentive collected by vertex v in G(j) starting from the
j-th iteration, in particular we set s0(v) = 0 for each v ∈ V ; and

− by σj the increment of the partial incentives during the j-th iteration, that

is, σj = sj(vj)− sj−1(vj) =

{
0 if kj(vj) ≤ δj(vj),

kj(vj)− δj(vj) otherwise.

According to the above notation, we have that if vertex v is selected during the
iterations j1 < j2 < . . . < ja−1 < ja of the while loop in TPI(G), where the last
value ja is the iteration when v has been eliminated from the graph, then

sj(v) =

⎧
⎪⎨

⎪⎩

σj1 + σj2 + . . .+ σja if j ≤ j1,

σjb + σjb+1
+ . . .+ σja if jb−1 < j ≤ jb,

0 if j > ja.
The following results are immediate.

Proposition 1. Consider the vertex vj, selected during the iteration j, for 1 ≤
j ≤ �, of the while loop in the algorithm TPI(G),
1.1) If Case 1 of TPI(G) holds and δj(vj) = 0, then kj(vj) > δj(vj) = 0 and

the isolated vertex vj is eliminated from G(j). Moreover,
Uj+1 = Uj \ {vj}, sj+1(vj) = sj(vj)− σj , σj = kj(vj)− δj(vj) > 0, and
sj+1(v) = sj(v), δj+1(v) = δj(v), kj+1(v) = kj(v), for each v∈Uj+1.

1.2) If Case 1 of TPI(G) holds with δj(vj) > 0, then kj(vj) > δj(vj) > 0 and
no vertex is deleted from G(j), that is, Uj+1 = Uj. Moreover,
σj = kj(vj)− δj(vj) > 0 and for each v ∈ Uj+1 it holds

sj+1(v) =

{
sj(vj)−σj if v = vj

sj(v) if v �= vj
, δj+1(v) = δj(v),

kj+1(v) =

{
δj(v) if v = vj

kj(v) if v �= vj
2) If Case 2 of TPI(G) holds then kj(vj) ≤ δj(vj) and vj is pruned from G(j).

Hence, Uj+1 = Uj \ {vj}, σj = 0, and for each v ∈ Uj+1 it holds

sj+1(v) = sj(v), δj+1(v) =

{
δj(v)− 1 if v ∈ ΓG(j)(vj)
δj(v) otherwise.

, kj+1(v) = kj(v)

Lemma 1. For each iteration j = 1, 2, . . . , �, of the while loop in the algorithm
TPI(G),
1) if kj(vj) > δj(vj) then σj = kj(vj)− δj(vj) = 1;
2) if δj(vj) = 0 then sj(vj) = kj(vj).

2 A vertex can be selected several times before being eliminated; indeed in Case 1 we
can have Uj+1 = Uj .

128 G. Cordasco et al.

Theorem 5. For any graph G the algorithm TPI(G) outputs a target vector for
G.

Proof. We show that for each iteration j, with 1 ≤ j ≤ �, the assignation of
partial incentives sj(v) for each v ∈ Uj activates all the vertices of the graph
G(j) when the distribution of thresholds to its vertices is kj(·). The proof is by
induction on j.
If j = � then the unique vertex v� in G(�) has degree δ�(v�) = 0 and s�(v�) =
k�(v�) = 1 (see Lemma 1).
Consider now j < � and suppose the algorithm be correct on G(j + 1) that is,
the assignation of partial incentives sj+1(v), for each v ∈ Uj+1, activates all the
vertices of the graph G(j + 1) when the distribution of thresholds to its vertices
is kj+1(·).
Recall that vj denotes the vertex the algorithm selected from Uj (to obtain Uj+1

that is the vertex set of G(j + 1)). To prove the theorem we analyzes the three
cases according to the current degree and threshold of the selected vertex vj .
− Let kj(vj) > δj(vj) = 0. By Lemma 1 we have kj(vj) = sj(vj). Further-

more, recalling that 1.1) in Proposition 1 holds and by using the inductive
hypothesis on G(j + 1), we get the correctness on G(j) .

− Let kj(vj) > δj(vj) ≥ 1. By recalling that 1.2) in Proposition 1 holds we get
kj(v)−sj(v) = kj+1(v)−sj+1(v), for each vertex v ∈ Uj . Hence the vertices
that can be activated in G(j + 1) can be activated in G(j) with thresholds
kj(·) and partial incentives sj(·). So, by using the inductive hypothesis on
G(j + 1), we get the correctness on G(j).

− Let kj(vj) ≤ δj(vj). By recalling that 2) in Proposition 1 holds and the
inductive hypothesis on G(j+1) we have that all the neighbors of vj in G(j)
that are vertices in Uj+1 gets active; since kj(vj) ≤ δj(vj) also vj activates
in G(j). ��

Theorem 6. For any graph G the algorithm TPI(G) returns a target vector s

for G such that C(s) =
∑

v∈V s(v) ≤ ∑
v∈V

t(v)(t(v)+1)
2(dG(v)+1)

Theorem 7. TPI(K) returns an optimal target vector for any complete graph
K.

Theorem 8. TPI(T) outputs an optimal target vector for any tree T .

We can also explicitely evaluate the cost of an optimal solution for any tree.

Theorem 9. The cost of the optimal target vector s∗ on a tree T , having n
vertices with thresholds t : V −→ N is C(s∗) = n− 1 +

∑
v∈V t(v)− dT (v).

5 Experiments

We have experimentally evaluated both our algorithms WTSS(G) and TPI(G)
on real-world data sets and found that they perform quite satisfactorily. We
conducted experiments on several real networks of various sizes from the Stanford

Optimizing Spread of Influence in Social Networks via Partial Incentives 129

Large Network Data set Collection (SNAP) [25], the Social Computing Data
Repository at Arizona State University [29] and Newman’s Network data [26].
The data sets we considered include both networks for which “low cost” target
sets exist and networks needing an expensive target sets (due to a community
structure that appears to block the diffusion process).

The Competing Algorithms. We compare the performance of our algorithms
toward that of the best, to our knowledge, computationally feasible algorithms in
the literature [16]. It is worth to mention that the following competing algorithms
were initially designed for the Maximally Influencing Set problem, where the goal
is to identify a set S ⊆ V such that its cost is bounded by a certain budget β and
the activation process activates as much vertices as possible. In order to compare
such algorithms toward our strategies, for each algorithm we performed a binary
search in order to find the smallest value of β which allow to activate all the
vertices of the considered graph. We compare the WTSS algorithm toward the
following two algorithms:

− DegreeInt, a simple greedy algorithm, which selects vertices in descending
order of degree [22, 9];

− DiscountInt, a variant of DegreeInt, which selects a node v with the highest
degree at each step. Then the degree of nodes in Γ (v) is decreased by 1 [9].

Moreover, we compare the TPI algorithm toward the following two algorithms:

− DegreeFrac, which selects each node fractionally proportional to its degree.
Specifically, given a graph G = (V,E) and budget β this algorithm spend on

each node v ∈ V, s(v) =
⌊
d(v)×β
2|E|

⌋
[16]. Remaining budget, if any, is assigned

increasing by 1 the budget assigned to some nodes (in descending order of
degree).

− DiscountFrac, which in each step, selects the node v with the highest degree
and assigns to it a budged s(v) = max(0, t(v)−|Γ (v)∩S|)), which represent
the minimum amount that allows to activate v (S denotes the set of already
selected nodes). As for the DiscountInt algorithm, after selecting a node v,
the degree of nodes in Γ (v) is decreased by 1 [16].

Thresholds Values. We tested with three categories of threshold function:
Random thresholds where t(v) is chosen uniformly at random in the interval
[1, d(v)]; Constant thresholds where the thresholds are constant among all ver-
tices (precisely the constant value is an integer in the interval [2, 10] and for each
vertex v the threshold t(v) is set as min(t, d(v)) where t = 2, 3, . . . , 10 (nine tests
overall); Proportional thresholds where for each v the threshold t(v) is set as
αd(v) with α = 0.1, 0.2, . . . , 0.9 (nine tests overall). Notice that for α = 0.5 we
are considering a particular version of the activation process named “majority”
[19].

Node Costs. We report experiments results for the WTSS problem in case the
costs are equal to the thresholds, that is c(v) = t(v) for each vertex v ∈ V .
Similar results hold for different cost choices.

130 G. Cordasco et al.

Table 1. Random Threshold Results.

Targeting with Partial Incentives Weighted Target Set Selection with c(·) = t(·)
Name PTI DiscountFrac DegreeFrac WTSS DiscountInt DegreeInt

Amazon0302 52703 328519 (623%) 879624 (1669%) 85410 596299 (698%) 890347 (1042%)

BlogCatalog 21761 824063 (3787%) 980670 (4507%) 82502 1799719 (2181%) 2066014 (2504%)

BlogCatalog2 16979 703383 (4143%) 178447 (1051%) 67066 1095580 (1634%) 1214818 (1811%)

BlogCatalog3 161 3890 (2416%) 3113 (1934%) 3925 3890 (99%) 3890 (99%)

BuzzNet 50913 1154952 (2268%) 371355 (729%) 166085 1838430 (1107%) 2580176 (1554%)

ca-AstroPh 4520 67189 (1486%) 198195 (4385%) 13242 183121 (1383%) 198195 (1497%)

ca-CondMath 5694 31968 (561%) 94288 (1656%) 10596 76501 (722%) 94126 (888%)

ca-GrQc 1422 5076 (357%) 15019 (1056%) 2141 12538 (586%) 15019 (701%)

ca-HepPh 4166 42029 (1009%) 120324 (2888%) 11338 118767 (1048%) 120324 (1061%)

ca-HepTh 2156 9214 (427%) 26781 (1242%) 3473 25417 (732%) 26781 (771%)

Douban 51167 140676 (275%) 345036 (674%) 91342 194186 (213%) 252739 (277%)

Facebook 1658 29605 (1786%) 54508 (3288%) 5531 77312 (1398%) 86925 (1572%)

Flikr 31392 2057877 (6555%) 134017 (427%) 110227 5359377 (4862%) 5879532 (5334%)

Hep 4122 11770 (286%) 33373 (810%) 5526 33211 (601%) 33373 (604%)

LastFM 296083 1965839 (664%) 4267035 (1441%) 631681 2681610 (425%) 4050280 (641%)

Livemocha 26610 861053 (3236%) 459777 (1728%) 57293 1799468 (3141%) 2189760 (3822%)

Power grid 767 2591 (338%) 4969 (648%) 974 3433 (352%) 4350 (447%)

Youtube2 313786 1210830 (386%) 3298376 (1051%) 576482 2159948 (375%) 3285525 (570%)

Results. In our experiments we compare the cost of the target set (or target
vector) generated by six algorithms (PTI, DiscountFrac, DegreeFrac, WTSS,
DiscountInt, DegreeInt) on 18 networks, fixing the thresholds in 19 different
ways (Random, Constant with t = 2, 3, . . . , 10 and Proportional with α =
0.1, 0.2, . . . , 0.9). Overall we performed 6× 18× 19 = 2052 tests.

Random Thresholds. Table 1 depicts the results of the Random threshold test
setting. Each number represents the cost of the target vector (left side of the ta-
ble) or the target set (right side of the table) generated by each algorithm on each
network using random thresholds (the same thresholds values have been used
for all the algorithms). The value in bracket represents the overhead percentage
compared to our algorithms (TPI for DiscountFrac and DegreeFrac and WTSS
for DiscountInt and DegreeInt). Analyzing the results Table 1, we notice that
in all the considered cases, with the exception of the network BlogCatolog3, our
algorithms always outperform their competitors. In the network BlogCatalog3,
the WTSS algorithm is slightly worse than its competitors but PTI performs
much better than the other algorithms.

Constant and Proportional Thresholds. The following figure depicts the
results of Constant and Proportional thresholds settings. For each network the
results are reported in two separated figures: Proportional thresholds (left-side),
the value of the α parameter appears along the X-axis, while the cost of the
solution appears along the Y -axis; Constant thresholds (right-side), in this case
the X-axis indicates the value of the thresholds. We present the results only
for four networks because of space limitations; the experiments performed on
the other networks exhibit similar behaviors. Analyzing the results from Figs.
2-3, we can make the following observations: In all the considered case our

Optimizing Spread of Influence in Social Networks via Partial Incentives 131

Fig. 2. Amazon0302 and BlogCatalog3.

132 G. Cordasco et al.

Fig. 3. Flikr and YouTube2.

Optimizing Spread of Influence in Social Networks via Partial Incentives 133

algorithms always outperform their competitors; the only algorithm that pro-
vides performance close to our algorithms is the DiscountFrac algorithm. How-
ever, for intermediate values of the α parameter, the gap to our advantage is
quite significant. In general, in case of partial incentives we have even better
results, the gap to our advantage increases with the increase of the parameter
α.

References

1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for
target set selection. Theoretical Computer Science 411, 4017–4022 (2010)

2. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer:
quantifying influence on twitter. In: Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining (WSDM 2011), pp. 65–74 (2011)

3. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parametrized Approximability
of Maximizing the Spread of Influence in Networks. In: Du, D.-Z., Zhang, G. (eds.)
COCOON 2013. LNCS, vol. 7936, pp. 543–554. Springer, Heidelberg (2013)

4. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discrete Optimization 8, 87–96 (2011)

5. Centeno, C.C., et al.: Irreversible conversion of graphs. Theoretical Computer Sci-
ence 412(29), 3693–3700 (2011)

6. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant Thresholds Can
Make Target Set Selection Tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012.
LNCS, vol. 7659, pp. 120–133. Springer, Heidelberg (2012)

7. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious Sets in
Expanders. In: Proceedings of SODA 2015 (1987)

8. Chen, W., Lakshmanan, V.S., Castillo, C.: Information and Influence Propagation
in Social Networks. Morgan & Claypool (2013)

9. Chen, W., Wang, Y., Yang, S.: Efficient Influence Maximization in Social Networks.
In: Proc. 15th ACM SIGKDD Intl. Conf. on Know. Dis. and Data Min. (2009)

10. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete
Math. 23, 1400–1415 (2009)

11. Chiang, C.-Y., Huang, L.-H., Yeh, H.-G.: Target Set Selection Problem for Hon-
eycomb Networks. SIAM J. Discrete Math. 27(1), 310–328 (2013)

12. Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the
target set selection problem. Journal of Comb. Opt. 25(4), 702–715 (2013)

13. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J.G., Vaccaro, U.:
Spread of Influence in Weighted Networks under Time and Budget Constraints.
Theoretical Computer Science 586, 40–58 (2015)

14. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-
Bounded Target Set Selection in Social Networks. Theoretical Computer Sci-
ence 535, 1–15 (2014)

15. Christakis, N.A., Fowler, J.H.: The collective dynamics of smoking in a large social
network. N. Engl. J. Med., 2249–2258 (2008)

16. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Malec, D.L., Raghavan, S., Sawant,
A., Zadimoghadam, M.: How to influence people with partial incentives. In: Proc.
of WWW 2014, pp. 937–948 (2014)

17. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc.
of 7th ACM SIGKDD Int. Conf. on Know. Disc. and Data Min., pp. 57–66 (2001)

134 G. Cordasco et al.

18. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press (2010)

19. Flocchini, P., Královic, R., Ruzicka, P., Roncato, A., Santoro, N.: On time versus
size for monotone dynamic monopolies in regular topologies. J. Discrete Algo-
rithms 1, 129–150 (2003)

20. Gargano, L., Hell, P., Peters, J., Vaccaro, U.: Influence Diffusion in Social Net-
works under Time Window Constraints. In: Moscibroda, T., Rescigno, A.A. (eds.)
SIROCCO 2013. LNCS, vol. 8179, pp. 141–152. Springer, Heidelberg (2013)

21. Granovetter, M.: Thresholds Models of Collective Behaviors. American Journal of
Sociology 83(6), 1420–1443 (1978)

22. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence
through a social network. In: Proc. of 9th ACM SIGKDD Int. Conf. on Know.,
Disc. and Data Min., pp. 137–146 (2003)

23. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential vertices in a Diffusion Model
for Social Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005)

24. Leskovic, H., Adamic, L.A., Huberman, B.A.: The dynamic of viral marketing.
ACM Transactions on the WEB 1 (2007)

25. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collec-
tion (2015), http://snap.stanford.edu/data

26. Newman, M.: Network data (2015),
http://www-personal.umich.edu/~mejn/netdata/

27. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On Tractable Cases of
Target Set Selection. Social Network Analysis and Mining, 1–24 (2012)

28. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms
Appl. 15(5), 683–699 (2011)

29. Zafarani, R., Liu, H.: Social Computing Data Repository at ASU,
http://socialcomputing.asu.edu

30. Zaker, M.: On dynamic monopolies of graphs with general thresholds. Discrete
Mathematics 312(6), 1136–1143 (2012)

http://snap.stanford.edu/data
http://www-personal.umich.edu/~mejn/netdata/
http://socialcomputing.asu.edu

Approximation Algorithms for Multi-budgeted

Network Design Problems

Georgios Stamoulis

LAMSADE
PSL* Research University, Université Paris-Dauphine

CNRS UMR 7243, France
Universitá della svizzera Italiana, Lugano, Switzerland

stamoulis.georgios@gmail.com

Abstract. We study the multi-budgeted version of the Survivable Net-
work Design Problem [3] where, besides the usual connectivity require-
ments between pairs of points, we also need to satisfy a set of linear
constraints (the budgets). For this case, we provide a polynomial time
(3, 3) bi-criteria approximation algorithm for the problem which is based
on combinatorial properties of the extreme point solutions of the natural
linear relaxation of the problem.

1 Introduction

In the Survivable Network Design (SND) problem, we are given a simple, non-
directed graph G = (V,E) with a weight function w : E → Q

+ and a set of
connectivity requirements R = {{si, ti}}, vi, ti ∈ V (G) such that vi �= ti. Let
|R| = q ∈ Z

+. With each pair of source-sink vertices {si, ti} ∈ R is associated a
positive integer ri. The goal is to find a minimum weight (cost) Steiner network
S ⊆ G such that in S there are at least ri disjoint paths connecting each pair
{si, ti} ∈ R. Note that, since the graph is non-directed, we do not required the
source-sink pairs to be ordered pairs.

This is a very important problem, both from a theoretical and from a practical
perspective: from a practical perspective, this problem is motivated by telecom-
munication applications where we want to find a sparse network of a initially
given dense one that can tolerate failures on its links. In other words, even if
any rj − 1 edges fail in the new network, pair i ∈ R will still be connected in
the new network. Highly important links (pairs {si, ti}) have high connectivity
requirement.

The problem probably is even more interesting from a theoretical point of view.
Prior to the seminal work of Kamal Jain [3] who derived a 2-approximation for
the above problem, the best approximation guarantee was 2 · maxi∈q{ri} [14]
which was improved to an approximation guarantee of 2Hk [2], where Hk is the
k-th harmonic 1+ 1

2 +
1
3 + · · ·+ 1

k ≈ log k. As we said, in the seminal work of Jain
[3] a 2-approximation algorithm as given. Again, this is very interesting for two
reasons: the obvious reason is that it significantly improved the approximation

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 135–148, 2015.
DOI: 10.1007/978-3-319-25258-2_10

136 G. Stamoulis

guarantee (providing the first constant approximation ratio for this problem) for
a very well known and well studied combinatorial problem. The second reason,
is that this result was based on the concept of iterated rounding of linear pro-
grams. The novel ideas introduced in this paper triggered a host of other very
related results and the approach was so successful that even a whole book is
dedicated the the study of iterative methods in combinatorial optimization [7].
The approach of Jain is the following:

First, model the problem as an integer linear program where we want to
minimize wTx ≡ ∑

e∈E wexe

subject to
∑

e∈δ(S)

xe ≥ max
si∈S,ti/∈S

{ri}, ∀S ⊆ V (1)

xe ∈ {0, 1}, ∀e ∈ E(G) (2)

The intuition of the first set of constraints is that in every feasible solution we
require that for every subset of vertices S, at least max{ri} (for si ∈ S, ti /∈ S)
edges cross this set (i.e., have one endpoint in S and the other not in S).

As usual, the integrality constraints xe ∈ {0, 1} are replaced by the xe ∈ [0, 1]
and the above linear program is solved to optimality in polynomial time using a
separation oracle and the Ellipsoid algorithm (since it has an exponential number
of constraints), to produce an optimal fractional vector x∗ ∈ [0, 1]E . The cost
of this vector, i.e. opt =

∑
e∈E x∗

ewe is a lower bound on the cost of the true
integral optimal solution. Then, a polyhedral characterization of any extreme
point solution1 is given i.e., that every extreme point solution of the bounded
polyhedron defined by the above linear program (after we drop the integrality
constraints) satisfies the following property: ∃e ∈ E such that xe ≥ 1

2 . In other
words, any basic (extreme point) feasible solution x must always have at least
one variable with fractional value greater than 1

2 .
If we define maxsi∈S,ti/∈S{ri} = f(S) for any S ⊆ V , then the constraint of the

above LP becomes
∑

e∈δ(S) xe ≥ f(S). The above characterization of the extreme

point solutions holds also whenever the function f(S) is weakly supermodular : A
function f : 2V → Z is weakly supermodular if f(∅) = f(V) = 0 and, ∀A,B ∈ 2V

one of the following holds:

1. f(A) + f(B) ≤ f(A ∩B) + f(A ∪B),

2. f(A) + f(B) ≤ f(A−B) + f(B −A)

It can be shown using standard arguments that f(S) = maxsi∈S,ti /∈S{ri} is
a weakly supermodular function [13]. So, in fact, the result of Jain concerns a
more general class of problems, of which one special case happens to be the SND
problem when f(S) has the previous form.

1 Extreme point, or basic feasible solution is any point y belonging in the polyhedron
defined by the corresponding inequalities such that y cannot be written as a convex
combination of two other feasible points

Approximation Algorithms for Multi-budgeted Network Design Problems 137

Given the characterization of all extreme point solutions x of the polyhedron
defined by the relaxed LP introduced above, a 2-approximation algorithm is-
almost-immediate: solve the LP to get a fractional optimal vector x∗. Let I be
the set of indexes (edges) whose fractional value is “high”: I = {e ∈ E : x∗

e ≥ 1
2 .

Include all these edges into the solution (i.e., round their fractional value to 1).
Re-define the connectivity requirements of all source-sink pairsR and resolve the
linear program to obtain a new optimal basic feasible solution for the reduced
instance. Since each time we round up variables by a factor of at most 2, the cost
of the final solution would be at most twice the cost of the optimal fractional
LP solution.

Generalizations of the SND Problem

Several generalizations of the SND problem have been studied in the literature.
Most common among these is the Minimum Bounded degree Steiner Network
which is identical with the SND plus degree constraints for a subset of vertices
W ⊆ V . This means that for every feasible solution x ∈ {0, 1}E and every vertex
v ∈ W , we must have that

∑
e∈δ(v) xe ≤ bv, where bv ∈ Z

+ is the degree bound
of vertex v.

A (2, 2bv + 3) bi-criteria algorithm (i.e., a polynomial time algorithm that
returns a solution at most twice as costly as the optimal while the degree of each
vertex v ∈ W is at most 2bv+3) is known for the problem [6] which was improved
to (2, 2bv+2) in [9]. In [8] an additive (2, bv+6rmax+3) (rmax = maxj∈R{rj}) bi-
ctiteria algorithm was given which, although additive in nature, does not directly
compares with the previous bi-criteria algorithms. In [4], [10], [1] the problem
was studied for directed input graphs G.

In [5] the author defined and studied the budgeted version of the SND problem
which is the standard SND problem complicated with an extra linear constraint
lin = �Tx =

∑
e∈E xe�e ≤ L ∈ Q

+. The author notices that a (4, 4) bi-criteria
algorithm (4-approximation on the objective function value plus a violation of
the packing constraint by a factor of at most 4) can be easily derived by a direct
application of the famous Caratheodory’s theorem on convex polytopes. Solve
the LP defined by (1) and (2) + lin and get a basic fractionaly feasible solution
x∗ that does not violate the linear budget. By Caratheodory’s theorem, x∗ can be
written as a convex combination of at most two points of the SND polyhedron:
x∗ = λy + (1 − λ)z such that λ ∈ [0, 1] and y, z ∈ [0, 1]E are extreme point
solutions of the fractional SND polyhedron defines by (1) plus (2). By Jain’s
result [3] each of y, z has a variable with fractional value greater than half. This
means that at least one variable in one of the λy or (1 − λ)z has value ≥ 1

4 .
Apply Jain’s algorithm and a (4, 4) bi-criteria algorithm is immediate.

Moreover, the author proved that for every basic feasible solution x of the
generalized LP (that spells out the connectivity requirements plus the linear
budget), there is always a coordinate with fractional value greater than 1

3 . This
is proved by the following way: a basic feasible solution is obtained for the relaxed
LP. Then, the author notices that among all tight sets (sets that are satisfied
with equality by the corresponding bfs) of vertices that define the basic feasible
solution, there must be at least one such set S with degree ≤ 3. Since the sum

138 G. Stamoulis

of these edges must sum at least to f(S) = maxsi∈S,ti /∈S{ri} which is at least 1,
we have that there must be an edge crossing S with fractional value ≥ 1

3 . This is
done by considering only the tight constraints of subsets of vertices defining the
obtained basic feasible solution x (by dropping the linear budget). Since there
is only one linear budget, this drops the dimension of the vector space defined
by these sets by 1 and then a counting argument on the remaining tight sets is
done to produce the desired result.

Our Contribution

In this paper we study the SND problem with an unbounded number of extra
linear budgets. In particular, we assume that each edge has a unique color. Let
C = {C1, . . . , Ck} be the set of all color classes and let Ej = {e ∈ Cj} be the
set of edge of color Cj . In other words C forms a partition on the edges and let
c(e) = Cj to be the color (constraint) of e. Let the function c : E → C be the
function that assigns colors to the edges. For each color class Cj ∈ C we have a
linear budget

�Tj x =
∑

e∈Ej

�j(e)x(e) ≤ Lj

and our task is to find a minimum cost Steiner network that satisfies (2) plus
all the linear budgets. We note that a usual token redistribution argument is
unlikely to work for this case, due to the nature of the constraints. Nevertheless,
we provide an adaptation of the fractional token argument (first introduced in
[11]) which seems to better facilitate the structure of the problem and we prove
that even in this generalization of the problem considered in [5], a similar claim
can be made: for any basic feasible solution to the relaxed LP defined by (2)
plus all the linear budgets, there always exists a fractional entry with value ≥ 1

3 .
As it is the case with all generalization of SND problem [6,9,8,5], our algorithm

relies on existing tools developed originally by Jain, although the technical details
provide extra challenge. On the other hand, since the usual approach (employed
in [5]) seems that it cannot give us any meaningful result (because with k budgets
the dimension of the vector space defined by the remaining sets after dropping
these budgets could drop by as much as k), our contribution is to show how we
can employ a particular fractional charging scheme that let us prove our result
for a generalization of the problem defines in [5] and which the author leaves as
open problem. Also, we note that an application of Caratheodory’s theorem in
our case does not yield any meaningful insight on the fractional values of the
extreme point solutions.

2 Characterization of Extreme Point Solutions

We consider the polyhedron that includes all the feasible points for the multi-
budgeted version of SDN problem:

Approximation Algorithms for Multi-budgeted Network Design Problems 139

PI =
{
y ∈ {0, 1}E :

∑

e∈δ(S)

ye ≥ f(S), ∀S ⊆ V
∧ ∑

e∈Ej

�j(e)y(e) ≤ Lj, ∀Cj ∈ C
}

where as usual for all S ⊆ V , f(S) = maxsi∈S,ti/∈S{ri} (and we use the
notation ye and y(e) interchangably). We drop the integral constraints on the

variables and this defines the fractional polyhedron Pf
SND−b which from now

on we will call it simply Pf to emphasize we are talking about the fractional
polyhedron of the budgeted Survivable Network Design problem. We start with
some essential definitions:

Definition 1. Let E′ ⊆ E be a subset of the edges of the graph. Then, we define
the characteristic vector of E′ to be the binary vector χE′ ∈ {0, 1}E such that
χE′(e) = 1 ⇔ e ∈ E′ i.e. the i-th component of χE′ is 1, if the i-th edge belongs
to E′ and zero otherwise.

Let y be a real-valued vector in a n-dimensional space. Define the support of
y to be the indices of all the non-zero components of y i.e. supp(y) = {i ∈ [n] :
yi �= 0}.

A family L of subsets of some universe U is called laminar if it is not in-
tersecting i.e. for any two subsets L1, L2 ∈ L it is not the case that all of the
L1 \ L2, L2 \ L1 and L1 ∩ L2 are non empty.

Also we say that a constraint is tight if it is satisfied by a solution vector with
equality. Our study begins with a characterization of all extreme point (or basic)
solutions of Pf (which carry over to the integral polytope as well):

Lemma 1. Let the connectivity requirement function f(S) = maxsi∈S,ti/∈S{ri}
be weakly super-modular and let x be an extreme point solution of Pf such that
0 < xe < 1 for all e ∈ E. Then, there exists a laminar family L ⊆ 2V , and a
set Q ⊆ C such that:

1.
∑

e∈δ(S) xe = f(S), ∀S ∈ L,
2.

∑
e∈Ej

�j(e)x(e) = Lj, ∀Cj ∈ Q,
3. the characteristic vectors of χδ(S) for S ∈ L and χCj for Cj ∈ Q are all

linearly independent, and
4. |L|+ |Q| = |E| = |supp(x)|.
This Lemma is proved by standard properties of basic feasible solutions [12]:

indeed we can form a basic feasible solution by selecting |E| linearly independent
constraints, set them to equality and solve the linear system. The last item of
the lemma simply says that the number of non-zero variables is the number of
linearly independent constraints set to equality. The fact that we can take the
family of tight constraints of subsets of vertices L to be laminar, follows from
standard un-crossing arguments [3], [7].

Armed with Lemma 1, we now prove the main theorem of this paper that
asserts that for any given bfs of Pf there exists variable with “high” fractional
value:

140 G. Stamoulis

Theorem 1. Take any basic feasible solution (a vertex) of the polyhedron Pf

such that the connectivity requirement function is weakly super-modular. Then
there always exists a variable e such that xe ≥ 1

3 .

Proof. The proof will be given by contradiction. In particular, assume we have
a basic feasible solution x ∈ (0, 1)E of Pf and for all e ∈ supp(x) we have that
xe < 1

3 . We will employ a fractional charging scheme which works as follows:
Initially each non-zero edge e is given a positive charge of value at most 1. Then,
this edge will redistribute fractionally this charge to sets S ∈ L and Cj ∈ Q,
where Cj = c(e), in such a way that at the end each tight set S ∈ L and
Cj ∈ Q will receive charge at least one for a total receiving charge of at least
|L|+|Q| = |E|. On the other hand, we will show that the total charge distributed
must be strictly less than |E|, which will give the desired contradiction.

For each edge e ∈ supp(x), with endpoints u, v, the distribution scheme we
carry on is the following:

1. Edge e gives charge of xe to its color class Cj = c(e) only if Cj ∈ Q.
2. For each endpoint u of e, edge e assigns charge of xe to the minimal set

(inclusion-wise) S ∈ L that contain u, if such sets exists and
3. Assigns charge 1 − 3xe to the minimal set S ∈ L that contains both of its

endpoints, if such a set exists.

Note that by the hypothesis, 1 − 3xe > 0 so, for every edge, each charge
distributed is positive. The total charge per edge is at most 13xe+2xe+xe = 1.
We first that not all edges can spend charge of exactly 1:

Claim. There exists at least one edge e ∈ supp(x) that assigns charge strictly
less than 1.

Proof of Claim: There exists a natural way to represent the laminar family L as
a forest which we will also use in the following: we say that Si ∈ L is child of
S ∈ L if S is the smallest (minimal) set in L containing Si. In other words Si is
a child of S if there is no other set S′ ⊆ S such that Si ∈ S. Such S is unique.
Symmetrically, S is the parent of Si. Any parentless set S ∈ S is called root of
the subtree rooted at S. And childless sets S are called leaves. The subtree rooted
at S contains all the sets that are descendants (the transitive, reflexive closure
of the relation child) of S. Any root Ri ∈ L must contain, by definition, edges
that cross Ri, i.e., δ(Ri) �= ∅ because

∑
e∈δ(Ri)

= f(Ri) and if f(Ri) was equal

to zero, then the vector χRi = 0E is not linearly independent, a contradiction.
So, there must be edges crossing any root Ri. Each such edge e ∈ δRi wastes a
charge of 1− 3xe > 0 because it is not the case that both endpoints of such edge
belong to the same set S ∈ L.

So, there are edges that give charge strictly less than 1, for a total assigned
charge of strictly less than |E| = |supp(x)|. In the following we will show how
each tight object S ∈ L and Cj ∈ Q receives charge of at least one for a total
receiving charge of at least |L|+ |Q| = |E|, which will be a contradiction of the

Approximation Algorithms for Multi-budgeted Network Design Problems 141

hypothesis of the lemma that such a charging scheme exists which is implied by
the hypothesis that ∃e : xe ≥ 1/3 .

We begin with the case of the color tight classes Cj ∈ Q, which is (relatively)
easier: each such class Cj will receive a charge of xe from every edge e such that
c(e) = Cj(⇔ e ∈ Ej), for a total charge of

∑
e∈Ej

xe. We must show that this
quantity is ≥ 1, which is not immediately obvious:

Claim. Let Cj ∈ Q be a color budget constraint that is met with equality by
the basic feasible solution x ∈ Pf i.e.,

∑
e∈Ej

xe�j(e) = Lj . Then �j(e) ≤ Lj

∀e ∈ Ej .

Proof of Claim: We can easily see that it is not the case that Lj = 0, since
otherwise we would have that χCj = 0E which is not linearly independent. So,
Lj > 0 and since the constraint is met with equality we know that ∃e ∈ Ej

such that xe > 0. On the other hand, we see that �j(e) ≤ Lj, ∀e ∈ Ej . Indeed,
assume not, i.e., ∃e ∈ E such that �j(e) > Lj: then any feasible integral solution
must have xe = 0, ∀e ∈ Ej , and in such a case we can drop the constraint after
we delete all such edges of color Cj . In other words, if �j(e) > Lj for some edge
of color Cj , delete the edge from the graph without any loss. All the remaining
edges satisfy the desired property that �j(e) ≤ Lj ∀e ∈ Ej , for all color classes
Cj ∈ Q. Take such a constraint:

∑

e∈Ej

x(e)�j(e) = Lj =⇒
∑

e∈Ej

[
�j(e)

Lj

]

︸ ︷︷ ︸
≤1

xe = 1 =⇒
∑

e∈Ej

xe ≥ 1

where the last inequality follows by an immediate averaging argument.

The previous claim is enough to prove that the charge received by any color
class Cj ∈ Q is at least 1.

We now continue to prove that also any set S ∈ L receives charge at least 1.
As a first case, consider the scenario where S ∈ L is a leaf of some tree in the
tree-representation of L. Since S ∈ L, it is the case that

∑
e∈δ(S) xe = f(S) and

by definition f(S) is an integer at least 1. This set will receive charge from all
the crossing edges e ∈ δ(S) for a total charge

∑
e∈δ(S) xe = f(S) ≥ 1 (remember

that edge e with one endpoint on S will give S charge xe if S is the smallest set
containing one endpoint of e. Since S is a leaf, it is in fact the smallest set that
contains one endpoint of all the crossing edges).

Now assume that S ∈ L is not a leaf and that it has q children Z1, Z2, . . . Zq

all of which are in L (by definition). This means that
∑

e∈δ(Zi)
xe = f(Zi), a

positive integer and the same is of course true for S. The charge received by S
comes from different set of edges:

1. Let A be the set of edges that cross between two children of S, i.e., A =
{e = {u, v} ∈ E : u ∈ Zi ∧ v ∈ Zj} for two distinct i, j ∈ [q]. Since S is the

142 G. Stamoulis

smallest (minimal) set S ∈ L that contains both endpoints of all these edges
in A, each such edge will assign charge of 1− 3xe to S, for a total charge of
|A| − 3

∑
e∈A xe.

2. Let B = {e = {u, v} ∈ E : u ∈ Zi ∧ v ∈ S}, i.e., B contains all edges with
one endpoint on one of S’s children and the other endpoint in S (not in any
other child of S). By the charging scheme, these edges will give to S charge
of xe (one endpoint of e is “owned” by S and thus charge of xe is received)
plus a charge of 1− 3xe because S is the minimal set containing both of e’s
endpoints for a total charge of

∑
e∈B 1− 2xe = |B| − 2

∑
e∈B xe.

3. Let Γ = {e ∈ δ(S) : e ∩ {S \ ∪i∈qZi} �= ∅}. In other words, Γ contains all
edges that cross S with one endpoint in S\∪i∈qZi. Each of these edges e ∈ Γ
give S a charge of xe (because S is the smallest set that contains exactly one
endpoint of e) for a total charge of

∑
e∈Γ xe.

4. Let Δ be the rest of edges, i.e., Δ = {∪i∈[q]{δ(Zi)}} such that e = {u, v} ∩
S = ∅}, i.e., Δ contains all edges that cross Zj and S at same time. These
edges do not assign any charge to S.

We note that if |A| = |B| = |Γ | = 0, then χS =
∑

i∈[q] χZi , i.e., the charac-
teristic vectors of S,Z1, . . . , Zq are not linearly independent, a contradiction. So
at least one of A,B, Γ must be nonempty and so the charge received from S is
strictly greater than zero. By the previous four cases, S receives total charge of

Ω = |A| − 3
∑

e∈A

xe + |B| − 2
∑

e∈B

xe +
∑

e∈Γ

xe =

|A|+ |B| −
(
∑

e∈A

xe +
∑

e∈B

xe

)

+

(
∑

e∈Γ

xe − 2
∑

e∈A

xe −
∑

e∈B

xe

)

︸ ︷︷ ︸
f(S)−∑

i∈[q] f(Zi) = Ψ∈Z

> 0

We want to show that the above expression (which we already know is pos-
itive) is in fact at least 1. Lets call it Ω and lets call the quantity f(S) −∑

i∈[q] f(Zi) as Ψ . Note that Ψ , although obviously an integer as a sum and sub-
traction of integer quantities, might not always be positive. Finally, let Ξ = Ω−Ψ
= |A|+ |B| − (

∑
e∈A xe +

∑
e∈B xe). We divide our task into several subcases:

First Case: |A| = |B| = 0. Then of course we have also
∑

e∈A xe+
∑

e∈B xe = 0
and so Ω = Ψ = f(S) −∑

i∈[q] f(Zi) > 0. But the last expression is a positive
expression involving only integers and so is ≥ 1.

Second Case: |A|+ |B| ≥ 1. In this case notice we have that |A| −∑
e∈A xe >

2
3 |A| and |B| −∑

e∈B xe > 2
3 |B| since, by hypothesis, every edge has fractional

value < 1
3 . There are several subcases to consider:

Ψ > 0 : This actually means (since Ψ is an integer) that Ψ ≥ 1 =⇒ Ω ≥ 1 (in
fact Ω > 1, but for our purposes the inequality is enough).

Ψ = 0 : In this case, we first note that if |A| + |B| ≥ 2 then we have that
Ω > 2 · 2

3 > 1 and we are done. The interesting case is of course when

Approximation Algorithms for Multi-budgeted Network Design Problems 143

|A| + |B| = 1. Assume, w.l.o.g., that |A| = 1 and |B| = 0 end let e′ be the
lonely edge in A (between two of the children of S) such that 0 < xe′ < 1/3.
Since f(S) =

∑
j∈[q] f(Zj) =⇒ ∑

e∈Γ xe =
∑

e∈A xe = xe′ . Let Z1, Z2 the

two children of S that contain the different endpoints of e′. We can assume
without any loss that S has only two children: otherwise, since all edges of
the rest of the children are part of δ(S) and they sum to an integer, we can
safely ignore them, reducing appropriately f(S). Let us define

α =
∑

e∈δ(Z1)\{e′}
xe and β =

∑

e∈δ(Z2)\{e′}
xe.

We have that: α+xe′ = f(Z1), β+xe′ = f(Z2), α+β+
∑

e∈Γ xe = α+β+xe′

= f(S) = f(Z1) + f(Z2) = α + β + 2xe′ . Since all the previous quantities
are positive integers, we conclude that 2xe′ is an integer ⇒ xe′ ∈ {0, 12 , 1}, a
contradiction by the hypothesis. So, |A|+ |B| must be ≥ 2, and we are done.

Ψ < 0 : Let’s assume that f(S)−∑
j∈[q] f(Zj) = −k for some positive integer k.

From the definition of Ω we have that Ω = |A|−∑
e∈A xe+ |B|−∑

e∈B xe−
k > 0. Then we have that

f(S)−
∑

j∈[q]

f(Zj) =
∑

e∈Γ

xe +
∑

e∈Δ

xe − 2 ·
∑

e∈A

xe −
∑

e∈B

xe −
∑

e∈Δ

xe = k

⇒ 2
∑

e∈A

xe +
∑

e∈B

xe −
∑

e∈Γ

xe = k (3)

By using the definition of Ω we can easily derive a bound on |A| + |B| as
function of k:

Ω = |A| −
∑

e∈A

xe + |B| −
∑

e∈B

xe − k > 0

⇒ |A|+ |B| ≥
⌈3k
2

⌉
(4)

First, assume that |Γ | = 0 and so 2
∑

e∈A xe +
∑

e∈B xe = k. Then we have
that:

Ω = |A| −
∑

e∈A

xe + |B| −
∑

e∈B

xe − k

= |A|+ |B|
︸ ︷︷ ︸

>3k/2

−
(
2
∑

e∈A

xe +
∑

e∈B

xe

)

︸ ︷︷ ︸
= k

+
∑

e∈A

xe

︸ ︷︷ ︸
≥ 0

−k

≥
∑

e∈A

xe − k

2
> 0 (5)

from which we immediately conclude that 2
∑

e∈A xe > k, which is a con-
tradiction because 2

∑
e∈A xe +

∑
e∈B xe = k and all the quantities involved

are positive. So, |Γ | �= 0.

144 G. Stamoulis

Again, as before we have that −Ψ = 2
∑

e∈A xe +
∑

e∈B xe −
∑

e∈Γ xe = k
and so we have that

Ω = |A| −
∑

e∈A

xe + |B| −
∑

e∈B

xe − k

= |A|+ |B| −
(
2
∑

e∈A

xe +
∑

e∈B

xe −
∑

e∈Γ

xe

)

︸ ︷︷ ︸
=k

+
∑

e∈A

xe −
∑

e∈Γ

xe − k

= |A|+ |B|
︸ ︷︷ ︸

>3k/2

+
∑

e∈A

xe −
∑

e∈Γ

xe − 2k

>
∑

e∈A

xe −
∑

e∈Γ

xe − k

2
> 0

Since 2
∑

e∈A xe +
∑

e∈B xe −
∑

e∈Γ xe = k, with the help of the previous

calculations, we conclude that
∑

e∈A xe+
∑

e∈B xe <
k
2 . Using the definition

of Ω we have that

Ω = |A|+ |B| −
(∑

e∈A

xe +
∑

e∈B

xe

)
− k > 0

⇒ |A|+ |B| − 3k

2
> 0 (6)

Now, if k mod 2 = 0, the above expression is a positive expression involving
only integers, and so it must be ≥ 1, in which case we are done. So assume
that k is an odd positive integer. The worst case (actually the only worst
case) is when |A|+ |B| − 3k

2 = 1
2 ⇒ |A|+ |B| = 3k+1

2 .
From the definition of the fractional charge received by S (Ω = |A| −
3
∑

e∈A xe+ |B|−2
∑

e∈B xe+
∑

e∈Γ xe) we have that if either of
∑

e∈Γ xe or
|B|−2

∑
e∈B xe is greater or equal to 1, then Ω > 1 (since |A|−3

∑
e∈A xe >

0). So we assume that (1)
∑

e∈Γ xe < 1 and (2) |B|−2
∑

e∈B xe < 1 ⇒ |B| ≤
2 (because, as above, |B| − 2

∑
e∈B xe >

1
3 |B|).

We will consider the case where |B| = 0. The other two cases (|B| ∈ {1, 2})
are simpler subcases which we omit in the current reading.
Since |B| = 0, we have that 2

∑
e∈A xe − ∑

e∈Γ xe = k. Let’s denote the
corresponding summations as α and γ respectively, i.e., 2α + γ = k ⇒ α =
k+γ
2 and 0 < γ < 1 by hypothesis. From the definition of Ω we have that

Ω = |A| − 3α+ γ > 0

=⇒ |A| > 3k + γ

2
≥ �3k + 1

2
� (7)

If |A| > 3k+1
2 ≥ 3k+3

2 (since |A| is odd) then we are done. This can be easily

seen because we have that Ω = |A| − 3α+ γ ≥ 3k+3
2 − 3k+3γ

2 + γ = 3−γ
2 > 1

Approximation Algorithms for Multi-budgeted Network Design Problems 145

because γ < 1. So, assume that |A| = 3k+1
2 , which means that we have 3k+1

2

edges summing up to exactly k+γ
2 . Now, if γ ≥ 1

3 , we see that the average

fractional value of the edges in A is k+γ
3k+1 > 1

3 , which is a contradiction

because of the assumption that all edges have fractional value xe <
1
3 . So, γ

must be < 1
3 .

We are left with the case where |A| = 3k+1
2 and γ < 1/3. We will show

that this case is contradicting the initial assumptions. We will do this by
providing a counting argument: in fact, we will show that in the reduced
instance including S and all of its children {Zi}i∈[q] the number of edges
(which are in fact the edges in A,Γ and Δ) is greater that the number on
tight linearly independent constraints giving rise to this reduced instance.
This will be a contradiction since, according to Lemma 1, the number of
edges and tight linearly independent constraints characterizing this solution
should be equal. We will first show that if we restrict the initial basic feasible
solution x to this sub-instance, we are still left with a basic feasible solution,
so that we can apply in the next step Lemma 1 and derive our contradiction.

Claim. Let I be an instance of the budgeted Survivable Steiner Network
problem and x be a basic feasible solution to the LP for I. Let S be a
set belonging to the laminar family L characterizing x (together with Q).
Assume that S has q children Zj, j ∈ [q] in L. Then the restriction of x,
xS , to the sub-instance IS generated by S and its children is a basic feasible
solution for LP to IS .

Proof of Claim: The fact that xS is a feasible solution for IS its trivial from
the feasibility of x for I. In fact we can create xS from x by simply zero-
ing out all the entries of x that correspond to entries (edges) different from
the sets A,Γ,Δ. Assume that xS is not basic. This means that there are two
basic feasible solutions x1

S and x2
S such that xS = λx1

S+(1−λ)x2
S , λ ∈ (0, 1).

But then if we expand xj
S by including all the entries of x that correspond to

edges not included in the sub-instance, we have a feasible solution for I. So,
x can be written as a convex combination of the two “expanded” solutions
created x1

S and x2
S with the same multiplier λ contradicting the fact that x

is basic.

Assume that S has q children Zj , j ∈ [q] and that there are |A| = 3k+1
2 edges

running between the the Zj’s, where k =
∑

j∈[q] f(Zj) − f(S). Moreover

assume that γ =
∑

e∈Γ xe < 1
3 . We see that if there exist a child Zp, p ∈ [q],

such that all edges in δ(Zp) ∈ Δ then we can assume that this child does not
belong to L without any loss of generality, by just reducing the connectivity
requirement of S by f(Zp). This does not change feasibility. So, we assume
that there exist at least one edge in A in every set δ(Zj) for every child j of
S.
We will deliver a lower bound lb on the number of edges and an upper
bound ub on the number of tight linearly independent constraints in the
sub-instance IS . By the above Claim, we do not need to count the edges

146 G. Stamoulis

that are fully inside children of S neither we would take into consideration
and children of children of S. We will see that lb > ub, which constitutes a
contradiction by Lemma 1. Since γ < 1/3, we see that |Γ | ≥ 1. We already
know that |A| = 3k+1

2 . Each edge of |A| runs between two children of S, so in
the maximum case, S would have at most 3k+1 children and this is the worst
case (for our counting argument). We will count now the edges in Δ. We
remind that these are the edges going directly from any of the children Zj of
S to outside S. If S has 3k+1 children, then since each child of S has one edge
in A and its connectivity requirement is an integer ≥ 1, then it must have
at least 3 edges in Δ (since all edges are < 1/3) i.e. |δ(Zj)∩Δ| ≥ 3, ∀j ∈ [q]
and so |Δ| ≥ 3(3k + 1). Moreover, each tight budget constraint requires
at least 4 edges. So, the maximum number of such budget constraints is

≤ |A|+|Γ |+|Δ|
4 ≤ |A|+1+|Δ|

4 for a total maximum number of tight objects in

LS and QS to be ≤ 1 + (3k + 1)+ |A|+1+|Δ|
4 < 3k+1

2 + 3(3k+ 1)+ 1 = lb. A
contradiction.
This proves that |A| should be strictly more than 3k+1

2 , and by the previous
cases we are done.

This proves that every tight object S ∈ L and Cj ∈ Q receives a fractional
token value at least one, for a total fractional token distributed of |L|+|Q| = |E|.
But from the previous claim, we know that the total fractional token distributed
is strictly less than |E| (each edge distributes at least one but there must exist at
least one edge distributing strictly less than one fractional token). Contradiction.
So the hypothesis must be false, and so there must exists an edge e ∈ E : xe >
1/3. ��

3 A (3, 3) Bi-criteria Algorithm

Given Theorem 1, the algorithm is relatively simple and is depicted in Algorithm
3. Although the proof that 3 is a (3, 3) bi-criteria algorithm differs only slightly
with other similar proofs, we will include it here for completeness.

Algorithm 1. Iterative Algorithm for the multi-budgeted SND problem

Input: An instance of the multi-budgeted Survivable Network Design problem.

Output:A subgraph of G in which all the connectivity requirements are satisfied.

1. Initialize: f ′ = f and H = ∅.
2. while f ′ �= f :

(α) Solve the relaxed LP as defined by (2) with f ′ as connectivity requirement
function plus the remaining budgets. Let x be the bfs obtained.

(β) Let X = {e ∈ E : xe ≥ 1/3}. Include all e ∈ X in H .
(γ) Update Budgets: If e ∈ X ∩ Cj ⇒ Lj := Lj − xe.
(δ) Update Connectivity Requirements: f ′(S) := f(S) − |δ(S) ∩X|, ∀S ∈ S .

3. Return: H .

Approximation Algorithms for Multi-budgeted Network Design Problems 147

Step 2.(α) can be solved in polynomial time using the fact that the new
connectivity requirement function f ′ is again weakly super-modular and using
the Ellipsoid method with the usual severation oracle used to solve the initial
LP, see [3,13] for implementation details. Step 2.(δ) can be easily implemented
to run in polynomial time: we do not need to update all S ∈ 2V , but rather all
S ∈ L such that S ∩X �= ∅, where L is the laminar family which, together with
Q, defines the current extreme point solution x, see Lemma 1.

Theorem 2. Algorithm 3 returns a solution x̄ ∈ {0, 1}E for which the following
holds: (1) cT x̄ ≥ 3opt where opt is the optimal fractional solution cost of the
initial LP and(2)

∑
e∈Ej

x̄(e)�j(e) ≤ 3 · Lj.

Proof. . This is a standard inductive argument, but for completeness we provide
it here as well. The correctness of the algorithm is implied by Theorem 1.

First of all, to prove the violation of the budgets, it suffices to notice that in
each iteration for every edge we round to 1, we decrease its budget by at least
1/3. More formally, take a budget Cj :

∑
e∈Ej

x(e)�j(e) ≤ Lj and let T be the set

of edges which are greater than 1/3 and we rounded up to 1 at some point in the
algorithm. At the end, the budget will be

∑
e∈T �j(e) ≤

∑
e∈T 3x̄(e)�j(e) ≤ 3Lj.

To prove that the algorithm approximates within a factor of 3 the (lower
bound of the) optimal objective function value, we employ an inductive argu-
ment: for the base case assume that the algorithm terminates only after one
iteration. This means that X defines a feasible set of edges. Since X = {e ∈ E :
x̄e ≥ 1/3} ⇒ ∑

e∈X ce ≤ ∑
e∈X 3x̄ece ≤ 3opt, where as usual opt =

∑
e x̄ece.

Now assume that the claim is true for up to k iterations. We will show that the
claim remains true if the algorithm takes one more, i.e., for k + 1 iterations.

Let X ′ be the current set of edges we round to 1 in the current iteration and
let f ′ be the residual connectivity requirement after we round all edges in X ′

to 1. Let X ′′ be all the set of edges picked in subsequent iterations to satisfy
the new connectivity requirement function f ′. It is not hard to observe that the
current solution x̄ at the k-th iteration is also a feasible solution for f ′ if we
restrict x̄ to the edges in E \ {X ′}. By inductive hypothesis the cost of X ′′ is at
most 3

∑
e∈E\X′ xece and set X ′′′ = X ′′ ∪X ′. The cost of X ′′′ is

∑

e∈X′′′
cexe =

∑

e∈X′′
cexe +

∑

e∈X′
cexe

≤ 3
∑

e∈E\X′
xece + c(X ′) ≤ 3

∑

e∈E

cexe

where the last inequality follows since all edges in X ′ have fractional value
≥ 1/3 and this concludes that the cost of the solution is at most thrice the cost
of the optimal solution cost. ��

Acknowledgements. The work of the author was supported by the Swiss
National Science Foundation Early Post-Doc mobility grant P1TIP2 152282.

148 G. Stamoulis

References

1. Gabow, H.N.: On the L8-norm of extreme points for crossing supermodular di-
rected network lPs. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509,
pp. 392–406. Springer, Heidelberg (2005)

2. Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É.,
Williamson, D.P.: Improved approximation algorithms for network design prob-
lems. In: Sleator, D.D. (ed.) Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, Arlington, Virginia, January 23-25, pp. 223–232.
ACM/SIAM (1994)

3. Jain, K.: A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica 21(1), 39–60 (2001)

4. Khanna, S., Naor, J., Shepherd, F.B.: Directed network design with orientation
constraints. In: Shmoys, D.B. (ed.) Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, January 9-11,
pp. 663–671. ACM/SIAM (2000)

5. Krysta, P.: Bicriteria network design via iterative rounding. In: Wang, L. (ed.)
COCOON 2005. LNCS, vol. 3595, pp. 179–187. Springer, Heidelberg (2005)

6. Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with
degree or order constraints. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the
39th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, June 11-13, pp. 651–660. ACM (2007)

7. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization.
Cambridge University Press (2011)

8. Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable net-
work design. In:Dwork,C. (ed.) Proceedings of the 40thAnnualACMSymposiumon
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, pp. 759–768.
ACM (2008)

9. Louis, A., Vishnoi, N.K.: Improved algorithm for degree bounded survivable network
design problem. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 408–419.
Springer, Heidelberg (2010)

10. Melkonian, V., Tardos, É.: Algorithms for a network design problem with crossing
supermodular demands. Networks 43(4), 256–265 (2004)

11. Nagarajan, V., Ravi, R., Singh, M.: Simpler analysis of LP extreme points for
traveling salesman and survivable network design problems. Oper. Res. Lett. 38(3),
156–160 (2010)

12. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons
(1998)

13. Vazirani, V.V.: Approximation Algorithms. Springer (2004)
14. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual

approximation algorithm for generalized steiner network problems. Combinator-
ica 15(3), 435–454 (1995)

Simple Distributed Δ + 1 Coloring

in the SINR Model∗

Fabian Fuchs and Roman Prutkin

Karlsruhe Institute for Technology (KIT)
Karlsruhe, Germany

{fabian.fuchs,roman.prutkin}@kit.edu

Abstract. In wireless ad hoc networks, distributed node coloring is a
fundamental problem closely related to establishing efficient communica-
tion through TDMA schedules. For networks with maximum degree Δ,
a Δ+ 1 coloring is the ultimate goal in the distributed setting as this is
always possible. In this work we propose a very simple 4Δ coloring along
with a color reduction technique to achieve Δ+ 1 colors. All algorithms
have a runtime of O(Δ log n) time slots. This improves on previous al-
gorithms for the SINR model either in terms of the number of required
colors or the runtime, and matches the runtime of local broadcasting in
the SINR model (which can be seen as an asymptotical lower bound).

1 Introduction

One of the most fundamental problems in wireless ad hoc or sensor networks is
efficient communication. Indeed, most algorithms concerned with the physical
or Signal-to-Interference-and-Noise-Ratio (SINR) model consider algorithms to
establish initial communication right after the network begins to operate. How-
ever, those initial methods of communication are not very efficient, as there are
either frequent collisions and reception failures due to interference, or time is
wasted in order to provably avoid such collisions and failures. If local broadcast-
ing [10, 13, 18] is used, a multiplicative O(Δ log n) factor is required to execute
message-passing algorithms in the SINR model, where Δ is the maximum de-
gree in the network (we use a broadcasting range to define neighborhood in the
SINR model, cf. Section 2). Thus, wireless networks often use a more refined
transmission schedule as part of the Medium Access Control (MAC) layer. One
of the most popular solutions to the medium access problem are Time-Division-
Multiple-Access (TDMA) schedules, which provide efficient communication by
assigning nodes to time slots. The main problem in establishing a TDMA sched-
ule can be reduced to a distributed node coloring. Given a node coloring, we can
establish a transmission schedule by simply associating each color with one time
slot. The node coloring considered in this work ensures that two nodes capable of
communicating directly with each other do not select the same color. Note that a
TDMA schedule based on such a coloring is not yet feasible in the SINR model.

∗ The full version of this work is available as [6].

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 149–163, 2015.
DOI: 10.1007/978-3-319-25258-2_11

150 F. Fuchs and R. Prutkin

However, a feasible TDMA schedule can be computed based on our coloring, for
example as shown in [3, 7].

The problem of distributed node coloring dates back to the early days of
distributed computing in the mid-1980s. In contrast to the centralized setting,
a Δ + 1 coloring is considered to be the ultimate goal in distributed node col-
oring as it is already NP-complete to compute the chromatic number (i.e., the
minimum number of colors required to color the graph) in the centralized set-
ting [9]. There is a rich line of research in this area, however, most of the work
has been done for message-passing models like the LOCAL model. Such models
are designed for wired networks and do not fit the specifics of wireless networks.

In the SINR model, also denoted as the physical model due to its common
use in electrical engineering, wireless communication is modelled based on the
signal transmission and a geometric decay of the signal strength. It improves
on other models for wireless communication, such as the protocol model, which
considers interference as a local and binary property by declaring a transmission
to be successful iff it is not in the interference range of another transmitting
node. It has been shown that such models are quite limited, as protocols de-
signed for the SINR model surpass the theoretically achievable performance of
protocols designed for the protocol model [15]. In this work, we use two simple
and well-known algorithms (covered for example in [2]) designed for message-
passing models, and show that we can efficiently execute the algorithms in the
SINR model. However, this cannot be achieved by a simple simulation of each
round of the message passing algorithm by one execution of local broadcasting
as this results in a runtime of O(Δ log2 n) time slots. Instead, we modify both
the communication rounds in the SINR model and the algorithms to perfectly fit
together. The synergy effect of our careful adjustments is that the coloring algo-
rithm runs in O(Δ log n) time slots, which is asymptotically exactly the runtime
of one local broadcast [10]. This matches the runtime of current O(Δ) coloring
algorithms [3], and improves on current Δ+1 coloring algorithms for the SINR
model which require O(Δ logn+ log2 n) or O(Δ log2 n) time slots [19].

The communication between nodes in our algorithm is based on the local
broadcasting algorithm proposed by Goussevskaia et al. [10]. Thus, we require
the nodes to know an upper bound on the maximum number of nodes in a node’s
surroundings (which we call proximity area, cf. Section 2), an upper bound on
the number of nodes in the network, as well as some model-related hardware
constants in order to enable initial communication. All our results hold with
high probability (w.h.p.), i.e., with probability at least 1 − 1

nc , where n is the
number of nodes, and c ≥ 1 a constant. As union bounding a w.h.p. event only
decreases the constant c, resulting in a constant increase in the runtime, we
refrain from stating exact w.h.p. bounds in our analysis to simplify notation.
Note that such requirements and assumptions are common in the SINR model.

1.1 Related Work and Contributions

Due to the rich amount of work on distributed node coloring in the message-
passing model, we refer to a recent monograph by Barenboim and Elkin [2] for

Simple Distributed Δ+ 1 Coloring in the SINR Model 151

a thorough overview on distributed graph coloring. In wireless networks, the
SINR model received increasing attention first in the electrical engineering com-
munity, and was picked up by the algorithms community due to a seminal work
by Gupta and Kumar [12]. An overview of works regarding transmission schedul-
ing in the SINR model can be found in a survey by Goussevskaia, Pignolet and
Wattenhofer [11]. A coloring algorithm due to Moscibroda and Wattenhofer [14]
has been adapted to the SINR model by Derbel and Talbi [3], and extended to
support directed communication by Fuchs and Wagner [8]. Derbel and Talbi
provide an algorithm that computes an O(Δ) coloring in O(Δ log n) time slots.
Their algorithm first computes a set of leaders using a maximal independent set
(MIS, cf. Section 2) algorithm, then leader nodes assign colors to non-leaders,
which again compete for their final color with a restricted number of neighbor-
ing nodes that may have received the same assignment. Yu et al. [19] propose
two Δ+ 1 coloring algorithms that do not require the knowledge of the maxi-
mum node degree Δ. Their first algorithm runs in O(Δ log n+ log2 n) time slots
and assumes that nodes are able to increase their transmission power for the
computation. This prevents conflicts between non-leader nodes by allowing the
set of leaders to directly communicate to other leaders outside the transmission
region and thus coordinating the assignment process. Their second algorithm
does not require this assumption, and runs in O(Δ log2 n) time slots.

Our main contributions are 1. a simple and efficient 4Δ coloring algorithm,
requiring O(Δ log n) time slots; 2. an abstract method that has the potential of
improving the runtime of other randomized algorithms in the SINR model by
a logn factor; and 3. an asynchronous color reduction scheme, which, combined
with known coloring algorithms computes a Δ+1 coloring in overall O(Δ log n)
time slots. Also, the color reduction simplifies to an almost trivial color reduction
scheme yielding the same results restricted to the synchronous setting.

The coloring algorithms improve current algorithms in the same setting (cf.
Derbel and Talbi [3]) regarding the number of colors, and achieve the declared
goal ofΔ+1 colors, while the runtime is matched. OtherΔ+1 coloring algorithms
in the SINR model require at least O(Δ log n + log2 n) time slots (under non-
comparable assumptions). Our new method to improve the runtime by a logn
factor carefully combines the uncertainty in randomized algorithms with the
uncertainty in the SINR model to handle them simultaneously in the analysis.
For more details, we refer to the Analysis of Algorithm 1 in Section 3.1.

Roadmap: In the next section we state the model along with required defini-
tions. In Section 3 the simple 4Δ coloring algorithm is described and analyzed.
We introduce and analyse the color reduction scheme in Section 4.

2 Model and Preliminaries

The Signal-to-Interference-and-Noise-Ratio (SINR) model is used to model if a
transmission in a wireless network can be successfully decoded at the intended
receivers or not. We say that a transmission from a sender to a receiver is feasible
if it can be decoded by the receiver. In the SINR model it depends on the ratio

152 F. Fuchs and R. Prutkin

between the desired signal and the sum of interference from other nodes plus the
background noise whether a certain transmission is successful. Let each node v
in the network use the same transmission power P . Then a transmission from u

to v is feasible if and only if
P

dist(u,v)α∑
w∈I

P
dist(w,v)α

+N
≥ β, where α, β are constants

depending on the hardware, N reflects the environmental noise, dist(u, v) the
Euclidean distance between two nodes u and v, and I ⊆ V is the set of nodes
transmitting simultaneously to u. The broadcasting range rB of a node v defines
the range around v up to which v’s messages should be received. We denote the
set of neighbors of v byNv := {w ∈ V \{v}| dist(v, w) ≤ rB} andN+

v := Nv∪{v}.
Based on the SINR constraint, the transmission range of rT ≤ (P

βN)
1/α is an

upper bound for the broadcasting range (with rB < rT to allow multiple simul-
taneous transmissions). Let the broadcasting region Bv be the disk with range rB
centered at v. To prove successful communication within the broadcasting range,
we need the concept of a proximity range rA > 2rB around a node v as intro-
duced in [10]. Let Δv

A be the number of nodes with distance less than rA to v,
and ΔA := maxv∈V Δv

A. It holds that ΔA ∈ O(Δ). As further technical details
of the proximity range are not required in our analysis, we refer to [10] or [6] for
the exact definitions.

The communication graph G = (V,E) is defined as follows. The set of ver-
tices V in the graph corresponds to the set of nodes in the network, while
there is an edge (u, v) ∈ E if and only if u and v are neighbors (i.e., they are
within each other’s broadcasting range). The maximum degree in the network
is Δ := maxv∈V |Nv|. Note that since rB < rT , a node v may successfully re-
ceive transmissions from nodes that are not its neighbors in the communication
graph, although successful transmission from those nodes cannot be guaranteed.
As the signal strength decreases geometrically in the SINR model, we assume
that messages from outside the broadcasting range are discarded by considering
the signal strength of a received message (usually provided by wireless receivers
as the Received-Signal-Strength-Indication (RSSI) value [1]). Thus, the maxi-
mum degree is defined as for the Δ + 1 coloring in [19]. In a more practical
setting, one could also define the communication graph based on the actual
communication between two nodes.

We call two nodes v, u ∈ V independent if they are not neighbors. A set S ⊆ V
such that the nodes in S are pairwise independent is called independent set. Ob-
viously, S ⊆ V is a maximal independent set (MIS) if S is independent and there
is no v ∈ V \S with S∪{v} independent. We denote the set of integers {0, . . . , i}
by [i]. Let us now define the coloring problem. Given a set of nodes V so that
each node v ∈ V has a color cv, and let d be an integer. Then V has a valid d+1
coloring, if for each node v holds ∀w ∈ Nv : cv 	= cw and cv ∈ [d]. Observe that
in a valid coloring each color in the network forms a independent set.

In the synchronous setting, we assume that nodes start the algorithm at the
same time. In the more realistic asynchronous setting, arbitrary wake-up of nodes
is allowed, and we do not require synchronized time slots; precise clocks, however,
are assumed. With the so-called ALOHA trick [16], e.g. as used in [10], we use
time slots in our analysis, although the nodes do not assume common time slots.

Simple Distributed Δ+ 1 Coloring in the SINR Model 153

The nodes use two different transmission probabilities in order to adapt to the
requirements of the corresponding algorithms. Probability p1 := 1

2ΔA is used in
Algorithm 1, while Algorithm 2 uses p1 and p2 := 1

180 . If p ≥ c for probability p
and a constant c, we say that p is at least constant, or simply constant. Let c be
an arbitrary constant with c > 1. Throughout the paper, we use the following
definitions: κ� := cλ lnn/p� for � = 1, 2, κ0 := λ ln 12/p1, and λ a constant
(for more details, we refer to [6]). Note that κ0 ∈ O(Δ), κ1 ∈ O(Δ log n),
and κ2 ∈ O(log n).

Extending Local Broadcasting: We show that local broadcasting with con-
stant success probability in time reversely proportional to the transmission prob-
ability can be achieved. This extends known results regarding local broadcasting,
which guarantee local broadcasting with high probability for a fixed number of
time slots. Although we are the first to use local broadcasting with constant suc-
cess probability, the proof of the following lemma is mainly based on standard
techniques. Thus, we defer it to [6] due to space constraints.

Lemma 1. Let v be a node transmitting with probability p1, then it successfully
transmits to its neighbors with probability ≥ 11/12 within κ0 time slots. Trans-
missions with probability p� for κ� time slots are successful w.h.p. for � ∈ {1, 2}.

3 Simple 4Δ Coloring

The algorithm we propose is at its heart a very simple and well-known random-
ized coloring algorithm. The underlying approach is well-known, and for example
covered in [2, Chapter 10]. Essentially, this kind of algorithms draw a random
color whenever two neighboring nodes have the same color (i.e., there is a conflict
between them). Our first algorithm, Rand4DeltaColoring (Algorithm 1), is
a simple, phase-based coloring algorithm. We say that two neighbors v, w have
a conflict if cv = cw and denote the temporary color of v in phase t by ctv.
In each phase t the node v checks whether it knows of a conflict with one of
its neighbors. The set of neighbors that are in a conflict with v in phase t
is Xt(v) := {w ∈ Nv|ctv = ctw}. We call Xt(v) the conflict set of v in phase t,
and denote the event that v is in a conflict in phase t by Et

confl(v) := ∃w ∈ Xt(v).
Note that there may be nodes in Xt(v), for which v is not aware of the conflict
(due to the uncertainty in the nodes communication), however, this does not
affect the event. If a conflict is detected by v, the node randomly draws a new

Algorithm 1. Rand4DeltaColoring for node v

11 Fv ← [4Δ], c−1
v ← Fv.rand()

22 for t ← 0; t ≤ 6(c + 3) lnn; t ← t + 1 do // each one phase

33 if ct−1
v �∈ Fv then ctv ← Fv .rand() // if conflict, new color

44 else ctv ← ct−1
v // otherwise, keep it

55 Fv ← [4Δ]

66 Transmit ctv with probability p1 for κ0 time slots

77 foreach received color ctw from neighbor w ∈ Nv do Fv ← Fv\{ctw}

154 F. Fuchs and R. Prutkin

color from the set Fv of colors not taken by a neighbor in the previous phase and
transmits this color in the current phase. The event that a transmission from v
to all neighbors Nv of v in phase t is successful is Et

succ(v). A transmission from v
to its neighbors in phase t is not successful or fails if at least one neighbor was
unable to receive the message. The corresponding event is Et

fail(v). We replace E
by P to denote the probability of an event, e.g. Pt

succ(v) for Et
succ(v). Note that

although the events Et
succ(v), and Et

fail(v) may not be independent of events hap-
pening at other nodes, our bounds on the corresponding probabilities P

t
succ(v)

and P
t
fail(v) are independent from the node v and possible events at other nodes.

Also, our bounds P
t
succ(v) and P

t
fail(v) on these events include the event that v

reaches some but not all of its neighbors, as P
t
fail(v) ≤ 1 − P

t
succ(v) ≤ 1/12

and 11/12 ≤ P
t
succ(v) ≤ 1 (see Lemma 1). Finally, the phase is concluded by

transmitting the current color. This computes a valid coloring with 4Δ colors
in O(log n) phases, while each phase takes O(Δ) time slots. In contrast to pre-
vious algorithms of this kind, we do not assume that successful communication
is guaranteed by lower layers. Instead we allow the uncertainty in the random-
ized algorithm to be combined with the uncertainty in the communication in the
SINR model, which is jointly handled in the analysis. Thereby we can reduce the
number of time slots required for each phase by a logn factor (from O(Δ log n)
for the trivial analysis to O(Δ)), making this simple approach viable in the
SINR model. Thus, Algorithm 1 solves the node coloring problem using 4Δ col-
ors in O(Δ log n) time slots, which matches the runtime of local broadcasting in
the SINR model and improves the state-of-the-art O(Δ) coloring in [3]. Let us
now state the main results of this section.

Theorem 2. Let all nodes start executing Algorithm 1 simultaneously. After the
execution, all nodes have a valid color cv ≤ 4Δ w.h.p.

For the asynchronous setting, the bound on the runtime holds for node v only
after all nodes in v’s logn neighborhood are awake

Corollary 3. Let a node v execute Algorithm 1 in the asynchronous setting.
Then v has a valid color cv ≤ 4Δ w.h.p., at most O(Δ log n) time slots after all
nodes in its O(logn)-neighborhood started executing the algorithm.

In the following section we prove the result for the synchronous setting. In
Section 3.2 we briefly discuss extending it to the asynchronous setting. Our
experiments in Section 3.3 show that the algorithm is very fast and robust even
in the asynchronous setting.

3.1 Analysis of Rand4DeltaColoring

Despite the fact that the underlying coloring algorithm is well-known, our anal-
ysis is new and quite involved. The main reason for this is the uncertainty in
whether a message is successfully delivered in one phase of Algorithm 1. In con-
trast to guaranteed message delivery, based for example on local broadcasting,
message delivery with constant probability can be achieved a logarithmic factor

Simple Distributed Δ+ 1 Coloring in the SINR Model 155

faster, see Lemma 1. However, this reduction in runtime comes at a cost: While
in the guaranteed message delivery setting, a node v can finalize its color once
a phase without a conflict at v happened, this is not possible in our setting. We
cannot guarantee the validity of the colors even if a node did not receive a mes-
sage implying a conflict in one phase, as message transmission is successful only
with constant probability. Nevertheless, we can show that after O(log n) phases
of transmitting the selected color and resolving eventual conflicts, the coloring
is valid in the entire network w.h.p.

In order to prove correctness of Algorithm 1 (Rand4DeltaColoring) we
shall first bound the probability of a conflict propagating from one phase of the
algorithm to the next. This is the foundation for the result that our algorithm
computes a valid 4Δ coloring in O(Δ log n) time slots w.h.p. for both the syn-
chronous and the asynchronous setting. Assuming that a node v has a conflict in
phase t, there are only two cases that may lead to a conflict at v in phase t+ 1:

1. Node v had a conflict in phase t, and it did not get resolved (either due to
being unaware of the conflict or since the new color implies a conflict as well).

2. A neighbor of v had a conflict in phase t and introduced the conflict by
randomly selecting v’s color.

We shall show that the probability for both cases is at most constant (see
Lemma 4). Thus, after O(log n) phases it holds with high probability that a
valid color has been found. Note that the results in this section are restricted
to the synchronous setting, however, they can be extended to the asynchronous
case, cf. Section 3.2.

Lemma 4. Let v be an arbitrary node and P
t
confl(v) the probability of a conflict

at v in phase t. Then the probability of a conflict at v in phase t+ 1 is at most

P
t+1
confl(v) ≤

5

6
· max
w∈Nv

P
t
confl(w).

Proof. We shall prove the lemma by considering the two cases that may lead to
a conflict at node v in phase t+1. The first case is that v has a conflict with at
least one of its neighbors. Depending on which transmissions are successful there
are 3 subcases. Note that → denotes Et

succ(v), while ← denotes ∃w ∈ Xt(v) :
Et
succ(w)—with negations accordingly1.

(a) 	→, 	←: It is not guaranteed that any of the conflict partners know of the
conflict, as the transmissions from v and the nodes in the conflict set Xt(v) 	= ∅
failed at least partially. There is at least one neighbor u ∈ Xt(v) that failed
to transmit its color successfully to v, which happens with probability P

t
fail(u).

Combined with v’s failure to transmit its color successfully, case 1(a) happens

1 A partial success of transmission is often sufficient to trigger dealing with a conflict.
We do not consider this in our notation, however, as we evaluate P

t
succ(v) to be at

most 1 for all v and since Pr(transmission from v to u fails) ≤ P
t
fail(v) ≤ 1/12, our

analysis covers this case.

156 F. Fuchs and R. Prutkin

with probability at most P
t
confl(v)(P

t
fail(v) Pr(←)) ≤ P

t
confl(v)P

t
fail(v)P

t
fail(u) ≤

P
t
confl(v)(1/12)

2. If any conflict partner knows of the conflict, the conflict would
be resolved with a certain probability (as in the following cases). However, as
this is not guaranteed, we account for the worst case: the conflict is not resolved
and propagates to the next phase. Note that since this case happens only with
a small probability, it holds that the total probability of case (a) and conflict
at v in phase t+ 1 is small.
(b) →, 	←: All nodes in Xt(v) failed to transmit successfully, but v transmit-
ted successfully to all neighbors. Thus, all nodes in Xt(v) know of the con-
flict, while v might be unaware of it. This case happens with probability at
most Pt

confl(v) · (Pt
succ(v) · Pr(←)). The probability that a node w ∈ Xt(v) se-

lects v’s color in phase t+ 1 is at most
∑

w∈Xt(v) 1/|Fw| (even if v knows of a

conflict and itself selects a new color). This results in an overall probability of
at most

P
t
confl(v) · (Pt

succ(v) · Pr(←)) ·
∑

w∈Xt(v)

1

|Fw|

≤ P
t
confl(v)

⎛

⎝
∏

w∈Xt(v)

P
t
fail(w)

⎞

⎠ ·
∑

w∈Xt(v)

1

|Fw |
x:=|Xt(v)|

≤ P
t
confl(v)

(
P
t
fail

)x · x

3Δ
≤ 1

3Δ
P
t
confl · x

(
1

12

)x

≤ 1

24
P
t
confl

where the first inequality holds since the event 	← is equivalent to ∀w ∈ Xt(v) :
Et
fail(w) and P

t
succ(v) ≤ 1. The second inequality holds since |Fw| ≥ 3Δ as w

and v are uncolored and by setting x = |Xt(v)|. The last inequality holds
since x(1/12)x ≤ 1/12 for all x ∈ {1, . . . , Δ}, and Δ ≥ 1.
(c) ←: It holds that v knows of the conflict. Whether v’s neighbors know of it
or not is not guaranteed. This case happens with probability at most Pt

confl(v) ·
(Pr(←)). The probability that at least one neighbor of v has or selects the same
color as v is at most

∑
w∈Nv

1
|Fv| ≤ |Nv| 1

3Δ ≤ 1
3 .

Using Pr(←) ≤ 1, this results in a probability for a conflict at v in phase t+1
of at most Pt

confl(v) · (1/144 + 1/24 + 1/3 · Pr(←)) <
(
1
2

) · Pt
confl.

In the second case, there was no conflict at v in phase t, but a neighbor w of v
selected v’s color due to a conflict at w, which happens with probability at most

∑

w∈Nv

Pr(ct+1
v = ct+1

w)
︸ ︷︷ ︸

v’s neighbor w selects v’s color

∑

u∈Nw

Pr(ctu = ctw)︸ ︷︷ ︸
u ∈ N(w) told w

about their conflict

≤
∑

w∈Nv

Pr(ct+1
v = ct+1

w)Pt
confl(w)

≤
∑

w∈Nv

1

|Fw|P
t
confl(w) ≤

(
1

3

)
max
w∈Nv

P
t
confl(w)

Simple Distributed Δ+ 1 Coloring in the SINR Model 157

The last inequality holds since
∑

w∈Nv

1
|Fw| ≤ ∑

w∈Nv

1
3Δ ≤ 1

3 . Combining all

events that could lead to a conflict at v in phase t+1 it holds that the probability
of the union of the events is at most

P
t+1
confl(v) ≤

(
1

2

)
P
t
confl(v) +

(
1

3

)
max
w∈Nv

P
t
confl(w) ≤ 5

6
· max
w∈N+

v

P
t
confl(w),

which concludes the proof. ��
Note that the second case could be avoided if message delivery in each phase

would be guaranteed, as a node v that does not have a conflict in phase t, would
simply finalize its current color and communicate this. Thus, v could not be
forced into a conflict anymore. We shall now show that a set of nodes executing
Algorithm 1 computes a valid coloring, and hence prove Theorem 2.

Proof (of Theorem 2). Let us consider the probability of a conflict at an arbi-
trary node v ∈ V in phase t = 6(c+ 3) lnn. It holds that

P
t
confl(v) ≤

(
5

6

)
max
w∈Nv

P
t−1
confl(w) ≤

(
5

6

)
max
w∈V

P
t−1
confl(w)

≤
(
5

6

)t

max
w∈V

P
0
confl(w) ≤

(
1− 1

6

)6(c+3) lnn

≤ 1

nc+3
,

where the first inequality is due to Lemma 4. The third inequality holds since
all nodes are in the same phase due to the synchronous start of the algorithm.
Note that the upper bound on the probability that a conflict propagates holds
for all nodes. The fourth inequality holds as P

0
confl(v) ≤ 1 for all nodes v. The

last inequality holds due to a well-known mathematical fact (cf. [6]). Thus, the
probability for a conflict at an arbitrary node v is small. A union bound over
all nodes in the network implies that the coloring is valid w.h.p. The runtime of
Algorithm 1 is O(Δ log n), as it consists of 6(c+ 3) lnn = O(log n) phases, and
each phase takes κ0 = O(Δ) time slots according to Lemma 1. ��

3.2 Asynchronous Simple Coloring

Let us now briefly consider the asynchronous setting. For this section, we call all
nodes that can reach v within O(log n) rounds the neighborhood of v, and say
that this neighborhood is stable if those nodes are all awake. If the neighborhood
of a node v is stable, Lemma 4 holds as well, with only small changes to some
constants in the proof [5]. Thus, once all nodes in v’s neighborhood are awake,
we can bound the probability using said lemma, and prove Corollary 3 analog
to the proof of Theorem 2.

3.3 Experimental Evaluation

In our experiments, we evaluate Rand4DeltaColoringusing the well-known
network simulator sinalgo [4]. We use between 500 and 2500 nodes, uniformly

158 F. Fuchs and R. Prutkin

0 500 1000 1500 2000 2500 3000 3500

Time Slots

400

600

800

1000

Rand1.25DeltaColoring

Rand1DeltaColoring

Rand2DeltaColoring

Rand4DeltaColoring

Rand1.1DeltaColoring

Rand8DeltaColoring

Rand1.5DeltaColoring

N
u
m
b
er

of
n
o
d
es

w
it
h
va
li
d
co
lo
r

500 1000 1500 2000 2500 3000

Time Slots

600

800

1000

0

no mobility

0.25
0.5

1.0

Node speed / round

2.0

4.0N
u
m
b
er

of
n
o
d
es

w
it
h
va
li
d
co
lo
r

500 1000 1500 2000 2500

Number of Nodes

200

500

1000

2000

5000

10000

20000

T
im

e
Sl

ot
s

(l
og

-s
ca

le
)

Local Broadcasting
RAND4ΔCOLORING

Fig. 1. Top left: Progress for varying number of available colors; Bottom left: Robust-
ness under mobility constraints; Right: Runtime compared with local broadcasting

deployed on a square area of 1000× 1000 meters. The SINR constants are set to
α = 4, β = 10, N = 1−9, P = 1, resulting in a transmission range of 100 meters.
We set the broadcasting range to 84 meters, with average degree values ranging
from 10 to about 50. We generally use asynchronous simulation and the nodes
start at a random within the first 10 time slots. However, as sinalgo requires
synchronous simulation for the mobility models, this experiment uses synchro-
nized time slots. The time required to transmit one message is set to 1 time
slot. We measure the number of time slots, and the number of nodes that have
a valid color. The nodes do not know the global Δ value, but use the number of
neighbors (plus one) as an estimate. More experiments are shown in the full ver-
sion [6]. We observe three main points in Fig. 1. First, Rand4DeltaColoring

is very fast, requiring less time than one round of local broadcasting. Second, the
algorithm is relatively robust, even under moderate mobility values of 1 meter
per time slot, more than 90% of the nodes have a valid color (note that using
mobile nodes, some color conflicts cannot be avoided). Finally, we can see that
although our theoretical guarantees hold only for 4Δ colors, the algorithm can
compute a valid coloring with only Δ+ 1 colors in our setting.

4 Asynchronous Color Reduction

In the following section we assume a valid node coloring with d ∈ O(Δ) colors to
be given and reduce the number of colors to Δ+1 in O(d log n) time slots. Let us
first consider a very simple synchronous variant, which is also well known in the
LOCALmodel, cf. [2, Section 3.2]. In this variant, each node transmits its current
color at the beginning of each round. Then, in the first round all nodes with color
d select a color from the set [Δ], in the second round all those with color d− 1,
etc. This translates to an almost trivial (but new) color reduction scheme for the
synchronous case, which we defer to [6] due to space constraints. The algorithm
we present in this section circumvents the synchronization problem, essentially,
by using two levels of MIS executions. Our algorithm is illustrated in Fig. 2,

Simple Distributed Δ+ 1 Coloring in the SINR Model 159

One MIS execution with
all nodes: O(Δ log n) O(1) MIS executions, each O(log n)

wait for active interval

leader

non-leader
. . .request

answering O(Δ) schedule requests,
O(log n) slots each

active interval

O(Δ log n) O(Δ log n)

Coloring,
O(log n)

Coloring,
O(log n)

Fig. 2. Runtime. Overall O(Δ log n), given a O(Δ) coloring.

the corresponding pseudocode can be found as Algorithms 2 to 5. We reference
the MIS (Algorithm 3) executed with parameter � = 1 by first level MIS, and
MIS(� = 2) by second level MIS.

Let us now describe the algorithm in more detail. The algorithm starts by
executing the first level MIS algorithm that determines a set of independent
nodes, which we call leaders. Each leader node transitions to Algorithm 4, selects
and transmits the color 0 it selected and initializes its periodic leader schedule.
This schedule assigns each color an active interval of length O(log n) time slots
to allow the nodes of this color to select their final color from [Δ].

Each node vi that is not in the first level MIS selects a leader from its broad-
casting range and requests the relative time until it is vi’s turn to be active.
Upon receipt of its active intervall, the node waits until the interval starts and
then executes a second level MIS algorithm (which does not interfere with the
first level MIS) for a constant number of times. In this second level MIS the
algorithm benefits from fewer active nodes, and hence more efficient communi-
cation to allow each node to achieve successful transmission of a message to all
neighbors in O(logn) time slots. Moreover, we can speed up the MIS algorithm
by the same factor of Δ to execute it in O(logn) time slots, as only a constant
number of nodes compete to be in each second level MIS. For each node that
wins the second level MIS, there is no other node of the second level MIS in
its broadcasting range. Thus, the winning node can select a valid color from
{1, . . . , Δ} and transmit its choice to its neighbors without a conflict. If a node
does not succeed to be in the second level MIS, it simply executes MIS(2) again.
As each node succeeds in such an MIS within its active interval, each node selects
one of the Δ+ 1 colors.

4.1 MIS, and Notation for AsyncColorReduction

Let us now describe the notation used in the algorithm. We denote the set of
available colors by Fv. Note that throughout the algorithm, each node deletes the
final colors it received from Fv. The MIS algorithm (Algorithm 3) aims at allow-
ing exactly one node in each neighborhood to succeed to Algorithm Colored,
select a color, and annouce its success in the MIS algorithm to its competitors.
There are minor differences depending on the two levels � = 1 and � = 2, how-
ever, the algorithm remains the same. A description of the MIS algorithm can
be found in [3], and the full version [6]. In Algorithm 4, v is a leader, colv denotes
the final color from [Δ], and Q is a queue used to store nodes w along with their
initial color coltmp

w that request an active interval. The remaining time is based

160 F. Fuchs and R. Prutkin

Algorithm 2. AsyncCol-

orReduction for node v
11 Fv ← [Δ]\{0}
22 foreach received colw do

continuously
3 Fv ← Fv\{colw}
44 MIS(1)

Algorithm 4.Colored(�)
for node v
11 if � = 1 then // Level 1 leader
22 colv ← 0, Q ← ∅, c′v = 0

33 announce M1
C(v, colv) with

prob. p2 for κ2 slots
44 Set τ(col, cv) ≡ col · μ − cv

mod Δμ neg., max., with
|τ(col, cv)| > κ2

55 while protocol is executed do
66 // serve requests

77 c′v ← c′v + 1

88 transmit M1
C(v, colv) with

probability p1

99 foreach received request
from neighbor w:
MR(w, v, coltmp

w) do
continuously

1010 Q.push((w, coltmp
w))

1111 if Q not empty then
1212 (w, coltmp

w) ← Q.pop(),

t ← τ(coltmp
w , c′v)

1313 for O(logn) slots do
1414 transmit M1

C(v, w, t)
with probability p2

// inc. c′v, t

15 else // Level 2 / Non-leader node
1616 colv ← Fv .rand() // valid

1717 announce M2
C(c, colv) with

prob. p2 for κ2 slots
1818 while protocol is executed do
1919 // keep color valid
2020 transmit colv with prob. p1

Algorithm 3. MIS(�) for node v,

based on MW-coloring [3,17]

11 Pv = ∅, Next =

{
Level2 if � = 1

MIS(2) otherwise

22 for κ� time slots do // Listen first
33 foreach w ∈ Pv do

dv(w) = dv(w) + 1

44 if M�
A(w, cw) received then

Pv = Pv ∪ {w}; dv(w) = cw

55 if M�
C(w) received then Next(w)

66 cv = Ξ(Pv) // minimal, non-positive,
not conflicting with competing counters
in Pv

77 while true do // then compete for MIS
88 cv = cv + 1
99 if cv > κ� then Colored(�)

// success
1010 foreach w ∈ Pv do

dv(w) = dv(w) + 1

1111 if M�
C(w) received then Next(w)

11 transmit M�
A(v, cv) with probability

p�

1212 if M�
A(w, cw) received then

// received competing counter
1313 Pv = Pv ∪ {w}; dv(w) = cw
1414 if |cv − cw| ≤ κ� then cv = Ξ(Pv)

Algorithm 5. Level2(w) for

node v with leader w
11 while true do
22 if M1

C(w, v, t) received then
33 while t < 0 do // wait for interval
44 t ← t + 1 // one time slot each

55 while t < 2k2κ2 do // active
interval

66 // increase t by one in each
time slot during MIS(2)

77 MIS(2)

8 else // transmit request
99 transmit MR(v, w, coltmp

v) with
probability p1

on v’s periodic schedule, which is defined by its counter value c′v, and w’s color.
We set k = 90, which corresponds to the maximum number of active nodes in
a broadcasting range, see Lemma 7. The function τ(colw, cv) intuitively sets t
to the start of the next interval corresponding to w’s color in v’s schedule, so
that the starting time of w can be communicated by v w.h.p. before w’s active
interval starts. During the transmission interval, t is decreased appropriately.

Adapting the MIS Algorithm. We assume in the analysis that the MIS
algorithm indeed computes a maximal independent set. Algorithm 3 is a sim-
plification of the MIS part of the coloring algorithm in [3, 17], and therefore
computes an MIS. Apart from constant changes, the lemma follows directly

Simple Distributed Δ+ 1 Coloring in the SINR Model 161

from Theorems 1 and 2 in [3] if � = 1, and from Lemma 1 along with setting Δ
to a constant in the proofs of both theorems for � = 2.

Lemma 5. Algorithm 3 computes an MIS among participating nodes in δ�κ2 ∈
O(δ� logn) time slots, where δ� =

{
Δ if � = 1

k if � = 2
w.h.p.

4.2 Analysis

Let us first state the main result of this section.

Theorem 6. Given a valid node coloring with d ≥ Δ colors, Algorithm 2 com-
putes a valid Δ+ 1 coloring in O(d logn).

As the algorithm is essentially a simple color reduction scheme, each node selects
a valid color if the communication can be realized as claimed. To prove this we
show that in the second level indeed only a constant number of nodes are active in
each broadcasting range (cf. Fig. 3). We use this to achieve message transmission
from active nodes to all their neighbors in O(logn) time slots, and show that
the second level MIS can be executed in O(log n) time slots. Finally, we prove
that each non-leader node v succeeds in a second level MIS, and thus colors itself
with a color from [Δ], within the active interval v is assigned by its leader. The
proofs of the following lemmas are only given in the full version [6].

vv

Fig. 3. Left: Node v with its broadcasting region in a network with valid coloring;
Nodes in the first level MIS are squares. Right: Nodes in v’s broadcasting range are
connected to their selected leader by a dashed line. Nodes currently active in the second
level are surrounded by a square.

Lemma 7. In the second level, at most k nodes are active in each broadcasting
range.

The lemma follows from a geometric argument regarding the number of first
level MIS nodes within a certain distance of each node. We use Lemma 7 to
prove our bounds on the communication in Lemma 1. It allows us to increase
the transmission probability in the second level MIS by a factor of Δ compared
to classical local broadcasting, leading to a decrease in the time required for
successful message transmission by the same factor of Δ to O(log n). Based on
this result we can bound the runtime of our algorithm, starting with Algorithm 5.

162 F. Fuchs and R. Prutkin

Lemma 8. Let v execute Algorithm 5 with leader w. Then a) v transmits the
request message successfully within κ1 time slots w.h.p.; b) v receives its active
interval after at most another κ1 time slots w.h.p.; and c) the wait-time t until
v’s active interval starts is at most Δ2k2κ2 ∈ O(Δ log n).

We shall now argue that each non-leader node succeeds to win a second level
MIS in its active interval.

Lemma 9. Given a node v executing Algorithm 5. Once t = 0, v wins a second
level MIS set within 2k2κ2 time slots.

Essentially, this holds as there are multiple consecutive MIS executions, each
allowing one node per broadcast range to win MIS, select a final color and
withdraw. In the next MIS execution, another node wins, selects a color, etc.
until all active nodes are colored. As a final step we show that the final color
selected by each node is valid w.h.p.

Lemma 10. Given a node v entering Algorithm 4. It holds that a) while v
transmits its final color no neighbor of v succeeds in a second level MIS w.h.p.;
and b) the color v selects is not selected by one of v’s neighbors w.h.p.

We are now able to prove the main theorem. Note that runtime bounds hold
for each node once the node starts executing the algorithm.

Proof (Proof of Theorem 6). It follows from Lemma 10 and the fact that each
node succeeds in an MIS (and hence enters Algorithm 4 and selects a final color),
that the final color of each node is valid w.h.p. Only Δ+1 final colors are used,
and a union bound over all nodes implies that the coloring is valid w.h.p. The
first level MIS takes O(Δ log n) time slots according to Lemma 5. Algorithm 5
requires another O(Δ log n) slots until starting the active interval, which is of
length O(logn), resulting in O(Δ log n) time slots. ��
Corollary 11. Let each node in the asynchronous network execute the MW-
coloring algorithm [3], followed by Algorithm 2. Then O(Δ logn) time slots after
a node started executing the algorithms it selected a valid color from [Δ].

5 Conclusion

We conclude that the proposed distributed 4Δ coloring algorithm is simple and
very fast. Rand4DeltaColoring performs well in our simulations, even in the
asynchronous and mobile setting. Additionally, our color reduction scheme is the
first Δ + 1 coloring algorithm achieving a runtime of O(Δ log n), matching one
round of local broadcasting.

Acknowledgements. We thank Magnús M. Halldórsson for helpful discussions
on an early stage of this work, and the German Research Foundation (DFG),
which supported this work within the Research Training Group GRK 1194 ”Self-
organizing Sensor-Actuator Networks”.

Simple Distributed Δ+ 1 Coloring in the SINR Model 163

References

1. Bardwell, J.: Converting signal strength percentage to dbm values. WildPackets’
White Paper (2002)

2. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers (2013)

3. Derbel, B., Talbi, E.G.: Distributed Node Coloring in the SINR Model. In: Proc.
30th Internat. Conf. onDistributed Computing Systems (ICDCS 2010). pp. 708–717.
IEEE (2010)

4. Distributed Computing Group, ETH Zurich: Sinalgo - simulator for network algo-
rithms (2008), http://sourceforge.net/projects/sinalgo/ , version 0.75.3

5. Fuchs, F.: On asynchronous node coloring in the SINR model (2015),
http://i11www.iti.kit.edu/f-oancs-15.pdf (unpublished manuscript)

6. Fuchs, F., Prutkin, R.: Simple distributed delta + 1 coloring in the SINR model.
CoRR abs/1502.02426 (2015), http://arxiv.org/abs/1502.02426

7. Fuchs, F., Wagner, D.: On Local Broadcasting Schedules and CONGEST Algo-
rithms in the SINR Model. In: Proc. 9th Internat. Workshop on Algorithmic As-
pects of WSN (ALGOSENSORS 2013). pp. 170–184. Springer (2013)

8. Fuchs, F., Wagner, D.: Local broadcasting with arbitrary transmission power in
the SINR model. In: Proc. 21st Internat. Colloq. Structural Inform. and Comm.
Complexity (SIROCCO 2014), pp. 180–193. Springer (2014)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. (1979)

10. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local Broadcasting in the
Physical Interference Model. In: Proc. 5th ACM Internat. Workshop on Founda-
tions of Mobile Computing (DialM-POMC 2008), pp. 35–44. ACM (2008)

11. Goussevskaia, O., Pignolet, Y.A., Wattenhofer, R.: Efficiency of wireless networks:
Approximation algorithms for the physical interference model. Foundations and
Trends in Networking 4(3) (November 2010)

12. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. on Inform.
Theory 46(2), 388–404 (2000)

13. Halldórsson, M.M., Mitra, P.: Towards Tight Bounds for Local Broadcasting.
In: Proc. 8th ACM Internat. Workshop on Foundations of Mobile Computing
(FOMC 2012). ACM (2012)

14. Moscibroda, T., Wattenhofer, M.: Coloring Unstructured Radio Networks. J. Distr.
Comp. 21(4), 271–284 (2008)

15. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol design beyond graph-based
models. In: Proc. of the ACM Workshop on Hot Topics in Networks (HotNets-V),
pp. 25–30 (2006)

16. Roberts, L.G.: Aloha packet system with and without slots and capture. SIG-
COMM Comput. Commun. Rev. 5(2), 28–42 (1975)

17. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks.
In: Proc. 28th ACM Symp. on Principles of Distributed Computing (PODC 2009),
pp. 210–219. ACM (2009)

18. Yu, D., Hua, Q.S., Wang, Y., Lau, F.C.M.: An O(log n) Distributed Approximation
Algorithm for Local Broadcasting in Unstructured Wireless Networks. In: Proc.
8th Internat. Conf. on Distributed Computing in Sensor Systems (DCOSS 2012),
pp. 132–139. IEEE (2012)

19. Yu, D., Wang, Y., Hua, Q.S., Lau, F.C.M.: Distributed (Δ + 1) Coloring in the
Physical Model. Theoret. Comput. Sci. 553, 37–56 (2014)

http://sourceforge.net/projects/sinalgo/
http://i11www.iti.kit.edu/f-oancs-15.pdf
http://arxiv.org/abs/1502.02426

Nearly Optimal Local Broadcasting

in the SINR Model with Feedback

Leonid Barenboim1,� and David Peleg2,��

1 Department of Mathematics and Computer Science,
The Open University of Israel, Raanana, Israel

leonidb@openu.ac.il
2 Department of Computer Science and Applied Mathematics,

The Weizmann Institute of Science, Rehovot, Israel
david.peleg@weizmann.ac.il

Abstract. We consider the SINR wireless model with uniform power. In
this model the success of a transmission is determined by the ratio between
the strength of the transmission signal and the noise produced by other
transmittingprocessors plus ambient noise.The local broadcastingproblem
is a fundamental problem in this setting. Its goal is producing a schedule in
which each processor successfully transmits a message to all its neighbors.
This problem has been studied in various variants of the setting, where the
best currently-known algorithm has running timeO(Δ̄+log2 n) in n-node
networks with feedback, where Δ̄ is the maximum neighborhood size [9].
In the latter setting processors receive free feedback on a successful trans-
mission. We improve this result by devising a local broadcasting algorithm
with time O(Δ̄ + log n log log n) in networks with feedback. Our result is
nearly tight in view of the lower bounds Ω(Δ̄) and Ω(log n) [13]. Our re-
sults also show that the conjecture that Ω(Δ̄+ log2 n) time is required for
local broadcasting [9] is not true in some settings.

We also consider a closely related problem of distant-k coloring. This
problem requires each pair of vertices at geometrical distance of at most
k transmission ranges to obtain distinct colors. Although this problem
cannot be always solved in the SINR setting, we are able to compute a so-
lution using an optimal number of Steiner points (up to constant factors).
We employ this result to devise a local broadcasting algorithm that after
a preprocessing stage of O(log∗ n · (Δ̄ + log n log log n)) time obtains a
local-broadcasting schedule of an optimal (up to constant factors) length
O(Δ̄). This improves upon previous local-broadcasting algorithms in var-
ious settings whose preprocessing time was at least O(Δ̄ log n) [3,10,5].
Finally, we prove a surprising phenomenon regarding the influence of
the path-loss exponent α on performance of algorithms. Specifically, we
show that in vacuum (α = 2) any local broadcasting algorithm requires
Ω(Δ̄ log n) time, while on earth (α > 2) better results are possible as
illustrated by our O(Δ̄+ log n log log n)-time algorithm.

� Part of this work has been performed while the author was a postdoctoral fellow at
a joint program of the Simons Institute at UC Berkeley and I-CORE at Weizmann
Institute.

�� Supported in part by the Israel Science Foundation (grant 1549/13) and the I-CORE
program of the Israel PBC and ISF (grant 4/11).

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 164–178, 2015.
DOI: 10.1007/978-3-319-25258-2_12

Nearly Optimal Local Broadcasting in the SINR Model with Feedback 165

1 Introduction

Setting and Problems. We consider the SINR (Signal-to-Interference-plus-
Noise-Ratio) wireless setting with uniform power. In this setting a set V of n
processors (also called vertices) is placed on the plane in an arbitrary manner.
The vertices perform local computations and send messages. A message sent from
a vertex x ∈ V to a vertex y ∈ V successfully arrives if the transmitting signal
is sufficiently strong with respect to the noise produced by other processors plus
ambient noise. We assume all vertices transmit with the same fixed transmission
power P , so the signal of x experienced at y depends only on the distance
between x and y (denoted by dxy), and on the path-loss exponent (denoted by
α). The signal strength decreases as an inverse polynomial of the distance, where
the polynomial degree is α. Specifically, the signal strength of x experienced
at y is P/dαxy. Similarly, the noise level of another transmitting vertex v ∈ V
experienced at y is P/dαvy. Let U ⊆ V be a set of processors that transmit
in parallel, and V \ U be the rest of the processors (the receivers). Whether a
receiver y ∈ V \ U succeeds in hearing the sender x ∈ U is determined by the
SINR formula:

P/dαxy
N +

∑
v∈U\{x} P/dαvy

≥ β.

Here N is the ambient noise, and β ≥ 1 is the threshold for successful reception.
The parameters α, β and N are constants whose values are defined by the
environment. We assume that α ≥ 2, which is the case in practice, unless it is
reduced artificially. Specifically, in vacuum it holds that α = 2, and on earth it
holds that α > 2. The value of α usually ranges between 2 and 6.

The maximum transmission range R of a vertex is the maximum range to
which a vertex can transmit if it is the only transmitter in the network (i.e., the
only noise is N). Note that when the power level is the same for all vertices, R is
the same for all vertices as well. Let Δ denote the maximum number of vertices
in any disk of radius R centered at a vertex v ∈ V . Let ρ < 1 be a positive
constant that is arbitrarily close to 1. We define R̄ = ρ · R, and Δ̄ to be the
maximum number of vertices in any disk of radius R̄ centered at a vertex v ∈ V .
We note that for a pair of vertices u, v that are exactly at distance R one from
another, a successful transmission requires all other vertices in the network to be
silent. Therefore, in order to allow parallel transmissions, we define a successful
local broadcasting of a vertex as a transmission that is successfully received by
all vertices within radius R̄ rather than R.

The SINR setting has attracted considerable attention due to its more realistic
assumptions comparing to other models, such as the radio network model or the
unit disk graph model, which do not take into account the cumulative nature of
interference. One of the most fundamental problems in the SINR setting is local
broadcasting. The goal in this problem is to establish a schedule in which each
vertex u ∈ V successfully transmits to all vertices at distance at most R̄ from u.
We will henceforth refer to vertices at distance at most R̄ from u as neighbors
of u. Note that the problem requirement is that for each vertex there exists a

166 L. Barenboim and D. Peleg

transmission that is successfully received by all its neighbors. This is stronger
than requiring that each vertex succeeds to deliver a message to all its neighbors,
since such a delivery could be achieved by several transmissions, each covering
a subset of neighbors. The latter requirement is sometimes referred to as weak
local broadcasting. Although weak local broadcasting can be often used instead of
(strong) local broadcasting, the disadvantage of weak local broadcasting is in the
greater power consumption resulting from multiple transmissions. Therefore, the
strong variant of local broadcasting is preferred, and this is the variant considered
in the current paper.

The local broadcasting problem serves as a building block for many network
tasks, and has numerous applications. One of the most notable applications
is Single Round Simulation. Specifically, if we are given an algorithm that is
designed for wired networks or networks with no interference, it can be simulated
in the SINR setting using local broadcasting as follows. Each round of the original
algorithm is simulated by performing local broadcasting in the SINR setting.
Consequently, each vertex succeeds do communicate with all its neighbors, which
make it possible to execute a single round of the original algorithm. If the original
algorithm requires T (n) time and local broadcasting requires S(n) time, then
the overall simulation time is T (n) · S(n).

Since the running time of local broadcasting affects significantly the time of
tasks that employ it, designing efficient local broadcasting algorithms is crucial.
There has been an intensive thread of research in this direction. The problem was
introduced by Goussevskaia, Moscibroda and Wattenhofer [7] who studied sev-
eral scenarios. In the harshest scenario the vertices are unaware of neighborhood
sizes and do not have feedback on the success of a transmission (i.e., they cannot
tell whether a transmission has successfully received by all their neighbors). For
this scenario, an algorithm with time1 O(Δ̄ log3 n) was devised in [7]. Later it
was improved in a series of works due to Yu et al. [13,14], where currently the
best known algorithm has time O(Δ̄ logn+log2 n) [13]. On the other hand, sev-
eral researchers have observed that by considering slightly less harsh settings,
one can improve the performance of the algorithms significantly. Moreover, these
slightly stronger settings are still feasible for practical use. Although they may
require more advanced devices, such as a carrier-sense mechanism that measures
signal strength, they still can be implemented in hardware at a reasonable cost
[9]. Already in the work of [7] it was observed that if vertices have knowledge
about their neighborhood size, then the running time of the O(Δ̄ log3 n)-time
algorithm can be improved to O(Δ̄ logn). Another result of this nature was
obtained by Halldórsson and Mitra [9] who showed that in networks with free
feedback (but with other properties that are similar to the harshest setting) the
running time becomes O(Δ̄+log2 n). In the current work we continue this line of

1 All running times mentioned in our paper refer to randomized algorithms and hold
with high probability, unless stated otherwise. High probability is 1 − 1/nc, for an
arbitrarily large constant c. Note that if we are given O(n) independent events, each
of which occurs with high probability, then the event that all of them occur holds
with high probability as well.

Nearly Optimal Local Broadcasting in the SINR Model with Feedback 167

research and devise significantly improved algorithms in settings that are slightly
less harsh than the harshest setting.

Our Results. We devise a local broadcasting algorithm for networks with
feedback requiring O(Δ̄+logn log logn) time. This improves the best previously-
known result for networks with feedback that has running time O(Δ̄+log2 n) [9].
Moreover, the running time of our algorithm is tight up to a log logn factor, in
view of the lower bounds Ω(Δ) and Ω(logn) [13]. In addition, it shows that the
conjecture of [9] that the log2 n term is necessary does not hold in some settings.
(On the other hand, the conjecture may still be true in weaker settings, such
as settings without feedback. This is an intriguing open problem.) We consider
a slotted setting with simultaneous wake up. This is somewhat stronger than
the settings of [7,9]. However, there are standard methods that allow to weaken
these requirements [7]. Also, similarly to other works, we assume that vertices
know (upper bounds on) n and Δ̄.

We also consider a closely related problem, called distance-k coloring. In this
problem the goal is to color the vertices with O(Δ̄) colors, such that each pair
of neighbors at geometrical distance at most k · R̄ from one another are assigned
distinct colors. If k is a constant, then a distance-k coloring with O(Δ̄) colors
always exists. If k is a sufficiently large constant, this coloring constitutes a
feasible SINR schedule. Note, however, that this problem is more challenging
than k-hop coloring in which the goal is to obtain a coloring such that any pair
of vertices at graph distance at most k have distinct colors. Indeed, any distance-
k coloring is a k-hop coloring, but not vice versa. Moreover, the vertices are not
always able to compute a distance-k coloring. For example, if two vertices are at
distance greater than R from one another, they may not be able to communicate.
On the other hand, a distance-k coloring requires them to select distinct colors,
which cannot be achieved without communication when the required probability
is sufficiently large. To address this problem we propose to employ helper vertices,
also known as Steiner points. We employ an optimal number of Steiner points
(up to constant factors), and obtain a distance-k coloring with O(Δ̄) colors
in O(log∗ n · (Δ̄ + logn log logn)) time. This coloring gives rise to an optimal
SINR schedule of length O(Δ̄) after a preprocessing stage of O(log∗ n · (Δ̄ +
logn log logn)) time.

An interesting question deals with the influence of the path-loss exponent α
on the performance of algorithms. Intuitively, a lower path-loss exponent means
less obstacles and better signal strength. Moreover, from the point of view of
each vertex, its signal should be as strong as possible in order to allow a success-
ful transmission. Therefore, it seems reasonable that a lower path-loss exponent
implies a better SINR schedule. In other words, transmitting in vacuum where
α = 2 should be the option for best performance. Surprisingly, we prove that the
opposite is true! Specifically, any feasible SINR schedule for an environment with
α = 2 has length Ω(Δ̄ logn). This is an unconditional lower bound, no matter
how strong the setting is. We present a network in which any shorter schedule
will certainly fail. Hence we illustrate a gap between settings with α = 2, and set-
tings with α > 2, where an O(Δ̄+logn log logn)-schedule can be achieved. This

168 L. Barenboim and D. Peleg

interesting phenomenon can be explained by noting that obstacles do not only
weaken signals - they also weaken noise. Our findings demonstrate that modify-
ing α may affect noise more significantly than transmission signals. Therefore,
in some occasions it might be better to add obstacles in order to block noise,
instead of removing them in order to strengthen the signal.

Our Techniques. The main idea of our local broadcasting algorithm is grad-
ually reducing the sizes of neighborhoods. In other words, as the algorithm
proceeds, more and more vertices succeed and terminate. Consequently, the
remaining vertices have less competition, and they are able to perform trans-
mission trials more intensively. Specifically, in each phase consisting of O(Δ̄)
rounds a constant fraction of vertices in each neighborhood terminates, with
high probability. (A vertex terminates once it has successfully transmitted to
all its neighbors.) This reduces the bound Δ̄ on the maximum neighborhood
size, which allows to execute each phase more efficiently than the previous one.
These improvements, however, are only possible as long as Δ̄ > logn. Once Δ̄
reaches logn we cannot proceed in the same way, since the probability that all
sizes of neighborhoods are reduced is no longer large enough. Hence we switch to
another method that increases the number of trials after each phase. Although
the number of trials becomes greater than Δ̄ it is still bounded by O(log n)
per phase. The number of these phases is O(log logn), contributing a factor
O(log n log logn) to the running time. This is in addition to the O(Δ̄) term for
the first part of the algorithm.

We employ our local broadcasting algorithm in order to compute distance-k
colorings using Steiner points. Once appropriate Steiner points are deployed we
can make sure that any pair of vertices in the network can communicate (not
necessarily directly). We observe that the resulting communication graph G is a
unit disk graph. Moreover, the graphGk obtained by adding an edge between any
pair of vertices at geometrical distance O(R̄ · k) from one another has bounded
growth. We then employ an algorithm due to Schneider and Wattenhofer for
O(Δ̄)-coloring graphs with bounded growth in O(log∗ n) time [11]. Invoking it on
Gk results in the desired distance coloring. This algorithm, however, is designed
for networks with no interference. Nevertheless, each round of the algorithm
can be simulated using local broadcasting. More precisely, O(k) executions of
local broadcasting are required in order to propagate a message to distance k.
The propagation is possible thanks to the Steiner points. Consequently, a single
round of the algorithm of [11] is simulated within O(k · (Δ̄ + logn log logn)) =
O(Δ̄ + logn log logn) rounds, since k is a constant. Thus we obtain an overall
running time O(log∗ n · (Δ̄+ logn log logn)). For a sufficiently large constant k,
we show that all vertices of the same color can transmit in parallel in the SINR
setting without interference. Thus we obtain an SINR schedule of length O(Δ̄).

For our lower bound in the scenario when α = 2 we consider a grid of ver-
tices of size roughly

√
n × √

n. Our goal is to show that in any partition of
vertices into o(Δ̄ logn) subsets, there must be a subset that causes too much
noise that results in a failure of some transmission. By calculating the overall
noise of all n vertices we conclude that whenever the length of a schedule is

Nearly Optimal Local Broadcasting in the SINR Model with Feedback 169

too short, there must be a subset generating noise that is too strong. We then
show that this noise necessarily disturbs a certain transmission. Hence, in any
o(Δ̄ logn)-schedule there must be a round in which the noise is too strong at a
certain vertex that tries to receive a message. Consequently, at least one vertex
will fail during the transmission.

Related Work. In their pioneering work Goussevskaia, Moscibroda and Wat-
tenhofer [7] devised a local broadcasting algorithm with time O(Δ̄ logn) when
neighborhood sizes are known, and O(Δ̄ log3 n) time when the sizes are un-
known. For the latter scenario, Yu et al. obtained improved local broadcasting
algorithms that require O(Δ̄ log2 n) time [14] and O(Δ̄ logn+ log2 n) time [13].
By using carrier-sense (a mechanism that allows receiving feedback) Yu et al.
[14] obtained an algorithm with time O(Δ̄ logn). An improved algorithm for the
latter scenario of networks with feedback was devised by Halldórsson and Mitra
[9]. The running time of the algorithm of [9] is O(Δ̄ + log2 n). The feedback
mechanism of [9] is similar to the one used in the current paper.

Several works obtained the optimal (up to constant factors) O(Δ̄)-schedule
at the expense of performing a preprocessing stage, and employing some ad-
ditional mechanisms that are not available in the weaker settings mentioned
above. Specifically, Derbel and Talbi [3] perform preprocessing of O(Δ̄ logn)
time and employ power-level adjustments. Jurdzinski and Kowalski [10] perform
preprocessing of O(Δ̄ log3 n) time, do not require power-level adjustments, but
require location information. In the latter setting, a better result was obtained
recently by Fuchs and Wagner [5] whose algorithm has O(Δ̄ logn) preprocess-
ing time. Note that the result of [10] is deterministic, while the other results
are randomized. It is natural to compare these results with our new random-
ized algorithm that obtains O(Δ̄)-schedule with O(log∗ n · (Δ̄+ log n log logn))
preprocessing time. Instead of employing power-level adjustments or location-
information mechanisms, our algorithm employs Steiner points in networks with
feedback. This allows us to break the O(Δ̄ logn) barrier in the preprocessing
time, and outperform the running time of the above-mentioned algorithms.

The problem of O(Δ̄)-coloring is closely related to local broadcasting, and has
been intensively studied in the SINR model as well. However, it is weaker than
local broadcasting in the following sense. Given a feasible local-broadcasting
schedule, no two vertices of the same neighborhood transmit in the same time.
Therefore, all vertices that transmit in the same time form a proper color class.
On the other hand, given a proper coloring, all vertices of the same color will not
necessarily be able to transmit in parallel. In order to allow this, a geometrical
distance-k coloring is required. Still, O(Δ̄)-coloring has attracted much atten-
tion. Derbel and Talbi [3] devised an O(Δ̄)-coloring algorithm with O(Δ̄ logn)
time, and a distance-coloring algorithm with the same time that requires power-
level adjustments. Yu et al. [15] devised a (Δ̄+1)-coloring algorithm that requires
power-level adjustments and runs in O(Δ̄ logn+log2 n) time. They also devised
an algorithm that does not require power-level adjustments and has running
time O(Δ̄ log2 n). Fuchs and Prutkin [4] obtained a (Δ̄+1)-coloring in O(Δ̄ logn)
time. Coloring problems have been very intensively studied in additional settings,

170 L. Barenboim and D. Peleg

such as wireless radio networks and networks without interference. The best
currently-known (Δ+ 1)-coloring algorithm for radio networks has time O(Δ+
log2 n) [12]. The best currently-known (Δ + 1)-coloring algorithm for networks

without interference has running time O(logΔ+2O(
√
log logn)) [2]. For an exten-

sive overview of distributed coloring algorithms we refer the reader to [1].

2 Local Broadcasting in Networks with Feedback

In this section we devise a local broadcasting algorithm for networks with feed-
back that requires O(Δ̄+logn log logn) time. We start with the following claim.
Suppose that all vertices v ∈ V perform trials in which each vertex transmits
with probability 1/(c · Δ̄), and listens with probability 1− 1/(c · Δ̄), for a suffi-
ciently large constant c. Then a transmitting node successfully performs its local
broadcasting, with probability at least 1/2. This is similar to a phenomenon ob-
served in [7]. (We omit its prof from the current paper due to lack of space.)
We refer to the set of vertices at distance at most R̄ from the vertex v ∈ V
(excluding v) as the neighborhood of V , and denote it by ΓR̄(v).

Lemma 1. For a sufficiently large constant c, suppose that all vertices perform
transmissions with probability 1/(c · Δ̄). Then a transmission of a sender v ∈ V
is successfully received in v’s neighborhood ΓR̄(v), namely, within radius R̄ from
v, with probability at least 1/2.

Next, we devise a procedure called Feedback-Broadcasting for performing local
broadcasting in networks with feedback, namely, networks in which any vertex
v ∈ V can decide whether a transmission was successfully received by all vertices
in its neighborhood ΓR̄(v). The procedure consists of two phases. In the first
phase, vertices repeatedly perform the following trials: each vertex transmits
with probability 1/(c · Δ̄) for ĉ · Δ̄ times, where ĉ > c is a sufficiently large
constant. If a vertex v discovers (using the feedback mechanism) that it has
succeeded to transmit to its entire neighborhood ΓR̄(v), then v terminates. If v
has failed in all these ĉ · Δ̄ trials, then it updates the bound on Δ̄ by setting
Δ̄ := 1

2 · Δ̄, and performs another stage of ĉ · Δ̄ trials. This continues as long as
Δ̄ > logn, and then the first phase of the procedure terminates.

In the second phase, it holds that Δ̄ ≤ logn, with high probability. This
phase consists of O(log logn) stages, each of which consists of O(log n) trials
in which each vertex transmits with probability 1/(c · Δ̄). In the end of each
stage, all unsuccessful vertices update Δ̄ by setting Δ̄ = 1

2 · Δ̄. We later prove
that once the second stage has been completed, all vertices have succeeded with
high probability. Next, we provide the pseudocode of the procedure. (Note that
ΓR̄(v) denotes all neighbors of v including those that have terminated. In other
words, the feedback in lines 8 and 24 of the algorithm has to be received for all
neighbors, namely, the active and the terminated ones.)

Nearly Optimal Local Broadcasting in the SINR Model with Feedback 171

Algorithm 1. ProcedureFeedback-Broadcasting(V , Δ̄) (code for vertex v ∈ V)

Let c, ĉ be sufficiently large constants, and ĉ > c.

1: success := F
2: (* Phase 1 *)
3: while Δ̄ > log n do
4: (* Stage k *)
5: for i = 1, 2, ..., ĉ · Δ̄ do
6: (* trial i of stage k *)
7: transmit with probability 1/(c · Δ̄)
8: if all neighbors of v in ΓR̄(v) receive the transmission successfully then
9: success := T
10: end if
11: end for
12: if success = T then
13: terminate
14: else
15: Δ̄ :=

⌊
1
2
· Δ̄⌋

16: end if
17: end while
18: (* Phase 2 *)
19: for k = 1, 2, ..., �log log n� do
20: (* Stage k *)
21: for i = 1, 2, ..., �ĉ · log n� do
22: (* trial i of stage k *)
23: transmit with probability 1/(c · Δ̄)
24: if all neighbors of v in ΓR̄(v) receive the transmission successfully then
25: success := T
26: end if
27: end for
28: if success = T then
29: terminate
30: else
31: Δ̄ := max{⌊ 1

2
· Δ̄⌋

, 1}
32: end if
33: end for

We say that a vertex is active if it has not terminated yet. The invariant that
the algorithm attempts to preserve is Bound(Δ̄) ≡ “the parameter Δ̄ is an upper
bound on the maximum neighborhood size (counting only active vertices)”. The
correctness of the algorithm follows from the observation that this invariant
holds at all stages of the algorithm, with high probability. This observation, in
turn, follows from the fact that in each stage the number of active neighbors of
each vertex is reduced by a factor of 1/2. We prove this in the next lemma.

Lemma 2. Suppose that Procedure Feedback-Broadcasting is invoked by all ver-
tices with a parameter Δ̄ that satisfies Bound(Δ̄). Then the invariant Bound(Δ̄)
holds throughout the entire execution, with high probability.

172 L. Barenboim and D. Peleg

Proof. The assertion holds trivially in the beginning of the execution of the
procedure. We have to prove that each time the value of Δ̄ is updated, its new
value indeed satisfies Bound(Δ̄). Note that Δ̄ is updated only in the end of a
stage. (Lines 4 - 16 constitute a stage of Phase 1; lines 20 - 32 are a stage of
Phase 2.) We start by analyzing the first phase (lines 2 - 17). Assuming that
Bound(Δ̄) holds in the beginning of stage k of Phase 1, we show that in the end
of stage k, Bound(Δ̄) still holds, namely, for each vertex v ∈ V , the number of
neighbors of v that are still active is at most 1

2 · Δ̄, with high probability.
Suppose that in the beginning of stage k the number d of active neighbors of

v is at least 1
2 ·Δ̄. (Otherwise, the assertion holds already in the beginning of the

stage, and will hold in the end of the stage since the number of active neighbors
can only decrease.) Let Xi, i = 1, 2, ..., ĉ · Δ̄, be a random indicator variable that
equals 1 if a neighbor of v succeeds in trial i of stage k, and 0 otherwise, and let

X =
∑ĉ·Δ̄

i=1 Xi. The probability that exactly one neighbor of v tries in trial i is
d · (c · Δ̄− 1)d−1/(c · Δ̄)d > d/(4 · c · Δ̄). Thus, by lemma 1, the probability that
it succeeds is at least d/(8 · c · Δ̄). Therefore, IIE(X) ≥ (ĉ/c) · d/8. By Chernoff
bound, as the Xi’s are independent,

Pr(X < IIE(X)/2) ≤ e−IIE(X)/8 ≤ e−(ĉ/c)·d/64.

In other words, for a sufficiently large constant ĉ, we can obtain at least 2d suc-
cessful trials in a stage, with high probability. (Recall that d > 1

2Δ̄ > 1
2 logn.)

However, the trials were performed with repetitions, and thus, the number of
successful neighbors may be smaller than d. Next, we analyze the probability that
it is smaller than d/2. Since in each iteration the vertices have equal chances of
performing a trial, this problem is equivalent to balls-into-bins, where vertices
are bins and successful trials are balls. The value 2d denotes the number of balls,
d denotes the number of bins, and we would like to analyze the probability that
more than d/2 bins contain balls. We calculate the probability of the comple-
mentary event, i.e., that at most d/2 bins contain balls. This probability is at
most

(
d

d/2

) ·(1/22d) < (1/2d). Note that by increasing the constant ĉ we can have

an arbitrarily large constant multiplicative factor, instead of the factor 2 in the
term 2d. Since d = Ω(log n), at least d/2 neighbors succeed, with probability
1 − 1/poly(n). By the union bound, for all vertices, all neighborhoods are (at
least) halved, with high probability. Thus the size of the maximum neighborhood
is reduced by a factor of at least 2 in each stage of the first phase, with high
probability.

Consequently, within O(log Δ̄) stages of Phase 1, the maximum neighborhood
size becomes at most logn, with high probability. Therefore, once Phase 2 (lines
18 - 33) starts, it holds that Δ̄ ≤ log n is an upper bound on the maximum
neighborhood size, as required. Denote again by d the number of active neighbors
of a vertex v ∈ V that is still active. In each trial of a stage of Phase 2 (lines
22 - 26), the probability that exactly one active neighbor of v succeeds is at
least d/(4 · c · Δ̄) = Ω(1), if d ≥ Δ̄/2. Consequently, the expected number
of successful trials is IIE(X) = Ω(log n), where the constant hidden in the Ω-
notation can be made as large as desired by choosing a sufficiently large constant

Nearly Optimal Local Broadcasting in the SINR Model with Feedback 173

ĉ. Thus, by Chernoff bound, the number of successful trials is Ω(logn), with
high probability. Next, we analyze the probability that at least d/2 different
neighbors have succeeded. Again we reduce the problem to balls-to-bins, where
here we have Ω(logn) balls and d bins. Therefore, this probability is 1− (

d
d/2

) ·
(1/2Ω(logn)) ≥ 1−(

logn
(logn)/2

) · (1/2Ω(logn)), i.e., high probability, for a sufficiently

large constant ĉ. Using the union bound we obtain this result for all vertices,
and thus the maximum neighborhood size is at least halved in each stage, with
high probability. Hence throughout the entire execution Δ̄ is an upper bound on
the maximum neighborhood size, with high probability. �

By Lemma 2, within log logn − 1 stages of Phase 2 the neighborhood size
of all vertices becomes O(1), with high probability. In stage �log logn	 of the
second phase each active vertex succeeds with a constant probability since Δ̄ =
O(1). (See Lemma 1.) Therefore, within O(log n) iterations of this stage all
remaining active vertices succeed, with high probability. Thus we obtain the
following result.

Theorem 1. Procedure Feedback-Broadcasting performs a successful local broad-
casting of all vertices, with high probability.

Next we analyze the running time of the procedure. Each stage of the first
phase requires O(Δ̄) time. However, Δ̄ is halved in each stage, and thus the
overall running time of the first phase is O(Δ̄ + Δ̄/2 + Δ̄/4 + ...) = O(Δ̄). The
second phase requires O(log n log logn) time. Hence the overall running time is
O(Δ̄+ log n log logn).

Theorem 2. Local broadcasting in networks with feedback can be performed in
O(Δ̄+ log n log logn) time.

3 Distant Coloring

Our local-broadcasting algorithm produces an O(Δ̄+logn log logn) time sched-
ule. In other words, a distributed algorithm for networks without interference
can be simulated in SINR networks, where each round of the original algorithm
is simulated by O(Δ̄+logn log logn) rounds of the local-broadcasting procedure.
This is, however, not optimal, since a schedule of length O(Δ̄) always exists. It is
easy to verify that the latter bound is the best possible (up to constant factors).
Indeed, given a vertex v, in order to receive the messages of all the Δ̄ vertices
at distance at most R̄ from v, each of them must transmit in a distinct round.

A schedule of length O(Δ̄) can be obtained by computing a distance-k col-
oring, for a sufficiently large constant k. In this coloring each pair of vertices
at (geometrical) distance less than k · R̄ from one another are colored by dis-
tinct colors. Since the number of vertices in each disk of radius k · R̄ is O(Δ̄),
a distance-k coloring can always employ O(Δ̄) colors, for any constant k. Un-
fortunately, it is impossible to obtain such a coloring in the SINR setting (as
will be explained shortly), even though it is possible to achieve a k-hop-coloring,

174 L. Barenboim and D. Peleg

namely, a coloring in which any pair of vertices within at most k hops from one
another are colored by distinct colors. In models without interference a k-hop
O(Δ̄)-coloring can be computed in O(log∗ n) time for any constant k. This is
done by computing an O(Δ̄)-coloring of growth-bounded graphs on Gk. Since G
is a unit disk graph, Gk is of bounded growth. The running time of the algorithm
is O(log∗ n) [11]. Consequently, in SINR networks a k-hop-coloring can be com-
puted within O(log∗ n · (Δ̄+ logn log logn)) rounds by performing single-round
simulations. (See Theorem 2.) This, however, may increase message size by a
factor of poly(Δ̄) as a consequence of simulating Gk.

Corollary 1. A k-hop coloring can be computed in O(log∗ n·(Δ̄+log n log logn))
rounds (with high probability) in the SINR setting with uniform power.

However, a k-hop-coloring does not necessarily produce a feasible SINR sched-
ule. Consider, for instance, three vertices a,b,c, such that dist(a, b) = R̄, and
dist(a, c) = dist(b, c) = R̄+ ε, for some ε > 0. Then ϕ(a) = 1, ϕ(b) = 2, ϕ(c) = 1
is a proper k-hop coloring for any k, since c cannot receive messages from a and
b. On the other hand, by the SINR formula, if a and c transmit simultaneously,
they cause interference that prevents b from receiving the message of a. Thus a
distance-k coloring is desirable. But it cannot be computed since a and b can-
not communicate with c, and cannot make sure they all select distinct color. To
solve this problem we propose to use Steiner points. In other words, we add some
helper vertices that allow to compute a distance-k coloring of the original vertex
set. For each original vertex, we add O(k) Steiner vertices in the way illustrated
in Figure 1(a). These Steiner vertices have exactly the same status as that of the
original vertices of V , i.e., a Steiner vertex is a processor with a transmitter and
a receiver. Note that as a result Δ̄ increases only by a multiplicative constant
factor of at most 5. Let V ′ denote the new set of vertices, including vertices of
V .

We compute a 2k-hop-coloring of V ′ by invoking the algorithm of Corollary
1. We next prove that it results in a distance-k coloring of V that employs O(Δ̄)
colors.

Lemma 3. A 2k-hop coloring of V ′ is a distance-k coloring of V that employs
O(Δ̄) colors.

Proof. The number of vertices of V ′ in any disk of radius R̄ is at most five times
the number of vertices of V in this disk. Consequently, the number of employed
colors is O(5Δ̄) = O(Δ̄). Let u, v ∈ V be two vertices at distance at most R̄ · k
from one another. Then there exists a path of at most 2k vertices connecting u
and v, such that each pair of neighboring vertices on the path are at distance at
most R̄ from one another. (See Figure 1(b).) Consequently, u and v are colored
by distinct colors by the 2k-hop-coloring algorithm. �

By Lemma 3 and Corollary 1 we obtain the following result.

Theorem 3. A distance-k coloring of V can be obtained within O(log∗ n · (Δ̄+
logn log logn)) rounds, with high probability, using at most 4k ·n Steiner points.

Nearly Optimal Local Broadcasting in the SINR Model with Feedback 175

Fig. 1. (a) The vertex in the center is v ∈ V , and it is surrounded by 4k Steiner points.
(b) If u and v are not too far from one another, there is a path connecting u and v.

Consider all vertices colored by the same color z of a distance-k coloring, for a
sufficiently large constant k. Let v be such a vertex. Then the number of vertices
in Li (the ith ring of width R̄ around v) whose color is z is O(i). The constant in
the O-notation can be made as small as one wishes, by increasing k. As a result,
by similar arguments to those in the analysis of Lemma 1 (see also [7]), the
interference in the disk of radius R̄ of v is sufficiently small to allow a successful
broadcast of v. Specifically, for a sufficiently large constant k, no vertices except
for v transmit in L1 and L2. Hence, the interference I1 experienced by neighbors
of v, i.e., by vertices in L1 is at most

I1 =
∞∑

i=3

P ·O(i) · 1/(R̄(i− 2))α ≤
∞∑

i=3

(1/R̄)α · P · O((i − 2)α−1)

= (1/R̄α) · P ·
∞∑

i=1

O(1/iα−1) = (1/R̄α) · P ·O((α − 1)/(α− 2)),

where the constant hidden in the O-notation can be made as small as one wishes.
In other words, I1 ≤ ε · P/R̄α, for an arbitrarily small constant ε > 0. This
interference is sufficiently small to allow all vertices at distance at most R̄ from
v to receive the message of v. Consequently, if all vertices of the same color in
the k-hop coloring (and only them) transmit simultaneously, they all succeed.
Thus Theorem 3 implies the following result.

Theorem 4. A schedule of length O(Δ̄) can be obtained within O(log∗ n · (Δ̄+
logn log logn)) rounds, with high probability, using at most 4k ·n Steiner points.

As noted earlier, the schedule length is optimal up to constant factors. Next
we show that the number of Steiner points is optimal as well. Consider a vertex
set V whose vertices are placed on a line, such that the distance between any pair

176 L. Barenboim and D. Peleg

of neighboring vertices is k · R̄. In order to compute a k-hop coloring, the graph
induced by V ′ must be connected. The minimum number of vertices that must
be added to V in order to satisfy this requirement is (n− 1)(k − 1) = Ω(k · n),
since for any pair of neighboring vertices on the line, at least k− 1 vertices must
be placed between them. This is summarized in the next Theorem.

Theorem 5. The number of Steiner points required for k-hop coloring is Ω(kn).

4 A Lower Bound for α = 2

In this section we prove that if the path loss exponent α equals 2, then any
feasible schedule in the SINR model has length Ω(Δ̄ logn) = Ω(Δ log n). To
this end consider a grid of size k · k = n of vertices, such that the distance
between any vertex and its closest neighbors on the X-axis and Y-axis is exactly
one unit. The dimensions of the square containing this grid is (k−1)×(k−1). Let
v be a vertex in a corner of the grid. Suppose that all other vertices u ∈ V \ {v}
transmit, and let R̄ ≥ 1 be a parameter defining the transmission range, as in
Section 2. (Note that Δ̄ = Θ(R̄2)). Denote by tu the interference experienced by
v as a result of the transmission of u. Then the overall interference experienced
by v is at least the interference Ifar caused by the subset V̄ of vertices at distance
greater than R̄ from v. This interference satisfies

Ifar =
∑

u∈V̄

tu =
∑

u∈V̄

P/dαuv =
∑

u∈V̄

P/d2uv

≥
k−1∑

i=R̄+1

P · (2i+ 1)/(2i2) =

k−1∑

i=1

P · (2i+ 1)/(2i2)−
R̄∑

i=1

P · (2i+ 1)/(2i2).

The last inequality follows from the observation that the number of vertices on
the boundary of a square of size (i+1)× (i+1) that do not belong to the inner
square of size i× i is i + i + 1 = 2i+ 1. On the other hand, each such vertex is
at distance at most

√
2i from v.

Consequently, the interference experienced by v as a result of the transmissions
of all other vertices is at least P · ∑k−1

i=R̄+1 1/i. Whenever R̄ ≤ k1−ε, for an

arbitrarily small constant ε > 0, we have P · ∑k−1
i=R̄+1 1/i = Ω(P · log k − P ·

log R̄) = Ω(P · logn). This is summarized below.

Lemma 4. Let v be a corner vertex and V̄ be the set of vertices at distance
greater than R̄ from v. If all vertices in V̄ transmit, then the interference expe-
rienced by v is Ω(P · logn).

Next, Assume for contradiction that there exists a feasible SINR schedule of
length � = o(Δ̄ · logn). Then, let V1, V2, ..., V� be a partition of V \{v}, such that
the vertices in each Vi, i ∈ [�], can transmit successfully in parallel. Let j ∈ [�]
be the index of the set Vj , such that vertices of Vj ∩ V̄ cause the maximum
interference at the corner vertex v. Then, by the Pigeonhole principle,

∑

u∈Vj∩V̄

tu ≥ ω(P/Δ̄). (1)

Nearly Optimal Local Broadcasting in the SINR Model with Feedback 177

Note that Δ̄ depends on P linearly. Indeed, increasing P by a multiplicative
factor of q results in an increase of the transmission range by

√
q, and thus the

number of vertices at distance at most
√
q · R̄ becomes Θ(q · Δ̄). If we normalize

P to be equal to 1 in the case of a transmission of an only-transmitting vertex
to a distance of one unit, then ω(P/Δ̄) = ω(1), for any P .

Let w ∈ Vj∩V̄ be the closest vertex to v. Let y ∈ V \Vj be a vertex at distance
at least R̄− 1 and at most R̄ from w. See Figure 2. Let Mw = (Vj ∩ V̄) \ {w}.

Fig. 2. The set of transmitting vertices Vj ∩ V̄ is depicted by filled circles.

Note that for any u ∈ Vj∩V̄ the distance between u and v is at least 1/
√
2 the

distance between u and w. Thus the interference experienced by w when vertices
of Vj ∩ V̄ transmit is at least 1

2

∑
u∈Mw

tu. The interference experienced by y

is at least 1
8

∑
u∈Mw

tu, since the distance between w and each vertex x ∈ Mw

is at least 1/2 the distance between y and x. Thus, when all vertices of Vj ∩ V̄
transmit, the SINR formula that determines whether y receives the message of
w successfully satisfies (for α = 2)

P/dαwy

N +
∑

u∈Mw
P/dαuy

≤ P/(R̄ − 1)2

N + 1
8

∑
u∈Mw

tu
=

Θ(P/Δ̄)

ω(P/Δ̄)
= o(1) < 1,

as tw = Θ(P/Δ̄) and
∑

u∈Mw
tu = ω(P/Δ̄)−Θ(P/Δ̄) = ω(P/Δ̄) by (1).

Hence y fails to receive the message of w, and thus V1, V2, ..., V� is not a feasible
schedule; contradiction. In summary, we get the following theorem.

Theorem 6. In settings with loss-path exponent α = 2, any feasible SINR
schedule with uniform power has length Ω(Δ log n).

178 L. Barenboim and D. Peleg

References

1. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Synthesis Lectures on Distributed Computing
Theory (2013)

2. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. In: Proc. 53rd Symp. on Foundations of Computer Science
(FOCS 2012), pp. 321–330 (2012)

3. Derbel, B., Talbi, E.: Distributed Node Coloring in the SINR Model. In: Proc. 30th
IEEE Int. Conf. on Distributed Computing Systems (ICDCS 2010), pp. 708–717
(2010)

4. Fuchs, F., Prutkin, R.: Simple Distributed (Δ + 1)-coloring in the SINR model
(2015), http://arxiv.org/abs/1502.02426

5. Fuchs, F., Wagner, D.: On Local Broadcasting Schedules and CONGEST Algo-
rithms in the SINR Model. In: Proc. 9th Int. Workshop on Algorithmic Aspects of
Wireless Sensor Networks (ALGOSENSORS 2013), pp. 170–184 (2013)

6. Fuchs, F., Wagner, D.: Local broadcasting with arbitrary transmission power in
the SINR model. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576,
pp. 180–193. Springer, Heidelberg (2014)

7. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local Broadcasting in the
Physical Interference Model. In: Proc. 5th ACM Int. Workshop on Foundations of
Mobile Computing (DialM-POMC 2008), pp. 35–44 (2008)

8. Goussevskaia, O., Pignolet, Y., Wattenhofer, R.: Efficiency of wireless networks:
Approximation algorithms for the physical interference model. Foundations and
Trends in Networking 4(3), 313–420 (2010)

9. Halldórsson, M., Mitra, P.: Towards Tight Bounds for Local Broadcasting. In: Proc.
8th ACM Int. Workshop on Foundations of Mobile Computing (FOMC 2012),
Article No 2 (2012)

10. Jurdzinski, T., Kowalski, D.: Distributed Backbone Structure for Algorithms in
the SINR Model of Wireless Networks. In: Proc. 26th Int. Symp. on Distributed
Computing (DISC 2012), pp. 106–120 (2012)

11. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set
Algorithm For Growth Bounded Graphs. In: Proc. 27th ACM Symp. on Principles
of Distributed Computing (PODC 2008), pp. 35–44 (2008)

12. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks.
In: Proc. 28th ACM Symp. on Principles of Distributed Computing (PODC 2009),
pp. 210–219 (2009)

13. Yu, D., Hua, Q., Wang, Y., Lau, F.: An O(log n) Distributed Approximation Algo-
rithm for Local Broadcasting in Unstructured Wireless Networks. In: Proc. 8th Int.
Conf. on Distributed Computing in Sensor Systems (DCOSS 2012), pp. 132–139
(2012)

14. Yu, D., Wang, Y., Hua, Q., Lau, F.: Distributed Local Broadcasting Algorithms
in the Physical Interference Model. In: Proc. 2011 Int. Conf. on Distributed Com-
puting in Sensor Systems (DCOSS 2011), pp. 1–8 (2011)

15. Yu, D., Wang, Y., Hua, Q.-S., Lau, F.C.M.: Distributed (Δ + 1)-Coloring in the
Physical Model. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds.) ALGOSEN-
SORS 2011. LNCS, vol. 7111, pp. 145–160. Springer, Heidelberg (2012)

http://arxiv.org/abs/1502.02426

Byzantine Gathering in Networks�

Sébastien Bouchard1, Yoann Dieudonné1, and Bertrand Ducourthial2

1 Laboratoire MIS & Université de Picardie Jules Verne Amiens, France
2 Heudiasyc, CNRS & Université de Technologie de Compiègne, Compiègne, France

Abstract. This paper investigates an open problem introduced in [14].
Two or more mobile agents start from different nodes of a network and
have to accomplish the task of gathering which consists in getting all
together at the same node at the same time. An adversary chooses the
initial nodes of the agents and assigns a different positive integer (called
label) to each of them. Initially, each agent knows its label but does
not know the labels of the other agents or their positions relative to its
own. Agents move in synchronous rounds and can communicate with
each other only when located at the same node. Up to f of the agents
are Byzantine. A Byzantine agent can choose an arbitrary port when it
moves, can convey arbitrary information to other agents and can change
its label in every round, in particular by forging the label of another
agent or by creating a completely new one. What is the minimum num-
ber M of good agents that guarantees deterministic gathering of all of
them, with termination? We provide exact answers to this open problem
by considering the case when the agents initially know the size of the
network and the case when they do not. In the former case, we prove
M = f + 1 while in the latter, we prove M = f + 2. More precisely,
for networks of known size, we design a deterministic algorithm gather-
ing all good agents in any network provided that the number of good
agents is at least f + 1. For networks of unknown size, we also design
a deterministic algorithm ensuring the gathering of all good agents in
any network but provided that the number of good agents is at least
f + 2. Both of our algorithms are optimal in terms of required number
of good agents, as each of them perfectly matches the respective lower
bound on M shown in [14], which is of f + 1 when the size of the net-
work is known and of f + 2 when it is unknown. Perhaps surprisingly,
our results highlight an interesting feature when put in perspective with
known results concerning a relaxed variant of this problem in which the
Byzantine agents cannot change their initial labels. Indeed under this
variant M = 1 for networks of known size and M = f + 2 for networks
of unknown size. Following this perspective, it turns out that when the
size of the network is known, the ability for the Byzantine agents to
change their labels significantly impacts the value of M. However, the
relevance for M of such an ability completely disappears in the most
general case where the size of the network is unknown, as M = f + 2
regardless of whether Byzantine agents can change their labels or not.

Keywords: deterministic gathering, mobile agent, Byzantine fault.

� Partially supported by the European Regional Development Fund (ERDF) and the
Picardy region under Project TOREDY.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 179–193, 2015.
DOI: 10.1007/978-3-319-25258-2_13

180 S. Bouchard, Y. Dieudonné, and B. Ducourthial

1 Introduction

1.1 Context

Gathering is one of the most fundamental tasks in the field of distributed and
mobile systems in the sense that, the ability to gather is in fact a building
block to achieve more complex cooperative works. Loosely speaking, the task of
gathering consists in ensuring that a group of mobile entities, initially located
in different places, ends up meeting at the same place at the same time. These
mobile entities, hereinafter called agents, can vary considerably in nature ranging
from human beings and robots to animals and software agents. The environment
in which the agents are supposed to evolve can vary considerably as well: it may
be a terrain, a network modeled as a graph, a three-dimensional space, etc. We
can also consider that the sequences of instructions followed by the agents in
order to ensure their gathering are either deterministic or randomized.

In this paper, we consider the problem of gathering in a deterministic way
in a network modeled as a graph. Thus, the agents initially start from different
nodes of the graph and have to meet at the same node by applying deterministic
rules. We assume that among the agents, some are Byzantine. A Byzantine
agent is an agent subject to unpredictable and arbitrary faults. For instance
such an agent may choose to never stop or to never move. It may also convey
arbitrary information to the other agents, etc. The case of Byzantine fault is
very interesting because it is the worst fault that can occur to agents. As a
consequence, gathering in such a context is challenging.

1.2 Model and Problem

The distributed system considered in this paper consists of a group of mobile
agents that are initially placed by an adversary at arbitrary but distinct nodes
of a network modeled as a finite, connected, undirected graph G = (V,E). We
assume that |V | = n. In the sequel n is also called the size of the network.
Two assumptions are made about the labelling of the two main components
of the graph that are nodes and edges. The first assumption is that nodes are
anonymous i.e., they do not have any kind of labels or identifiers allowing them to
be distinguished from one another. The second assumption is that edges incident
to a node v are locally ordered with a fixed port numbering ranging from 0 to
deg(v)− 1 where deg(v) is the degree of v. Therefore, each edge has exactly two
port numbers, one for each of both nodes it links. The port numbering is not
supposed to be consistent: a given edge (u, v) ∈ E may be the i-th edge of u but
the j-th edge of v, where i �= j. These two assumptions are not fortuitous. The
primary motivation of the first one is that if each node could be identified by
a label, gathering would become quite easy to solve as it would be tantamount
to explore the graph (via e.g. a breadth-first search) and then meet in the node
having the smallest label. While the first assumption is made so as to avoid
making the problem trivial, the second assumption is made in order to avoid
making the problem impossible to solve. Indeed, in the absence of a way allowing

Byzantine Gathering in Networks 181

an agent to distinguish locally the edges incident to a node, gathering could be
proven as impossible to solve deterministically in view of the fact that some
agents could be precluded from traversing some edges and visit some parts of
the graph.

An adversary chooses the starting nodes of the agents. The starting nodes are
chosen so that there are not two agents sharing initially the same node. At the
beginning, an agent has a little knowledge about its surroundings: it does not
know either the graph topology, or the number of other agents, or the positions
of the others relative to its own. Still regarding agents’ knowledge, we will study
two scenarios: one in which the agents initially know the parameter n and one in
which the agents do not initially know this parameter or even any upper bound
on it.

Time is discretized into an infinite sequence of rounds. In each round, every
agent, which has been previously woken up (this notion is detailed in the next
paragraph), is allowed to stay in place at its current node or to traverse an edge
according to a deterministic algorithm. The algorithm is the same for all agents:
only the input, whose nature is specified further in the subsection, varies among
agents.

Before being woken up, an agent is said to be dormant. A dormant agent may
be woken up only in two different ways: either by the adversary that wakes some
of the agents at possibly different rounds, or as soon as another agent enters the
starting node of the dormant agent. We assume that the adversary wakes up at
least one agent. When an agent is woken up in a round r, it is told the degree
of its starting node. As mentioned above, in each round r′ ≥ r, the executed
algorithm can ask the agent to stay idle or to traverse an edge. In the latter
case, this takes the following form: the algorithm ask the agent, located at node
u, to traverse the edge having port number i, where 0 ≤ i < deg(u)− 1. Let us
denote by (u, v) ∈ E this traversed edge. In round r′ +1, the agents enters node
v: it then learns the degree deg(v) as well as the local port number j of (u, v) at
node v (recall that in general i �= j). An agent cannot leave any kind of tokens
or markers at the nodes it visits or the edges it traverses.

In the beginning, the adversary also assigns a different positive integer (called
label) to each agent. Each agent knows its label but does not know the labels of
the other agents. When several agents are at the same node in the same round,
they see the labels of the other agents and can exchange all the information
they currently have. This exchange is done in a “shouting” mode in one round:
all the exchanged information becomes common knowledge for agents that are
currently at the node. On the other hand when two agents are not at the same
node in the same round they cannot see or talk to each other: in particular,
two agents traversing simultaneously the same edge but in opposite directions,
and thus crossing each other on the same edge, do not notice this fact. In every
round, the input of the algorithm executed by an agent a is made up of the label
of agent a and the up-to-date memory of what agent a has seen and learnt since
its waking up. Note that in the absence of a way of distinguishing the agents, the
gathering problem would have no deterministic solution in some graphs. This is

182 S. Bouchard, Y. Dieudonné, and B. Ducourthial

especially the case in a ring in which at each node the edge going clockwise has
port number 0 and the edge going anti-clockwise has port 1: if all agents are
woken up in the same round and start from different nodes, they will always
have the same input and will always follow the same deterministic rules leading
to a situation where the agents will always be at distinct nodes no matter what
they do.

Within the team, it is assumed that up to f of the agents are Byzantine. The
parameter f is known to all agents. A Byzantine agent has a high capacity of
nuisance: it can choose an arbitrary port when it moves, can convey arbitrary
information to other agents and can change its label in every round, in particular
by forging the label of another agent or by creating a completely new one. All
the agents that are not Byzantine are called good. We consider the task of f -
Byzantine gathering which is stated as follows. The adversary wakes up at least
one good agent and all good agents must eventually be in the same node in the
same round, simultaneously declare termination and stop, provided that there
are at most f Byzantine agents. Regarding this task, it is worth mentioning that
we cannot require the Byzantine agents to cooperate as they may always refuse
to be with some agents. Thus, gathering all good agents with termination is the
strongest requirement we can make in such a context.

What is the minimum number M of good agents that guarantees f -Byzantine
gathering?

At first glance, the question might appear as not being really interesting
since, after all, the good agents might always be able to gather in some node,
regardless of the number of Byzantine agents evolving in the graph. However,
this is not the case as pointed out by the study that introduced this question
in [14]. More specifically, when this size is initially known to the agents, the
authors of this study described a deterministic algorithm gathering all good
agents in any network provided that there are at 2f + 1 of them, and gave a
lower bound of f + 1 on M by showing that if the number of good agents is
not larger than f , then there are some graphs in which the good agents are not
able to gather deterministically with termination. When the size of the network
is unknown, they did a similar thing but with different bounds: they gave an
algorithm working for a team including at least 4f +2 good agents, and showed
a lower bound of f + 2 on M. However, the question of what the tight bounds
are was left as an open problem.

1.3 Our Results

In this paper, we solve this open problem by proving that the lower bounds of
f +1 and f+2 on M, shown in [14], are actually also upper bounds respectively
when the size of the network is known and when it is unknown. More precisely,
we design deterministic algorithms allowing to gather all good agents provided
that the number of good agents is at least f + 1 when the size of the network is
initially known to agents, and at least f +2 when this size is initially unknown.

Perhaps surprisingly, our results highlight an interesting feature when put
in perspective with results concerning a relaxed variant of this problem (also

Byzantine Gathering in Networks 183

introduced in [14]) in which the Byzantine agents cannot change their initial
labels. Indeed under this variant M = 1 for networks of known size and M =
f+2 for networks of unknown size1. Following this perspective, it turns out that
when the size of the network is known, the ability for the Byzantine agents to
change their labels significantly impacts the value of M. However, the relevance
for M of such an ability completely disappears in the most general case where
the size of the network is unknown, asM = f+2 regardless of whether Byzantine
agents can change their labels or not.

1.4 Related Works

Historically, the first mention of the gathering problem appeared in [28] under the
appellation of rendezvous problem. Rendezvous is the term which is usually used
when the studied task of gathering is restricted to a team of exactly two agents.
From this publication until now, the problem has been extensively studied so that
there is henceforth a huge literature about this subject. This is mainly due to the
fact that there is a lot of alternatives for the combinations we can make when
approaching the problem, e.g., by playing on the environment in which the agents
are supposed to evolve, the way of applying the sequences of instructions (i.e.,
deterministic or randomized) or the ability to leave some traces in the visited
locations, etc. Naturally, in this paper we are more interested in the research
works that are related to deterministic gathering in networks modeled as graphs.
This is why we will mostly dwell on this scenario in the rest of this subsection.
However, for the curious reader wishing to consider the matter in greater depth,
we invite him to consult [7,1,19] that address the problem in the plane via
various scenarios, especially in a system affected by the occurrence of faults or
inaccuracies for the last two references. Regarding randomized rendezvous, a
good starting point is to go through [2,3,21].

Concerning the context of this paper, the closest work to ours is obviously [14].
Nonetheless, in similar settings but without Byzantine agents, there are some
papers that should be cited here. This is in particular the case of [13] in which the
author presented a deterministic protocol for solving the rendezvous problem,
which guarantees a meeting of the two involved agents after a number of rounds
that is polynomial in the size n of the graph, the length l of the shorter of the two
labels and the time interval τ between their wake-up times. As an open problem,
the authors ask whether it is possible to obtain a polynomial solution to this
problem which would be independent of τ . A positive answer to this question
was given, independently of each other, in [20] and [29]. While these algorithms
ensure rendezvous in polynomial time (i.e., a polynomial number of rounds),

1 The proof that both of these values are enough, under their respective assumptions
regarding the knowledge of the network size, relies on algorithms using a mechanism
of blacklists that are, informally speaking, lists of labels corresponding to agents
having exhibited an “inconsistent” behavior. Of course, in the context of our paper,
we cannot use such blacklists as the Byzantine agents can change their labels and in
particular steal the identities of good agents.

184 S. Bouchard, Y. Dieudonné, and B. Ducourthial

they also ensure it at polynomial cost since the cost of a rendezvous protocol is
the number of edge traversals that are made by the agents until meeting and
since each agent can make at most one edge traversal per round. However, it
should be noted that despite the fact a polynomial time implies a polynomial
cost, the reciprocal is not always true as the agents can have very long waiting
periods sometimes interrupted by a movement. Thus these parameters of cost
and time are not always linked to each other. This was highlighted in [25] where
the authors studied the tradeoffs between cost and time for the deterministic
rendezvous problem. More recently, some efforts have been dedicated to analyse
the impact on time complexity of rendezvous when in every round the agents
are brought with some pieces of information by making a query to some device
or some oracle, see, e.g., [11,24]. Along with the works aiming at optimizing the
parameters of time and/or cost of rendezvous, some other works have examined
the amount of memory that is required to achieve deterministic rendezvous e.g.,
in [16,17] for tree networks and in [9] for general networks.

All the aforementioned studies that are related to gathering in graphs take
place in a synchronous scenario i.e., a scenario in which the agents traverse
the edges in synchronous rounds. Some efforts have been also dedicated to the
scenario in which the agents move asynchronously: the speed of agents may
then vary and is controlled by the adversary. For more details about rendezvous
under such a context, the reader is referred to [23,10,15,18] for rendezvous in
finite graphs and [4,8] for rendezvous in infinite grids.

Aside from the gathering problem, our work is also in conjunction with the
field of fault tolerance via the assumption of Byzantine faults to which some
agents are subjected. First introduced in [26], a Byzantine fault is an arbitrary
fault occurring in an unpredictable way during the execution of a protocol. Due
to its arbitrary nature, such a fault is considered as the worst fault that can oc-
cur. Byzantine faults have been extensively studied for “classical” networks i.e.,
in which the entities are fixed nodes of the graph (cf., e.g., the book [22] or the
survey [5]). To a lesser extend, the occurrence of Byzantine faults has been also
studied in the context of mobile entities evolving in the plane, cf. [1,12]. Prior to
our work, gathering in arbitrary graphs in presence of Byzantine agents was con-
sidered only in [14]. As mentioned in the previous section, it is proven in [14] that
the minimum number M of good agents that guarantees f -Byzantine gathering
is precisely 1 for networks of known size and f +2 for networks of unknown size,
provided that the Byzantine agents cannot lie about their labels. The proof that
both of these values are enough, under their respective assumptions regarding
the knowledge of the network size, relies on algorithms using a mechanism of
blacklists that are, informally speaking, lists of labels corresponding to agents
having exhibited an “inconsistent” behavior. Of course, in the context of our
paper, we cannot use such blacklists as the Byzantine agents can change their
labels and in particular steal the identities of good agents.

Byzantine Gathering in Networks 185

2 Preliminaries

Throughout the paper, the number of nodes of a graph is called its size. In
this section we present two procedures, that will be used as building blocks in
our algorithms. The aim of both of them is graph exploration, i.e., visiting all
nodes of the graph by a single agent. The first procedure, based on universal
exploration sequences (UXS), is a corollary of the result of Reingold [27]. Given
any positive integer N , this procedure allows the agent to traverse all nodes of
any graph of size at most N , starting from any node of this graph, using P (N)
edge traversals, where P is some polynomial. After entering a node of degree d
by some port p, the agent can compute the port q by which it has to exit; more
precisely q = (p+ xi) mod d, where xi is the corresponding term of the UXS of
length P (N).

The second procedure [6] needs no assumption on the size of the network but
it is performed by an agent using a fixed token placed at a node of the graph.
It works in time polynomial in the size of the graph. (It is well known that a
terminating exploration even of all anonymous rings of unknown size by a single
agent without a token is impossible.) In our applications the roles of the token
and of the exploring agent will be played by agents or by groups of agents. At
the end of this second procedure, the agent has visited all nodes and determined
a BFS tree of the underlying graph.

We call the first procedure EXPLO(N) and the second procedure EST , for
exploration with a stationary token. We denote by T (EXPLO(n)) the execution
time of procedure EXPLO with parameter n (note that T (EXPLO(n)) =
P (n) + 1). We denote by T (EST (N)) the maximum time of execution of the
procedure EST in a graph of size at most N .

3 Known Graph Size

This section aims at proving the following theorem

Theorem 1. Deterministic f -Byzantine gathering of k good agents is possible
in any graph of known size if, and only if k ≥ f + 1.

As mentioned in Subsection 1.2, we know from [14] that:

Theorem 2 ([14]). Deterministic f -Byzantine gathering of k good agents is
not possible in some graph of known size if k ≤ f .

Thus, to prove Theorem 1, it is enough to show the following theorem.

Theorem 3. Deterministic f -Byzantine gathering of k good agents is possible
in any graph of known size if k ≥ f + 1.

Hence, the rest of this section is devoted to proving Theorem 3. To do so, we show
a deterministic algorithm that gathers all good agents in an arbitrary network
of known size, provided there are at least f + 1 of them.

186 S. Bouchard, Y. Dieudonné, and B. Ducourthial

Before presenting the algorithm, we first give the high level idea which is
behind it. Let us assume an ideal situation in which each agent would have
as input, besides its label and the network size n, a parameter ρ = (G∗, L∗)
corresponding to the initial configuration of the agents in the graph such that:

– G∗ represents the n-node graph with all port numbers, in which each node
are assigned an identifier belonging to {1, · · · , n}. The node identifiers are
pairwise distinct. Note that the representation G∗ contains more information
than there is in the actual graph G as it also includes node identifiers which
do not exist in G.

– L∗ = {(v1, l1), (v2, l2), · · · , (vk, lk)} where (vi, li) ∈ L∗ iff there is a good
agent having label li which is initially placed in G at the node having iden-
tifier vi in G∗. Remark that k ≥ f + 1.

Let us also assume that all the agents in the graph are woken up at the same
time by the adversary. In such ideal situation, gathering all good agents can be
easily achieved by ensuring that each agent moves towards the node v where
the agent having the smallest label is located. Each agent can indeed do that
by using the knowledge of ρ = (G∗, L∗) and its own label. Of course, all the
good agents do not necessarily reach node v at the same time. However, each
agent can compute the remaining time which is required to wait at node v in
order to be sure that all good agents are at node v: again this time can be
computed using ρ = (G∗, L∗) and the fact that all agents are woken up in the
same round. Unfortunately, the agents are not in such ideal situation. First, ev-
ery agent is not necessarily woken up by the adversary, and for those that are
woken by the adversary, this is not necessarily in the same round. Second, the
agents do not have configuration ρ as input of the algorithm. In our algorithm
we cope with the first constraint by requiring the first action to be a traversal
of the entire graph (using procedure EXPLO(n)) which allows to wake up all
encountered agents that are still dormant. In this way, the agents are “almost
synchronized” as the delay between the starting times of any two agents is at
most T (EXPLO(n)): the waiting time periods can be adjusted regarding this
maximum delay. The second constraint i.e., the non-knowledge of ρ, is more com-
plicated to deal with. To handle the lack of information about ρ, agents make
successive assumptions about it that are “tested” one by one. More precisely, let
P be the recursively enumerable set of all the configurations ρi = (G∗

i , L
∗
i) such

that G∗
i is a connected n-node graph and |L∗

i | ≥ f + 1. Let Θ = (ρ1, ρ2, ρ3, · · ·)
be a fixed enumeration of P (all good agents agree on this enumeration). Each
agent proceeds in phases numbered 1, 2, 3, · · · . In each phase i, an agent sup-
poses that ρ = ρi and, similarly as in the ideal situation, tries to go to the node
which is supposed to correspond to node v, where v is the node where the agent
having the smallest label is initially located (according to ρi). For some reasons
detailed in the algorithm (refer to the description of state setup), when ρi �= ρ
some agents may be unable to make such a motion. As a consequence, these
agents will consider that, rightly, ρi �= ρ. On the other hand, whether ρi �= ρ
or not, some other good agents may reach a node for which they had no reason
to think it is not v (and thus ρi �= ρ). The danger here is that when reaching

Byzantine Gathering in Networks 187

the supposed node v these successful agents could see all the |L∗
i | labels of ρi

(with the possible “help” of some Byzantine agents). At this point, it may be
tempting to consider that gathering is over but this could be wrong especially in
the case where ρi �= ρ and some good agents did not reach a supposed node v in
phase i. To circumvent this problem, the idea is to get the good agents thinking
that ρi = ρ to fetch the (possible) others for which ρi �= ρ via a traversal of
the entire graph using procedure EXPLO(n) (refer to the description of state
tower). To allow this, an agent for which ρi �= ρ will wait a prescribed amount of
rounds in order to leave enough time for possible good agents to fetch it (refer to
the description of state wait-for-a-tower). For our purposes, it is important
to prevent the agents from being fetched any old how by any group, especially
those containing only Byzantine agents. Hence our algorithm is designed in such
a way that within each phase at most one group, called a tower and made up of
at least f+1 agents, will be unambiguously recognized as such and be allowed to
fetch the other agents via an entire traversal of the graph (this guarantee princi-
pally results from the rules that are prescribed in the description of state tower

builder). When a tower has finished the execution of procedure EXPLO(n) in
some phase i, our algorithm guarantees that all good agents are together and
declare gathering is over at the same time (whether the assumed configuration ρi
corresponds to the real initial configuration or not). On the other hand, in every
phase i, if a tower is not created or “vanishes” (because there at not at least
f +1 agents inside of it anymore) before the completion of its traversal, no good
agent will declare that gathering is over in phase i. In the worst case, the good
agents will have to wait until assuming a good hypothesis about the real initial
configuration, in order to witness the creation of a tower which will proceed to
an entire traversal of the network (and thus declare gathering is over). We now
give a detailed description of the algorithm. (Due to the lack of space, the proof
of correctness of the algorithm is omitted but will appear in the journal version
of the paper).

Algorithm Byz-Known-Size with parameter n (known size of the graph)

The algorithm is made up of two parts. The first part aims at ensuring that
all agents are woken up before proceeding to the second part which is actually
the heart of the algorithm.

Part 1. As soon as an agent is woken up by the adversary or another agent, it
starts proceeding to a traversal of the entire graph and wakes up all encountered
agents that are still dormant. This is done using procedure EXPLO(n) where
n is the size of the network which is initially known to all agents. Once the
execution of EXPLO(n) is accomplished, the agent backtracks to its starting
node by traversing all edges traversed in EXPLO(n) in the reverse order and
the reverse direction.

Part 2. In this part, the agent works in phases numbered 1, 2, 3, · · · . During
the execution of each phase, the agent can be in one of the following five states:

188 S. Bouchard, Y. Dieudonné, and B. Ducourthial

setup, tower builder, tower, wait-for-a-tower, failure. Below we describe
the actions of an agent A in each of the states as well as the transitions between
these states within phase i. We assume that in every round agent A tells the
others (sharing the same node as agent A) in which state it is. In some states,
the agent will be required to tell more than just its current state: we will mention
it in the description of these states. Moreover, in the description of every state
X, when we say “agent A transits to state Y”, we exactly mean agent A remains
in state X until the end of the current round and is in state Y in the following
round. Thus, in each round of this part, agent A is always exactly in one state.

At the beginning of phase i, agent A enters state setup.
State setup.

Let ρi be the i-th configuration of enumeration Θ (refer to above). If the label
l of agent A is not in ρi, then it transits to state wait-for-a-tower. Otherwise,
let X be the set of the shortest paths in ρi leading from the node containing the
agent having label l, to the node containing the smallest label of the supposed
configuration. Each path belonging to X is represented as the corresponding se-
quence of port numbers. Let π be the lexicographically smallest path in X (the
lexicographic order can be defined using the total order on the port numbers).
Agent A follows path π in the real network. If , following path π, agent A has
to leave by a port number that does not exist in the node where it currently
resides, then it transits to state wait-for-a-tower. In the same way, it also
transits to state wait-for-a-tower if, following path π, agent A enters at some
point a node by a port number which is not the same as that of path π. Once
path π is entirely followed by agent A, it transits to state tower builder.

State tower builder.
When in state tower builder, agent A can be in one of the following three

substates: yellow, orange, red. In all of these substates the agent does not make
any move: it stays at the same node denoted by v. At the beginning, agent A
enters substate yellow. By misuse of language, in the rest of this paper we will
sometimes say that an agent “is yellow” instead of “is in substate yellow”. We
will also use the same kind of shortcut for the two other colors. In addition to
its state, we also assume that in every round agent A tells the others in which
substate it is.

Substate yellow

Let k be the number of labels in configuration ρi. Agent A waits
T (EXPLO(n)) + n rounds. If during this waiting period, there are at some
point at least k orange agents at node v then agent A transits to substate red.
Otherwise, if at the end of this waiting period there are not at least k agents
residing at node v such that each of them is either yellow or orange, then agent
A transits to state wait-for-a-tower, else it transits to substate orange.

Substate orange

Agent A waits at most T (EXPLO(n))+n rounds to see the occurrence of one
of the following two events. The first event is that there are not at least k agents
residing at node v such that each of them is either yellow or orange. The second

Byzantine Gathering in Networks 189

event is that there are at least k orange agents residing at node v. Note that the
two events cannot occur in the same round. If during this waiting period, the first
(resp. second) event occurs, then agent A transits to state wait-for-a-tower

(resp. substate red). If at the end of the waiting period, none of these events
has occurred, then agent A transits to substate wait-for-a-tower.

Substate red

Agent A waits T (EXPLO(n)) + n rounds. If at each round of this waiting
period there are at least k red agents at node v, then at the end of the waiting
period, agent A transits to state tower. Otherwise, there is a round during the
waiting period in which there are not at least k red agents at node v: agent A
then transits to state wait-for-a-tower as soon as it notices this fact.
State tower.

Agent A can enter state tower either from state tower builder or state
wait-for-a-tower. While in this state, agent A will execute all or part of pro-
cedure EXPLO(n). In both cases we assume that, in every round, agent A tells
the others the edge traversal number of EXPLO(n) it has just made (in addition
to its state). We call this number the index of the agent. Below, we distinguish
and detail the two cases.

When agent A enters state tower from state tower builder, it starts execut-
ing procedure EXPLO(n). In the first round, its index is 0. Just after making
the j-th edge traversal of EXPLO(n), its index is j. Agent A carries out the
execution of EXPLO(n) until its term, except if at some round of the execution
the following condition is not satisfied, in which case agent A transits to state
failure. Here is the condition: the node where agent A is currently located
contains a group S of at least f +1 agents in state tower having the same index
as agent A. S includes agent A but every agent that is in the same node as agent
A is not necessarily in S. If at some point this condition is satisfied and the
index of agent A is equal to P (n), which is the total number of edge traversals
in EXPLO(n) (refer to Section 2), then agent A declares that gathering is over.

When agent A enters state tower from state wait-for-a-tower, it has just
made the s-th edge traversal of EXPLO(n) for some s
(cf. state wait-for-a-tower) and thus, its index is s. Agent A executes the next
edge traversals i.e., the s+ 1-th, s+ 2-th, · · · , and then its index is successively
s + 1, s + 2, etc. Agent A carries out this execution until the end of procedure
EXPLO(n), except if the same condition as above is not fulfilled at some round
of the execution of the procedure, in which case agent A also transits to state
failure. As in the first case, if at some point the node where agent A is cur-
rently located contains a group S of at least f + 1 agents in state tower having
an index equal to P (n), then agent A declares that gathering is over.

State wait-for-a-tower.
Agent A waits at most 5T (EXPLO(n))+ 4n rounds to see the occurrence of

the following event: the node where it is currently located contains a group of at
least f +1 agents in state tower having the same index t. If during this waiting
period, agent A sees such an event, we distinguish two cases. If t < P (n), then it

190 S. Bouchard, Y. Dieudonné, and B. Ducourthial

makes the t+1-th edge traversal of procedure EXPLO(n) and transits to state
tower. If t = P (n), then it declares that gathering is over.

Otherwise, at the end of the waiting period, agent A has not seen such an
event, and thus it transits to state failure.

State failure. Agent A backtracks to the node where it was located at the
beginning of phase i. To do this, agent A traverses in the reverse order and
the reverse direction all edges it has traversed in phase i before entering state
failure. Once at its starting node, agent A waits 10T (EXPLO(n)) + 9n − p
rounds where p is the number of elapsed rounds between the beginning of phase
i and the end of the backtrack it has just made. At the end of the waiting period,
phase i is over. In the next round, agent A will start phase i+ 1.

4 Unknown Graph Size

In this section, we consider the same problem, except we assume that the agents
are not initially given the size of the graph. Under this harder scenario, we aim
at proving the following theorem.

Theorem 4. Deterministic f -Byzantine gathering of k good agents is possible
in any graph of unknown size if, and only if k ≥ f + 2.

As mentioned in Subsection 1.2, we know from [14] that:

Theorem 5 ([14]). Deterministic f -Byzantine gathering of k good agents is
not possible in some graphs of unknown size if k ≤ f + 1.

In view of Theorem 5, it is then enough to show the following theorem in order
to prove Theorem 4.

Theorem 6. Deterministic f -Byzantine gathering of k good agents is possible
in any graph of unknown size if k ≥ f + 2.

Hence, similarly as in Section 3, the rest of this section is devoted to showing a
deterministic algorithm that gathers all good agents, but this time in an arbitrary
network of unknown size and provided there are at least f + 2 good agents.

Before giving the algorithm, which we call Algorithm Byz-Unknown-Size, let
us provide some intuitive ingredients on which our solution is based.

The algorithm of this section displays a number of similarities with the algo-
rithm of the previous section, but there are also a number of changes to tackle
the non-knowledge of the network size. Among the most notable changes, there
is firstly the way of enumerating the configurations. Previously, the agents were
considering the enumeration Θ = (ρ1, ρ2, ρ3, · · ·) of P where P is the set of every
configuration corresponding to a n-node graph in which there are at least f + 1
robots with pairwise distinct labels. Now, instead of considering Θ, the agents
will consider the enumeration Ω = (φ1, φ2, φ3, · · ·) of Q where Q is the set of
all configurations corresponding to a graph of any size (instead of size n only)
in which there are at least f + 2 agents (instead of at least f + 1) with pairwise

Byzantine Gathering in Networks 191

distinct labels. Note that, as for set P , set Q is also recursively enumerable.
Another change stems from the function performed by a tower, which we also
find here. In Algorithm Byz-Known-Size, the role of a tower was to fetch all
awaiting good agents (which know that the tested configuration is not good) via
procedure EXPLO(n): in the new algorithm, we keep the exact same strategy.
However, to be able to use procedure EXPLO with a parameter corresponding
to the size of the network, it is necessary, for the good agents that are members
of a tower, to know this size. Hence, in our solution, before being considered
as a tower and then authorized to make a traversal of the graph, a group of
agents will have to learn the size of the graph. To do this, at least each good
agent of the group will be required to make a simulation of procedure EST by
playing the role of an explorer and using the others as its token. To carry out
these simulations, it is also required for the group of agents to contain initially
at least f + 2 members (explorer + token), even if subsequently it is required
for a group of agents forming a tower to contain at least f + 1 members. Our
algorithm is designed in such a way that if during the simulation of procedure
EST by an agent playing the role of an explorer, we have the guarantee there
are always at least f + 1 agents playing the role of its token, then the explorer
will be able to recognize its own token without any ambiguity (and thus will
act as if it performed procedure EST with a “genuine” token). Of course, the
agents will not always have such a guarantee (especially due to the possible bad
behavior of Byzantine agents when testing a wrong configuration) and will not
be able to detect in advance whether they will have it or not. Besides, some
other problems can arise including, for example, some Byzantine explorer which
takes too much time to explore the graph (or worse still, “never finishes” the
exploration). However we will show that in all cases, the good agents can never
learn an erroneous size of the graph (even with the duplicity of Byzantine agents
when testing a wrong configuration). We also show that good agents are assured
of learning the size of the network when testing a good configuration at the
latest (in particular as the creation of a group of at least f + 2 agents and the
aforementioned guarantee are ensured when testing a good configuration). As
for Algorithm Byz-known-Size, in the worst case the good agents will have to
wait until assuming a good hypothesis about the real initial configuration, in
order to declare gathering is over. The details of Algorithm Byz-Unknown-Size
(sketched above) and its analysis will appear in the journal version of the paper.

5 Conclusion

We provided a deterministic f -Byzantine gathering algorithm for arbitrary con-
nected graphs of known size (resp. unknown size) provided that the number of
good agents is at least f+1 (resp. f+2). By providing these algorithms, we closed
the open question of what minimum number of good agents M is required to
solve the problem, as each of our algorithms perfectly matches the corresponding
lower bound on M stated in [14], which is of f +1 when the size of the network
is known and of f + 2 when it is unknown. Our work also highlighted the fact

192 S. Bouchard, Y. Dieudonné, and B. Ducourthial

that the ability for the Byzantine agents to change their labels has no impact
in terms of feasibility when the size of the network is initially unknown, since it
was proven in [14] that M is also equal to f + 2 when the Byzantine agents do
not have this ability.

While we gave algorithms that are optimal in terms of required number of
good agents, we did not try to optimize their time complexity. Actually, the
time complexity of both our solutions depends on the enumerations of the initial
configurations, which clearly makes them exponential in n and the labels of the
good agents in the worst case. Hence, the question of whether there is a way to
obtain algorithms that are polynomial in n and in the labels of the good agents
(with the same bounds on M) remains an open problem.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Alpern, S.: Rendezvous search: A personal perspective. Operations Research 50(5),
772–795 (2002)

3. Alpern, S.: The theory of search games and rendezvous. International Series in Op-
erations Research and Management Science. Kluwer Academic Publishers (2003)

4. Bampas, E., Czyzowicz, J., G ↪asieniec, L., Ilcinkas, D., Labourel, A.: Almost opti-
mal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer,
Heidelberg (2010)

5. Barborak, M., Malek, M.: The consensus problem in fault-tolerant computing.
ACM Comput. Surv. 25(2), 171–220 (1993)

6. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph:
Applications of universal sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010)

7. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM J. Comput. 41(4), 829–879 (2012)

8. Collins, A., Czyzowicz, J., G ↪asieniec, L., Labourel, A.: Tell me where I am so
I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514.
Springer, Heidelberg (2010)

9. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distributed Computing 25(2), 165–178 (2012)

10. Czyzowicz, J., Pelc, A., Labourel, A.: How to meet asynchronously (almost) ev-
erywhere. ACM Transactions on Algorithms 8(4), 37 (2012)

11. Das, S., Dereniowski, D., Kosowski, A., Uznański, P.: Rendezvous of distance-aware
mobile agents in unknown graphs. In: Halldórsson, M.M. (ed.) SIROCCO 2014.
LNCS, vol. 8576, pp. 295–310. Springer, Heidelberg (2014)

12. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-
stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167,
pp. 46–60. Springer, Heidelberg (2006)

13. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1), 69–96 (2006)

14. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Transactions
on Algorithms 11(1), 1 (2014)

Byzantine Gathering in Networks 193

15. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial
cost. In: ACM Symposium on Principles of Distributed Computing, PODC 2013,
Montreal, QC, Canada, July 22-24, pp. 92–99 (2013)

16. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer,
Heidelberg (2008)

17. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees. ACM Transactions on Algorithms 9(2), 17 (2013)

18. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision
in regular bipartite graphs. Theor. Comput. Sci. 509, 86–96 (2013)

19. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Comput. 41(1), 26–46 (2012)

20. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theor. Com-
put. Sci. 399(1-2), 141–156 (2008)

21. An, H.-C., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: A survey. In: Floc-
chini, P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer,
Heidelberg (2006)

22. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
23. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-

chronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326
(2006)

24. Miller, A., Pelc, A.: Fast rendezvous with advice. In: Algorithms for Sensor Sys-
tems - 10th International Symposium on Algorithms and Experiments for Sen-
sor Systems, Wireless Networks and Distributed Robotics, ALGOSENSORS 2014,
Wroclaw, Poland, September 12, pp. 75–87 (2014); Revised Selected Papers

25. Miller, A., Pelc, A.: Time versus cost tradeoffs for deterministic rendezvous in net-
works. In: ACM Symposium on Principles of Distributed Computing, PODC 2014,
Paris, France, July 15-18, pp. 282–290 (2014)

26. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

27. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)
28. Schelling, T.: The Strategy of Conflict. Oxford University Press, Oxford (1960)
29. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly

universal exploration sequences. ACM Transactions on Algorithms 10(3), 12 (2014)

Signature-Free Asynchronous Byzantine Systems:
From Multivalued to Binary Consensus with

t < n/3, O(n2) Messages, and Constant Time

Achour Mostéfaoui1 and Michel Raynal2,3

1 LINA, Université de Nantes, 44322 Nantes Cedex, France
2 Institut Universitaire de France

3 IRISA, Université de Rennes 35042 Rennes Cedex, France

Abstract. This paper presents a new algorithm that reduces multivalued consen-
sus to binary consensus in an asynchronous message-passing system made up of
n processes where up to t may commit Byzantine failures. This algorithm has the
following noteworthy properties: it assumes t < n/3 (and is consequently opti-
mal from a resilience point of view), uses O(n2) messages, has a constant time
complexity, and does not use signatures. The design of this reduction algorithm
relies on two new all-to-all communication abstractions. The first one allows the
non-faulty processes to reduce the number of proposed values to c, where c is a
small constant. The second communication abstraction allows each non-faulty
process to compute a set of (proposed) values such that, if the set of a non-
faulty process contains a single value, then this value belongs to the set of any
non-faulty process. Both communication abstractions have an O(n2) message
complexity and a constant time complexity. The reduction of multivalued Byzan-
tine consensus to binary Byzantine consensus is then a simple sequential use of
these communication abstractions. To the best of our knowledge, this is the first
asynchronous message-passing algorithm that reduces multivalued consensus to
binary consensus with O(n2) messages and constant time complexity (measured
with the longest causal chain of messages) in the presence of up to t < n/3
Byzantine processes, and without using cryptography techniques. Moreover, this
reduction algorithm uses a single instance of the underlying binary consensus,
and tolerates message re-ordering by Byzantine processes.

1 Introduction

Consensus in Asynchronous Byzantine Systems. The consensus problem lies at the center
of fault-tolerant distributed computing. Assuming that each non-faulty process proposes
a value, its formulation is particularly simple, namely, each non-faulty process decides
a value (termination), the non-faulty processes decide the same value (agreement), and
the decided value is related to the proposed values (validity); the way the decided value
is related to the proposed values depends on the failure model. Consensus is binary when
only two values can be proposed by the processes, otherwise it is multivalued.

Byzantine failures were introduced in the context of synchronous distributed sys-
tems [17,28,31], and then investigated in the context of asynchronous distributed sys-
tems [2,19,30]. A process has a Byzantine behavior (or commits a Byzantine failure)
when it arbitrarily deviates from its intended behavior: it then commits a Byzantine

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 194–208, 2015.
DOI: 10.1007/978-3-319-25258-2_14

Signature-Free Asynchronous Byzantine Systems 195

failure (otherwise we say it is non-faulty). This bad behavior can be intentional (mali-
cious) or simply the result of a transient fault that altered the local state of a process,
thereby modifying its behavior in an unpredictable way.

Several validity properties have been considered for Byzantine consensus. This paper
considers the following one: a decided value is a value that was proposed by a non-
faulty process or a default value denoted ⊥. Moreover, to prevent trivial or useless
solutions, if all the non-faulty processes propose the same value, ⊥ cannot be decided.
As these properties prevent a value proposed only by faulty processes to be decided,
such a consensus is called intrusion-tolerant Byzantine (ITB) consensus [7,24].

Solving Byzantine Consensus. Let t denote the model upper bound on the number of
processes that can have a Byzantine behavior. It is shown in several papers (e.g., see
[9,17,28,33]) that Byzantine consensus cannot be solved when t ≥ n/3, be the system
synchronous or asynchronous, or be the algorithm allowed to use random numbers or
not.

As far as asynchronous systems are concerned, it is well-known that there is no de-
terministic consensus algorithm as soon as one process may crash [10], which means
that Byzantine consensus cannot be solved either as soon as one process can be faulty.
Said another way, the basic asynchronous Byzantine system model has to be enriched
with additional computational power. Such an additional power can be obtained by
randomization (e.g., see [3,7,13,22,29]), assumption on message delivery schedules
(e.g., [5,33]), failure detectors suited to Byzantine systems (e.g., [12,15]), additional
–deterministic or probabilistic– synchrony assumptions (e.g., [5,9,20]), or restrictions
on the vectors of input values proposed by the processes (e.g., [11,23]). A reduction
of atomic broadcast to consensus in the presence of Byzantine processes is presented
in [21].

Finally, for multivalued Byzantine consensus, another approach consists in consider-
ing a system model enriched with an algorithm solving (for free) binary Byzantine con-
sensus. This reduction approach has been first proposed in the context of synchronous
systems [34]. (See [16,18,27] for recent works for such synchronous systems.) Reduc-
tions for asynchronous systems where the communication is by message-passing can
be found in [6,7,26]. The case where communication is by read/write registers is inves-
tigated in [32]. This reduction approach is the approach adopted in this paper to address
multivalued Byzantine consensus.

Contributions of the Paper. Considering asynchronous message-passing systems, this
paper presents a new reduction from multivalued Byzantine consensus to binary Byzan-
tine consensus, that has the following properties:

– It tolerates up to t < n/3 Byzantine processes,
– Its message cost is O(n2),
– Its time complexity is constant,
– It tolerates message re-ordering by Byzantine processes,
– It does not use cryptography techniques,
– It uses a single instance of the underlying binary Byzantine consensus.

196 A. Mostéfaoui and M. Raynal

A simple and efficient Byzantine Binary consensus algorithm has recently been pro-
posed in [22]. This algorithm, which is based on Rabin’s common coin, is signature-
free and round-based, requires t < n/3, has an O(n2) message complexity per round,
and its expected number of rounds is constant. It follows that, when the reduction al-
gorithm proposed in this paper is combined with this binary consensus algorithm, we
obtain a Byzantine multivalued consensus algorithm that has the five properties listed
previously. To our knowledge, this is the first Byzantine multivalued consensus algo-
rithm that is signature-free, optimal with respect to resilience (t < n/3), has an O(n2)
expected message complexity, a constant expected time complexity, and tolerates the
re-ordering of message deliveries by Byzantine processes.

The design of the proposed reduction algorithm is based on two new communication
abstractions, which are all-to-all communication abstractions. The first allows the non-
faulty processes to reduce the number of values they propose to k ≤ c values where c
is a known constant. More precisely, c = 6 when t < n/3 (worst case), c = 4 when
n = 4t, and c = 3 when t < n/4. The second communication abstraction allows
each non-faulty process to compute a set of (proposed) values such that, if the set of a
non-faulty process contains a single value, then this value belongs to the set of any non-
faulty process. Both communication abstractions have an O(n2) message complexity
and a constant time complexity.

The structure of the resulting Byzantine multivalued consensus algorithm is as fol-
lows. It uses the first communication abstraction to reduce the number of proposed
values to a constant. Then, it uses sequentially twice the second communication ab-
straction to provide each non-faulty process with a binary value that constitutes the
value it proposes to the underlying binary Byzantine consensus algorithm. Finally, the
value decided by a non-faulty process is determined by the output (0 or 1) returned
by the underlying binary Byzantine consensus algorithm. Thanks to the communica-
tion abstractions, this reduction algorithm is particularly simple (which is a first class
design property).

Roadmap. The paper is composed of 6 sections. Section 2 presents the computing
model, and defines the multivalued ITB consensus problem. Section 3 defines the first
communication abstraction (called RD-broadcast) that reduces the number of proposed
values to a constant, presents an algorithm that implements it, and proves it correct. Sec-
tion 4 defines the second communication abstraction (called MV-broadcast), presents
an algorithm that implements it, and proves it correct. Section 5 presents the algorithm
reducing multivalued consensus to binary consensus in the presence of Byzantine pro-
cesses. Due to page limitation, the reader will find all proofs in [25].

2 Computing Model and Intrusion-Tolerant Byzantine Consensus

2.1 Distributed Computing Model

Asynchronous Processes. The system is made up of a finite set Π of n > 1 asyn-
chronous sequential processes, namely Π = {p1, . . . , pn}. “Asynchronous” means that
each process proceeds at its own pace, which may vary arbitrarily with time, and re-
mains always unknown to the other processes.

Signature-Free Asynchronous Byzantine Systems 197

Communication Network. The processes communicate by exchanging messages through
an asynchronous reliable point-to-point network. “Asynchronous” means that a message
that has been sent is eventually received by its destination process, i.e., there is no bound
on message transfer delays. “Reliable” means that the network does not lose, duplicate,
modify, or create messages. “Point-to-point” means that there is a bi-directional com-
munication channel between each pair of processes. Hence, when a process receives a
message, it can identify its sender.

A process pi sends a message to a process pj by invoking the primitive “send TAG(m)
to pj”, where TAG is the type of the message and m its content. To simplify the pre-
sentation, it is assumed that a process can send messages to itself. A process receives a
message by executing the primitive “receive()”.

The operation broadcast TAG(m) is a macro-operation which stands for “for each
j ∈ {1, . . . , n} send TAG(m) to pj end for”.This operation is usually called unreliable
broadcast (if the sender commits a failure in the middle of the for loop, it is possible
that only an arbitrary subset of processes receives the message).

Failure Model. Up to t processes may exhibit a Byzantine behavior. A Byzantine pro-
cess is a process that behaves arbitrarily: it may crash, fail to send or receive messages,
send arbitrary messages, start in an arbitrary state, perform arbitrary state transitions,
etc. Hence, a Byzantine process, which is assumed to send a message m to all the pro-
cesses, can send a message m1 to some processes, a different message m2 to another
subset of processes, and no message at all to the other processes. Moreover, Byzantine
processes can collude to “pollute” the computation. A process that exhibits a Byzantine
behavior is also called faulty. Otherwise, it is non-faulty.

Let us notice that, as each pair of processes is connected by a channel, no Byzantine
process can impersonate another process. Byzantine processes can influence the mes-
sage delivery schedule, but cannot affect network reliability. More generally, the model
does not assume a computationally-limited adversary.

Discarding Messages from Byzantine Processes. If, according to its algorithm, a pro-
cess pj is assumed to send a single message TAG() to a process pi, then pi processes
only the first message TAG(v) it receives from pj . This means that, if pj is Byzantine
and sends several messages TAG(v), TAG(v′) where v′ �= v, etc., all of them except the
first one are discarded by their receivers.

Notation. In the following, this computation model is denoted BAMPn,t[∅]. In the
following, this model is restricted with the constraint on t < n/3 and is consequently
denoted BAMPn,t[n > 3t].

2.2 Measuring Time Complexity

When computing the time complexity, we consider the longest sequence of messages
m1, . . . ,mz whose sending are causally related, i.e., for each x ∈ [2..z], the reception
of mx−1 is a requirement for the sending of mx. The time complexity is the length of
this longest sequence. Moreover, we implicitly consider that, in each invocation of an
all-to-all communication abstraction, the non-faulty processes invoke the abstraction.

198 A. Mostéfaoui and M. Raynal

2.3 Multivalued Intrusion-Tolerant Byzantine Consensus

Byzantine Consensus. This problem has been informally stated in the Introduction.
Assuming that each non-faulty process proposes a value, each of them has to decide on
a value in such a way that the following properties are satisfied.

– C-Termination. Every non-faulty process eventually decides on a value, and termi-
nates.

– C-One-shot. A non-faulty process decides at most once.
– C-Agreement. No two non-faulty processes decide on different values.
– C-Obligation (validity). If all the non-faulty processes propose the same value v,

then v is decided.

Intrusion-Tolerant Byzantine (ITB) Consensus. Byzantine algorithms differ in the va-
lidity properties they satisfy. In classical Byzantine consensus, if the non-faulty pro-
cesses do not propose the same value, they can decide any value (this is captured by the
previous C-Obligation property.

As indicated in the Introduction, we are interested here in a more constrained ver-
sion of the consensus problem in which a value proposed only by faulty processes
cannot be decided. This was first investigated in a systematic way in [7,24]. This con-
sensus problem instance is defined by the C-Termination, C-One-shot, C-Agreement,
and C-Obligation properties stated above plus the following C-Non-intrusion (validity)
property, where ⊥ is a predefined default value, which cannot be proposed by a process.

– C-Non-intrusion (validity). A value decided by a non-faulty process is a value pro-
posed by a non-faulty process or ⊥.

The fact that no value proposed only by faulty processes can be decided gives its name
(namely intrusion-tolerant) to that consensus problem instance1.

Remark on the Binary Consensus. Interestingly, binary Byzantine consensus (only two
values can be proposed by processes) has the following property.

Property 1. The ITB binary consensus problem is such that, if a value v is decided by
a non-faulty process, it was proposed by a non-faulty process.
This means that, when considering the ITB binary consensus, ⊥ can be safely replaced
by any of the two possible binary values.

3 The Reducing All-to-All Broadcast Abstraction

3.1 Definition

The reducing broadcast abstraction (RD-broadcast) is a one-shot all-to-all communi-
cation abstraction, whose aim is to reduce the number of values that are broadcast

1 Directing the non-faulty processes to decide a predefined default value –instead of an arbitrary
value, possibly proposed only by faulty processes– in specific circumstances, is close to the
notion of an abortable object as defined in [14,32] where an operation is allowed to abort in
the presence of concurrency. This notion of an abortable object is different from the notion of
a query-abortable object introduced in [1].

Signature-Free Asynchronous Byzantine Systems 199

to a constant. RD-broadcast provides the processes with a single operation denoted
RD broadcast(). This operation has an input parameter, and returns a value. It is as-
sumed that all the non-faulty processes invoke this operation.

When a process pi invokes RD broadcast(vi) we say that it “RD-broadcasts” the
value vi. When a process returns a value v from an invocation of RD broadcast(), we
say that it “RD-delivers” a value (or a value is RB-delivered). The default value denoted
⊥rd cannot be RD-broadcast but can be RD-delivered. RD-broadcast is defined by the
following properties.

– RD-Termination. Every non-faulty process eventually RD-delivers a value.
– RD-Integrity. No non-faulty process RD-delivers more than one value.
– RD-Justification. The value RD-delivered by a non-faulty process is either a value

RD-broadcast by a non-faulty process, or the default value ⊥rd.
– RD-Obligation. If the non-faulty processes RD-broadcast the same value v, none

of them RD-delivers the default value ⊥rd.
– RD-Reduction. The number of values that are RD-delivered by the non-faulty pro-

cesses is upper bounded by a constant c.

3.2 An RD-Broadcast Algorithm

An algorithm implementing the RD-broadcast abstraction is described in Figure 1. This
algorithm assumes t < n/3. The aim of the local variable rd deli is to contain the
value RD-delivered by pi; this variable is initialized to “?”, a default value that cannot
be RD-delivered by non-faulty processes.

When a process pi invokes RD broadcast MSG(vi), it first broadcasts the message
INIT(vi), and then waits until it is allowed to RD-deliver a value (line 1). During this
waiting period, pi receives and processes the messages INIT() or ECHO() sent by the
algorithm.

let rd pseti(x) denote the set of processes from which pi has received INIT(x) or ECHO(x).

operation RD broadcast(vi) is
(1) broadcast INIT(vi); wait(rd deli �= “?”); return(rd deli).

when INIT(v) or ECHO(v) is received do
(2) if (v �= vi) ∧ (INIT(v) rec. from (n− 2t) different proc.) ∧ (ECHO(v) never broadcast)
(3) then broadcast ECHO(v)
(4) end if;
(5) if

(∃ x : (x �= vi) ∧ (|rd pseti(x)| ≥ t+ 1)
)

then rd deli ← ⊥rd end if;
(6) if

(∃ x : |rd pseti(x)| ≥ n− t
)

then rd deli ← x end if;
(7) let w be the value such that, ∀ x received by pi: |rd pseti(w)| ≥ |rd pseti(x)|;
(8) if

(| ∪x rd pseti(x)| − |rd pseti(w)| ≥ t + 1
)

then rd deli ← ⊥rd end if.

Fig. 1. An algorithm implementing RD-broadcast in BAMPn,t[n > 3t]

The behavior of a process pi on its server side, i.e. when –while waiting– it receives
a message INIT(v) or ECHO(v), is made up of two phases.

200 A. Mostéfaoui and M. Raynal

– Conditional communication phase (lines 2-4). If the received value v is differ-
ent from the value vi it has RD-broadcast, and INIT(v) has been received from
“enough” processes (namely (n − 2t)), pi broadcasts the message ECHO(v) if not
yet done. Let us notice that, as n−2t ≥ t+1, this means that INIT(v) was broadcast
by at least one non-faulty process.

– Try-to-deliver phase (lines 5-8). Then, for any value x it has seen, a process pi
computes first the set rd pseti(x) composed of the processes from which pi has
received a message INIT(x) or ECHO(x). If there is a value x, different from vi,
that has been received from (t+1) different processes, if pi is non-faulty, it knows
that at least two different values have been RD-broadcast by non-faulty processes
(its own value vi, plus another one). In this case, pi RD-delivers the default value
⊥rd (line 5 and line 1). The RD-delivery of a value by pi terminates its invocation
of the RD-broadcast.

If the predicate of line 5 is not satisfied, pi checks if there is a value x received
from at least (n− t) distinct processes (line 6). Let us notice that, in this case, it is
possible that x was RD-broadcast by all correct processes. Hence, pi RD-delivers
this value.

Finally, if pi has not yet assigned a value to rd deli, it computes the value w
that, up to now, it received the most often in an INIT() or ECHO() message (line 7).
If there are at least (t+1) different processes that sent INIT() or ECHO() messages
with values different from w (this is captured by the predicate of line 8), it is im-
possible for pi to have in the future the same value received from (n − t) distinct
processes. This claim is trivially true for w, because at least (t+ 1) processes sent
values different from w. As no value w′ �= w was received more than w, the claim
is also true for any such value w′. So, the predicate of line 6 will never be satisfied
at pi, and consequently pi RD-delivers the default value ⊥rd.

3.3 Proof of the RD-Broadcast Algorithm

All the proofs assume t < n/3.

Lemma 1. Let nb echo be the maximal number of different values that a non-faulty
process may echo at line 3. We have: (n/3 > t > n/4) ⇒ (nb echo ≤ 2) and
(n/4 ≥ t) ⇒ (nb echo ≤ 1).

Lemma 2. At most c different values can be RD-delivered by the non-faulty processes,
where c = 6 when n/3 > t, c = 4 when n = 4t, and c = 3 when n/4 > t.

Theorem 1. The algorithm described in Figure 1 implements the RD-broadcast ab-
straction in the computing model BAMPn,t[n > 3t].

Theorem 2. The number of messages sent by the non-faulty processes is upper bounded
by O(n2). Moreover, in addition to a value sent by a process, a message carries a single
bit of control information. The time complexity is O(1).

Signature-Free Asynchronous Byzantine Systems 201

3.4 RD-Broadcast vs Byzantine k-Set Agreement

In the k-set agreement problem, each process proposes a value, and at most k different
values can be decided by the non-faulty processes. It is shown in [8] that the solvability
of k-set agreement in the presence of Byzantine processes depends crucially on the
validity properties that are considered.

As the reader can easily check, the specification of the RD-broadcast abstraction
defines an instance of the intrusion-based Byzantine c-set agreement problem, where c
is the constant defined in Lemma 2. It follows that the algorithm presented in Figure 1
solves this Byzantine k-set agreement instance for any k ≥ c in the system model
BAMPn,t[t < n/3]. (Let us remind that t < n/3 is the lower bound on t to solve
Byzantine consensus in a synchronous system.)

4 The Multivalued Validated All-to-All Broadcast Abstraction

4.1 Definition

The RD-broadcast abstraction reduces the number of values sent by processes to at
most six values (five values RD-broadcast by non-faulty processes, plus the default
value denoted ⊥rd), while keeping the number of messages exchanged by non-faulty
processes in O(n2).

Differently, assuming that each non-faulty process broadcasts a value, and at most k
different values are broadcast (where k does not need to be known by the processes), the
aim of the one-shot multivalued validated all-to-all broadcast abstraction (in short MV-
broadcast) is to provide each non-faulty process with an appropriate subset of values
(called validated values), which can be used to solve multivalued ITB consensus. To
that end, the fundamental property of MV-broadcast that is used is the following: if
a non-faulty process returns a set with a single value, the set returned by any other
non-faulty process contains this value. Moreover, from an efficiency point of view, an
important point that has to be satisfied is that the message cost of an MV-broadcast
instance has to be O(kn2).

To MV-broadcast a value vi, a process pi invokes the operation MV broadcast(vi).
This invocation returns to pi a non-empty set a values, which consists of validated
values, plus possibly a default value denoted ⊥mv. This default value cannot be MV-
broadcast by a process. Similarly to RD-broadcast, when a process invokes the opera-
tion MV broadcast(v), we say that it “MV-broadcast v”. MV-broadcast is defined by
the following properties.

– MV-Obligation. If all the non-faulty processes MV-broadcast the same value v, then
no non-faulty process returns a set containing ⊥mv.

– MV-Justification. If a non-faulty process pi returns a set including a value v �=
⊥mv, there is a non-faulty process pj that MV-broadcast v.

– MV-Inclusion. Let seti and setj be the sets returned by two non-faulty processes
pi and pj , respectively. (seti = {w}) ⇒ (w ∈ setj) (let us notice that w can be
⊥mv).

– MV-Termination. An invocation of MV broadcast() by a non-faulty process termi-
nates (i.e., returns a non-empty set).

202 A. Mostéfaoui and M. Raynal

The following property follows directly from the MV-Inclusion property.

– MV-Singleton. Let seti and setj be the sets returned by two non-faulty processes
pi and pj , respectively. [(seti = {v}) ∧ (setj = {w})] ⇒ (v = w).

let mv pset1i(x) denote the set of processes from which pi has received MV VAL1(x);
mv val2i: set, initially ∅, of pairs 〈process index, value〉 received in messages MV VAL2().

operation MV broadcast MSG(vi) is

(1) broadcast MV VAL1(vi); wait
(∃ v such that |mv pset1i(v)| ≥ 2t + 1

)
;

% in the previous wait stateemnt v can be ⊥mv %
(2) broadcast MV VAL2(v); wait

(|mv val2i| ≥ n − t
)
;

(3) return ({x | 〈−, x〉 ∈ mv val2i}).

when MV VAL1(y) is received do % y can be ⊥mv %
(4) if

(
(|mv pset1i(y)| ≥ t + 1) ∧ (MV VAL1() not broadcast)

)

then broadcast MV VAL1(y) end if;
(5) let w be the value such that, ∀ x received by pi: |mv pset1i(w)| ≥ |mv pset1i(x)|;
(6) if

(
(| ∪x mv pset1i(x)| − |mv pset1i(w)| ≥ t + 1)

∧ (MV VAL1(⊥mv) not broadcast)
)

(7) then broadcast MV VAL1(⊥mv) end if.

when MV VAL2(x) is received from pj do % x can be ⊥mv %
(8) wait(|mv pset1i(x)| ≥ 2t + 1);
(9) mv val2i ← mv val2i ∪ 〈j, x〉.

Fig. 2. An algorithm implementing MV-broadcast in BAMPn,t[n > 3t]

4.2 An MV-Broadcast Algorithm

A two-phase algorithm implementing the MV-broadcast abstraction is described in Fig-
ure 2. It assumes t < n/3, and –as we will see– its message complexity is O(kn2).

To be validated, a value must have been MV-broadcast by at least one non-faulty
process. Hence, for a process to locally know whether a value is validated, it needs to
receive it from (t+ 1) processes.

Each process pi manages a local variable mv val2i, which is a set (initially empty).
Its aim is to contain pairs 〈j, x〉, where j is a process index and x a validated value. The
behavior of a non-faulty process pi is as follows.

– In the first phase (line 1) a process pi broadcasts its initial value by sending the
message MV VAL1(vi). It then waits until it knows (a) a validated value v (hence
it has received MV VAL1(v) from at least (t+ 1) different processes), (b) and this
value v is eventually known by all non-faulty processes. This is captured by the
following waiting predicate “the message MV VAL1(v) has been received from at
least (2t + 1) different processes” used at line 1. From then on, pi will champion
this value v for it to belong to the sets returned by the non-faulty processes.

Signature-Free Asynchronous Byzantine Systems 203

On it server side concerning the reception of a message MV VAL1(y), a process
pi does the following (line 4). If pi knows that y is a validated value (i.e., the
message MV VAL1(y) was received from least (t+ 1) processes), (if not yet done)
pi broadcasts the very same message to help the validated value y to be known by
all non-faulty processes.
Then, according to its current knowledge of the global state, pi checks if there
is a possibility that no value at all be present enough to be validated. It there is
such a possibility, pi broadcasts MV VAL1(⊥mv). To that end (as at line 7 of the
RD-broadcast algorithm, Figure 1), pi computes the value w most received from
different processes (lines 5). If at least (t + 1) processes have broadcast values
different from w, pi broadcasts MV VAL1(⊥mv), if not yet done (lines 6-7); pi
sends the default value because it sees too may different values, and it does not
know which ones are from non-faulty processes.

– When it enters the second phase (line 2), a process champions the validated value
v it has previously computed with the waiting predicate of line 1. This is done
by broadcasting the message MV VAL2(v). It then waits until the set mv val2i
contains at least (n− t) pairs 〈j, x〉, and finally returns the set of values contained
in these pairs (line 3). Let us remind that those are validated values.
On its server side, when a process pi receives a message MV VAL2(x) from a pro-
cess pj , it waits until it has received a message MV VAL1(x) from at least (2t+ 1)
different processes. This is needed because Byzantine processes can send spurious
messages MV VAL2(x) while they have not validated the value x. More precisely,
let us notice that the waiting predicate (|mv pset1i(x)| ≥ 2t + 1) used by pi at
line 8 is the same as the one used at line 2 by pj –if it is non-faulty– to champion
the value x. Hence, in case pj is not non-faulty, pi waits until the same validation
predicate (|mv pset1i(x)| ≥ 2t+ 1) becomes true before accepting to process the
message MV VAL2(x) sent by pj .

Remark. Let us notice that this algorithm is tolerant to message duplication. Moreover,
while a non-faulty process is not allowed to MV-broadcast the default value ⊥mv, a
Byzantine process can do it. Let us also remark that ⊥mv is the only default value asso-
ciated with the MV-broadcast abstraction. Hence, for MV-broadcast, ⊥rd is a “normal”
value, which can be MV-broadcast, as any value different from ⊥mv.

4.3 Proof of the MV-Broadcast Algorithm

As previously, all the proofs assume t < n/3.

Lemma 3. The waiting predicate (∃ v such that |mv pset1i(v)| ≥ 2t + 1) (used at
line 1) is eventually satisfied at any non-faulty process pi.

Lemma 4. The waiting predicate (|mv val2i| ≥ n − t) (used at line 2) is eventually
satisfied at any non-faulty process pi.

Lemma 5. If all non-faulty processes MV-broadcast the same value v, no non-faulty
process returns a set containing ⊥mv.

204 A. Mostéfaoui and M. Raynal

Lemma 6. If the set returned by a non-faulty process pi contains a value v �= ⊥mv,
then v has been MV-broadcast by a non-faulty process.

Lemma 7. Let seti and setj be the sets returned by two non-faulty processes pi and
pj , respectively. (seti = {w}) ⇒ (w ∈ setj).

Theorem 3. The algorithm described in Figure 2 implements the MV-broadcast ab-
straction in the computing model BAMPn,t[t < n/3].

Theorem 4. Let us assume that at most k different values are MV-broadcast by the
processes. The number of messages sent by the non-faulty processes is upper bounded
by O(kn2). A message needs to carry a single bit of control information. The time
complexity is O(1).

5 Multivalued Intrusion-Tolerant Byzantine Consensus

The multivalued intrusion-tolerant Byzantine (ITB) consensus problem was defined in
Section 2.3. A signature-free algorithm that solves it despite up to t < n/3 Byzantine
processes is described in this section. This algorithm is such that the expected number
of messages exchanged by the non-faulty processes is O(n2), and its expected time
complexity is constant.

5.1 Enriched Computation Model for Multivalued ITB Consensus

In the following, as announced in the introduction, we consider that the additional com-
putational power that allows multivalued ITB consensus to be solved in BAMPn,t[t <
n/3] is an underlying Byzantine binary consensus (BBC) algorithm. LetBAMPn,t[t <
n/3,BBC] denote the system model BAMPn,t[t < n/3] enriched with a BBC algo-
rithm. BBC algorithms are described in several papers (e.g., [4,7,13,22,33]).

To obtain a multivalued ITB consensus algorithm with an O(n2) expected message
complexity and a constant expected time complexity, we implicitly consider that the
underlying BBC algorithm is the one presented in [22].

5.2 An Efficient Algorithm Solving the Multivalued ITB Consensus Problem

The algorithm is described in Figure 3. The multivalued consensus operation that is
built is denoted mv propose(), while the underlying binary consensus operation it uses
is denoted bin propose(). Extremely simple, this algorithm can be decomposed in four
phases. The first three phases are communication phases, while the last phase exploits
the result of the previous phases to reduce multivalued Byzantine consensus to BBC.

The second and the third phases are two distinct instances of the MV-broadcast ab-
straction. Not to confuse them, their corresponding broadcast operations are denoted
MV broadcast1(), and MV broadcast2(), respectively. Similarly, their default values
are denoted ⊥mv1 and ⊥mv2. It is assumed that the default values ⊥rd, ⊥mv1, ⊥mv2,
and ⊥ (the consensus default value) are all different. The four phases are as follows,
where C PROP denotes the set of values proposed by the non-faulty processes.

Signature-Free Asynchronous Byzantine Systems 205

operation mv propose(vi) is

(1) rd vali ← RD broadcast(vi);
% ——————————————————————————————————-
(2) set1i ← MV broadcast1(rd vali);

% pi, pj non-faulty:
(
(|set1i| = 1) ∧ (|set1j | = 1)

) ⇒ (set1i = set1j) %
(3) if (set1i = {w}) then auxi ← w else auxi ← ⊥ end if;
% ——————————————————————————————————–
(4) set2i ← MV broadcast2(auxi);

% pi, pj non-faulty: (set2i = {w}) ⇒ (w ∈ set2j) %
% ——————————————————————————————————–
(5) if

(
(set2i = {w}) ∧ (w /∈ {⊥rd,⊥mv1,⊥mv2,⊥}))

then bpi ← 1 else bpi ← 0 end if;
(6) bdeci ← bin propose(bpi);
(7) if (bdeci = 1) then return(w) such that w ∈ set2i and w /∈ {⊥rd,⊥mv1,⊥mv2,⊥}
(8) else return(⊥)

(9) end if.

Fig. 3. An algorithm implementing multivalued ITB consensus in BAMPn,t[n > 3t,BBC]

– The first phase consists of an RD-broadcast instance. Each non-faulty process pi in-
vokes RD broadcast(vi), where vi is the value it proposes to consensus, and stores
the returned value in its local variable rd vali (line 1). Due to properties of the
RD-broadcast abstraction, we have

rd vali ∈ RD VAL where RD VAL ⊆ C PROP ∪ {⊥rd},
and (due to Lemma 2) |RD VAL| ≤ 6. Moreover, the message cost of this phase
is the one of the RD-broadcast, i.e., O(n2).

– The second phase (lines 2 and 3) consists of the first MV-broadcast instance, namely,
a process pi invokes MV broadcast1(rd vali) from which it obtains the non-empty
set set1i. Due to the properties of the MV-broadcast abstraction, we have

set1i ⊆ MV VAL1,

where MV VAL1 ⊆ RD VAL ∪ {⊥mv1} ⊆ C PROP ∪ {⊥rd,⊥mv1}.
Moreover, due to the MV-singleton property, we also have

(
(|set1i| = 1) ∧ (|set1j| = 1)

) ⇒ (set1i = set1j).

Then, according to the value of set1i, pi prepares a value auxi it will broadcast in
the second MV-broadcast instance. If set1i = {w}, auxi = w, otherwise auxi =
⊥ (the consensus default value).

Let AUX = ∪i∈C{auxi}, where C denotes the set of non-faulty processes.
While preserving the O(n2) message complexity, the aim of the lines 2 and 3 is to
ensure the following property

AUX = {v} ∨ AUX = {⊥} ∨ AUX = {v,⊥}, where v ∈ MV VAL1.

Let us notice that, thanks to the MV-Justification property, the set AUX cannot
contain a value proposed only by Byzantine processes.

206 A. Mostéfaoui and M. Raynal

– The third phase (line 4) is a second instance of the MV-broadcast abstraction. The
values MV-broadcast by the non-faulty processes are values of the set AUX . So,
the set set2i returned by a non-faulty process pi is such that

set2i ⊆ MV VAL2 where MV VAL2 ⊆ AUX ∪ {⊥mv2},

and, due to the MV-Inclusion property, the sets returned to any two non-faulty
processes pi and pj are such that (set2i = {w}) ⇒ (w ∈ set2j).

– The last phase (lines 5-9) is where the underlying BBC algorithm is exploited.
If set2i contains a single value, that is not a default value, pi proposes 1 to the
underlying BBC algorithm. Otherwise, it proposes 0. Then, according to the value
bdeci returned by the BBC algorithm, there are two cases. If bdeci = 1, pi return
the value of set2i which is not a default value (line 7). Otherwise, bdeci = 0 and
pi returns the default value ⊥.

5.3 Proof of the Multivalued ITB Consensus Algorithm and Two Remarks

Theorem 5. The algorithm described in Figure 3 solves the multivalued ITB consensus
problem in the computing model BAMPn,t[t < n/3,BBC].

Theorem 6. Let us assume an underlying BBC algorithm whose expected message
complexity is O(n2) and expected time complexity is constant (e.g., the one presented
in [22]). When considering the non-faulty processes, the expected message complexity
of the multivalued ITB consensus algorithm described in Figure 3 is O(n2), and its
expected time complexity is constant.

Remark 1. Let us remark that, if we suppress the invocation of the RD-broadcast ab-
straction, and replace line 1 by the statement “rd vali ← vi”, the multivalued ITB
consensus remains correct. This modification saves the two communication steps in-
volved in the RD-broadcast, but loses the O(n2) message complexity, which is now
O(kn3) (this follows from Theorem 4 and the fact that k ∈ [1..n] is the number of
distinct values broadcast by correct processes).

Remark 2. The algorithm of Figure 2 uses two instances of the MV-broadcast abstrac-
tion. It is an open problem to know if it is possible to design an algorithm based on a
single instance of it.

6 Conclusion

This paper presented an asynchronous message-passing algorithm which reduces mul-
tivalued consensus to binary consensus in the presence of up to t < n/3 Byzantine
processes (n being the total number of processes). This algorithm has the following
noteworthy features: its message complexity is O(n2), its time complexity is O(1), and
it does not rely on cryptographic techniques. As far as we know, this is the first consen-
sus reduction owning all these properties, while being optimal with respect to the value
of t. This algorithm relies on two new all-to-all communication abstractions. These ab-
stractions consider the values that are broadcast, and not the fact that “this” value was

Signature-Free Asynchronous Byzantine Systems 207

broadcast by “this” process. This simple observation allowed us to design an efficient
reduction algorithm. (An n-multiplexing of a one-to-all broadcast abstraction would
entail an O(n3) message complexity.) Interestingly, this reduction algorithm uses a sin-
gle instance of the Byzantine binary consensus, and tolerates message re-ordering by
Byzantine processes.

When combined with the binary Byzantine consensus algorithm presented in [22],
we obtain the best algorithm known so far (as far as we know) for multivalued Byzantine
consensus in a message-passing asynchronous system (where “best” is with respect
the value of t, the message and time complexities, and the absence of limit on the
computational power of the adversary).

Acknowledgments. This work has been partially supported by the French ANR project
DISPLEXITY devoted to computability and complexity in distributed computing, and
the Franco-German ANR project DISCMAT devoted to connections between mathe-
matics and distributed computing.

References

1. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S., Toueg, S.: Abortable and query-
abortable objects and their efficient implementation. In: Proc. 26th Annual ACM Symposium
on Principles of Distributed Computing (PODC 2007), pp. 23–32 (2007)

2. Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations and advanced topics,
2nd edn., p. 414 pages. Wiley Interscience (2004)

3. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement proto-
cols. In: Proc. 2nd ACM Symposium on Principles of Distributed Computing (PODC 1983),
pp. 27–30. ACM Press (1983)

4. Bracha, G.: Asynchronous Byzantine agreement protocols. Information & Computa-
tion 75(2), 130–143 (1987)

5. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. Journal of the
ACM 32(4), 824–840 (1985)

6. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broad-
cast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer,
Heidelberg (2001)

7. Correia, M., Ferreira Neves, N., Verissimo, P.: From consensus to atomic broadcast: time-free
Byzantine-resistant protocols without signatures. Computer Journal 49(1), 82–96 (2006)

8. De Prisco, R., Malkhi, D., Reiter, M.: On k-set consensus problems in asynchronous systems.
Transactions on Parallel and Distributed Systems 12(1), 7–21 (2001)

9. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Jour-
nal of the ACM 35(2), 288–323 (1988)

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

11. Friedman, R., Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Distributed agreement problems
and their connection with error-correcting codes. IEEE Transactions on Computers 56(7),
865–875 (2007)

12. Friedman, R., Mostéfaoui, A., Raynal, M.: �Pmute-based consensus for asynchronous
Byzantine systems. Parallel Processing Letters 15(1-2), 162–182 (2005)

13. Friedman, R., Mostéfaoui, A., Raynal, M.: Simple and efficient oracle-based consensus pro-
tocols for asynchronous Byzantine systems. IEEE Transactions on Dependable and Secure
Computing 2(1), 46–56 (2005)

208 A. Mostéfaoui and M. Raynal

14. Hadzilacos, V., Toueg, S.: On deterministic abortable objects. In: Proc. 32th Annual ACM
Symposium on Principles of Distributed Computing (PODC 2013), pp. 4–12 (2013)

15. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine fault detectors for solving con-
sensus. The Computer Journal 46(1), 16–35 (2003)

16. King, V., Saia, J.: Breaking the O(n2) bit barrier: scalable Byzantine agreement with an
adaptive adversary. In: Proc. 30th ACM Symposium on Principles of Distributed Computing
(PODC 2011), pp. 420–429. ACM Press (2011)

17. Lamport, L., Shostack, R., Pease, M.: The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems 4(3), 382–401 (1982)

18. Liang, G., Vaidya, N.: Error-free multi-valued consensus with Byzantine failures. In: Proc.
30th ACM Symposium on Principles of Distributed Computing (PODC 2011), pp. 11–20.
ACM Press (2011)

19. Lynch, N.A.: Distributed algorithms, 872 pages. Morgan Kaufmann Pub., San Francisco
(1996)

20. Martin, J.-P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Dependable and
Secure Computing 3(3), 202–215 (2006)

21. Milosevic, Z., Hutle, M., Schiper, A.: On the reduction of atomic broadcast to consensus
with Byzantine faults. In: Proc. 30th IEEE Int’l Symposium on Reliable Distributed Systems
(SRDS 2011), pp. 235–244. IEEE Computer Press (2011)

22. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous Byzantine consensus
with t < n/3 and O(n2) messages. In: Proc. 33rd Annual ACM Symposium on Principles
of Distributed Computing (PODC 2014), pp. 2–9. ACM Press (2014)

23. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Conditions on input vectors for consensus solv-
ability in asynchronous distributed systems. Journal of the ACM 50(6), 922–954 (2003)

24. Mostéfaoui, A., Raynal, M.: Signature-free broadcast-based intrusion tolerance: never de-
cide a Byzantine value. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS,
vol. 6490, pp. 143–158. Springer, Heidelberg (2010)

25. Mostéfaoui, A., Raynal, M.: Asynchronous Byzantine systems: from multivalued to binary
consensus with t < n/3, O(n2) messages, O(1) time, and no signature. Tech Report 2014,
17 pages, IRISA, Université de Rennes (F) (2015),
https://hal.inria.fr/hal-01102496

26. Mostéfaoui, A., Raynal, M., Tronel, F.: From binary consensus to multivalued consensus in
asynchronous message-passing systems. Information Processing Letters 73, 207–213 (2000)

27. Patra, A.: Error-free multi-valued broadcast and Byzantine agreement with optimal com-
munication complexity. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011.
LNCS, vol. 7109, pp. 34–49. Springer, Heidelberg (2011)

28. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal
of the ACM 27, 228–234 (1980)

29. Rabin, M.: Randomized Byzantine generals. In: Proc. 24th IEEE Symposium on Foundations
of Computer Science (FOCS 1983), pp. 116–124. IEEE Computer Society Press (1983)

30. Raynal, M.: Communication and agreement abstractions for fault-tolerant asynchronous dis-
tributed systems. Morgan & Claypool, 251 pages (2010) ISBN 978-1-60845-293-4

31. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems, 165 pages.
Morgan & Claypool Publishers (2010) ISBN 978-1-60845-525-6

32. Raynal, M.: Concurrent programming: algorithms, principles and foundations, 515 pages.
Springer (2013)

33. Toueg, S.: Randomized Byzantine agreement. In: Proc. 3rd Annual ACM Symposium on
Principles of Distributed Computing (PODC 1984), pp. 163–178. ACM Press (1984)

34. Turpin, R., Coan, B.A.: Extending binary Byzantine agreement to multivalued Byzantine
agreement. Information Processing Letters 18, 73–76 (1984)

https://hal.inria.fr/hal-01102496

A Fast Network-Decomposition Algorithm

and Its Applications to Constant-Time
Distributed Computation�

(Extended Abstract)

Leonid Barenboim1,��, Michael Elkin2,� � �, and Cyril Gavoille3

1 Open University of Israel, Israel
leonidb@openu.ac.il

2 Ben-Gurion University of the Negev, Israel
elkinm@cs.bgu.ac.il

3 LaBRI - Universite de Bordeaux, Bordeaux, France
gavoille@labri.fr

Abstract. A partition (C1, C2, ..., Cq) of G = (V,E) into clusters of
strong (respectively, weak) diameter d, such that the supergraph ob-
tained by contracting each Ci is �-colorable is called a strong (resp.,
weak) (d, �)-network-decomposition. Network-decompositions were intro-
duced in a seminal paper by Awerbuch, Goldberg, Luby and Plotkin
in 1989. Awerbuch et al. showed that strong (exp{O(

√
log n log log n)},

exp{O(
√
log n log log n)})-network-decompositions can be computed in

distributed deterministic time exp{O(
√
log n log log n)}. Even more im-

portantly, they demonstrated that network-decompositions can be used
for a great variety of applications in the message-passing model of dis-
tributed computing. Much more recently Barenboim (2012) devised a
distributed randomized constant-time algorithm for computing strong
network decompositions with d = O(1). However, the parameter � in his
result is O(n1/2+ε).

In this paper we drastically improve the result of Barenboim and de-
vise a distributed randomized constant-time algorithm for computing
strong (O(1), O(nε))-network-decompositions. As a corollary we derive
a constant-time randomized O(nε)-approximation algorithm for the dis-
tributed minimum coloring problem. This improves the best previously-
known O(n1/2+ε) approximation guarantee. We also derive other im-
proved distributed algorithms for a variety of problems.

Most notably, for the extremely well-studied distributed minimum
dominating set problem currently there is no known deterministic poly-

� A full version of this paper with all proofs omitted from the current version due
to lack of space is available online [10].

�� Part of this work has been performed while the author was a postdoctoral fellow at
a joint program of the Simons Institute at UC Berkeley and I-Core at Weizmann
Institute.

� � � This research has been supported by the Israeli Academy of Science, grant 593/11,
and by the Binational Science Foundation, grant 2008390.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 209–223, 2015.
DOI: 10.1007/978-3-319-25258-2_15

210 L. Barenboim, M. Elkin, and C. Gavoille

logarithmic -time algorithm. We devise a deterministic polylogarithmic-
time approximation algorithm for this problem, addressing an open prob-
lem of Lenzen and Wattenhofer (2010).

1 Introduction

1.1 Network-Decompositions

In the distributed message-passing model a communication network is repre-
sented by an n-vertex graph G = (V,E). The vertices of the graph host proces-
sors that communicate over the edges. Each vertex has a unique identity number
(ID) consisting of O(log n) bits. We consider a synchronous setting: computation
proceeds in rounds, and each message sent over an edge arrives by the beginning
of the next round. The running time of an algorithm is the number of rounds
from the beginning until all vertices terminate. Local computation is free.

A strong (respectively, weak) diameter of a cluster C ⊆ V is the maxi-
mum distance distG(C)(u, v) (resp., distG(u, v)) between a pair of vertices u, v ∈
C, measured in the induced subgraph G(C) of C (resp., in G). A partition
(C1, C2, ..., Cq) of G = (V,E) into clusters of strong (resp., weak) diameter d,
such that the supergraph G = (V , E), V = {C1, C2, ..., Cq}, E = {(Ci, Cj) | Ci, Cj

∈ V , i �= j, ∃vi ∈ Ci, vj ∈ Cj , (vi, vj) ∈ E} obtained by contracting each Ci is
�-colorable is called a strong (resp., weak) (d, �)-network-decomposition.

Network-decompositions were introduced in a seminal paper by Awerbuch et
al. [3]. The authors of this paper showed that strong (exp{O(

√
logn log logn)},

exp{O(
√
logn log logn)})-network-decompositions can be computed in deter-

ministic distributed exp{O(
√
log log log n)} time. Even more importantly they

demonstrated that many pivotal problems in the distributed message passing
model can be efficiently solved if one can efficiently compute (d, �)-network-
decompositions with sufficiently small parameters. In particular, this is the case
for Maximal Independent Set, Maximal Matching, and (Δ+1)-Vertex-Coloring.

The result of [3] was improved a few years later by Panconesi and Srinivasan
[46] who devised a deterministic algorithm for computing strong (exp{O(

√
logn)},

exp{O(
√
logn)})-network-decompositions in exp{O(

√
logn)} time. Awerbuch et

al. [1] devised a deterministic algorithm for computing strong (O(log n), O(log n))-
network-decomposition in time exp{O(

√
logn)}. Around the same time Linial and

Saks [40] devised a randomized algorithm for weak (O(log n), O(log n))-network-
decompositions with O(log2 n) time. More generally, the algorithm of Linial and
Saks [40] can compute weak (λ,O(n1/λ logn))-network-decompositions or weak
(O(n1/λ), λ)-network-decompositions in time O(λ · n1/λ logn).

Observe, however, that all these algorithms [3,46,40] require super-logarithmic
time, for all choices of parameters. In ICALP’12 the first-named author of
the current paper [5] devised a randomized algorithm for computing strong
(O(1), n1/2+ε)-network-decomposition in O(1/ε) time. Unlike the algorithms of
[3,46,40], the algorithm of [5] requires constant time. Its drawback however is its
very high parameter � = n1/2+ε. In the current paper we alleviate this drawback,
and devise a randomized algorithm for computing strong (exp{O(λ)}, n1/λ)-
network-decomposition in time exp{O(λ)}. In other words, the parameter λ of

A Fast Network-Decomposition Algorithm 211

our new decompositions can be made nε, for an arbitrarily small constant ε > 0,
while the running time is still constant (specifically, exp{O(1/ε)}).

1.2 Constant-Time Distributed Algorithms

In their seminal paper titled “What can be computed locally?” [44] Naor and
Stockmeyer posed the following question: which distributed tasks can be solved
in constant time? This question is appealing both from theoretical and practical
perspectives. From the latter viewpoint it is justified by the emergence of huge
networks. The number of vertices in the latter networks may be so large that
even mildest dependence of the running time on n may make the algorithm
prohibitively slow.

Naor and Stockmeyer themselves [44] showed that certain types of weak col-
orings can be computed in constant time. A major breakthrough in the study
of distributed constant time algorithms was achieved though a decade after the
paper of [44] by Kuhn and Wattenhofer [35]. Specifically, Kuhn and Wattenhofer

[35] showed that an O(
√
kΔ1/

√
k logΔ)-approximate minimum dominating set1

can be computed in O(k) randomized time. Here Δ = Δ(G) is the maximum
degree of the input graph G, and k is a positive possibly constant parameter.

An approximation algorithm for another fundamental optimization prob-
lem, specifically, for the minimum coloring problem, was devised by Barenboim
[5] as an application of his aforementioned algorithm for computing network-
decompositions. Specifically, it is shown in [5] that an O(n1/2+ε)-approximation
for the minimum coloring problem can be computed in O(1/ε) randomized time.
(In the minimum coloring problem one wishes to color the vertices of the graph
properly with as few colors as possible.) Observe that since approximating the
minimum coloring problem up to a factor of n1−ε is NP-hard [28,25,50], the
algorithm of [5] inevitably has to employ very heavy local computations.

In the current paper we employ our improved network-decomposition pro-
cedure to come up with a significantly improved constant-time approximation
algorithm for the minimum coloring problem. Specifically, our randomized al-
gorithm provides an O(nε)-approximation for the minimum coloring problem
in exp{O(1/ε)} time, for an arbitrarily small constant ε > 0. We also devise a
randomized O(nε)-approximation algorithm for the minimum t-spanner problem
with running time exp{O(1/ε)}+O(t), for any arbitarily small constant ε > 0.
(A subgraph G′ = (V,H) of a graph G = (V,E), H ⊆ E, is a t-spanner of G
if for every u, v ∈ V , distG′(u, v) ≤ t · distG(u, v). In the minimum t-spanner
problem the objective is to compute a t-spanner of the input graph G with as
few edges as possible.)

Ajtai et al. [2] demonstrated that triangle-free n-vertex graphs admit an
O(

√
n/

√
log n)-coloring. Kim [30] showed that this existential bound is tight.

We devise a randomized O(n1/2+ε)-coloring algorithm for triangle-free graphs

1 A subset U ⊆ V in a graph G = (V,E) is a dominating set if for every v ∈ V \ U
there exists u ∈ U , such that (u, v) ∈ E. In theminimum dominating set (henceforth,
MDS) problem the goal is to find a minimum-cardinality dominating set of G.

212 L. Barenboim, M. Elkin, and C. Gavoille

with running time O(1/ε). More generally, we devise a randomized O(n1/k+ε)-
coloring algorithm for graphs of girth greater than g = 2k, k ≥ 2, with running
time O(1/ε2). Both results apply for any arbitrarily small ε > 0, and, in partic-
ular, they show that such graph can be colored with a reasonably small number
of colors in constant time. Together with our drastically improved constant-time
approximation algorithm for the minimum coloring problem, these results sig-
nificantly expand the set of distributed problems solvable in constant time.

Most our algorithms for constructing network-decompositions use only short
messages (i.e., messages of size O(log n) bits), and employ only polynomially-
bounded local computations. Although in general graphs our algorithms for
O(n1/ε)-approximate minimum coloring require large messages, our O(n1/2+ε)-
coloring and O(n1/k+ε)-coloring algorithms for triangle-free graphs and graphs
of large girth employ short messages. Hence the latter coloring algorithms are
suitable to serve as building blocks for various tasks. Despite that the number
of colors is superconstant, in many tasks it does not affect the overall running
time, so the entire task can be performed very quickly. For example, if the colors
are used for frequency assignment or code assignment tasks, the running time
will not be affected by the number of colors. Instead, the range of frequencies or
codes will be affected. However, this is unavoidable in the worst case, in view of
the lower bounds on the chromatic number of triangle free graphs and graph of
large girth.

1.3 The Minimum Dominating Set Problem

The MDS problem is one of the most fundamental classical problems of dis-
tributed graph algorithms. Jia et al. [29] devised the first efficient random-
ized O(logΔ)-approximation algorithm for the MDS problem with running time
O(log n logΔ). Their result was improved and generalized by Kuhn and Wat-

tenhofer [35] who devised a randomized O(
√
kΔ1/

√
k logΔ)-approximation algo-

rithm for the problem with time O(k).
The results of [29,35] spectacularly advanced our understanding of the dis-

tributed complexity of the MDS problem. However, both these algorithms [29,35]
are randomized, and no efficient deterministic distributed algorithms with a non-
trivial approximation guarantee for general graphs are currently known. Lenzen
and Wattenhofer [38] devised such algorithms for graphs with bounded arboric-
ity. Below we provide a quote from their paper:
”To the best of our knowledge, the deterministic distributed complexity of MDS
approximation on general graphs is more or less a blind spot, as so far neither
fast (polylogarithmic time) algorithms nor stronger lower bounds are known”.

In this paper we address this blind spot and devise a deterministic O(n1/k)-
approximation algorithm for the MDS problem with time O((log n)k−1). Simi-
larly to our approximation algorithms for the minimum coloring and the mini-
mum t-spanner problems, this algorithm is also a consequence of our algorithms
for constructing network-decompositions. However, for the MDS we use a deter-
ministic version of these algorithms, while for the minimum coloring and mini-
mum t-spanner problems we use a randomized version. Also, we present a variant

A Fast Network-Decomposition Algorithm 213

of our MDS approximation algorithm that employs only polynomially-bounded
local computations, requires O((log n)k−1) time, and provides an O(n1/k logΔ)
approximation.

1.4 Additional Results

We also use our algorithms for computing network-decompositions for devising
algorithms for computing low-intersecting partitions. Low-intersecting partitions
were introduced by Busch et al. [16] in a paper on universal Steiner trees. A low-
intersecting (α, β, γ)-partition P of a graph G is the partition of the vertex set
V such that: (1) Every cluster C in P has strong diameter at most α · γ.
(2) For every vertex v ∈ V , a ball Bγ(v) of radius γ around v intersects at most
β clusters of P .

Busch et al. showed that given a hierarchy of low-intersecting partitions with
certain properties (see [16] for details) one can construct a universal Steiner
tree. (See [16] for the definition of universal Steiner tree.) Also, vice versa, given
universal Steiner tree they showed that one can construct a low-intersecting
partition. They constructed a low-intersecting partition with α = 4k, β = k·n1/k,
and arbitrary γ.

We devise a distributed randomized algorithm that constructs low-intersecting
((O(γ)k, n1/k, γ)-partitions in time (O(γ))k log2/3 n in general graphs and in
(O(γ))k · exp{O(

√
log logn)} time in graphs of girth g ≥ 6. This algorithm

employs only short messages and polynomially-bounded local computations.
Comparing this result with the algorithm of Busch et al. [16] we note that

the partition of [16] has smaller radius. (It is γ · (O(1))k instead of (O(γ))k in
our case.) On the other hand, the intersection parameter β of our partitions is
smaller. (It is n1/k instead of k · n1/k.) In particular, the intersection parameter
in the construction of [16] is always Ω(logn), while ours can be as small as
one wishes. Finally, and perhaps most importantly, the algorithm of [16] is not
distributed, and seems inherently sequential.

1.5 Comparison of Our and Previous Techniques

Basically, our algorithms for computing network-decompositions can be viewed
as a randomized variant of the deterministic algorithm of Awerbuch et al. [3].
The algorithm of Awerbuch et al. [3] computes iteratively ruling sets for subsets
of high-degree vertices in a number of supergraphs. These supergraphs are in-
duced by certain graph partitions which are computed during the algorithm. (A
subset U ⊆ V of vertices is called an (α, β)-ruling set if any two distinct vertices
u, u′ ∈ U are at distance at least α one from another, and every v ∈ V \U not in
a ruling set has a ”ruler” u ∈ U at distance at most β from v.) As a result of the
computation the algorithm of [3] constructs a partition into clusters of diameter
at most α, such that the supergraph induced by this partition has arboricity at
most β. The algorithm of [3] then colors this partition with O(β) colors in time
O(β logn) · O(α). (The running time of the algorithm is O(β logn) when run-
ning on an ordinary graph. The running time is multiplied by a factor of O(α),
because the coloring algorithm is simulated on a supergraph whose vertices are

214 L. Barenboim, M. Elkin, and C. Gavoille

clusters of diameter O(α).) The fact that the running time in the result of [3] is
(roughly speaking) the product α ·β of the parameters of the resulting network-
decomposition is the reason that Awerbuch et al [3] made an effort to balance
these parameters, and set both of them to be equal to exp{O(

√
logn log logn)}.

The algorithm of Panconesi and Srinivasan [46] is closely related to that of [3]
except that it invokes a sophisticated doubly-recursive scheme for computing
ruling sets via network-decompositions, and vice versa. This ingenious idea en-
ables [46] to balance the parameters and running time better. Specifically, they

are all equal to 2O(
√
logn).

Our algorithm is different from [3,46] in two respects. First, we replace a quite
slow (it requires O(logn) time) deterministic procedure for computing ruling sets
by a constant-time randomized one. Note that generally computing (O(1), O(1))-
ruling sets requires Ω(log∗ n) time [39], but we only need to compute them for
high-degree vertices of certain supergraphs. This can be easily done in randomized
constant time. Second, instead of coloring the resulting partition with O(β)
colors in O(β logn) · O(α) time, we color it in O(β · nε) colors in O(1/ε) · O(α)

time by a simple randomized procedure, or in O(β2 log(t) n) colors in O(t) ·O(α)
time, for a parameter t > 0, by a deterministic algorithm Arb-Linial [6]. Hence
the number of colors is somewhat greater than in [3,46], but the running time is
constant.

The algorithm of Linial and Saks [40] is inherently different from both [3,46]
and from our algorithm. It runs for O(log n) phases, each of which constructs a
collection of clusters of diameter O(log n) at pairwise distance at least 2 which
covers at least half of all remaining vertices. The running time of the algorithm of
[40], similarly to [3] and [46], is the product of the number of phases and clusters’
diameter. Hence the approach of [40] appears to be inherently incapable to give
rise to a constant time algorithm.

Our deterministic variant of the network-decomposition procedure is the
basis for our deterministic approximation algorithm for MDS. Our deterministic
variant is closer to the algorithm of [3] than our randomized one. The main
difference between our deterministic variant and the algorithm of [3] is that we
use a different much faster coloring procedure for the supergraph induced by the
ultimate partition.

1.6 Related Work

Network-decompositions for general graphs were studied in [1,4]. Dubhashi et al.
[20] used network decompositions for constructing low-stretch dominating sets.
Recently, Kutten et al. [36] extended Linial-Saks network-decompositions to hy-
pergraphs. Many authors [26,34,49] studied network-decompositions for graphs
with bounded growth. Distributed approximation algorithms is a vivid research
area. See, e.g., [43] and the references therein. Distributed graph coloring is
also a very active research area. See a recent monograph [9], and the references
therein. Schneider et al. [48] devised a distributed coloring algorithm whose per-
formance depends on the chromatic number of the input graph. However, the

A Fast Network-Decomposition Algorithm 215

algorithm of [48] provides no non-trivial approximation guarantee. Efficient dis-
tributed algorithms for constructing sparse undirected spanners can be found
in [21,18]. Baswana and Sen [12] devised an approximation algorithm for the
minimum t-spanner problem that computes a solution with O(tn1+2/(t+1)) ex-
pected edges in O(t2) rounds. For centralized approximation algorithms for the
minimum t-spanner problem, see [31,23,12,13].

2 Preliminaries

For a subset V ′ ⊆ V , the graph G(V ′) denotes the subgraph of G induced by V ′.
The degree of a vertex v in a graph G = (V,E), denoted degG(v), is the number
of edges incident on v. A vertex u such that (u, v) ∈ E is called a neighbor of v
in G. The neighborhood of v in G, denoted ΓG(v), is the set of neighbors of v in
G. If the graph G can be understood from context, then we omit the underscript

G. For a vertex v ∈ V , the set v ∪ Γ (V) is denoted by Γ+(v). For a set W ⊆ V ,
we denote by Γ+(W) the set W ∪⋃

w∈W Γ (w). The distance between a pair of
vertices u, v ∈ V , denoted distG(u, v), is the length of the shortest path between
u and v in G. The diameter of G is the maximum distance between a pair of
vertices in G. The chromatic number χ(G) of a graph G is the minimum number
of colors that can be used in a proper coloring of the vertices of G.

3 Network Decomposition

3.1 Procedure Decompose

In this section we devise an algorithm for computing an (O(1), O(nε))-network-
decomposition in O(1) rounds, for an arbitrarily small constant ε > 0. More gen-
erally, our algorithm computes a (3k, O(k ·n2/k · log2 n))-network-decomposition
Q in O(3k · log∗ n) rounds, for any positive parameter k, 1 ≤ k ≤ logn, along
with an O(k · n2/k · log2 n)-coloring ϕ of the supergraph induced by Q. (The
log∗ n term can be eliminated from the running time at the expense of increas-
ing the number of colors used by ϕ by a multiplicative factor of log(t) n, for an
arbitrarily large constant t. We will later show that the multiplicative factor of
k in the second parameter of the network decomposition can also be eliminated
without affecting other parameters.) The algorithm is called Procedure Decom-
pose. The procedure runs on some supergraph Ĝ = (V̂ , Ê) of the original graph
G. Each vertex C ∈ V̂ is a cluster (i.e., a subset of vertices) of the original graph
G = (V,E), and different clusters are disjoint. Observe that generally it may
happen that V �= ∪C∈V̂ C. The procedure accepts as input the supergraph Ĝ,
the number of vertices n of G, the parameter k, and an upper bound s on the
number of vertices of the supergraph Ĝ. It also accepts as input two numerical
parameters ε and t. The parameter ε > 0 is a sufficiently small positive con-
stant and t > 0 is a sufficiently large integer constant. Initially the supergraph
is G itself, with each vertex v forming a singleton cluster {v}. Hence initially it
holds that n = s. The procedure is invoked recursively. After each invocation the

216 L. Barenboim, M. Elkin, and C. Gavoille

current supergraph Ĝ is replaced with a supergraph on fewer vertices, and s is
updated accordingly. The parameter n, however, remains unchanged throughout
the entire execution.) As a result of an execution of Procedure Decompose every
vertex v in Ĝ is assigned a label label(v). The value of label(v) is equal to the
color ϕ(Cv) of the cluster Cv of Q which contains v.

Procedure Decompose partitions the graph Ĝ into two vertex-disjoint sub-
graphs with certain helpful properties. Specifically, one of the subgraphs has a
sufficiently small maximum degree that allows us to compute a network decom-
position in it directly and efficiently. The other subgraph can be partitioned
into a sufficiently small number of clusters with bounded diameter. The latter
property is used to construct a supergraph whose vertices are formed from the
clusters. Since the number of clusters is sufficiently small, the number of vertices
of the supergraph is small as well. Then our algorithm proceeds recursively to
compute a network decomposition of the new supergraph, using fresh labels that
have not been used yet. The recursion continues for k levels. Then each vertex is
assigned the label of the supernode it belongs to. (Supernodes of distinct recur-
sion levels may be nested one inside the other. In this case an inner supernode
receives the label of an outer supernode. A vertex of the original graphG receives
the (same) label of all supernodes it belongs to. Notice that a vertex belongs to
exactly one supernode in each recursion level.) This completes the description
of the algorithm. Its pseudocode is provided below. (See Algorithm 1.)

The algorithm employs two auxiliary procedures that are described in detail in
the full version of this paper [10]. The procedures succeed with high probability,
i.e., with probability 1 − 1/nc, for an arbitrarily large constant c. The first
procedure is called Procedure Dec-Small. It accepts a graph G with at most n
vertices and maximum degree at most d. Procedure Dec-Small accepts also as
input two numerical parameters, ε and t, which are relayed to it from Procedure
Decompose. Recall that ε > 0 is a sufficiently small constant and t is a sufficiently
large integer constant. The procedure computes an O(min{d · nε, d2})-coloring
of G in O(log∗ n) time. (The time is O(1) if d > nε. Another variant of this

procedure computes an O(d2 log(t) n)-coloring in O(t) time, for an arbitrarily
large positive integer t.) Observe that for any integer p > 0, a proper p-coloring
of a graph G is also a (0, p)-network-decomposition of G. (There are p labels, and
each cluster consists of a single vertex. Thus the diameter of the decomposition
is 0.) Procedure Dec-Small returns a (0, p)-network-decomposition S on line 5.
It also returns a labeling function labelS for vertices of a subset A. (We will soon
describe how this subset is obtained.) The labeling labelS also serves as a proper
coloring for the supergraph induced by S.

The second procedure which is invoked by our algorithm is called Procedure
Partition. This randomized procedure accepts as input an s-vertex supergraph

Ĝ = (V̂ , Ê) and a parameter q < |V̂ |
2c·logn , and partitions V̂ into two subsets A and

B, such that Ĝ(A) and Ĝ(B) have the following properties. The subgraph Ĝ(A)
has maximum degree O(q logn). The subgraph Ĝ(B) consists of O(|V |/q) =
O(s/q) clusters of diameter at most 2 with respect to Ĝ. The procedure contracts
each such cluster into a supernode. Let B denote the resulting set of supernodes

A Fast Network-Decomposition Algorithm 217

and G(B) = (B, E(B)) the resulting supergraph. Specifically, the vertex set of
G(B) is B, and its edge set is E(B) = {(C,C ′) | C,C′ ∈ B, ∃u ∈ C, u′ ∈
C′, such that (u, u′) ∈ Ê}. Procedure Partition returns the subset A ⊆ V̂ and
the set of supernodes B.

The clusters in B are obtained by computing a dominating set D of B of size
O(|V |/q). Each vertex in D becomes a leader of a distinct cluster. Each vertex
in B \D selects an arbitrary neighbor in D and joins the cluster of this neighbor.
Consequently, in all clusters all vertices are at distance at most 1 from the leader
of their cluster. Hence all clusters have diameter at most 2. Initially, each vertex
of V joins the set D with probability 1/q. Then the set B is formed by the
vertices of D and their neighbors. Finally, the set A is formed by the remaining
vertices, i.e., A = V \ B. In this stage the procedure returns the set of nodes
A and the set of supernodes B which is obtained from B, and terminates. This
completes the description of Procedure Partition.

Algorithm 1. Procedure Decompose(Ĝ, n, k, s, ε, t)

1: /* c is an arbitrarily large positive constant */
2: if s ≤ 2c · n1/k log n then
3: return Dec-Small(Ĝ, n, s, ε, t)

/* Compute directly a (0, O(s2))-network-decomposition of Ĝ. */
4: else
5: (A,B) := Partition(Ĝ, q := n1/k)

/* Partition Ĝ into A and B. The maximum degree of Ĝ(A) is O(n1/k log n).*/
6: (S, labelS) := Dec-Small(Ĝ(A), n, n1/k log n, ε, t)

/* Compute directly a (0, O(n2/k · log2 n))-network-decomposition of Ĝ(A). */
7: (L, labelL) := Decompose(G(B), n, k, s

n1/k)
/* A recursive invocation on the supergraph G(B) that contains at most s

n1/k

supernodes. */
8: for each vertex v of Ĝ, in parallel, do
9: if v ∈ S then
10: label(v) := labelS(v)
11: else if v ∈ L then
12: label(v) := labelL(v) + Λ

/* Λ = γ ·
⌊
n2/k · log2 n

⌋
, where γ is a sufficiently large constant to be

determined later. */
13: end if

/* The labeling function label on S ∪ L is defined by: for a cluster C ∈ S
(respectively, C ∈ L) it applies to it the function labelS() (resp., labelL()+Λ).
*/

14: end for
15: return (S ∪ L, label)
16: end if

The recursive invocation of Procedure Decompose on line 7 returns a network
decomposition L for the supergraph G(B). The for-loop (lines 8-14) adds (in
parallel) Λ = γ · ⌊n2/k log2 n

⌋
to the color of each cluster of the network decom-

position L0 of G(B), where γ is a sufficiently large constant to be determined

218 L. Barenboim, M. Elkin, and C. Gavoille

later. Since the number of colors used in each recursive level is at most Λ, this
loop guarantees that colors used for clusters created on different recursion levels
are different. This is because the labeling returned by procedure Dec-Small on
line 6 for clusters of S employs the palette [Λ] while the labeling computed in
lines 11 - 13 for clusters of L employs labels which are greater than Λ. The ter-
mination condition of the procedure is the case s = O(n1/k log n), i.e., when the
number s of vertices in the supergraph Ĝ is already small. At this point the max-
imum degree of Ĝ is small as well (at most s−1), and so coloring the supergraph
(by Procedure Dec-Small) results in a sufficiently good network decomposition.

Observe that our main algorithm will invoke the procedure on the original
graph G. Hence in the first level of the recursion Ĝ = G, and each supernode
is actually a node of G. In the second recursion level it is executed on the
supernodes of nodes of the original graph G. In the third level it is executed on
supernodes of supernodes, etc. Consequently, starting from the second recursion
level supernodes have to be simulated using original nodes of the network. To
this end each cluster that forms a supernode selects a leader which is used for
simulating the supernodes. Moreover, the leader is used to simulate all nested
supernodes to which it belongs. Our supernodes are obtained by at most k levels
of nesting. In each level of nesting a supernode is a cluster of diameter at most
2 in a graph whose nodes are lower-level supernodes. Hence a simulation of a
single round on such a supergraph will require up to 3k+1 rounds.

Next we provide several lemmas that will be used for the analysis of the
algorithm. We leave the parameters ε and t unspecified in all lemmas in this
section, because they have no effect on the analysis.

Lemma 31. Suppose that all invocations of auxiliary procedures of Procedure
Decompose have succeeded. Then the invocation computes a (3k−1−1, O(k ·n2/k ·
log2 n))-network-decomposition.

Recall that the auxiliary procedures Dec-Small and Partition succeed with
probability 1 − 1/nc, for an arbitrarily large constant c. Each of these proce-
dures is invoked at most k ≤ log n times during the execution of Procedure De-
compose. Therefore, the probability that all executions of Procedure Dec-Small
and Procedure Partition succeed is at least (1 − 1/nc)2 logn ≈ 1 − 1

nc/2 log n .

Since c is an arbitrarily large constant, all executions of the auxiliary proce-
dures succeed, with high probability. Hence Procedure Decompose computes a
(3k, O(k · n2/k · log2 n))-network-decomposition, with high probability.

The next lemma analyzes the running time of the algorithm.

Lemma 32. Let Tpart(n, q) (respectively, Tdec(n, d)) denote the running time
of Procedure Partition invoked with parameters n and q (resp., Procedure Dec-
Small invoked with parameters n and d). We will assume that both these running
times are monotone non-decreasing in both parameters. Then the running time
of Procedure Decompose is O(3k · (Tpart(n, n

1/k) + Tdec(n, 2c · n1/k logn))).

Procedure Dec-Small and Procedure Partition are provided and analyzed in
the full version of this paper[10]. Next we state the main results obtained by
plugging these procedures into Procedure Decompose. See [10] for the proofs.

A Fast Network-Decomposition Algorithm 219

Theorem 33. For any parameter k, 1 ≤ k ≤ logn, Procedure Decompose com-
putes a (3k, O(k ·n2/k · log2 n))-network-decomposition along with the correspond-
ing O(k·n2/k ·log2 n)-labeling function in time O(3k ·log∗ n), with high probability.
Alternatively, one can also have the second parameter equal to O(k · n2/k logn)
and the running time O(3k · k).

It follows that an (O(1), nδ)-network-decomposition of an arbitrary n-vertex
graph along with a proper nδ-labeling for it can be computed by a random-
ized algorithm, in O(1) time, with high probability. Additional variants of the
algorithm can be found in [10].

4 Applications

We use our network-decomposition techniques to obtain improved algorithms for
a variety of problems. The full description of all these applications appear [10].
Due to lack of space we provide here just a few notable results.

4.1 An Approximation Algorithm for the Coloring Problem

The results described in the previous sections (Theroem 33) imply an approx-
imation algorithm for the optimization variant of the coloring problem. A dis-
tributed approximation algorithm for the graph coloring problem (based on an
(O(1), O(n1/2+ε))-network decomposition) was given in [5]. We describe here a
generalization of that algorithm which works with any network-decomposition.
The generalized algorithm starts by computing a (3k−1, O(n1/k logn))-network-
decomposition Q with an O(n2/k log n)-labeling label(·) for it. Then in each
cluster C the entire induced subgraph G(C) is collected into the leader ver-
tex vC of C. The leader vertex vC computes locally the optimum coloring ϕC

for C. Finally, vC broadcasts (a table representation of ϕC) to all vertices of
C. Each vertex u that receives this broadcast computes its final color ψ(u) by
ψ(u) = 〈ϕC(u), label(u)〉. The running time of this algorithm is the sum of the
time required to compute the decomposition Q (i.e., O(3k · k2)) with the time
required for the computation of the colorings ϕC . The latter is dominated by
the diameter of Q, times a small constant. The overall running time is therefore
O(3k · k2). The result is summarized below.

Theorem 41. For any n-vertex graph G = (V,E) and an integer parameter
k = 1, 2, ..., an O(n2/k logn)-approximation of the optimal coloring for G can be
computed in O(3k · k2) time.

In particular, by setting the parameter k to be an arbitrarily large constant
we get a distributed O(nε)-approximation algorithm for the coloring problem
with a constant running time, for an arbitrarily small constant ε > 0. (The
running time is O(3�1/ε� · 1

ε2).) This greatly improves the current state-of-the-art
constant-time distributed approximation algorithm for the coloring problem due
to [5], which provides an approximation guarantee of O(n1/2+ε).

Note that the algorithm in Theorem 41 requires very heavy (exponential in n)
local computations and large messages. The heavy computations are inevitable,

220 L. Barenboim, M. Elkin, and C. Gavoille

because unless NP = P , the coloring problem cannot be approximated (in
polynomial time) up to a ratio of n1−ε, for any constant ε > 0 [28,25,50]. On
the other hand, in triangle-free graphs we can obtain an algorithm with short
messages and polynomially-bounded local computation. See [10].

Theorem 42. An O(n1/2+ε)-coloring of triangle-free n-vertex graph can be com-
putedinO(1/ε)distributedrandomizedtime, usingshortmessagesandpolynomially-
bounded local computations.

4.2 An Approximation Algorithm for the Minimum Dominating
Set Problem

In this section we employ our network-decomposition algorithm in order to derive
approximation algorithms for the minimum dominating set problem. We need
the following notion. For positive integer parameters α, β, σ, an (α, β)-network-
decomposition Q of a graph G = (V,E) is called σ-separated if the clusters
of Q can be β-colored in such a way that every pair of clusters C,C′ ∈ Q
which are colored by the same color are at distance at least σ from one another,
i.e., distG(C,C

′) ≥ σ. Observe that an ordinary network decomposition is 2-
separated.

Suppose that we are given a 3-separated (d, �)-network-decomposition Q of a
graph G. For each cluster C ∈ Q, we compute in parallel a dominating set D ⊆
Γ+(C) of C, such that D has minimum cardinality among all dominating sets
D′ ⊆ Γ+(C) of C. The computation ofD is performed by collecting the topology
of the clusters and their neighborhoods by the leaders of respective clusters,
performing the computation locally using exhaustive search2, and broadcasting
the results to the vertices of the clusters and their neighbors. Since the weak
diameter of the clusters is at most d, this requires O(d) rounds. The next lemma
show that the resulting set obtained by taking the union of the dominating sets
in all clusters constitutes an �-approximate minimum dominating set of the input
graph G.

Lemma 43. For a 3-separated (d, �)-network-decomposition Q, suppose that we
have computed a minimum dominating set DC ⊆ Γ+(C) of C, for each cluster
C ∈ Q. Then |⋃{DC | C ∈ Q}| ≤ � · |MDS(G)|.

In the full version of this paper [10] we devise a routine that computes a strong
((O(log n))k−1, n1/k)-network-decomposition in deterministic time (O(log n))k−1,
for any k = 1, 2, Using this network-decomposition in conjunction with Lemma
43 we obtain the following theorem.

Theorem 44. For an n-vertex graph G, and a positive integer parameter k an
O(n1/k)-approximation for the minimum dominating set problem can be com-
puted in deterministic time (O(log n))k−1.

2 One can employ polynomial-time local computations instead of exhaustive search in
the expense of increasing the approximation ratio by a factor of O(logΔ). See the
discussion following Theorem 44 .

A Fast Network-Decomposition Algorithm 221

To avoid heavy local computations by leaders of clusters, we can run a cen-
tralized O(logΔ)-approximation algorithm for the MDS problem in each cluster.
(More precisely, since we need a dominating set for C which can use vertices of
Γ+(C), we in fact obtain an instance of the Set Cover problem. This instance
has left and right degrees bounded by Δ + 1, and thus one can compute an
O(logΔ)-approximate set cover for this instance in centralized polynomial time.
As a result the approximation ratio becomes O(n1/k logΔ), while the time stays
(O(log n))k−1.

In the full version of this paper[10] we employ our network-decompositions
for coloring triangle-free graphs. We also show how our network-decomposition
algorithm can be employed to obtain low-intersecting partitions. The latter par-
titions were used in [16] to construct universal Steiner trees. Finally, we devise
a distributed approximation algorithm for the minimum t-spanner problem.

Acknowledgments. The authors are grateful to David Peleg for fruitful dis-
cussions that helped obtain some of the results in this paper.

References

1. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Fast Distributed Network Decom-
positions and Covers. J. of Parallel and Distr. Computing 39(2), 105–114 (1996)

2. Ajtai, M., Komlos, J., Szemeredi, E.: A note on Ramsey numbers. Journal of Com-
binatorial Theory, Series A 29, 354–360 (1980)

3. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.: Network decomposition and
locality in distributed computation. In: Proc. of the 30th Annual Symposium on
Foundations of Computer Science, pp. 364–369 (1989)

4. Awerbuch, B., Peleg, D.: Sparse partitions. In: Proc. of the 31st IEEE Symp. on
Foundations of Computer Science, pp. 503–513 (1990)

5. Barenboim, L.: On the locality of some NP-complete problems. In: Czumaj, A.,
Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS,
vol. 7392, pp. 403–415. Springer, Heidelberg (2012)

6. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. In: Proc. of the 27th ACM Symp. on
Principles of Distributed Computing, pp. 25–34 (2008)

7. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in Δ) time. In:
Proc. of the 41st ACM Symp. on Theory of Computing, pp. 111–120 (2009)

8. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polyloga-
rithmic time. In: Proc. 29th ACM Symp. on Principles of Distributed Computing,
pp. 410–419 (2010)

9. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Re-
cent Developments. Morgan-Claypool Synthesis Lectures on Distributed Comput-
ing Theory (2013)

10. Barenboim, L., Elkin, M., Gavoille, C.: A Fast Network-Decomposition Al-
gorithm and its Applications to Constant-Time Distributed Computation,
http://arxiv.org/abs/1505.05697

11. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. In: Proc. of the 53rd Annual Symposium on Foundations of
Computer Science, pp. 321–330 (2012)

http://arxiv.org/abs/1505.05697

222 L. Barenboim, M. Elkin, and C. Gavoille

12. Baswana, S., Sen, S.: A simple and linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Structures and Algorithms 30(4),
532–563 (2007)

13. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavt-
sev, G.: Improved approximation for the directed spanner problem. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 1–12.
Springer, Heidelberg (2011)

14. Bisht, T., Kothapalli, K., Pemmaraju, S.: Super-fast t-ruling sets (Brief Announce-
ment). In: Proc. of the 33th ACM Symposium on Principles of Distributed Com-
puting, pp. 379–381 (2014)

15. Bollobas, B.: Extremal Graph Theory. Dover Publications (2004)
16. Busch, C., Dutta, C., Radhakrishnan, J., Rajaraman, R., Srinivasagopalan, S.:

Split and join: strong partitions and universal Steiner trees for graphs. In: Proc. of
53rd Annual IEEE Symp. on Foundations of Computer Science, pp. 81–90 (2012)

17. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Information and Control 70(1), 32–53 (1986)

18. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed
sparse spanner construction. In: Proc. of the 27th ACM Symp. on Principles of
Distributed Computing, pp. 273–282 (2008)

19. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs.
In: Proc. of the 43rd ACM Symp. on Theory of Computing, pp. 323–332 (2011)

20. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast dis-
tributed algorithms for (weakly) connected dominating sets and linear-size skele-
tons. Journal of Computer and System Sciences 71(4), 467–479 (2005)

21. Elkin, M.: A near-optimal distributed fully dynamic algorithm for maintaining
sparse spanners. In: Proc. of the 26th ACM Symp. on Principles of Distributed
Computing, pp. 185–194 (2007)

22. Elkin, M., Peleg, D.: The client-server 2-spanner problem with applications to
network design. In: Proc. of the 8th International Colloquium on Structural Infor-
mation and Communication Complexity, pp. 117–132 (2001)

23. Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theoretical
Computer Science 337(1-3), 249–277 (2005)

24. Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics 51, 79–89 (1985)

25. Feige, U., Kilian, J.: Zero Knowledge and the chromatic number. Journal of Com-
puter and System Sciences 57, 187–199 (1998)

26. Gfeller, B., Vicari, E.: A randomized distributed algorithm for the maximal inde-
pendent set problem in growth-bounded graphs. In: Proc. of the 26th ACM Symp.
on Principles of Distributed Computing, pp. 53–60 (2007)

27. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse
graphs. SIAM Journal on Discrete Mathematics 1(4), 434–446 (1988)

28. Hastad, J.: Clique is Hard to Approximate Within n1−ε. In: Proc. of the 37th
Annual Symposium on Foundations of Computer Science, pp. 627–636 (1996)

29. Jia, L., Rajaraman, R., Suel, R.: An efficient distributed algorithm for construct-
ing small dominating sets. In: Proc. of the 20th ACM Symp. on Principles of
Distributed Computing, pp. 33–42 (2001)

30. Kim, J.H.: The Ramsey number R(3, t) has order of magnitude t2/ log t. Random
Structures and Algorithms 7, 173–207 (1995)

31. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. Journal of Algorithms 17(2),
222–236 (1994)

A Fast Network-Decomposition Algorithm 223

32. Kothapalli, K., Pemmaraju, S.: Super-fast 3-ruling sets. In: Proc. of the 32nd
IARCS International Conference on Foundations of Software Technology and The-
oretical Computer Science, pp. 136–147 (2012)

33. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In:
Proc. of the 21st ACM Symposium on Parallel Algorithms and Architectures,
pp. 138–144 (2009)

34. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In:
Proc. of the 24th ACM Symp. on Principles of Distributed Computing, pp. 60–68
(2005)

35. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approxima-
tion. Distributed Computing 17(4), 303–310 (2005)

36. Kutten, S., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed symme-
try breaking in hypergraphs. In: Proc. of the 28th International Symposium on
Distributed Computing, pp. 469–483 (2014)

37. Lenzen, C., Oswald, Y., Wattenhofer, R.: What can be approximated locally? case
study: dominating sets in planar graphs. In: Proc 20th ACM Symp. on Parallelism
in Algorithms and Architectures, pp. 46–54 (2010). See also TIK report number
331, ETH Zurich, 2010

38. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of
bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 510–524. Springer, Heidelberg (2010)

39. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

40. Linial, N., Saks, M.: Low diameter graph decomposition. Combinatorica 13,
441–454 (1993)

41. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15, 1036–1053 (1986)

42. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

43. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proc. of the 46th ACM Symp. on Theory of Computing, pp. 565–573 (2014)

44. Naor, M., Stockmeyer, L.: What can be computed locally? In: Proc. 25th ACM
Symp. on Theory of Computing, pp. 184–193 (1993)

45. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Distributed Computing 14(2), 97–100 (2001)

46. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-
sition. Journal of Algorithms 20(2), 581–592 (1995)

47. Saket, R., Sviridenko, M.: New and improved bounds for the minimum set
cover problem. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) AP-
PROX/RANDOM 2012. LNCS, vol. 7408, pp. 288–300. Springer, Heidelberg (2012)

48. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the
chromatic number or the neighborhood growth. Theoretical Computer Science 509,
40–50 (2013)

49. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set al-
gorithm for growth bounded graphs. In: Proc. of the 27th ACM Symp. on Principles
of Distributed Computing, pp. 35–44 (2008)

50. Zuckerman, D.: Linear Degree Extractors and the Inapproximability of Max Clique
and Chromatic Number. Theory of Computing 3(1), 103–128 (2007)

51. http://www.disco.ethz.ch/lectures/ss04/distcomp/lecture/chapter12.pdf

http://www.disco.ethz.ch/lectures/ss04/distcomp/lecture/chapter12.pdf

Path-Fault-Tolerant Approximate
Shortest-Path Trees�

Annalisa D’Andrea1, Mattia D’Emidio1, Daniele Frigioni1,
Stefano Leucci1, and Guido Proietti1,2

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Via Vetoio, I–67100 L’Aquila, Italy

2 Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, Consiglio
Nazionale delle Ricerche, Via dei Taurini 19, I–00185 Roma, Italy
{annalisa.dandrea,stefano.leucci}@graduate.univaq.it,

{mattia.demidio,daniele.frigioni,guido.proietti}@univaq.it

Abstract. Let G = (V, E) be an n-nodes non-negatively real-weighted
undirected graph. In this paper we show how to enrich a single-source
shortest-path tree (SPT) of G with a sparse set of auxiliary edges selected
from E, in order to create a structure which tolerates effectively a path
failure in the SPT. This consists of a simultaneous fault of a set F of at
most f adjacent edges along a shortest path emanating from the source,
and it is recognized as one of the most frequent disruption in an SPT.
We show that, for any integer parameter k ≥ 1, it is possible to provide a
very sparse (i.e., of size O(kn ·f1+1/k)) auxiliary structure that carefully
approximates (i.e., within a stretch factor of (2k − 1)(2|F | + 1)) the
true shortest paths from the source during the lifetime of the failure.
Moreover, we show that our construction can be further refined to get
a stretch factor of 3 and a size of O(n log n) for the special case f = 2,
and that it can be converted into a very efficient approximate-distance
sensitivity oracle, that allows to quickly (even in optimal time, if k =
1) reconstruct the shortest paths (w.r.t. our structure) from the source
after a path failure, thus permitting to perform promptly the needed
rerouting operations. Our structure compares favorably with previous
known solutions, as we discuss in the paper, and moreover it is also very
effective in practice, as we assess through a large set of experiments.

1 Introduction

Broadcasting data from a source node to every other node of a network is one
of the most basic communication primitives in modern networked applications.
Given the widespread diffusion of such applications, in the recent past, there has
been an increasing demand for more and more efficient, i.e. scalable and reliable,
methods to implement this fundamental feature.
� Research partially supported by the Italian Ministry of University and Research un-

der the Research Grants: 2010N5K7EB PRIN 2010 “ARS TechnoMedia” (Algorit-
mica per le Reti Sociali Tecno-mediate), and 2012C4E3KT PRIN 2012 “AMANDA”
(Algorithmics for MAssive and Networked DAta).

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 224–238, 2015.
DOI: 10.1007/978-3-319-25258-2_16

Path-Fault-Tolerant Approximate Shortest-Path Trees 225

The natural solution is that of modeling the network as a graph (nodes as
vertices and links as edges) and building a (fast and compact) structure to be
used to transmit the data. In particular, the most common approach of this kind
is that of computing a shortest-path tree (SPT), rooted at the desired source
node, of such graph.

However, the SPT, as any tree-based topology, is prone to unpredictable
events that might occur in practice, such as failures of nodes and/or links. There-
fore, the use of SPTs might result in a high sensitivity to malfunctioning, which
unavoidably causes the undesired effect of disconnecting sets of nodes from the
source and thus the interruption of the broadcasting service.

Therefore, a general approach to cope with this scenario is to make the SPT
fault-tolerant against a given number of simultaneous component failures, by
adding to it a set of suitably selected edges from the underlying graph, so that
the resulting structure will remain connected w.r.t. the source. In other words,
the selected edges can be used to build up alternative paths from the root, each
one of them in replacement of a corresponding original shortest path which was
affected by the failure. However, if these paths are constrained to be shortest,
then it can be easily seen that for a non-negatively real weighted and undirected
graph of n nodes and m edges, this may require as much as Θ(m) additional
edges, also in the case in which m = Θ(n2). In other words, the set-up costs of
the strengthened network may become unaffordable.

Thus, a reasonable compromise is that of building sparse and fault-tolerant
structure which approximates the shortest paths from the source, i.e., that con-
tains paths which are guaranteed to be longer than the corresponding shortest
paths by at most a given stretch factor, for any possible edge/vertex failure that
has to be handled. In this way, the obtained structure can be revised as a 2-level
communication network: a first primary level, i.e., the SPT, which is used when
all the components are operational, and an auxiliary level which comes into play
as soon as a component undergoes a failure.

In this paper, we show that an efficient structure of this sort exists for a
prominent class of failures in an SPT, namely those involving a set of adjacent
edges along a shortest path emanating from the source of the SPT. Our study
is motivated by several applications, such as, for instance, traffic engineering
in optical networks or path-congestion management in road-networks, where
failures in the above form often affect the SPT [5,11,19]. For this kind of failure,
also known as a path failure1, we show that it is possible not only to obtain
resilient sparse structures, but also that these can be pre-computed efficiently,
and that they can return quickly the auxiliary network level.

1.1 Related Work
In the recent past, many efforts have been dedicated to devising single and
multiple edge/vertex fault-tolerant structures. More formally, let r denote a dis-
tinguished source vertex of a non-negatively real-weighted and undirected graph
1 Notice that this is a small abuse of nomenclature, since failures we consider are

restricted to the path’s edges only.

226 A. D’Andrea et al.

G = (V (G), E(G)), with n nodes and m edges. We say that a spanning sub-
graph H of G is an Edge/Vertex-fault-tolerant α-Approximate SPT (in short,
α-E/VASPT), with α > 1, if it satisfies the following condition: For each edge
e ∈ E(G) (resp., vertex v ∈ V (G)), all the distances from r in the subgraph
H − e, i.e., H deprived of edge e (resp., the subgraph H − v, i.e., H deprived of
vertex v and all its incident edges) are α-stretched (i.e., at most α times longer)
w.r.t. the corresponding distances in G − e (resp., G − v).

An early work on the matter is [20], where the authors showed that by adding
at most n − 1 edges to the SPT, a 3-EASPT can be obtained. This was shown to
be very useful in order to compute a recovery scheme needing only one backup
routing table at each node [18]. In [15], the authors showed instead how to build
a 1-EASPT in Õ(mn) time2. Notice that, a 1-EASPT contains exact replacement
paths from the source, but of course its size might be Θ(n2) if G is dense. Then,
in [2], Baswana and Khanna devised a 3-VASPT of size O(n log n). Later on, a
significant improvement to this result was provided in [6], where the authors
showed the existence of a (1 + ε)-E/VASPT, for any ε > 0, of size O(n logn

ε2).
Concerning unweighted graphs, in [2] the authors give a (1 + ε)-VABFS (where

BFS stands for breadth-first search tree) of size O(n
ε3 + n log n) (actually, such a

size can be easily reduced to O(n
ε3)). Then, Parter and Peleg in [21] present a

set of lower and upper bounds to the size of a (α, β)-EABFS, namely a structure
for which the length of a path is stretched by at most a factor of α, plus an
additive term of β. More precisely, they construct a (1, 4)-EABFS of size O(n4/3).
Moreover, assuming at most f = O(1) edge failures can take place, they show
the existence of a (3(f + 1), (f + 1) log n)-EABFS of size O(fn). This was improv-
ing onto the general fault-tolerant spanner construction given in [9], which, for
weighted graphs and for any integer parameter k ≥ 1, is resilient to up to f edge
failures with stretch factor of 2k − 1 and size O(f · n1+1/k).

On the other hand, concerning approximate-distance sensitivity oracles (sim-
ply α-oracles in the following, where α denotes the guaranteed approximation
ratio w.r.t. true distances), researchers aimed at computing, with a low prepro-
cessing time, a compact data structure able to quickly answer to some distance
query following an edge/vertex failure. The vast literature dates back to the work
[23] of Thorup and Zwick, who showed that, for any integer k ≥ 1, any undi-
rected graph with non-negative edge weights can be preprocessed in O(km ·n1/k)
time to build a (2k − 1)-oracle of size O(k · n1+1/k), answering in O(k) time to
a post-failure distance query, recently reduced to O(1) time in [8]. Due to the
long-standing girth conjecture of Erdős [13], this is essentially optimal. Con-
cerning the failure of a set F of at most f edges, in [10] the authors built,
for any integer k ≥ 1, a (8k − 2)(f + 1)-oracle of size O(fk · n1+1/k log(nW)),
where W is the ratio of the maximum to the minimum edge weight in G, and
with a query time of Õ(|F | · log log d), where d is the actual distance between
the queried pair of nodes in G − F . As far as SPT oracles (i.e., returning dis-
tances/paths only from a source node) are concerned, in [2] it is shown how to
build in O(m log n + n log2 n) time an SPT oracle of size O(n log n), that for any

2 The Õ notation hides poly-logarithmic factors in n.

Path-Fault-Tolerant Approximate Shortest-Path Trees 227

single-vertex-failure returns a 3-stretched replacement path in time proportional
to the path’s size. Finally, for directed graphs with integer positive edge weights
bounded by M , in [14] the authors show how to build in Õ(Mnω) time and Θ(n2)
space a randomized single-edge-failure SPT oracle returning exact distances in
O(1) time, where ω < 2.373 denotes the matrix multiplication exponent.

1.2 Our Results

In this paper, we consider the specific, yet interesting, problem of making a SPT
resilient to the failure of any sub-path of size (i.e., number of edges) at most
f ≥ 1 emanating from its source.

More in details, let F be a set of cascading edges of a given SPT, where
0 < |F | ≤ f . We say that a spanning subgraph H of G is a Path-Fault-Tolerant α-
Approximate SPT (in short, α-PASPT), with α ≥ 1, if, for each vertex z ∈ V (G),
the following inequality holds: dH−F (z) ≤ α · dG−F (z), where dG−F (z) (resp.,
dH−F (z)) denotes the distance from r to z in G − F (resp., H − F). For any
integer parameter k ≥ 1, we can provide the following results:

– We give an algorithm for computing, in O(n·(m+f2)) time, a (2k−1)(2|F |+
1)-PASPT containing O(kn · f1+ 1

k) edges;
– We give an algorithm for computing, in O(n · (m + f2)) time, an oracle of

size O(kn ·f1+ 1
k) which is able to return: (i) a (2k−1)(2|F |+1)-approximate

distance in G − F between r and a generic vertex z in O(k) time; (ii) the
associated path in O(k + f + �) time, where � is the number of its edges; if
k = 1, this can be further reduced to O(�) time.

Concerning the former result, it compares favorably with both the aforemen-
tioned general fault-tolerant spanner constructions given in [9], and the un-
weighted EABFS provided in [21], while concerning instead the latter result, it
compares favorably with the fault-tolerant oracle given in [10]. For the sake of
fairness, we remind that all these structures were thought to cope with edge
failures arbitrarily spread across G, though.

Besides that, we also analyze in detail the special case when at most f = 2
failures of cascading edges can occur, for which we are able to achieve a sig-
nificantly better stretch factor. More precisely, we design: (i) an algorithm for
computing, in O(n · (m + n log n)) time, a 3-PASPT containing O(n log n) edges;
(ii) an algorithm for computing, in O(n · (m + n log n)) time, an oracle of size
O(n log n) which is able to return a 3-approximate distance in G − F between
r and a generic vertex z in constant time, and the associated path in a time
proportional to the number of its edges. Due to space limitations, some of the
proofs related to these latter results will be given in the full version of the paper.

Finally, we provide an experimental evaluation of the proposed structures, to
assess their performance in practice w.r.t. both size and quality of the stretch.

228 A. D’Andrea et al.

2 Notation

In what follows, we give our notation for the considered problem. We are given a
non-negatively real-weighted, undirected graph G = (V (G), E(G)) with |V (G)| =
n vertices and |E(G)| = m edges. We denote by wG(e) or wG(u, v) the weight
of the edge e = (u, v) ∈ E(G). Given an edge e = (u, v), we denote by G − e
or G − (u, v) the graph obtained from G by removing the edge e. Similarly, for
a set F of edges, G − F denotes the graph obtained from G by removing the
edges in F . Furthermore, given a vertex v ∈ V (G), we denote by G−v the graph
obtained from G by removing vertex v and all its incident edges. Given a graph
G, we call πG(x, y) a shortest path between two vertices x, y ∈ V (G), dG(x, y)
its weighted length (i.e., the distance from x to y in G), TG(r) a shortest path
tree (SPT) of G rooted at a certain distinguished source vertex r. Moreover, we
denote by TG(r, x) the subtree of TG(r) rooted at vertex x. Whenever the graph
G and/or the source vertex r are clear from the context, we might omit them,
i.e., we write π(u) and d(u) instead of πG(r, u) and dG(r, u), respectively. When
considering an edge (x, y) of an SPT, we assume x and y to be the closest and
the furthest endpoints from r, respectively. Furthermore, if P is a path from x
to y and Q is a path from y to z, with x, y, z ∈ V (G), we denote by P ◦ Q the
path from x to z obtained by concatenating P and Q. We also denote by w(P)
the total weight of the edges in P .

For the sake of simplicity we consider only edge weights that are strictly posi-
tive. However, our entire analysis also extends to non-negative weights. Through-
out the rest of the paper, we assume that, when multiple shortest paths exist,
ties are broken in a consistent manner. In particular we fix an SPT T = TG(r)
of G and, given a graph H ⊆ G and x, y ∈ V (H), whenever we compute the
path πH(x, y) and ties arise, we prefer edges in E(T).

A path between any two vertices u, v ∈ V (G) is said to be an α–approximate
shortest path if its length is at most α times the length of the shortest path
between u and v in G. For the sake of simplicity, we assume that, if a set of
at most f edge failures has to be handled, the original graph is (f + 1)–edge
connected. Indeed, if this is not the case, we can guarantee the (f + 1)–edge
connectivity by adding at most O(nf) edges of weight +∞ to G. Notice that
this is not actually needed by any of the proposed algorithms.

3 Our PASPT Structure and the Corresponding Oracle

In what follows, we give a high-level description of our algorithm for computing
a (2|F | + 1)-PASPT, namely H (see Algorithm 1), where |F | ≤ f . We define
the level �(v) of a vertex v ∈ V (G) to be the hop-distance between r and v in
T = TG(r), i.e., the number of edges of the unique path from r to v in T . Note
that, when a failure of |F | consecutive edges occurs on a shortest path, T will be
broken into a forest C of |F | + 1 subtrees. We consider these subtrees as rooted
according to T , i.e., each tree Ti is rooted at vertex ri that minimizes �(ri).

Roughly speaking, the algorithm considers all possible path failures F ∗ of f
vertices by fixing the deepest endpoint v of the failing path. It then reconnects

Path-Fault-Tolerant Approximate Shortest-Path Trees 229

Algorithm 1. Algorithm for building a (2|F | + 1)-PASPT. Notice that an
optional integer parameter k ≥ 1 is used. By default we set k = 1.
Input : A graph G, r ∈ V (G), an SPT T = TG(r), an integer f
Output: A (2|F | + 1)-PASPT of G rooted at r

1 H ← T = TG(r)
2 foreach v ∈ V (G) do
3 Let 〈r = z0, z1, . . . , z�(v)〉 be the path from r to v in T

// F ∗ contains last min{f, �(v)} edges of the path
4 Let F ∗ = {(zi−1, zi) : i > �(v) − min{�(v), f}}
5 Let C∗ = {T ∗

1 , T ∗
2 , . . . } be the set of connected components of T − F ∗

// Build an auxiliary graph U associated with v
6 U ← ({r∗

i : r∗
i is the root of T ∗

i }, ∅)
7 foreach T ∗

i , T ∗
j ∈ C∗ : T ∗

i �= T ∗
j do

8 Let Ei,j = {(u, v) ∈ E(G) \ F ∗ : u ∈ V (T ∗
i), v ∈ V (T ∗

j)}
9 (x′, y′) ← arg min

(x,y)∈Ei,j

{dT (r∗
i , x) + wG(x, y) + dT (y, r∗

j)}

// We say that (x′, y′) ∈ E(G) is associated to (r∗
i , r∗

j) ∈ E(U)
10 E(U) ← E(U) ∪ {(r∗

i , r∗
j)}

11 wU (r∗
i , r∗

j) = dT (r∗
i , x′) + wG(x′, y′) + dT (x′, r∗

j)

// Optional step, executed only if k �= 1. Otherwise, let U ′ = U.
12 U ′ ← Compute a (2k − 1)-spanner of U
13 E(H) ← E(H) ∪ E(U ′)
14 return H

the resulting f + 1 subtrees of G − F ∗ by selecting at most O(f2) edges into a
graph U , one for each couple of trees T ∗

i , T ∗
j of the forest G−F . These edges are

either directly added to the structure H or they are first sparsified into a graph
U ′ by using a suitable multiplicative (2k − 1)-spanner, so that only kf1+ 1

k of
them are added to H .

In particular, it is known that, given an n-vertex graph and an integer k ≥ 1,
both a (2k − 1)–spanner and a (2k − 1)–approximate distance oracle of size
O(kn1+ 1

k) can be built in O(n2) time. The oracle can report an approximate
distance between two vertices in O(k) time, and the corresponding approximate
shortest path in time proportional to the number of its edges. For further details
we refer the reader to [3,4,22]. Recently, it has been shown in [8] that a random-
ized (2k−1)–approximate distance oracle of expected size O(kn1+ 1

k) can be built,
so that answering a distance query requires only constant time. In what follows,
however, we only describe results which are based on deterministic construction
and provide a worst case guarantee on the size of the resulting structures.

We start by bounding the running time of Algorithm 1:

Lemma 1. Algorithm 1 requires O(n(m + f2)) time.

Proof. Notice that the loop in line 2 considers each vertex of G at most once. We
bound the time required by each iteration. For each vertex v a complete auxiliary

230 A. D’Andrea et al.

graph U of O(f) vertices is built. Moreover, the weights of all the edges of U
can be computed in O(m) time by scanning all the edges of E(G) \ F ∗ while
keeping track, for each pair of vertices r∗

i , r∗
j ∈ V (U), of the minimum value

of the formula in line 9. Finally, the optional spanner construction invoked by
line 12 requires O(f2) time. This concludes the proof. �	

We now bound the size of the returned structure:

Lemma 2. The structure H returned by Algorithm 1 contains O(kn · f1+ 1
k)

edges.

Proof. At the beginning of the algorithm, H coincides with T = TG(r), so
|E(H)| = O(n). Therefore, we only need to bound the number of edges added to
H during the execution of the algorithm. Notice that, for each vertex v ∈ V (G),
Algorithm 1 considers at most f + 1 connected components of C∗. For each pair
of components, at most one edge is added to U , hence |E(U)| = O(f2). Either
k = 1 and U ′ = U or k > 1 and U ′ is a (2k − 1)–spanner of U . In both cases we
have |U ′| = O(k|U |1+ 1

k) = O(kf1+ 1
k). As only the edges of U ′ gets added to H ,

the claim follows. �	
We now upper-bound the distortion provided by the structure H . For the sake

of clarity, we first discuss the case where the step of line 12 of Algorithm 1 is
omitted, i.e., we simply set k = 1 and U ′ = U . At the end of this section we will
argue about the general case.

For each path failure F of |F | ≤ f edges, and for each target vertex t, we will
consider a suitable path P in G − F , whose length is at most (2|F | + 1) times
the distance dG−F (t). Then, since P might not be entirely contained in H − F ,
we will show that its length must be an upper bound to the length a path Q in
H − F between r an t, and hence to dH−F (t).

We first discuss how P is defined: consider the forest C of the connected
components of T − F . Let π = πG−F (r), let r0 = r, and let t0 be the last
vertex of π belonging to T0. W.l.o.g., we assume t
∈ V (T0), as otherwise we have
dH−F (t) = dG−F (t). Moreover, we call (t0, s1) the edge following vertex t0 in π.

Initially, we set P0 = πT (s, t0) ◦ (t0, s1) and i = 1. We proceed iteratively: Let
Ti be the subtree of C which contains si and let ti be the last vertex of π such
that ti belongs to Ti, i.e., ti is in the same subtree as si (notice that, it may be
that si = ti). Call ri the root of Ti. If ti = t we set P = Pi−1◦πT (si, ri)◦πT (ri, ti),
and we are done. Otherwise, let (ti, si+1) be the edge following ti in π. We set
Pi = Pi−1 ◦πT (si, ri)◦πT (ri, ti)◦(ti, si+1), we increment i by one, and we repeat
the whole procedure. Figure 1 shows an example of such a path P . Let h be the
final value of i, at the end of this procedure, so that t = th ∈ V (Th). Notice that,
by construction, the path P does not contain any failed edge. We now argue that
the length w(P) of P , is always at most (2|F | + 1) times the distance dG−F (t).

Lemma 3. dP (t) ≤ (2|F | + 1) · dG−F (t), for every t ∈ V (G).

Proof. We proceed by showing, by induction on i, that dP (ti) ≤ (2i + 1) ·
dG−F (ti). The claim follows since t = th and h ≤ |F |.

Path-Fault-Tolerant Approximate Shortest-Path Trees 231

r ≡ r0

r1

r2

r3

s1

s3

s2
t2

t

t1

t0

T0

T3

T2

T1

Fig. 1. Example of construction of P . The path P is shown in bold, while the path π is
composed of both the light subpaths and of the bold edges with endpoint in different
subtrees. In this example P traverses 4 subtrees and hence h = 3.

The base case is trivially true, as we have dP (t0) = 1 · dG−F (t0), since t0
belongs to the same subtree T0 as r. Now, suppose that the claim is true for
i − 1. We can prove that it is true also for i by writing:

dP (ti) = dP (ti−1) + dP (ti−1, si) + dP (si, ri) + dP (ri, ti)
≤ (2i − 1) · dG−F (ti−1) + dG−F (ti−1, si) + dG(si, ri) + dG(ri, ti)
≤ (2i − 1) · dG−F (ti−1) + dG−F (ti−1, si) + dG(si, ti) + 2dG(ri, ti)
≤ (2i − 1) · dG−F (ti) + 2dG(ti)) ≤ (2i + 1) · dG−F (ti).

�	
It remains to show that, even though P might not be entirely contained in

H − F , its length w(P) is always an upper bound to dH−F (t).
Let v be the deepest endpoint (w.r.t. level) among the endpoints of the edges

in F . Moreover, let F ∗ be the set of failed edges considered by Algorithm 1
when v is examined at line 2, and let U be the the corresponding auxiliary
graph. Notice that F ⊆ F ∗ as F ∗ always contains min{�(v), f} edges. As a
consequence, T0 ∈ C contains, in general, several trees in C∗. We let R be the
set of the roots of all the subtrees of T0 which are in C∗

0 . Notice that every other
tree Tj ∈ C such that Tj
= T0 belongs to C∗ (see Figure 2).

Remember that rh is the root of the subtree Th ∈ C∗ = T −F ∗ which contains
t. Let r′

0 be the root of the last tree T ′
0 ∈ C∗ which is contained in T0 and is

traversed by πG−F (rh). It follows that r′
0 ∈ V (P). We now construct another

path Q, which will be entirely contained in H − F . We choose a special vertex
r∗
0 ∈ R, as follows:

r∗
0 = arg min

z∈R
{dT (z) + dU (z, rh)}. (1)

The path Q is composed of three parts, i.e. Q = Q1◦Q2◦Q3. The first one, Q1,
coincides with πT (r∗

0). The second one is obtained by considering the shortest
path πU (r∗

0 , rh) and by replacing each edge going from a vertex r∗
i ∈ V (U) to a

vertex r∗
j ∈ V (U) with the path: πT (r∗

i , x′) ◦ (x′, y′) ◦ πT (x′, r∗
j), where (x′, y′)

232 A. D’Andrea et al.

T0

T ∗
0

T ∗
1

T ∗
2

s ≡ r0

r∗
1

r∗
2

r∗
0

r∗
i

r∗
h

U

r∗
0

t

Fig. 2. An example of path Q contained in H −F (left) and of the corresponding edges
of U (right). The length of Q is upper-bounded by that of P .

is the edge associated to (r∗
i , r∗

j) by Algorithm 1 when v is considered. Finally,
Q3 = πT (r∗

h, t). In Figure 2, we show an example of how such path Q can be
obtained. We now prove that:

Lemma 4. dH−F (r, t) ≤ w(Q) ≤ w(P)

Proof. Notice that the path Q is in H and does not contain any failed edge,
hence dH−F (r, t) ≤ w(Q) is trivially true.

To prove w(Q) ≤ w(P), notice that P can also be decomposed into the three
subpaths P1 = P [r, r′

0], P2 = P [r′
0, rh] and P3 = P [rh, t]. We have that that

P3 = Q3 and that the endpoints of P2 coincide with the endpoints of Q2. By the
choice of r∗

0 , we must have w(Q1) + w(Q2) ≤ w(P1) + w(P2) as the (weighted
length of) path P1 ◦ P2 is considered in equation (1) when z = r′

0. This implies
that w(Q) = w(Q1) + w(Q2) + w(Q3) ≤ w(P1) + w(P2) + w(P3) = w(P). �	

By combining Lemma 2 with Lemma 3 and 4, it immediately follows:

Theorem 1. Algorithm 1 computes, in O(n(m + f2)) time, a (2|F | + 1)-PASPT
of size O(nf2), for any |F | ≤ f .

We now relax the assumption that U = U ′. Indeed, if k
= 1, Algorithm 1
computes, in line 12, a (2k − 1)–spanner U ′ of the graph U . In this case, we can
construct a path Q′ in a similar way as we did for Q, with the exception that
we now use the graph U ′ instead of U . Once we do so, it is easy to prove that a
more general version of Lemma 4 holds:

Lemma 5. dH−F (r, t) ≤ (2k − 1)w(Q′) ≤ (2k − 1)w(P)

Lemma 5, combined with Lemma 3, immediately implies that dH−F (r, t) ≤
(2k − 1)(2|F | + 1)dG−F (r, t). This discussion allows us to show an interesting
trade-off between the size of the returned structure and the multiplicative stretch
provided, as summarized by the following theorem:

Theorem 2. Let k ≥ 1 be an integer. Then, Algorithm 1 can compute, in
O(n(m + f2)) time, a (2k − 1)(2|F | + 1)-PASPT of size O(nk · f1+ 1

k).

Path-Fault-Tolerant Approximate Shortest-Path Trees 233

Algorithm 2. Algorithm for building an oracle with constant query time.
1 Preprocess T = TG(r) to answer LCA queries as shown in [16]
2 For each vertex v ∈ V (G), compute and store its level �(v).
3 foreach v ∈ V (G) do
4 Let 〈r = z0, z1, . . . , z�(v) be the path from r to v in T

5 Build graph U associated with vertex v as in Algorithm 1
6 Compute and store the solution to the all-pairs shortest paths problem on U

7 foreach η = 1, . . . , min{f, �(v)} do
8 foreach rh : h > �(v) − η do
9 R ← {zi : 0 ≤ i ≤ �(v) − η}

10 Let r∗
0 be the vertex of R minimizing Equation (1)

11 Store r∗
0 with key (v, η, ri)

Algorithm 3. Algorithm for building an oracle with O(f) query time.
1 Preprocess T to answer LCA queries as shown in [16]
2 For each vertex v ∈ V (G), compute and store its level �(v).
3 foreach v ∈ V (G) do
4 Build graph U associated with vertex v as in Algorithm 1
5 Build and store a distance sensitivity oracle of U with stretch 2k − 1

3.1 Oracle Setting

In what follows, we show how Algorithm 1 can be used to compute an approx-
imate distance oracle of size O(nf2) (see Algorithm 2). We also show that a
smaller-size oracle can be obtained (see Algorithm 3) if we allow for a slightly
larger query time.

Theorem 3. Let F be a path failure of |F | ≤ f edges and t ∈ V (G). Algorithm 2
builds, in O(n(m + f2)) time, an oracle of size O(nf2) which is able to return:

– a (2|F |+1)-approximate distance in G−F between r and t in constant time;
– the associated path in a time proportional to the number of its edges.

Proof. In order to answer a query we need to find: (i) the root r∗
0 of the subtree

of C∗ which contains t0, (ii) the root rh of the subtree of C∗ containing t. In order
to find rh, we perform a LCA query on T to find the least common ancestor u
between v and t. Either �(v) ≥ �(u) > �(v) − |F |, in which case u = rh, or
�(u) ≤ �(v) − |F | which means that t belongs to T0. As in the latter case we
can simply return dT (t), we focus on the former one. To find r∗

0 we look for the
vertex associated with the triple (v, |F |, rh) stored by Algorithm 2 at line 11.

We answer a distance query with the quantity dT (r∗
0)+dU ′(r∗

0 , r∗
h)+dT (rh, t),

which can be computed in constant time by accessing the distances stored in
shortest path tree T , plus the solution of the APSP problem on U ′ computed by
Algorithm 2 when vertex v was considered.

234 A. D’Andrea et al.

To answer a path query we simply construct, and return, the path Q, by
expanding the edges of the graph U ′ into paths which are in G−F , as explained
before. This clearly takes a time proportional to the number of edges of Q. �	

If we allow for a query time that is proportional to O(f + k), we can reduce
the size of the oracle by computing a distance sensitivity oracle (DSO) of U (see
Algorithm 3). In this case, we can still find vertex rh using the LCA query, as
shown in the proof of Theorem 3, while vertex r∗

0 is guessed among the (up to)
f roots of the trees in G − F ∗ which are contained in T0. The resulting oracle is
summarized by the following:

Theorem 4. Let F be a path failure of |F | ≤ f edges, let t ∈ V (G) and let
k ≥ 1 be an integer. Algorithm 3 builds, in O(n(m + f2)) time, an oracle of size
O(nkf1+ 1

k) which is able to return:

– a (2k−1)(2|F |+1)-approximate distance in G−F between r and t in O(f +k)
time;

– the corresponding path in O(� + k + f) time, where � is the number of its
edges.

4 Our 3-PASPT Structure for Paths of 2 Edges

In what follows, we provide an algorithm which builds a 3-PASPT (see Algo-
rithm 4) for the special case of at most f = 2 cascading edge failures. This
structure improves, w.r.t. the quality of the stretch, over the general (2|F | + 1)-
PASPT of Section 3.

The algorithm starts with a 3-EASPT with O(n) edges [20] and proceeds as
follows. As initial building block, it considers a suitable path P in the shortest-
path tree TG(r), and constructs a structure H that is able to handle the failure of
a pair of edges {e1, e2}, such that e1 ∈ P , and guarantees 3-stretched distances
from r, for each vertex in G. Then, we make use of the following result of [2]:

Lemma 6 ([2]). There exists an O(n) time algorithm to compute an ancestor-
leaf path Q in TG(r) whose removal splits TG(r) into a set of disjoint subtrees
TG(r, r1), . . . , TG(r, rj) such that, for each i ≤ j:

– |TG(r, ri)| < n/2 and V (Q) ∩ V (TG(r, ri)) = ∅
– TG(r, ri) is connected to Q through some edge for each i ≤ j

This allows us to incrementally add edges to H by considering a set P of
edge-disjoint paths. This set can be obtained by recursively using the path de-
composition technique of Lemma 6 on the shortest-path tree TG(r). We show
that, in this way, we are able to build a 3-PASPT of size O(n log n). Given a path
π = 〈s, . . . , t〉 and a tree T ′, we denote by FirstLast(π, T ′) the edges of the sub-
paths of π going (i) from s to the first vertex of π in V (T ′), and (ii) from the last
vertex of π in V (T ′) to t. If these vertices do not exists, i.e., V (π) ∩ V (T ′) = ∅,
then we define FirstLast(π, T ′) = E(π). Moreover, we denote by C(x) the edges
connecting vertex x to its children in TG(r). We are able to prove that:

Path-Fault-Tolerant Approximate Shortest-Path Trees 235

Algorithm 4. Algorithm for building a 3-PASPT for the case of f = 2.
Input : A graph G, r ∈ V (G), an SPT T = TG(r)
Output: A 3-PASPT of G rooted at r

1 H ← TG(r)
2 T̂ ← compute a 3-EASPT of TG(r) as shown in [20]
3 H ← E(H) ∪ E(T̂)
4 Compute a path decomposition P of TG(r) by recursively applying Lemma 6
5 foreach Path P ∈ P do
6 foreach x ∈ V (P) : x is not a leaf and x �= r do
7 Let z be the (unique) child of x in P
8 Let ê be the edge connecting x and its parent int T

// Protect vertex x
9 E(H) ← E(H) ∪ FirstLast(πG−ê(x), TG(r, z))

10 if πG−ê(x) contains an edge e′ in C(x) then
11 E(H) ← E(H) ∪ FirstLast(πG−ê−e′ (x), TG(r, z))

// Protect vertex z
12 E(H) ← E(H) ∪ E(πG−ê(z))
13 foreach e′ ∈ {πG−ê(z) ∩ C(x)} do
14 E(H) ← E(H) ∪ E(πG−ê−e′ (z))

// Protect all the other children of x
15 foreach children zi of x zi �= z do
16 Let (u, q) be the first edge of πG−ê−(x,zi)(x, zi) with q ∈ V (TG(r, zi))
17 E(H) ← E(H) ∪ {(u, q)}

// Protect vertices whose paths that do not contain x
18 T ′ ← TG−x(r,) with edges oriented towards the leaves
19 E(H) ← E(H) ∪ {(x1, x2) ∈ E(T ′) : x2 �∈ TG(r, z)}
20 return H

Theorem 5. Let F be a path failure of |F | ≤ 2 edges and t ∈ V (G). Algorithm
4 computes, in O(nm + n2 log n) time, a 3-PASPT of size O(n log n).

Notice that the proof of the above theorem will be given in the full version of
the paper. Notice also that it is possible to modify Algorithm 4 in order to build
an oracle of size O(n log n) which is able to report, with optimal query time,
both a 3-stretched shortest path in G−F and its distance, when F contains two
consecutive edges in T . Both the description of the modified algorithm and the
proof of the following theorem will be given in the full version of the paper.

Theorem 6. Let F be a path failure of |F | ≤ 2 edges and t ∈ V (G). A modifica-
tion of Algorithm 4 builds, in O(nm+n2 log n) time, an oracle of size O(n log n)
which is able to return:

– a 3-approximate distance in G − F between r and t in constant time;
– the associated path in a time proportional to the number its edges.

236 A. D’Andrea et al.

5 Experimental Study

In this section, we present an experimental study to assess the performance,
w.r.t. both the quality of the stretch and the size (in terms of edges), of the
proposed structures within SageMath (v. 6.6) under GNU/Linux.

As input to our algorithms, we used weighted undirected graphs belonging to
the following graph categories: (i) Uncorrelated Random Graphs (ERD): gener-
ated by the general Erdős-Rényi algorithm [7]; (ii) Power-law Random Graphs
(BAR): generated by the Barabási-Albert algorithm [1]; Quandrangular Grid
Graphs (GRI): graphs whose topology is induced by a two-dimensional grid
formed by squares. For each of the above synthetic graph categories we gener-
ated three input graphs of different size and density. We assigned weights to the
edges at random, with uniform probability, within [100, 100 000]. We also con-
sidered two real-world graphs. In details: (i) a graph (CAI) obtained by parsing
the CAIDA IPv4 topology dataset [17], which describes a subset of the Internet
topology at router level (weights are given by round trip times); (ii) the road
graph of Rome (ROM) taken from the 9th Dimacs Challenge Dataset3 (weights
are given by travel times).

Then, for each input graph, we built both the (2k − 1)(2|F | + 1)-PASPT, for
which we focused on the basic case of k = 1, and the 3-PASPT, as follows: we
randomly chose a root vertex, computed the SPT and enriched it by using the
corresponding procedures (i.e. Algorithm 1 and 4, resp.). We measured the total
number of edges of the resulting structures.

Regarding Algorithm 1, we set f = 10, as such a value has already been
considered in previous works focused on the effect of path-like disruptions on
shortest paths [5,12]. Then, we randomly select path failures of |F | edges to
perform on the input graphs, with |F | uniformly chosen at random within the
range [2, f]. We removed the edges belonging to the path failure from both the
original graph and the computed structure. Regarding Algorithm 4, we simply
chose at random a pair of edges and removed them from both the original graph
and the computed structure.

After the removal, we computed distances, from the root vertex, in both the
original graph and the fault tolerant structure, and measured the resulting aver-
age stretch. In order to be fair, we considered only those nodes that get discon-
nected as a consequence of the failures. Our results are summarized in Table 1,
where, for each input graph, we report the number of vertices and edges, the
average size (number of edges) of the two fault tolerant structures and the cor-
responding provided average stretch.

First of all, our results show that the quality of the stretch, provided by both
the (2|F |+1)-PASPT and the 3-PASPT in practice, is always by far better than the
estimation given by the worst-case bound (i.e. 2|F|+1 and 3, resp.). In details,
the average stretch is always very close to 1 and does not depend neither on the
input size nor on the number of failures. This is probably due to the fact that
those cases considered in the worst-case analysis are quite rare.

3 http://www.dis.uniroma1.it/challenge9

http://www.dis.uniroma1.it/challenge9

Path-Fault-Tolerant Approximate Shortest-Path Trees 237

Table 1. Average number of edges and stretch factor for both the (2|F | + 1)-PASPT
and the 3-PASPT.

G |V(G)| |E(G)| (2|F | + 1)-PASPT 3-PASPT
#edges avg stretch #edges avg stretch

ERD-1 500 50 000 3 980 1.8015 957 1.0000
ERD-2 1 000 50 000 8 899 1.1360 1 924 1.0000
ERD-3 5 000 50 000 20 198 1.0903 9 501 1.0035
BAR-1 500 1 491 1 366 1.0003 949 1.0041
BAR-2 1 000 2 991 2 765 1.0034 1 871 1.0005
BAR-3 5 000 14 991 13 349 1.0040 9 459 1.0000
GRI-1 500 1 012 1 008 1.0005 868 1.0000
GRI-2 1 000 1 984 1 973 1.0000 1 749 1.0000
GRI-3 5 000 9 940 9 884 1.0000 8 826 1.0000
CAI 5 000 6 328 6 033 1.0000 6 026 1.0000

ROM 3 353 4 831 4 796 1.0000 4 780 1.0000

Similar considerations can be done w.r.t. the number of edges that are added
to the SPT by Algorithms 1 and 4. In fact, also in this case, the structures behave
better than what the worst-case bound suggests. For instance, the number of
edges of the (2|F | + 1)-PASPT (the 3-PASPT, resp.) is much smaller than nf2

(n log n, resp.). In summary, our experiments suggest that the proposed fault
tolerant structures might be suitable to be used in practice.

References

1. Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

2. Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed ver-
tex: Near optimal data structures for undirected unweighted graphs. Algorith-
mica 66(1), 18–50 (2013)

3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in õ(n2)
time. In: Proc. of 15th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 271–280 (2004)

4. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-
pected O(n2) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)

5. Bauer, R., Wagner, D.: Batch dynamic single-source shortest-path algorithms: An
experimental study. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 51–62.
Springer, Heidelberg (2009)

6. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Fault-tolerant approximate shortest-path
trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 137–148.
Springer, Heidelberg (2014)

7. Bollobás, B.: Random Graphs. Cambridge University Press (2001)
8. Chechik, S.: Approximate distance oracles with constant query time. In: Proc. of

46th ACM Symposium on Theory of Computing (STOC), pp. 654–663 (2014)

238 A. D’Andrea et al.

9. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: Proc. of 41st ACM Symposium on Theory of Computing (STOC),
pp. 435–444. ACM (2009)

10. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles
and routing schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 84–96. Springer, Heidelberg (2010)

11. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Dynamically
maintaining shortest path trees under batches of updates. In: Moscibroda, T.,
Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 286–297. Springer,
Heidelberg (2013)

12. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Experimental
evaluation of dynamic shortest path tree algorithms on homogeneous batches. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 283–294.
Springer, Heidelberg (2014)

13. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Ap-
plications, pp. 29–36 (1964)

14. Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-
source replacement paths. In: Proc. of 53rd IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 748–757. IEEE (2012)

15. Gualà, L., Proietti, G.: Exact and approximate truthful mechanisms for the short-
est paths tree problem. Algorithmica 49(3), 171–191 (2007)

16. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

17. Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy,
K.C.: The CAIDA IPv4 routed/24 topology dataset.
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

18. Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Polynomial-time computable backup
tables for shortest-path routing. In: Proc. of 10th Internaltional Colloquium
on Structural Information Complexity (SIROCCO). Proceedings in Informatics,
vol. 17, pp. 163–177. Carleton Scientific (2003)

19. Mereu, A., Cherubini, D., Fanni, A., Frangioni, A.: Primary and backup paths
optimal design for traffic engineering in hybrid igp/mpls networks. In: Proc. of 7th
International Workshop on Design of Reliable Communication Networks (DRCN),
pp. 273–280. IEEE (2009)

20. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source
shortest paths tree is good and fast. Algorithmica 35(1), 56–74 (2003)

21. Parter, M., Peleg, D.: Fault tolerant approximate BFS structures. In: Proc. of 25th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1073–1092. SIAM
(2014)

22. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate dis-
tance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidel-
berg (2005)

23. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of ACM 52(1), 1–24
(2005)

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

A Faster Computation of All the Best Swap
Edges of a Tree Spanner∗

Davide Bilò1, Feliciano Colella2, Luciano Gualà3,
Stefano Leucci4, and Guido Proietti4,5

1 Dipartimento di Scienze Umanistiche e Sociali, Università di Sassari, Italy
2 Gran Sasso Science Institute, L’Aquila, Italy

3 Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata", Italy
4 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,

Università degli Studi dell’Aquila, Italy
5 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy

davide.bilo@uniss.it, feliciano.colella@gssi.infn.it,
guala@mat.uniroma2.it, {stefano.leucci,guido.proietti}@univaq.it

Abstract. Given a 2-edge connected, positively real-weighted graph G
with n vertices and m edges, a tree σ-spanner of G is a spanning tree T in
which for every pair of vertices, the ratio of their distance in T over that
in G is bounded by σ, the so-called stretch factor of T . Tree spanners
with provably good stretch factors find applications in communication
networks, distributed systems, and network design, but unfortunately
–as any tree-based infrastructure– they are highly sensitive to even a
single link failure, since this results in a network disconnection. Thus,
when such an event occurs, the overall effort that has to be afforded to
rebuild an effective tree spanner (i.e., computational costs, set-up of new
links, updating of the routing tables, etc.) can be prohibitive. However,
if the edge failure is only transient, these costs can simply be avoided, by
promptly reestablishing the connectivity through a careful selection of a
temporary swap edge, i.e., an edge in G reconnecting the two subtrees of
T induced by the edge failure. According to the tree spanner’s nature,
a best swap edge for a failing edge e is then a swap edge generating a
reconnected tree of minimum stretch factor w.r.t. distances in the graph
G deprived of edge e. For this problem we provide two efficient linear-
space solutions for both the weighted and the unweighted case, running
in O(m2 logα(m,n)) and O(mn log n) time, respectively. As discussed in
the paper, our algorithms also improve on the time complexity of previ-
ous results provided for other related settings of the problem.

1 Introduction

Let V be a set of n sites that must be reciprocally interconnected, let E be a set
of m potential links between the sites, and let w(e) be some positive real cost
∗ This work was partially supported by the Research Grant PRIN 2010 “ARS Tech-

noMedia", funded by the Italian Ministry of Education, University, and Research.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 239–253, 2015.
DOI: 10.1007/978-3-319-25258-2_17

240 D. Bilò et al.

associated with link e. Let G = (V,E) be the corresponding weighted, undirected
graph, and assume that G is 2-edge-connected (i.e., to disconnect G we have to
remove at least 2 edges). Since we aim to establish an all-to-all communication
network in G, we have to design a connected spanning subgraph H = (V,E′ ⊆ E)
of G, which will serve as the actual communication infrastructure. On the one
hand, H should be as sparse as possible, so that set-up and operational costs will
be low, but on the other hand it should be efficient, in the sense that it should
preserve the structural properties of the underlying graph. For example, if edge
costs do now represent lengths, then we would like to have a sparse network which
will preserve distances in G as much as possible. From a theoretical point of view,
if we push on the extreme side the sparseness requirement, then H should be a
spanning tree of G, say T , minimizing the maximum stretch factor w.r.t. all the
node-to-node distances. Unfortunately, computing such a structure, also known
as a tree σ-spanner, where σ is exactly the optimal stretch factor, is well-known
to be APX-hard. More precisely, if G does not admit a tree 1-spanner, then the
problem is not approximable within any constant factor better than 2, unless
P=NP [12], while to the best of our knowledge no non-trivial upper bounds are
known in terms of approximability, except for the O(n)-approximation factor
returned by a Minimum Spanning Tree (MST) of G. The only positive result
is instead the polynomial-time algorithm for computing a tree 1-spanner, that
exists only if the input graph admits a unique MST (which coincides with the tree
1-spanner itself) [6]. On the other hand, if G is unweighted, then, unless P=NP,
the problem is not approximable within an additive term of o(n) [9], and the
corresponding decision problem of establishing whether a tree σ-spanner exists is
NP-complete for every fixed σ ≥ 4. On the positive side the optimization problem
is O(log n)-approximable [9], while establishing whether a tree σ-spanner exists
is polynomial-time solvable for σ = 2 (see again [6]) and it is an open problem
for σ = 3. Furthermore, it is known that constant-stretch tree spanners can be
found for several special classes of graphs, like strongly chordal, interval, and
permutation graphs (see [5] and the references therein). Finally, for the sake of
completeness, we mention that for the related concept of average tree σ-spanners,
where the focus is on the average stretch w.r.t. all node-to-node distances, it was
shown that every graph admits an average tree O(1)-spanner [1].

Although near-optimal tree spanners are hard to be found, the use of approx-
imate tree spanners is frequent in the practice. Thus, for them it comes into
play a third vital requirement for a communication network, namely its ability
to maintain a satisfying level of efficiency also when any of its components (edge
or node) fails. However, a tree is not even resilient to a single edge failure! To
circumvent this problem, one could associate with each tree edge a swap edge
that enters into function as soon a failure occurs. This solution is particulary
attractive when failures are transient, since switching to the swap tree is rapid
and smooth in terms of rerouting processes. Not surprisingly then, this solution
has been pursued for several spanning tree structures, and, from an algorithmic
point of view, the main question was always the same: once that a suitable cri-
teria for the swapping is fixed, how to compute quickly all the best possible swap

A Faster Computation of All the Best Swap Edges of a Tree Spanner 241

edges (ABSE problem, in short), one for each tree edge? In this paper, we aim
to provide an answer to this question for the tree spanner structure.

1.1 Related Work

The ABSE problem for a tree spanner was introduced in [7]. In that paper, the
authors make however the following assumption as far as the swap criteria is
concerned: a best swap edge is an edge minimizing the stretch of the swap tree
w.r.t. distances in the original graph G, and not w.r.t. distances in the fault-free
subgraph G − e = (V,E \ {e}). This contrasts with the intuition that a swap
tree should be measured in the surviving graph, and not in the original graph,
which is in fact the standard assumption in the swap literature. However, as
argued by the authors, in this way the swap tree will be built so that the true
distances in G are (approximately) preserved, which can be also of interest in
terms of quality-of-service. As a matter of fact, in [7] the authors devise two
efficient linear-space solutions for both the weighted and the unweighted case,
running in O(m2 logn) and O(n3) time, respectively, and using O(m) and O(n2)
space, respectively.

1.2 Our Results

In this paper, we adopt instead the classic approach of measuring the quality of
a swap tree in G− e, and we present two efficient linear-space solutions for the
ABSE tree spanner problem for both the weighted and the unweighted case, and
running in O(m2 logα(m,n)) and O(mn log n) time, respectively, where α is the
inverse of the Ackermann function. For the weighted case, our solution requires
an elaboration of the approach proposed in [7]. More precisely, this latter solution
would suffer of the fact that once that the stretch factors have to be evaluated
in G − e, then correspondingly an all-to-all distance problem should be solved
in G− e, for every e in T . This would lead to an additional O(mn2 logα(m,n))
time factor, which could be harmful for sparse graphs. We then first show that
this step can actually be avoided, and then we devise a faster procedure to lower
the logn factor in [7] to logα(m,n). Concerning the unweighted case, first of
all notice that a closer inspection of the result provided in [7] shows that the
same O(n3) time bound can be obtained also when the stretch factors have to be
evaluated in G−e. Thus, to improve such a result, we adopt a different approach
than that provided in [7], which barely uses the dynamic programming technique
given there. In fact, our solution mainly relies on a reduction of our problem to
the dynamic maintenance of suitable properties of an auxiliary graph, which can
be addressed efficiently by means of a sophisticated data structure, namely the
top tree [2]. Thus, a comparison with the results one would get by adaptating
the algorithms given in [7], shows that we are always faster in the weighted case,
while for the unweighted case we are better for m = o

(
n2

logn

)
, i.e., for a large

range of graph densities. Conversely, since our algorithms can be used to solve
the problems studied in [7] without any additional overhead, we also improve
their results under the same conditions.

242 D. Bilò et al.

1.3 Other Related Work

The problem of swapping in spanning trees has received a significant attention
from the algorithmic community. There is indeed a line of papers which address
ABSE problems starting from different types of spanning trees. Just to mention a
few, we recall here the MST, the minimum diameter spanning tree (MDST), the
minimum routing-cost spanning tree (MRCST), and the single-source shortest-
path tree (SPT). For the MST, a best swap is of course a swap edge minimizing
the cost of the swap tree, i.e., a swap edge of minimum cost. This problem
is also known as the MST sensitivity analysis problem, and can be solved in
O(m logα(m,n)) time [14]. Concerning the MDST, a best swap is instead an edge
minimizing the diameter of the swap tree [11,13], and the best solution runs in
O(m logα(m,n)) time [4]. Regarding the MRCST, a best swap is clearly an edge
minimizing the all-to-all routing cost of the swap tree [15], and the fastest solu-
tions for solving this problem has a running time of O

(
m2O(α(n,n)) log2 n

)
[3].

Finally, concerning the SPT, the most prominent swap criteria are those aiming
to minimize either the maximum or the average distance from the root, and the
corresponding ABSE problems can be addressed in O(m logα(m,n)) time [4]
and O(mα(n, n) log2 n) time [8], respectively.

2 Preliminaries

Let G = (V,E) be an edge-weighted undirected graph with cost function w :
E → R

+. As usual, we denote by n and m the number of nodes and edges of G,
respectively. Let T be a spanning tree of a graph G. For any two given nodes x, y
in G, we denote by dT (x, y) and dG(x, y) the distances (i.e., the length of a short-
est path) between x and y in T and G, respectively, and we call the stretch factor
of the pair (x, y) the ratio (≥ 1) between these two distances. Accordingly, the
stretch factor of T w.r.t. G is defined as σ(T) = maxx,y∈V {dT (x, y)/dG(x, y)}.

For an edge e of T , let C(e) be the set of all edges of G − e = (V,E \ {e})
that crosses the cut induced by the removal of e from T . In the following, we
will assume that G is 2-edge-connected, and so for any e ∈ E, C(e) is not empty.
Moreover, for any f ∈ C(e), let Te/f denote the swap tree obtained by replacing
e with f in T . Then, we say that f is a best swap edge for e w.r.t. the stretch
factor if Te/f has minimum stretch factor in G − e as compared to any other
possible swap tree associated with e. In the rest of the paper we will assume that
if e = (u, v) and f = (u′, v′) then the two vertices u and u′ (and therefore also
v and v′) belong to the same connected component of T − e.

In this paper, we are interested in the problem of computing, for every edge e
of T , a best swap edge for e that minimizes the stretch factor of the swap tree.
We separately consider the case in which G is weighted and G is unweighted.

3 The Weighted Case

Let e = (u, v) be a tree edge and let f = (u′, v′) ∈ C(e) be a swap edge for
e. Observe that f is a swap edge only for the tree edges along the path from

A Faster Computation of All the Best Swap Edges of a Tree Spanner 243

u′ to v′ in T . An important property we will use is the following (this is just a
rephrasing of Property 1 given in [7]):

Property 1. For any weighted graph G = (V,E) and any pair x, y ∈ V , let
〈x = v0, v1, . . . , vk = y〉 be the sequence of nodes on a shortest path in G between
x and y. Then, for any spanning tree T of G, we have that there exists (at least)
an edge of such shortest path, say (vi, vi+1), such that dT (vi, vi+1)/dG(vi, vi+1) ≥
dT (x, y)/dG(x, y).

Thus, to evaluate the stretch factor of a swap treeTe/f, we can limit our attention
to the stretch factor of the pairs (x, y) such that (x, y) ∈ E′ = E \ {e}. In fact,

σ(Te/f) = max
x,y∈V

{
dTe/f

(x, y)

dG−e(x, y)

}

= max
(x,y)∈E′

{
dTe/f

(x, y)

dG−e(x, y)

}

(1)

= max

{
max

(x,y)∈E′\C(e)

dT (x, y)

dG−e(x, y)
, max
(x,y)∈C(e)

dT (x, u
′) + w(f) + dT (y, v

′)
dG−e(x, y)

}
.

(2)

Notice that the first term is independent of f , i.e., it is a lower bound to the
stretch factor of any swap tree. Thus, to compare swap edges, we can focus on
the evaluation of the second term. In the rest of the paper, a critical edge of f
will be an edge maximizing the second term of (2), i.e.:

max
(x,y)∈C(e)

{
dT (x, u

′) + w(f) + dT (y, v
′)

dG−e(x, y)

}
. (3)

From the above discussions it follows that a best swap edge for e is a swap edge
f∗ minimizing (3). In the following, for the sake of avoiding technicalities, we
assume that critical edges are unique. All the results can be easily extended once
this assumption is relaxed. Indeed, if multiple critical edges exist it suffices to
select any one of them. We start by proving the following:

Lemma 1. Let h = (a, b) be the critical edge of f ,1 and assume that, in the
swap tree, the stretch factor of (a, b) is larger than the stretch factor of any pair
(x, y) such that (x, y) ∈ E \ C(e). Then, h must be a shortest path in G − e
between a and b.

Proof. For the sake of contradiction, assume that h is not a shortest path in
G − e between a and b. Let now πG−e(a, b) = 〈a = v0, v1, . . . , vk = b〉 denote
a shortest path in G − e between a and b. Notice that such a path contains at
least another edge in C(e). Then, from Property 1 we know that in Te/f the
stretch factor of (a, b) is less than or equal to the stretch factor of (at least) the
endpoints pair of an edge along such a path, say h′. Since h is supposed to be
the unique critical edge for f , it follows that h′ cannot belong to C(e), and then
there must be another edge along πG−e(a, b) not belonging to C(e) and whose
endpoints pair has a stretch factor greater or equal to that of (a, b), against the
assumptions. 	

1 Notice that h may coincide with f .

244 D. Bilò et al.

Under the assumptions of the previous lemma, and for time efficiency reasons
that will be clearer later, it follows that the computation of a critical edge of f
given in (3) can be safely replaced by the following:

max
g=(x,y)∈C(e)

{
dT (x, u

′) + w(f) + dT (y, v
′)

w(g)

}
. (4)

Indeed, since the maximum of (3) is associated with an edge which corresponds
to a shortest path between its two endpoints, it follows that increasing the de-
nominator of the fraction associated with the other edges, as it is done in (4),
will not affect the computation of the maximum.

The question is now: if the assumption of Lemma 1 does not hold, namely the
stretch factor of Te/f is equal to the first term in (2)—and so by definition f is
a best swap edge—then is it the case that carrying out the evaluation of f by
using (4) might eventually affect the correctness of the selection of a best swap
edge for e? The answer is no, as proven in the following:

Lemma 2. Assume that the stretch factor of Te/f is induced by the endpoints
pair of an edge in E′ \C(e). Then, the measure of the critical edge of f returned
by (4) is at most equal to σ(Te/f).

Proof. From the assumptions, we have that

σ(Te/f) ≥ max
g=(x,y)∈C(e)

{
dT (x, u

′) + w(f) + dT (y, v
′)

dG−e(x, y)

}

≥ max
g=(x,y)∈C(e)

{
dT (x, u

′) + w(f) + dT (y, v
′)

w(g)

}

	

In other words, by applying the computation as specified in (4), we either

find a critical edge whose measure is larger than the first term of (2), and in
this case we know from Lemma 1 that this is exactly the stretch factor of the
corresponding swap tree associated with f , or we associate with f an edge which
in general is not its critical one according to definition (3), but now the measure
of f is not larger than the first term of (2). This means, in both cases when f
will be compared against other swap edges for e, the selection process of the best
swap edge is guaranteed to be correct.

3.1 A Corresponding Algorithm

From the previous analysis, it follows that an algorithm that, for each edge
e ∈ E(T), computes a best swap edge by finding a swap edge which remains
associated with a critical edge as defined by (4), is correct. Then, here comes the
reason why we are actually using the modified formula: it does not contain any
term depending on e, and so we can apply a classic sensitivity analysis approach,
which will lead to the following result:

A Faster Computation of All the Best Swap Edges of a Tree Spanner 245

Theorem 1. The ABSE tree spanner problem on weighted graphs can be solved
in time O(m2 logα(m,n)) and linear space.

Proof. For each non-tree edge f , we consider the set of tree edges T (f) =
{e1, e2, . . . , ek} it covers. Then, we take into consideration all the non-tree edges
E(f) = {f1, f2, . . . , fh} covering at least one of the edges in T (f). Hence, after a
suitable preprocessing, we assign to each of the edges in E(f) the value specified
in (4), and finally we perform in O(h logα(h, k)) = O(m logα(m,n)) time and
O(m) space [14] a corresponding sensitivity analysis (we extract the maximum
associated with each edge ei ∈ T (f)). This value is exactly the measure of f
when it swaps with ei. This is repeated for all the Θ(m) non-tree edges, and
eventually for each tree-edge e we select the non-tree edge having the minimum
measure, say f∗. Notice that, as explained before, we are guaranteed this is a
best swap edge for e, but its measure is only a lower bound to the actual value
of σ(Te/f∗). Thus, overall, we spend O(m2 logα(m,n)) time and O(m) space.

	

4 The Unweighted Case

In this section, we provide an algorithm for unweighted graphs having a run-
ning time of O(mn logn) and using O(m) space. A high-level description of the
algorithm is the following: For each vertex z ∈ V , it first computes a candidate
best swap edge for each edge e of T among the non-tree edges incident to z, if
any. As we will see, this step can be performed in O(m logn) time and O(m)
space, and it will be repeated n times (once for each vertex z ∈ V). Then, a best
swap edge of e is computed by selecting, among the candidate best swap edges
of e, a non-tree edge whose corresponding swap tree is of minimum stretch. To
optimize space consumption, the algorithm does not explicitly store the set of
all the candidate best swap edges but, once a (new) candidate best swap edge
of a tree edge e is computed, the algorithm only updates the best swap edge of
e found so far in constant time.

Let us now give a detailed description of the algorithm. We fix a vertex z ∈ V
and a tree edge e = (u, v), and we show that the problem of computing the
candidate best swap edge of e among the non-tree edges incident to z reduces
to a problem instance of the subset minimum eccentricity problem on trees. In
the subset minimum eccentricity problem on trees, we are given a tree T ′, with
a positive real cost w′(e′) associated with each edge e′ of the tree, and a set
U ⊆ V (T ′), and we are asked to find a vertex of U of minimum eccentricity.2

The reduction works as follows. Let Tu and Tv be the two subtrees obtained
by removing e from T and containing u and v, respectively. Let Ṽ be the subset
of vertices of Tv which are incident to some non-tree edge in C(e), let T̂ be the
subtree of Tv rooted at v and induced by all the paths from v towards all the
vertices of Ṽ . If T̂ is not a path, then let rv be the closest child of v having two
or more children in T̂ (possibly, rv=v), otherwise let rv be equal to (unique)
2 The eccentricity of a vertex a of T ′ is equal to maxb∈V (T ′) dT ′(a, b).

246 D. Bilò et al.

leaf of T̂ . Finally, let T̃ be the subtree of T̂ rooted at rv, let E(y) be the set of
non-tree edges in C(e) incident to y, and let

ωy = max
(x,y)∈E(y)

{
dT (z, x) + 1

}

be the maximum distance from z to y w.r.t. all the trees obtained by swapping
e with a non-tree edge incident to y. The instance of the subset minimum eccen-
tricity problem on trees is defined as follows. The tree T ′ is an unrooted copy
of T̃ augmented by the addition of a new vertex ly and the edge (y, ly) for each
vertex y ∈ Ṽ ; U = {y | (z, y) ∈ E(z)} is the set of endvertices in Tv of non-tree
edges incident to z (observe that vertex z is not taken into account). Finally, the
cost function of a tree edge e′ of T ′ is

w′(e′) :=

{
ωy if e′ = (y, ly);
1 if e′ ∈ E(T̃).

Observe that the set of the leaves of T ′ is {ly | y ∈ Ṽ }. The next lemma shows
the link between the problem of finding a candidate best swap edge of e and the
problem of finding the vertex of U having minimum eccentricity in T ′.

Lemma 3. Let f = (u′, v′) ∈ E(z), with u′ = z. The value of formula (4)
computed w.r.t. f is equal to the eccentricity of v′ in T ′.

Proof. Indeed, since u′ = z, (4) can be rewritten as

max
g=(x,y)∈C(e)

{
dT (x, z) + w(f) + dT (y, v

′)
w(g)

}

= max
(x,y)∈C(e)

{
dT (x, z) + 1 + dT (y, v

′)
}

= max
y∈Ṽ

{
max

(x,y)∈E(y)

{
dT (x, z) + 1 + dT (y, v

′)
}
}

= max
y∈Ṽ

{
dT (v

′, y) + max
(x,y)∈E(y)

{
dT (x, z) + 1

}
}

= max
y∈Ṽ

{
dT ′(v′, y) + ωy

}
= max

y∈Ṽ
{dT ′(v′, ly)} = max

b∈V (T ′)
{dT ′(v′, b)},

where the first equality holds because G is unweighted, the second equality holds
because C(e) =

⋃
y∈Ṽ E(y), while the last equality holds because the eccentricity

of any vertex ofT ′ is given by the length of a path towards some leaf of T ′, i.e., some
ly. 	

The subset minimum eccentricity problem on trees is linear time solvable
via a dynamic programming algorithm that computes the vertex eccentricities.
Therefore, Lemma 3 already implies an O(n2) time and O(m) space algorithm
for the problem of computing a candidate best swap edge, among the non-tree
edges incident to z, of every tree edge, as this problem is equivalent to solving

A Faster Computation of All the Best Swap Edges of a Tree Spanner 247

n−1 instances of the subset minimum eccentricity problem on trees (one for each
tree edge failure). However, for each vertex z, we can reduce the time complexity
of computing a candidate best swap edge of every tree edge to O(m log n) by
exploiting the similarities between instances of the subset minimum eccentricity
problem on trees induced by the failure of adjacent tree edges. More precisely,
for each vertex z, the algorithm roots T at z, visits the tree edges in preorder,
and uses a top tree to efficiently generate and solve the corresponding n − 1
instances of the subset minimum eccentricity problem on trees.

A top tree (see [2]) is a data structure that maintains a dynamic forest on a
fixed set of N vertices, some of which are marked, can be initialized as an empty
forest in O(N) time and space, and supports each of the following operations in
O(logN) time:

cut(ē): if ē is an edge of the forest, it removes the edge ē from the forest;
link(a, b, ω): if a and b are vertices of different trees in the forest, it adds the

edge (a, b) of cost ω to the forest;
increase-cost(a, b, ω): if (a, b) is an edge of the forest of cost ω′, it updates

the cost of (a, b) to max{ω′, ω}; otherwise this operation is equivalent to
link(a, b, ω);3

center(a): it returns a triple (c, ā, b̄), where c is a center of the tree,4 say T ′′, in
the forest that contains a, while ā and b̄ are the two endpoints of a diametral
path of T ′′;5

node(a, b, k): if a and b are vertices of the same tree, say T ′′, in the forest and k
is a positive integer upper bounded by the hop-distance from a to b in T ′′,
it returns the k-th node along the path from a to b in T ′′;

closest(a): it returns a marked vertex which is closest to a (w.r.t. forest dis-
tances);

dist(a, b): it returns the distance in the forest from a to b.

The algorithm uses the top tree as follows (see Algorithm 1 for the details
and Figure 1 for an example). At the beginning of the visit of z the top tree is
initialized as an empty forest of 2n vertices, where there are two vertices y and
ly for each y ∈ V . Furthermore, the set of marked vertices is

{
y | (z, y) ∈ E(z)

}
.

Let e = (u, v) be the failing tree edge and, w.l.o.g., assume that z is a node
of Tu. If e is not incident to z, i.e., z �= u, then let e′ be the tree edge incident
to u along the path from z to u in T . Finally, let C̃(e) = C(e) if u = z, and
C̃(e) = C(e) \ C(e′) otherwise.

3 The increase-cost operation is not a basic primitive of the top tree, but it can be
easily implemented via a cut operation (that has to be modified to return the cost
of the removed edge, if any) followed by a link operation.

4 A tree center is a vertex of the tree of minimum eccentricity.
5 A diametral path is a path of the tree of maximum length.

248 D. Bilò et al.

Algorithm 1. Algorithm for ABSE spanner tree problem on unweighted graphs.

G = (V,E) T G
∀e ∈ E(T)

e ∈ E(T)
fe =⊥ fe e
μe = +∞ μe fe

z ∈ V

T z ˜C(e) e ∈ E(T)
V 2n

y ly y ∈ V
{

y ∈ V | (z, y) ∈ E \ E(T)
}

B
T

r[a]
a ≥ 2 a T ′′

r[a] T ′′

a ∈ V B[a] = 0 r[a] = a
e = (u, v) ∈ E(T) z

(x, y) ∈ ˜C(e)
y ∈ V (Tv)

(

y, ly, dT (z, x) + 1
)

B[y] = 0 y �= v
p y T

(

y, p, 1
)

B[y] = 1
p r[p] = r[y]
p r[p] = p

y = p

(e) u r[u] = u
u r[u] = y y u

r
cut((r[v], p)) link(r[v], p, 1)

r[v] �= v cut((r[v], p)) p r[v] T

(c, ā, b̄) = (r[v])
s c

s = (c) μ = max
{

dist(s, ā), dist(s, b̄)
}

c′

(c, ā) ≤ (c, b̄) c′ = (c, b̄, 1) c′ = (c, ā, 1)
s′ c′

s′ = (c′) μ′ = max
{

dist(s′, ā), dist(s′, b̄)
}

s∗

μ ≤ μ′ s∗ = s μ∗ = μ s∗ = s′ μ∗ = μ′

e
μ∗ < μe μe = μ∗ fe = (z, s∗)
r[v] �= v link(r[v], p, 1) p r[v] T

{fe | e ∈ E(T)}

A Faster Computation of All the Best Swap Edges of a Tree Spanner 249

Fig. 1. An illustration of the execution of Algorithm 1 during the visit of vertex z. The
input instance of the ABSE spanner tree problem is shown in (a): solid edges are tree
edges, dashed edges are non-tree edges incident to z, and dotted edges are the other
non-tree edges. The top trees corresponding to the failure of the tree edges e′′, e′, and e
are shown in (b), (c), and (d), respectively. Square vertices correspond to ly’s vertices,
marked vertices are of black color. and white vertices are unmarked, while solid edges
denote the underlying top tree structure, and black edges are edges of the top tree. For
each failing edge, the corresponding tree in the top tree shows the diametral path (in
bold), the tree center (vertex c), and the marked vertex which minimizes the distance
from its closest tree center (vertex s∗). The candidate best swap edge of e′′ is f which
induces a tree having stretch factor equal to 4. The candidate best swap edge of e′ is
f ′ which induces a tree having stretch factor equal to 5. Finally, the candidate best
swap edge of e is f which induces a tree having stretch factor equal to 5.

For every (x, y) ∈ C̃(e), with x ∈ V (Tu) and y ∈ V (Tv), the algorithm first
increases the cost of the edge (y, ly) to dT (z, x) + 1 and then updates the top
tree by adding all the missing edges of the path from y to rv in T , where the
cost of each missing edge is 1. Next, the algorithm removes e from the top tree.
Finally, it computes a candidate best swap edge of e using a suitable combination
of center, node, closest, and dist operations according to the following four
lemmas which show the relationships among tree center(s), diametral path(s),
and vertex eccentricities, as well as an interesting connection between solutions
of instances of the subset minimum eccentricity problem on trees generated by
the algorithm and tree center(s).

Lemma 4 (folklore). Any diametral path of a positively edge-weighted tree con-
tains all the tree centers.

Lemma 5 (folklore). Any positively edge-weighted tree has either one center
or two centers. Furthermore, if the tree has two centers, say c and c′, then (c, c′)
is an edge of the tree.

250 D. Bilò et al.

The following lemma is a stronger version of Lemma 4.

Lemma 6 ([4]). Let a be a vertex of a positively edge-weighted tree T ′′ and let
ā and b̄ be the endvertices of a diametral path of T ′′. The eccentricity of a is
equal to max

{
dT ′′ (a, ā), dT ′′ (a, b̄)

}
. Furthermore, the longest path in T ′′ between

the one from a to ā and the one from a to b̄ contains all the tree centers.

Lemma 7. For a fixed vertex z ∈ V and a fixed tree edge e ∈ E(T), an op-
timal solution of the corresponding instance 〈T ′, w′, U〉 of the subset minimum
eccentricity problem on trees is a vertex of U that minimizes the distance from
its closest tree center.

Proof. By construction, it is easy to see that the instance 〈T ′, w′, U〉 satisfies the
following properties:

(i) edge costs are positive integers;
(ii) all edges of cost strictly greater than 1 are incident to leaves of T ′, i.e., the

vertices ly’s.

We prove the claim by cases according to the number of centers of T ′. Thus,
according to Lemma 5, we have to distinguish between the following two cases:
T ′ has two centers and T ′ has exactly one center.

We begin with the case in which T ′ has two centers, say c and c′. Let ā and b̄
be the endvertices of a diametral path of T ′. By Lemma 4, the path from ā to b̄
contains both c and c′. W.l.o.g., we assume that dT ′(ā, c) < dT ′(ā, c′). By Lemma
6, the eccentricities of c and c′ are equal to max

{
dT ′(c, ā), dT ′′ (c, b̄)

}
= dT ′(b̄, c)

and max
{
dT ′(c′, ā), dT ′′(c′, b̄)

}
= dT ′(ā, c′), respectively. Furthermore, as c and

c′ are both tree centers, we have that dT ′(c, ā) = dT ′(c′, b̄). By Lemma 6, the
eccentricity of a vertex a ∈ U is therefore equal to

max
{
dT ′(a, ā), dT ′(a, b̄)

}
= min

{
dT ′(a, c) + dT ′(c, b̄), dT ′(a, c′) + dT ′(c′, ā)

}

= dT ′(c, ā) + min
{
dT ′(a, c), dT ′ (a, c′)

}
,

where the first equality can be proved by case analysis (it clearly holds in the case
dT ′(a, c) ≤ dT ′(a, c′) as well as in the complementary case dT ′(a, c) > dT ′(a, c′)).
Since dT ′(c, ā) does not depend on a, the above equality implies that a vertex
of U having minimum eccentricity is then equal to a vertex of U that minimizes
the distance from its closest tree center. Hence, we have proved the claim for the
case in which T ′ has two centers.

Consider now the case in which T ′ has only one center, say c. Let ā and b̄
be the endvertices of a diametral path of T ′. By Lemma 4, the path from ā to
b̄ contains c. W.l.o.g., we assume that dT ′(c, ā) ≥ dT ′(c, b̄). We divide the proof
into the following two cases: dT ′(c, ā) = dT ′(c, b̄) and dT ′(c, ā) > dT ′(c, b̄).

In the former case, i.e., dT ′(c, ā) = dT ′(c, b̄), by Lemma 6, the eccentricity of
a vertex a ∈ U is upper bounded by

max
{
dT ′(a, ā), dT ′ (a, b̄)

} ≤ max
{
dT ′(a, c) + dT ′(c, ā), dT ′(a, c) + dT ′(c, b̄)

}

= dT ′(a, c) + dT ′(c, ā)

A Faster Computation of All the Best Swap Edges of a Tree Spanner 251

and, since the path in T ′ from c to ā is edge-disjoint w.r.t. the path in T ′ from
c to b̄ are edge-disjoint, it is lower bounded by

max
{
dT ′(a, ā), dT ′ (a, b̄)

} ≥ min
{
dT ′(a, c) + dT ′(c, ā), dT ′(a, c) + dT ′(c, b̄)

}

= dT ′(a, c) + dT ′(c, ā).

Therefore, max
{
dT ′(a, ā), dT ′(a, b̄)

}
= dT ′(a, c) + dT ′(c, ā). Since dT ′(c, ā) does

not depend on a, the above equality implies that a vertex of U having minimum
eccentricity is then equal to a vertex of U that minimizes the distance from c.

In the latter case, i.e., dT ′(c, ā) > dT ′(c, b̄), by property (i) we have that
dT ′(c, ā) ≥ dT ′(c, b̄)+ 1. As a consequence, and using property (ii), we have that
(c, ā) is an edge of T ′, otherwise the eccentricity value of the vertex immediately
following c along the path from c to ā would be strictly smaller than the eccen-
tricity of c. Therefore, by Lemma 6, the eccentricity of a vertex a ∈ U is upper
bounded by

max
{
dT ′(a, ā), dT ′ (a, b̄)

} ≤ max
{
dT ′(a, c) + dT ′(c, ā), dT ′(a, c) + dT ′(c, b̄)

}

= dT ′(a, c) + dT ′(c, ā).

Furthermore, since a ∈ U , and vertices of U are internal vertices of T ′, we have
that a �= ā. As a consequence, the path in T ′ from a to c does not contain the
edge (ā, c). Therefore, by Lemma 6, the eccentricity of a is lower bounded by

max
{
dT ′(a, ā), dT ′(a, b̄)

} ≥ dT ′(a, c) + +dT ′(c, ā).

Thus, max
{
dT ′(a, ā), dT ′(a, b̄)

}
= dT ′(a, c)+dT ′(c, ā). Once again, as dT ′(c, ā) is

independent of a, the above equality implies that a vertex of U having minimum
eccentricity corresponds to a vertex of U that minimizes the distance from c.
This concludes the proof.

	

We can now prove the main theorem.

Theorem 2. Algorithm 1 solves the ABSE tree spanner problem on unweighted
graphs in O(mn logn) time and O(m) space.

Proof. For every vertex z ∈ V and for every tree edge e ∈ E(T), Algorithm 1
reduces the problem of computing the candidate best swap edge of e, among the
non-tree edges incident to z, to an instance of the subset minimum eccentricity
problem on trees and then solves the latter instance so as explained in Lemma 7.
Therefore, the algorithm correctness follows by the aforementioned lemma and
by Lemma 3.

Concerning the time and space complexity of the algorithm, first of all observe
that the space consumption is clearly linear in m. To prove the O(mn log n) time
bound, we show that for a fixed vertex z ∈ V , the algorithm runs in O(m log n)
time.

252 D. Bilò et al.

e f

(a) (b)

v

f

v

(c)

f

v

Fig. 2. An example showing that the ratio between the stretch of the best swap tree
and the stretch of an optimal tree spanner of the remaining graph can be Ω(n). The
initial graph G has n = 2k + 1 vertices and consists of two cycles, each having length
k, that share a single vertex v, plus a set of edges joining all the vertices of one of the
cycles with v. In (a) an optimal tree spanner with stretch k − 1 is shown using solid
lines. Picture (b) shows the (unique) best swap tree after the failure of edge e. Notice
that the stretch factor of the swap tree in (b) is k − 1. Finally, in (c) it is shown an
optimal tree spanner of G− e having stretch 2.

Let z ∈ V be fixed. Observe that all the sets C̃(e) can be computed in O(m)
time by computing the least common ancestors for the endpoints of each non-tree
edge (x, y) in constant time (see [10]) and determining the at most two edges
along the path from x to y in T which are incident to the least common ancestor
of x and y. This implies that each non-tree edge (x, y) is contained in at most
two sets among all C̃(e)’s. The top tree of 2n vertices can be initialized in O(n)
time (see [2]).

To prove the claim, it remains to show that the overall number of opera-
tions performed on the top tree is at most O(m). First of all, observe that
the number of cut, center, closest, dist, and node operations is constant
for each tree edge e ∈ E(T). Therefore, the overall number of cut, center,
closest, dist, and node operations, for any vertex z ∈ V , is O(n). As there
is exactly an increase-cost operation for each non-tree edge g ∈ C̃(e) and
since

∑
e∈E(T) |C̃(e)| ≤ 2m, the overall number of increase-cost operations,

for any z ∈ V , is O(m). Finally, as the top tree contains 2n vertices, since the
overall number of cut operations is 2(n − 1) (at most two cut operations for
each tree edge failure), and since a link operation is performed only when an
edge is missing, the overall number of link operations, for any vertex z ∈ V ,
is at most 4n− 3 as it can never exceed 2n− 1 (the size of a tree spanning 2n
vertices) plus the at most 2(n− 1) cut operations. 	

5 Conclusions

In this paper we provided two efficient linear-space solutions for both the weighted
and the unweighted version of the ABSE tree spanner problem, running in
O(m2 logα(m,n)) and O(mn logn) time, respectively.

Our future research on this problem will follow several directions. First of all,
we will work on the extension to the weighted case of the approach we used for the
unweighted case, in order to get an improved runtime. Besides that, we will also
face the problem of analyzing the quality of the swap tree spanner as compared to

A Faster Computation of All the Best Swap Edges of a Tree Spanner 253

that of an optimal tree spanner of the graph deprived of the failed edge. To address
this task, one should evaluate the ratio between the stretch factors of the two trees.
A similar study was performed in [7], where the authors focused on unweighted
graphs, and showed that if stretches are measured w.r.t. distances in G (i.e., ac-
cording to their criteria, but differently from our intent which is that of measuring
stretches in the affected graph), and if moreover the initial tree is an optimal tree
spanner, then this ratio is bounded by 2, and this is tight. Unfortunately, comput-
ing an optimal tree spanner is hard, and it is unknown what will be the outcome
when the initial tree is suboptimal. On the other hand, when adopting our crite-
ria, we cannot exhibit a similar positive result just right away. Indeed, it is easy to
see that in this case the ratio can become unbounded as shown in Figure 2. How-
ever, we conjecture that a suitable preprocessing of the initial tree could avoid this
pathological behavior. Finally, we also plan to focus our attention on the related
problem of handling single node failures.

References
1. Abraham, I., Bartal, Y., Neiman, O.: Embedding metrics into ultrametrics and

graphs into spanning trees with constant average distortion. In: Proc. of the 18th
ACM-SIAM Symp. on Discrete Algorithms (SODA 2007), pp. 502–511. ACM Press
(2007)

2. Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in
fully dynamic trees with top trees. ACM Trans. Algorithms 1(2), 243–264 (2005)

3. Bilò, D., Gualà, L., Proietti, G.: Finding best swap edges minimizing the routing
cost of a spanning tree. Algorithmica 68(2), 337–357 (2014)

4. Bilò, D., Gualà, L., Proietti, G.: A faster computation of all the best swap edges
of a shortest paths tree. Algorithmica (in press). doi:10.1007/s00453-014-9912-6

5. Brandstädt, A., Chepoi, V., Dragan, F.F.: Distance approximating trees for chordal
and dually chordal graphs. Journal of Algorithms 30(1), 166–184 (1999)

6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. on Disc. Math. 8, 359–387 (1995)
7. Das, S., Gfeller, B., Widmayer, P.: Computing all best swaps for minimum-stretch

tree spanners. J. of Graph Algorithms and Applications 14(2), 287–306 (2010)
8. Di Salvo, A., Proietti, G.: Swapping a failing edge of a shortest paths tree by

minimizing the average stretch factor. Theor. Comp. Science 383(1), 23–33 (2007)
9. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on un-

weighted graphs. SIAM Journal on Computing 38(5), 1761–1781 (2008)
10. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.

SIAM Journal on Computing 13(2), 338–355 (1984)
11. Italiano, G.F., Ramaswami, R.: Maintaining spanning trees of small diameter. Al-

gorithmica 22(3), 275–304 (1998)
12. Liebchen, C., Wünsch, G.: The zoo of tree spanner problems. Discrete Applied

Mathematics 156, 569–587 (2008)
13. Nardelli, E., Proietti, G., Widmayer, P.: Finding all the best swaps of a minimum

diameter spanning tree under transient edge failures. Journal of Graph Algorithms
and Applications 5(5), 39–57 (2001)

14. Pettie, S.: Sensitivity analysis of minimum spanning trees in sub-inverse-
Ackermann time. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827,
pp. 964–973. Springer, Heidelberg (2005)

15. Wu, B.Y., Hsiao, C.-Y., Chao, K.-M.: The swap edges of a multiple-sources routing
tree. Algorithmica 50(3), 299–311 (2008)

Randomized OBDD-Based Graph Algorithms

Marc Bury�

TU Dortmund, LS2 Informatik, Germany

Abstract. Implicit graph algorithms deal with the characteristic func-
tion χE of the edge set E of a graph G = (V,E). Encoding the nodes
by binary vectors, χE can be represented by an Ordered Binary Deci-
sion Diagram (OBDD) which is a well known data structure for Boolean
functions. OBDD-based graph algorithms solve graph optimization prob-
lems by mainly using functional operations and are a heuristic approach
to cope with massive graphs. These algorithms heavily rely on a com-
pact representation of the underlying Boolean functions which is why all
previously known OBDD-based algorithms are deterministic since ran-
dom functions are not compressible in general. Here, the first randomized
OBDD-based algorithms are presented where random functions with lim-
ited independence are used to overcome the large representation size. On
the theoretical part, the size of OBDDs representing k-wise independent
random functions is investigated and a construction of almost k-wise
independent random functions by means of a random OBDD genera-
tion is shown. On the algorithmic part, randomization often facilitates
the design of simple algorithms which in the context of OBDD-based
algorithms means a small number of functional operations and as few
input variables of the used Boolean functions as possible. This paper
presents a maximal matching algorithm with O(log3 |V |) functional op-
erations in expectation using functions with at most 3 log |V | variables
which is both better than the best known algorithms w.r.t. functional
operations and variables. The algorithm may be of independent inter-
est. The experimental evaluation shows that this algorithm outperforms
known OBDD-based algorithms for the maximal matching problem.

1 Introduction

In times of Big Data, classical algorithms for optimization problems quickly ex-
ceed feasible running times or memory requirements. For instance, the rapid
growth of the Internet and social networks results in massive graphs which tra-
ditional algorithms cannot process in reasonable time or space. In order to deal
with such graphs, implicit (symbolic) algorithms have been investigated where
the input graph is represented by the characteristic function χE of the edge set
and the nodes are encoded by binary numbers. Using Ordered Binary Decision
Diagrams (OBDDs), which were introduced by Bryant [11] and are a well-known
data structure for Boolean functions, to represent χE can significantly decrease
the space needed to store such graphs. Furthermore, using mainly functional op-
erations, e. g., conjunction, disjunction, and quantification, which are efficiently

� Supported by Deutsche Forschungsgemeinschaft, grant BO 2755/1-2.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 254–269, 2015.
DOI: 10.1007/978-3-319-25258-2_18

Randomized OBDD-Based Graph Algorithms 255

supported by the OBDD data structure, many optimization problems can be
solved on OBDD represented inputs ([16, 17, 19, 34–36, 41]). Implicit algorithms
were successfully applied in many areas, e. g., model checking [12], integer lin-
ear programming [24] and logic minimization [14]. With one of the first implicit
graph algorithms, Hachtel and Somenzi [19] were able to compute a maximum
flow on 0-1-networks with up to 1036 edges and 1027 nodes in reasonable time.

There are two main parameters influencing the actual running time of OBDD-
based algorithms: the number of functional operations and the sizes of all inter-
mediate OBDDs used during the computation. But there seems to be a trade-
off: The number of operations is an important measure of difficulty [5] but de-
creasing the number of operations often results in an increase of the number of
variables of the used functions. Since the worst case OBDD size of a function
f : {0, 1}n → {0, 1} is Θ(2n/n), the number of variables should be as small as
possible to decrease the worst case running time. This trade-off was also em-
pirically observed. For instance, an implicit algorithm computing the transitive
closure that uses an iterative squaring approach and a polylogarithmic number
of operations is often inferior to an implicit sequential algorithm, which needs a
linear number of operations in worst case [5, 20]. Another example is the maxi-
mal matching algorithm (BP) of Bollig and Pröger [10] that uses only O(log4 N)
functional operations on functions with at most 6 logN variables while the algo-
rithm (HS) of Hachtel and Somenzi [19] uses O(N logN) operations in the worst
case on function with at most 3 logN variables. However, HS is clearly superior
to BP on most instances (see Section 5).

Using randomization in an explicit algorithm often leads to simple and fast
algorithms. Here, we propose the first attempt at using randomization to obtain
algorithms which have both a small number of variables and a small expected
number of functional operations. For this, we want to represent random functions
fr : {0, 1}n → {0, 1} with Pr [fr(x) = 1] = p for every x ∈ {0, 1}n and some
fixed probability 0 < p < 1 by OBDDs where the probability is taken over
the random seed r. Using random functions in implicit algorithms is difficult.
We need to construct them efficiently but, obviously, if the function values are
completely independent (and p is a constant), then the OBDD (and even the
more general FBDD or read-once branching program) size of fr is exponentially
large with an overwhelming probability [39]. Thus, we investigate the OBDD
size and construction of (almost) k-wise independent random functions where
the distribution induced on every k different function values is (almost) uniform.
Using the random functions for OBDD-based graph algorithms is challenging in
the following sense: Since we have a fixed probability p for every input (which
in our case represents a node or an edge of a graph), we often cannot use known
randomized algorithms e. g., for maximal matching [1, 26, 21] (a matching M,
i. e., a set of edges without a common vertex, is called maximal if M is no proper
subset of another matching) because they either do not use limited independence
or require distinct event probabilities (depending on the degree of a node). This
constraints lead to a new algorithm for the maximal matching problem which
can also be used for the similar maximal independent set (MIS) problem where

256 M. Bury

an independent set I is a subset of the nodes such that no two nodes of I are
adjacent and any vertex in G is either in I or is adjacent to a node of I.

Related Work. The size of OBDDs representing graphs was investigated for
bipartite graphs [32], interval graphs [32, 18], cographs [32] and graphs with
bounded tree- and clique-width [28]. Sawitzki [37] showed that the set of prob-
lems solved by an implicit algorithm using O(logk N) functional operations and
functions defined on O(logN) variables is equal to the complexity class FNC,
i. e., the class of all optimization problems that can be efficiently solved in par-
allel. Implicit algorithms with these properties were designed for instance for
topological sorting [41], minimum spanning tree [6], metric TSP approximation
[7] and maximal matching [10]. When analyzing implicit algorithms, the actual
running time can either be proven for very structured input graphs like [41] did
for topological sorting and [8] for maximum matching or the running time is ex-
perimentally evaluated like in [19] for maximum flows and in [8, 18] for maximum
matching on bipartite graphs or unit interval graphs.

A succinct representation of 2n random bits, which are k-wise independent, was
presented byAlon et al. [1] using �k/2�n+1 independent randombits. This number
of random bits is very close to the lower bound of Chor and Goldreich [13]. In order
to reduce the number of random bits even further, Naor and Naor [30] introduced
the notion of almostk-wise independencewhere the distribution on every k random
bits is “close” touniform.Constructions of almostk-wise independent randomvari-
ables are also given in [2] and are using only at most 2(logn+log k+log(1/ε)) ran-
dom bits where ε is a bound on the closeness to the uniform distribution. Looking
for a simple representation of almost k-wise independent random variables, Sav-
ický [33] presented a Boolean formula of constant depth and polynomial size and
used n log2 k log(1/ε) random bits. In all of these constructions, the running time
of computing the i-th random bit with 0 ≤ i ≤ 2n − 1 depends on k and ε.

Such small probability spaces can be used for a succinct representation of a
random string of length 2n, e. g., in streaming algorithms [3], or for derandomiza-
tion [1, 26]. The randomized parallel algorithms from [1, 26] compute a maximal
independent set of a graph. The computation of a MIS has also been extensively
studied in the area of distributed algorithms [4, 25]. An optimal randomized dis-
tributed MIS algorithm was presented in [29] where the time and bit complexity
(bits per channel) is O(logN). Using completely independent random bits, Is-
raeli and Itai [21] give a randomized parallel algorithm computing a maximal
matching in time O(logN).

While we are looking for k-wise independent functions with small OBDD size,
Kabanets [23] constructed simple Boolean functions which are hard for FBDDs
by investigating (almost) Θ(n)-wise independent random functions and showed
that the probability tends to 1 as n grows that the size is Ω(2n/n).

Our Contribution. In Section 3, we show that the OBDD and FBDD size
is at least 2Ω(n+log(p′)) with p′ = 2p(1 − p) if the function values of fr are
k-wise independent with k ≥ 4. We give an efficient construction of OBDDs for
3-wise independent random functions which is based on the known construction

Randomized OBDD-Based Graph Algorithms 257

of 3-wise independent random variables using BCH-schemes [1]. In Section 4 we
investigate a simple construction of a random OBDD which generates almost
k-wise independent random functions and has size O((kn)2/ε). Reading the ac-
tual value of the i-th random bit is just an evaluation of the function on input
i which can be done in O(n) time, i. e., it is independent of both k and ε. This
construction can be seen as a distribution on graphs with a small OBDD size
what enables us to use it as an input distribution for our implicit algorithm in the
experimental evaluation. In Section 5 we use pairwise independent random func-
tions to design a simple maximal matching algorithm that uses only O(log3 N)
functional operations in expectation and functions with at most 3 logN variables
which is better than the aforementioned algorithms by Hachtel and Somenzi [19]
with 3 logN variables and Bollig and Pröger [10] with O(log4 N) operations. This
algorithm can easily be extended to the MIS problem and can be implemented
as a parallel algorithm using O(logN) time in expectation or as a distributed
algorithm with O(logN) expected time and bit complexity. To the best of our
knowledge, this is the first (explicit or implicit) maximal matching (or inde-
pendent set) algorithm that does not need any knowledge about the graph (like
size or node degrees) as well as uses only pairwise independent random variables.
Eventually, we evaluate this algorithm empirically and show that known implicit
maximal matching algorithms are outperformed by the randomized algorithm.

2 Preliminaries

All omitted proofs and figures can be found in the full version of this paper.

Binary Decision Diagrams. We denote the set of Boolean functions f :
{0, 1}n → {0, 1} by Bn. For x ∈ {0, 1}n denote the value of x by |x| := ∑n−1

i=0 xi ·
2i. Further, for l ∈ N, we denote by [l]2 the corresponding binary number of l.
In his seminal paper [11], Bryant introduced Ordered Binary Decision Diagrams
(OBDDs), that allow a compact representation of not too few Boolean functions
and also supports many functional operations efficiently.

Definition 1 (Ordered Binary Decision Diagram (OBDD))
Order. A variable order π on the input variables X = {x0, . . . , xn−1} of a

Boolean function f ∈ Bn is a permutation of the index set I = {0, . . . , n− 1}.
Representation. A π-OBDD is a directed, acyclic, and rooted graph G with

two sinks labeled by the constants 0 and 1. Each inner node is labeled by an input
variable from X and has exactly two outgoing edges labeled by 0 and 1. Each edge
(xi, xj) has to respect the variable order π, i. e., π−1(i) < π−1(j).

Evaluation. An assignment a ∈ {0, 1}n of the variables defines a path from
the root to a sink by leaving each xi-node via the ai-edge. A π-OBDD Gf repre-
sents f iff for every a ∈ {0, 1}n the defined path ends in the sink with label f(a).

Complexity. The size of a π-OBDD G, denoted by |G|, is the number of
nodes in G. The π-OBDD size of a function f is the minimum size of a π-
OBDD representing f . The OBDD size of f is the minimum π-OBDD size over
all variable orders π. The width of G is the maximum number of nodes labeled
by the same input variable.

258 M. Bury

The more general read-once branching programs or Free Binary Decision Dia-
grams (FBDDs) were introduced by Masek [27] where every variable can only
be read once on a path from the root to a sink (but the order is not restricted).

A simple function is the inner product IPn(x, y) =
⊕n−1

i=0 xi∧yi of two vectors
x, y ∈ {0, 1}n. Let π be a variable order where for every 0 ≤ i ≤ n, the variables
xi and yi are consecutive. It is easy to see that the π-OBDD representing IPn

has size O(n) and width 2. Notice that the π-OBDD size is still O(n) if we
replace an input vector, e. g., y, by a constant vector r ∈ {0, 1}n.

In the following we describe some important operations on Boolean functions
which we will use in this paper (see, e. g., Section 3.3 in [40] for a detailed list).
Let f and g be Boolean functions in Bn on the variable setX = {x0, . . . , xn−1}, π
a fixed order and let Gf and Gg be π-OBDDs representing f and g, respectively.
We denote the subfunction of f where xj for some 0 ≤ j ≤ n− 1 is replaced by
a constant a ∈ {0, 1} by f|xj=a.

1. Negation: Given Gf , compute a representation for the function f ∈ Bn.
Time: O(1)

2. Replacement by Constant: Given Gf , an index i ∈ {0, . . . , n− 1}, and a
Boolean constant ci ∈ {0, 1}, compute a representation for the subfunction
f|xi=ci . Time: O(|Gf |)

3. Equality Test: Given Gf and Gg, decide whether f and g are equal. Time:
O(1) in most implementations (when using so called Shared OBDDs, see
[40]), otherwise O(|Gf |+ |Gg|).

4. Synthesis: Given Gf and Gg and a binary Boolean operation ⊗ ∈ B2,
compute a representation for the function h ∈ Bn defined as h := f ⊗ g.
Time: O(|Gf | · |Gg|)

5. Quantification: Given Gf , an index i ∈ {1, . . . , n} and a quantifier Q ∈
{∃, ∀}, compute a representation for the function h ∈ Bn defined as h :=
Qxi : f where ∃xi : f := f|xi=0 ∨ f|xi=1 and ∀xi : f := f|xi=0 ∧ f|xi=1. Time:
see replacement by constant and synthesis

In addition to the operations mentioned above, in implicit graph algorithms (see
the next section) the following operation (see, e. g., [36]) is useful to reverse
the edges of a given graph. We will use this operation implicitly by writing for
instance f(x, y) and f(y, x) in the pseudo code of our algorithm.

Definition 2. Let k ∈ N, ρ be a permutation of {1, . . . , k} and f ∈ Bkn with
input vectors x(1), . . . , x(k) ∈ {0, 1}n. The argument reordering Rρ(f) ∈ Bkn

with respect to ρ is defined by Rρ(f)(x
(1), . . . , x(k)) := f(x(ρ(1)), . . . , x(ρ(k))).

This operation can be computed by just renaming the variables and repairing
the variable order using 3(k − 1)n functional operations (see [9]).

A function f depends essentially on a variable xi iff f|xi=0 = f|xi=1. A char-
acterization of minimal π-OBDDs due to Sieling and Wegener [38] can often be
used to bound the OBDD size.

Randomized OBDD-Based Graph Algorithms 259

Theorem 1 ([38]). Let f ∈ Bn and for all i = 0, . . . , n− 1 let si be the number
of different subfunctions which result from replacing all variables xπ(j) with 0 ≤
j ≤ i− 1 by constants and which essentially depend on xπ(i). Then the minimal
π-OBDD representing f has si nodes labeled by xπ(i).

Lower bound techniques for FBDDs are similar but have to take into account
that the order can change for different paths. The following property due to
Jukna [22] can be used to show good lower bounds for the FBDD size.

Definition 3. A function f ∈ Bn with input variables X = {x0, . . . , xn−1} is
called r-mixed if for all V ⊆ X with |V | = r the 2r assignments to the variables
in V lead to different subfunctions.

Lemma 1 ([22]). The FBDD size of an r-mixed function is at least 2r − 1.

OBDD-Based Graph Algorithms. Let G = (V,E) be a directed graph with
node set V = {v0, . . . , vN−1} and edge set E ⊆ V ×V . Here, an undirected graph
is interpreted as a directed symmetric graph. Implicit algorithms work on the
characteristic function χE ∈ B2n of E where n = �logN� is the number of bits
needed to encode a node of V and χE(x, y) = 1 if and only if (v|x|, v|y|) ∈ E. Of-
ten it is also necessary to store the valid encodings of nodes by the characteristic
function χV of V . Besides functional operations, OBDD-based algorithms can
use O(polylog |V |) additional time, e. g., for constructing OBDDs for a specific
function (equality, greater than, inner product, ...).

Small Probability Spaces. A succinct representation of our random func-
tion is essential for our randomized implicit algorithm. For this, we have to use
random functions with limited independence.

Definition 4 ((Almost) k-wise independence). Let X0, . . . , Xm−1 be m
binary random variables. These variables are called k-wise independent with
k ≤ m if and only if for all 0 ≤ i1 < . . . ik ≤ m− 1 and for all l1, . . . , lk ∈ {0, 1}
Pr [Xi1 = l1 ∧ . . . ∧Xik = lk] = 2−k and they are called (ε, k)-wise independent
iff

∣
∣Pr [Xi1 = l1 ∧ . . . ∧Xik = lk]− 2−k

∣
∣ ≤ ε.

If m is a power of 2, the random variables can be seen as function values of a
Boolean function.

Definition 5 ((Almost) k-wise Independent Function). For r, n ∈ N let
S = {0, 1}r be a sample space and m = 2n. A random function f : S → Bn

maps an element s ∈ S which is drawn uniformly at random to a Boolean
function f(s) which we will denote by fs. A random function f : S → Bn

is called k-wise ((ε, k)-wise) independent if the random variables X0(s) :=
fs(0

n), . . . , Xm−1(s) := fs(1
n) are k-wise ((ε, k)-wise) independent.

The BCH scheme introduced by Alon et. al [1] is a construction of k-wise
independent random variables X0, . . . , X2n−1 that only needs �k/2�n+ 1 inde-
pendent random bits and works as follows for k = 3: Let rn ∈ {0, 1} be a random

260 M. Bury

Algorithm 1. RandomFunc(x,n)

Input: Variable vector x of length n ∈ N

Output: 3-wise independent function fr(x)

Let r0, . . . , rn be n+ 1 independent random bits
fr(x) =

⊕n−1
i=0 (ri ∧ xi)⊕ rn

return fr(x)

bit, r(j) ∈ {0, 1}n for 1 ≤ j ≤ l be l uniformly random row vectors, and let the
row vector r =

[
r(1), . . . , r(l)

] ∈ {0, 1}ln be the concatenation of the vectors. For

0 ≤ i ≤ 2n − 1 define Xi = IPln

(
r,
[
[i]2 ,

[
i3
]
2
, . . . ,

[
i2l−1

]
2

]) ⊕ rn where i2j−1

for j = 1, . . . , l is computed in the finite field GF (2n).

3 OBDD Size of k-wise Independent Random Functions

We start with upper bounds on the OBDD size of 3-wise independent random
functions using the BCH scheme. Notice that by means of the BCH scheme it is
not possible to construct a pairwise independent function (which is not 3-wise
independent) since X0 = IP (r, 0n) = 0 for every r ∈ {0, 1}n.
Theorem 2. Let ε > 0, n ∈ N, p be a probability with 0 < p ≤ 1/2, and let π be
a variable order on the variables {x0, . . . , xn−1}. Define p(x) := Pr [fr(x) = 1].

1. We can construct a π-OBDD representing a 3-wise independent function
f : S → Bn with S = {0, 1}n+1 in time O(n) such that p(x) = 1/2 for every
x ∈ {0, 1}n, and the size of the π-OBDD representing fr is O(n) with width
2 for every r ∈ {0, 1}n+1 (see Algorithm 1).

2. We can construct a π-OBDD representing a 3-wise independent function
f : S → Bn with S = {0, 1}t(n+1) where t = �− log p− log ε� in time O(n

p·ε)
such that p ≤ p(x) ≤ (1 + ε) · p for every x ∈ {0, 1}n, and the size of the
π-OBDD representing fr is bounded above by O(n

p·ε) for every r ∈ {0, 1}n+1.

Can we also construct small OBDDs for k-wise independent random variables
with k ≥ 4? Unfortunately, this is not possible. In order to show this we need
a technical lemma that proves some properties of the subfunctions of a k-wise
independent function.

Lemma 2. Let f : S → Bn be a k-wise independent random function over
a sample space S with k ≥ 4 and Pr [fs(x) = 1] = p for all x ∈ {0, 1}n.
Let π be a fixed variable order. For s ∈ S, l ∈ [n], and α ∈ {0, 1}l let
fs|α{0, 1}n−l → {0, 1} be the subfunction of fs where the first l variables
xπ(0), . . . , xπ(l−1) are fixed according to α, i.e. fs|α(z) = fs|x0=α0,...,xl−1=αl−1

(z).
Further, let Cl be the number of collisions of the form fs|α = fs|α′ with α = α′,
i. e., Cl :=

∣∣{(α, α′) | α, α′ ∈ {0, 1}l, α = α′, and fs|α = fs|α′
}∣∣ and Dl be the

number of different subfunctions fs|α. This means Dl :=
∣
∣{[fs|α

] | α ∈ {0, 1}l}∣∣

Randomized OBDD-Based Graph Algorithms 261

where
[
fs|α

]
:=

{
α′ ∈ {0, 1}l | fs|α = fs|α′

}
is the equivalence class of fα with

respect to function equality. Let p′ = 2p(1 − p). Then we have Dl ≥ 2l√
2Cl + 1

and it holds

E [Cl] ≤ 22l

2n−l · p′ and E [Dl] ≥ 2l
√
2 · E [Cl] + 1

≥ 1
√

2
2n·p′ 2l/2 +

1
2l

.

Proof. For the sake of simplicity we omit the the index s of fs and write fα
to denote fs|α. Now we fix two different assignments α, α′ and define 2n−l ran-
dom variables D(z) := Dα,α′(z) such that D(z) = 1 iff fα(z) = fα′(z). Since
the function values of the subfunctions are also k-wise independent, we have
E [D(z)] = Pr [D(z) = 1] = 2p(1 − p) := p′ and Var [D(z)] = E

[
D(z)2

] −
E [D(z)]

2
= E [D(z)] − E [D(z)]

2
= p′(1 − p′) for every z ∈ {0, 1}n−l. Let

D =
∑

z D(z). By definition of D, we have Pr [fα = fα′] = Pr [D = 0] for a
fixed pair (α, α′) and the latter term can be bounded from above by the proba-
bility that the difference between D and E [D] is at least E [D], i.e. Pr [D = 0] ≤
Pr [|D −E [D] | ≥ E [D]]. Each random variable D(z) depends on two function
values, i.e. these variables are k′ = �k/2�-wise independent. Since k′ ≥ 2, we can
use Chebyshev´s inequality to bound Pr [|D − E [D] | ≥ E [D]] by

Var [D]

E [D]
2 =

∑
z Var [D(z)]

(2n−l · p′)2 =
2n−l · p′ · (1 − p′)

(2n−l · p′)2 ≤ 1

2n−l · p′ .

This implies that E [Cl] ≤
(
2l

2

)

2n−l · p′ ≤ 22l

2n−l · p′ . Let Ml = maxα | [fα] | be the

random variable for the size of the largest equivalence class. Since every equiva-
lence class of size s ≥ 2 causes

(
s
2

)
collisions and no collisions otherwise, we have

Cl ≥ Ml(Ml − 1)

2
≥ (Ml − 1)2

2
which is equivalent to

√
2 · Cl + 1 ≥ Ml. Let

α1, . . . , αDl
∈ {0, 1}l be representative assignments for the different equivalence

classes. Then it holds that
∑Dl

i=1 | [fαi] | = 2l. Therefore, we have Ml · Dl ≥ 2l

which is equivalent to Dl ≥ 2l/Ml (note that Ml ≥ 1). This means that we can
bound the expected value of Dl by

E [Dl] ≥ E

[
2l

Ml

]
Jensen≥ 2l

E [Ml]
≥ 2l

E
[√

2 · Cl + 1
]

Jensen≥ 2l
√
2 · E [Cl] + 1

≥ 2l

√
2 · 2l

√
2n−l · p′ + 1

=
1

√
2

2n·p′ 2l/2 +
1
2l

.

��
Now, we can apply this lemma to show a lower bound on the expected π-OBDD
size of a k-wise independent random function.

262 M. Bury

Theorem 3. Let f : S → Bn be a k-wise independent random function over a
sample space S with k ≥ 4 and Pr [fs(x) = 1] = p for all x ∈ {0, 1}n. Then,
for a fixed variable order π, the expected π-OBDD size of fs is bounded below by
Ω(2n/3 · (p′)(1/3)) with p′ = 2p(1− p).

Proof. Recall that Dl is the number of different subfunctions fs|α defined as

Dl :=
∣
∣{[fs|α

] | α ∈ {0, 1}l}∣∣. For a fixed l, each of theDl subfunctions needs one
node in the OBDD representing fs (but not necessarily labeled by the variable
xπ(l+1)). Therefore, we can bound the expected OBDD size from below by every
choice ofE [Dl]. Thus, we need a lower bound onE [Dl]. Due to Lemma 2 we have

E [Dl] ≥ 1
√

2
2n·p′ 2l/2 +

1
2l

. For l = 1/3(n− 1 + log p′) we have
√

2
2n·p′ 2

l/2 = 1
2l

which gives us a lower bound of Ω(2n/3 · (p′)1/3). ��
The next theorem shows that representing k-wise independent random functions
with k ≥ 4 is infeasible even for FBDDs (and with it for OBDDs and all variable
orders). The general strategy of the proof of this is similar to the proof as in
Wegener’s analysis [39] where the OBDD size of completely independent ran-
dom functions is analyzed: We bound the probability pl that there is a set of l
variables such that the number of different subfunctions deviates too much from
the expected value. If

∑n−1
l=0 pl < 1 holds, then with probability 1−∑n−1

l=0 pl > 0
there is no such deviation in any set of l variables. While in [39] the function
values are completely independent and, therefore, the calculation can be done
more directly and with better estimations, we have to take a detour over the
number of subfunctions which are equal (as in Lemma 2 and Theorem 3) and
can only use Markov’s inequality to calculate the deviation of the expectation.

Theorem 4. Let f : S → Bn be a k-wise independent random function with
k ≥ 4 and Pr [fs(x) = 1] = p for all x ∈ {0, 1}n. Then, there is an s ∈ S such
that fs is an r-mixed function with r = Ω(n+ log(p′)) and p′ = 2p(1− p).

Proof. We prove that there is a function fs such that for all subsets of r variables,
the 2r assignments of these variables lead to different subfunctions. We start with
a sketch of the proof: First, we fix a set of l variables (in other words, a variable
order) and prove an upper bound on the probability that the number Cl of
collisions fs|α = fs|α deviates by a factor of δl from the expectation μl. Then we
choose δl in such a way that the probability is smaller than 1 that there exists a
set of l variables where the number of collisions is greater than δlμl. Now, we can
condition on the event that Cl ≤ δlμl for every choice of l variables: By means
of Lemma 2 we calculate a value of r such that Dr > 2r − 1. Since Dl is an
integer for every l, this implies that Dr = 2r. Thus, all 2r possible subfunctions
are different for all choices of r variables which concludes the proof.

For a fixed set of l variables and a variable order whose set of first l variables
coincides with these variables, we know from Lemma 2 that the expected value of

Cl is at most 22l

2n−l·p′ . Due to the dependencies, using Markov’s inequality is the
best we can do to bound the deviation from the expectation. Thus, for δl > 1

Randomized OBDD-Based Graph Algorithms 263

we have Pr [Cl ≥ δl ·E [Cl]] ≤ 1

δl
. We have to distinguish

(
n
l

)
possibilities to

choose the l variables (and the corresponding variable orders). Let δl := 2 · (nl
)
.

Then the probability that for all choices of l variables Cl is less than δlE [Cl]
is bounded below by 1/2. Now, we condition on the event that Cl < δlE [Cl]

for all sets of l variables. From Lemma 2 we know that Dl ≥ 2l√
2Cl+1

which is

greater than 2l√
2δlE[Cl]+1

≥ 2l√
2δl

22l

2n·p′ +1
. Due to the space limitations, we omit

the exact calculations but it is possible to choose l ∈ Ω (n− log(1/p′)) such that
Dl > 2l − 1 which concludes the proof. ��

Due to Lemma 1, the last theorem gives us a lower bound of 2Ω(n+log(p′)) even
for FBDDs.

4 Almost k-wise Independent Random Functions

The gap between the OBDD size of 3-wise independent random functions and
4-wise independent random functions is exponentially large. In order to see what
kind of random functions have an OBDD size which is in-between these bounds,
we show that a construction of a random OBDD of size O((nk)2/ε) generates
(ε, k)-wise independent functions. The idea is to construct a random OBDD with
fixed width w. If w is large enough, the function values of k different inputs are
almost uniformly distributed because the paths of the k inputs in the OBDD
are likely to be almost independent. For 0 ≤ i ≤ n − 1 let layer Li consists of
w nodes labeled by xi and layer Ln be the two sinks. For all 0 ≤ i ≤ n − 1 we
choose the 0/1-successors of every node in layer Li independently and uniformly
at random from the nodes in layer Li+1. Then we pick a random node in layer
L0 as the root of the OBDD.

Theorem 5. For w ≥ k + nk(k + 1)/ε the above random process generates
(ε, k)-wise independent random functions.

Proof. Let a1, . . . , ak ∈ {0, 1}n be k different inputs and p be the probability
that the function values of these inputs are α1, . . . , αk ∈ {0, 1}. Let P1, . . . , Pk

the k paths of a1, . . . , ak to the layer Ln−1, i. e., the paths end in a node labeled
by xn−1. Let Di be the event that the paths P1, . . . , Pi end in different nodes.
Since the inputs are different, every Pi has to use an edge which is not used
by any other path and, therefore, it holds Pr [Di | Di−1] ≥ (1 − i−1

w)n and

with it Pr [Dk] =
k∏

i=2

Pr [Di | Di−1] ≥
k∏

i=2

(1 − i−1
w)n. We have

k∏

i=2

(1 − i−1
w)n ≥

k∏

i=2

e−
n

w/i−1 ≥ 1 − ε for w ≥ k + nk(k + 1)/ε ≥ k + nk(k + 1)(1/ ln(1
1−ε)). If

all paths end in different nodes, then the function values of the k inputs are
independent and uniformly distributed, i. e., p ≥ 2−k · Pr [Dk] ≥ 2−k − ε and
p ≤ 1− (1 − 2−k) ·Pr [Dk] ≤ 2−k + ε which completes the proof. ��

264 M. Bury

5 Randomized Implicit Algorithms

We use the construction of 3-wise independent random functions from the section
3 to design a randomized maximal matching algorithm. Here, the main drawback
of our random construction is the missing possibility to use different probabili-
ties for the nodes or at least to do in an efficient way. Randomized algorithms
for maximal independent set using pairwise independence like in [1] or [26] or
for maximal matching with complete independence [21] choose a node/edge with
a probability proportional to the node degree. In order to simulate these selec-
tions by our construction, we delete each edge with probability 1/2, store all
isolated edges, and repeat this as long as there are nodes with degree greater
than 1. Finally, we add the stored isolated edges to the matching. Algorithm
2 shows the whole randomized implicit maximal matching algorithm. We re-
alize the edge deletions of the inner loop in the following way: We construct
two 3-wise independent random functions fr1(x), fr2(y) using Algorithm 1 and
set F (x, y) = (x > y) ∧ (fr1(x) ⊕ fr2(y)). Since Prr1,r2 [fr1(x)⊕ fr2(y) = 1] =
Prr1,r2 [fr1(x) = fr2(y)] = 1/4+1/4 = 1/2 for inputs x ≤ y the function F (x, y)
deletes such edges as required. Since we are dealing with undirected graphs, we
want F (x, y) = F (y, x) for every (x, y). Therefore, we set F (x, y) = F (x, y) ∨
F (y, x) and delete the edges with the operation χE(x, y) = χE(x, y) ∧ F (x, y).

Algorithm 2. Randomized implicit maximal matching algorithm
Input: Graph χE(x, y)
Output: Maximal matching χM (x, y)

χM (x, y) = 0 // Initial matching
while χE(x, y) �≡ 0 do

χE′ (x, y) = χE(x, y)
NewEdges(x, y) = 0
while χE′ (x, y) �≡ 0 do

// Construct 3-wise independent random functions (see Algorithm 1)
fr1 (x) = RandomFunc(x,n) and fr2(y) = RandomFunc(y, n)
F (x, y) = (x > y) ∧ (fr1 (x) ⊕ fr2(y))
F (x, y) = F (x, y) ∨ F (y, x)
χE′ (x, y) = χE′ (x, y) ∧ F (x, y) // Delete edges with probability 1/2
T (x) = ∃z, y : (z �= y) ∧ χE′ (x, y) ∧ χE′ (x, z) // Update set of nodes with degree > 1
// Store isolated edges in NewEdges

NewEdges(x, y) = NewEdges(x, y) ∨ (χE′ (x, y) ∧ T (x) ∧ T (y))
end while
χM (x, y) = χM (x, y) ∨NewEdges(x, y) // Add edges to current matching
Matched(x) = ∃y : χM (x, y)

χE(x, y) = χE(x, y) ∧ Matched(x) ∧Matched(y) // Delete edges incident to matched nodes
end while
return χM (x, y)

We say that an edge e ∈ E′ (before the inner while-loop) survives iff e ∈ E′

after the inner while-loop of algorithm 2.

Lemma 3. For every e = {u, v} ∈ E with degE(u) > 1 or degE(v) > 1 before
the inner while-loop in algorithm 2 the probability that e survives is at least

1
8·(degE(u)+degE(v)−2) .

Randomized OBDD-Based Graph Algorithms 265

Proof. Let e = {u, v} ∈ E be an edge before the inner while-loop and Re be the
number of rounds until edge e is deleted. The random bits in each iteration are
3-wise independent and the iterations themselves are completely independent.
Thus, the variables Re are also 3-wise independent. Denote by N(e) = {e′ ∈
E | e ∩ e′ = ∅} the neighborhood of e, i. e., all edges incident to u or v. Then
we have Pr [e survives] = Pr [Re is unique maximum in {Re′ | e′ ∈ N(e)}]. It is
easy to see that Pr [Re = i] =

(
1
2

)i
for i ≥ 1. Let e′ ∈ N(e) and e′ = e and z ≥ 1

be fixed. Since the Re are 3-wise independent, we have Pr [Re′ ≥ z | Re = z] =

Pr [Re′ ≥ z] =
∞∑

i=z

(
1
2

)i
=

(
1
2

)z−1
. Therefore, the probability that there is an

edge e′ ∈ N(e) \ e with Re′ ≥ z is at most |N(e)|−1
2z−1 , i. e., Re is unique maximum

with probability at least 1− |N(e)|−1
2z−1 . This is greater than 0 for z ≥ log(|N(e)|−

1) + 2. Finally, we have

Pr [Re is unique maximum] ≥
(
1

2

)log(|N(e)|−1)+2

·
(
1− |N(e)| − 1

2log(|N(e)|−1)+1

)

≥ 1

8 · (degE(u) + degE(v) − 2)

��
The number of deleted edges for a matching edge (u, v) that is added to the
matching is deg(u) + deg(v) − 2 if we do not count the matching edge itself.
Thus, the expected number of deleted edges is Ω(|E|) at the end of the outer
loop. This gives us the final result.

Theorem 6. Let G = (V,E) be a graph with N nodes. Algorithm 2 computes
a maximal matching in G. All functions used in algorithm 2 depend on at most
3 logN variables. The expected number of operations is O(log3 N).

Application to the Maximal Independent Set Problem. With a similar
idea we are able to design a distributed MIS algorithm: Each node v draws a
random bit until this bit is 0. Let rv be the number of bits drawn by node v. We
send rv to all neighbors and include node v to the independent set iff rv is a local
minimum. The expected number of bits for each channel is 1. A similar analysis
as before show that we have an maximal independent set after O(logN) steps
in expectation and the overall expected number of bits per channel is O(logN).

Experimental Results. All algorithms are implemented in C++ using the
BDD framework CUDD 2.5.01 by F. Somenzi and were compiled with Visual
Studio 2013 in the default 32-bit release configuration. All source files, scripts
and random seeds will be publicly available2. The experiments were performed
on a computer with a 2.5 GHz Intel Core i7 processor and 8 GB main memory
runningWindows 8.1. The runtime is measured by used processor time in seconds

1 http://vlsi.colorado.edu/~fabio/CUDD/
2 http://ls2-www.cs.uni-dortmund.de/~gille/

http://vlsi.colorado.edu/~fabio/CUDD/
http://ls2-www.cs.uni-dortmund.de/~gille/

266 M. Bury

and the space usage of the implicit algorithm is given by the maximum SBDD size
which came up during the computation, where an SBDD is a collection of OBDDs
which can share nodes. Note that the maximum SBDD size is independent of
the used computer system. For our results, we took the mean value over 50 runs
on the same graph. Due to the small variance of these values, we only show
the mean in the diagrams/tables. We omit the maximal matching algorithm by
Bollig and Pröger [10] because the memory limitation was exceeded on every
instance presented here.

We choose three types of input instances: First, we used our construction from
section 4 as an input distribution in the following way: If the 1-sink is chosen
with probability p as a successor of nodes in layer Ln−1 the expected size of
|f−1(x)| is p · 2n. For a fixed N = 217, we used p as a density parameter for
our input graph and want to analyze how the density influences the running
time of the algorithms. Second, we run the algorithms on some bipartite graphs
from a real advertisement application within Google3 [31]. The motivation was
to check whether the randomized algorithm is competitive or even better on
instances where the maximal matching algorithm by Hachtel and Somenzi (HS)
[19] is running very well. Third, we use non-bipartite graphs from [15]. Since HS
is designed for bipartite graphs, a preprocessing step computing a bipartition of
these graphs are needed to compute a maximal matching (see, e. g., [10]) while
our algorithm also works on general graphs.

We used the following implementation of our algorithm denoted by RM. In
order to minimize the running time for the computation of the set of nodes
with two or more incident edges, we sparsify the graph at the beginning of the
outer while loop by deleting each edge with probability 1/2 and repeating this D
times. Initially, we set D = log |E| and decrease D by 1 at the end of the outer
loop. Asymptotically, the running time does not change since after O(logN)
iterations, i. e., D = 0, it does exactly the same as the original algorithm. Initial
experiments showed that this is superior to the original algorithm.

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16

Se
co

nd
s

(lo
gs

ca
le

d)

Graph Number

HS
RM

 0.01

 0.1

 1

 10

17 19 21 23 25 27 29 31 33

Se
co

nd
s

(lo
gs

ca
le

d)

Graph Number

Fig. 1. Running times of HS and RM on the real world instances.

On the random instances the running time and space usage of RM was more
or less unaffected by the density of the graph while HS was very slow for small
values of p and gets faster with increasing density. For p ≤ 0.2 RM was much

3 Graph data files can be found at http://www.columbia.edu/~cs2035/bpdata/

http://www.columbia.edu/~cs2035/bpdata/

Randomized OBDD-Based Graph Algorithms 267

Table 1. Running time and space usage of RM on the graphs from [15]

Instance Nodes Edges Time (sec) Space (SBDD size)

333SP 3712815 22217266 1140.54 66968594

adaptive 6815744 27248640 403.82 22767094

as-Skitter 1696415 22190596 337.53 32020282

hollywood-2009 1139905 113891327 418.36 62253086

roadNet-CA 1971281 5533214 136.18 13177668

roadNet-PA 1090920 3083796 75.26 7633318

roadNet-TX 1393383 3843320 92.62 9125438

faster than HS. In Fig. 1 we see that on the bipartite real world instances RM is
similar to HS if the running time is negligibly small but on the largest instances
(number 15 to 20) RM is much faster. The graphs from [15] were intentionally
chosen to show the potential of RM and indeed do so: It was not possible to
run HS on these graphs due to memory limitations whereas RM computed a
matching in reasonable time and space (see Table 1). Both graphs from [31] and
[15] have very small density and the experiments on the random graphs seem to
support the hypothesis that RM is a better choice than HS for such graphs.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Alg. 3(3), 289–304 (1992)

3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comp. and System Sc. 58(1), 137–147 (1999)

4. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition
and locality in distributed computation. In: FOCS, pp. 364–369 (1989)

5. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in nlogn symbolic steps. Formal Meth. in System Design 28(1),
37–56 (2006)

6. Bollig, B.: On symbolic OBDD-based algorithms for the minimum spanning tree
problem. Theor. Comput. Sci. 447, 2–12 (2012)

7. Bollig, B., Capelle, M.: Priority functions for the approximation of the metric TSP.
Inf. Proc. Letters 113(14-16), 584–591 (2013)

8. Bollig, B., Gillé, M., Pröger, T.: Implicit computation of maximum bipartite match-
ings by sublinear functional operations. In: Agrawal, M., Cooper, S.B., Li, A. (eds.)
TAMC 2012. LNCS, vol. 7287, pp. 473–486. Springer, Heidelberg (2012)

9. Bollig, B., Löbbing, M., Wegener, I.: On the effect of local changes in the variable
ordering of ordered decision diagrams. Inf. Proc. Letters 59(5), 233–239 (1996)

10. Bollig, B., Pröger, T.: On efficient implicit OBDD-based algorithms for maximal
matchings. Inf. Comput. 239, 29–43 (2014)

11. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

12. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. and Comp. 98(2), 142–170 (1992)

268 M. Bury

13. Chor, B., Goldreich, O.: On the power of two-point based sampling. J. Complex-
ity 5(1), 96–106 (1989)

14. Coudert, O.: Doing two-level logic minimization 100 times faster. In: SODA,
pp. 112–121 (1995)

15. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM
Trans. on Math. Soft. 38(1), 1:1–1:25 (2011)

16. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: SODA, pp. 573–582 (2003)

17. Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: Linear solutions to con-
nectivity related problems. Algorithmica 50(1), 120–158 (2008)

18. Gillé, M.: OBDD-based representation of interval graphs. In: Brandstädt, A.,
Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 286–297. Springer,
Heidelberg (2013)

19. Hachtel, G.D., Somenzi, F.: A symbolic algorithms for maximum flow in 0-1 net-
works. F. Meth. in Sys. Design 10(2/3), 207–219 (1997)

20. Hojati, R., Touati, H., Kurshan, R.P., Brayton, R.K.: Efficient ω-regular lan-
guage containment. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS,
vol. 663, pp. 396–409. Springer, Heidelberg (1993)

21. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal
matching. Inf. Process. Lett. 22(2), 77–80 (1986)

22. Jukna, S.: Entropy of contact circuits and lower bounds on their complexity. Theor.
Comput. Sci. 57, 113–129 (1988)

23. Kabanets, V.: Almost k-wise independence and hard Boolean functions. Theor.
Comput. Sci. 297(1-3), 281–295 (2003)

24. Lai, Y., Pedram, M., Vrudhula, S.B.K.: EVBDD-based algorithms for integer linear
programming, spectral transformation, and function decomposition. IEEE Trans.
on CAD of Int. Circuits and Systems 13(8), 959–975 (1994)

25. Linial, N.: Locality in distributed graph algorithms. SIAMJ.Comput. 21(1), 193–201
(1992)

26. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15(4), 1036–1053 (1986)

27. Masek, W.: A fast algorithm for the string editing problem and decision graph
complexity. Master’s thesis, MIT (1976)

28. Meer, K., Rautenbach, D.: On the OBDD size for graphs of bounded tree- and
clique-width. Discrete Mathematics 309(4), 843–851 (2009)

29. Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.: An optimal
bit complexity randomized distributed MIS algorithm. Distributed Computing
23(5-6), 331–340 (2011)

30. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM J. Comput. 22(4), 838–856 (1993)

31. Negruseri, C.S., Pasoi, M.B., Stanley, B., Stein, C., Strat, C.G.: Solving maximum
flow problems on real world bipartite graphs. In: ALENEX, pp. 14–28 (2009)

32. Nunkesser, R., Woelfel, P.: Representation of graphs by OBDDs. Discrete Applied
Mathematics 157(2), 247–261 (2009)

33. Savický, P.: Improved Boolean formulas for the Ramsey graphs. Random Struct.
Algorithms 6(4), 407–416 (1995)

34. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas,
P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932,
pp. 301–313. Springer, Heidelberg (2004)

Randomized OBDD-Based Graph Algorithms 269

35. Sawitzki, D.: The complexity of problems on implicitly represented inputs. In:
Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 471–482. Springer, Heidelberg (2006)

36. Sawitzki, D.: Exponential lower bounds on the space complexity of OBDD-based
graph algorithms. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,
vol. 3887, pp. 781–792. Springer, Heidelberg (2006)

37. Sawitzki, D.: Implicit simulation of FNC algorithms. Electronic Colloquium on
Computational Complexity (ECCC) 14(028) (2007)

38. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters 3, 3–12 (1993)

39. Wegener, I.: The size of reduced OBDDs and optimal read-once branching pro-
grams for almost all Boolean functions. IEEE Trans. on Comp. 43(11), 1262–1269
(1994)

40. Wegener, I.: Branching programs and binary decision diagrams. In: SIAM Mono-
graphs on Discrete Mathematics and Applications (2000)

41. Woelfel, P.: Symbolic topological sorting with OBDDs. J. Disc. Alg. 4, 51–71 (2006)

On Fast and Robust Information Spreading

in the Vertex-Congest Model

Keren Censor-Hillel and Tariq Toukan

Technion - Israel Institute of Technology
{ckeren,ttoukan}@cs.technion.ac.il

Abstract. This paper initiates the study of the impact of failures on
the fundamental problem of information spreading in the Vertex-Congest
model, in which in every round, each of the n nodes sends the same
O(log n)-bit message to all of its neighbors.

Our contribution to coping with failures is twofold. First, we prove
that the randomized algorithm which chooses uniformly at random the
next message to forward is slow, requiring Ω(n/

√
k) rounds on some

graphs, which we denote by Gn,k, where k is the vertex-connectivity.
Second, we design a randomized algorithm that makes dynamic mes-

sage choices, with probabilities that change over the execution. We prove
that for Gn,k it requires only a near-optimal number of O(n log3 n/k)
rounds, despite a rate of q = O(k/n log3 n) failures per round. Our tech-
nique of choosing probabilities that change according to the execution is
of independent interest.

Keywords: distributed computing, information spreading, randomized
algorithms, vertex-connectivity, fault tolerance.

1 Introduction

Coping with failures is a cornerstone challenge in the design of distributed algo-
rithms. It is desirable that a distributed system continues to operate correctly
despite a reasonable amount of failures, and hence obtaining fault-tolerance has
been a fundamental goal in this field. The impact of failures has been studied in
various models of computation and for various distributed tasks.

In this paper, we initiate the study of robustness against failures of the task of
information spreading in the Vertex-Congest model of computation. Information
spreading requires each node of the network to obtain the information of all
other nodes. This problem is at the heart of many distributed applications which
perform global tasks, and thus is a central issue in distributed computing (see,
e.g., [17]). The Vertex-Congest model, where in each round, every node generates
an O(log n)-sized packet and sends it to all of its neighbours, abstracts the
behavior of wireless networks that operate on top of an abstract MAC layer [12]
that takes care of collisions.

The time required for achieving information spreading depends on the struc-
ture of the communication graph. Even without faults, it is clear that having a

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 270–284, 2015.
DOI: 10.1007/978-3-319-25258-2_19

On Fast and Robust Information Spreading in the Vertex-Congest Model 271

minimum vertex-cut of size k implies an Ω(n/k) lower bound for the running
time of any algorithm in the above model, and hence our study addresses the
k-vertex-connectivity of the graph. The diameter of a graph is a trivial lower
bound on the number of rounds required for spreading even without faults, and
hence, for k-vertex-connected graphs, Ω(n/k) is a general lower bound as there
exist k-vertex-connected graphs of diameter n/k.

A tempting approach would be to use randomization for choosing which mes-
sage to forward in each round of communication, in the hope that this would be
naturally robust against failures. However, we show that the uniform random-
ized algorithm is slow on a k-vertex-connected family of graphs, denoted Gn,k,
which consists of n/k cliques of size k that are connected by perfect matchings,
requiring Ω(n/

√
k) rounds.

Instead, this paper presents an algorithm for spreading information in the
Vertex-Congest model that uses dynamic probabilities for selecting the messages
to be sent in each round. We prove that for Gn,k, the round complexity of our
algorithm is almost optimal and that it is highly robust against node failures.

1.1 Our Contribution

As explained, our first contribution is proving that the intuitive idea of simply
choosing at random which message to forward is not efficient. The proof is based
on the fact that there is an inverse proportion between the number of received
messages in a node and the probability of a message in that node to be chosen
and forwarded. The larger the number of messages received in the nodes of a
clique, the longer it takes for any newly received message to be forwarded to the
nodes of the next clique. The full proof appears in [5, Appendix].

Theorem 1.1. The uniform random algorithm requires Ω(n/
√
k) rounds on

Gn,k, in expectation.

Our main result is an algorithm in which the probabilities for sending messages
in each round are not fixed, but rather change dynamically during the execution
based on how it evolves. Roughly speaking, the probability of sending a message
is set according to the number of times it was received, with the goal of giving
higher probabilities for less popular messages. The key intuition behind this
approach is that nodes can take responsibility for forwarding messages that they
receive few times, while they can assume that messages that have been received
many times have already been forwarded throughout the network. This way, we
aim to combine qualities of both random and static approaches, obtaining an
algorithm that is both fast and robust.

This basic approach alone turns out to be insufficient. It allows each mes-
sage to be sent fast through multiple paths in the network, but it requires an
additional mechanism in order to be robust against failures. Our next step is
to augment our algorithm with some additional rounds of communication that
allow the paths to change dynamically as the execution unfolds, essentially by-
passing faulty nodes. These shuffle phases provide fault-tolerance while retaining
the efficiency of the algorithm. We consider a strong failure model, in which links

272 K. Censor-Hillel and T. Toukan

are reliable but nodes fail independently with probability q per round and never
recover, and prove the following result, which holds with high probability1.

Theorem 4.3 Alg. 2 completes full information spreadingonGn,k inO
(
n
k log3 n

)

rounds, for any node failure probability per round q, 0 ≤ q ≤ O
(

k
n log3 n

)
, w.h.p.

While our algorithm is general and does not assume any knowledge of the
topology of the network, showing that it is fast and robust for Gn,k is important
as this graph is basically a k-vertex-connected generalization of a simple path.
This constitutes a first step towards understanding this key question. By making
minor changes to Gn,k we can cover additional graphs with same or similar
analysis. We believe that the same approach works for additional families of
k-vertex-connected graphs.

1.2 Additional Background and Related Work

One approach for disseminating information that was introduced in [1] and has
been intensively studied (e.g. [6, 10, 13, 16]) is network coding. Instead of simply
relaying the packets they receive, the nodes of a network take several packets
and combine them together for transmission. An example is random linear net-
work coding (RLNC) presented in [11]. Among its advantages is improving the
network’s throughput [10]. A conclusion that can be derived from the analysis
shown in [9], is that RLNC spreads the information in Θ(n/k) rounds, w.h.p.

However, network coding requires sending large coefficients, which do not fit
within the restriction on the packet size that is imposed in the Vertex-Congest
model. An additional disadvantage is derived from the fact that decoding is done
by solving a system of linear independent equations of n variables, one variable
for each of the original messages. Thus, the decoding process requires the recep-
tion of a sufficient number of packets by the node, in order to start reproducing
the original information. Unfortunately, in most cases, this sufficient number
of packets equals the number of original messages, which means that decoding
happens only at the end of the process. This issue has supreme importance in
applications of broadcasting videos or presentations. For example, when watch-
ing online content, one would prefer displaying the downloaded parts of an image
immediately on the screen, rather than waiting with an empty screen until the
image is fully downloaded.

An almost-optimal algorithm that requires O(n log n/k) rounds with high
probability has been shown in [2]. It is based on a preprocessing stage which con-
structs vertex-disjoint connected dominating sets (CDSs) which are then used
in order to route messages in parallel through all the CDSs. However, this algo-
rithm is non-robust for the following reason. In the basic algorithm the failure
of a single node in a CDS suffices to render the entire structure faulty. This
sensitivity can be easily fixed by combining O(polylog(n)) CDSs together into

1 We use the phrase “with high probability” (w.h.p.) to indicate that an event happens
with probability at least 1− 1

nc for a constant c ≥ 1.

On Fast and Robust Information Spreading in the Vertex-Congest Model 273

well-connected components and sending information redundantly over each CDS
in the component, incurring a cost of only an O(polylog(n)) factor of slowdown
in runtime. Nevertheless, the construction itself, of the CDS packings, is highly
sensitive to failures. It is an important open problem whether CDS packings can
be constructed under faults.

Randomized protocols were designed to overcome similar problems of fault-
tolerance in various settings [7, 8], as they are naturally fault-tolerant. The ap-
proach taken in this paper, of changing the probabilities of sending messages
according to how the execution evolves such that they are inversely proportional
to the number of times a message has been received, bears some resemblance and
borrows ideas from [4], where a fault-tolerant information spreading algorithm
was designed for gossiping, which is a different model of communication. Apart
from the high-level intuition, the model of communication and the implementa-
tion and analysis are completely different.

1.3 Preliminaries

We assume a network with n nodes that have unique identifiers of O(log n) bits.
Each node u holds one message, denoted mu. An information spreading algo-
rithm distributes the messages of each node in the network to all other nodes.

In the Vertex-Congest model, each node knows its neighbours but does not
know the global graph topology. The execution proceeds in a sequence of syn-
chronous rounds. In each round, every node generates a packet and sends it
to all of its neighbours. The packet size is bounded by O(log n) bits and can
encapsulate one message, in addition to some header.

An n-node graph is said to be k-vertex-connected if the graph resulting from
deleting any (perhaps empty) set of fewer than k vertices remains connected. In
this paper we assume that k = ω(log3 n). An equivalent definition [14] is that a
graph is k-vertex-connected if for every pair of its vertices it is possible to find k
vertex-disjoint paths connecting these vertices.

We consider a strong failure model, in which links are reliable but nodes fail
independently with probability q per round and never recover.

2 A Fast Information Spreading Algorithm

In this section, we describe our basic information spreading algorithm. We em-
phasize that the algorithm does not assume anything about the underlying
graph, except for a polynomial bound on its size. In particular, the nodes do
not know the vertex-connectivity of the graph, nor any additional information
about its topology. Each node u has a set of received messages, whose content
at the beginning of round t is denoted Ru(t). We use cntu,v(t) to denote the
number of times a node u has received message mv by the beginning of round t.
Denote by Su(t) the set of messages sent by node u by the beginning of round t.
Define Bu(t) ≡ Ru(t) − Su(t), the set of messages that are known to node u at
the beginning of round t, but not yet sent. We refer to Bu(t) as a logical vari-
able, whose value changes implicitly according to updates in the actual variables

274 K. Censor-Hillel and T. Toukan

Ru(t) and Su(t). For every node u, we have that Su(0) = ∅, Ru(0) = {mu},
cntu,u(0) = 1, and for each v �= u, cntu,v(0) = 0.

We present an algorithm, Alg. 1, that consists of two types of phases: a ran-
dom phase and ranking phases (see Fig. 3 in [5, Appendix]). Let t0 be the round
number at the beginning of the random phase, and let t̄0 be the round num-
ber after the random phase. Let tp be the round number at the beginning of
ranking phase p, and let t̄p be the round number after ranking phase p, starting
from p = 1. In this algorithm, it holds that t̄p = tp+1 for every p, and t0 = 1.
We will later modify this algorithm in Section 4, where we argue about proper-
ties that hold in t̄p and tp+1, separately. Denote by B̂u(tp) the set of node u at

time tp. Unlike Bu(t), B̂u(t) is an actual variable that does not implicitly change
according to Ru(t) and Su(t). We assign a value to it at the beginning of every
phase, that is, B̂u(tp) = Bu(tp), and make sure that its content only gets smaller
during a phase. The parameters α and d are constants that are fixed later, at
the end of Section 3. The algorithm runs as follows, where in each round every
node sends a message and receives messages from all of its neighbors:

(1) Single round (Round 0): This is the first round of the algorithm, where every
node u sends the message mu it has.

(2) Random phase: This is the first phase of the algorithm, which consists of τ =
α logn rounds. In each round t, every node u picks a message to send from
B̂u(t0) uniformly at random, and removes it from the set.

(3) Consecutive ranking phases: Each of these phases consists of τ ′ = 8dτ log2 n
rounds. At the beginning of such a phase, each node uses the Ranking Func-
tion (Fig. 1) that defines a probability space over the messages in B̂u(tp). In

each round, every node u picks a message to send from B̂u(tp) according to
the probability space, and removes it from the set.

Ranking Function. The ranking function (in Fig. 1) is calculated by each
node, and defines a probability space over its messages. Each node u sorts the
messages in B̂u according to their cnt values, smallest to largest, breaking ties
arbitrarily. Denote by rankm the position of the messagem within the sorted list,
and let b = |B̂u|, be the size of the list. We consider the probability space in which
the probability for a message m with rankm = r to be picked is 1

rHb
. Namely,

the probability is inversely proportional to r. The b-th harmonic number, Hb =∑b
i=1 1/i, is a normalization factor (over the whole list of messages). This means

that messages in lower positions (lower rankm values, implying lower cnt values)
are more likely to be picked.

Other interesting variants of probability distributions over the messages might
work as well. For example, the inverse proportion might be raised to some expo-
nent, and be a function of the cnt values instead of the ranking r. Our ranking
function was selected as it is very simple, and fits perfectly in Lemma 2.2. In the
algorithm, the probability space used by a node u during a phase is calculated at
the start of the phase. In ranking phases, it is defined according to the Ranking
function. In the random phase, it is the uniform distribution. Within a phase, the

On Fast and Robust Information Spreading in the Vertex-Congest Model 275

Algorithm 1. for each node u

1: SyncRound(mu) � Round 0
2: RandomPhase()
3: loop
4: RankingPhase()
5: end loop

SyncRound(m)

6: procedure SyncRound(m) � A synchronized round
7: send(m)
8: Su(t) ← Su(t) ∪ {m}
9: R ← received messages
10: for all mv ∈ R do
11: Ru(t) ← Ru(t) ∪ {mv}
12: cntu,v(t) ← cntu,v(t) + 1
13: end for
14: t ← t+ 1
15: end procedure

RandomPhase

16: B̂u(t0) ← Bu(t) � t = t0
17: loop τ times � τ = α log n
18: m ← pop message from B̂u(t0) uniformly at random
19: SyncRound(m)
20: end loop

RankingPhase p

21: B̂u(tp) ← Bu(t) � t = tp
22: Prob ← RankingFunction(B̂u(tp))
23: loop τ ′ times � τ ′ = 8dτ log2 n
24: m ← pop message from B̂u(tp) according to Prob
25: Nullify Prob[m] (update Prob accordingly)
26: SyncRound(m)
27: end loop

1: function RankingFunction(Buffer B̂u)
2: mList ← sort B̂u increasingly according to cnt values
3: b ← length(mList)
4: for all 1 ≤ r ≤ b do Prob[mList[r]] ← 1

rHb
end for

5: return Prob
6: end function

Fig. 1. The Ranking Function

only modifications in the probability space of a node are done due to the non-
repetitive sending policy2, i.e., the need for nullifying probabilities of messages
that are already sent. When a message is sent, the modification can be done, for

2 There is no point in re-sending messages, as all links are reliable.

276 K. Censor-Hillel and T. Toukan

example, by updating the normalization factor, or alternatively by distributing
the probability of the sent message between all other messages (say, proportion-
ally to their current probabilities). Anyhow, this implies that the probability
of each message can only get larger during a phase, as long as it is not sent.
Namely, the initial probability of a message (at the beginning of a phase) is a
lower bound on its probability for the rest of the phase (as long as it is not sent).
Probabilities are not defined for messages that were not known at the start of
a phase, and were first received during the phase, thus these messages have no
chance of being sent until the next phase starts.

The Phase Separation Property. Changes in cnt values during a phase (due
to reception of messages) do not affect the probability space of this phase, as it
is calculated only at the start of each phase. This implies that messages that are
first received by a node after the start of the random phase or a ranking phase
have zero probability for being sent during that phase, and can be sent by the
node only starting from the next phase, when the probability space is recalcu-
lated. We call this the phase separation property, and it implies the following:

Proposition 2.1. At the start of ranking phase p, every message has propagated
to a distance of at most p+ 1.

The following lemma holds for any node and for a general graph. Its proof
appears in [5, Appendix].

Lemma 2.2. Let m be a message with rank r ≤ 8τ (recall that τ = α log n),
then m is sent during the ranking phase with probability at least 1− n−d.

3 Time Analysis for Gn,k

Recall that Gn,k is the graph that consists of n/k cliques of size k (assume n/k
is an integer), with a matching between every two consecutive cliques (see Fig. 2
in [5, Appendix]). Clearly, Gn,k is k-vertex-connected.

Additional Definitions. Denote by C the set of all cliques. Recall the enumer-
ation of the cliques, and denote by Ci clique number i, i ∈ {1, . . . , n

k }. Denote
by C(u) the clique that contains node u. A layer L is a set of n/k nodes from all
distinct cliques that form a path starting in C1 and ending in Cn/k. We denote
by L the set of all k layers. The layer L(u) ∈ L is the layer that contains node
u. Notice that within the same clique, different nodes belong to different layers.

We now analyze the time complexity of the algorithm to spread informa-
tion over Gn,k. For simplicity, we analyze the flow of messages from Cj to Ci,
where j ≤ i. The opposite direction of flow and its analysis are symmetric.

Theorem 3.1. Alg. 1 completes full information spreadingonGn,k inO
(
n
k log3 n

)

rounds, w.h.p.

The theorem is directly proved based on Lemma 3.2, as follows.

Lemma 3.2 (Iteration). For every i, 1 ≤ i ≤ n
k , every node u ∈ Ci, and every

node v such that v ∈ Cj for some i−p ≤ j ≤ i, it holds that mv ∈ Ru(t̄p), w.h.p.

On Fast and Robust Information Spreading in the Vertex-Congest Model 277

Proof (Proof of Theorem 3.1). Lemma 3.2 shows that by the end of ranking
phase p, w.h.p. each node u knows all messages mv originating at distance at
most p. This implies that full information spreading is completed after n/k
phases, since n/k is the diameter of the graph, which proves Theorem 3.1. �	

In the rest of the section we prove Lemma 3.2. The following definition is
useful to indicate that a node shares responsibility for disseminating a message.

Definition 3.3 (Fresh message). A fresh message of a node u at time t, is a
message mv ∈ Ru(t) for which cntu,v(t) < T , for threshold T = 1

2τ .

General Idea of the Proof. At the end of round 0, every message mv is
disseminated in its own clique C(v). Then, we show that by the end of the random
phase, each message mv is sent w.h.p. by a sufficiently large number of nodes
u ∈ C(v), to become non-fresh in all nodes of the clique C(v). Simultaneously,
each of the messages mv becomes known and fresh in a sufficiently large number
of nodes in the neighboring clique.

Then we show that ranking phases shift and preserve this situation. At the
beginning of every ranking phase, every fresh message in a node is also fresh in
a sufficiently large number of nodes within the same clique. During the phase,
all of the fresh messages are sent w.h.p., implying that each one of the messages
(i) is disseminated in the clique; (ii) is not fresh in nodes of the clique anymore;
and (iii) is fresh in a sufficiently large number of nodes in the neighboring clique.

The combination of properties (ii) and (iii) is the crux of the proof. It guar-
antees that the process progresses iteratively, as it leads to similar conditions
again and again at the beginning of every new ranking phase. This happens
because every node can easily distinguish between a new message received from
nodes within the clique (becomes non-fresh by the end of the phase), and a new
message received from the neighbor in the neighboring clique (stays fresh at the
end of the phase, and should be sent during the next phase). We emphasize that
all of this is done implicitly, without knowing the structure of the network.

This iterative behavior of the combined properties guarantees that every mes-
sage propagates one additional clique per phase, until full information spreading
completes after O(n/k) phases.

Let t′, for 0 ≤ t′ ≤ τ−1, be the time from the first round of the random phase,
i.e., t′ = t− t0. The following proposition is immediate from the pseudocode:

Proposition 3.4. At the beginning of the random phase, B̂u(t0) for every node
u ∈ Ci contains exactly k−1 messages mv originating at v ∈ Ci, and at most two
additional messages, one originating at v ∈ Ci−1 ∩L(u), and one originating at
v ∈ Ci+1∩L(u). Thus, it holds that |B̂u(t0+t′)| = k+1−t′, for i = 2, 3, · · · , n

k−1,

and |B̂u(t0 + t′)| = k − t′, for i = 1, n
k .

Namely, nodes of inner cliques (Ci, 1 < i < n/k) start the random phase with
|B̂u(t0)| = k + 1, while nodes of cliques C1 and Cn/k start the random phase

with |B̂u(t0)| = k.

278 K. Censor-Hillel and T. Toukan

3.1 Analysis of the Random Phase

The following lemma analyzes the initial random phase, and shows that every
message mv is non-fresh in all nodes of C(v) at the end of the random phase:

Lemma 3.5. At the end of the random phase, for every message mv and for
all nodes u ∈ C(v), mv is non-fresh for u, with probability at least 1− 1

nα/48−1 .

Proof. Fix v. Message mv is disseminated in C(v) by the start of the random
phase. By Proposition 3.4, for every u ∈ C(v), it holds that |B̂u(t0+t′)| ≤ k+1−t′

during the random phase.
Let �u,v, for every u ∈ C(v), be an indicator variable that indicates whether

node u sends mv during the random phase or not. Then

Pr[�u,v = 1] ≥ 1−
τ−1∏

t′=0

k − t′

k + 1− t′
= 1− k + 1− τ

k + 1
≥ τ

(3/2)k
.

Let Xv =
∑

u∈C(v) �u,v, be the number of nodes in C(v) that send mv during
the random phase, i.e., the number of times mv is received by every node in
C(v). Then

μ = E(Xv) = E

⎛

⎝
∑

u∈C(v)

�u,v

⎞

⎠ =
∑

u∈C(v)

E(�u,v) ≥
∑

u∈C(v)

2τ

3k
=

2τ

3
.

Since v is fixed, the indicator variables are independent, as they refer to decisions
of distinct nodes. By applying a Chernoff bound [15, Chapter 4], we get

Pr[Xv ≤ (1− δ)μ] ≤ exp
(−δ2μ/2

) ≤ exp
(−δ2α logn/3

)
< 1/n

αδ2

3 .

By setting δ = 1
4 , we get that a message mv is non-fresh in all nodes u ∈ C(v)

with probability at least 1− 1
nα/48 . By a union bound, this holds for every node

v with probability at least 1− 1
nα/48−1 . �	

Definition 3.6. A pioneer message in node u ∈ Ci at time tp (beginning of
ranking phase p), is a message mv ∈ Ru(tp) that originated at v ∈ Ci−p−1.

Pioneer Attributes. If a message mv is a pioneer in node u ∈ Ci at time tp, then
(i) v ∈ L(u) (by Proposition 2.1, the message was transmitted over the shortest
path), and the following hold at time tp: (ii) cntu,v(tp) = 1, and thus mv is fresh
for u, (iii) mv /∈ Ru′(tp) for every u′ ∈ Ci, u

′ �= u (by Proposition 2.1), (iv) mv

is disseminated in Ci−1 (by the node that relayed mv to its neighbor in Ci),
and (v) mv is fresh in every node u′ ∈ Ci−1. The following is proved in [5,
Appendix].

Lemma 3.7. With probability at least 1− 1/nα/24−1, at the end of the random
phase, for every i, the number of pioneer messages that reach Ci is ≤ 3τ .

On Fast and Robust Information Spreading in the Vertex-Congest Model 279

3.2 Analysis of Ranking Phases

After analyzing the single random phase, here we analyze the ranking phases.

Lemma 3.8. With probability at least 1− 1
nd−2 , every node u that starts ranking

phase p with at most 8τ fresh messages, sends all of them during the phase.

The proof appears in [5, Appendix]. To prove Lemma 3.2, we show a sequence
of four inductive properties, that hold for ranking phase p, with probability at
least 1− (

2p
nd−2 + 2

nα/48−1

)
.

Property 1. For every i, 1 ≤ i ≤ n
k , it holds that the number of messages mv,

v ∈ Ci−p−1, such that mv ∈ Ru(tp) for some u ∈ Ci (pioneers), is at most 3τ ,
and each reaches a distinct node u ∈ L(v).

Property 2. For every i, 1 ≤ i ≤ n
k , and every node u ∈ Ci, it holds that at

time tp there are at most 4τ fresh messages mv for node u for every one of the
two directions of flow (8τ in total). All of them originated at nodes v ∈ Ci−p

(similarly, v ∈ Ci+p), except for at most one (a pioneer) which originated at
u′ ∈ Ci−p−1∩L(u) (similarly, u′ ∈ Ci+p+1∩L(u)). All messagesmv ∈ Ru(tp), v ∈
Ci−p (similarly, v ∈ Ci+p), are fresh.

Property 3. For every i, 1 ≤ i ≤ n
k , and every node v ∈ Ci−p, it holds that mv

is fresh for at least T nodes u ∈ Ci at time tp. Recall that T = τ/2.

Property 4. For every i, 1 ≤ i ≤ n
k , every node u ∈ Ci, and every node v

such that v ∈ Cj for some i − p ≤ j ≤ i, it holds that mv ∈ Ru(t̄p), and mv is
non-fresh.

We prove the four properties simultaneously by induction on the ranking phase
number, p. To prove the base cases, we assume that all events described in
Lemma 3.5, Lemma 3.7, and Lemma 3.8 (for p = 1) occur. Notice that, by a
union bound, the probability for this is at least 1−(

1
nα/24−1 + 1

nα/48−1 + 1
nd−2

) ≥
1− (

2
nα/48−1 + 2

nd−2

)
.

To prove the induction step, we assume that all events described in the four
properties for p−1, and in Lemma 3.8 for p−1 and p, occur. This happens with

probability at least 1−
(

2
nα/48−1 + 2(p−1)

nd−2 + 1
nd−2 + 1

nd−2

)
= 1−(

2
nα/48−1 + 2p

nd−2

)
.

The complete inductive proof appears in [5, Appendix]. Property 4 guarantees
that full information spreading is completed after ranking phase p = n/k, with

probability at least 1−
(

2n/k
nd−2 + 2

nα/48−1

)
≥ 1− (

1
nd−3 + 1

nα/48−2

) ≥ 1− 1
nc , for a

constant c, by fixing d and α to values d > c+ 3, α > 48c+ 96. This completes
the proof of Lemma 3.2, from which Lemma 3.1 follows.

4 Fault Tolerance

Alg. 1 highly depends on the random phase in the following sense. For every
node v, consider the set of nodes in neighboring cliques that know message mv

280 K. Censor-Hillel and T. Toukan

by the end of the random phase. Then, w.h.p. the algorithm spreads mv using
the layers of nodes in the above set (“carriers”). This means that the paths of a
message are fixed very early in the algorithm and do not alternate.

A single failure of a node in each layer (carrier) is sufficient to break down
its role. Each message relies on at least T different layers to proceed. Hence, the
algorithm is sensitive to failures in which less than T carrier layers are non-faulty.

At the beginning of ranking phase p, consider the case where a message mv ∈
Ci−p is fresh in x < T nodes in clique Ci, due to failures. The behavior of the
algorithm in such case is as follows: During the ranking phase, less than T nodes
in the clique send the message, so all other nodes in Ci receive the message less
than T times, thus it stays fresh in all of them at the end of ranking phase p.
Starting from the next ranking phase, the message mv propagates regularly over
those x < T carriers, but also propagates over all other carriers, with a delay of
a phase. This means that every layer becomes responsible for one extra message
(in addition to at most 8τ messages), which may still be tolerable. In general,
our algorithm can manage a constant number of such occurrences.

We aim to cope with a larger number of failures, so we modify our algorithm
to help layers bypass their failing nodes, so they continue operating as carriers.

4.1 Shuffle Phases

We invoke a shuffle phase between every two ranking phases, so phases of the
algorithm now proceed as described in Fig. 4 in [5, Appendix]. Roughly speaking,
the objective of a shuffle phase, is that nodes of every clique re-divide their
responsibilities over messages.

A shuffle phase consists of 8τ rounds. During it, every node sends its fresh
messages (and receives fresh messages from all neighbors). Instead of updating
the regular cnt values, nodes use separate counters, phasecnt, to count the num-
ber of receptions for each message during the current shuffle phase. Recall that
the objective is shuffling the fresh messages between nodes of same clique. Thus,
at the end the of the shuffle phase, every node identifies and filters out unwanted
messages, which are messages received from neighboring cliques (low phasecnt
values), and messages that were already non-fresh prior to the start of the shuffle
phase. Then it randomly picks 4τ new fresh messages, to start the next ranking
phase with.

The important gain from this cooperative division of responsibilities done by
the nodes of a clique, is that a node u ∈ Ci that does not receive new messages
from its faulty neighbor u′ ∈ Ci−1 ∩L(u), can overcome the failure of the carrier
layer, and still take part in transmitting relevant messages from one clique to
the other, with no delays. The proof of the following appears in [5, Appendix].

Theorem 4.1. Alg. 2 completes full information spreadingonGn,k inO
(
n
k log3 n

)

rounds, w.h.p.

4.2 Resilience to Faults

Recall that we consider a model of independent failures of nodes, where each
node fails at each round with probability q, and never recovers. Let τe ≤ 2n

k τ
′ =

On Fast and Robust Information Spreading in the Vertex-Congest Model 281

Algorithm 2. for each node u

1: SyncRound(mu) � Round 0
2: RandomPhase()
3: loop
4: RankingPhase()
5: ShufflePhase()
6: end loop

ShufflePhase p

7: B̂u(t̄p) ← fresh messages in Bu(t) � t = t̄p
8: for all mv ∈ B̂u(t̄p) do
9: phasecntu,v ← 1
10: end for
11: R ← B̂u(t̄p)
12: loop 8τ times
13: if B̂u(t̄p) = ∅ then
14: send own message mu

15: else
16: pop and send a fresh message from B̂u(t̄p)
17: end if
18: R′ ← receive messages
19: for all mv ∈ R′ do
20: if mv /∈ R then
21: phasecntu,v ← 1
22: else
23: phasecntu,v ← phasecntu,v + 1
24: end if
25: R ← R ∪ {mv}
26: end for
27: t ← t+ 1
28: end loop
29: R ← R after filtering out unwanted messages. � Filter out messages mv with

phasecntu,v < ĉ · T � Filter out messages that were non-fresh prior to the start of
the phase

30: Ru(t) ← Ru(t) ∪R
31: Select 4τ messages from R randomly, rank them from 1 to 4τ .

O
(
n
k log3 n

)
(the round number at the end of ranking phase n/k in Alg. 2). First,

we prove the following. The proof appears in [5, Appendix].

Lemma 4.2. At the end of round τe, the number of non-faulty nodes in each
clique is at least (30k/32), with probability at least 1− 1/n30.

We show that the algorithm tolerates failures for q, 0 ≤ q ≤ O
(

k
n log3 n

)
.

Theorem 4.3. Alg. 2 completes full information spreadingonGn,k inO
(
n
k log3 n

)

rounds, for any node failure probability per round q, 0 ≤ q ≤ O
(

k
n log3 n

)
, w.h.p.

282 K. Censor-Hillel and T. Toukan

Proof. Fix i, p. Let mv be a message that is fresh in at least T (non-faulty) nodes
in Ci−1 at the end of shuffle phase p− 1. Here we analyze the probability that
mv is not shuffled successfully in clique Ci.

An unsuccessful shuffle might occur either because the phasecnt values in Ci

at the end of shuffle phase p are smaller than the threshold of T ∗ = ĉT , so the
message is filtered out (denote this event by A), or because the message was
selected by less than T (non-faulty) nodes. By Lemma 3.8, at the beginning of
shuffle phase p, the message mv is supposed to be fresh in at least T nodes in Ci

(each of them gets the message from its respective neighbor in Ci−1). Of these
nodes in Ci, if one does not send mv during shuffle phase p, then either the node
or its neighbor in Ci−1 (or both) becomes faulty by the end of shuffle phase p. The
probability q̂ for such a pair of nodes not to fail is bounded from below (according
to Bernoulli’s inequality) by q̂ = ((1− q)τe)2 ≥ (1− qτe)

2 ≥ 1− 2qτe ≥ 1− 1/16.
Fix a set of T pairs of nodes S(mv) ⊆ Ci−1 ×Ci, of those who know message

mv in Ci−1 at the end of shuffle phase p− 1, and their respective neighbors in
Ci. There might exist more than T such pairs, but by fixing a set of size T and
ignoring the rest, we bound the probability of an unsuccessful shuffle from above,
as the ignored nodes can only help and increase the probability of success. A
“surviving” pair is a pair of nodes from S(mv) where both are non-faulty at the
end of the shuffle phase, and hence function properly (by sending message mv)
during shuffle phase p. Denote by s, the number of “surviving” pairs. We have:

Pr[A] ≤
T∗−1∑

s=0

(
T

s

)
q̂s(1− q̂)T−s≤

T∗−1∑

s=0

(
T

s

)
(1− q̂)T−s ≤

T∗−1∑

s=0

(
T

s

)(
1

16

)T−s

.

We sum over all s ∈ {0, . . . , T ∗ − 1}, where the number of “survivors” is lower
than the threshold of ĉT , which implies that the message mv is filtered out,
improperly, at the end of the shuffle phase due to a low phasecnt value.

By setting 0 < ĉ ≤ 1
2 , we get that Pr[A] ≤ 1/nα/3−1 (see calculation in [5,

Appendix]). Namely, the message is not filtered out with probability at least
1/nα/3−1. The number of non-faulty nodes in each clique is at least 31k/32 with
probability at least 1 − 1

n30 , by Lemma 4.2. An analysis similar to the one in
the proof of Lemma 6.3 in [5, Appendix] (with δ = 11/15) gives that, once the
message is not filtered out, it is selected by at least T of the non-faulty nodes
in Ci with probability at least 1 − 1/n112α/(15·16). In total, by using a union
bound, a message is not shuffled successfully between two consecutive shuffle
phases with probability at most 1

nα/3−1 + 1

n112α/(15·16) +
1

n30 ≤ 1
n6 (for value of α

fixed earlier).
We use union bound two more times, for all messages and for all phases,

and get an upper bound for the probability that a message is not propagated
properly, of 1

n4 . This proves that the algorithm tolerates failures that occur with
probability 0 ≤ q ≤ 1

32τe
in the given model, with probability at least 1− 1

n4 . �	

On Fast and Robust Information Spreading in the Vertex-Congest Model 283

5 Discussion

Static-Routes Algorithms. Let ALG be an algorithm that spreads informa-
tion on k-vertex-connected graphs in O

(
n
k · polylog(n)) rounds, by constructing

static routes, and using them to disseminate messages in parallel, each message
on a specific route. This makes ALG very sensitive to failures, as a single failure
in a route suffices to render the entire route faulty.

However, it can easily be configured so that vertex-disjoint routes are com-
bined into groups of size γ, and every node duplicates its messages and sends
them concurrently over these components. Notice that in k-vertex-connected
graphs, γ is bounded from above by k. This costs γ slowdown in runtime as a
trade-off. Denote this configuration of the algorithm by ALG(γ).

We are interested in cases where γ = O(polylog(n)), so that the runtime of
the algorithm remains O

(
n
k · polylog(n)). Every combination of γ vertex-disjoint

routes induces a γ-vertex-connected subgraph, as it stays connected after the
removal of any γ − 1 vertices. Each component functions as long as it stays
connected. According to [3, Theorem 1.5], for γ = Ω(log3 n), such a component
stays connected w.h.p. if its nodes are sampled independently with a constant
probability. By considering the sampling process imposed by failures, i.e. con-
sidering the non-faulty nodes as sampled, then each component stays connected
if a constant fraction of its nodes stays non-faulty during the execution, toler-
ating a constant fraction of nodes that fail. The additional slowdown factor for
each message to spread over such a component in the presence of faults can be
loosely bounded form above by O(γ), as the size of the combined component is
O(γ) the size of its original routes, (in the worst case a message traverses over
all non-faulty nodes of the component). In total, this configuration of the algo-
rithm tolerates the failure of a constant fraction of nodes during its execution,

which matches a probability of failure of q = O
(

k
n·polylog(n)

)
per round, while

preserving a time complexity of O
(
n
k · polylog(n)).

The algorithm presented in [2] is static-route, as it constructs CDS packings
and routes messages over them. The CDS packings are only fractionally vertex-
disjoint, which requires a few modifications to the above analysis. However, de-
spite the above fix, the algorithm remains vulnerable due to the preprocessing
stage. Tolerating failures that occur during the preprocessing stage is more com-
plicated, and the construction of CDS packings in the presence of failures is still
an open problem.

Summary. In this paper, we show an information spreading algorithm, and
prove that it is fast and robust for Gn,k. The intriguing open question is whether
this approach can work for general k-vertex-connected graphs.

To summarize, we find the question of devising a fast and robust information
spreading algorithm in the Vertex-Congest model an intriguing open question,
and view our result as a first step in this direction. The technique our algorithm
leverages, of using probability distributions that change over time according to
how the execution unfolds, may have applications in other settings as well.

284 K. Censor-Hillel and T. Toukan

Acknowledgements. Keren Censor-Hillel is a Shalon Fellow. This research
is supported by the Israel Science Foundation (grant number 1696/14). We
thank Mohsen Ghaffari, Fabian Kuhn, Yuval Emek and Shmuel Zaks for useful
discussions.

References

1. Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46(4), 1204–1216 (2000)

2. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: Distributed connectivity decomposition.
In: Proceedings of the 33rd ACM Symposium on Principles of Distributed Com-
puting, PODC, pp. 156–165 (2014)

3. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: A new perspective on ver-
tex connectivity. In: Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pp. 546–561 (2014).
http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.41

4. Censor-Hillel, K., Giakkoupis, G.: Fast and robust information spreading (2012)
(unpublished manuscript)

5. Censor-Hillel, K., Toukan, T.: On fast and robust information spreading in the
vertex-congest model (2015). http://arxiv.org/abs/1507.01181

6. Deb, S., Médard, M., Choute, C.: Algebraic gossip: A network coding approach
to optimal multiple rumor mongering. IEEE Transactions on Information The-
ory 52(6), 2486–2507 (2006)

7. Elsässer, R., Sauerwald, T.: Cover time and broadcast time. In: Proceedings of
the 26th International Symposium on Theoretical Aspects of Computer Science,
STACS, pp. 373–384 (2009)

8. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
Random Structures & Algorithms 1(4), 447–460 (1990)

9. Haeupler, B.: Analyzing network coding gossip made easy. In: Proceedings of the
43rd Annual ACM Symposium on Theory of Computing, STOC, pp. 293–302
(2011)

10. Ho, T., Koetter, R., Medard, M., Karger, D.R., Effros, M.: The benefits of coding
over routing in a randomized setting. In: Proceedings of the IEEE International
Symposium on Information Theory, p. 442 (2003)

11. Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.:
A random linear network coding approach to multicast. IEEE Transactions on
Information Theory 52(10), 4413–4430 (2006)

12. Kuhn, F., Lynch, N., Newport, C.: The abstract MAC layer. Distributed Comput-
ing 24(3-4), 187–206 (2011). http://dx.doi.org/10.1007/s00446-010-0118-0

13. Li, S.Y., Yeung, R.W., Cai, N.: Linear network coding. IEEE Transactions on
Information Theory 49(2), 371–381 (2003)

14. Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10(1), 96–
115 (1927)

15. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press (2005)

16. Mosk-Aoyama, D., Shah, D.: Information dissemination via network coding. In:
2006 IEEE International Symposium on Information Theory, pp. 1748–1752. IEEE
(2006)

17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.41
http://arxiv.org/abs/1507.01181
http://dx.doi.org/10.1007/s00446-010-0118-0

Information Spreading
by Mobile Particles on a Line

Jurek Czyzowicz1, Evangelos Kranakis2, Eduardo Pacheco3,
and Dominik Pająk4

1 Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada
2 Carleton University, Ottawa, Ontario K1S 5B6, Canada
3 McGill University, Montreal, Quebec, H3A 0G4, Canada

4 University of Cambridge, CB3 0FD, UK

Abstract. A set of identical particles is deployed on an infinite line.
Each particle moves freely on the line at arbitrary but constant speed.
When two particles come into contact they bounce acquiring new veloci-
ties according to the law of mechanics for elastic collisions. Each particle
initially holds a piece of information. The meeting particles automati-
cally transmit to each other their entire currently possessed information
(i.e., the initial one and the one accumulated by means of previous col-
lisions). Due to the fact that the number of collisions in this setting is
finite [1] communication cannot last forever. This raises some interesting
questions which we address in this paper: Will particle pj ever obtain the
initial information of pi? Are colliding particles able to perform broad-
casting, convergecast, or gossiping?

We establish necessary and sufficient conditions for any pair of par-
ticles to communicate as well as those needed to achieve gossiping, con-
vergecast, and broadcasting. Although these conditions clearly depend
on the initial ordering of the particles along the line, we prove that they
are independent of their starting positions. Further, we show how to effi-
ciently decide whether some of the aforementioned communication prim-
itives can take place. Finally we explain how to compute the necessary
time to carry out all these communication protocols and we describe a
relationship between our problem and an important, longstanding open
question in computational geometry.

Keywords and Phrases: Mobile agents, passive mobility, particles,
communication, broadcasting, convergecast, gossiping, synchronous sys-
tems, elastic collisions.

1 Introduction

Mobile agents are autonomous entities that are capable of sensing, i.e., ability
to perceive some parameters of the environment, communication - ability to
transmit information to other agents, mobility - ability to move within their
environment of deployment, and computation - ability of processing their data.
Mobile agents usually function in a distributed way, i.e., a collection of mobile

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 285–298, 2015.
DOI: 10.1007/978-3-319-25258-2_20

286 J. Czyzowicz et al.

agents is deployed across a territory and they interact in order to perform a
common task.

Frequently, systems of autonomous mobile agents operate in large collections
of cheap, tiny, simple entities with very restricted capabilities, mainly due to
the limited production cost, size and battery power. These groups of mobile
agents, called swarms, often perform exploration or monitoring tasks in hard
to access or hazardous environments. Other attributes sometimes assumed by
mobile agents which need to be produced in massive amounts include anonymity,
negligible dimensions, no explicit communication, no common coordinate system,
etc. (cf. [2]).

In some research papers it is assumed that the agents are passively mobile, i.e.,
they have no control on their motion, which is exclusively determined by their
interaction with the environment (cf. population protocols introduced in [3, 4],
where extremely resource-limited mobile agents were assumed). In the present
paper the agents are represented by mobile particles of equal mass, which are
also passively mobile on an infinite line. When two of them collide, their veloci-
ties automatically change according to the laws of classical mechanics for elastic
collisions. Therefore, two particles exchange their velocities when they meet. We
assume that each particle initially possesses a piece of data. During a collision,
the interacting particles pass on to each other all the data they have collected
until that moment, i.e. their initial data as well as the data accumulated dur-
ing the previously occurring collisions. Consequently, since the particles have no
control on the communication taking place, we can call it passive communica-
tion. Contrary to the situation in population protocols our process is entirely
deterministic and it is possible to compute exactly what the "final state" of the
population of particles is.

It is important to note that our particles have absolutely no autonomy, hence
it is perhaps inappropriate to call them agents or robots. Although they still
possess the capability of mobility, sensing and communication, they are unable
to compute or to decide on their future behavior, which is entirely determined
by the environment.

We investigate communication protocols in populations of particles. Each par-
ticle is initially placed at some position on an infinite line and it is given an initial
direction and velocity at which it starts its movement. It was proven in [1] that
the number of collisions of elastic particles sliding on an infinite line is finite
(although it may be exponential for particles of not necessarily the same mass).
Thus, there is a time after which particles stop colliding among themselves, im-
plying that the spreading of information cannot last forever. This raises some
fundamental questions which we address in this paper: For two given particles
pi, pj , will particle pj eventually obtain the initial information of pi? What are all
the other particles that eventually get the initial information of pi? Are particles
able to perform broadcasting, convergecast, and gossiping?

One may relate our information spreading process to infection propagation
in the population of particles. When one particle is infected and infection is

Information Spreading by Mobile Particles on a Line 287

transmitted by contact, what is the portion of the population which is eventu-
ally infected? What is the propagation of infection, i.e., at what moment does
the infection reach some given particle? Instead of infection, the process may
relate to the progression of some other, positive agent, e.g. curative, detoxifying,
fertilizing, etc., whose propagation is made by contact.

As will be seen later, some aspects of our question are related to a funda-
mental problem in computational geometry. The trajectory of the kth particle
corresponds to the k-th level in an arrangement of n lines in the plane. The
question had been first asked more than forty years ago and despite a lot of
attention devoted to the problem it still remains unsolved.

1.1 Related Work

Despite the simple capabilities of swarms of mobile agents, they have been used
to perform tasks, like surveillance and monitoring of hazardous and hard to
access environments. In most situations involving such agents, the fundamental
research question concerns the feasibility of carrying out a given task [2, 5].
There are numerous papers that study the feasibility of performing tasks by
collections of mobile agents such as pattern formation [2, 6–8], gathering [9, 10],
and localization [11, 12].

In [3,4] the authors introduced population protocols in order to model wireless
sensor networks by extremely limited finite-state computational devices. The
agents in population protocols meet at random according to some interaction
graph. As a result of every meeting the interacting agents change their states
correspondingly. Consequently, the agents of population protocols move accord-
ing to some mobility pattern totally out of their control. This type of movement
is called passive mobility and is intended to model unstable environments like
a flow of water, chemical solutions, wind or unpredictable mobility of agents’
carriers (e.g. vehicles or flocks of birds). The convergence of such a process is
studied in order to model the eventual behavior of the population of agents.
Some recent papers study population protocols in which the interacting agents
achieve some specific goals like network construction [13] or determining major-
ity [14]. Clearly, the particles studied in our paper are also subject to passive
mobility.

The type of communication allowed for a collection of mobile agents plays
an important role in determining the way that agents can interact. Moreover,
communication enhances their capabilities and effectiveness. Different models
of communication for systems of mobile agents have been studied (cf. [15, 16])
and they can be classified within any of the three following categories: commu-
nication via their environment, for instance, via tokens or pebbles that agents
are allowed to drop on the environment (e.g. [17, 18]); communication by sens-
ing each other using, for instance, some visibility mechanism (e.g. [7, 9]); and
communication by message passing. The main message passing communication
problems concern broadcasting - when the message of one agent has to reach all
other ones, convergecast - when the initial information of all agents has to reach
one of them and gossiping - when each agent has to inform everybody else.

288 J. Czyzowicz et al.

The study of the dynamics of elastic particles sliding on a one dimensional
environment has been of great interest in physics for a long time. Much of the
work done on this topic has been motivated in order to understand the dy-
namical properties of gas particles [1, 19–21]. The dynamics emerging from a
collection of particles sliding on an infinite line is very rich and not well under-
stood yet [22]. There are, however, some results concerning the total number
of elastic collisions of particles of arbitrary masses that move within an infi-
nite line. Sevryuk [1] proved that the number of collisions is upper bounded
by 2

(
8n2(n − 1)mmax/mmin

)n−2, where n is the total number of particles and
mmax and mmin are the largest and smallest masses of the particles, respec-
tively. When all particles are of equal mass, at every collision the two particles
involved exchange their velocities. So collisions end when all velocities are sorted,
in such a setting the number of collisions is upper bounded by n2. Other results
regarding the number of collisions for different dimensions can be found in [23].

A similar model of bouncing particles was considered in [11,12,24], where the
authors studied the feasibility of the localization task in the cycle and in the
segment. The problem of localization consists of each particle determining the
starting position (relative to its own position) of all other particles in a finite
amount of time. Each particle possessed a clock and a speedometer (hence it was
called a robot) but the passive mobility pattern was similar to the one assumed
in the present paper.

Some aspects of our paper are related to the problem of computing the kth
level of a line arrangement. Given n functions, so that any two of them inter-
sect a bounded number of times, a level of point p is the number of functions
strictly above p. Computing the kth level of a set of functions is an extensively
studied problem in differential equations and computational geometry and has
a close relationship with solving the k-set problem and Davenport-Schinzel se-
quences [25, 26]. The early papers [27] and [28] showed that the kth level in an
arrangement of lines has at most O(n

√
k) and at least Ω(n log k) vertices. Major

improvements came more than twenty years later when [29] and [30] improved
these bounds to O(nk1/3) and n2Ω(

√
log k). In this paper, we show that comput-

ing the trajectory of our kth particle is equivalent to computing the kth level
of an arrangement of lines. The number of collisions of this particle equals the
combinatorial complexity of the kth level of arrangement.

1.2 Our Results

In Section 3, we establish necessary and sufficient conditions for bouncing parti-
cles to spread information in a system. Moreover, we give sufficient and necessary
conditions for gossiping, convergecast, and broadcasting to take place. We prove
that these tasks are independent of the starting positions of the particles. In
Section 4, we show how to use the set of velocities of a collection of particles in
order to efficiently decide whether or not some of the aforementioned communi-
cation primitives take place. Finally, in Section 5, we compute the necessary time
to carry out all these communication protocols and we describe a relationship

Information Spreading by Mobile Particles on a Line 289

between our problem and the kth level of an arrangement of lines in computa-
tional geometry.

Because of the lack of space most proofs have been moved to the Appendix.

2 Preliminaries

Let Sn = (H, V) be a collection of n particles p1, p2, . . . , pn deployed on an
infinite line, L = (−∞, ∞), with non-zero initial velocities V = (v1, v2, . . . , vn),
respectively. As in physics, in this paper the notion of velocity includes speed and
direction, i.e., |vi| denotes the initial speed of particle pi. Let H = (h1, h2, . . . , hn)
be the initial positions on the line of the particles, we assume that h1 < h2 <
· · · < hn−1 < hn. Particles update their velocities at the times of their meetings
according to the laws of classical mechanics [31] for elastic collisions, since we
assume that all particles have equal masses when two of them collide they simply
exchange velocities. Similarly as in [1,19,22], we assume that no more than two
particles may collide (i.e., be at the same position at the same time). We denote
by νi(t), the velocity of particle pi at time t, thus νi(0) = vi.

Each particle pi initially holds some piece of data (or information) di. When
two particles collide, they automatically transmit to each other all the data that
each of them has collected up to that moment.

Fig. 1 shows the diagram of time versus distance to depict the trajectories
of a collection of particles and their times of collisions, where the trajectory of
a particle r moving with velocity v is depicted by a segment of line of slope
1/v. As particles never cross each other, their order along the line remains the
same forever (besides the meeting points while some of them coincide). Since
the particles pairwise exchange velocities, at every moment of time the set of
particles Sn = (H, V) uses all the velocities V . We can say that in Fig. 1 the
lines corresponding to speeds V form the set of trains and that at every moment
of time every particle pi is on some train Tj (and conversely every train contains
a particle).

We denote by ρ(t, i) the index of the rightmost particle holding di at time
t, analogously, λ(t, i) denotes the index of the leftmost particle carrying di at
time t. For every particle pi we define Mi = max{vj ∈ V| j ≤ i} analogously,
mi = min{vk ∈ V| i ≤ k}. Furthermore, we define Ri = |{vj < Mi| i < j}|, and
Li = |{vj > mi| j < i}|.

The transmission range of any particle pi is an interval of particle indices
[a, b] ⊆ [1, n] such that for every j ∈ [a, b], particle pj receives di. A particle pi

broadcasts di if and only if its transmission range is [1, n]. We denote the set of
particles of Sn that perform broadcasting by B(Sn). A convergecast particle r is
a particle that receives every di for 1 ≤ i ≤ n. Gossiping in Sn takes place if and
only if B(Sn) = {p1, . . . , pn}.

3 Transmission Range of Bouncing Particles

Sevryuk [1] proved that the number of collisions in a system of elastic particles
is finite. For any collection of particles Sn there exists a minimal time moment t�

290 J. Czyzowicz et al.

time

∞−∞
distance

p1 p2 p3 p4 p5 p6 p7

Fig. 1. The trajectories of a collection of seven particles. The thick polylines correspond
to the trajectories of p1, p3, p5 and p7, respectively.

such that for any t > t� no more collisions take place among the particles of Sn.
We call t� the expansion time of Sn. The following lemma follows immediately.

Lemma 1. After the time of expansion of any collection of particles all the
particles are sorted by their velocities.

Since after the time of expansion no more collisions can take place, any trans-
mission of information among particles must happen before the system expands.
The following lemma is a consequence of Lemma 1.

Lemma 2. For any collection of particles Sn, if particle pi at some moment of
its trajectory is on train Tj for i ≥ j (j > i), then pi received all information dk

for j ≤ k ≤ i (resp. i ≤ k ≤ j).

Proof. Let T denote the polyline corresponding to the trajectory of the particle
pi. If pi enters train Tj at time t then T intersects the line of train Tj . The
particle p∗ traveling on Tj must received data dj . However the line of every train
Tk for j < k < i must either intersect T or Tj , hence at time t either p∗ or pi

contains dk.
The initial information di is spread through the bounces to successive particles

left and right to pi.

Lemma 3. The speeds of the rightmost particles pρ(t,i) holding di never decrease
in time, i.e., νρ(t1,i)(t1) ≤ νρ(t2,i)(t2) for t1 ≤ t2. Moreover, eventually it acquires
velocity Mi, i.e., there exists a time t′ such that νρ(t′,i)(t′) = Mi.

Information Spreading by Mobile Particles on a Line 291

Proof.
It is enough to look at the velocity of the rightmost particle holding di at

the time moments of its collisions. Consider a collision at time t′′ of pρ(t,i) with
its neighbor p which has velocity u just before time t′′. If u > νρ(t,i)(t), clearly
ρ(t, i) = ρ(t′′, i) and after the collision pρ(t′′,i) moves with velocity u. In case
of u < νρ(t,i)(t) this can only happen if p is to the right of pρ(t,i). Thus, at
the time of collision p gets di and starts moving with velocity νρ(t,i)(t), thus
pρ(t′′,i) = p. Therefore, the first part of the lemma holds. For the second part
of the lemma, let us assume that νρ(m,i)(m) �= Mi for all m, in particular for
m = t�, the time of expansion of the system. Hence, there exists some particle
pj such that νj(t�) = Mi, where j < ρ(t�, i). This contradicts Lemma 1, since
Mi ≥ νρ(t�,i)(t�). Fig. 2 illustrates this lemma.

Analogously for the leftmost particle we have that the following lemma holds

Lemma 4. The speeds of the leftmost particles pλ(t,i) holding di never increase
in time, i.e., νλ(t1,i)(t1) ≥ νλ(t2,i)(t2) for t ≤ t2. Moreover, eventually it acquires
velocity mi, i.e., there exists a time t′ such that νλ(t′,i)(t′) = mi.

time

∞−∞

distance
p1 p2 p3 p4 p5 p6 p7

Fig. 2. The bold polylines depict the spread of d3 among particles.

Notice that ρ(t�, i) and λ(t�, i) will determine the transmission range of par-
ticle pi since at the time of the expansion of the system no more collisions take
place. We denote by Maxi(t) the max{νj(t)| j ≤ i}, i.e., the maximum of the
velocities of the particles to the left (including νi(t)) of pi at time t. Analogously,
Mini(t) denotes min{νj(t)| j ≥ i}.

292 J. Czyzowicz et al.

Lemma 5. pρ(t,j) (respectively pλ(t,j)) transfers dj to its neighbor pρ(t,j)+1
(respectively pλ(t,j)−1) if and only if Minρ(t,j)(t) ≤ Maxρ(t,j)(t) (respectively
Maxλ(t,j)(t) ≥ Minλ(t,j)(t)).

Recall that Ri = |{vj < Mi|i < j}| and Li = |{vj > mi|j < i}|. The following
lemma establishes the transmission range of a particle.

Lemma 6. Information di is transferred only to particles pi−Li , . . . , pi+Ri .

Proof. Notice that pi = pρ(0,i) and let us consider first the transmissions of di

to successive particles to the right of pi. Lemma 5 and Lemma 3 guarantee that
these changes of successive particles happen exactly Ri times. At time t of the
Rith transmission of di to some particle to the right of pi (which corresponds to
the Rith update of the rightmost particle), all particles pj such that j > i+Ri, it
holds that νj(t) ≥ Mi, thus no more transmission of di can take place. Moreover
ρ(t, i) = i + Ri.

The proof for the transmission of di to the left of pi (eventually reaching pi−Li

is analogous.
Lemma 6, establishes the transmission range of pi as [i − Li, i + Ri]. The

following corollary establishes the necessary and sufficient conditions for a set of
communication primitives to take place in a collection of particles. Notice that
they follow immediately from Lemma 6.

Corollary 1 (Communication primitives). For any particle pi ∈ Sn:

1. pi ∈ B(Sn) if and only if Mi > vj and mi < vk for all j ≥ i and k ≤ i;
2. pi is a convergecast particle if and only if R1 ≥ i and Ln ≥ n − i and
3. Gossiping takes place in Sn if and only if v1 > vj and vn < vk, for all j > 1,

and k < n.

Proof.

1. The proof follows from the definition of the transmission range of pi, which
in this case must be [1, n].

2. Notice that j + Rj ≥ j + R1 and j − Lj ≤ k − Ln, j < i, k > i, therefore pi

is in the transmission range of every particle in Sn.
3. It follows from the fact that the transmission range of every particle is [1, n].

Notice that the communication primitives for a collection of particles depend
on the order of their speeds but not on their initial positions on L.

4 Deciding the Feasibility of Communication

In this section, we show what preprocessing, if any, should be done on the set of
velocities of a collection of particles and how to store such information so that
we can efficiently decide whether the communication primitives, discussed in the
previous section, take place.

Information Spreading by Mobile Particles on a Line 293

Given any collection of particles Sn, we store the velocities of all the particles
in table V, such that V[i] = vi, and for every particle pi, we define M ′

i = max{vj ∈
V| i ≤ j}, m′

i = min{vk ∈ V| k ≤ i}. Note that Mi+1 ≥ Mi, mi+1 ≤ mi,
M ′

i+1 ≥ M ′
i and m′

i+1 ≤ m′
i. The next lemma follows immediately from this

observation.

Lemma 7. In O(n) time we can build tables M, m, M′, and m′ such that M[i] =
Mi, m[i] = mi, M′[i] = M ′

i , and m′[i] = m′
i.

After constructing these tables, we can use them in order to decide whether
any given particle can perform broadcasting. We have the following lemma.

Lemma 8. For any collection Sn of particles, there are data structures that
allow us to decide whether pi ∈ B(Sn) in O(1) time.

Proof. It is sufficient to check the tables introduced in Lemma 7; more specifically
we have to check that M[i] > M′[i] and m[i] < m′[i]. By Corollary 1 we then have
that the transmission range of pi is [1, n].

By applying Lemma 8 to all particles we immediately obtain the following
lemma.

Lemma 9. For any collection of particles Sn, we can decide in O(n) time
whether gossiping takes place.

The next lemma establishes that the set of particles that are able to perform
broadcasting have consecutive indices.

Lemma 10. Let a and b be the minimum and maximum indices, respectively,
of all the particles in B(Sn). Then pj ∈ B(Sn) for every a ≤ j ≤ b.

Proof. Notice that for any a ≤ j ≤ b we have a+Ra ≤ j+Rj and j−Lj ≤ b−Lb,
therefore the transmission range of pj is [1, n].

The next corollary is an immediate consequence of Lemma 8 and Lemma 10.

Corollary 2. For any collection of particles Sn, we can decide in O(n) time
whether broadcast is possible as well as we can determine the range of indices
[a, b] of the particles in B(Sn).

The following theorem establishes an interesting result about convergecast in
a collection of bouncing particles.

Theorem 1. For any collection of particles Sn, we can decide in O(1) time
whether there exists a convergecast particle.

Proof. We show that a convergecast particle exists if and only if v1 > vn. Suppose
that v1 > vn. In such case, the trains T1 and Tn meet at some time t. Therefore
there exists a pair of particles pa and pa+1 on these trains when meeting at time
t. By Lemma 2, at time t pa acquired every di, i ≤ a; analogously, at time t
pj collected every dk, k ≥ j. Consequently pa and pa+1 are both convergecast
particles.

294 J. Czyzowicz et al.

Suppose now that v1 ≤ vn. Since no train intersects T1 from the left for any
time moment t, by Lemma 3 the speed of the rightmost particles pρ(t,1) holding
d1 are always equal to v1. Similarly, by Lemma 4 the speed of the leftmost
particles pλ(t,n) holding dn are always equal to vn. As the trajectories of trains
T1 and Tn never intersect, at the expansion time t� we have ρ(t�, 1) < λ(t�, n).
Consequently, no particle ever acquires d1 and dn.

Note that, while deciding existence of a convergecast particle can be deter-
mined in constant time, determining which is such a particle cannot.

5 Time of Transmission

In this section we explore the necessary time for the particles to carry out the
communication primitives we have studied so far. It turns out that computing the
necessary time for the particles to complete their transmission of information is
closely related to a well known geometric problem, namely, computing the upper
envelope of an arrangement of lines.

The concept of kth level is related to the concepts of k-set and Davenport-
Schinzel sequences [25,26]. The kth level problem stated as in [25] follows: given
n univariate linear functions F = {f1, f2, . . . , fn}, fi : R → R and a number
k ∈ {1, . . . , n} construct G : R → R, where G(x) = the kth smallest of the
numbers f1(x), . . . , fn(x). The kth level forms an x-monotone polygonal chain.
The complexity of the kth level corresponds to the number of vertices of such a
polygonal chain.

When k = 1, n, the function G corresponds to the lower envelope and the
upper envelope of F , respectively. When the functions define lines in the plane
it is known that the upper envelope of F can be optimally computed in O(n log n)
time and in O(n) time if the lines are sorted (this is because of its duality with
computing the convex hull of a set of points).

It is easy to see that our diagram of time×distance depicting the trajectories
of particles gives us an immediate way to relate the trajectories of particles with
the kth level problem. Recall that in this diagram, when a particle moves with
velocity v its trajectory corresponds to a line of slope 1/v. Thus, we can define
L = {l1, . . . , ln} such that li corresponds to the equation of the line passing
through (0, hi) with slope 1/vi (recall hi stands for the initial position of pi).
Fig. 2 depicts the trajectory of p1 which corresponds to the lower envelope while
the trajectory of pn corresponds to the upper envelope of L. We denote by
lEnv(L) and uEnv(L) the lower (left) and the upper (right) envelopes of L,
respectively. Consider the rightmost copy of di, which is carried at time t by
pρ(t,i). We denote by traj+i (t) the trajectory of the rightmost copy of di up to
time t and by traj−

i (t) the trajectory of the leftmost copy of di up to time t.

Observation 1 Notice that:

1. uEnv ({l1, . . . , li}) = traj+i (t)
2. lEnv ({li, . . . , ln}) = traj−

i (t)

Information Spreading by Mobile Particles on a Line 295

3. pj gets di when pρ(i,t) = pj for j ≥ i and some t
4. pj gets di when pλ(i,t) = pj for j ≤ i and some t

Lemma 11. For any collection of particles Sn, we can compute in O(n log n)
time the moment at which di is transferred to any particle pj in the transmission
range of pi.

Proof.
Let l1, . . . , ln be the lines in the plane time×distance associated to the initial

positions and velocities of the particles and let uEnv({l1, . . . , li}) be the upper
envelope of lines l1, . . . , li. For simplicity, let us assume first that j ∈ [i+1, i+Ri].
Notice that there are exactly Ri lines associated to the particles at the right
of pi that intersect uEnv({l1, . . . , li}). Let l(1) . . . , l(Ri) be such lines sorted in
increasing order by the time they intersect uEnv({l1, . . . , li}) (See Fig. 3 for
an example). Because of Observation 1, there is a time t at which pρ(i,t) = pj .
This takes place exactly at the intersection of uEnv({l1, . . . , li}) with line l(j−i).
Clearly, the time to compute this intersection is dominated by the required time
to compute uEnv({l1, . . . , li}).

The proof for the case j ∈ [i − Li, i] is analogous.
Fig. 3 illustrates Lemma 11 showing how to compute the time transmission

of d3 to some particle.
It turns out that the time when convergecast takes place can be easily com-

puted. The next theorem states so.

Theorem 2. For any collection of particles Sn, in O(1) time it is possible to
determine the earliest time when convergecast is completed.

Proof.
By Theorem 1 in O(1) time we can decide if convergecast takes place in Sn.

If this is the case, it means that V[1] > V[n]. Assume that dist(h1, hn) = d (the
distance between the initial positions of particles p1 and pn). Then according to
Theorem 1, convergecast takes place at the intersection of trains T1 and Tn, i.e.,
at time d

|v1−vn| .
The next result follows immediately from Lemma 11.

Theorem 3. For any collection of bouncing particles, there are O(n log n) al-
gorithms computing the earliest time t at which:

1. The broadcast from particle pi is completed
2. Gossiping in Sn is carried out

Proof.
Consider first the broadcast. By of Lemma 8 in O(1) time we decide whether

pi ∈ B(Sn) (after O(n) preprocessing). Lemma 11 guarantees that in O(n log n)
time we can compute the times t1 and t2 at which p1 and pn received di, respec-
tively. Therefore the completion of the broadcasting of di by pi takes place at
time max{t1, t2}.

296 J. Czyzowicz et al.

time

∞−∞

distance
l1 l2 l3 l4 = l(2) l5 = l(4) l6 = l(1) l7 = l(3)

Fig. 3. The fat polyline is the upper envelope of lines l1, l2 and l3. The transmission
of d3 to p6 takes place at the intersection of uEnv({l1, l2, l3}) and l(3) = l7.

For the case of gossiping in Sn, it is completed at the time when p1 has
received dn and pn has received d1. To compute these times we use Lemma 11
again.

Computing the trajectory of the kth particle is equivalent to computing the
kth level of L, and the number of collisions of pk corresponds to the complexity
of the kth level of L. The next result follows immediately from the results for
the k-level problem (see [29, 30] for further details).

Corollary 3. In any system of particles Sn, the number of collisions of pk is
upper-bounded by O(nk

1
3) and it is lower-bounded by n2Ω(

√
log k). Moreover, the

trajectory of pk can be computed in O(nk
1
3 logcn) expected time, for some con-

stant c.

Constructing the trajectories of the first k particles correspond to the con-
struction of all ith levels for 1 ≤ i ≤ k. [32] proved that this can be done in
O(n log n + nk) time and that this is optimal.

6 Conclusions

We analyzed the communication protocols for populations of bouncing particles
on a line presenting the propagation of individual information of any particle.
We gave efficient algorithms deciding the feasibility of communication between
pairs of particles, as well as checking which particles can broadcast, which ones
are convergecast particles and whether gossiping is possible. There are several
lines of research continuation of the presented model.

Information Spreading by Mobile Particles on a Line 297

One extension involves communication between particles of possibly distinct
masses. However, as the crucial concept of train does not easily extend to this
model (even if we consider only particles of only two masses or if the initial
speeds are the same), a fundamentally different approach is probably needed.

Matching lower and upper bounds on the combinatorial complexity of the
trajectory of the kth particle is the obvious open problem of geometrical nature.

The reader may find interesting the following relation of the solution of our
problem to a sorting algorithm and its corresponding inversion number. The ini-
tial permutation of particle velocities is progressively changing at every moment
a bounce is taking place, eventually becoming sorted. Thus, every speed swap
corresponds to a bounce and also the total number of bounces corresponds to
the number of inversions of the initial permutation.

References

1. Sevryuk, M.: Estimate of the number of collisions of n elastic particles on a line.
Theoretical and Mathematical Physics 96(1), 818–826 (1993)

2. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Dist. Comp. 18(4), 235–253 (2006)

4. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: PODC, pp. 292–299 (2006)

5. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of
oblivious robots: forming a series of geometric patterns. In: PODC, pp. 267–276
(2010)

6. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots:
The role of common knowledge in pattern formation by autonomous mobile robots.
In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741,
pp. 93–102. Springer, Heidelberg (1999)

7. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

8. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. TCS 411(26), 2433–2453 (2010)

9. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
TCS 399(1), 71–82 (2008)

10. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asyn-
chronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.)
STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

11. Czyzowicz, J., Kranakis, E., Pacheco, E.: Localization for a system of colliding robots.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part II. LNCS, vol. 7966, pp. 508–519. Springer, Heidelberg (2013)

12. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E., Ponce, O.M., Pacheco,
E.: Position discovery for a system of bouncing robots. In: Aguilera, M.K. (ed.)
DISC 2012. LNCS, vol. 7611, pp. 341–355. Springer, Heidelberg (2012)

13. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable
network construction. In: ACM Symposium on Principles of Distributed Comput-
ing, PODC 2014, Paris, France, July 15-18, pp. 76–85 (2014)

298 J. Czyzowicz et al.

14. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C., Spirakis, P.G.: Determining
majority in networks with local interactions and very small local memory. In: Es-
parza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I.
LNCS, vol. 8572, pp. 871–882. Springer, Heidelberg (2014)

15. Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics:
Antecedents and directions. In: Proceedings of the 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems 1995. ‘Human Robot Interaction
and Cooperative Robots, vol. 1, pp. 226–234. IEEE (1995)

16. Dudek, G., Jenkin, M.: Computational principles of mobile robotics. Cambridge
University Press (2010)

17. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a
pebble: Exploring and mapping directed graphs. In: STOC, pp. 269–278 (1998)

18. Czyzowicz, J., Dobrev, S., An, H.-C., Krizanc, D.: The power of tokens: Rendezvous
and symmetry detection for two mobile agents in a ring. In: Geffert, V., Karhumäki,
J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS,
vol. 4910, pp. 234–246. Springer, Heidelberg (2008)

19. Murphy, T.: Dynamics of hard rods in one dimension. Journal of Statistical
Physics 74(3), 889–901 (1994)

20. Tonks, L.: The complete equation of state of one, two and three-dimensional gases
of hard elastic spheres. Physical Review 50(10), 955 (1936)

21. Wylie, J., Yang, R., Zhang, Q.: Periodic orbits of inelastic particles on a ring.
Physical Review E 86, 026601(2) (2012)

22. Cooley, B., Newton, P.: Iterated impact dynamics of n-beads on a ring. SIAM
Rev. 47(2), 273–300 (2005)

23. Murphy, T., Cohen, E.: Maximum number of collisions among identical hard
spheres. Journal of Statistical Physics 71(5-6), 1063–1080 (1993)

24. Friedetzky, T., Gąsieniec, L., Gorry, T., Martin, R.: Observe and remain silent
(Communication-less agent location discovery). In: Rovan, B., Sassone, V., Wid-
mayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 407–418. Springer, Heidelberg
(2012)

25. Chan, T.M.: Remarks on k-level algorithms in the plane. Manuscript, Univ. of
Waterloo (1999)

26. Sharir, M., Agarwal, P.K.: Davenport-Schinzel sequences and their geometric ap-
plications. Cambridge University Press (1995)

27. Erdös, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar point
sets. A Survey of Combinatorial Theory, 139–149 (1973)

28. Lovász, L.: On the number of halving lines. Ann. Univ. Sci. Budapest, Eötvös, Sec.
Math. 14, 107–108 (1971)

29. Dey, T.K.: Improved bounds for planar k-sets and related problems. Discrete &
Computational Geometry 19(3), 373–382 (1998)

30. Tóth, G.: Point sets with many k-sets. Discrete & Computational Geometry 26(2),
187–194 (2001)

31. Gregory, R.: Classical mechanics. Cambridge University Press (2006)
32. Everett, H., Robert, J.M., Van Kreveld, M.: An optimal algorithm for the (≤ k)-

levels, with applications to separation and transversal problems. In: Proceedings
of the Ninth Annual Symposium on Computational Geometry, ACM, pp. 38–46
(1993)

On Space and Time Complexity

of Loosely-Stabilizing Leader Election�

Taisuke Izumi

Graduate School of Engineering, Nagoya Institute of Technology,
Nagoya, Japan

t-izumi@nitech.ac.jp

Abstract. Loose stabilization is a relaxed notion of self-stabilization,
which guarantees algorithms to converge and keep some desired behav-
ior from any initial configuration, but allows the algorithms to drop out
of it after a sufficiently long period. In this paper, we investigate the
complexity of the loosely-stabilizing leader election problem in the pop-
ulation protocol model under the probabilistic scheduler. The primary
contribution is to give lower bounds for the expected length of conver-
gence periods and the memory space. Precisely, for any loosely-stabilizing
leader election algorithm with stabilization periods of length Ω(exp(N))
in expectation, each agent needs Ω(logN)-bit memory space, and the
expected convergence length is Ω(Nn), where n is the (unknown) num-
ber of agents, and N is the upper bound knowledge for n available to
the algorithm. We also show the matching upper bounds by proposing a
new loosely-stabilizing leader election algorithm, which slightly improves
the expected convergence length of the previously known algorithm by
Sudo et al. [15] without any degradation of the memory usage or the
stabilization length.

1 Introduction

A passively-mobile system is a collection of agents that move in a certain region
but have no control over how they move. Since the communication range of each
agent is limited, two agents can communicate only when they are sufficiently
close to each other. A typical example of passively-mobile systems is the network
of smart devices attached cars or animals. The population protocol is one of the
promising models for such a system, which was initiated by Angluin et al. [2].
A population protocol consists of a number of agents, to which some program
(algorithm) is deployed. Following the deployed algorithm, each agent changes
its state by pairwise interactions to other agents (that is, two agents get closer to
each other and update their states by exchanging information). The population
protocol model is a good abstraction capturing the feature of passively-mobile
systems in spite of its mathematical simplicity. Therefore, in the last few years, it
has received much attention among the community of the distributed computing.

� This work is supported in part by KAKENHI No. 15H00852 and 25289227.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 299–312, 2015.
DOI: 10.1007/978-3-319-25258-2_21

300 T. Izumi

In this paper, we consider the self-stabilizing leader election problem on the
population protocol model. Self-stabilizing algorithms guarantee that the al-
gorithm eventually satisfies and keeps some desired behavior starting from any
initial configuration. Self-stabilizing systems inherently achieve the initialization-
freeness and the recoverability from any transient failures, which are very im-
portant properties for passively-mobile systems. However the design of self-
stabilizing algorithms is often impossible for several problems. Actually, the im-
possibility of self-stabilizing leader election on the population protocol model has
been proved for several different settings [5–7,9–11]. Precisely, to implement the
self-stabilizing leader election on the population protocol model, the algorithm
needs Ω(log n)-bit space and the exact knowledge about the total number n of
agents in the system [10], or a certain kind of synchrony assumption [8].

Loose stabilization, is one of the approaches to circumvent the impossibility
of self-stabilizing solutions [15, 16]. Loose-stabilizing algorithms guarantee that
the system reaches some legitimate configuration eventually from any initial
configuration, but stability (or closure) property is not strictly ensured. That is,
it allows the algorithm to drop out of legitimate configurations after a sufficiently
long period of the desired behavior. In the population protocol model under the
probabilistic scheduler, Sudo et al. proposed a loosely-stabilizing leader election
algorithm only utilizing the knowledge on the upper bound N for n [15], which
elects one leader within O(Nn logn) expected steps, and keeps the elected leader
during Ω(exp(N)) expected steps. Since exponentially long stabilization periods
can be regarded as infinite stabilization periods in practice, loose stabilization
is so useful as a relaxed concept of self-stabilization.

The main focus of this paper is the complexity issue of loosely-stabilizing
leader election algorithms. Currently, it is still open whether we can construct
an algorithm more efficient (in the sense of time or space) than the one by
Sudo et al. [15] or not. The motivation initiating this study is the existence of a
randomized approximated counter using O(log logN)-bit space [12,14]. Actually,
in the original algorithm by Sudo et al., each agent utilizes only O(1)-bit memory
space and one O(logN)-bit counter to implement the timeout mechanism. Thus,
it is a natural idea to reduce the space complexity of that algorithm using small-
space approximated counters. However, in this paper, we show that such an
approach fails. The primary contribution of this paper is to give lower bounds
for the expected length of convergence periods and the memory space of the
algorithms with exponentially long stabilization periods, which is precisely stated
as follows:

– In any loosely-stabilizing leader election algorithm whose expected stabiliza-
tion length is Ω(exp(N)), Ω(logN)-bit memory space is required to each
agent.

– For any loosely-stabilizing leader election algorithm whose expected stabi-
lization length is Ω(exp(N)), the expected length of convergence periods is
Ω(Nn).

Note that these results hold even for randomized algorithms. Furthermore, we
also show that the two bounds above are both tight. That is, we propose a new

On Space and Time Complexity of Loosely-Stabilizing Leader Election 301

algorithm for loosely-stabilizing leader election, whose convergence and stabi-
lization lengths are O(Nn) and Ω(exp(N)) steps while the space for each agent
is still O(logN) bits. This algorithm slightly improves the convergence length of
the one by Sudo et al.

The paper is organized as follows: In Section 2 we state the related work.
Section 3 provides the notations and definitions used in the paper. The lower
bounds are presented in Section 4. Section 5 provides the matching upper bound.
Finally the paper is concluded in Section 6.

2 Related Work

The population protocol model is initiated by the two seminal papers by Angluin
et al. [2] and Angluin et al. [4], where the main interest was to clarify the class
of computable predicates with the inputs distributed over all agents. The leader
election problem on the population protocol model is first introduced in the those
papers as a subroutine of the predicate computation. Self-stabilizing algorithms
for the population protocol model are considered in several papers. The papers
by Angluin et al. [5] and Fischer and Jiang [11] are one of the earliest work con-
sidering self-stabilizing population protocols. They show several possibility and
impossibility results for self-stabilizing leader election in different assumptions.
The paper by Beauquier et al. [6] also follows the same direction. The space com-
plexity for the self-stabilizing leader election problem on the population protocol
model is obtained by Cai et al. [10]. The problem other than leader election is
also considered in several papers [7, 9, 13].

While most of the results presented in the papers above assumes worst-case
schedulers, the complexity analysis under the probabilistic scheduler is also inves-
tigated. Angluin et al. [3] shows a fast algorithm for the predicate computation
under the assumption that one leader exists at the initial configuration. Very
recently, a faster (non-self-stabilizing) leader election algorithm using subloga-
rithmic space is presented by Alistarh and Gelashvili [1].

The concept of loose stabilization is first introduced by Sudo et al. [15].
Recently, its extension to an arbitrary communication topology is also pub-
lished [16].

3 Preliminaries

3.1 Agent and Algorithm

A population protocol consists of n agents, which can change their states by
interacting with each other. All the pairs cannot necessarily have direct inter-
action. The possibility of the interaction between two agents is specified by the
interaction graph. An interaction graph G = (V,E) is a simple directed graph
where each vertex, labeled by v0, v1, . . . vn−1, corresponds to each agent. The
edge (vi, vj) ∈ E implies the possibility of the interaction between agents vi and

302 T. Izumi

vj . Throughout this paper, we assume that the interaction graph G is complete,
that is, any pair in the system can directly interact with each other.

An algorithm A is a pair (Q, δ)1, where Q is the set of agent states, and
δ : Q2 × {0, 1}∗ → Q2 is a state transition function. The function takes a
pair of agent states and a random-bit sequence, and returns the states of two
agents after the interaction. For any (q1, q2) ∈ Q2, if δ(q1, q2, r) is independent
of r ∈ {0, 1}∗, the algorithm is called deterministic. Otherwise the algorithm is
called randomized. Note that all the lower bounds proposed in this paper holds
for any randomized algorithm, and the upper bound result is provided by a
deterministic algorithm. Given any algorithm A, we define πA as the transition
matrix of A. That is, the row and column of πA are indexed by the elements in
Q2, and the value πA((p1, p2), (q1, q2)) corresponding to row (p1, p2) and column
(q1, q2) is the transition probability Pr[δ(p1, p2, r) = (q1, q2)].

The space complexity s(A) of an algorithm is defined as the number of bits
necessary for representing |Q| distinct states. That is, s(A) = �log |Q|�.

3.2 Execution and Scheduler

A configuration C of n agents is a n-tuple (q0, q1, . . . , qn−1) ∈ Qn where i-th
entry qi corresponds to the state of vi. The state of agent vi in C is denoted
by C[i]. We also use the notation C[i, j] = (C[i], C[j]) for short. Let A = (Q, δ)
be an arbitrary algorithm. For any two configurations C0 and C1, if there exists
(s, t) ∈ [0, n − 1]2 satisfying πA(C0[s, t], C1[s, t]) > 0 and C0[j] = C1[j] for any
j �∈ {s, t}, we say that C0 can go to C1 by an interaction. Then the pair (s, t)
is called the activation pair of the interaction. Note that the activation pair
may not be unique. Given two configurations C and C′ such that C can go
to C′, we denote the set of the corresponding activation pairs by χ(C,C′). An
execution E of A of length l (or with l steps) is a sequence of l configurations
E = C0, C1, . . . , Cl such that Ci can go to Ci+1 for any i ∈ [0, l − 1]. The i-th
activation in execution E is referred as step i of E.

The behavior of an algorithm is determined by the scheduler (and random bits
if the algorithm is randomized). Throughout this paper, we assume the proba-
bilistic scheduler, that is, at each step, the activation pair is chosen uniformly at
random. We denote the execution of A with initial configuration C0 under the
probabilistic scheduler by EA(C0). Without ambiguity, we often omit the index
A of EA(C0).

3.3 Loosely-Stabilizing Leader Election

This subsection provides the formal definition of (α, β)-probabilistic loosely-
stabilizing leader election.

A spec of A = (Q, δ) is the set of configurations LA ⊆ Qn and its subset
L′

A ⊆ LA. The configurations in LA and L′
A are respectively called legitimate

1 While the standard definition of the population protocol model is more complex, we
adopt a simplified definition because this paper focuses only on the loosely-stabilizing
leader election problem.

On Space and Time Complexity of Loosely-Stabilizing Leader Election 303

and strongly-legitimate configurations. The leader election problem specifies a
set L ⊂ Q of states called leader states. A configuration C = (q1, q2, . . . , qn) is
valid for vi if qi ∈ L and qj �∈ L for any j ∈ [0, n− 1] \ {i} hold. Any spec of the
leader election algorithms must satisfy that any C ∈ LA is valid for some agent
vi ∈ V .

In some execution E(C0) = C0, C1, . . . , Cl, if any configuration appearing
in the period Ck, Ck+1, . . . , Ck+h is valid for a common vi ∈ V , we say that
E(C0) is stabilized during steps k and k + h. We show the formal definition of
(α, β)-probabilistic loosely-stabilizing leader election:

Definition 1. If the legitimate and strongly-legitimate sets LA and L′
A satisfies

the following conditions, A solves the (α, β)-probabilistic loosely-stabilizing leader
election problem:

– For any configuration C0 ∈ Qn and the execution E(C0) = C0, C1,
. . . , Ck, . . . , let Γ (C0) be the random variable representing the minimum
value x such that Cx ∈ L′

A holds. Then for any C0 ∈ Qn, we have E[Γ (C0)] ≤
α.

– For any configuration C0 ∈ L′
A and the execution E(C0) = C0, C1, . . . ,

Ck, . . . , let Δ(C0) be the largest value x such that E(C0) is stabilized during
steps zero to x. Then E[Δ(C0)] ≥ β holds for any C0 ∈ L′

A.

The values α and β are respectively called the convergence length and the
stabilization length of the algorithm. In the following argument, we abbreviate
(α, β)-probabilistic loose stabilization by (α, β)-stabilization for short.

3.4 Knowledge on the Number of Agents

In this paper, we assume that each agent knows the upper bound N for the
number of agents n. Formally, that knowledge is defined as algorithms taking
N as an argument, which is described as AN = (QN , δN). That is, the set QN

of states and the transition function δN can depend on N . For any N ∈ N,
algorithm AN must work on any system of n agents such that 2 ≤ n ≤ N holds.

4 Complexity Lower Bounds for (α, β)-stabilization

This section provides our new complexity lower bounds for (α, β)-stabilizing
leader election with β = Ω(exp(N)). Before the proofs, we first show a useful
lemma.

Lemma 1. Let A = (Q, δ) be an (α, β)-stabilizing leader election algorithm for
some α and β. If there exists a value l ∈ N and a function f(N,n) such that for
any legitimate configuration C ∈ Qn the execution E(C) of length l contains a
non-legitimate configuration with probability at least l/f(N,n), then β ≤ f(N,n)
holds.

304 T. Izumi

Proof. Let E′(C) be the infinite execution starting from C, and Cx be the first
non-legitimate configuration in E′(C). Since each period of length l in E′(C)
contains a non-legitimate configuration with probability at least l/f(N,n), the
expected value E[x] is bounded by

E[x] ≤ l ·
∞∑

i=1

i

(
1− l

f(N,n)

)i−1 (
l

f(N,n)

)
= l · f(N,n)

l
= f(N,n).

The second equality is obtained from the expectation for the geometric distri-
bution. The lemma is proved. ��

4.1 Lower Bound for Space

We first introduce the notion of execution graphs.

Definition 2. Given an algorithm A = (Q, δ), (A, n)-execution graph GA,n =
(VA,n, EA,n, wA,n) is defined as follows:

– VA,n = QnD
– EA,n = {(C,C′)|C can go to C′}D
– For any (C,C′) ∈ EA,n, wA,n((C,C

′)) =
∑

(s,t)∈χ(C,C′)
πA(C[s,t],C′[s,t])

n(n−1) .

Intuitively, the (A, n)-execution graph is the Markov-chain description of the
system of n agents running A. We first show a fundamental property of graph
GA,n.

Lemma 2. Consider any (N c, β)-stabilizing leader election algorithm A, and let
G′

A,n = (VA,n, E
′
A,n) be the graph obtained by removing all the edges with weight

less than 1/(N c+1n(n− 1)) in GA,n. In graph G′
A,2, any C ∈ VA is reachable to

some configuration C′ in L′
A.

Proof. Suppose for contradiction that some vertex C ∈ VA,2 is unreachable to
any vertex in L′

A. Then,GA,2 contains a cut (W,W) (W ⊆ VA) satisfying C ∈ W
and L′

A ⊆ W such that any edge crossing the cut is removed in G′
A,2. Thus,

letting F be the set of edges crossing the cut, any edge in F has weight less than
1/(2N c+1). Since at least one transition along some edge in F is necessary for
the execution E(C) of length N c to reach a configuration in L′

A, the probability
that E(C) does not contain a configuration in L′

A is bounded by

Pr[E(C) ∩ L′
A = ∅] ≥

(
1− 1

2N c+1

)Nc

≥ 1− 1

2N
.

Then, the expected convergence length of A obviously exceeds N c, which
contradicts the fact that A is (N c, β)-stabilizing. ��
Theorem 1. Let A = (Q, δ) be a (N c, 2dN)-stabilizing leader election algorithm
for some constant c and d. Then, we have

s(A) ≥ 1

2
log

(
dN

2(c+ 3) logN

)
= Ω(logN).

On Space and Time Complexity of Loosely-Stabilizing Leader Election 305

Proof. Suppose for contradiction that s(A) < 1
2 log

(
dN

2(c+3) logN

)
holds. Let l =

|Q2| = 22s(A) = dN/(2(c+3) logN) for short. First, we prove that in the system
of two agents, the execution of length l starting from any configuration can
create a leader with probability at least (1/(2N c+1))l. Since l is the number of
vertices in G′

A,2, from Lemma 2, any configuration C in G′
A,2 has a path to a

node in L′
A whose length is at most l. Let P (C) = (p0, q0), (p1, q1), . . . , (pl, ql)

be the execution of two-agent configurations corresponding to that path. Note
that in the system of two agents, each transition in P (C) occurs with probability
at least 1/(2N c+1) because in the construction of G′

A,2 we remove all the edges

whose transition probability is less than 1/(2N c+1). Thus, the execution tracing
P (C) occurs with probability at least (1/(2N c+1))l. Now we look at the system
of n agents (n ≥ 3), and its legitimate configuration C′. Since n ≥ 3 holds, C′

contains two non-leader agents. Without loss of generality, let {v0, v1} be the pair
of two non-leader agents. We lower bound the probability that {v0, v1} traces
P (C) in the execution E(C′) of length l. Under the condition that only v0 and
v1 are activated in E(C′), the probability that v0 and v1 trace P (C) is obviously
at least (1/(2N c+1))l. Furthermore, the probability satisfying that condition is
(2/n(n− 1))l. Consequently we can lower bound the probability that v0 and v1
trace P (C) in E(C′) is at least

(
2

n(n− 1)

)l

·
(

1

2N c+1

)l

≥
(

1

N c+3

)l

≥ 2−
dN
2 >

l

2dN
.

Since P (C) creates a new leader, the bound above implies that for any legiti-
mate configuration C′, the execution E(C′) of length l reaches a non-legitimate
configuration with probability more than l

2dN
. From Lemma 1, this contradicts

the fact that A is (N c, 2dN)-stabilizing. The theorem is proved. ��

4.2 Lower Bound for Convergence Length

This subsection shows that α = Ω(Nn) holds for any (α,Ω(exp(N)))-stabilizing
leader election algorithm.

Theorem 2. Let A = (Q, δ) be any (g(N,n), Ω(exp(N)))-stabilizing leader elec-
tion algorithm. Then, we have g(N,n) = Ω(Nn).

Proof. Let C be any strongly-legitimate configuration, and X be the indicator
random variable which takes one if and only if the execution E(C) of length
2g(N,n) contains a non-legitimate configuration. Let vx be the leader agent in
C, and Y be the indicator random variable that E(C) contains no interaction
by vx. Then we have

Pr[Y = 1] =

(
1− (n− 1)

n(n− 1)

)2g(N,n)

.

Since A is (g(N,n), Ω(exp(N)))-stabilizing, under the condition of Y , the set
V ′ of (n − 1) agents excepting the leader vx creates a new leader with g(N,n)

306 T. Izumi

expected steps. Thus, by applying Markov inequality, V ′ creates a new leader
within 2g(N,n) steps with probability at least 1/2, Consequently we can bound
the probability Pr[X = 1] as follows:

Pr[X = 1] ≥ Pr[X = 1|Y = 1] · Pr[Y = 1]

≥ 1

2

(
1− (n− 1)

n(n− 1)

)2g(N,n)

= e−
2g(N,n)

n

Applying Lemma 1 with l = 2g(N,n), we obtain e−2g(N,n)/n ≥
g(N,n)/ exp(N). That is, g(N,n) = Ω(Nn) must hold. The theorem is proved.

��

5 Matching Upper Bound

In this section, we prove that the time and space lower bounds in Section 4 are
tight by proposing an algorithm achieving the matching upper bounds simul-
taneously. More precisely, we present an algorithm FastLeader, which achieves
(O(Nn), cN)-stabilization for some constant c > 1. The algorithm is designed in
a modular way: We first introduce an algorithm for the (O(Nn), cN)-stabilizing
leader detection problem, called DetectLeader. The main algorithm follows the
idea by Fischer and Jiang [11], which provides a simple self-stabilizing leader
election algorithm using leader detector oracles.

5.1 Leader Detector

The objective of leader detection algorithms is to report the existence of leaders
in the system. We assume that each agent vi has a leader flag li and an output flag
fi. The agent with li = T corresponds to a leader. Since our goal is to construct
a loosely-stabilizing leader election algorithm, the leader detection mechanism
must be loosely-stabilizing. More precisely, our algorithm satisfies the following
two properties:

– In the execution where no leader exists, within 16Nn steps in expectation,
at least one agent vi outputs FALSE (i.e., fi = F).

– In the execution where some agent vi always satisfies li = T , after the first
24Nn steps in expectation, all the agents continue to output TRUE (i.e.,
fi = T) in the following cN steps in expectation (c is some constant).

The leader detector can output TRUE even if two agents have the leader flags
of TRUE. Algorithm 1 is the pseudocode of DetectLeader. The fundamental idea
of the algorithm is a slight but nontrivial modification of the naive timeout mech-
anism. One of the trivial leader detection mechanisms is the following strategy:

– Each agent vi prepares a counter variable ci, which is decreased by one at
each interaction, and reset to a large value x (greater than N) if vi interacts
with a leader.

On Space and Time Complexity of Loosely-Stabilizing Leader Election 307

– If the counter variable reaches zero, the agent outputs FALSE. Otherwise,
it outputs TRUE.

Unfortunately, this mechanism does not suffice our requirement. To achieve
O(Nn)-step convergence, we have to set x to O(N). Then, however, with some
constant probability, agent may output FALSE despite the existence of a leader:
Let x = αN , and assume that the system consists of N agents including exactly
one leader. In any execution of length αNn = αN2, an agent vi takes αN
steps with some constant probability (because αN is the expected number of
interactions performed by vi). In addition, we can bound the probability that vi
never interacts with the leader by

(
1− 1

N(N − 1)

)αN2

= Θ(1).

Thus, during any execution of length αN2, some agent provides a wrong
output with a not-so-small probability, which violates the requirement of stabi-
lization length Ω(cN).

Our key idea for resolving this problem is to use the counter value as a kind
of confidence about the existence of leaders. Informally, if some agent vi has a
large counter value close to x, it is expected that vi interacted with a leader
recently, and thus the value of ci can be regarded as some (weak) witness that
a leader actually exists. The first point of the modification is that each agent
resets the counter even when it interacts with the one having such a witness.
Unfortunately, this modification brings up another problem: Some agent having
a witness delays the decrease of the counter value by repetitive resets, which also
prevents O(Nn)-step convergence in the case of no leader. We avoid this second
problem by introducing the “partial reset” of counters: When some agent vi
resets its counter ci by the interaction with the one having a witness, ci is set to a
moderately large value such that vi cannot have a witness. That is, we guarantee
that only the interactions with leaders can create a witness. If the system has
no leader, the number of witnesses decreases, and reaches zero within O(Nn)
steps, and then the system follows the standard timeout mechanism afterward.

In details, algorithm DetectLeader takes 16N + 1 as the maximum counter
value, and regards the agents with counter value more than 8N as the ones
having a witness. We call them witness agents (including leader agents). Other
agents are called ordinary agents. We also refer the counter reset by interactions
with a leader and with a witness agent as full reset and partial reset respectively.

We first prove a fundamental property for the probabilistic scheduler.

Lemma 3. Given a constant α > 0, let E be an execution of steps αNn under
the random scheduler, and �i(E) be the number of the steps in E performed by
vi (0 ≤ i ≤ n− 1). Then, αN/2 ≤ �i(E) ≤ 3αN/2 holds for all i with probability
at least 1− n2−αN/12.

Proof. At each step, an interaction by agent vi is activated with probability
1/n. Thus �i(E) follows the binomial distribution where the success probability

308 T. Izumi

Algorithm 1. Algorithm DetectLeader

1: At interaction between (l0, f0, c0) and (l1, f1, c1):
2: if l0 = T or l1 = T then
3: c1 ← 16N + 1; c2 ← 16N + 1 /∗ Full reset ∗/
4: endif
5: if ci > 8N and c1−i < 8N for some i ∈ [0, 1] then c1−i ← 8N /∗ Partial reset ∗/
6: c0 ← max{0, c0 − 1}
7: c1 ← max{0, c1 − 1}
8: For i ∈ [0, 1], if ci = 0 then fi ← F else fi ← T endif

is 1/n and the number of trials is αNn. Let μ = E[�i(E)] = αN for short. By
applying Chernoff bound, we can bound the probability Pr[|�i(E) − μ| ≤ μ] ≤
2e−μ/3·(1/2)2 = 2−αN/12. Using the union bound, we obtain Pr[∨i∈[0,n−1]|�i(E)−
μ| ≤ μ] ≤ n2−αN/12. The lemma is proved. ��

We first show the convergence property of DetectLeader when the system has
no leader.

Lemma 4. In any execution E of length 24Nn without leader (i.e., li = F holds
for any i ∈ [0, n− 1] and any configuration in E), at least one agent vi satisfies
ci = 0 with probability at least 1− n2−4N/3.

Proof. Since there is no leader, no full reset occurs in E. Thus, any agent with
counter value greater than or equal to 8N never increases the value, and once
the counter value of some agent becomes 8N or less, it never goes back to the
value greater than 8N . Hence if an agent vi is activated 8N times, its counter
value necessarily becomes less than or equal to 8N . From Lemma 3, during the
first 16Nn steps of E, all agents have at least 8N interactions and any counter
value becomes at most 8N with probability at least 1−n2−4N/3. In the following
8Nn steps, no counter value increases. Thus at least one agent is activated more
than 8N times in those steps. It follows that some agent decreases its counter
value to zero and outputs FALSE. ��

The next lemma is the core of the convergence property with leaders, and the
stabilization property.

Lemma 5. Assume an execution E of length 4Nn with a leader (i.e., there
exists at least one x such that lx = T for any configuration in the execution).
Then, with probability at least 1−4n2−N/12, any agent vi interacts with a witness
agent.

Proof. Let vx be the leader. First, we prove that after the first 3Nn steps more
than (n − 1)/2 agents interact with vx with high probability. Let X be the set
of agents with which vx interacts in E. Given a set Z of (n − 1)/2 agents, the
probability of X ∩Z = ∅ is equivalent to the probability that the scheduler does

On Space and Time Complexity of Loosely-Stabilizing Leader Election 309

not select (n − 1) pairs in {(x, y), (y, x)|vy ∈ (n − 1)/2}. Thus it is bounded as
follows:

Pr[X ∩ Z = ∅] =
(
1− (n− 1)

n(n− 1)

)3Nn

≤ e−3N ,

When |X | ≤ (n− 1)/2 holds, there exists a set Z of (n− 1)/2 agents satisfying
X ∩Z = ∅. Thus, using the union bound, the probability Pr[|X | ≤ (n− 1)/2] is
bounded by

Pr[|X | ≤ (n− 1)/2] ≤ Pr

⎡

⎣
⋃

Z⊆V,|Z|=(n−1)/2

X ∩ Z = ∅
⎤

⎦

≤
(

n

(n− 1)/2

)
e−3N

≤ (2e)
n/2

e−3N

≤
(
2log2(2e))−6 log2 e

)N/2

≤ 2−N/2,

where we use the bound for the binomial coefficient
(
n
k

) ≤ (en/k)k and the nu-
meric calculation log2(2e)−6 log2 e ≤ −1. From Lemma 3, any agent is activated
at most 8Nn times with high probability in E, and thus during the last Nn steps
(denoted by E′) of E the system has at least n/2 witness agents. Furthermore,
from Lemma 3, with high probability, any agent has at least N/2 interactions
in E′. Consequently, any agent interacts with a witness agent with probability
1 − 2−N/2 in E′. Using the union bound, all the agents interact with a witness
agent with probability 1−n2−N/2. The probability that the scenario above fails
is at most 2−N/2 + 2n2−N/12 + n2−N/2 ≤ 4n2−N/12. The lemma is proved. ��

From Lemma 3, the probability that an agent interacts more than 8N times
in the execution of 4Nn steps is exponentially small. Thus we can deduce the
corollary from the lemma above:

Corollary 1. Let C be any execution with a leader, and Ek (0 ≤ k) be the
period of steps from 4Nnk to 4Nn(k + 1) in E(C). Then, for each k ≥ 1,
fi = T holds for all agents vi and any configuration in Ek with probability at
least 1− 4n2−N/12.

5.2 Main Algorithm

The main algorithm, called FastLeader, completely follows the algorithm by Fis-
cher and Jiang [11]. Algorithm 2 gives its pseudocode, where local variables l0
and f1 are shared with DetectLeader. The algorithm has only two rules: If two
leaders interact with each other, one of them are killed, and if the leader detector
on some agent vi reports FALSE, vi becomes a new leader.

We show the correctness of algorithm FastLeader.

310 T. Izumi

Algorithm 2. Algorithm FastLeader

1: At interaction between (l0, f0) and (l1, f1):
2: if l0 = T and l1 = T then l1 ← F endif

Theorem 3. Algorithm FastLeader is an (O(Nn), exp(N))-stabilizing leader
election algorithm.

Proof. We first consider the case where the initial configuration C0 has a leader.
Algorithm FastLeader never kills all leaders because at least one leader always
survives at any interaction. Thus, the execution starting from E(C0) keeps one
leader agent. From Corollary 1, at each period of length 4Nn after the first
4Nn steps, DetectLeader behaves wrongly with probability at most 4n2−N/12. It
implies that the expected length of the execution where DetectLeader correctly
works (after 4Nn steps) is exp(N). Thus the remaining issue we have to show is
that the number of leader agents converges to one with O(Nn) expected steps.
Now we consider a configuration where k leaders exist. Then, there are k(k− 1)
interactions decreasing the number of leaders. Thus, the probability that the
number of leaders decreases is k(k − 1)/n(n− 1). That is. the expected number
of steps taken to kill one leader is n(n− 1)/k(k− 1). Since at most n leaders can
exist initially, the expected number of steps necessary to elect a single leader is

2∑

i=n

n(n− 1)

k(k − 1)
= n(n− 1)

2∑

i=n

(
1

k − 1
− 1

k

)
= O(n2) = O(Nn).

In the case where no leader exists initially, by Lemma 4, at least one leader
is generated with O(Nn) expected steps. The following argument is the same as
the case where a leader initially exists. ��

6 Concluding Remarks

In this paper, we have shown that for any loosely-stabilizing leader election
algorithm with the stabilization period of length Ω(exp(N)) in expectation, each
agent needs Ω(logN) memory space, and the expected convergence length must
be Ω(Nn). We have also shown that these bounds are tight by proposing a new
algorithm simultaneously achieving both bounds. We conclude this paper with
two related open problems:

– The key ingredient of our proof for space complexity is that two agents must
create a new leader quickly in the execution isolating them. This strategy
does not apply if we assume that the system knows a lower bound N ′ for n
in addition to N . Can we construct an algorithm achieving more compact
space with the knowledge on both N ′ and N?

– All known algorithms, including the ones proposed in this paper, relies on
some timeout mechanisms. Thus, the same algorithm seems to work correctly

On Space and Time Complexity of Loosely-Stabilizing Leader Election 311

even in bounded schedulers. Are the loose-stabilization under the probabilis-
tic scheduler and the self-stabilization under bounded (synchronous) sched-
ulers interchangeable?

Acknowledgement. The author thanks Yuichi Sudo and Toshimitsu Masuzawa
for their helpful discussion, and Kenji Hata, a former student of the author’s
group, for his effort on this study.

References

1. Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population pro-
tocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N. (eds.) ICALP 2015, Part II.
LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distributed Computing 21(3), 183–199 (2008)

4. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. ACM Transactions on Autonomous Adaptive Systtems 3(4), 1–28 (2008)

6. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in popula-
tion protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N., van
Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Heidelberg
(2013)

7. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks
of mobile agents. In: Proc. of the 29th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pp. 305–314 (2010)

8. Beauquier, J., Burman, J., Kutten, S.: Making population protocols self-stabilizing.
In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 90–104. Springer,
Heidelberg (2009)

9. Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing count-
ing in mobile sensor networks with a base station. In: Pelc, A. (ed.) DISC 2007.
LNCS, vol. 4731, pp. 63–76. Springer, Heidelberg (2007)

10. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: On
space complexity of self-stabilizing leader election on a population protocol model.
Theory of Computing Systems 50(3), 433–445 (2012)

11. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-
state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 395–409. Springer, Heidelberg (2006)

12. Flajolet, P.: Approximate counting: A detailed analysis. BIT 25(1), 113–134 (1985)
13. Izumi, T., Kinpara, K., Izumi, T., Wada, K.: Space-efficient self-stabilizing counting

population protocols on mobile sensor networks. Theoretical Computer Science 552,
99–108 (2014)

312 T. Izumi

14. Ogata, M., Yamauchi, Y., Kijima, S., Yamashita, M.: A randomized algorithm
for finding frequent elements in streams using o(loglogN) space. In: Asano, T.,
Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074,
pp. 514–523. Springer, Heidelberg (2011)

15. Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H., Masuzawa,
T.: Loosely-stabilizing leader election in a population protocol model. Theoretical
Computer Science 444, 100–112 (2012)

16. Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Loosely-stabilizing leader
election on arbitrary graphs in population protocols. In: Aguilera, M.K., Querzoni,
L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 339–354. Springer,
Heidelberg (2014)

Wait-Free Gathering Without Chirality

Quentin Bramas1,2 and Sébastien Tixeuil1,2,3

1 UPMC Sorbonne Universités, LIP6-CNRS 7606, France
2 CNRS, LIP6-CNRS 7606, France

3 Institut Universitaire de France, France

Abstract. We consider the problem of gathering n autonomous robots
that evolve in a 2-dimensional Euclidian space at a single location,
not known beforehand. We suppose the robots operate in the semi-
synchronous Look-Compute-Move model and are anonymous, oblivious,
and disoriented.

When robots are capable of strong multiplicity detection (that is,
sensing the number of robots at a given location) and the initial con-
figuration is not bivalent, the problem is known to be deterministically
solvable for n > 2 robots. When an arbitrary number f < n of robots may
crash, recent results achieve deterministic gathering of correct robots in
the classical model, assuming robots agree on a global common chirality
(that is all robots have the same notion of left and right), leaving open
the necessity of this assumption.

In this paper, we answer negatively to this question. Our approach is
constructive: we present a deterministic gathering algorithm that admits
an arbitrary number of crashes and gathers all correct robots even if they
do not have a common chirality.

1 Introduction

Networks of mobile robots evolving in a 2-dimensional Euclidian space recently
captured the attention of the distributed computing community, as they promise
new applications (rescue, exploration, surveillance) in potentially dangerous (and
harmful) environments. Since its initial presentation [8], this computing model
has grown in popularity and many refinements have been proposed (see [6] for
a recent state of the art). From a theoretical point of view, the interest lies in
characterizing the exact conditions for solving a particular task.

In the model we consider, robots are anonymous (i.e., indistinguishable from
each-other), oblivious (i.e., no persistent memory of the past is available), and
disoriented (i.e., they do not agree on a common coordinate system). The robots
operate in Look-Compute-Move cycles. In each cycle a robot “Looks” at its sur-
roundings and obtains (in its own coordinate system) a snapshot containing the
locations of all robots. Based on this visual information, the robot “Computes”
a destination location (still in its own coordinate system) and then “Moves”
towards the computed location. Since the robots are identical, they all follow
the same deterministic algorithm. The algorithm is oblivious if the computed
destination in each cycle depends only on the snapshot obtained in the current

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 313–327, 2015.
DOI: 10.1007/978-3-319-25258-2_22

314 Q. Bramas and S. Tixeuil

cycle (and not on the past history of execution). The snapshots obtained by
the robots are not consistently oriented in any manner (that is, the robots local
coordinate systems do not share a common direction nor a common chirality).

The execution model significantly impacts the solvability of collaborative
tasks. Three different levels of synchronization have been considered. The
strongest model [8] is the fully synchronized (FSYNC) model where each phase
of each cycle is performed simultaneously by all robots. On the other hand, the
asynchronous model [6] (ASYNC) allows arbitrary delays between the Look,
Compute and Move phases and the movement itself may take an arbitrary
amount of time. In this paper, we consider the semi-synchronous (SSYNC)
model [8], which lies somewhere between the two extreme models. In the SSYNC
model, time is discretized into rounds and in each round an arbitrary yet non-
empty subset of the robots are active. The robots that are active in a particular
round perform exactly one atomic Look-Compute-Move cycle in that round. It
is assumed that the scheduler (seen as an adversary) is fair in the sense that in
each execution, every robot is activated infinitely often.

Related Work. The gathering problem is one of the benchmarking tasks in mobile
robot networks, and has received a considerable amount of attention (see [6]
and references herein). The gathering tasks consist in all robots (considered as
dimensionless point in a 2-dimensional Euclidian space) reaching a single point,
not known beforehand, in finite time. A foundational result [8,4] shows that in
the FSYNC or SSYNC models, no deterministic algorithm can solve gathering
for two robots without additional assumptions). This result can be extended [8,4]
to the bivalent case, that is when an even number of robots is initially evenly
split in exactly two locations. On the other hand, it is possible to solve gathering
if n > 2 robots start from initially distinct positions if robots are endowed with
multiplicity detection: that is, a robot is able to distinguish the two cases where
(i) a single robots occupies a position, and (ii) more than one robot occupies a
position.

In hostile environments such as those we envision, robots become likely to
fail. So far, three kinds of failures were considered in the context of deterministic
gathering [1,3,5,2]:

1. Transient Faults : as robots are oblivious (they do not remember their past
actions), they naturally are resilient to transient faults that corrupt their
memory. However, if the transient fault consequence was to place the robots
in some forbidden configuration (e.g. a bivalent configuration), some algo-
rithms may not recover. Algorithms can thus be sorted according to the set
of admissible initial configurations.

2. Crash Faults : when robots may stop executing their algorithm unexpectedly
(and correct robots are not able to distinguish a correct robot from a crashed
one at first sight), guaranteeing that correct robot still gather in finite time
is a challenge. Algorithms can thus be sorted according to the number of
admissible crashed robots.

Wait-Free Gathering Without Chirality 315

3. Byzantine Faults : when robots may have completely (and possibly malicious)
behavior, it is known [1] that there exists no deterministic gathering proto-
col in the SSYNC model even assuming that at most one robot may be
Byzantine.

The positive deterministic results so far in a fault tolerant context are as fol-
lows. With simple multiplicity detection, and restricting the set of admissible
initial configurations to the distinct configurations (that is, the configurations
where at most one robot occupies a particular position), gathering is feasible in
the SSYNC model with one crash fault [1]. If only transient faults are considered,
strong multiplicity detection (that is, being able to sense the exact number of
robots at any particular position) permits to extend the set of initial configura-
tions to those that include multiplicity points [5] (however, only the case with
an odd number of robots is considered). When a common chirality is available
(that is all robots have the same notion of handedness), it becomes possible to
tolerate up to n− 1 crash faults [3] (that is, the algorithm is wait-free), further
expanding the set of initial configurations to those that are not bivalent (so all
feasible initial configurations in a deterministic context are considered). When
the robots agree on a common direction (e.g., North) it becomes possible to
solve gathering without chirality and without any restriction on the set of initial
configurations [2]. However, the assumption that a common direction is avail-
able trivializes the problem of gathering as it also sufficient to solve gathering
starting from a bivalent configuration, but not necessary [7] (in that sense, agree-
ing on a common direction is a stronger problem than gathering). The various
assumptions are summarized in Table 1.

Table 1. Gathering robots in the presence of faults

Reference Direction Chirality Multiplicity # Crashes Admissible initial
configurations

[1] No No Weak (binary) f = 1 distinct

[5] No No Strong f = 0 n is odd

[3] No Yes Strong f = n− 1 not bivalent

[2] Yes No No f = n− 1 any

This paper No No Strong f = n− 1 not bivalent

So the main open question is whether it is possible to relax the weakest as-
sumptions to date in the “classical” model (that is, without assuming a common
direction is available to all robots).

Our Contribution. In this paper, we present a deterministic gathering protocol
that can start from any non-bivalent configuration (the largest possible set in the
classical model), yet does not require to assume that all robots share a common
direction (as in [2]), nor a common chirality (as in [3]). The protocol retains the
ability to tolerate up to n− 1 crash faults, that it, it is wait-free.

316 Q. Bramas and S. Tixeuil

2 Preliminaries

2.1 Model

As previously stated, we consider n robots modeled as dimensionless points
evolving in a 2-dimensional Euclidian space. The robots do not share any global
knowledge (direction, chirality, etc.), and each robot has its own coordinate sys-
tem, orientation and unit of length. All robots are anonymous (identical and thus
indistinguishable), uniform (they follow the same algorithm), oblivious (they
does not remember their previous actions or the previous positions of the other
robots) and they do not communicate in an explicit manner.

We assume the semi-synchronous model denoted SSY NC. The time is divided
into discrete intervals. At each time a robot can be either active or inactive. When
active, a robot r makes exactly one Look-Compute-Move cycle. During the Look
stage, each active robot r gets the same snapshot containing the location of every
other robot with respect to its local coordinate system. With weak multiplicity
detection, r knows whether there is “one” or “more than one” robots located at
a point. With strong multiplicity detection, r knows the exact number of robots
located at a particular point. During the Move stage, robots move towards the
computed destination. There exists a constant δ > 0, such that if a destination
point is closer than δ, the robot will reach it, otherwise it will move a distance
of at least δ toward it.

Let R = {r1, r2, . . . , rn} denote the set of robots. At any time τ ∈ N,
ri(τ) denotes the robot position at time τ , and C(τ) denotes the multiset
C(τ) = {r1(τ), . . . , rn(τ)}. In the sequel, we may identify a robot with its posi-
tion depending on the context. Given a configuration C, U(C) denotes the set
of robot positions in C removing multiplicities. SEC(C) denotes the smallest
enclosing circle of the set U(C). For u ∈ U(C), mult(u) denotes the multiplic-
ity of the point u. R(P) denotes the robots in R located at P . The predicate
GATHERED(R, τ) equals true if all non-faulty robots share the same location
at time τ .

With a, b ∈ R
2, let |a, b| denote the Euclidian distance between a and b. Then,

[a, b] (resp.]a, b[) denote the closed (resp. open) segment line between a and b.
]a, b), denote the half line starting at a (excluding a) and passing through b.
Since robots do not have a common chirality, �(u, c, v) denote the angle between
segment [c, u] and [c, v], in the direction that minimizes it.

The crash fault-tolerance capabilities of a deterministic algorithm come from
the following Lemma:

Lemma 1. [1,3] A gathering algorithm for n robots is tolerant against f < n
crashes only if at each configuration, there exists a unique point P such that all
robots that are not located at P are instructed to move.

Definition 1. Let C = {p1, . . . , pn} be a configuration of robots and

c = center(SEC(C))

Wait-Free Gathering Without Chirality 317

Given a position p ∈ U(C), the view of p (or, equivalently, the view of the
robot(s) located at p), denoted by V(p), is the multiset of points in C expressed
in a polar coordinate system whose origin (0, 0) is p and whose point (1, 0) is
defined as follow. If (c �= p), then (1, 0) = c. Otherwise (1, 0) is any point
x �= p ∈ U(C) that maximizes V(p). The orientation of the polar coordinate
system is chosen to maximize V(p).

Views are compared in a lexicographical manner. Since robots do not share
a common chirality, robots may maximize their view in one orientation, while
other robots may maximize their view in the other orientation.

Based on the definition of views, we can define an equivalence relation �r on
the set U(C). Two points u, u′ ∈ U(C) are equivalent, denoted u �r u′, if and
only if they have the same view with the same orientation.

Definition 2. The rotational symmetricity of a configuration C, denoted by
sym(C), is the cardinality of the largest equivalence class defined by �r.

Lemma 2. Let C be a configuration with k = sym(C) > 1, and let

c = center(SEC(C))

For every u ∈ U(C), with c �= u, the equivalence class of u is a k-gon with center
c and whose corners have the same multiplicity.

Lemma 3. The perpendicular bisector of two robots that have the same view
with different orientation is an axis of symmetry.

Then a configuration C is symmetric if sym(C) > 1. Moreover, if sym(C) = 1
and two robots have the same view, with different orientation, then C has an
axis of symmetry. Also, if a robot has a unique view (for any choice of chirality,
the maximized view is the same), then it is on an axis of symmetry.

2.2 Weber Point

A Weber point minimizes the sum of distances to the robots:

Definition 3. Given a configuration C, define:

sum(C, r) =
∑

q∈C

|r, q|

summin(C) = min
r∈C

∑

q∈C

|r, q|

W (C) = argminP∈R2sum(C,P)

W (C) is called a Weber point. We say that a point P reduces the sum of dis-
tances if sum(C,P) ≤ summin(C) (note that this does not imply that P is a
Weber point).

318 Q. Bramas and S. Tixeuil

A Weber point has the nice property to remain invariant under straight line
movement towards it. Even if it is not calculable in general, the Weber point of
a symmetric configuration is simply the common center of the regular polygons
formed by the equivalency classes of the relation �r. This allows to define a new
class of configurations called quasi regular, which is the set of configurations
obtained from a symmetric configuration after several straight line movements
toward the center (see [3] for a formal definition).

Lemma 4. If M ∈ [A,B], then sum(C,M) ≤ max (sum(C,A), sum(C,B)).

Sketch of proof. The lemma comes from the convexity of the sum of distances.

Lemma 5. Let τ ∈ N and suppose that, at time τ , all robots move towards a
robot that reduces the sum of distances. If r0(τ + 1) ∈ C(τ + 1) reduces the sum
of distances, then either r0(τ) reduces the sum of distances, or r0(τ) ∈ Move(τ).

Proof. Assume that r(τ) /∈ Move, and let rd be the common destination of all
robots. Let dr = distance(r, τ) be the distance traveled by Robot r at time τ ,
and d =

∑
r∈R dr. Then,

sum(C, rd(τ + 1)) = sum(C, rd(τ)) − d

By the triangle inequality, we have

sum(C, r0(τ + 1)) ≥ sum(C, r0(τ)) − d

Since

summin(C(τ)) = sum(C, rd(τ)) ≤ sum(C, r0(τ)) (1)

we have

sum(C, rd(τ + 1)) ≤ sum(C, r0(τ + 1))

Finally:

summin(C(τ + 1)) ≤ sum(C, rd(τ + 1)) ≤ sum(C, r0(τ + 1)) (2)

So in order to have equality in Equation 2, we must also have equality in Equa-
tion 1. Hence, r0 reduces the sum of distances at time τ .

3 Robot Configurations

3.1 Classification

We use the same partition of configurations as in [3]. The set of all possible
configurations is denoted by P .

– Bivalent(B):
B = {C ∈ P | ∀u ∈ U(C) : mult(u) = n/2}.

Wait-Free Gathering Without Chirality 319

– Multiple(M):
M = {C ∈ P | ∃u ∈ U(C) : ∀v �= u ∈ U(C) : multi(v) < mult(u)}.

– Collinear(L)
L = {C ∈ P\(B ∪M) | C is linear}.
L1W = {C ∈ L | C has a unique Weber point}.
L2W = L\L1W .

– Q-Regular(QR)
L = {C ∈ P\(B ∪M∪ L) | C is quasi regular}.

– Asymmetric(A)
A = {C ∈ P\(B ∪M∪ L ∪QR) | sym(C) = 1}.

3.2 Safe Robots

Definition 4. Given a configuration C, a robot p is safe if and only if ∀q ∈
R

2\{p}, the half-line]p, q) contains at most 	n/2
 − 1 robots of C.

Safe robots can be used as destination points because they guarantee that the
configuration will not become bivalent. We can show the following properties for
safe robots (see [3] for a proof of lemma 6 and 7).

Lemma 6. Any non linear configuration contains a safe robot.

Lemma 7. If C ∈ B ∪ L2W, then C does not have a safe robot.

Lemma 8. If the configuration C is not linear, then robots that reduce the sum
of distances are safe.

Proof. Suppose that the robot at point P reduces the sum of distances and is
not safe i.e. there are k ≥ ⌈

n
2

⌉
robots r1, . . . ,rk from near to far in a half line L

starting at P . We show that sum(C(τ), P) > sum(C(τ), r1).
Firstly, for all 1 ≤ i ≤ k, |P, ri| = |r1, ri| − |r1, P |.
Secondly, for a robot r /∈ L |P, r| ≥ |r1, r|+ |r1, P |.
Finally, since the configuration is not linear, the last inequality is strict for at

least one robot r′. When we sum the k first equalities and the n−k inequalities,
since k ≥ ⌈

n
2

⌉
and one inequality is strict, we have the following contradiction:

∑

r∈R
|P, r| >

∑

r∈R
|r1, r|

This completes the proof.

Definition 5. Let C ∈ A. Consider the subset S ⊂ C of (safe) robots that
reduce the sum of distances. Let S1 ⊂ S be the set of robots in S that have a
unique view. If S1 is not empty, safeMin(C) denote the singleton consisting of
the robot in S1 that maximizes the multiplicity and that maximizes the view.
Else safeMin(C) denote set of robots in S that maximize the multiplicity and
maximize the view.

From now A1 = {C ∈ A : |safeMin(C)| = 1} and A2 = A\A1

320 Q. Bramas and S. Tixeuil

3.3 Properties of Configurations

Lemma 9. Let C ∈ A, there are exactly one or two robots in safeMin(C). Thus
A2 = {C ∈ A : |safeMin(C)| = 2}.
Proof. We just have to show that we cannot have 3 robots located at distinct
positions in safeMin(C). By contradiction, suppose {r1, r2, r3} ⊂ safeMin(C).

Since each robot has one chirality, clockwise or counterclockwise, there are
two robots, say r1 and r2, that have the same chirality. Moreover, since all
robots in safeMin(C) maximize the view, r1 and r2 must have the same view.
So sym(C) ≥ 2. That is a contradiction with C ∈ A.

Lemma 10. If C ∈ A2, then there is a unique axis of symmetry and the middle
of the two robots in safeMin(C) is on the axis of symmetry.

Proof. Since C ∈ A2, there are two robots in safeMin(C) located at different
positions that have the same view with different chirality. By lemma 3, the
perpendicular bisector is an axis of symmetry (that contains the middle of the
two robots in safeMin(C). Since sym(C) = 1, the axis is unique.

Lemma 11. Let C ∈ A2 and M be the middle of the two robots in safeMin(C),
then sum(C,M) < summin(C)

Proof. Let rmin be a robot in safeMin(C). Let r be another robot. If r is located
on the axis of symmetry, then |r,M | < |r, rmin|. Else, let r′ be the symmetric
robot of r. Since the lines (r, r′) and (M, rmin) are parallels and M is on the
perpendicular bisector of [r, r′], we have:

|r,M |+ |r′,M | < |r, rmin|+ |r′, rmin|
By summing over all robots we have

sum(C,M) < sum(C, rmin) = summin(C)

Lemma 12. Let C ∈ A2 and P be the middle of the robots in safeMin(C). The
configuration obtained after moving some robots toward P is not in A2 if at least
one robot reaches P .

Proof. Let M be the set of robots moving. Let d be the sum of distances trav-
eled by the robots, Let C′ be the configuration after the movements. We have
sum(C′, P) = sum(C,P)− d. Moreover, for every robot r:

sum(C′, r′) ≥ sum(C, r) − d

where r′ is the position of r after the movement. Also, we have from Lemma 11:

sum(C, r) − d > sum(C,P)− d = sum(C ′, P)

So that
sum(C′, r′) > sum(C′, P)

After the movement, a robot is located at P and (strictly) reduce the sum of
distances in C′ so that, if C′ ∈ A, then {P} = safeMin(C′) and C′ ∈ A1.

Wait-Free Gathering Without Chirality 321

Lemma 13. If C ∈ A2, then the middle of the robots in safeMin(C) is safe.

Proof. By Lemma 11, the middle point reduces the sum of distances and by
Lemma 8, in a non linear configuration, a point that reduces the sum of distances
is safe.

4 The Algorithm

Since the chirality assumption is not crucial in the first four configurations, our
algorithm is almost the same as [3] for those classes. The main change appears
when the configuration is in A.

Algorithm 1. Fault-Tolerant-Gathering executed by robot r

Let C be the current configuration.

– C ∈ L1W ∪QR: elect the unique Weber point.
– C ∈ L2W: Then U(C) is included in a segment [p1, p2] where at least

one robot is located at each end point. Let c be the middle of [p1, p2]. If
r /∈ {p1, p2} elect c. Otherwise, elect a point e such that |e, c| = |r, c| and
�(r, c, e) = π/4.

– C ∈ M: Let e = argmaxp∈Cmult(p). If there is no other robot between r
and e, elect e. Otherwise, elect d that verifies |d, e| = |r, e| and

∀v ∈ {p ∈ C | �(r, e, p) �= 0}, �(r, e, d) < �(r, e, v)/3).

– C ∈ A: If |safeMin(C)| = 1, elect the unique robot in safeMin(C), otherwise,
there are two robots in safeMin(C), elect the middle point.

Robot r moves toward the elected destination.

5 Proof of Correctness

Lemma 14 (see [3]). Let C(τ) ∈ M∪L1W ∪QR. There exists a time τc > τ
such that GATHERED(R, τc) = true.

Lemma 15 (see [3]). Let C(τ) ∈ L2W. There exists a time τc > τ such that
C(τc) /∈ (L2W ∪B) ∨GATHERED(R, τc) = true.

Lemma 16. Let C(τ) ∈ A. There exists a time τc > τ such that (C(τc) ∈
M∪ L1W ∪QR) ∨ (GATHERED(R, τc) = true))

Proof. The lemma follows from Claims C1 and C6 below. Claims C2, C3, C4
and C5 are used to prove C6.

C1 : (C(τ) ∈ A) ⇒ (C(τ + 1) ∈ M∪ L1W ∪QR∪A)
C2: If C(τ) ∈ A1 and C(τ+1) ∈ A, then one of the following assertions holds:

322 Q. Bramas and S. Tixeuil

– C(τ + 1) = C(τ)

– summin(C(τ + 1)) ≤ summin(C(τ)) − δ

–

⎧
⎨

⎩

C(τ + 1) ∈ A1

elected(τ + 1) = elected(τ)
mult(elected(τ + 1)) > mult(elected(τ))

C3: (C(τ) ∈ A2) ⇒ (summin(C(τ + 1)) ≤ summin(C(τ)))
C4: (∀τ ′ ≥ τ : C(τ ′) ∈ A1) ⇒ (∃τc ≥ τ : GATHERED(R, τc))
C5: (∀τ ′ ≥ τ : C(τ ′) ∈ A2) ⇒ (∃τc ≥ τ : GATHERED(R, τc))
C6 : (∀τ ′ ≥ τ : C(τ ′) ∈ A) ⇒ (∃τc ≥ τ : GATHERED(R, τc))

Proof of C1: If C(τ + 1) is non linear, then C(τ + 1) /∈ B ∪ L2W . Otherwise,
we show that every activated robot elects the same position P , so C(τ +1) may
be linear only if some robots reach P . Since P is safe at time τ , then P is safe
at time τ + 1. Indeed, for every x ∈ R\{P}, the number of robots that are
located at]P, x) does not increase (and decreases if some robots reach P). So,
there is at least one safe robot located at P . According to Lemma 7, this implies
C(τ + 1) /∈ B ∪ L2W .

Proof of C2: Assume that C(τ + 1) �= C(τ) and suppose that:

summin(C(τ + 1)) > summin(C(τ)) − δ

The destination point P is the same for every robot (it is the unique robot in
safeMin(C(τ))) so that sum(C(τ), P) − sum(C(τ + 1), P) is exactly the sum of
distances traveled by moving robots at time τ . Since

summin(C(τ + 1)) = sum(C(τ), P)

then
sum(C(τ), P) − sum(C(τ + 1), P) < δ.

This is possible if every moving robot reaches its destination. So the multiplicity
of P increases at time τ + 1. We have to prove now that C(τ + 1) ∈ A1, and P
is the elected destination at time τ + 1.

We know that C(τ + 1) ∈ A, so robots in safeMin(C(τ + 1)) are safe and
reduce the sum of distances. Yet, by Lemma 5, a robot that reduces the sum
of distances at time τ + 1 must reduce the sum of distances at time τ or be
moving at time τ . In our case, moving robots at time τ are located at P at
time τ + 1. Moreover, P already reduces the sum of distances at time τ , so P
also reduces the sum of distances at time τ +1. The multiplicity of other points
does not increase because every moving robot reaches P , so P has a strictly
greater multiplicity than all other safe robot that reduces the sum of distances.
Moreover, P is located on the axis (again, because there is no other safe robot
that reduces the sum of distances, with the same multiplicity). Overall, P is safe,
reduces the sum of distances, and has a unique view, i.e. C(τ + 1) ∈ A1 and
P = elected(τ + 1).

Wait-Free Gathering Without Chirality 323

Proof of C3: Let r1 and r2 be the two robots in safeMin(C(τ)). We
have sum(C(τ), r1) = sum(C(τ), r2) = summin(C(τ)), and the elected
position P is the middle of [r1, r2]. Let r be another robot. If r is on the
axis of symmetry, then the angles �(P, r1, r) and �(P, r, r1) are acute, so
|r1(τ), r(τ)| ≤ |r1(τ+1), r(τ+1)| (the same inequality holds with r2). Otherwise,
there exists r′, the symmetric robot of r with respect to the axis. Let

S(τ) = |r1(τ), r(τ)| + |r1(τ), r′(τ)| + |r2(τ), r(τ)| + |r2(τ), r′(τ)|
We want to show that S(τ + 1) ≤ S(τ).

We decompose the movement of the four robots r1, r2, r and r′ into two
movements: r1 and r2 move at time τ + 1

2 , and r and r′ move just after. Note
that the way we virtually decompose the movement between τ and τ + 1 does
not change the sum at time τ + 1. See Figure 1 to observe two steps.

Fig. 1. (a) When r1 moves toward P , we have a′+b′ ≤ a+b. (b) When r moves toward
P , we have a′ + b′ ≤ a+ b

In the first phase, r1 moves toward P along a segment parallel to the line
(r, r′). Since r1 moves beyond P , which is on the perpendicular bisector of the
segment [r, r′], we have:

|r1(τ +
1

2
), r(τ +

1

2
)|+ |r1(τ +

1

2
), r′(τ +

1

2
)| ≤ |r1(τ), r(τ)| + |r1(τ), r′(τ)|

The same inequality holds for r2 and we have S(τ + 1
2) ≤ S(τ).

In the second phase, let T be the triangle formed by r1(τ +
1
2), r2(τ +

1
2), and

r. Even upon completion of the movement of r1 and r2, we have P ∈ [r1, r2], so
r remains inside T at time τ + 1. So:

324 Q. Bramas and S. Tixeuil

|r1(τ+1), r(τ+1)|+|r2(τ+1), r(τ+1)| ≤ |r1(τ+1

2
), r(τ+

1

2
)|+|r2(τ+1

2
), r(τ+

1

2
)|

And the same inequality holds with r′, so that S(τ + 1) ≤ S(τ + 1
2). Overall,

S(τ + 1) ≤ S(τ). The same reasoning can be used for every robot, and we get:

sum(C(τ + 1), r1(τ + 1)) + sum(C(τ + 1), r1(τ + 1))
≤ sum(C(τ), r1(τ)) + sum(C(τ), r2(τ))

Which means either

sum(C(τ + 1), r1(τ + 1)) ≤ sum(C(τ), r1(τ))

or
sum(C(τ + 1), r2(τ + 1)) ≤ sum(C(τ), r2(τ))

In turn, this implies summin(C(τ + 1)) ≤ summin(C(τ)). Also, we can observe
that if at least one robot moves then the inequality is strict.

Proof of C4: Assume that (∀τ ′ ≥ τ : C(τ ′) ∈ A1). From Claim C2, we
know that for τ ′ ≥ τ , either C(τ ′ + 1) = C(τ ′), the minimum sum of distances
between robots summin(C) decreases by δ, or the multiplicity of the elected point
increases. The minimum sum of distances can decrease only a finite number of
times, so there exists a time τ1 such that the elected destination never changes.
Also, the number of times the multiplicity of the elected destination strictly
increases is finite. Thus, there exists a time τ2 such that ∀τ ′ > τ2, C(τ ′ +1) =
C(τ ′), and GATHERED(R, τ2) = true.

Proof of C5: Assume that (∀τ ′ ≥ τ : C(τ ′) ∈ A2).
Suppose for the purpose of contradiction that there exists a time τ ′ > τ such

that Move(τ ′) �= ∅, and a moving robot reaches its destination. By Lemma 12,
this implies that C(τ ′ + 1) /∈ A2.

So, after time τ , no robot reaches its destination. Let C ∈ A2 and {r1, r2} =
safeMin(C). We now show that if a robot moves, then the minimum sum of
distances between robots decreases by a constant factor.

Let ω be a non-null constant and let Ω be the set of points that are at distance
at most ω from [r1, r2] (see Figure 2).

Case 1: There exists a moving robot inside Ω. Let r be one of the moving
robots inside Ω, whose next location r(t + 1) is the closest to I, the middle of
[r1, r2].

For every p ∈ [r1, r2], we have sum(C, p) ≤ summin(C). Since r is at distance
less than ω from [r1, r2], we have:

sum(C, r) ≤ sum(C, p) + nω ≤ summin(C) + nω.

So, if we choose ω = δ
2n , then sum(C, r) ≤ summin(C) + δ/2. Since r moves

towards the axis of symmetry, we also have:

sum(C(t), r(t + 1)) ≤ summin(C(t)) + δ/2

Wait-Free Gathering Without Chirality 325

Moreover, since the other moving robots do not move closer to I than r, then

∀r′ ∈ Move(t), |r(t + 1)− r′(t+ 1)| ≤ |r(t+ 1)− r′(t)|.
Also,

0 = |r(t + 1)− r(t+ 1)| ≤ |r(t + 1)− r(t)| − δ

so that

sum(C(t+ 1), r(t+ 1)) ≤ sum(C(t), r(t + 1))− δ ≤ summin(C(t)) − δ/2

Case 2: There exists a moving robot r outside Ω.
Suppose first that r is the only robot to move at time t. Let Δ1 =

sum(C, r1(t)) − sum(C, r1(t + 1)) and Δ2 = sum(C, r2(t)) − sum(C, r2(t + 1)).
Let ϕ = |r1 − r2|, and d be the distance traveled by r. Let Φ be the diameter of
the smallest enclosing circle S of C(τ). Robots do move outside S, so until the
end of the execution, they cannot be at distance more than Φ from one another.
We now show that Δ1 +Δ2 is greater than a non-null positive constant.

Let f : (ϕ, d, ω, r) �→ Δ1 +Δ2. We know from C3 that, if at least one robot
moves, f > 0 and for any fixed ϕ, ω, d, and for r sufficiently far from its
destination, f(ϕ, ω, d, r) ≥ d/2. So, r �→ f(ϕ, d, ω, r) admits a minimum λϕ,ω,d.
Moreover, f is decreasing with respect to the first variable, and increasing with
respect to the second variable, so we obtain:

∀ϕ ∈ [0, Φ], ∀d ∈ [δ,+∞[, ∀ω ∈ R
+, ∀r /∈ Ω, f(ϕ, d, ω, r) ≥ λω

Thus,

sum(C, r1(t+ 1)) + sum(C, r2(t+ 1)) ≤ sum(C, r1(t)) + sum(C, r2(t))− λω

Since the other robots movements do not make sum(C, r1(t+1))+sum(C, r2(t+
1)) increase, then the inequality is true even if other robots move. This implies
that either sum(C, r1(t + 1)) ≤ sum(C, r1(t)) − λω/2, or sum(C, r2(t + 1)) ≤
sum(C, r2(t)) − λω/2.

Thus we have:

summin(C(t+ 1)) ≤ summin(C(t)) −min

(
δ

2
,
λδ/2n

2

)

So, at each time τ ′ ≥ τ , if Move(τ ′) �= ∅, the minimum sum of distances

between robots summin(C(τ)) decreases by at least ε, with ε = min
(

δ
2 ,

λδ/2n

2

)
.

Thus, there exists a time τ1 such that robots do not move anymore: ∀τ ′ ≥ τ1 :
C(τ ′ + 1) = C(τ ′), and GATHERED(R, τ1) = true.

Proof of C6: Assume that (∀τ ′ ≥ τ : C(τ ′) ∈ A). If there exists a time τ1 and
i ∈ {1, 2} such that (∀τ ′ ≥ τ1 : C(τ ′) ∈ Ai), then we can use claims C4 and C5
to conclude. Otherwise, there is a strictly increasing sequence (ti)i∈N such that:

∀i ∈ N C(ti) ∈ A1 ∧ C(ti + 1) ∈ A2

326 Q. Bramas and S. Tixeuil

Fig. 2. The two cases of a robot movement. After the movement of r starting (a) inside
Ω, or (b) outside Ω, the minimum sum of the distances decreases by ε.

However, each time this happens, the sum of distances decreases by δ, and it
never increases afterward. This is impossible since the sum of distances is a
positive number.

Theorem 1. Algorithm 1 achieves gathering of all correct robots starting from
any non-bivalent initial configuration, even if 0 ≤ f < n robots crashes. The
algorithm assumes strong multiplicity detection and makes no common chirality
assumption.

6 Conclusion and Perspectives

We presented a wait-free deterministic gathering protocol that does not require
robots to share a common chirality, preserving the most general setting for initial
configurations (only bivalent configurations are forbidden). One downside of our
approach with respect to Agmon and Peleg solution (that works only for a single
crash fault, and only admits distinct configurations as initial possibilities) is that
we make use of strong multiplicity, while they use only weak multiplicity. We
conjecture that strong multiplicity is required if the admissible set of initial

Wait-Free Gathering Without Chirality 327

configurations is strictly greater than the set of distinct configurations, and the
rest of the hypotheses is preserved (no common direction, no common chirality).

Another challenging open problem would be to extent our results to the
ASYNC model without weakening the underlying model with the strong as-
sumption that all robots agree on a common direction (as in [2]).

Acknowledgements. We are grateful to Shantanu Das for helpful comments on
a preliminary version of this work. This work was supported in part by LINCS.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Fault-tolerant gathering
of asynchronous oblivious mobile robots under one-axis agreement. In: Rahman,
M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 149–160. Springer,
Heidelberg (2015)

3. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS 2013), pp. 337–346. IEEE Computer Society Press,
Philadelphia (2013)

4. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Information Processing Letters (IPL) 115(3), 447–452 (2015)

5. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detec-
tion. Theor. Comput. Sci. 428, 47–57 (2012)

6. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mo-
bile robots. In: Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers (2012)

7. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM
J. Comput. 41(1), 26–46 (2012)

8. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of ge-
ometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

Treasure Hunt with Advice�

Dennis Komm1, Rastislav Královič2, Richard Královič3, and Jasmin Smula1

1 Department of Computer Science, ETH Zürich, Switzerland
{dennis.komm,jasmin.smula}@inf.ethz.ch

2 Department of Computer Science, Comenius University, Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

3 Google Zurich, Inc., Switzerland
ri.kralovic@gmail.com

Abstract. The node searching problem (a.k.a. treasure hunt) is a funda-
mental task performed by mobile agents in a network and can be viewed
as an online version of the shortest path problem: an agent starts in a
vertex of an unknown weighted undirected graph, and its goal is to reach
a given vertex. The cost is the overall distance (measured by the weights
of the traversed edges) traversed by the agent. We consider the setting
in which the agent sees the identifier of the vertex it is located in, the
weights of the incident edges, and also the identifiers of the neighboring
vertices. We analyze the problem from the point of view of advice com-
plexity: at the beginning, the agent has a tape with an advice string that
gives some a priori information about the input instance. This informa-
tion has no restricted form; instead, the aim is to study the relationship
between the size of this advice and the competitive ratio that can be
obtained. We give tight bounds of the form Θ(n/r) bits of advice for a
competitive ratio r (possibly depending on the number of vertices n). In
particular, this means that an a priori knowledge of any graph parameter
(which would be of size O(log n)) cannot yield a competitive ratio bet-
ter than Ω(n/ log n). Moreover, we give a lower bound on the expected
competitive ratio of any randomized online algorithm for treasure hunt.

1 Introduction

Problems that involve traversing a graph in a certain way belong to the funda-
mentals of graph theory [11], and a vast amount of effort has been invested into
their study. In such problems, there is an entity (an agent) that starts in some
vertex of a given graph, and its goal is to explore the graph in some manner such
as by traversing all vertices/edges (possibly under some restrictions), finding a
(shortest) path to a given vertex, etc. The oldest and most extensive treatment
has been the offline case, where the graph and the starting vertex are given as
an input and the task is to find the optimal exploration route. The online ver-
sions, where the graph is unknown and the agent can only observe its immediate
surroundings, have also received significant attention over the last decades [2,18].

� Partially funded by the SNF grant 200021-146372 and grant VEGA 1/0979/12.

© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 328–341, 2015.
DOI: 10.1007/978-3-319-25258-2_23

Treasure Hunt with Advice 329

In this paper, we consider the following problem, which is called the treasure
hunt problem. Given is an n-vertex undirected graph with non-negative edge
weights. We assume the vertices to have unique identifiers. An agent starts in
some vertex, and its goal is to move to a given vertex (the treasure); the identity
of the treasure vertex is revealed once the agent enters it. The agent can freely
move from a vertex to any neighboring vertex, incurring a cost equal to the
weight of the traversed edge (an edge can be traversed an arbitrary number
of times, each time incurring the same cost). When located at a vertex, the
agent can see the identifier of the current vertex, the identifiers of all neighbors,
and the weights of the incident edges. This model is known as the fixed graph
scenario and was introduced by Kalyanasundaram and Pruhs [21]. The agent has
(polynomial) memory and can perform an arbitrary computation, but it cannot
modify the graph in any way; e. g., it cannot mark any vertices. Our aim is to
construct a deterministic algorithm for the agent that minimizes the worst-case
competitive ratio (i. e., the ratio of the cost incurred by the algorithm and the
optimal cost). First, we observe that a simple greedy agent is O(n)-competitive,
and that no deterministic agent can achieve a better competitive ratio (even
in the unweighted case, where all edges have weight 1). Next, we analyze the
problem using the framework of advice complexity.

The advice complexity has been introduced in the context of online problems
[4,9,10,20] and distributed problems [16,17]. In both settings, the algorithm has
to cope with the lack of information about the instance it is working on (the
future input requests, the network topology, etc.).

There are many results that study the impact of some a priori information
about the instance on the performance of the algorithm. While the traditional
approach is qualitative and analyzes information of a certain type (e. g., the
agent may know the size or diameter of the network), the advice complexity
approach is quantitative: the agent obtains, at the beginning of the computa-
tion, a binary string (the advice) that describes the current instance. There is
no restriction on the type of the information; it can be viewed as being prepared
by a computationally unbounded oracle that knows the algorithm of the agent
and the whole input instance (i. e., the network topology, the edge weights, the
starting vertex of the agent, and the location of the treasure). The main incen-
tive is to study the relationship between the size of the advice string and the
competitive ratio that can be obtained. In recent years, the advice complexity
of a large number of online problems was studied; examples include paging [4],
the k-server problem [5, 10, 19, 28], and the knapsack problem [6]. Furthermore,
it is possible to use special reduction methods to transfer hardness results on
the advice complexity from one problem to another [3, 7, 10].

We show that without any advice, any algorithm is Ω(n)-competitive, even
on unweighted graphs, and even using randomization. On the other hand, n
bits of advice are sufficient to obtain an optimal solution. Next, we consider
unweighted graphs (where all edges have weight 1). We show an asymptotically
tight trade-off between the size of the advice and the competitive ratio: for any
(not necessarily constant) r, there is an algorithm that uses O(n/r) bits of advice

330 D. Komm et al.

and that achieves a competitive ratio r. On the other hand, any deterministic
algorithm that achieves a competitive ratio r needs Ω(n/r) bits of advice.

Related Work

In 1977, Rosenkrantz et al. [27] proposed the following problem: an agent is ini-
tially located in a vertex of an unknown weighted undirected graph, and is able
to move from a vertex to any neighboring vertex, inducing a cost equal to the
weight of the traversed edge. When located at a vertex, the agent can see the
identifier of that vertex, the weights of incident edges, and also the identifiers
of its neighbors. Its goal is to traverse all vertices of the graph and induce as
little cost as possible. The performance is evaluated in terms of the competitive
ratio, i. e., the worst case ratio of the cost induced by the algorithm and the
optimum cost. It has been shown that the natural greedy nearest neighbor algo-
rithm is Θ(log2 n)-competitive, and a question was posed whether there is any
algorithm with a constant competitive ratio. Despite much effort, the question
is still open for the general case (although many results are known for special
graph classes), the best general lower bound being 5/2 − ε [8]. In the case of
directed graphs, the problem is much better understood: the competitive ratio
of any (even randomized) algorithm is at least Ω(n) and O(n)-competitiveness
is indeed achievable [15].

The same model has been used to study the treasure hunt problem in directed
graphs [15]. It has been shown that, on strongly connected weighted graphs, no
deterministic or randomized algorithm can have a bounded competitive ratio. For
strongly connected unweighted graphs, the best competitive ratio for deterministic
algorithms is Θ(n2); for randomized algorithms, a lower bound of Ω(n) is known.

The treasure hunt problem has been studied in unweighted undirected graphs
in the framework of advice complexity by Miller and Pelc [24], in the model in
which the agent does not see the identifiers of the neighboring vertices (i. e., it
only sees the identifier of the vertex it is located in). In particular, in our model,
the agent can identify a neighboring vertex as already visited, which can be
exploited by the algorithm. The performance of the algorithm in the model of
Miller and Pelc was measured in terms of the number of edges e, the competitive
ratio r, and the cost of the optimal solution D. The lower and upper bounds
Ω
(
D log2(

e
rD)

)
and O

(
D log2(

e
r)
)
have been obtained, respectively.

A similar problem of finding a shortest path with a given source and sink was
studied for a specific class of graphs by Papadimitriou and Yannakakis [26] and
Fiat et al. [14]. The model used in these papers differs from the one studied here
in the way in which the vertices are revealed to the agent.

Another related problem is the rendezvous problem, where two agents want
to meet in an unknown graph [24, 25, 29]. Note that treasure hunt is a special
case of rendezvous where the position of one of the agents is fixed.

Finally, note that such problems belong to the class of search games, which are
further distinguished according to different parameters. Other famous problems
from this class include the linear search problem (also known as the cow path
problem) [1, 22] and the ANTS (ants nearby treasure search) problem [12, 13].

Treasure Hunt with Advice 331

2 Our Contribution

Let G = (V,E) with |V | = n be an undirected graph with non-negative edge
weights ω(e), e ∈ E (ω(u, v), u, v ∈ V , respectively). Let u0 be the starting
vertex of the agent, and let u0, u1, . . . , u� be the shortest path to the treasure
vertex u�. Since the cost of the optimum may be zero, we use the so called
non-strict competitive ratio with an additive constant to even out the effects
of the special cases with zero (or near-zero) optimum: an algorithm is said to
be r-competitive, if there is a constant α such that on any input instance the
algorithm incurs cost at most r ·OPT +α, where OPT is the cost of the optimal
solution (i. e., the length of the shortest u0 − u� path).

As a first observation, let us consider the competitive ratio of a deterministic
algorithm without any advice.

Theorem 1. There is a deterministic algorithm without advice for the treasure
hunt problem in weighted graphs that achieves a competitive ratio of O(n).

Proof. Consider the following simple greedy algorithm on a given graph G =
(V,E). The agent works in rounds and maintains a set of vertices that have been
visited so far. Let Si be the set of vertices visited after i rounds, with S0 = {u0}
containing only the starting vertex. In each round i, the agent starts from the
vertex u0, and a new vertex is explored as follows. Let vi be the vertex from
V \ Si−1 with the shortest distance from u0. (Note that, since all vertices from
Si−1 have been already visited, the agent knows the costs of all the outgoing
edges; moreover, since also the identifier of the destination is known for an edge,
the agent can distinguish which edges lead to vertices in V \ Si−1.) The agent
traverses the shortest path to vi, which reveals the neighborhood of vi, and
returns back to u0; the new set is Si := Si−1 ∪ {vi}. The exploration ends
whenever Si contains the treasure vertex u�.

Obviously, there are at most n rounds. In each round i, the treasure vertex is
located in V \Si−1, so the treasure is at least as far as vi. Hence, in each round,
the agent traverses at most twice the optimal cost. ��

The previous theorem is essentially tight, since even when using randomiza-
tion, and even on unweighted graphs, an asymptotically better competitive ratio
cannot be achieved.

Theorem 2. Any randomized algorithm for the treasure hunt problem on un-
weighted stars has competitive ratio Ω(n).

Proof. Using Yao’s principle [30], the expected cost of any randomized algorithm
on a worst-case instance from a set of instances I is at least the expectation of
the cost of the best deterministic algorithm over any probability distribution on
the instances. Let us take for I all the instances where the graph is a star with
n−1 leaves, the agent starts in the root, and the treasure is in some leaf. Consider
any deterministic algorithm, and a probability distribution where every leaf is
chosen to be the treasure vertex uniformly at random. The algorithm visits the

332 D. Komm et al.

leaves in a fixed order, until it arrives to the leaf with the treasure. Hence, for
any i with 1 ≤ i ≤ n − 1, the probability that the agent finds the treasure in
step 2i− 1 is 1/(n− 1). Therefore, the expected cost is

1

n− 1

n−1∑

i=1

2i− 1 ∈ Ω(n)

as claimed. ��
On the other hand, linear advice is sufficient to achieve optimality, as can be

seen from the following theorem.

Theorem 3. There is an optimal deterministic algorithm with n bits of advice
for the treasure hunt problem in weighted graphs.

Proof. In order to be optimal, the agent must traverse the shortest path
u0, u1, . . . , u�. The advice is used to query the status of the vertices, i. e., whether
they belong to this optimal path or not. Let the agent be located at a vertex
ui. First, it queries, one bit per vertex, the status of all neighbors that have
not been queried yet, in the order of increasing identifiers. Since the agent is
deterministic, the advice string can be prepared based on the input instance in
the correct order. After this step, the agent knows which neighbors of ui are on
the optimal path, and in particular it knows the set of neighbors P that are of
the form uj with j > i. Obviously, ui+1 ∈ P . Moreover, the weight ω(ui, ui+1) is
the smallest of all weights ω(ui, uj), uj ∈ P , since otherwise u0, u1, . . . , u� would
not be shortest. Lastly, there may be several vertices uj in P with the same
weight ω(ui, uj) = ω(ui, ui+1). An arbitrary vertex among them can be chosen
(deterministically) since in this case all the edges on the shortest path up to uj

must have zero weight. ��
Again, Theorem 3 cannot be asymptotically improved: advice of linear size is

needed even to obtain a constant competitive ratio on unweighted graphs due
to Theorem 5.

For the rest of the paper, let us focus on unweighted graphs, i. e., graphs
where all edges have weight 1. As our main result, we show an asymptotically
tight trade-off between the size of the advice and the best possible competitive
ratio. We start by stating an upper bound. To this end, however, we need the
following lemma. The lemma basically deals with special vertex separators of
size 1 and has been mentioned as folklore by Lipton and Tarjan [23]. We provide
the proof for the sake of completeness.

Lemma 1. Let G = (V,E) be a connected graph with |V | = n > 6 vertices.
Then there are two sets C,D ⊆ V such that C ∪ D = V , |C ∩ D| = 1, both
|C| > n/3, |D| > n/3, and each of them induces a connected subgraph.

Proof. It is sufficient to prove the lemma for trees, since then it can be applied to
a spanning tree of an arbitrary connected graph. Let G = (V,E) be an arbitrary

Treasure Hunt with Advice 333

T
(v)
1

T
(w)
1

w v

Fig. 1. Schematic drawing of the graph G in the situation described in Lemma 1. The
tree T

(w)
1 contains more than n/2 vertices, so the subtree rooted at w must contain

less than n/2 vertices. The subtree T
(v)
1 that contains more than n/2 vertices must be

one of the subtrees within T
(w)
1 .

tree. For any vertex w, let G decompose into nw trees T
(w)
1 , . . . , T

(w)
nw when

removing w from V . For every w ∈ V and every i with 1 ≤ i ≤ nw, denote by

V
(w)
i the vertex set of T

(w)
i .

First we prove that there is a vertex w ∈ V such that, for each i with 1 ≤
i ≤ nw, we have |V (w)

i | ≤ n/2. Let us assume by contradiction that for each

vertex w ∈ V there exists some index j such that |V (w)
j | > n/2. Since for any

vertex w there cannot be more than one such subtree, without loss of generality,

let T
(w)
1 be the unique subtree from vertex w with |V (w)

1 | > n/2. Now consider

a vertex w such that |V (w)
1 | is minimal among all vertex sets V

(u)
1 for all u ∈ V ,

and let v be the (unambiguous) neighbor of w in T
(w)
1 (see Fig. 1).

From the point of view of v, the subtree T
(v)
i that is rooted in w has less than

n/2 vertices and thus cannot be the subtree T
(v)
1 with |V (v)

1 | > n/2. Hence, the
subtree of v with more than n/2 vertices must be one of the subtrees contained

in T
(w)
1 , and therefore |V (v)

1 | < |V (w)
1 |. This is a contradiction to the minimality

of |V (w)
1 |.

Now consider a vertex w ∈ V such that each |V (w)
i | ≤ n/2 for all 1 ≤ i ≤ nw.

If there is a tree T
(w)
j that has |V (w)

j | ≥ n/3 vertices, then let

C := T
(w)
j ∪ {w}

and
D := (V \ C) ∪ {w}.

Else, if all the T
(w)
i have |V (w)

i | < n/3 vertices, assign the (vertices of) the

subtrees T
(w)
i one by one greedily to the set C or D that currently contains

fewer vertices. When all vertices of all these subtrees are assigned, we additionally
add w to both C and D. Hence, in the end, the cardinalities of the two parts
differ by at most n/3, which means that both sets contain at least

334 D. Komm et al.

n

2
− n/3

2
+ 1 ≥ n

3
+ 1

vertices. ��
Now we use the result from Lemma 1 to prove an upper bound on the number

of advice bits sufficient to obtain a competitive ratio of r.

Theorem 4. Let r := r(n) be any function of n such that 18 < r < n and r is
divisible by 9. There is an r-competitive algorithm for the treasure hunt problem
on unweighted graphs that uses O(n/r) bits of advice.

Proof. Recall that the agent starts in vertex u0, and that the treasure is located
in u�, so the optimal cost is �. The agent works its way towards u� in rounds that
consist of traversing a number of edges, and possibly reading some advice bits.
In order to keep track of the advice spent and the distance traversed, two types
of accountings are used for the purpose of the analysis: at the beginning, each
vertex has a charge 9/r, and the agent has credit 0. At some point in time, we
may decide to harvest some vertices, adding their charge to the agent’s credit.
We shall make sure that no vertex is harvested twice, and the agent reads only
as many advice bits as is its credit. This way, the overall size of the advice is
bounded by 9n/r. The second type of accounting keeps track of the traveled
distance: every move of the agent is booked to some edge (ui, ui+1) from the
optimal path. In order to bound the competitive ratio, we assert that no edge is
booked more than r times.

During each round i, the agent maintains three disjoint sets of vertices. The
set Hi contains all vertices that have already been harvested in previous rounds;
for each vertex v ∈ Hi, either v or its neighbor has been visited in the previous
rounds. The set Ti contains all vertices that have already been visited but not
yet harvested. Finally, the set Bi, the boundary vertices, are those vertices from
V \ (Hi ∪ Ti) that have a neighbor in Ti. At the beginning, we have T1 := {u0},
H1 := ∅, and B1 contains all the neighbors of u0.

There are two different kinds of rounds: traversal rounds and advice rounds.
If, in round i, the size of the set Ti∪Bi is at most r/3, the agent traverses these
vertices, and books the cost of the traversal to one edge of the optimal path.
On the other hand, if Ti ∪ Bi is too big for the traversal cost to be amortized,
the agent reads one advice bit to narrow down the set of vertices that must be
traversed. The rounds are grouped into phases such that each phase starts with
a number (possibly zero) of advice rounds and ends with one traversal round.

Let us consider a phase p consisting of rounds h + 1, . . . , h + m. We ensure
the following invariants hold at the beginning of each round i.

(a) Bi contains some vertex uj from the shortest path such that no vertices uk,
k > j are in Hi. Let j∗ be the maximum index such that uj∗ ∈ Bi; we
call uj∗ the distinguished vertex and ei := (uj∗ , uj∗+1) the distinguished edge
(neither the distinguished vertex, nor the distinguished edge is known to the
agent, they are for the purpose of the analysis only).

Treasure Hunt with Advice 335

(b) No costs have been booked to any edge (uk, uk+1) for j
∗ ≤ k ≤ � − 1.

(c) The agent is located at some vertex v ∈ Th+1.
(d) Ti ∪Bi is connected.

Now let us describe how the algorithm works in greater detail (refer to Fig. 2).
The computation starts with round 1 of phase 1. For the sake of simplicity, we
say that the preceding (dummy) round was round 0. At the beginning of its
computation, the agent is located at u0. The initial values for the sets are, as
we have already mentioned above, T1 := {u0}, H1 := ∅, and B1 :=

{
v ∈ V |

(u0, v) ∈ E
}
. The distinguished vertex is the last vertex from u1, . . . , u� that is

a neighbor of u0. It is easy to verify that all invariants hold.
If, in round i, it holds that |Ti∪Bi| ≥ r/3, the agent executes an advice round: it

internally splits Ti∪Bi into two partsCi andDi using Lemma 1. Then it reads one
bit of advice indicating which one of the sets Ci andDi contains the distinguished
vertex u∗. Without loss of generality, let this be Ci. Note that u∗ might even be
contained in both Ci andDi, since these sets intersect in one vertexw. If this is the
case, the oracle specifies the set Ci to be the one containing u

∗.
Then the vertices from Di \{w} are harvested to pay for the advice bit that it

just read. Since Di ⊆ Ti∪Bi, Di and Hi are disjoint. Hence, the vertices in Di \
{w} have not been harvested yet, and Lemma 1 guarantees that both Ci and Di

contain at least r/9+1 vertices. Thus, the agent gains enough credit by harvesting
the vertices from Di\{w} to pay for one advice bit. It sets Hi+1 := Hi∪Di \{w},
Ti+1 := Ti∩Ci ⊆ Ti, and Bi+1 := Ci \Ti = Bi∩Ci. This implies that u∗ ∈ Bi+1,
and the distinguished edge does not change. Invariant (a) is trivially fulfilled. As
no costs were booked to any edges in this round, also invariant (b) remains true.
Invariant (c) holds since the agent did not move at all in this round. To verify
that invariant (d) holds, note that Ti+1 ∪ Bi+1 = (Ti ∪ Bi) ∩ Ci = Ci, which is
connected by Lemma 1.

If, on the other hand, |Ti ∪ Bi| < r/3, the agent executes a traversal round.
Hence, this is the last round (round h+m) of phase p. Due to invariant (c) the
agent is at some vertex v ∈ Th+1. Before the agent starts to traverse Th+m ∪
Bh+m, it must first enter this set, which incurs cost at most r/3 that is booked
onto the distinguished edge (which exists due to invariant (a)). The limit of r/3
is implied by the fact that Th+1 was generated by the traversal round of the
previous phase and the properties of traversal rounds shown below.

Now, the agent uses a depth-first search to traverse Th+m∪Bh+m, and as soon
as it comes across the destination vertex u�, the algorithm terminates. Otherwise,
the traversal incurs cost of less than 2r/3 that are booked to eh+m. The agent
sets Th+m+1 := Th+m ∪ Bh+m, since all vertices contained in these sets have
been traversed now but have not been harvested yet, and Hh+m+1 := Hh+m, as
no vertices have been harvested in this round. The agent also computes Bh+m+1

according to Th+m+1 and Hh+m+1. From invariant (a) we can conclude that
one endpoint of the present distinguished edge eh+m must be uj∗ ∈ Bh+m and
the other one uj∗+1 �∈ (Hh+m+1 ∪ Th+m+1). Thus, uj∗+1 ∈ Bh+m+1 is a vertex
that guarantees that invariant (a) is fulfilled. However, uj∗+1 is not necessarily
the distinguished vertex of the next round; this is the last vertex uk that is

336 D. Komm et al.

Cs

Ds

Ts Bs

v′

w

u∗

(a). In the preceding round, s − 1, the agent traversed the set Ts and ended in some
vertex v′ ∈ Ts. Now, in round s, the set Ts ∪ Bs is too large to be traversed, so the
agent splits it into two parts Cs and Ds, which overlap in w.

Ts+1 Bs+1Ts

v′

w

u∗

(b). After round s, the agent harvested all vertices from Ds \ {w} and updated the
sets accordingly. The set Ts+1 ∪ Bs+1 is small enough to be traversed, but the agent
is located at the vertex v′ ∈ Ts \ Ts+1, and before starting the traversal, it must first
move to some vertex in Ts+1.

Ts+1 Bs+1

v′

v u∗

(c). When round s+ 1 begins, the agent has moved to v ∈ Ts+1 and can now start its
traversal.

Ts+2 Bs+2

u∗

(d). After round s+ 1, all vertices from Ts+1 ∪Bs+1 = Ts+2 have been traversed. The
agent updates the sets Ts+2 and Bs+2 and the distinguished vertex u∗ accordingly.

Fig. 2. An example of a sequence of rounds performed by the agent.

Treasure Hunt with Advice 337

u0 u1

u2

u3

u4

Fig. 3. Example of a pq-tree for p = 5, q = 4, and n = 21. The starting vertex u0 is
the only vertex on level 0. There are q additional levels and p vertices per level. There
is one designated vertex per level, colored in gray; ui is the designated vertex on level i.
Each such vertex ui for 0 ≤ i ≤ q − 1 is connected to all vertices on level i + 1. The
vertex uq is the destination vertex.

in Bh+m+1, for some k ≥ j∗ + 1. Then, the new distinguished edge eh+m+1 =
(uk, uk+1) is the edge where the optimal path leaves Bh+m+1 for the last time.
Thus, invariants (a) and (b) remain true. At the end of round h +m, which is
also the beginning of phase p+1, the agent is located at some vertex v ∈ Th+m =
Th+m+1, making sure that also invariant (c) holds. Invariant (d) holds as well
since Th+m+1 is connected due this invariant from the previous round and each
vertex of Bh+m+1 is connected to a vertex of Th+m+1.

The traversal stops, whenever the agent enters the treasure vertex u� for the
first time. For every i with 0 ≤ i ≤ �−1, every edge {ui, ui+1} is the distinguished
edge of at most one phase, and thus cost of at most r are booked to it: not more
than r/3 for the adjustment move before the traversal of the current search space
and at most 2r/3 for the traversal itself. Hence, the total cost of the agent, adding
the additional cost for the last move, is at most r · �+ 1, whereas the cost of an
optimal solution is �, and thus the algorithm is r-competitive. Furthermore, each
vertex is harvested at most once, amounting for the advice complexity 9n/r. ��

The algorithm from the previous theorem cannot be asymptotically improved,
as we show in the next theorem. In the proof we shall use a class of instances
called pq-trees (see Fig. 3), which are defined as follows: for given p, q, n, such
that n > pq, consider q columns (called levels), each containing p vertices. On
each level, there is one designated vertex, and every designated vertex on level
1 ≤ i < q is connected to all vertices of level i + 1. Additionally, there is a
single vertex on level 0 (root) that is connected to all vertices on level 1, and
γ := n − pq − 1 dummy vertices connected to the root. This way the vertices
form a tree with n vertices. The identifiers of the vertices are arbitrary but fixed
for a given set of parameters p, q, n. The starting vertex is the root, and the
treasure vertex is the designated vertex on level q. There are pq possible ways to
choose the designated vertices u1, . . . , uq, and thus I contains |I| = pq different
instances, each of them with optimal solution q. We prove the following theorem.

Theorem 5. Let r := r(n) be any function of n, such that 1 ≤ r < n/18 for
each n. Any algorithm for the treasure hunt problem on pq-trees with competitive
ratio r needs at least Ω(n/r) bits of advice.

338 D. Komm et al.

Proof. Consider any treasure hunt algorithm A for pq-trees, with competitive
ratio r. This means that there is a constant α, such that on any pq-tree with
n vertices, the cost of the algorithm is at most r · OPT + α. Let us fix some
(large enough) n. We construct a particular pq-tree with n vertices, where the
algorithm reads more than β n

r bits of advice for some constant β > 0 that
depends on the algorithm and α, but neither on the function r nor on n.

Set q := �n/kr for a suitable constant k specified later, and choose p such
that n = pq+γ for some 1 ≤ γ ≤ q. Consider all pq instances I with parameters
p, q, n. The agent traverses the graph, starting at u0, until it finally reaches the
destination vertex uq. Until it does, it must visit at least one vertex on each
level. The order in which A traverses the vertices on each level i is fixed for any
fixed instance. On any level i with 1 ≤ i ≤ q, let ai be such that A visits ui

as the ai-th vertex on level i. Let us assume without loss of generality that A
never visits a leaf twice and never returns to level i− 1 once it has found ui. We
can identify each instance I ∈ I with the characteristic vector (a1, a2, . . . , aq),
with ai ∈ {1, . . . , p} for 1 ≤ i ≤ q, and the property that the cost of A on
instance I is at least

∑q
i=1 (2ai − 1) (we ignore the potential dummy vertices).

Let us call an instance I good if A achieves a competitive ratio of at most r
on it, i. e., if the cost of A on I is at most qr + α, which implies

q∑

i=1

ai ≤ q(r + 1 + α/q)

2
.

For convenience, let us denote d := (r + 1 + α/q)/2. This implies that an
instance is good if, for its corresponding characteristic vector (a1, . . . , aq),

q∑

i=1

ai ≤ qd . (1)

For the following argumentation, we interpret each algorithm that uses b bits
of advice as a set {A1,A2, . . . ,A2b} of deterministic algorithms, as is often done
with online algorithms with advice. Since A reads at most b advice bits and is
r-competitive, there is at least one deterministic algorithm Aj that computes a
solution with a competitive ratio of at most r on at least pq/2b instances. From
now on, let us consider this particular deterministic algorithm Aj , and let us
define the set of good instances for Aj to be I+. Thus we have

|I+| ≥ pq

2b
. (2)

Now let us bound |I+|, the number of good instances for Aj , from above. For
any good instance, the corresponding characteristic vector must contain at least
q/2 entries ai with value at most 2d; hence, the number of good instances is upper-
bounded by the number of vectors (a1, . . . , aq), where ai ∈ {1, . . . , p}, with at
least q/2 entries with value at most 2d. To bound this term from above, we make
the following considerations. The number of vectors of length q/2 with values of
at most 2d is (2d)q/2, the number of vectors of length q/2 with values between 1

Treasure Hunt with Advice 339

and p is pq/2. The number of possibilities to join two vectors of these two different
kinds to construct a vector of length q is

(
q

q/2

)
. The same vector of length q might

be generated by joining different pairs of vectors of length q/2. Nevertheless,
these considerations yield an upper bound. The number of characteristic vectors
with at least q/2 entries with value at most 2d, and thus also the number of
good instances, is therefore

|I+| ≤ (2d)
q
2 · p q

2 ·
(
q
q
2

)
. (3)

Putting (2) and (3) together yields

pq

2b
≤ (8dp)

q
2 .

We rearrange this inequality to solve it for b and obtain

b ≥ q

2
· log2

(p

8d

)
.

If we show that p/8d > 2, then

b ≥ q

2
≥ 1

2

(n

kr
− 1

)
≥ 1

2k

n

r
− 1

2
.

Since n/r > 18, choosing β := 1/(2k)− 1/36 yields

1

2k

n

r
− 1

2
> β · n

r
.

It must hold that β > 0, i. e., k < 18. It remains to show that p/8d > 2. Recall
that p = (n− γ)/q ≥ (n− q)/q. Substituting d, one gets

p

8d
≥ n− q

4q(r + 1) + 4α
,

which is more than 2 if q < (n−8α)/(8r+9). Finally, we show that for a suitable
choice of k we can obtain

q =
⌊ n

kr

⌋
≤ n

kr
<

n− 8α

8r + 9
.

In order for the last inequality to hold, we need to choose k such that

k >
n

n− 8α

8r + 9

r
.

The second term is always at most 17, and the first term converges to 1 with
increasing n. Hence, there is a large enough n (depending on α) such that k =
17.5 is suitable. ��

340 D. Komm et al.

3 Conclusion

We analyzed the treasure hunt problem on undirected graphs in the framework
of advice complexity. In particular, we have shown a tight bound of Θ(n/r) on
advice for algorithms with competitive ratio r on unweighted graphs. A natural
next step would be to extend this result to weighted graphs.

Furthermore, the upper bound from Theorem 3 can be improved. An anony-
mous reviewer pointed out a proof that uses a slightly more involved argument
and allows to decrease the number of advice bits to 2/3n.

Acknowledgement. The authors would like to thank Hans-Joachim
Böckenhauer and Juraj Hromkovič for very valuable discussions, and an anony-
mous reviewer.

References

1. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Infor-
mation and Computation 106(2), 234–252 (1993)

2. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G.J. (eds.)
Online Algorithms 1996. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998)

3. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The string guessing problem as a method to prove lower bounds on the advice
complexity. Theoretical Computer Science 554, 95–108 (2014)

4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity
of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

6. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice com-
plexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

7. Boyar, J.,Favrholdt,L.M.,Kudahl,C.,Mikkelsen, J.W.:Advice complexity for a class
of online problems. In:Mayr, E.W., Ollinger, N. (eds.) Proc. of the 32nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2015). LIPIcs,
vol. 30, pp. 116–129. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

8. Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278.
Springer, Heidelberg (2012)

9. Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. RAIRO ITA 43(3), 585–613 (2009)

10. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoretical Computer Science 412(24), 2642–2656 (2011)

11. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropolitanae 8, 128–140 (1736)

12. Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative
search and implications for biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 61–75. Springer, Heidelberg (2012)

Treasure Hunt with Advice 341

13. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the
plane without communication. In: Kowalski, D., Panconesi, A. (eds.) Proc. of the
31st ACM Symposium on Principles of Distributed Computing (PODC 2012),
pp. 77–86 (2012)

14. Fiat, A., Foster, D.P., Karloff, H.J., Rabani, Y., Ravid, Y., Vishwanathan, S.: Com-
petitive algorithms for layered graph traversal. SIAM Journal on Computing 28(2),
447–462 (1998)

15. Förster, K.-T., Wattenhofer, R.: Directed graph exploration. In: Baldoni, R., Floc-
chini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 151–165. Springer,
Heidelberg (2012)

16. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: A new measure of difficulty for
communication tasks. In: Proc. of the 25th Annual ACM symposium on Principles
of distributed computing (PODC 2006), pp. 179–187. ACM (2006)

17. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. Jour-
nal of Computer and System Sciences 76(3–4), 222–232 (2010)

18. Ghosh, S.K., Klein, R.: Online algorithms for searching and exploration in the
plane. Computer Science Review 4(4), 189–201 (2010)

19. Gupta, S., Kamali, S., López-Ortiz, A.: On advice complexity of the k-server prob-
lem under sparse metrics. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 55–67. Springer, Heidelberg (2013)

20. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

21. Kalyanasundaram, B., Pruhs, K.R.: Constructing competitive tours from local in-
formation. Theoretical Computer Science 130(1), 125–138 (1994)

22. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An
optimal randomized algorithm for the cow-path problem. Information and Compu-
tation 131(1), 63–79 (1996)

23. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics 36(2), 177–189 (1979)

24. Miller, A., Pelc, A.: Tradeoffs between cost and information for rendezvous and
treasure hunt. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014.
LNCS, vol. 8878, pp. 263–276. Springer, Heidelberg (2014)

25. Miller, A., Pelc, A.: Fast rendezvous with advice. In: Gao, J., Efrat, A., Fekete,
S.P., Zhang, Y. (eds.) ALGOSENSORS 2014, LNCS 8847. LNCS, vol. 8847,
pp. 75–87. Springer, Heidelberg (2015)

26. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical
Computer Science 84(1), 127–150 (1991)

27. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for
the traveling salesman problem. SIAM Journal on Computing 6(3), 563–581 (1977)

28. Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server prob-
lem. In: Solis-Oba, R., Persiano, G. (eds.)WAOA2011. LNCS, vol. 7164, pp. 198–210.
Springer, Heidelberg (2012)

29. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Transactions on Algorithms 10(3), 12:1–
12:15 (2012)

30. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity.
In: Proc. of the 18th Annual Symposium on Foundations of Computer Science
(FOCS 1977), pp. 222–227 (1977)

Lower Bounds for the Capture Time:

Linear, Quadratic, and Beyond

Klaus-Tycho Förster, Rijad Nuridini, Jara Uitto, and Roger Wattenhofer

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland

{foklaus,rijadn,juitto,wattenhofer}@ethz.ch

Abstract. In the classical game of Cops and Robbers on graphs, the
capture time is defined by the least number of moves needed to catch all
robbers with the smallest amount of cops that suffice. While the case of
one cop and one robber is well understood, it is an open question how
long it takes for multiple cops to catch multiple robbers. We show that
capturing � ∈ O (n) robbers can take Ω (� · n) time, inducing a capture
time of up to Ω

(
n2

)
. For the case of one cop, our results are asymptoti-

cally optimal. Furthermore, we consider the case of a superlinear amount
of robbers, where we show a capture time of Ω

(
n2 · log (�/n)).

1 Introduction

This paper brings you back to your childhood, when you played the game of tag
with your friends. Particularly interesting is a team version of tag sometimes
known as jail, chase, manhunt, smee, or, as in this paper, cops and robbers. In
cops and robbers, children are split into two teams, the cops and the robbers,
where cops need to touch robbers, in order to jail them. If all children run at
approximately the same speed, and the playground is suitably obstructed, the
game becomes exciting, and cops usually need to cooperate in order to block
possible escape paths of the robbers. Are there playgrounds (graphs) where the
cops need a long time to catch all the robbers? This is the central open question
we will investigate in this work.

The analytical study of these games on graphs is still relatively young.
Breisch [9] first discussed searching for a lost person in a cave in 1967, followed by
a formalization by Parsons [22,23] a decade later. The work of Quilliot [25] and
Nowakowski and Winkler [21] introduced a game of pursuit-evasion on graphs,
today commonly known as Cops and Robbers : A cop has to catch a robber, with
both alternating in moves along edges. Aigner and Fromme [1] allowed multiple
players into the game and showed that in any planar graph, three cops suffice to
win. These articles spawned a rich field of interest, with plenty of further work,
we refer to the book of Bonato and Nowakowski [7] for an in-depth overview and
to [2,8,15] for recent surveys.

There are two central questions in the game of Cops and Robbers: First, how
long will these cops need to catch the robbers, i.e., what is the capture time?

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 342–356, 2015.
DOI: 10.1007/978-3-319-25258-2_24

Lower Bounds for the Capture Time 343

Secondly, how many cops are needed to catch the robbers, i.e., what is the cop
number?

The case of one cop and robber is well understood, with the graphs where
one cop suffices being characterized [21,25], and the time needed to capture one
robber being at most n− 4 in n ≥ 7 vertex graphs [14]. With multiple cops and
robbers, much is still unknown. For the first question, the best current result
states that if k cops suffice, then they can capture a single robber in at most
nk+1 time [3]. Already for one cop this bound is off by a factor of n. For the

second question, O
(
n/

(
2(1−o(1))

√
logn

))
cops always suffice [13,18,26] and there

are graphs where Ω(
√
n) cops are needed [24], but it is unclear what the exact

bound is. Meyniel conjectured in 1985 that O(
√
n) cops always suffice [12].

It is an open question what a good capture time lower bound would be for
more than a single cop and robber, cf., e.g., [7]. It seems that so far, essentially
only the cases of i) the cartesian product of two trees and ii) the d-dimensional
hypercube have been successfully investigated for just one robber. For i), the
capture time is half the diameter of the graph [19], while for ii), it is Θ(d ln d),
i.e., polylogarithmic in n = 2d [6].

After discussing further related work in the following Subsection 1.1 and a
formal model in Section 2, we start with the case of one cop and any � ∈ O(n)
robbers in Section 3, and prove that the capture time is Θ(� · n).

In Section 4, we investigate the reversed case of k cops and one robber. As it
turns out, the k cops might need Ω(n) time to capture a single robber, just like
in the case of one cop.

Afterwards, we study the case of many cops and many robbers in Section 5,
where we show that for k cops and any � ∈ O(

√
n/k) robbers, the cops need

at least Ω(� · n) time to capture all robbers in general graphs. Furthermore, we
discuss a superlinear number of robbers and show that the time to capture them
all can be as high as Ω

(
n2 · log (�/n)).

1.1 Further Related Work

The capture time density of a graph can be defined as as the ratio of the capture
time to the number of vertices. Bonato et al. extended this notion to infinite
graphs, or more precisely to limits of chains of induced subgraphs, and showed
that the density can take any value from 0 to 1 for a single cop and robber [5]. It
can be tested in polynomial time if fixed k ∈ N is the cop number of a graph [3],
with these graphs being characterized in [10]. Nonetheless, determining the cop
number of a graph is EXPTIME-complete [16].

Many more variants of Cops and Robbers are considered in the literature (e.g.,
can the cops win if they do not start too far away from the robber [4], applications
to compact routing [17], or how to contain worm attacks in networks [11]), we
again refer to [2,7,8,15] for an even further overview.

344 K.-T. Förster et al.

2 Model

The game of Cops and Robbers is a pursuit-evasion game played on undirected
graphs G = (V,E) with |V | = n and diameter of D. We denote the set of k ∈ N

cops as C = {p1, p2, . . . , pk} and the set of � ∈ N robbers as R = {r1, r2, . . . , r�}.
Throughout this paper, all graphs are assumed to be connected, finite, and, as
standard in the literature, reflexive (i.e., each vertex has one self-loop, which is
the same as allowing the cops and robbers to stand still).

The game proceeds in rounds, where each round consists of first the cops
making a move and then the robbers making a move. In round 0, the cops make
a move by placing each cop on a vertex and then the robbers make a move by
placing each robber on a vertex. In round 0 and every further round, vertices can
be shared by an arbitrary number of cops and robbers. For all subsequent rounds
i ≥ 1, first, a cop move consists of moving each cop along an incident edge, with
second, a robber move defined by moving each robber along an incident edge.
Both the cops and robbers have perfect information, i.e., they know the whole
graph and every previous move played.1

A robber is caught if a cop shares its occupied vertex. Once robber ri is
captured, he is removed from the game, i.e., the cops need not to guard the
robbers that are already captured. Should at least k cops be needed to catch all
robbers on G, then the graph is called k-copwin with a cop number c(G) = k.

For c(G) = k and � = 1, we define the capture time capt(G, k, 1) as the
smallest number of moves needed for the k cops to catch the robber, no matter
what strategy the robber employs. Note that by this formulation, the capture
time capt(G, k, 1) is only defined on graphs where k cops can actually catch a
robber. In a similar fashion, capt(G, k, �) is the smallest number of moves needed
for the k cops to catch all � robbers. Let ri be the i-th robber to be caught and
define capt(G, k, ri) as the smallest number of moves needed for the k cops to
catch the first i robbers.

3 One Cop, Many Robbers

We start with the case of one cop, many robbers. Gavenčiak showed in 2010 that
n − 4 is the maximum capture time for one cop and one robber if n ≥ 7 [14].2

Observe that after catching one robber, the cop could go back to her starting
position in at most diameter D moves and then catch the next robber in at most
n− 4 moves. This gives us an upper bound for the capture time:

Observation 1 Let G be a 1-copwin graph. Then, capt(G, 1, �) ∈ O(� · n).
Our next step will be to show a matching lower bound:

Theorem 2. Let n ≥ 12. Then, for all � ∈ O(n), there exists an n-vertex graph
G with capt(G, 1, �) ∈ Ω(� · n).
1 Bonato and Nowakowski also compared it to Pac-Man [7].
2 We note that it was previously known that capt(G, 1, 1) ≤ n− 3 for n ≥ 5 [5].

Lower Bounds for the Capture Time 345

The combination of both yields that the upper and lower bounds are asymptot-
ically tight, i.e., the capture time of general graphs is Θ(� · n) for � ∈ O(n).

Before proving Theorem 2, let us start with the example of a tree without
branches, i.e., a path: While it might take the cop D/2 ∈ Ω(n) time to capture
the first robber, all subsequent robbers can be captured in n−1 moves, inducing
a total capture time of less than 2n. However, the goal is to force the cop to
move a linear number of times for each robber, which is shown in the following
proof. Thus, we will construct a graph where, akin to a path, the robber has to
move to one end to catch one robber, but then all robbers escape to the other
end of the path, inducing a linear capture time for each robber. To ensure that
the robbers can escape to the other side, at each end there will be a star with a
ray-length of two, cf. Figure 1. Next, we will give a proof for Theorem 2.

S2,4 S2,4

Fig. 1. Let Sx,y be the star that has y rays of length x, i.e., the common star with n
nodes would be S1,n−1. In this example, there are two S2,4, connected by a path of
nodes. Consider a game of one cop and four robbers on this graph with 32 nodes. If in
round 0 the four robbers choose a star that is farthest from the cop’s initial position,
and place themselves at the end of the four rays, then the cop needs at least 10 ≥ n/4
moves to capture the first robber. As the remaining robbers will flee to the other star,
the cop needs 19 > n/2 moves to catch each further robber, inducing a total capture
time of 67. This construction can be directly extended to S2,�n/8� for every � ≤ n/8.

Proof (of Theorem 2). We begin by describing the construction of the graph G
with capture time Ω(� · n). Let n ≥ 12 and suppose for now that � ≤ n/8. Let
Sx,y be the star that has y rays of length x. Create two stars S2,�, denoted by
left star and right star in this proof. Connect the center nodes of both stars by
a path of the remaining nodes. Note that this path (including the center of both
stars) has a length (of nodes) of least n/2 ∈ Ω(n).

When the cop places herself in round 0, she can be either directly in the
middle of the path, or closer to the left or the right star center.

Before describing the strategy of the cop, we first describe the strategy of the
robbers: In round 0, all the robbers choose a star which has a higher distance to
the cop than the other star (or, to break symmetry, the left one if the distance is
equal); and place one robber at the end of each the � rays of the star. Until the
cop enters one the rays of their star, all robbers stay put. Then, when the cop
is one move into the ray from the center of the star, the corresponding robber

346 K.-T. Förster et al.

stays put, but all other robbers move one step towards the center of their star.
Should the cop now move back to the center of the star, then all robbers go the
end of their rays again. But if the cop moves to the end of the ray to catch a
robber, then all the robbers move to the other star and choose pairwise different
rays to place themselves at the end. The strategy is iterated until all robbers are
caught.

We now describe a lower bound for the number of moves needed by the cop
to counter the robbers’ strategy: To catch the first robber, no matter where the
cop starts, she has to move Ω(n) times and she has to move to the end of a ray
to do so, i.e., capt(G, 1, r1) ∈ Ω(n). Once a single robber is captured, all other
robbers will move to the end of the rays of the other star, and the cop has no
possibility to catch them before that. Thus, Ω(n) moves are needed to capture
the second robber, and so on, leading to capt(G, 1, r�) = capt(G, 1, �) ∈ Ω(� ·n).

Should the amount of robbers be larger than n/8, then both stars are created
as S2,�n/8�, and we ignore all robbers r�n/8�+1, . . . , r�. Even if they should all be
captured in the first round, the capture time for the remaining robbers will still
be Ω(� · n). ��
Corollary 3. For all n ≥ 12 there exists a n-vertex graph G s.t. the number
� ≤ n of robbers can be chosen with capt(G, 1, �) ∈ Θ(n2).

4 Many Cops, One Robber

In this section, we turn our attention to the case of many cops and extend our
results for an arbitrarily large fixed number of cops:

Theorem 4. Let k0 ≥ 2 be a positive integer. There exists an integer k ≥ k0 and
a graph G = (V,E) with |V | = n ∈ O(k2) s.t. c(G) = k and capt(G, k) ∈ Ω(n).

In other words, we claim that the time required to catch the first robber is
asymptotically linear in the number of nodes of the graph. Furthermore, we do
not only prove the case that the number of cops k is a constant, we propose
a stronger claim, which states that the number of nodes n our construction
requires is in the order of O(k2), i.e., k ∈ O(

√
n).

For this effort, we utilize a graph construction by Pra�lat that shows the exis-
tence of graphs with n nodes with a cop number of Ω(

√
n) [24].

Lemma 5. [24] Let c(n) denote the maximum of c(G) over all connected graphs
with n vertices. Then, c(n) >

√
n/2− n0.2625 for n sufficiently large.

While Lemma 5 provides us with the existence of graphs with a high cop
number, the capture time in these graphs remains low, i.e., a small constant.
At first sight, it is not clear if the capture time of a graph can be high in the
presence of “many” cops. As a trivial example, the capture time for a single
robber is 1 if the number of cops is at least n/2, since the initial positions of the
cops can be chosen such that each node can be reached within 1 step.

However, finding an equally straightforward bound becomes more elusive
when the number of cops is smaller than the size of the smallest dominating

Lower Bounds for the Capture Time 347

set3 in a graph. For the case of one cop and one robber, it is known that the
capture time of any 1-copwin graph is at most linear in the number of nodes.
As the next step, we show a more general result showing that a similar bound
holds for the case of many cops.

The basic idea is to first fix some integer k0 and take two copies G1 and G2

of a graph G with O(k2) nodes with cop number k ≥ k0 promised by Lemma 5.
Then, we connect these graphs with a long bridge (i.e., a path) with b ∈ Ω(n)
nodes in a similar fashion as in Section 3. The endpoints e1 and e2 of the bridge
are connected to arbitrary nodes s1 and s2 in graphs G1 and G2, respectively.
Notice that since k ∈ O(

√
n), we can choose b ∈ Ω(n). We denote the graph

constructed in this manner by D(G, b). See Figure 2 for an illustration.

. . .

G1 G2

︸ ︷︷ ︸

b nodes

e1 e2s1 s2

Fig. 2. Construction of the graph D(G, b) for the case of two cops. The entry nodes
s1 and s2 are chosen arbitrarily and connected by a path of length b. One cop is not
sufficient to catch the robber alone in graphs G1 and G2.

4.1 Evasion Strategy

The next step is to choose the initial placement for the robber according to
the initial placement of the cops in graph D(G, b) = (V,E) for some G and
b. Let X = {x1, . . . , xk}, where xi ∈ V for every 1 ≤ i ≤ k, be the initial
placements of the cops, i.e., cop pi is initially located in node xi. In addition,
let d(u, v) denote the length of the shortest path between nodes u and v and
d(u,A) = min{d(u, v) | v ∈ A}, where A ⊆ V . We say that G1 is away from the
cops if

|{x ∈ X | d(x,G1) ≥ 	b/2
}| ≥ �k/2� ,

i.e., half of the cops are at most as close to G1 as they are to G2. Being away is
defined similarly for G2. It is easy to verify that either G1 or G2 is away from
the cops for any k, possibly both.

Intuitively, we aim to locate the robber into one of graphs that is away from
the cops, say G1. By doing this, the fact that the cop number of G1 is k ensures
that the robber has a strategy that allows it to evade any number of cops trying
to catch him before every cop has entered G1. However, before stating the claim

3 A set D ⊆ V is a dominating set for V if every node in V \D has a neighbor in D.

348 K.-T. Förster et al.

formally, there are some minor technicalities that have to be accounted first.
Our construction slightly modifies graph G1 (and G2) by adding one additional
edge that connects the bridge to G1 and this can have an effect on the strategy
of the robber that allows him to evade up to k − 1 cops.

Fortunately, there is a simple way to show that this is not an issue. Consider
now only the graph G1 and the strategy S that the robber has to evade at
most k − 1 cops in G1 indefinitely. To utilize S in graph D(G, b), we extend
it to the larger graph in the following manner. Consider any configuration of
the game, i.e., the placements of the players in which there are k′ ≤ k − 1 cops
occupying nodes u1, . . . , uk′ in G1. Then, the robber selects the move from S that
corresponds to a configuration in which the k′ cops occupy the nodes u1, . . . , uk′

in G1 and the remaining k − 1− k′ cops occupy node s1.

Observation 6 Let G = (V,E) be a graph with c(G) = k and let H = (V ∪
{v}, E∪{(u, v)}), where v �∈ V and u is an arbitrary node in V . Then, c(H) ≥ k.

4.2 The Cop Number

We have now gathered the tools that our approach requires to show that captur-
ing one robber with many cops takes at least linear time in our graph construc-
tion. However, before going to the claim, we make one more observation about
our construction. That is, we show that the cop number of D(G, b) is at most
c(G)+1 and at least c(G) for any b. While it might seem that adding the bridge
between two graphs with cop number k should not increase the cop number, it
is not clear that the robber cannot trick the cops and escape from G1 to G2

once all the cops have entered G1. As a simple example of the aforementioned
issue, consider the graph shown in Figure 3. While graph G in the example is a
1-copwin graph, adding an edge between two copies of G breaks this property.
The 1-copwin properties are easy to verify by recalling a graph is 1-copwin if
and only if it can be reduced to a single vertex by successively removing corners,
i.e., nodes whose (inclusive) neighborhood is contained in the neighborhood of
some other node [1].

We tackle this issue by observing that the cop number in the graph we have
constructed is either k or k+1, given that the cop number of G is k. It is clearly
the case that c(D(G, b)) ≤ k + 1 since the game, from the perspective of the
cops, can be “reduced” to playing it only in G1 by simply leaving one cop to
guard the bridge. Now the cops chasing the robber can use a strategy that does
every move with the robber not in G1 as if the robber was in s1. If the robber
decides to leave G1, the cop guarding the bridge can capture the robber.

Lemma 7. Let G = (V,E) be a graph with c(G) = k ≥ 2. Then, k ≤ c(D(G, b))
≤ k + 1 for any integer b > 0.

Proof (of Lemma 7). It was shown by Berarducci and Intrigila [3] that if H
is an induced subgraph of G and there exists a graph homomorphism from G
onto H , which is the identity mapping in H , then k = c(G) ≥ c(H). Since
c(G) = k, G is an induced subgraph of D(G, b) and the homomorphism can be

Lower Bounds for the Capture Time 349

u u′

Fig. 3. Two copies of a graph G with cop number 1 connected by an edge denoted by
the dashed line. Node u is the unique corner in G. Since adding the dashed edge adds
a node into the neighborhood of u that is not in the neighborhood of any other node
in G, it follows that u is not a corner after addition of this edge. Due to the symmetry
of this example, there are no corners in the resulting construction and therefore, it is
not 1-copwin.

found by considering a mapping where G2 is mapped onto G1 and every node
in the bridge to s1, it follows that k ≤ c(D(G, b)). Given k + 1 cops, one of the
cops can guard the bridge and force the robber never to exit either G1 or G2.
Therefore, the remaining k cops can simply apply the strategy promised by the
fact that c(G) = k to capture the robber. ��

We are now ready to show that the capture time is at least asymptotically
linear in the number of the nodes, for an arbitrarily large number of cops.

Proof (of Theorem 4). Let H be a graph with m nodes and a cop number of
at least

√
m/2 −m0.2625 ≥ k0 promised by Lemma 5. Set G = D(H, b), where

b = m, and let c(H) = k′. Consider now the game with c(G) = k cops, where
k′ ≤ k ≤ k′ + 1 by Lemma 7, one robber, and let G1 and G2 be the copies
of H in G. Assume without loss of generality that the cops are away from G1.
According to Observation 6, the robber has a strategy that allows him to escape
at most k′−1 cops as long as not every cop has entered the subgraph induced by
G1 ∪{e1}, where e1 is the endpoint of the bridge connected to G1. By definition
of the cops being away from G1, there are at most 	k/2
 ≥ k′ − 1 cops that
are closer to G1 than to G2. Thus, there is at least one cop that has to move
Ω(b) ∈ Ω(n) times before G1 ∪ {e1} is occupied by at least k′ cops for the first
time. Since the robber is not captured before this happens and the case for G2

works analogously, the claim follows. ��

5 Many Cops, Many Robbers

Sections 3 and 4 dealt with the case of one cop and one robber, respectively.
We now focus on the case of multiple cops and multiple robbers. Our goal is to
show that there are k-copwin graphs for arbitrarily large k, s.t. capturing all �
robbers with the k cops must take in the order of � · b time, with the number of
nodes in the graph being in the order of at most � · k2 + �2 · k+ b. In particular,
our goal is establish Theorem 8:

350 K.-T. Förster et al.

Theorem 8. Let k0 ≥ 2 be a positive integer. There exists an integer k ≥
k0, s.t. for all b ∈ N and for all � ∈ N holds: There exists a graph Gk,�,b =
(Vk,�,b, Ek,�,b) with i) c(Gk,�,b) = k or c(Gk,�,b) = k + 1 and ii) |Vk,�,b| ∈ O(� ·
k2 + �2 · k + b), s.t. capt(Gk,�,b, c(Gk,�,b), �) ∈ Ω(� · b).
From Theorem 8, we can directly claim the following corollary, which shows
that the capture time is at least asymptotically linear in the number of the
nodes times the number of robbers, for an arbitrarily large number of cops and
robbers by setting b ∈ Θ(� · k2 + �2 · k):
Corollary 9. Let k0 ≥ 2 be a positive integer. There exists an integer k ≥ k0
and a graph G = (V,E) with |V | = n ∈ O(� · k2 + �2 · k) s.t. c(G) = k and
capt(G, k, �) ∈ Ω(� · n).
We note that the cop number k can be as high as O(

√
n/�), and the amount of

robbers as high as O(
√
n/ k) in Corollary 9.

To prove Theorem 8, we cannot use a graph construction similar to the ones
in Section 3 or Section 4. In Section 4, the construction relied on the fact that
there is just one robber. When connecting the two copies of the graph promised
by Lemma 5, the robber can pick the side with less cops – and some cops have to
cross the long bride, inducing a linear capture time. However, this construction
cannot be coupled with the idea of Section 3, as we cannot rule out a single cop
waiting on the bridge: Connecting the graphs promised by Lemma 5 can increase
the cop number by one (cf. Figure 3). Then, the robbers cannot escape over the
bridge, allowing the cops to capture them in rapid succession. Even if one would
add multiple bridges, the extra cop could simulate the behavior of the robbers,
capturing at least a fraction of them each time the robbers cross. Thus, we need
an improved graph family to establish Theorem 8.

In the following, we first describe the new graph construction (Subsection
5.1) with the desired properties and the strategy of the robbers in these graphs
(Subsection 5.2), before we prove Theorem 8 in Subsection 5.3.

5.1 The Graph Construction of Gk,�,b

Given an integer k0, Lemma 5 promises a graphGg = (Vg, Eg) with a cop number
of c(Gg) = k ≥ k0 and at most |Vg| ∈ O(k2) nodes. Henceforth, we will refer to
these graphs Gg as gadget graphs with a diameter of D(Gg) = Dg.

The construction idea of this subsection is as follows: We construct a cycle
and attach � copies of the gadget graph with long lines to top, bottom, left, and
right side of the cycle. A graphical depiction can be found in Figure 4.

We first describe how to attach the copies: Let vg be a fixed node in Gg.
Attach a line of nodes of length 10� · Dg to vg. Then, copy the graph Gg with
the line � times as Gg,1, . . . , Gg,�, with the other endpoints of the lines called
vend,1, . . . , vend,� respectively. Connect vend,i to vend,i+1 with a line of length
3 · Dg for all 1 ≤ i < �, inducing a path from vend,1 to vend,� consisting of
3(�−1) ·Dg new nodes. Denote this construction as Gtop

g and copy it three more

times as Gbottom
g , Gleft

g , and Gright
g .

Lower Bounds for the Capture Time 351

Gtop
g,1

v
top
g,1

Gtop
g,2

v
top
g,2

Gtop
g,�−1

v
top
g,�−1

Gtop
g,�

v
top
g,�

.

. .
.

..
.

. .
.

..
.

Gright
gGleft

g

Gbottom
g

Gtop
g

︸

︷︷

︸
︸

︷︷

︸

︸

︷︷

︸︸

︷︷

︸

b
no
de
s b nodes

︸ ︷︷ ︸
3� · Dg nodes

︸︷︷︸ ︸︷︷︸3Dg nodes 3Dg nodes

...

︸
︷︷

︸

10� · Dg nodes

v
top
end,�

Gk,�,b

b
no
de
sb nodes

Fig. 4. The graph Gk,�,b consists of the four subgraphs G
top
g , Gbottom

g , Gleft
g , and Gright

g ,
which are connected cyclically by paths of length b. Each of the four subgraphs consists
of � copies of the gadget graph Gg with c(Gg) = k, which is in turn connected to a path
of length 10� · Dg (with Dg being the diameter of Gg). Initially, the � robbers place
themselves all in a subgraph s.t. at least half the cops are at least b/2 moves away from
the subgraph, one robber in each of the � gadget graphs. As each robber can evade
less than k cops in his gadget graph indefinitely, no robber can be caught until k cops
enter his gadget graph. I.e., the cops need Ω(b) moves to capture the first robber. If
there are just Gk,�,b = k cops, the robbers could then all escape to another subgraph,
forcing the cops to spend at least Ω(b) moves for each subsequent robber. However,
if there are c(Gk,�,b) = k + 1 cops, the extra cop pk+1 could patrol anywhere in the
graph, possible blocking the path of the robbers. However, if all robbers always try to
move to their respective node vend, but moving back when a cop comes closer than
Dg, the extra cop can keep at most one extra robber in check. Then, as soon as k cops
enter a gadget graph with a robber, the other robbers can escape to another subgraph:
In the top subgraph case, the robbers “left” of pk+1 go to Gleft

g , the robbers “right”
of pk+1 go to Gright

g . As all these robbers always keep a distance of at least Dg to the
next cop when escaping to another subgraph, they can position themselves perfectly
in their new gadget graph with a diameter of Dg. This can be iterated, enforcing a
capture time of Ω(� · b). If b ∈ Ω(n) is chosen, then this yield a lower bound of Ω(� ·n).
We note that three subgraphs would also suffice with a slightly modified strategy.

352 K.-T. Förster et al.

Lastly, we connect all four structures with a cycle by adding 4 · b nodes:
Connect vtopend,� by a line of length b with vrightend,1, v

right
end,� by a line of length b with

vbottomend,1 , vbottomend,� by a line of length b with vleftend,1, and vleftend,� by a line of length b

with vtopend,1.

Lemma 10. The graph Gk,�,b has O(� · k2 + �2 · k + b) nodes.

Proof (of Lemma 10). Each of the four graphs Gtop
g , Gbottom

g , Gleft
g , and Gright

g

consists of � copies ofGg with a line of 10�·Dg nodes and 3(�−1)·Dg further nodes
connecting them. Together with the 4b nodes acting as bridges, the total node
count is in Gk,�,b is 4 (�(·|Vg|+ 10� ·Dg) + 3(�− 1) ·Dg + b). Due to Lemma 5,
|Vg| ∈ O(k2), which results in an upper bound of O(� · k2 + �2 ·Dg + b) nodes.

The graph construction of Lemma 5 uses k+1-regular graphs with 2(k2+k+1)
nodes [24]. As shown by, e.g., Moon in [20], the diameter Dg of Gg is therefore in

O(2(k
2+k+1)
k+1) ∈ O(k). Hence, the number of nodes in Gk,�,b is O(� ·k2+�2 ·k+b).

��
We now show that the cop number of the whole construction is at most the

cop number of the gadget graph plus one:

Lemma 11. Let Gg with c(Gg) = k be the gadget graph used in the construction
of Gk,�,b. The cop number of Gk,�,b is k or k + 1.

Proof (of Lemma 11). The cop number of Gk,�,b is at least k, as the cop number
of the gadget graph Gg is already k: A robber could place themselves into a copy
of Gg and just simulate his evasion strategy accordingly, with never leaving Gg.

Furthermore, k+1 cops suffice for Gk,�,b: Already two cops can force a robber
to place himself into a gadget graph. Then, one cop waits at the exit node vg,
while the remaining k cops capture the robber, simulating their winning strategy
from the gadget graph Gg with c(Gg) = k. ��

5.2 The Robber Strategy

The robber strategy in Gk,�,b can be summarized as follows: Start in the part of
the graph with the fewest cops (each robber in a distinct gadget graph), then try
to wait at the end of the line of the current gadget graph, only going back into
the gadget graph if a cop comes close. If a cop comes into the current gadget
graph, simulate an evasion strategy, which will work for sure until at least k cops
enter. Then, as soon as k cops are close to any gadget graph in the subgraph, the
other robbers escape to another subgraph without cops, and repeat the initial
strategy. If there are k+1 cops in the graph, then the cop pk+1 may hold back one
extra robber from escaping, but all the other robbers can move away from pk+1

to another subgraph (possible splitting the robbers into different subgraphs).
We now describe the strategy in detail: After the cops placed themselves,

the robbers choose a subgraph Gtop
g , Gbottom

g , Gleft
g , Gright

g to start in that has
the most cops being in a distance of at least b/2. W.l.o.g., let this subgraph be

Lower Bounds for the Capture Time 353

Gtop
g . Note that due to the pigeonhole principle, at most half of the cops can be

within a distance of b/2 near Gtop
g and that at least k cops are needed to catch

a robber in a gadget graph (cf. Lemma 11). Hence, the remaining cops need at
least b/2 + 10� ·DG moves to reach any gadget graph in Gtop

g

Each of the � robbers will place themselves into a pairwise distinct gadget
graph Gtop

g,1 , . . . , G
top
g,� as follows: Each robber ri will assume that there are k− 1

cops in his gadget graph Gtop
g,i , with the missing ones placed all at vtopg,i . Then,

his placement will be identical as in his evasion strategy for the graph Gg.
Next, as soon as the distance to the nearest (real) cop is larger than Dg, the

robber will move towards the node vtopend,i, but not surpassing it yet. Should then a
cop come closer, then the robber will move back towards Gg,i, keeping a distance
of at least Dg, but move forward again if the cop is further away again. When the
robber enters his graph Gtop

g,i again with a cop close, he resumes simulating the
evasion strategy until the distance to the next cop is more than Dg. The distance
of Dg is necessary for the robber to assume an arbitrary starting position in the
gadget graph again before the first cop enters the gadget graph.

As soon as at least k cops are in a distance of at most Dg to one of the gadget
graphs at the top (the robber in this graph now stops moving), there can be
at most one other cop, say pk+1, left in the graph. This cop pk+1 can be in
distance of at most Dg for only one robber (this robber now stops moving as
well), allowing all other robbers R′ to be at their node vtopend,i.

Let Gtop
g,j be the gadget graph to which the cop pk+1 is closest. Due to the

construction of Gk,�,b, each robber in R′ has now a distance of more than Dg to
pk+1 (if it exists), and a distance of at least 9� ·Dg to all other cops.

Should c(Gk,�,b) = k, then there is no cop pk+1, and all robbers from R′ move
to the same of one the other three subgraphs Gbottom

g , Gleft
g , Gright

g and place
themselves in pairwise distinct gadget graphs, repeating their initial strategy
accordingly.

If c(Gk,�,b) = k+1, then the cop pk+1 can be closest to the node 1) vtopend,1, 2)

vtopend,�, or 3) to some node vtopend,j , with 1 < j < �. In the case of 1) (i.e., the cop is
at the “left end”), all robbers from R′ move to pairwise distinct gadget graphs in
Gright

g . In the case of 2) (i.e., the cop is at the “right end”), all robbers from R′

move to pairwise distinct gadget graphs in Gleft
g . For the last case of 3), let R′

<

be the robbers of R′ be at nodes vtopend,i with i < j and R′
> be the robbers of R′

be at nodes vtopend,i with i > j. All robbers from R′
< move to unoccupied pairwise

distinct gadget graphs in Gleft
g , all robbers from R′

> do the same in Gright
g .

Afterwards, the robbers repeat their strategy, adjusted to being in Gtop
g ,

Gbottom
g , Gleft

g , Gright
g accordingly. Note that the robbers may be split up be-

tween all four subgraphs, but that it takes always at least k cops to force them
to move to another subgraph.

5.3 A Lower Bound for the Capture Time

In this subsection, we will complete the proof of Theorem 8 by showing a lower
bound of Ω(�·b) on the capture time when the robbers use the strategy described

354 K.-T. Förster et al.

in Subsection 5.2 in the graph Gk,l,b. Essentially, the cops need to move at least b
times to capture a constant number of robbers, forcing a lower bound of Ω(� · b).
Proof (of Theorem 8). With Lemma 10 (the size of the graph) and Lemma 11
(the cop number of the graph), all that is left to show of Theorem 8 is a capture
time of capt(Gk,�,b, c(Gk,�,b), �) ∈ Ω(� · b).

After the cops place themselves initially in the graph Gk,l,b, the strategy of
the robbers will ensure that at least half the cops are at least b/2 moves away
from each robber. As the robbers are initially in the gadget graphs, at least k
cops are required to capture any robber in its gadget graph, requiring at least
b/2 moves from some cops to capture the first robber.

We begin with the case of c(Gk,l,b) = k before discussing c(Gk,l,b) = k+1. Let
w.l.o.g. Gtop

g be the subgraph where k cops are for the first time within a distance
of Dg to a gadget graph. Then, when the other robbers R′ in Gtop

g escape to

another subgraph Gbottom
g , Gleft

g , Gright
g , these robbers need at most 3� ·Dg moves

to exit the subgraph Gtop
g . However, each of the k cops needs at least 9� · Dg

moves to reach the first node of the type vtopend, ensuring that the other robbers
have at least a distance of Dg at all times to these k cops before they enter their
new gadget graph to hide in. For every next robber to be captured, these k cops
need to move thus to the next gadget graph in another subgraph, enforcing at
least b moves for the cops, ensuring a capture time of Ω(� · b).

The case of c(Gk,l,b) = k + 1 is similar, but now there is an additional cop
(w.l.o.g. pk+1) that might not need to enter the gadget graphs and is free to move
around through the graph, possibly capturing or blocking the other robbers R′.
Still, if not at least k cops enter a gadget graph at some point, no robber can be
caught, as the robbers can always evade less than k cops in their gadget graph.
Consider the move when at least k cops are within distance Dg to a gadget
graph. Due to the strategy of the robbers, the remaining cop pk+1 can be within
distance of Dg to at most one robber in Gtop

g . Thus, all other robbers, which

are at nodes of the type vtopend, can escape to the other subgraphs (Gbottom
g , Gleft

g ,

Gright
g), depending on where pk+1 is located – the “ring” structure of Gk,�,b does

not allow pk+1 to block the other robbers.
I.e., at most two robbers can be prevented from escaping to another subgraph.

When the robbers arrive in the pairwise distinct gadget graphs of their new
subgraph Gbottom

g , Gleft
g , Gright

g , the initial situation occurs again: The cops need
to have moved at least b times to capture again at most two robbers, inducing
a total capture time of Ω(� · b). ��

5.4 A Superlinear Number of Robbers

So far, the number of robbers has never exceeded a linear amount, i.e., we did
not consider the case of ω(n) robbers in n-vertex graphs. However, our results
can be extended to this case.

We start with the case of one cop and many robbers (cf. Section 3). Fix a
number of nodes n for Corollary 3 and let �′ be any number of robbers less than
n/8. If the number of robbers were to be increased to 2�′, then one could always

Lower Bounds for the Capture Time 355

move two robbers as if they were one, with them sharing the same place. Then
the capture time would remain the same, as the cop would always capture two
robbers at once.

However, after the first two robbers are captured, and all robbers move along
the bridge connecting the left and the right star (see Figure 1), the only un-
occupied ray of the star can be now be occupied by splitting a pair of robbers
into singles. The cop could still capture two robbers in his next catch, but only
�′/2 times in total! After that, all rays would only be occupied by one robber,
allowing the cop to capture only one robber at once. Hence, the cop now needs
to cross the bridge connecting the two stars at least �′/2 + �′ times.

This concept can be iterated, e.g., for 4�′ robbers, the cop needs to cross the
bridge (1/4+ 1/3+ 1/2+ 1)�′ times. I.e., for t · �′ robbers, this number increases
to (1/t+ · · ·+ 1/2 + 1)�′ ∈ Ω(�′ log t). With the bridge having a length of Ω(n)
nodes, the following corollary holds:

Corollary 12. For all n ≥ 12 there exists a 1-copwin graph G s.t. for all num-
bers � ≥ n of robbers capt(G, 1, �) ∈ Ω

(
n2 · log (�/n)).

We note that a similar line of thought can be applied to the case of more than
one cop, i.e., letting the cops capture multiple robbers at once, and then splitting
up the remaining robbers evenly among the gadget graphs.

Acknowledgements. We would like to thank the anonymous reviewers for
their helpful comments.

References

1. Aigner, M., Fromme, M.: A Game of Cops and Robbers. Discrete Applied Mathe-
matics 8(1), 1–12 (1984)

2. Alspach, B.: Sweeping and Searching in Graphs: a Brief Survey. Matematiche 59,
5–37 (2006)

3. Berarducci, A., Intrigila, B.: On the Cop Number of a Graph. Advances in Applied
Mathematics 14(4), 389–403 (1993)

4. Bonato, A., Chiniforooshan, E.: Pursuit and evasion from a distance: algorithms
and bounds. In: Proceedings of the Sixth Workshop on Analytic Algorithmics and
Combinatorics (ANALCO), pp. 1–10. SIAM (2009)

5. Bonato, A., Golovach, P.A., Hahn, G., Kratochv́ıl, J.: The Capture Time of a
Graph. Discrete Mathematics 309(18), 5588–5595 (2009)

6. Bonato, A., Gordinowicz, P., Kinnersley, B., Pra�lat, P.: The Capture Time of the
Hypercube. Electr. J. Comb. 20(2), P24 (2013)

7. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Student
Mathematical Library, vol. 61. American Mathematical Society, Providence (2011)

8. Bonato, A., Yang, B.: Graph searching and related problems. In: Handbook of
Combinatorial Optimization, pp. 1511–1558. Springer, New York (2013)

9. Breisch, R.: An Intuitive Approach to Speleotopology. Southwestern Cavers 6(5),
72–78 (1967)

10. Clarke, N.E., MacGillivray, G.: Characterizations of k-copwin Graphs. Discrete
Mathematics 312(8), 1421–1425 (2012)

356 K.-T. Förster et al.

11. Deo, N., Nikoloski, Z.: The Game of Cops and Robbers on Graphs: a Model for
Quarantining Cyber Attacks. Congressus Numerantium, 193–216 (2003)

12. Frankl, P.: Cops and Robbers in Graphs with Large Girth and Cayley Graphs.
Discrete Appl. Math. 17(3), 301–305 (1987)

13. Frieze, A.M., Krivelevich, M., Loh, P.-S.: Variations on Cops and Robbers. Journal
of Graph Theory 69(4), 383–402 (2012)

14. Gavenciak, T.: Cop-win Graphs with Maximum Capture-time. Discrete Mathe-
matics 310(10–11), 1557–1563 (2010)

15. Hahn, G.: Cops, Robbers and Graphs. Tatra Mt. Math. Publ. 36(163), 163–176
(2007)

16. Kinnersley, W.B.: Cops and Robbers is EXPTIME-complete. J. Comb. Theory,
Ser. B 111, 201–220 (2015)

17. Kosowski, A., Li, B., Nisse, N., Suchan, K.: k-Chordal graphs: from cops and rob-
ber to compact routing via treewidth. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 610–622.
Springer, Heidelberg (2012)

18. Lu, L., Peng, X.: On Meyniel’s Conjecture of the Cop Number. Journal of Graph
Theory 71(2), 192–205 (2012)

19. Mehrabian, A.: The Capture Time of Grids. Discrete Mathematics 311(1), 102–105
(2011)

20. Moon, J.W.: On the Diameter of a Graph. Michigan Math. J. 12(3), 349–351 (1965)
21. Nowakowski, R.J., Winkler, P.: Vertex-to-vertex Pursuit in a Graph. Discrete

Mathematics 43(2-3), 235–239 (1983)
22. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) AII 1992.

LNCS, vol. 642, pp. 426–441. Springer, Heidelberg (1992)
23. Parsons, T.D.: The search number of a connected graph. In: Proc. 9th Southeast.

Conf. on Combinatorics, Graph Theory, and Computing (1978)
24. Pra�lat, P.: When Does a Random Graph Have a Constant Cop Number. Aus-

tralasian Journal of Combinatorics 46, 285–296 (2010)
25. Quilliot, A.: Jeux et Pointes Fixes sur les Graphes. Ph.D. thesis, Universite de

Paris VI (1978)
26. Scott, A., Sudakov, B.: A Bound for the Cops and Robbers Problem. SIAM J.

Discrete Math. 25(3), 1438–1442 (2011)

Collaborative Exploration

by Energy-Constrained Mobile Robots�

Shantanu Das1, Dariusz Dereniowski2, and Christina Karousatou1

1 LIF, Aix-Marseille University and CNRS, Marseille, France
2 Faculty of Electronics, Telecommunications and Informatics,

Gdańsk University of Technology, Gdańsk, Poland

Abstract. We study the problem of exploration of a tree by mobile
agents (robots) that have limited energy. The energy constraint bounds
the number of edges that can be traversed by a single agent. Thus we
need a team of agents to completely explore the tree and the objective
is to minimize the size of this team. The agents start at a single node,
the designated root of the tree and the height of the tree is bounded by
the energy bound B. We provide an exploration algorithm without any
knowledge about the tree and we compare our algorithm with the optimal
offline algorithm that has complete knowledge of the tree. Our algorithm
has a competitive ratio of O(logB), independent of the number of nodes
in the tree. We also show that this is the best possible competitive ratio
for exploration of unknown trees.

1 Introduction

Overview: Graph exploration is a well studied problem in computer science
with a wide range of applications from searching the internet to navigation of
robots in unknown environments. The objective is to discover an initially un-
known graph by visiting all nodes in a systematic manner starting from a given
node of the graph. The problem has been well studied for a single agent exploring
a graph [16] or a digraph [1] with the aim of minimizing the exploration time
or equivalently the number of edges traversed. Others have studied the problem
from the perspective of minimizing the memory needed by the agents for explo-
ration [8,13]. When the nodes of the graph do not have identifiers, the agent may
need to mark nodes with a pebble to recognize them and thus, another research
direction is to minimize the number of pebbles used for exploration [4].

When the exploration is performed by physical robots, one of the major is-
sues is the energy consumed during the exploration, since each robot may have
a limited amount of energy for movement. Surprisingly, most previous studies
on exploration have not considered this limitation. Betke et al. [5] and later
Awerbuch et al. [2] have studied the problem of exploration with an energy con-
strained agent. Their solution requires a fuelling station at the starting node and

� Partially supported by the ANR projects MACARON (anr-13-js02-0002) and AN-
COR (anr-14-CE36-0002-01), and by the Polish National Science Center grant DEC-
2011/02/A/ST6/00201.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 357–369, 2015.
DOI: 10.1007/978-3-319-25258-2_25

358 S. Das, D. Dereniowski, and C. Karousatou

the agent periodically returns there to refuel. Between two visits to the starting
node, the agent can make at most B edge traversals. Thus the diameter of graphs
that can be explored is restricted to B/2. When refuelling is not allowed, multi-
ple agents may be needed to explore even graphs of restricted diameter. Given
a graph G, determining whether a team of k agents, each having an energy con-
straint of B can explore G is known to be an NP-hard problem, even when the
graph G is a tree [12]. When the graph (or the tree) is unknown, there are two
possible approaches for online exploration. One approach is to fix the number k
of agents and try to bound the amount of energy B required by each agent, as
in Dynia et al. [10,11]. In this paper, we take the other approach of fixing the
available energy B for each agent and bounding the number of agents used for
exploration. Indeed, according to recent trends in robotics [17], it is preferable
to use a large number of small robots rather than a few bulky ones and our line
of research goes in this direction. In our model, each agent has a limited energy
resource without the ability to recharge, thus allowing the agent to traverse at
most B edges, and our objective is to limit the total number of such agents
used for exploration. We measure the efficiency of the solution in terms of the
competitive ratio which is defined as the worst case ratio of the cost of the online
algorithm for some graph G over the cost of the optimal offline algorithm for the
same graph. We restrict ourselves to exploration of trees. The agents start at
the designated root of an unknown tree T and they must collectively visit every
node of T .

If the height of T i.e. the longest path between the root and a leaf, is
greater than B, then T cannot be fully explored, even by an unbounded
number of agents.

On the other hand, if the height of the tree is exactly B then each leaf at depth
B must be visited by a separate agent. Once the tree is completely explored
and known up to depth B − 1 then we can send one additional agent to explore
each leaf at depth B. Thus it is sufficient to consider algorithms for exploring
trees of height at most B − 1. Note that the previous results [2,10] for energy-
constrained agents were restricted to exploring trees of height at most B/2 (or
graphs of diameter at most B/2).

Related Work: The graph exploration problem has been previously studied
with the objective of minimizing the time for exploration. For exploration of
undirected graphs by a single agent, the algorithm given by Panaite and Pelc [16]
requiresm+O(n) time for a graph ofm edges and n nodes. For exploration of an
unknown tree, exploration in the optimal time of 2(n−1) can be achieved by the
depth-first search algorithm. Using multiple agents can speedup the exploration
and Fraigniaud et al. [12] have presented an algorithm for a team of k mobile
agents that explores a tree of height D in O(D+n/ log k) time. They also showed
that any algorithm for k-agent exploration of a tree has a (2 − 1/k) overhead
over the optimal offline algorithm. While the above results are for small team
of agents (where k ≤ √

n), Dereniowski et al. [7] used a large team of agents to

Collaborative Exploration by Energy-Constrained Mobile Robots 359

reduce the exploration time to O(D) and their solution also works for general
graphs where all nodes are within distance D from the starting node. Ortolf et
al. [15] gave bounds on the competitive ratio for multiple agent exploration of
grid graphs with obstacles. For general graphs, Megow et al. [14] presented a
single-agent exploration algorithm having a constant competitive ratio.

The above results do not consider any energy limitation for the agent. For a
single, energy constrained agent, the problem of exploration with refuelling, has
been studied for grid graphs [5] and also for general graphs [2]. The optimal time
algorithm for exploration with refuelling was given by Duncan et al. [9], who also
studied exploration under a different type of constraint where the agent is tied
to the starting node with a string of fixed length.

For a team of k agents, the problem of exploring a tree using limited energy
resources was investigated by Dynia et al. [10] who presented an algorithm that
is 8-competitive in terms of the energy consumed by each agent. This was later
improved to a competitive ratio of (4−2/k) by Dynia et al. [11]. Other problems
that have been considered for energy constrained agents (that may not start at
the same node) include broadcast and convergecast [3] as well as data-delivery
from a source node to a target node in the graph [6]. These are mainly offline
solutions where the graph and the starting locations are given as input. The
algorithm in the present paper can be seen as an online solution to the problem
of data-delivery from the root to the leaves or vice versa, for the special case of
colocated agents.

Our Results: We consider the problem of exploration of an unknown tree by
a team of mobile agents initially located at the root of the tree. Each agent is
equipped with a battery of size B which bounds the total number of edges the
agent can traverse during its lifetime. We assume the height of the tree to be
at most B − 1, and our objective is to find an exploration strategy where every
node of the tree is visited by at least one agent, and we wish to minimize the
total number of agents used. We study this problem first assuming a global com-
munication model (where agents communicate to each other instantaneously)
and provide an algorithm for online exploration, that has a competitive ratio of
O(logB). We then show how to remove the assumption of global communication
and achieve the same result in the local communication model, with a constant
overhead. Finally we provide a lower bound of Ω(logB) on the competitive ratio
of any online exploration algorithm for energy-constrained agents, showing that
our result is tight. We conclude with some open questions for future research.
Due to the space constraint, proofs of some of the lemmas and theorems have
been omitted.

2 The Model

The environment to be explored is a rooted tree T . The root r0 contains an
infinite supply of mobile agents, each of which has a limited energy B, allowing
it to traverse at most B edges during its lifetime. There is a total order among

360 S. Das, D. Dereniowski, and C. Karousatou

the agents (i.e. they have distinct identities). The nodes of the tree may be
assumed to be anonymous (i.e. we do not require unique identifiers for the nodes
of T). Each agent has unlimited memory. When two agents are at the same
node, they can freely exchange information. However the agents may not write
any information on the nodes of the tree. We call this the local communication
model. In contrast, in a global communication model an agent can communicate
instantaneously with any other agent irrespective of their location in the tree.

All agents start at the same time, in the same state. At each time unit, any
agent can move to an adjacent node or stay at its current node. Each move costs
one unit of time and one unit of energy, while computation and communication
between agents are instantaneous and do not consume any energy. The agents
cannot exchange their energy resources or recharge their batteries.

The height of the tree (i.e. the distance to the furthest leaf from the designated
root r0) is at most B− 1. The size and structure of the tree is initially unknown
to the agents. The edges incident at each node are locally ordered with port
numbers, allowing the agents to choose edges to visit in a deterministic manner.
An exploration strategy for the team of agents is successful if each node of
the tree visited by at least one agent. The cost of the exploration strategy is
the number of agents which made any non-null moves during the exploration.
We denote by OPT the cost of the optimal offline strategy that has complete
knowledge of the tree.

For any node r ∈ T we denote by Tr the subtree of T, rooted at r. Further for
any node v ∈ Tr, we define the depth of node v as the length of the path from r
to v. We denote by T δ

r the subtree rooted at r truncated to depth δ from r. We
denote by |T |, the number of edges in T .

3 Exploration with Global Communication

In this section we describe and analyze a recursive algorithm for tree exploration
under the global communication model. The algorithm is called Global Commu-
nication Tree Exploration (GCTE). The main idea of the algorithm is to explore
the tree up until a certain depth and afterwards take advantage of the already
known part of the tree to continue the exploration. More specifically, this al-
gorithm proceeds by levels. Each level of the algorithm is a set of nodes which
are located at a certain depth of the tree. The first level consists of the root r0.
At each level i, agents having energy bi, expand the explored part of the tree
further by increasing its depth by ε · bi where ε is a parameter of the algorithm
such that 0 < ε < 1

4 . The new frontier of the explored part defines the next level
of the algorithm. The algorithm GCTEε is then recursively called at each node of
the newly created level i.

Definition 1. For i = 1, level i of algorithm GCTEε consists of the root node r0;
the depth di of the level i is d1 = 0, the energy bi at this level is b1 = B. For
i > 1, level i of GCTEε consists of all nodes at depth di = di−1 + �ε · bi−1�, and
bi = B − di.

Collaborative Exploration by Energy-Constrained Mobile Robots 361

For any two nodes u and v at the same level, we would like the exploration of
the trees Tu and Tv to proceed independently, using disjoint sets of agents. To
this end, we allow some overlap between successive levels of the algorithm. More
precisely, at each level i, the exploration is extended to the depth of (12 + ε) · bi,
although the next level still starts at depth ε · bi from the current level. This
additional extension at each level i allows the algorithm to look ahead at the start
of the next level (i+1). Thus, at the start of a recursive call to Algorithm GCTEε
at a node r at level i+ 1, the subtree Tr has been already partially explored to
some depth. We show below (c.f. Lemma 1) that the exploration of this partially
explored subtree Tr can be done independently to any other subtree at the same
level.

Definition 2. Two partially explored subtrees Tu and Tv, rooted at nodes u and
v located at the same depth from r0, are said to be independent if no single agent
can visit nodes in the unexplored part of both subtrees.

Informally, this independence means that disjoint teams of agents can be used
for exploring such subtrees during the algorithm. We now formally describe our
algorithm GCTEε .

Algorithm GCTEε . An algorithm for tree exploration, 0 < ε < 1
4

Input: The root r of the tree and an integer b that equals the size of the available
energy the agents have.

1: Uncover(r,
⌊
(1
2
+ ε)b

⌋
)

2: Let r1, r2, . . . be nodes at depth �ε · b� from r, such that Tri has some unexplored
edges.

3: For each ri, call Algorithm GCTEε (ri, (b− �ε · b�)).

Procedure Uncover(r, δ) with input node r and an integer δ works as follows.
During this procedure, the agents explore the unexplored part of subtree Tr

rooted at r, using a Depth First Search (DFS) traversal restricted to a depth
of δ from r. An agent initially located at the root r0 arrives at the current root
r, having b units of energy and begins to explore the subtree T δ

r performing
DFS. First, this agent goes to the next unexplored node in the DFS traversal.
At this node, the agent resumes the DFS traversal. Finally, when the agent has
x(ε) = 1

2 (
1
2 − ε)b units of energy left, it interrupts the exploration (it saves the

remaining energy for later use, as explained later in the next section). If the point
where the agent is supposed to interrupt the DFS traversal is the middle of an
edge, then the agent finishes before traversing this edge. Note that in the global
communication model, at any point of exploration, each agent possesses the full
knowledge of the part of the tree explored to date and the current locations of all
agents. Hence, another agent will arrive at r and continue the DFS exploration
by visiting the unexplored node that is supposed to be visited next according to
the DFS traversal. This procedure ends when all nodes at depth δ or less have
been visited.

362 S. Das, D. Dereniowski, and C. Karousatou

Lemma 1. The subtrees that are created in step 2 of GCTEε are pairwise inde-
pendent. Moreover, for any such subtree Tr rooted at a node r any agent that
reaches the unexplored part of Tr cannot return to node r.

Theorem 1. For any ε, 0 < ε < 1
4 , Algorithm GCTEε called for r0 and B

correctly explores the tree.

Proof. To prove the correctness of GCTEε , we first show that procedure
Uncover(r, δ) with δ =

⌊
(12 + ε)b

⌋
correctly explores the subtree rooted at node

r up to depth δ. Note that by a simple induction on the distance of r from r0,
any agent that arrives at node r, to execute Uncover(r, δ), has exactly b units of
energy. Further any such agent Aj has complete knowledge of the part of subtree
Tr already explored by previous agents and thus agent Aj knows the path from
r to the next unexplored node v in the DFS traversal of T δ

r . This node v must
be at distance at most δ from r. According to the algorithm, the agent uses

l := b− �x(ε)� = �b− x(ε)� = �δ + x(ε)�

units of energy during the DFS traversal. Since l ≥ δ the agent does succeed
in reaching the node v. Hence, each agent used in Uncover visits at least one
previously unexplored node in T δ

r . This implies that eventually all nodes within
depth δ in Tr are visited during the DFS exploration. This proves the correctness
of procedure Uncover.

In order to complete the proof of the correctness of GCTEε, we note that the
algorithm makes progress at each level i, that is, level i+1 is at strictly greater
depth than level i. Indeed, this follows from εbi > 0 for ε > 0, which gives
�εbi� ≥ 1.
�
Lemma 2. The number of levels in Algorithm GCTEε is at most log(1

1−ε)
B.

Before proceeding to calculating the cost of Algorithm GCTEε , let us make
the following useful remark. During the procedure Uncover, each participating
agent uses at most δ energy to reach the starting node for its DFS exploration
and uses at least b − δ − �x(ε)� =

⌊
1
2 (

1
2 − ε)b

⌋
units of energy to contribute to

the DFS exploration of unexplored nodes.

Lemma 3. Procedure Uncover(r,δ) for r = r0 and δ = (1/2+ε)B uses SOLr ≤
4

(1
2−ε)

·OPT agents.

Theorem 2. Algorithm GCTEε has a competitive ratio of 4
(1
2−ε)

· log(1
1−ε)

B.

Proof. Consider a call to GCTEε(r, bi) at some level i > 1, where r is at depth
di > 0 from the global root. Let SOLr denote the number of agents used by
the algorithm to explore edges of the subtree Tr during level i. A DFS explo-
ration walk of Tr that starts and ends at r has length 2 · |Tr|. As explained before

Collaborative Exploration by Energy-Constrained Mobile Robots 363

each of the SOLr agents (except the last one) use at least 1
2 (

1
2 − ε)bi of their

available energy to contribute to the DFS exploration. The last agent may have
some available energy after visiting the last unexplored edge in Tr but it does
not have enough energy to return to node r (by Lemma 1). Thus if we assume
that the last agent attempts to reach the root r with its remaining energy, we
can say that the path traversed in total by the agents is at most 2 · |Tr|. Thus,

1

2
(
1

2
− ε)bi · SOLr ≤ 2 · |Tr| =⇒ SOLr ≤ 4

bi(
1
2 − ε)

|Tr|

Furthermore, due to Lemma 1, we know the subtrees at the same level are
independent so we can sum up over all subtrees at level i:

∑

r∈r1,r2,...

SOLr ≤ 4

bi(
1
2 − ε)

∑

r∈r1,r2,...

|Tr|

SOL(i) ≤ 4

bi(
1
2 − ε)

|T \ T di|

where SOL(i) denotes the number of agents used by the algorithm at level i.
The optimal algorithm uses OPT agents to explore the tree. Any agent that
reaches to depth di of T has bi units of energy remaining. Thus, each agent can
traverse at most bi edges below this depth. Hence

bi · OPT ≥ |T \ T di|

Combining the above two equations, we have

SOL(i) ≤ 4
1
2 − ε

OPT

The above bound holds for any level i > 1. Moreover, due to Lemma 3, we have
exactly the same bound for level i = 1 of the algorithm. Since there are at most
log(1

1−ε)
B levels in the algorithm (due to Lemma 2), we obtain the total cost

SOL of the algorithm,

SOL ≤ 4
1
2 − ε

· log(1
1−ε)

B · OPT

�
Note that on the termination of algorithm GCTEε , each agent that participated

in the exploration at level i has at least xi(ε) = 1
2 (

1
2 − ε) · bi units of unused

energy. This remaining energy would be used by the algorithm presented in the
next section.

364 S. Das, D. Dereniowski, and C. Karousatou

4 Exploration with Local Communication

This section is devoted to adaptation of GCTEε for the model with local communi-
cation between agents. This is done in two steps. In the first step we introduce an
intermediate stage between two models of global and local communication. We
call this a semi-local communication model and we define it as follows: two agents
performing the DFS exploration in Step 1 of an instance of GCTEε can communi-
cate only locally, that is, they can communicate only when present at the same
node; on the other hand, the algorithm may call for a new agent that is placed
at the root r of a subtree explored by an instance of GCTEε. Note that, when an
instance of GCTEε calls for a new agent to arrive at the input node r, this agent
is initially present at the ‘global’ root of the entire tree and needs to traverse the
path from the global root to r. Thus, in our semi-local communication model
this mechanism of calling for agents uses the global communication model. In
Section 4.1 we adopt GCTEε so that it operates in the semi-local communication
model and we calculate the cost of this modification in terms of the number of
agents used. In particular, we prove that with respect to the original algorithm,
the total number of agents increases by a constant factor (depending only on ε).
Then, in Section 4.2, we add to our algorithm a mechanism for calling for new
agents at local roots so that this part is also done via local communication.

4.1 Semi-local Communication Model

We start this section by providing some intuition. We consider an arbitrary
execution of GCTEε(r, b) for an input node r and energy level b. Recall Step 1 of
GCTEε, where the agents, one by one, perform the DFS traversal up to a certain
depth of the subtree Tr. Suppose that the agents that perform this traversal
are A1, . . . , Ak and that they are ordered according to the precedence of their
movements, i.e., Ai traverses its path prior to Ai+1 for each i ∈ {1, . . . , k−1}. For
each agent Ai we will add a constant number of c(ε) additional agents denoted

A1
i , . . . , A

c(ε)
i , where

c(ε) = 2 ·
⌈
1/2 + ε

1/2− ε

⌉
, 0 < ε < 1/4. (1)

To simplify some statements we sometimes write A0
i in place of Ai. The agents

Ai, A
1
i , . . . , A

c(ε)
i are called the i-th team for each i ∈ {1, . . . , k}. For the purposes

of the analysis we introduce some additional notation that allows us to describe
the behavior of agents during this DFS traversal in more details. We denote by
brevity

x(ε) =
1

2

(
1

2
− ε

)
b. (2)

We also say that an agent heads towards a node v if in each of the following
consecutive time units the agent makes a move that gets it closer to v until
either v is reached or the agent runs out of energy. It is said that the i-th team

Collaborative Exploration by Energy-Constrained Mobile Robots 365

is successful if: (i) the agent Ai visited a superset of nodes with respect to its

original behavior in Step 1 of GCTEε, and (ii) the agent A
c(ε)
i reaches the root r

and possesses the information about all moves performed by agents A1, . . . , Ai.

We now describe the modification of the DFS traversal from Step 1 of GCTEε
by describing how Ai and A1

i , . . . , A
c(ε)
i operate for each i ∈ {1, . . . , k}.

Behavior of Ai. Recall that in Step 1 of GCTEε, each agent Ai, i ∈ {1, . . . , k},
finishes its part of DFS traversal having at least x(ε) energy left. We now use
this energy as follows: the agent heads towards the root r in the next �x(ε)� time
units.

Behavior of Aj
i ’s. For each i ∈ {1, . . . , k} and j ∈ {1, . . . , c(ε)}, the agent Aj

i

follows the movements of Ai up to the depth

dj(ε) = �j · x(ε)�
until the completion of the movement of Ai. More precisely, the agent Aj

i mimics
each move of Ai from node u to node v if both u and v are within depth (from r)
at most dj(ε). If, on the other hand, either u or v is at depth greater than dj(ε),

then Aj
i stays idle in this given time unit. Finally, the agent Aj

i heads towards
the root r; we will describe below in which time unit this action is triggered.

Order of Movements. Having described the movements of Ai and Aj
i for each

i ∈ {1, . . . , k} and j ∈ {1, . . . , c(ε)}, we specify the order of their actions. The
agent A1 starts its movement once all agents of the 1-st team are at r. For

each i ∈ {2, . . . , k}, the agent Ai starts its movement once A
c(ε)
i−1 completed its

movement by arriving at r and once all agents of the i-th team are at r. (We will

argue later that A
c(ε)
i−1 indeed returns to the root r.) In other words, once A

c(ε)
i−1

completes its movement, all agents of the i-th team are called to appear at r.
For each j ∈ {1, . . . , c(ε)}, we only need to describe how they operate once Ai

runs out of energy, as their preceding movements are specified above. The agent
Aj

i heads towards the root r in time unit in which he occupies the same node as

Aj−1
i and the latter agent is heading towards r. (Thus, it may happen that for

a number of time units both agents will head towards r together.)

In the following we prove that the above actions of agents are valid under
the assumption that they have to communicate locally. Considering the order of
movements of agents it suffices to argue that each team is successful. We refer to
all movements of the agents Aj

i , i ∈ {1, . . . , k}, j ∈ {1, . . . , c(ε)}, as the extended
DFS traversal of T .

Lemma 4. For each i ∈ {1, . . . , k}, the i-th team is successful.

As a consequence of the above, we obtain the following.

Lemma 5. The extended DFS traversal correctly explores Tr to a depth of (12 +
ε)B using k(c(ε) + 1) agents that communicate locally, where k is the number of
agents used in the DFS traversal performed in Step 1 of Algorithm GCTEε.

Proof. The fact that the k teams, each of size c(ε) + 1, explore the tree to the
required depth follows directly from Lemma 4.
�

366 S. Das, D. Dereniowski, and C. Karousatou

4.2 Local Communication between Levels

We start this section with an informal description, also pointing out the obstacles
we need to overcome. The mechanism of communication between two consecu-
tive levels will be handled by special agents that we call managing agents (see
below for a formal definition). A managing agent arrives at a root r for which a
call to GCTEε is performed. This agent is not used for the extended DFS traversal
of Tr but will play a crucial role while conducting recursive calls for descendants
r1, r2, More precisely, this agent will keep track of which subtrees have been
already explored and for which one the recursive call is ‘in progress’. By a re-
cursive call, made say for ri, being in progress we mean that the exploration
of Tri is in progress. Thus, until the exploration of that subtree is completed,
the managing agent for Tr is responsible for redirecting all agents arriving at
r to this subtree Tri . Once the exploration of Tri is completed, the managing
agent for Tri will report this fact to the managing agent for Tr and the latter
one may initiate the process of exploration of the next subtree Tri+1 . Once all
subtrees Tr1 , Tr2 , . . . are explored the managing agent for Tr returns ‘one level
up’ to report this event to appropriate managing agent.

Observe that the above scheme should be performed in such a way that each
subtree Tr ‘receives’ just enough agents needed for its exploration and not more.
This includes one managing agent for the subtree itself, the agents performing
the extended DFS traversal of Tr and the agents needed for recursive calls, if
any. This is regulated by introducing the agents slowly at the global root so
that, within predefined time intervals new agents appear at the global root and
are directed gradually by managing agents precisely to the subtree for which the
current extended DFS traversal is performed. The time intervals are set up in
such a way that if an exploration of a particular subtree is completed then this
information has enough time to be carried by the managing agent to the one
residing one level up. In this way the flow of agents to a particular subtree is
stopped and redirected to the next one supplying the exact amount of agents
needed for each of the subtrees. Intuitively, the measurement of time is used
indirectly as a communication tool: if a managing agent does not receive for a
given amount of time a signal that a recursive call to a subtree is completed,
then this means that the exploration of that subtree is not completed and more
agents are needed to finish it — hence another agent will be sent to that subtree.

Now we give a detailed description of the modifications to the exploration
strategy described in Section 4.1 so that it is valid for agents communicating
locally. At the beginning of exploration (i.e., when GCTEε is called for a tree T),
one distinguished agent is selected to be constantly present at the root r0 of the
entire tree T . This agent is called the managing agent for T . Similarly, whenever
a recursive call of GCTEε is made for any input node r, the first agent that arrives
at r is the managing agent for Tr and it stays at r until the entire subtree Tr is
explored.

Extension of Step 1 of GCTEε. Once all c(ε) + 1 members of the i-th team
are present at the root r of a subtree for which the extended DFS traversal is
performed, the i-th team operates exactly as described in Section 4.1. Recall

Collaborative Exploration by Energy-Constrained Mobile Robots 367

that the i-th team finishes its work with one of its agents being at the root.
The beginning of the operation of the (i+1)-th team is postponed until exactly
c(ε) + 1 new agents, each with energy b, appear at r. Then, the (i+ 1)-th team
resumes the extended DFS traversal. We note that the agents forming each team
will arrive at r directly from the global root of the tree and this will become
clear after description of the extension of Step 3 of GCTEε.

Extension of Step 3 of GCTEε. For this part we need to describe how a recursive
call is performed by an instance of GCTEε. This includes two actions: initiating
the call and receiving information that a recursive call is completed, i.e., that the
exploration of the subtree for which the call was conducted is finished. Suppose
that an instance of GCTEε with input r and b performs a call for a subtree rooted
at a node ri. Recall that the managing agent for Tr, denoted by A(r) is present
at r during exploration of Tr. First, A(r) waits until a new agent, denoted by
A(ri), appears at r and after this event this agent is sent to ri and it becomes
the managing agent for Tri. Then, the algorithm sends each agent arriving at r
to the node ri until the agent A(ri) returns to r. This completes the recursive
call for ri and A(ri) stays idle at r indefinitely (and will not play any role in
the remaining part of the exploration). Then, the next recursive call, if any, that
needs to be done is performed. The information about the current status of each
recursive call made by the instance of GCTEε(r, b), is maintained by A(r), the
managing agent for Tr, and once all recursive calls are completed this managing
agent returns to the node that is the ancestor of r from which the instance of
GCTEε(r, b) was called.

Distribution of agents at the global root. Note that the above description
defines the operation of agents for each instance of GCTEε except for the managing
agent at the global root r0 for the first call to GCTEε. The managing agent at
the global root has all agents at its disposal from the first step and does not
need to wait for the arrival of an agent. Therefore we introduce an artificial
delay denoted by d(ε) as defined below. The d(ε) is an integer and it will be
understood that the agents will appear at the global root r in time intervals of
d(ε). This time interval is defined as

d(ε) = (c(ε) + 2)B. (3)

The exploration strategy modified as above is called LCTEε (Local Communi-
cation Tree Exploration). We now prove that LCTEε works correctly in the local
communication model.

Lemma 6. For 0 < ε < 1/4, Algorithm LCTEε correctly explores any tree T
using local communication between agents.

Theorem 3. Algorithm LCTEε explores T using at most O(logB) ·OPT agents.

5 Competitive Ratio of Online Exploration

We now show a lower bound on the competitive ratio of any online exploration
algorithm in the local communication model. The following result implies that
the competitive ratio of algorithm LCTEε is asymptotically optimal.

368 S. Das, D. Dereniowski, and C. Karousatou

Theorem 4. Any online exploration algorithm for exploring a tree of depth D =
B − 1 has a worst case competitive ratio of at least Ω(logB).

Proof. We consider the family of trees which consist of a line of length D − 1
connected to the center of a star with p leaves. Thus all the p leaves of the tree
are at distance D = B − 1 from the root and there is only one node at distance
D−1. An offline algorithm would use exactly p agents for exploring this tree. An
online algorithm for exploring this tree can be of two types: We say an algorithm
is type-1 if during the algorithm there is no transfer of information from the node
at depth D− 1 to the root; All other algorithms are of type-2. First notice that
if an algorithm of type-1, uses k agents for exploration then k is independent of
p, since p remains unknown to the root. Thus, by taking p > k, we can make the
algorithm fail. So we need to consider only type-2 algorithms where information
from the node at depth D− 1 is transferred to the root. Any agent visiting this
node has at most B − (D − 1) = 2 units of energy remaining, so it can return
back to depth D − 3 = B − 4. Similarly, any agent visiting the node at depth
B− 4 can return back to depth B− 8, and so on. Thus, at least Ω(logB) agents
are needed to carry the information from the node at depth D − 1 back to the
root. So any type-2 algorithm would use at least Ω(logB) agents. By taking
p = 1, we get a competitive ratio of Ω(logB) for any such algorithm.
�

6 Conclusions

We studied the problem of exploring a tree with a team of agents, each of which
can traverse at most B edges. We gave matching lower and upper bound of
Θ(logB) on the competitive ratio of the cost of tree exploration. Unlike previous
algorithms for energy constrained agents, the agents in our algorithm do not
necessarily return to the root after exploration. This fact allows us to explore
trees of larger depth. However there is still a transfer of information from the
leaves to the root. Thus the algorithm can be used e.g. to collect information
from the leaves of a tree, or to search for a resource and bring it back to the root.
Note that the lower bound of Ω(logB) on the competitive ratio holds only in
the local communication model. An interesting question is whether more efficient
algorithms are possible for tree exploration in the global communication model.
Another open question is the cost of exploring general graphs or other specific
classes of graphs.

References

1. Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM Journal on
Computing 29(4), 1164–1188 (2000)

2. Awerbuch, B., Betke, M., Singh, M.: Piecemeal graph learning by a mobile robot.
Information and Computation 152, 155–172 (1999)

3. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxés, Y.: Converge-
cast and Broadcast by Power-Aware Mobile Agents. Algorithmica, 1–39 (2014)

Collaborative Exploration by Energy-Constrained Mobile Robots 369

4. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble:
Exploring and mapping directed graphs. In: Proc. 30th ACM Symp. on Theory of
Computing (STOC), pp. 269–287 (1998)

5. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment.
Machine Learning 18(23), 231–254 (1995)

6. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery
by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E.,
der Heide, F.M.a. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122.
Springer, Heidelberg (2014)

7. Dereniowski, D., Disser, Y., Kosowski, A., Paj ↪ak, D., Uznański, P.: Fast collabo-
rative graph exploration. Information and Computation 243, 37–49 (2015)

8. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. Journal of Algorithms 51, 38–63 (2004)

9. Duncan, C.A., Kobourov, S.G., Anil Kumar, V.S.: Optimal constrained graph ex-
ploration. In: Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 807–814 (2001)

10. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree ex-
ploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS,
vol. 3894, pp. 341–351. Springer, Heidelberg (2006)

11. Dynia, M., �Lopuszański, J., Schindelhauer, C.: Why robots need maps. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer,
Heidelberg (2007)

12. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

13. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

14. Megow, N., Mehlhorn, K., Schweitzer, P.: Online graph exploration: new results on
old and new algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part II. LNCS, vol. 6756, pp. 478–489. Springer, Heidelberg (2011)

15. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with
rectangular obstacles. In: Proc. 24th ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pp. 27–36 (2012)

16. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algo-
rithms 33, 281–295 (1999)

17. Rutishauser, S., Correll, N., Martinoli, A.: Collaborative Coverage using a Swarm
of Networked Miniature Robots. Robotics and Autonomous Systems 57(5), 517–525
(2009)

Solving the Induced Subgraph Problem
in the Randomized Multiparty
Simultaneous Messages Model�

Jarkko Kari1, Martin Matamala2, Ivan Rapaport2, and Ville Salo2

1 Department of Mathematics and Statistics, University of Turku, Finland
2 DIM-CMM (UMI 2807 CNRS), Universidad de Chile

Abstract. We study the message size complexity of recognizing, under
the broadcast congested clique model, whether a fixed graph H appears
in a given graph G as a minor, as a subgraph or as an induced subgraph.
The n nodes of the input graph G are the players, and each player only
knows the identities of its immediate neighbors. We are mostly interested
in the one-round, simultaneous setup where each player sends a message
of size O(log n) to a referee that should be able then to determine whether
H appears in G. We consider randomized protocols where the players
have access to a common random sequence. We completely characterize
which graphs H admit such a protocol. For the particular case where
H is the path of 4 nodes, we present a new notion called twin ordering,
which may be of independent interest.

1 Introduction

Yao, in his seminal paper of 1979 [27], not only introduced the two-party com-
munication model but also the much more restricted two-party simultaneous
messages communication model (SM). The SM model is defined as follows. Al-
ice and Bob wish to evaluate together a function f : X × Y → {0, 1}. Alice
receives her input x, Bob receives his input y. Both Alice and Bob send simul-
taneously a message to a referee, who sees none of the input. The referee then
announces the function value f(x, y). Of course, the goal of the game is to min-
imize the size of the messages. Many results have been obtained in this model
and, in particular, clear separations have been proved between the deterministic
and the randomized settings [5,9,19].

The extension of the SM model to many players is direct and it is defined as
follows. There are n players. These n players wish to evaluate together a function
f : X1× . . .×Xn → {0, 1}. Each player receives an input xi ∈ Xi. The n players
send simultaneously a message to the referee who uses these messages in order to
compute the boolean function f(x1, . . . , xn). We call this model the multiparty
simultaneous messages communication model (MSM).
� This work has been partially supported by CONICYT via Basal in Applied Mathe-

matics (M.M., I.R.), Núcleo Milenio Información y Coordinación en Redes ICM/FIC
RC130003 (M.M., I.R.), Fondecyt 1130061 (I.R.) and Fondecyt 3150552 (V.S.).

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 370–384, 2015.
DOI: 10.1007/978-3-319-25258-2_26

Solving the Induced Subgraph Problem 371

The already defined number-in-hand multiparty communication model is
more general than the MSM model because, in the number-in-hand model,
many rounds are allowed and different communication modes can be consid-
ered [12,14,17,21,26]. In fact, the MSM model corresponds to the one-round,
synchronous, shared-whiteboard number-in-hand model.

The broadcast congested clique model is exactly the number-in-hand model
but where the joint input, instead of being (x1, . . . , xn) ∈ X1 × . . . × Xn, is a
graph [13,16]. This input graph is distributed among the nodes, which are the
parties of the communication game. More precisely, in the broadcast congested
clique model, the joint input to the n nodes is an undirected n-node graph G,
with node v receiving the list of its neighbors in G. Each node broadcasts, in
each round, a b-bit message (written on a whiteboard, which is visible to every
node).

In this paper we are interested in the simultaneous messages (one-round)
broadcast congested clique model SM-BCAST. We assume that the ID of each
node is a unique number between 1 and n and that the only information each
node has, besides n and its own ID, is the list of IDs of its neighbors in G. These
nodes need to send, simultaneously, a b-bit message to the referee allowing him
to answer, typically, questions of the form “Does the input graph G belong to
the graph class C?".

If there is no restriction on the message size then there is a trivial simultaneous
protocol that allows the referee to reconstruct any graph: given an input graph
G (with an arbitrary assignment of IDs to each of the n nodes), every node
sends the binary vector x ∈ {0, 1}n corresponding to the indicator function of
its neighborhood. Clearly, this information determines G completely.

If we restrict the message size then reconstructing G becomes much more
difficult. Despite this, in [6] it was proved that if (an upper bound on) the
degeneracy of G is known in advance, then it is possible to reconstruct G with
a one-round protocol of O(log n) message size. More precisely,

Proposition 1 (Lemma 2 of [6]). Let m be a positive number. Then, it is
possible to decide deterministically, in the SM-BCAST model, the class of m-
degenerate graphs using messages of size O(m2 logn). Moreover, if the degener-
acy of G is (upper bounded by) m then G can be completely reconstructed by the
referee.

The degeneracy m of a graph is defined as follows: G is m-degenerate if one can
remove from G a node r of degree at most m, and then proceed recursively on the
resulting graph G′ = G − r, until obtaining an empty graph; the degeneracy of
G is the smallest m such that G is m-degenerate. For instance, the degeneracy
of trees is 1, and the degeneracy of planar graphs is at most 5. Many other
important graph classes have bounded degeneracy and this is the reason why
previous result is surprising.

In [1,2,15] the authors introduced a beautiful and powerful technique for
graph sketching. This technique works both for streaming models and for the
SM-BCAST model. It allows the referee to decide whether the input graph is

372 J. Kari et al.

connected when each node sends one message of size O(log3 n). The protocol for
generating the messages is randomized.

Some negative results for the SM-BCAST model have also been obtained.
In [7] the authors prove that it is impossible to decide whether the input graph G
has diameter at most 3 or whether G has a triangle unless the messages sent by
the nodes are all of size Ω(n), even if randomness is allowed. Deciding whether
the input graph G contains a cycle requires at least one node to write a message
of length at least �log d� − 1, where d is the maximum degree of G [4].

It should be pointed out that negative results in the general broadcast con-
gested clique model yield negative results in the SM-BCAST model. In fact, if
one can prove that any solution for some problem in the broadcast congested
clique model allowing messages of size at most b needs at least r rounds, then
one can conclude that any solution of the same problem in the SM-BCAST

model needs messages of size at least Ω(rb).
Let H be a fixed graph. The question we address in this paper is the following:

“Does H appear in the input graph G?" In graph theory, the word “appear" has
at least three interpretations: H may appear as a minor of G, as a subgraph of
G or as an induced subgraph of G.

1.1 Minors

An interesting application of Proposition 1 is related to the problem of detecting
the presence of particular minors in the input graph G. The study of graph
classes defined by graph minors is one of the most important branches of graph
theory, culminating in the Robertson–Seymour theorem [22], also known as the
Graph Minor Theorem, which states that every minor-closed family of graphs is
defined by a finite set of forbidden minors. Many classes of graphs are minor-
closed, and have known characterizations in terms of minors. For example, the
famous theorem of Kuratowski states that planar graphs are exactly those not
containing K5 or K3,3 as minors.

Let H be a fixed graph. We say that H is a minor of G if H can be extracted
from G by deleting edges, deleting nodes and contracting edges. We say that
G is H-minor free if G does not have H as a minor. H-minor free graphs have
bounded degeneracy [18,24,25]. This fact, together with Proposition 1, allows us
to conclude that, in the SM-BCAST model, it is possible to decide determinis-
tically whether H is a minor of G using messages of size O(log n). Moreover, if G
is H-minor free then G can be completely reconstructed by the referee. This im-
plies that for every minor-closed class C, there must be an O(log n) message size
deterministic protocol that decides class C (and that even reconstructs the input
graphs belonging to the class). Unfortunately, for many minor-closed classes we
have not discovered the corresponding finite set of forbidden minors yet, and
therefore, we can only conclude the existence of such protocol (as it occurs with
the existence of polynomial time algorithms for recognizing minor-closed classes
in the sequential, classical setting).

Solving the Induced Subgraph Problem 373

1.2 Subgraphs

We say that G contains H if H is a (not necessarily induced) subgraph of G.
The problem H-Subgraph consists in deciding whether H is a subgraph of G.
Proposition 1 can also be used for tackling H-Subgraph. In fact, Drucker, Kuhn
and Oshman [13] made the following remark: the degeneracy of graphs which do
not contain H as a subgraph (H-subgraph free graphs) can be upper bounded in
terms of the Turán number ex(n,H), the maximal number of edges of an n-node
graph which does not contain a subgraph isomorphic to H . More precisely, they
showed that the degeneracy of H-subgraph free graphs with n nodes is at most
4ex(n,H)/n. This gives the following result.

Proposition 2 ([13]). Let H be a fixed graph. Then, the problem H-Subgraph
can be solved in the SM-BCAST model with a O(ex(n,H)2 logn/n2) message
size deterministic protocol. �

The previous proposition gives some interesting upper bounds. For instance,
if H is a tree or a forest then ex(n,H) = Θ(n) [3]. Therefore, in this case, H-
Subgraph can be solved with messages of size O(log n). It is also known that
ex(n,C2�) = Θ(n1+1/�), where C2� is the even length cycle of length 2� [8]. In
other words, C2�-Subgraph can be solved with messages of size O(n2/� logn).

The authors in [13] obtained interesting lower bounds which also depend
on the Turán number. For instance, consider the �-node cycle C�. They show
that if � ≥ 4, then any protocol that solves C�-Subgraph needs at least
Ω(ex(n,C�)/(nb)) rounds, where b is the message size each node can broad-
cast in each round. This yields a lower bound of Ω(ex(n,C�)/n) message size
for the SM-BCAST model. Considering that ex(n,C�) = Θ(n2) if � > 3 is odd
and that ex(n,C�) = Θ(n1+2/�) if � is even we conclude the following: any ran-
domized protocol which solves C�-Subgraph in the SM-BCAST model uses
messages of size at least Ω(n) if � is odd and Ω(n2/�) if � is even.

In the case of triangles C3 they obtain Ω(n/(eO(
√
logn)b)) rounds as a lower

bound for the deterministic case. This yields a lower bound of Ω(n/eO(
√
logn))

for any deterministic protocol that solves C3-Subgraph in the SM-BCAST

model. In Corollary 5, we state a similar result more generally: if H contains a
cycle, then messages of polynomial size are needed in the problem H-Subgraph.

1.3 Induced Subgraphs

An induced subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) with V ′ ⊆ V
and such that vw ∈ E′ if and only if vw ∈ E. In other words, the edges of the
induced graph G′ are all those whose endpoints are both in V ′. A class of graphs
G is said to be hereditary if every induced subgraph of every member of G is also
in G.
� In [13] the authors say that the message size is O(ex(n,H) log n/n). But this bound

is an optimistic interpretation of the upper bound of Proposition 1, because instead
of considering m2 they consider m. The conclusions they obtain do not depend on
this issue.

374 J. Kari et al.

A graph G is H-free if H is not an induced subgraph of G. It is easy to show
that a graph class G is hereditary if and only if G is defined by a (finite or infinite)
set H of forbidden graphs. More precisely, G is hereditary if and only if for some
H, G = {G | G is H-free, for every H ∈ H}.

There is no analog of the Graph Minor Theorem for induced subgraphs, and
many classes of graphs have an infinite minimal set of forbidden induced sub-
graphs. For instance, the class of bipartite graphs is hereditary and the (minimal)
set of forbidden induced subgraphs is the set of odd cycles. There are, however,
many interesting classes of graphs defined by finite families of forbidden induced
subgraphs. For example, the class P4-free, the class of graphs without an induced
copy of the 4-node path P4, is the class of cographs. It arises often in algorithmic
graph theory, and also plays a major role in this article.

Problem H-Induced Subgraph consists in deciding whether H is an in-
duced subgraph of G. This problem has not yet been addressed in the congested
clique model (with the exception of H being a clique, because Kk is an induced
subgraph of G if and only if it is a subgraph of G). This work intends to initiate
this research line.

1.4 Notation

In this work a “graph" is always a “simple undirected labeled graph". In par-
ticular, the nodes of the n-node input graph G = (V,E) are labeled by their
IDs. The open neighborhood of a node v ∈ V is denoted by NG(v) and corre-
sponds to the set of nodes which are adjacent to v. The closed neigborhood is
NG[v] = NG(v) ∪ {v}.

Let H be a graph. The number of nodes of H is denoted by |H |. Its complement
H is the graph with the same set of nodes V (H) but such that e ∈ E(H) ⇐⇒
e /∈ E(H). We write H1

∼= H2 when the two graphs are isomorphic. Let v be a
node of H . We denote by H − v the graph with |H | − 1 nodes where, besides
removing v, we also remove all the edges incident to v. Similarly, we denote by
H − e the graph obtained by removing the edge e from H .

The path of k nodes is denoted by Pk, the cycle of k nodes is denoted by
Ck, the clique of k nodes is denoted by Kk. The disjoint union of H1 and H2 is
denoted by H1 + H2. The disjoint union of t isomorphic graphs is denoted by
tH (where each of the t graphs is isomorphic to H).

A deterministic protocol P in the SM-BCAST model describes the mech-
anisms of the nodes (for generating the messages) and the mechanism of the
referee (for retrieving the final result) that correctly computes the output on
all inputs. An ε-error randomized protocol P for some problem is a protocol in
which every node and the referee are allowed to use a public sequence of random
bits, and for every input the referee outputs the correct answer with probabil-
ity at least 1 − ε. The cost of a protocol P , denoted C(P), is the length of the
longest message sent to the referee. The deterministic message size complexity,
denoted C(f), is the minimum cost of any deterministic protocol computing f .
Analogously, we denote as Cε(f) the message size complexity for ε-error (public)
randomized protocols.

Solving the Induced Subgraph Problem 375

1.5 Our Results

We study the message size complexity of the problem of determining whether a
fixed graph H “appears” in a given graph G, mostly under the one-round SM-

BCAST model. In particular, we are interested in finding out which graphs H
admit (deterministic or randomized) solutions with message size that is loga-
rithmic in n, the number of nodes of the input graph G. Note that a log(n)-size
message allows one to identify a node in G, so each node can broadcast the
identities of a bounded number of nodes.

As already discussed in Section 1.1, for any graph H , a logarithmic message
size is enough to determine – even deterministically – if H is a minor of an
arbitrary input graph G.

By Section 1.2, the same is true for the problem of determining whether H
is a subgraph of a given G when H is a forest. In other words, if H is a forest,
then H-Subgraph can be decided by a deterministic protocol with simultaneous
messages of logarithmic size. On the other hand, in Section 2 we prove that if
H is not a forest then any protocol (even randomized) requires polynomial size
messages. These results are summarized in Corollary 5.

Our results of Section 3 concern the appearance of H as an induced subgraph
in G (with |V (H)| ≥ 3, because otherwise the problem is trivial). Corollary 6
(together with Comment 1) states that polynomial message size is required to
solve H-Induced Subgraph – even with a randomized protocol – for all H
except for H ∈ {P1 + P2, P3, P4}. These are exactly the graphs of order at least
three that both themselves and their complements are without cycles. We then
provide a randomized protocol with logarithmic message size for the case H = P3

(equivalently H = P1+P2) in Proposition 7. Note that P3-Induced Subgraph

is equivalent to asking if a graph G is a disjoint union of cliques.
Our most involved result is the one of Section 4, where we provide a random-

ized protocol with logarithmic message size for problem P4-Induced Subgraph

(Proposition 10). For doing this we give a characterization of P4-free graphs (or
cographs) based on the notion of twin ordering. This characterization of cographs
is, to the best of our knowledge, a new one.

We are not aware of deterministic one-round solutions for P3- and P4-Induced
Subgraph problems, so these remain open. However, the problems can be solved
with logarithmic message size in two rounds (Proposition 8) and in 2(h − 1)
rounds (Proposition 11), respectively, where h bounds the cograph level to be
checked.

Every connected cograph has diameter 2. Proposition 10 tells us that cographs
can be recognized, in the SM-BCAST model, with a randomized O(log n) mes-
sage size protocol with 1/nc error. It is interesting to point out that, from the
paper of Holzer and Pinsker [16], one can conclude that for deciding whether a
graph has diameter 2, the size of the messages must be Ω(n), even if randomness
is allowed.

376 J. Kari et al.

2 Lower Bounds for Detecting Subgraphs and Induced
Subgraphs

As mentioned in Section 1.2, it follows from [13] that any randomized ε-error
protocol that solves the problem C�-Subgraph in the SM-BCAST model uses
messages of size Ω(n) for � > 3 odd and Ω(n2/�) for � even

The following two propositions generalize these results from cycles C� to arbi-
trary graphs H that contain a cycle. Our proofs work also in the case H = C3 of
a triangle, and the same proofs provide the lower bounds also for the H-Induced
Subgraph problem.

The proofs are reductions from the Index problem. Consider the Index func-
tion in the two players SM model: the first player, say Alice, has as input an
N -bit boolean vector x and the second player, Bob, has an integer q ∈ [1, N].
Then Index(x, q) = xq, the q’th coordinate of Alice’s vector. We will use the fact
that for any ε < 1/2, any public coin randomized protocol for Index requires
Ω(N) bits (see, e.g., [19] for a proof).

Let H and G be two disjoint graphs, let ab be an edge of H and let r, t be
two nodes of G. We denote by Grt⊕Hab the graph obtained from G and H−ab
by identifying nodes r and a, and nodes t and b. Then, the set of nodes of
Grt ⊕Hab is V (G) ∪ V (H) \ {a, b}, where we still denote by r (resp. t), the new
node obtained under the identification of r and a (resp. t and b). We call G̃ the
subgraph of Grt ⊕Hab induced by the set of nodes V (G); we have G̃ ∼= G. We
call H̃ the subgraph of Grt⊕Hab induced by the set U := (V (H)∪{r, t})\{a, b}.
We notice that H̃ ∼= H if and only if rt is an edge of G.

A cycle in Grt ⊕ Hab is called a crossing cycle if it contains nodes from
V (G) \ {r, t} and from V (H) \ {a, b}. Then, the length of a crossing cycle is at
least the distance in H − ab between a and b, which we denote by kH , plus the
distance in G− rt between r and t, which we denote by kG.

Let P be a protocol for a graph problem. We denote by P(|G|, v,NG(v)) the
message generated in the protocol by node v having neighborhood NG(v) in a
graph with |G| nodes.

We first consider the case that H contains a cycle of odd length.

Proposition 3. Let H be a non-bipartite graph. Any randomized ε-error proto-
col that solves H-Induced Subgraph or H–Subgraph uses messages of size
Ω(n).

Proof. Let N ∈ N be even. Consider the following instance of the Index problem.
Alice receives the indicator vector of a set X ⊆ VL × VR where VL and VR are
two disjoint sets of cardinality |VL| = |VR| = N

2 . Bob receives a couple (p, q).
The question the referee needs to answer is whether (p, q) ∈ X . We already
know that any ε-error randomized protocol that solves this problem needs Alice
to send Ω(N2) bits.

Suppose that there exists a randomized ε-error protocol P that solves H-
Induced Subgraph or H-Subgraph using messages of size c(n). We are going
to use P to solve Index.

Solving the Induced Subgraph Problem 377

Consider the N -node graph G = (VL ∪ VR, E) with E = X . Let a, b be two
nodes of H such that the edge ab lies in a shortest odd cycle (it must exist, H is
non-bipartite), and let k be the length of this cycle. Let i ∈ VL and j ∈ VR. Then,
any odd-length crossing cycle of Gij ⊕Hab has length at least k+ 2: paths in G
between i and j have odd length, and the shortest even-length path in H − ab
between a and b has length k − 1. Hence, any cycle of length k in Gij ⊕Hab is
either included in G or in H̃. But as k is odd and G is bipartite, any cycle of
length k belongs to H̃ . In conclusion, H is an (induced) subgraph of Gij ⊕Hab

if and only if ij is an edge of G: if H is a subgraph of Gij ⊕Hab, then ij is an
edge of G as otherwise H̃ has fewer cycles of length k than H and, conversely,
if ij is an edge of G then H̃ ∼= H is an induced subgraph of Gij ⊕Hab.

Alice can take advantage of the previous fact in order to generate a message
from her input X . She generates N messages, one for each node in G.

For each i ∈ VL she generates the message (M i
a,M

i), where

– M i
a = P(|G| + |H | − 2, i, NG(i) ∪NH(a) \ {b}) is the message node i would

send in the graph Gij′ ⊕Hab with j′ ∈ VR arbitrary.
– M i = P(|G| + |H | − 2, i, NG(i)) is the message node i would send in the

graph Gi′j′ ⊕Hab with i′ ∈ VL \ {i}, j′ ∈ VR, both arbitrary.

For each j ∈ VR she generates the message (M j
b ,M

j), where

– M j
b = P(|G|+ |H | − 2, j, NG(j) ∪NH(b) \ {a}) is the message node j would

send in the graph Gi′j ⊕Hab with i′ ∈ VL arbitrary.
– M j = P(|G| + |H | − 2, j, NG(j)) is the message node j would send in the

graph Gi′j′ ⊕Hab with i′ ∈ VL , j′ ∈ VR \ {j}, both arbitrary.

Suppose that Bob sends (p, q) to the referee. How can the referee decide
whether (p, q) ∈ X? He simply simulates protocol P considering for node p the
message Mp

a , for node q the message M q
b and for every other node r the message

M r (recall that H is fixed, known by the referee).
The size of the message sent by Alice is O(Nc(N + |H |− 2)). Therefore, since

the randomized complexity of Index is Ω(N2) and |H | is constant, we conclude
that c(N) = Ω(N). �

Another reduction in the same style provides a lower bound in the case of
bipartite H containing cycles.

Proposition 4. Let H be a bipartite graph containing a cycle. Any random-
ized ε-error protocol that solves H-Induced Subgraph or H–Subgraph uses
messages of size Ω(n2/k) where k is the (even) length of the shortest cycle in H.

Proof. Let N = ex(n,Ck) for some n, and let G = (V,E) be a graph with n
nodes and N edges which does not contain a subgraph isomorphic to Ck. Recall
that ex(n,Ck) = Θ(n1+2/k) for even k.

Consider the following instance of the Index problem. Alice receives a vector
X ∈ {0, 1}N and Bob receives a natural number p ∈ [1, N]. The question the

378 J. Kari et al.

referee needs to answer is whether Xp = 1. We already know that any ε-error
randomized protocol that solves this problem needs Alice to send Ω(N) bits.

Suppose that there exists a randomized ε-error protocol P that solves either
H-Induced Subgraph or H-Subgraph using messages of size c(n). We are
going to use P to solve Index.

Let e1, e2, . . . , eN be an enumeration of the edges of G, and consider the
subgraph G′ = (V,E′) of G with ei ∈ E′ ⇐⇒ Xi = 1. Let a, b be two nodes of
H such that the edge ab lies in a shortest cycle (that is, on a cycle of length k).

For any ei = (r, t), 1 ≤ i ≤ N , consider the graph G′
rt ⊕ Hab. Then any

crossing cycle of G′
rt ⊕Hab has length at least k+1: kG ≥ 2 and kH = k− 1. By

definition, G′ has no cycle of length k. Hence, any cycle of length k in G′
rt⊕Hab

must appear in the subgraph H̃ of G′
rt ⊕Hab. Therefore, if H is a subgraph of

G′
rt ⊕Hab then rt is an edge of G′ as otherwise H̃ has fewer cycles of length k

than H . And of course, conversely, presence of edge rt in G′ means that H̃ ∼= H
is an induced subgraph of G′

rt ⊕Hab.
Alice can take advantage of the previous fact in order to generate a message

from her input X . She generates n messages, one for each node in G′. For each
i ∈ V she generates the message (M i,M i

a,M
i
b), where

– M i
a = P(n+ |H | − 2, i, NG′(i) ∪ (NH(a) \ {b})) is the message node i would

send in the graph G′
ij ⊕Hab with j ∈ V \ {i} arbitrary.

– M i
b = P(n+ |H | − 2, i, NG′(i) ∪ (NH(b) \ {a})) is the message node i would

send in the graph G′
ij ⊕Hba with j ∈ V \ {i} arbitrary.

– M i = P(n+ |H |−2, i, NG′(i)) is the message node i would send in the graph
G′

i′j′ ⊕Hab with i′, j′ ∈ V \ {i}, both arbitrary.

Suppose that Bob sends p to the referee. How can the referee decide whether
Xp = 1? If ep = (y, z) he simply simulates the protocol P considering for node
y the message My

a , for node z the message Mz
b and for every other node i the

message M i (recall that H is fixed, known by the referee).
The size of the message sent by Alice is O(nc(n+ |H | − 2)). Therefore, since

the randomized complexity of Index is Ω(N) we conclude that c(n + |H | − 2)
is Ω(N/n). We have N = ex(n,Ck) = Ω(n1+2/k), which proves the claim. �

Combining Propositions 3 and 4 with the observations of Section 1.2, we
obtain the following:

Corollary 5 If H is a forest, then the problem H-Subgraph can be decided
by a deterministic protocol with simultaneous messages of logarithmic size. If
H contains a cycle, then a randomized protocol with simultaneous messages for
H-Subgraph requires messages of polynomial size.

3 The Problem H-Induced Subgraph

Lemma 1. Let H be a fixed graph. The problems H-Induced Subgraph and
H-Induced Subgraph are equivalent. More precisely, there exists a protocol

Solving the Induced Subgraph Problem 379

with message size b for solving H-Induced Subgraph if and only if there exists
a protocol with message size b for solving H-Induced Subgraph.

Proof. Let H be a fixed graph. Suppose that we have a protocol for solving
H-Induced Subgraph. We can use this protocol for solving H-Induced Sub-

graph as follows. Let G be the input graph. Note that H is an induced subgraph
of G if and only if H is an induced subgraph of G. Therefore, every node v can
consider the nodes that are not its neighbors and apply the protocol for detect-
ing H with this new, complementary neighborhood. Of course, if there is enough
information for reconstructing G (when the answer is positive) then there is
enough information for reconstructing G. �

Corollary 6 Let H be an arbitrary graph with at least 3 nodes. If H /∈ {P1 +
P2, P3, 2P2, C4, P4} then any randomized ε-error protocol that solves H-Induced
Subgraph uses messages of size Ω(n).

Proof. This follows directly from Proposition 3 and Lemma 1 because, the graphs
listed above, are the only graphs with at least 3 nodes which are bipartite both
themselves and their complements. �

Comment 1 Notice that P1 + P2 = P3, 2P2 = C4 and P4 = P4. Therefore,
in order to understand completely problem H-Induced Subgraph, the only
problems we need to study are P3-Induced Subgraph, C4-Induced Subgraph

and P4-Induced Subgraph. The case H = C4 in Proposition 4 directly provides
an Ω(n1/2) lower bound on the message size for any randomized ε-error protocol
that solves C4-Induced Subgraph. Therefore, the only two cases for which we
do not know the message size complexity yet are H = P3 and H = P4.

3.1 The Problem P3-Induced Subgraph

Notice that a graph is P3-free if and only if it is the disjoint union of cliques.
There is a classical randomized “fingerprint” technique for testing whether two
vectors are equal. We are going to use this technique for solving P3-Induced
Subgraph. It works as follows. Let nc+3 < p ≤ 2nc+3 be a prime number. A
value t ∈ Zp is chosen uniformly at random using O(log(n)) public random bits.
Given an n-bits vector a = (a1, . . . , an), consider the polynomial Pa = a1 +
a2X+a3X

2+ . . . anX
n−1 in Zp[X] and let FP (a, t) = Pa(t). The value FP (a, t)

is sometimes called the “fingerprint” of vector a. Clearly two equal vectors have
equal fingerprints, and, more important, for any two different vectors a and b, the
probability that FP (a, t) = FP (b, t) is at most 1/nc+2 (because the polynomial
Pa − Pb has at most n roots and t was chosen uniformly at random, thus the
probability that t is a root of Pa − Pb is at most 1/nc+2, see [20]).

Proposition 7. For any constant c > 0, P3-Induced Subgraph can be solved
with a randomized O(log n) message size protocol with 1/nc error.

380 J. Kari et al.

Proof. Let xi ∈ {0, 1}n be the input vector of node i, i.e., the characteristic
function of its closed neighborhood N [i] = N(i)∪{i}. A protocol for P3-Induced
Subgraph consists in each node sending two numbers: its degree di and its
fingerprint mi = FP (xi, t). Let l(m) be the number of nodes that send the same
fingerprint m. The referee concludes that the input graph G is the disjoint union
of cliques (and therefore P3 is not an induced subgraph of G) if and only if all
the nodes with the same fingerprint m have degree l(m) − 1. It is not difficult
to realize that the previous protocol fails if and only if there are at least two
nodes i, j with different neighborhoods such that FP (mi, t) = FP (mj , t). For
each fixed pair of nodes this probability is at most 1/nc+2, so altogether the
probability of a wrong answer is at most 1/nc. �

3.2 A Deterministic Protocol for P3-Induced Subgraph

Recall that when more than one round is allowed the messages, instead of being
sent to a referee, are written on a shared whiteboard.

Proposition 8. There exists a O(log n) message size deterministic two-round
protocol for solving P3-Induced Subgraph.

Proof. Let G be the input graph. Our protocol does the following. In the first
round each node v writes on the whiteboard its own ID together with the mini-
mum ID of its closed neighborhood Mv = min{ID(u) | u ∈ NG[v]}. In the second
round each node v writes only one bit. It writes the bit 1 if and only if for all
u ∈ NG[v] Mu = Mv and for all u /∈ NG[v] Mu �= Mv.

Obviously, every node writes a 1 in the second round if and only if G is a
disjoint union of cliques. If G is indeed a disjoint union of cliques then, with the
information written on the whiteboard, it is possible to reconstruct it. �
Open Problem 1. Is it possible to solve deterministically, in the SM-BCAST

model, the problem P3-Induced Subgraph using messages of size O(log n)?

4 The Problem P4-Induced Subgraph

Let G1 and G2 be two disjoint graphs. The join operation G1 � G2 consists in
connecting all the nodes of G1 with all the nodes of G2. Formally, it is defined as
follows: G1 �G2 = (G1 +G2). The class of cographs is defined recursively. First,
an isolated node K1 is a cograph. Second, G �= K1 is a cograph if and only if G
is the join or the union of two disjoint cographs [11,23].

In this paper we provide a new characterization of cographs based on a new
notion we introduce here that we call twin ordering. Two nodes u and v of a
graph G are called twins if NG(u) \ {v} = NG(v) \ {u}.

A twin ordering of an n-node graph is an ordering v1, . . . , vn such that for
each j ≥ 2, the vertex vj has a twin in the graph induced by {v1, . . . , vj}.
Proposition 9. For a graph G the following are equivalent.

1. G is a cograph.
2. Every non trivial induced subgraph of G has a pair of twins.

Solving the Induced Subgraph Problem 381

3. G is P4-free.
4. G has a twin ordering.

Proof. The equivalence between the first three characterizations was proved in
[11] and [23]. It is clear that the second implies the fourth. Moreover, not only
there exists a twin ordering, but one can find it by repeatedly picking an arbitrary
node having a twin and removing such node. This follows from the assumption
that every non trivial induced subgraph has a pair of twins.

We prove that if G has a twin ordering, then it is P4-free. Take any subset of
nodes U = {vt, vl, vk, vj}, with t < l < k < j. For the sake of contradiction, let
us assume that the graph induced by U is P4. Among the choices for U , pick one
with j as small as possible. From hypothesis, there is a i < j such that vi and
vj are twins in the graph induced by {v1, . . . , vj}. Since P4 has no pairs of twins
we get that vi /∈ U . But this is a contradiction with the choice of U because the
graph induced by {vt, vl, vk, vi} is P4 and max{t, l, k, i} < j. �

Let G = (V,E) be an n-node graph with V ⊆ N. The canonical ordering of
G is the twin ordering of G defined as follows. Instead of picking an arbitrary
node having a twin we select the lexicographically first pair of twins. Then we
choose, among these two nodes, the smaller one. The process continues, starting
by removing vn, until no further twins appear. So, a canonical ordering of an
arbitrary graph is of the form vk, . . . , vn and k = 1 if and only if G is a cograph.

Let p be a prime and let φ = (φw)w∈V be a linearly independent family of
polynomials in Zp[X]. Let q = (qw)w∈V and q̄ = (q̄w)w∈V be defined by qw =∑

w′∈NG(w) φw′ and q̄w = qw+φw, for each w ∈ V . We also define αu,v = φu−φv,
βu,v = qu − qv and γu,v = q̄u − q̄v, for each u, v ∈ V . The derivated polynomials
of family φ are the following polynomials: (αu,v)u,v∈V , (βu,v)u,v∈V , (γu,v)u,v∈V .

Let u and v be twins. We associate to G− v the polynomials (φ′
w)w∈V \{v} by

φ′
w = φw, when w �= u, and φ′

u = φu + φv. By using this construction, starting
with φu(x) = xu, and following the canonical ordering vk, . . . vn, we obtain
polynomials φi

u, for each k ≤ i ≤ n and each u in the graph G− {vn, . . . , vi+1}.
We call these polynomials the basic polynomials of G. The canonical family of
polynomials of G is the union of basic polynomials and their derivated. This
family has at most n× 3n2 = 3n3 polynomials.

We say that a vector m = ((aw, bw))w∈V ∈ (Zp)
2n is valid for G at t ∈ Zp

if there is a linearly independent family of polynomials (φw)w∈V in Zp[X] such
that aw = φw(t) and bw = qw(t), for each w ∈ V .

Lemma 2. Let m = ((aw, bw))w∈V ∈ (Zp)
2n be valid for G at t. Let u, v be twins

in G such that au �= av. Then, the following vector m′ = ((a′w , b′w))w∈V \{v} ∈
(Zp)

2n−2 is valid for G− v at t. For each w ∈ V \ {u, v}: a′w = aw and b′w = bw.
For w = u: a′u = au + av and b′u = bu − avδuv, where δuv ∈ {0, 1} and δuv = 1
if and only if au + bu = av + bv.

Proof. Let (φw)w∈V be a linearly independent family of polynomials associated
to m. Since u and v are twins and au �= av, we have that au+ bu = av + bv if and
only if u and v are adjacent. Hence, δuv = 1 if and only if u and v are adjacent.

382 J. Kari et al.

Let (φ′
w)w∈V \{v} be given by φ′

w = φw for each w �= u, and φ′
u = φu + φv.

Clearly, this family is linearly independent.
For w �= u we have that a′w = aw = φw(t) = φ′

w(t). Moreover, b′w = bw and
bw = qw(t). Since u and v are twins either both are in NG(w) or none. In both
cases we have that b′w = q′w(t). By definition, a′u = au + av = φu(t) + φv(t) =
φ′
u(t). Also, by definition, b′u = bu−δuvav. We know that bu = qw(t) = δuvφv(t)+

q′w(t). Hence, b′u = q′w(t). �
Proposition 10. For any constant c > 0, P4-Induced Subgraph can be
solved with a randomized O(log n) message size protocol with 1/nc error.

Proof. Let G = (V,E) be an n-node graph. Let p be prime with 3nc+4 ≤ p ≤
6nc+4. The protocol applied to G is the following. Each node sends to the referee
the message mw such that m = (mw)w∈V is valid for G at t, where t is picked
uniformly at random in Zp. Each node computes such a message by defining
φw(x) = xw.

On input m ∈ (Zp)
2n the referee iterates at most n− 1 times trying to build

the canonical ordering {v1, . . . , vn}. In iteration i he starts with a graph Gi

and a vector mi ∈ (Zp)
2(n−i+1) (with G1 = G and m1 = m). He determines if

there is a pair of nodes u and v in Gi such that aiu �= aiv and either biu = biv or
aiu + biu = aiv + biv He selects, among all these, the lexicographically first pair of
nodes. If no such pair exists, then he rejects. Otherwise, he sets Gi+1 = Gi − v,
setting vn−i+1 = v (w.l.o.g, we assume that v < u). Then he computes mi+1

from mi according to Lemma 2. If the referee reaches iteration n− 1 he accepts.
What is the probability that the referee does not construct the canonical

ordering of G? This could happen only when the chosen t is a zero of at least one
member of the canonical family of G. As this family has at most 3n3 polynomials,
this occurs with probability at most 3n3(n/p) ≤ 1/nc. �

4.1 A Deterministic Protocol for P4-Induced Subgraph

The definition of cographs by closure operations comes with the following natural
hierarchy, which we call the bottom-up hierarchy, and which will be needed in
the proof of Proposition 11. First, Σ0 = Π0 = {K1}. Second, for i ≥ 0, Σi+1 is
the set of disjoint unions of graphs in Πi and Πi+1 is the set of joins of graphs
in Σi. A graph G is a cograph if and only if G ∈ Σi for some i. Notice that Σ1

corresponds exactly to the class of disjoint unions of isolated nodes K1+. . .+K1.
On the other hand, Π1 corresponds to the class of all cliques. More precisely,
Π1 = {Kn}n>0, where Kn is the n-node clique.

Notice that G ∈ Σi ⇐⇒ G ∈ Πi. We can prove this by induction. This is
obviously true for i = 1. Assume now that G = G1+G2 ∈ Σi for some i > 1. The
result follows from the induction hypothesis because G = G1 +G2 = G1 � G2.

Σ2 is exactly the class of P3-free graphs because, as we saw previously, P3-
free graphs are exactly the disjoint unions of cliques. Since P3 = P1 + P2 and
considering the previous observation, we conclude that Π2 is the class of (P1 +
P2)-free graphs.

Solving the Induced Subgraph Problem 383

Let G be a cograph. In [10] the authors define the height of G as the minimum
i such that G ∈ Σi ∪Πi. We do not know if there is a one-round deterministic
protocol. However, any fixed level of the bottom-up hierarchy has a deterministic
protocol with a bounded number of rounds:

Proposition 11. Let h > 0 be a fixed positive integer. Then, there exists a
2(h− 1)-round protocol for the classes Σh and Πh with messages of size logn.

Proof. We prove the existence/correctness/complexity of such protocols by in-
duction on h. For h = 2 we use the two-round protocol of Proposition 8.

For the general case, first note that if the distance between two nodes is finite
and strictly larger than 2, then P4 is an induced subgraph of G. Let us now
describe the protocol for Σh when h > 2 (the one for Πh is symmetric). In the
first round of the protocol, every node v writes on the whiteboard the minimum
ID of the nodes in its closed neighborhood NG[v] = NG(v) ∪ {v}. In the second
round, every node v writes the minimum ID among the IDs written by the nodes
in its closed neighborhood.

If the graph G is indeed P4-free, then after these two rounds, every node
knows the partition G = G1+G2+ · · ·+Gk of G into its connected components.
In the third round, every node includes in its message the verification that this
partition is correct: if some node in Gi is connected to a node in Gj with i �= j
then, its message will state this fact. If this happens, then protocol concludes
that G is not in Σh: in this case G is not even a cograph, because it contains an
induced path of length 3, that is, a copy of P4.

Assuming G is a cograph, every node knows its partition into connected com-
ponents after the second round. Thus, in the third round, we can start perform-
ing the protocol for Πh−1 separately in each of the connected components Gi.
If some Gi is not in Πh−1, then G /∈ Σh. If all of these graphs are in Πh−1, the
recursively called protocols reconstruct the graphs Gi, and our protocol for Σh

reconstructs G as their disjoint union. �
Open Problem 2. Is it possible to solve deterministically, in the SM-BCAST

model, the problem P4-Induced Subgraph using messages of size O(log n)?

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Proc. of the 23rd Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA 2012), pp. 459–467 (2012)

2. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: Sparsification, spanners, and
subgraphs. In: Proc. of PODS 2012, pp. 5–14 (2012)

3. Ajtai, M., Komlós, J., Simonovits, M., Szemerédi, E.: The exact solution of the
Erdos-T. Sós conjecture for (large) trees (in preparation)

4. Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-
freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28.
Springer, Heidelberg (2014)

5. Babai, L., Kimmel, P.G.: Randomized simultaneous messages: Solution of a prob-
lem of Yao in communication complexity. In: Proc. of the 12th Annual IEEE Con-
ference on Computational Complexity, pp. 239–246 (1997)

384 J. Kari et al.

6. Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding
a referee to an interconnection network: What can (not) be computed in one round.
In: Proc. of IPDPS 2011, pp. 508–514 (2011)

7. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-
in-hand communication model for networks: Private coins, public coins and deter-
minism. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83–95.
Springer, Heidelberg (2014)

8. Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. Journal of Combi-
natorial Theory, Series B 16(2), 97–105 (1974)

9. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the
direct sum problem for simultaneous message complexity. In: Proc. of FOCS 2001,
pp. 270–278 (2001)

10. Chudnovsky, M., Scott, A., Seymour, P.: Excluding pairs of graphs. Journal of
Combinatorial Theory, Series B 106, 15–29 (2014)

11. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Dis-
crete Applied Mathematics 3(3), 163–174 (1981)

12. Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distributed
task allocation. In: Proc. of PODC 2012, pp. 67–76 (2012)

13. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: Proc. of PODC 2014, pp. 367–376 (2014)

14. Gronemeier, A.: Asymptotically optimal lower bounds on the NIH-multi-party in-
formation complexity of the AND-function and disjointness. In: Proc. of STACS
2009, pp. 505–516 (2009)

15. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic
graph streams. In: Proc. of PODS 2015, pp. 241–247 (2015)

16. Holzer, S., Pinsker, N.: Approximation of distances and shortest paths in the broad-
cast congest clique. CoRR, abs/1412.3445 (2014)

17. Jayram, T.S.: Hellinger strikes back: A note on the multi-party information com-
plexity of AND. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and
RANDOM 2009. LNCS, vol. 5687, pp. 562–573. Springer, Heidelberg (2009)

18. Kostochka, A.V.: Lower bound of the hadwiger number of graphs by their average
degree. Combinatorica 4(4), 307–316 (1984)

19. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication com-
plexity. Computational Complexity 8(1), 21–49 (1999)

20. Kushilevitz, E.: Communication complexity. Adv. Computers 44, 331–360 (1997)
21. Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multiparty

communication complexity, made easy. In: Proc. of the 23rd Annual ACM-SIAM
Symp. on Discrete Algorithms (SODA 2012), pp. 486–501 (2012)

22. Robertson, N., Seymour, P.D.: Graph minors XX: Wagner’s conjecture. Journal of
Combinatorial Theory, Series B 92(2), 325–357 (2004)

23. Seinsche, D.: On a property of the class of n-colorable graphs. Journal of Combi-
natorial Theory, Series B 16(2), 191–193 (1974)

24. Thomason, A.: An extremal function for contractions of graphs. In: Mathematical
Proc. of the Cambridge Philosophical Society, vol. 95, pp. 261–265 (1984)

25. Thomason, A.: The extremal function for complete minors. Journal of Combina-
torial Theory, Series B 81(2), 318–338 (2001)

26. Woodruff, D.P., Zhang, Q.: When distributed computation is communication ex-
pensive. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 16–30. Springer,
Heidelberg (2013)

27. Yao, A.: Some complexity questions related to distributive computing (preliminary
report). In: Proc. of STOC 1979, pp. 209–213 (1979)

A Separation of n-consensus and (n + 1)-consensus
Based on Process Scheduling

Carole Delporte-Gallet1, Hugues Fauconnier1, and Sam Toueg2

1 Université Paris Diderot, France
2 University of Toronto, ON, Canada

Abstract. A fundamental research theme in distributed computing is the com-
parison of systems in terms of their ability to solve basic problems such as con-
sensus that cannot be solved in completely asynchronous systems. In particular,
in a seminal work [12], Herlihy compares shared-memory systems in terms of
the shared objects that they have: he proved that there are shared objects that are
powerful enough to solve consensus for n processes, but are too weak to solve
consensus for n + 1 processes; such objects are placed at level n of a wait-free
hierarchy.

As in [12], we compare shared-memory systems with respect to their ability
to solve consensus for n processes. But instead of comparing systems defined by
the shared objects that they have, we compare read-write systems defined by the
set of process schedules that can occur in these systems. Defining systems this
way can capture many types of systems, e.g., systems whose synchrony ranges
from fully synchronous to completely asynchronous, several systems with failure
detectors, and “obstruction-free” systems. In this paper, we consider read-write
systems defined in terms of sets of process schedules, and investigate the follow-
ing fundamental question: Is there a system of n+1 processes such that consensus
can be solved for every subset of n processes in the system, but consensus cannot
be solved for the n + 1 processes of the system? We show that the answer to
the above question is “yes”, and so these systems can be classified into hierarchy
akin to Herlihy’s hierarchy.

1 Motivation and Related Work

A fundamental research theme in distributed computing is the comparison of systems in
terms of their ability to solve basic problems such as consensus or k-set agreement that
cannot be solved in completely asynchronous systems [10,9,4,14,18,17,11,19,8,1,3]. In
particular, in a seminal work [12], Herlihy compares shared-memory systems in terms
of the shared objects that they have: he proved that there are shared objects that are
powerful enough to solve consensus for n processes, but are too weak to solve con-
sensus for n+ 1 processes; such objects are placed at level n of a wait-free hierarchy.
The importance of this hierarchy comes from Herlihy’s universality result: intuitively,
every object at level n of this hierarchy can be used to implement any object shared by
n processes in a wait-free manner.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 385–398, 2015.
DOI: 10.1007/978-3-319-25258-2_27

386 C. Delporte-Gallet, H. Fauconnier, and S. Toueg

As in [12], in this paper we compare shared-memory systems with respect to their
ability to solve consensus for n processes. But instead of comparing systems defined by
the shared objects that they have, we compare systems (with shared registers) defined
by the process schedules that they allow, as we explain below.

First, note that several types of read-write shared-memory systems, e.g., asynchronous,
partially synchronous and synchronous systems, can be defined by the set of process
schedules that may occur in these systems.1 For example, a completely asynchronous
system is one where every process schedule can occur. Similarly, a partially synchronous
system is one where the process schedules satisfy some timeliness or “fairness” con-
ditions [2,16,1] which effectively define the set of process schedules that may occur.
Perfectly synchronous systems can also be defined by the set of process schedules that
can occur. Furthermore, several systems with failure detectors [5] are equivalent to
systems defined in terms of process schedules: for several well-known failure detec-
tors D (including P,�P, S and �S) an asynchronous system augmented with D is
equivalent to a system where schedules satisfy some fairness conditions [16].2 Finally,
obstruction-free algorithms work in systems with a specific set of process schedules,
namely, schedules where some process eventually executes solo [13].

Thus, shared-memory systems defined in terms of process schedules capture a large
set of systems, e.g., systems whose synchrony ranges from fully synchronous to com-
pletely asynchronous, several systems with failure detectors, and “obstruction-free”
systems. In this paper, we consider such systems and investigate the following natu-
ral question:

Is there a system of n + 1 processes such that consensus can be solved for
every subset of n processes in the system, but consensus cannot be solved for
the n+ 1 processes of the system?

If this is true for every n, it would imply that these systems can be classified into hier-
archy akin to Herlihy’s hierarchy.

The answer to the above question is not obvious. In [7] it is shown that if a failure
detector D is powerful enough to solve consensus for every subset of n processes in a
system of n+1 processes, then it is powerful enough to solve consensus for all the n+1
processes in the system. Since [16] shows that several systems with failure detectors are
equivalent to systems defined in terms of process schedules, it is tempting to conjecture
that the answer is “no”.

In this paper we show that the answer to the above question is “yes”. More precisely,
we prove that for every n ≥ 1, there is a read-write shared-memory system S of n+ 1
processes such that: (a) consensus can be solved for every subset of n processes of S,
and (b) consensus cannot be solved for the n+ 1 processes of S.

In fact we prove the following slightly stronger result. For any finite set of processes
P , and all n ≥ 1, there is a system of P such that: (a) consensus can be solved for every

1 Intuitively, a process schedule specifies the order in which processes take steps.
2 The results in [16] were for message-passing systems, but similar results hold for read-write

shared-memory systems.

A Separation of n-consensus and (n+ 1)-consensus Based on Process Scheduling 387

set of n or fewer processes of P , and (b) consensus cannot be solved for any set of n+1
or more processes of P .

Roadmap. In Section 2, we describe the systems under consideration, namely, read-
write shared-memory systems defined in terms of their schedules. In Section 3, we
recall the definition of consensus and explain what it means for an algorithm to solve
this problem in a given system. In Section 4, we give our main results: we prove that
there is a schedule-based read-write system such that: (1) consensus can be solved for
every subset of processes of size n of this system (Section 5), and (2) consensus cannot
be solved for any subset of processes of size n + 1 (Section 6). Some brief remarks
conclude the paper in Section 7.

2 Model

We consider shared-memory systems of processes with SWMR multivalued atomic reg-
isters. Processes proceed by executing atomic steps: in each step, a single process can
read or write a single register. In the following, P is a finite set of processes, and a
process in P is denoted as pj for some j ∈ N.

2.1 Process Schedules

A schedule σ of a finite set of processes P is a finite or infinite sequence where each ele-
ment of the sequence is a process in P , e.g., σ = p2p4p3p1p2p5p4p3p4p2p5p3p3p3p5 . . .
is a schedule of P = {p1, p2, p3, p4, p5}. Each occurrence of a process p in a schedule
σ is called a step of p (in σ). We consider systems with process crashes. A process is
correct in a schedule σ if it occurs infinitely often in σ, otherwise it is faulty (or crashes)
in σ.

Roughly speaking, a schedule σ is k-solo, if σ has a process that runs solo for at least
k consecutive steps infinitely often. More precisely, a schedule σ of a set of processes
P is k-solo if σ is finite or there is a process p ∈ P such that σ contains an infinite
number of subsequences consisting of k or more consecutive steps of p (and only of p).
For example, the schedule σ = p1p2p3p1p2p3p1p2p3 . . . of processes P = {p1, p2, p3}
is not 2-solo, while the schedule σ = p1p2p3p3p1p2p3p3p1p2p3p3 . . . is 2-solo. Note
that if a schedule is k-solo then it is also (k − 1)-solo, and every schedule is trivially
1-solo.

2.2 Systems and Subsystems

Intuitively, a system of a set of processes P is defined by the set Σ of schedules of P
that can occur in this system. More precisely, a system of P is a set Σ of schedules of
P . We say that σ is a schedule of system Σ if σ ∈ Σ. Moreover, Σ′ is a subsystem of
Σ if Σ′ ⊆ Σ.

388 C. Delporte-Gallet, H. Fauconnier, and S. Toueg

In the following, P is a finite set of processes and Q is a subset of P . If σ is a
schedule of P , we denote by σ(Q) the subsequence of σ obtained by keeping only the
steps of the processes that are in Q; e.g., if σ = p2p4p3p1p2p5p4p3p4p2p5p3p3p3p5 and
Q = {p2, p5} then σ(Q) = p2p2p5p2p5p5. Note that σ(Q) is a schedule of Q. If Σ is a
set of schedules of P (i.e., Σ is system of P) we denote by Σ(Q) the set of schedules
obtained by keeping only the steps of the processes that are in Q in the schedules of
Σ; more precisely: Σ(Q) = {σ′ | ∃σ ∈ Σ such that σ′ = σ(Q)}. Note that all the
schedules of Σ(Q) are schedules of Q.

We now define some systems that are central to our results. Let P be a finite set of
processes.

– ΣP = {σ | σ is a schedule of P}; this is the asynchronous system of P (because it
contains all the possible schedules of P).

– Σk
P,n = {σ | σ is a schedule of P and for all Q ⊆ P such that |Q| ≤ n: σ(Q) is

k-solo}.

The following lemma relates the above systems:

Lemma 1. For all finite sets of processes P , n ≥ 1, and k ≥ 1:

1. Σ1
P,n = Σk

P,1 = ΣP .

2. Σk+1
P,n ⊆ Σk

P,n. Moreover, if n ≥ 2 and |P | ≥ n then Σk+1
P,n ⊂ Σk

P,n.
3. Σk

P,n+1 ⊆ Σk
P,n. Moreover, if k ≥ 2 and |P | ≥ n+ 1 then Σk

P,n+1 ⊂ Σk
P,n.

Some Notation. In the proof of this lemma (which is given below) and throughout
this paper we use the following notation to describe some schedules of P . For two
processes p and q in P , (pq)k is the schedule pq repeated k times; for example (pq)3 is
pqpqpq. Similarly, {p, q}k is the set all finite schedules of p and q that contains at least
k steps of p and at least k steps of q, in any order. For example, {p, q}3 includes the
schedules pqpqpq, pppqqqq and ppqqpq, but it does not include the schedule ppprqqq
(because it contains a step of process r) or ppppqq (because it contains fewer than 3
steps of q). The notation (pq)k and {p, q}k for p and q generalizes to any finite set
of processes in the obvious way. We use the operator

∏∞
i=1 to repeat a schedule or a

schedule pattern infinitely many times. More precisely, for a schedule σ,
∏∞

i=1 σ is the
schedule σ · σ · σ · . . ., and for a set of schedules Σ,

∏∞
i=1 Σ is the set of schedules

{σ | σ = σ1 ·σ2 ·σ3 · . . . such that for all i ≥ 1, σi ∈ Σ}. For example,
∏∞

i=1(p
kqk) is

the schedule (pkqk)(pkqk) . . ., and
∏∞

i=1{p, q}k is the set of all schedules σ1 ·σ2 ·σ3 ·. . .
such that every σi ∈ {p, q}k. If Σ is a set of schedules, e.g., {p, q}k or

∏∞
i=1{p, q}k,

say that σ is a schedule of the form Σ if σ ∈ Σ.

Proof. (Lemma 1) Let P be any finite set of processes, n ≥ 1, and k ≥ 1.

1. It is clear that Σ1
P,n ⊆ ΣP and Σk

P,1 ⊆ ΣP . We now show that ΣP ⊆ Σ1
P,n and

ΣP ⊆ Σk
P,1. Consider any schedule σ ∈ ΣP . For every Q ⊆ P (of any size n), the

schedule σ(Q) is trivially 1-solo; so σ ∈ Σ1
P,n. Thus, ΣP ⊆ Σ1

P,n.

A Separation of n-consensus and (n+ 1)-consensus Based on Process Scheduling 389

For every Q ⊆ P such that |Q| ≤ n = 1, the schedule σ(Q) is trivially k-solo, for
every k; so σ ∈ Σk

P,1. Thus, ΣP ⊆ Σk
P,1.

2. To prove that Σk+1
P,n ⊆ Σk

P,n, consider any schedule σ ∈ Σk+1
P,n . By definition of

Σk+1
P,n , for every Q ⊆ P of size n or less, the schedule σ(Q) is (k + 1)-solo; thus

σ(Q) is also k-solo, and therefore σ ∈ Σk
P,n.

Now let n ≥ 2 and P = {p1, p2, . . . , }. To prove that Σk+1
P,n ⊂ Σk

P,n, we

give a schedule σ that is in Σk
P,n but not in Σk+1

P,n . Consider the schedule σ =
∏∞

i=1(p
k
1p

k
2) = (pk1p

k
2)(p

k
1p

k
2) . . . of P . It is easy to see that for every Q ⊆ P

such that |Q| ≤ n, the schedule σ(Q) is k-solo, and so σ ∈ Σk
P,n. But for

Q = {p1, p2} ⊆ P of size 2 ≤ n, σ(Q) = σ is not (k + 1)-solo for any k ≥ 1
(because in σ no process ever takes k+1 consecutive steps alone). Thus, σ �∈ Σk+1

P,n .

3. To prove Σk
P,n+1 ⊆ Σk

P,n, consider any schedule σ ∈ Σk
P,n+1. By definition of

Σk
P,n+1, for every Q ⊆ P such that |Q| ≤ n+ 1, the schedule σ(Q) is k-solo. So

for every Q ⊆ P such that |Q| ≤ n, σ(Q) is k-solo; thus σ ∈ Σk
P,n.

Now let k ≥ 2 and P = {p1, p2, . . . , pn+1, . . .}. To prove that Σk
P,n+1 ⊂ Σk

P,n, we
give a schedule σ that is in Σk

P,n but not in Σk
P,n+1. Let σ =

∏∞
i=1[(p1p2)

k(p1p3)
k

(p1p4)
k . . . (p1pn+1)

k].
We claim that for everyQ ⊆ P such that |Q| ≤ n, the schedule σ(Q) is k-solo (and
so σ ∈ Σk

P,n). To see why this claim holds, suppose that Q∩{p1, p2, . . . , pn+1} �=
∅.3 The are two possible cases: either (a) p1 �∈ Q, and so some pj ∈ Q, or (b)
p1 ∈ Q, and, since |Q| ≤ n, some pj �∈ Q. Since the subsequence (p1pj)k appears
infinitely often in σ, in case (a) the subsequence pkj appears infinitely often in σ(Q),
and in case (b) the subsequence pk1 appears infinitely often in σ(Q). Thus in all
cases, σ(Q) is k-solo. So σ ∈ Σk

P,n.
For the subset Q = {p1, p2, . . . , pn+1} of P of size |Q| = n + 1, however, the
schedule σ(Q) = σ is not k-solo for any k ≥ 2 (because in σ no process ever takes
two consecutive steps alone). Thus, σ �∈ Σk

P,n+1 for any k ≥ 2.

� Lemma 1

2.3 Examples of Schedules in Σk
P,n

To provide some intuition about the systems Σk
P,n that we defined, we now give a few

simple examples of schedules that are in Σk
P,n and of schedules are not in Σk

P,n.4 Let
P = {p1, p2, . . . , pn+1, . . .} be a finite set of at least n+1 processes, where n ≥ 3. We
start with examples of schedules σ ∈ Σk

P,n:

3 If Q ∩ {p1, p2, . . . , pn+1, . . .} = ∅ then σ(Q) is the empty sequence, and so it is trivially
k-solo.

4 The examples of schedules that we give here are very simple (they have a simple repetitive
pattern). It should be clear, however, that the set of schedules of Σk

P,n is very “rich”: it con-
tains schedules that are much more varied and complex than the few simplistic ones given for
illustration here.

390 C. Delporte-Gallet, H. Fauconnier, and S. Toueg

(a) σ is any schedule of the form
∏∞

i=1[{p1, p2}k{p1, p3}k{p1, p4}k . . . {p1, pn+1}k].
Note that for every Q ⊆ P such that |Q| ≤ n, the schedule σ(Q) is k-solo (the
proof is similar to one that we gave for the claim in the proof of Lemma 1 part (3)).
Thus, σ ∈ Σk

P,n.
(b) σ =

∏∞
i=1[(p1p2)

k(p2p3)
k(p3p4)

k . . . (pn−1pn)
k(pnpn+1)

k(pn+1p1)
k]. It is easy

to see that for every Q ⊆ P such that |Q| ≤ n, the schedule σ(Q) is k-solo, so
σ ∈ Σk

P,n.

The following schedule is not in system Σk
P,n, i.e., σ �∈ Σk

P,n, for any k ≥ 2:

(a) σ =
∏∞

i=1[(p1p2)
k(p3p4)

k . . . (pn−2 pn−1)
k(pn pn+1)

k]. To see that σ �∈ Σk
P,n,

note that for the subset Q = {p1, p2} of P of size 2 ≤ n, the schedule σ(Q) =∏∞
i=1(p1p2)

k = p1p2p1p2p1p2 . . . is not k-solo for any k ≥ 2.

3 Consensus

In the well-known consensus problem, each process has an initial value and must decide
a value such that the following three properties hold:

– Agreement: If correct processes p and q decide v and v′, respectively, then v = v′;
– Integrity: If a correct process decides v, then v is the initial value of some process.
– Termination: Every correct process eventually decides some value.

The initial value and decision value of a process are also called the input value and
output value of this process.

In a stronger variant of consensus, called uniform consensus, agreement and integrity
also apply to faulty processes. More precisely, uniform consensus requires: (a) uniform
agreement: If any two processes p and q decide v and v′, respectively, then v = v′; (b)
uniform integrity: If any process decides v, then v is the initial value of some process;
and (c) termination: Every correct process eventually decides some value.

Solving Consensus. We now explain what it means for an algorithm to solve consensus
for a set of processes in a given system. The definitions that we give here are rather in-
formal, but sufficient for understanding the statements and proofs of the paper’s results.
In the following, Q is a finite set of processes and A is an algorithm for Q.

A run R of A by Q is an execution of the algorithm A by the processes in Q: the run
R specifies the initial state of each process in Q and the sequence of algorithm steps
that the processes in Q take during their execution of A. The schedule σR of a run R
of A is the sequence of processes that take steps of A in R, in the order in which these
steps occur: e.g., if in run R process p4 takes the first step of A, then p1 takes the next
two steps of A, and then p3 takes the last step of A, σR = p4p1p1p3. Note that if R is
a run of A by Q, then σR is a schedule of Q. A process is correct in a run R of A if it
is correct in the schedule σR of R, and it is faulty otherwise.

A solves [uniform] consensus for Q in a run R, if R is a run of A by Q that satisfies
the three properties of [uniform] consensus for all the processes in Q. Let P be a finite

A Separation of n-consensus and (n+ 1)-consensus Based on Process Scheduling 391

set of processes, Q be a subset of P , and Σ be a system of P (i.e., Σ is a set of schedules
of P). A run R of A by Q is in system Σ if the schedule σR of R is such that σR = σ(Q)
for some σ ∈ Σ. A solves [uniform] consensus for Q in system Σ if A solves [uniform]
consensus for Q in every run R of A by Q in system Σ.

In general, an algorithm that solves consensus in a given system may not solve uni-
form consensus in that system (in fact, there are algorithms that solve consensus but not
uniform consensus in synchronous systems). But for the systems Σk

P,n that we use in
our results, solving consensus and uniform consensus is equivalent. More precisely:

Lemma 2. Let P be any finite set of processes and Q be any subset of P . For all n ≥ 1,
and all k ≥ 1, if an algorithm A solves consensus for Q in system Σk

P,n, then it also
solves uniform consensus for Q in system Σk

P,n.

The proof of the above lemma uses standard arguments, and so it is omitted here.

4 Main Results

Let P be a set of processes. We now show that for all n ≥ 1, there is a system Σn of P
such that: (a) consensus can be solved for every set of n or fewer processes of P , and
(b) consensus cannot be solved for any set of n + 1 or more processes of P . To prove
this, we show that for all n ≥ 1: (a) for some k ≥ 1, consensus can be solved for every
set of n or fewer processes in system Σk

P,n, and (b) for all k ≥ 1, consensus cannot be
solved for any set of n+1 or more processes in system Σk

P,n. Part (a) and (b) are shown
in Sections 5 and 6, respectively.

5 Possibility of n-consensus in Σk
P,n

Theorem 1. Let P be any finite set of processes. For all n ≥ 1, there is a k ≥ 1 such
that: for all Q ⊆ P such that |Q| ≤ n, consensus can be solved for Q in system Σk

P,n.

Proof (Proof Sketch). The proof of Theorem 1 follows from the existence of bounded
obstruction-free consensus algorithms in shared-memory systems with SWMR regis-
ters [6] and so it is only sketched here.

From results in [6], we know that for every integerm, there is a constant km such that
for every set Q of processes of size m, there is an algorithmBQ that solves consensus for
Q in every run where some process executes km steps solo; more precisely, in every run
R of BQ where the schedule of R is a km-solo schedule of Q, the validity, agreement
and termination properties of consensus are satisfied for the processes in Q.

Let P be any finite set of processes, let n ≥ 1, and let k = max
1≤l≤n

kl. Consider any

subset Q ⊆ P such that |Q| = m ≤ n. We claim that consensus can be solved for Q in
the system Σk

P,n of P . To see this, suppose the m processes in Q execute the algorithm

392 C. Delporte-Gallet, H. Fauconnier, and S. Toueg

BQ among themselves in the system Σk
P,n of P . Let σ be the schedule of P in this

execution, so σ ∈ Σk
P,n. For the m processes in Q, this execution is indistinguishable

from a run R of BQ where they are the only processes that take steps; more precisely,
for the m processes in Q, this execution is indistinguishable from a run R of BQ where
the schedule σR of R is σ(Q). Since σ ∈ Σk

P,n and |Q| ≤ n, the schedule σ(Q) is
k-solo. Since m ≤ n and k = max

1≤l≤n
kl, k ≥ km, and so the schedule σ(Q) is also

km-solo. We conclude that the execution of the algorithm BQ by the m processes in Q
in system Σk

P,n is indistinguishable from a run R of BQ where only the processes in Q
take steps, and the schedule σ(Q) of R is km-solo. Thus BQ solves consensus for Q in
this run. � Theorem 1

6 Impossibility of (n + 1)-consensus in Σk
P,n

Theorem 2. Let P be any finite set of processes. For all n ≥ 1, and all k ≥ 1:
for all Q ⊆ P such that |Q| ≥ n+1, consensus cannot be solved for Q in system Σk

P,n.

Proof. Consider any finite set of processes P and let n ≥ 1. We now prove that for all
k ≥ 1, and all subsets of processes Q ⊆ P such that |Q| ≥ n+ 1, consensus cannot be
solved for Q in system Σk

P,n.
For n = 1, the proof is straightforward. There are two possible cases. If |P | ≤ 1,

then there is no Q ⊆ P such that |Q| ≥ n+1 = 2, so the theorem trivially holds in this
case. Now assume that |P | ≥ 2. By Lemma 1, we have Σk

P,1 = ΣP , i.e., Σk
P,1 is the

asynchronous system of the processes in P . From the results in [15,10], it is known that
in the asynchronous system of P (which contains at least two processes), consensus
cannot be solved for any set of processes Q ⊆ P such that |Q| ≥ n+ 1 = 2.

Now let n ≥ 2. Suppose, for contradiction, that there is a k ≥ 1, a subset of processes
Qm+1 ⊆ P such that |Qm+1| = m + 1 ≥ n + 1, and an algorithm Cm+1 that solves
consensus for Qm+1 in system Σk

P,n. Let Qm+1 = {q1, q2, . . . , qm+1}. We will show
that two processes p1 and p2 can use Cm+1 to solve consensus in the asynchronous
system Σ{p1,p2} — contradicting the well-known impossibility result in [15,10].

To solve consensus among themselves, processes p1 and p2 simulate the execution
of the consensus algorithm Cm+1 by the m+ 1 processes of Qm+1 such that: (a) the
simulated executions of algorithm Cm+1 by the processes in Qm+1 are in system Σk

P,n,
and (b) if p1 or p2 do not crash, then at least one of the m+ 1 processes in Qm+1

that they simulate does not crash. By property (a), the simulated runs of Cm+1 solve
consensus for Qm+1, and by property (b), p1 and p2 can wait till one of the processes
in Qm+1 decides a value (and then adopt this value as its own decision value).

To show how the above simulation works, we first define a set of schedules of the
processes Qm+1 in system Σk

P,n (we will later show that p1 and p2 can simulate these
schedules in the asynchronous system Σ{p1,p2}). Intuitively, this set consist of: (1) all

A Separation of n-consensus and (n+ 1)-consensus Based on Process Scheduling 393

Shared variables:

/* Program Counters of simulated processes q1, q2, . . . , qm+1 */

PC[1..m + 1]: array of SWSR registers, initialized to [0..0]

CODE FOR PROCESS p1: /* process p1 simulates process q1 executing algorithm Cm+1*/

1 input value of process q1 in Cm+1 := input value of process p1
2 forever do
3 PC[1] := PC[1] + 1
4 execute one step of process q1 running algorithm Cm+1

5 if process q1 decides some value v in Cm+1 then decide v

CODE FOR PROCESS p2: /* process p2 simulates processes q2, q3, . . . , qm+1

executing algorithm Cm+1*/

Local variables:

pc[1..m + 1]: array of integers
j: integer

6 for j = 2 to m do
7 input value of process qj in Cm+1 := input value of process p2
8 for i = 1, 2, . . . do /* simulation of {q1, qj}k steps of processes q1 and qj */
9 j := 2 + (i− 1)mod m /* with j = 2, 3, . . . ,m+ 1, 2, . . . in round-robin order */
10 pc[1] := PC[1]
11 pc[j] := PC[j]
12 while (PC[1] ≤ pc[1] + k) or (PC[j] < pc[j] + k) do
13 PC[j] := PC[j] + 1
14 execute one step of process qj running algorithm Cm+1

15 if process qj decides a value v in Cm+1 and p2 has not yet decided then decide v

Fig. 1. Processes p1 and p2 simulate the execution of Cm+1 by processes q1, q2, . . . , qm+1 in
system Σk

P,n.

schedules of the form
∏∞

i=1[{q1, q2}k{q1, q3}k . . . {q1, qm+1}k],5 (2) all the finite pre-
fixes of such schedules, and (3) all the finite prefixes of such schedules followed by q∞

(i.e.. an infinite sequence of steps of q) for some process q ∈ Qm+1. More precisely:

Lemma 3. Let Σ be the set of schedules of the form
∏∞

i=1[{q1, q2}k{q1, q3}k . . . {q1,
qm+1}k]. Let σ be any schedule such that: (1) σ is in Σ, or (2) σ is a finite prefix of a
schedule in Σ, or (3) σ = σ′q∞ where σ′ is a finite prefix of a schedule in Σ, and q is
a process in Qm+1. Then σ is a schedule of system Σk

P,n.

Proof. Let σ be any schedule as defined above. To prove that σ is in Σk
P,n, we must

show that for all Q ⊆ P such that |Q| ≤ n, the schedule σ(Q) is k-solo. There are
three possible cases:

5 Recall that {q, q′}i is any sequence of steps of q and q′ that contains at least i steps of q and
at least i steps of q′, in any order.

394 C. Delporte-Gallet, H. Fauconnier, and S. Toueg

1. σ is schedule of the form
∏∞

i=1[{q1, q2}k{q1, q3}k . . . {q1, qm+1}k].
First note that if Q ∩ Qm+1 = ∅, then σ(Q) is the empty schedule, and so it is
trivially k-solo. Now assume that Q ∩Qm+1 �= ∅.
Suppose q1 ∈ Q. Since |Q| ≤ n and |Qm+1| = m+ 1 ≥ n+ 1, there is a process
qj ∈ Qm+1 \ Q. Note that subsequences of the form {q1, qj}k appears infinitely
often in σ. Thus, since q1 ∈ Q and qj �∈ Q, the subsequence qk1 appears infinitely
often in σ(Q). In other words, process q1 runs solo for k steps infinitely often in
σ(Q). So σ(Q) is k-solo.
Suppose q1 �∈ Q. Since Q ∩ Qm+1 �= ∅, there is a process qj ∈ Q ∩ Qm+1. Note
that subsequences of the form {q1, qj}k appears infinitely often in σ. Thus, since
q1 �∈ Q and qj ∈ Q, the subsequence qkj appears infinitely often in σ(Q). So σ(Q)
is k-solo.

2. σ is finite. Then σ(Q) is also finite, and it is trivially k-solo.
3. σ = σ′q∞ for some finite σ′ and a process q. If q ∈ Q, then q∞ is a suffix of σ(Q),

so σ(Q) is k-solo. If q �∈ Q, then σ(Q) is finite, and so it is trivially k-solo.

So in all possible cases, σ(Q) is k-solo. � Lemma 3

We now show that when processes p1 and p2 execute the algorithm in Figure 1 in the
asynchronous system Σ{p1,p2}, they simulate the m+ 1 processes of Qm+1 executing
the algorithm Cm+1 in system Σk

P,n.

Lemma 4. When processes p1 and p2 execute the algorithm in Figure 1 in the asyn-
chronous system Σ{p1,p2}, they simulate runs of Cm+1 by the processes Qm+1 in system
Σk

P,n, i.e., the schedules of these simulated runs are schedules of Σk
P,n.

Proof. First note that each time process p1 executes an iteration of its forever loop
(lines 2-5), it increments PC[1] and does one step of process q1 executing algorithm
Cm+1. Similarly, each time process p2 executes an iteration of its while loop (lines 12-
15) for a process qj ∈ {q2, . . . , qm+1}, it increments PC[j] and does one step of pro-
cess qj executing algorithm Cm+1. Thus, it is clear that p1 and p2 simulate runs of Cm+1

by the processes in Qm+1. It remains to show that the schedules of these simulated runs
are schedules of the system Σk

P,n. In the following, we prove that they are either: (1)
schedules of the form

∏∞
i=1[{q1, q2}k{q1, q3}k . . . {q1, qm+1}k], or (2) finite prefixes

of such schedules, or (3) finite prefixes of such schedules followed by q∞ for some
process q ∈ Qm+1. By Lemma 3, all these schedules are indeed schedules of system
Σk

P,n.
From the code and the termination condition of process p2’s while loop of line 12,

it is clear that p2 completes each execution of the while loop that it starts, unless it
crashes or process p1 crashes (and stops incrementing PC[1]). Thus, unless p1 or p2
crash, process p2 executes an infinite number of iterations of the for-loop of line 8.
Note that during its i-th iteration of this for-loop, process p2 simulates the steps of
process qj for j = 2 + (i − 1)mod m. So in the successive iterations of this for-loop,
process p2 simulates the steps of the processes q2, q3,, qm+1 in round-robin order.

Let ti be the time when process p2 starts its i-th iteration of the for-loop of line 8; ti
is undefined if p2 never starts this iteration. From the above, we have the following:

A Separation of n-consensus and (n+ 1)-consensus Based on Process Scheduling 395

Observation 3. If, for some � ≥ 1, t� is undefined then process p1 or p2 (or both)
crash.

To show that p1 and p2 simulate schedules of Σk
P,n, we consider the steps of the

processes in Qm+1 that p1 and p2 simulate from time 0 (when p1 or p2 start executing
the simulation algorithm) to time t1, from time t1 to time t2,..., from time tj to time
tj+1,... until we reach a time tk that is undefined if such a time exists.

Note first that if t1 is not defined, then p2 crashes before executing its first for-loop
of line 8, so p2 never simulates any step. Since process p1 simulates only the steps of
process q1, the resulting simulated schedule of Qm+1 is simply q∞1 or some finite prefix
of q∞1 (if p1 crashes). By Lemma 3 this is a schedule of Σk

P,n.
Henceforth assume that t1 is defined. During the interval [0, t1] process p2 does not

simulate any step, and process p1 simulates only steps of process q1. So during interval
[0, t1] the simulated schedule is some finite prefix of q1∞.

Now suppose that, for some i ≥ 1, ti is defined. Let j = 2 + (i − 1)mod m. As we
noted before, qj is the (only) process of Qm+1 that p2 simulates during its i-th iteration
of the for-loop of line 8 that starts at time ti.

There are two possible cases:

(1) ti+1 is defined. In this case, we show that during the interval of time [ti, ti+1],
processes p1 and p2 simulate a sequence of steps of the form {q1, qj}k.

Claim. In the interval [ti, ti+1] processes p1 and p2 simulate only the steps of pro-
cesses q1 and qj , and they simulate at least k steps of q1 and at least k steps of qj .

Proof. First note that during interval [ti, ti+1], process p1 simulates only steps of
process q1, and process p2 simulates only steps of process qj .
Process p2 stores the value ofPC[1] in pc[1] at some time τ1, and p2 stores the value
of PC[j] in pc[j] at some time τ2, such that ti ≤ τ1 ≤ τ2 < ti+1. Furthermore,
the while loop that p2 executes during the interval [ti, ti+1] ends at some time τ3 ≤
ti+1, when p2 finds that (PC[1] > pc[1]+k) and (PC[j] ≥ pc[j]+k) holds. Since
PC[1] = pc[1] at time τ1 and PC[1] > pc[1] + k at time τ3, then at least k steps of
process q1 are simulated during the interval [τ1, τ3]. Similarly, since PC[j] = pc[j]
at time τ2 and PC[j] ≥ pc[j] + k at time τ3, then at least k steps of process qj are
simulated during the interval [τ2, τ3]. We conclude that during interval [ti, ti+1],
only steps of processes q1 and qj are simulated, and at least k steps of q1 and at
least k steps of qj are simulated. � claim

(2) ti+1 is undefined.

Claim. After time ti, only the steps of processes q1 and qj are simulated. Further-
more, there is a time τ ≥ ti after which only steps of process q1 are simulated, or
only steps of process qj are simulated, or no steps are simulated.

Proof. Since ti+1 is undefined, process p2 never starts its (i + 1)-th iteration of
the for-loop of line 8. Thus, after time ti process p2 can simulate only the steps
of process qj . Since p1 simulates only the steps of process q1, after time ti only

396 C. Delporte-Gallet, H. Fauconnier, and S. Toueg

the steps of q1 and qj can be simulated. Furthermore, since ti+1 is undefined, by
Observation 3 process p1 or process p2 (or both) crash. If p2 crashes then after this
crash occurs no steps of qj are simulated. If p1 crashes then after this crash occurs
no steps of q1 are simulated. So there is a time τ ≥ ti after which only steps of
process q1 are simulated, or only steps of process qj are simulated, or no steps are
simulated. � claim

From the above, it is clear that when p1 and p2 execute the algorithm in Figure 1 in
the asynchronous system Σ{p1,p2}, they simulate a run R of the consensus algorithm
Cm+1 by the m+ 1 processes of Qm+1 such that the schedule σ of R is of the form∏∞

i=1[{q1, q2}k{q1, q3}k . . . {q1, qm+1}k], or it is a finite prefix of such a schedule, or
it is a finite prefix of such a schedule followed by q∞ for some process q ∈ Qm+1. By
Lemma 3, this schedule σ is in Σk

P,n. Thus, when p1 and p2 execute the algorithm in
Figure 1 in the asynchronous system Σ{p1,p2}, they simulate a run of algorithm Cm+1

by the m+ 1 processes of Qm+1 in system Σk
P,n. � Lemma 4

We now show that when p1 and p2 execute the algorithm in Figure 1 in the asyn-
chronous system Σ{p1,p2}, they solves consensus among themselves.

Consider an execution of the algorithm in Figure 1 where p1 and p2 have input value
v1 and v2, respectively. In this execution, process p1 simulates the steps of process q1
executing algorithm Cm+1 with input v1 (see line 1); if process q1 decides a value v
in Cm+1, then p1 also decides v. Similarly, process p2 simulates the steps of processes
q2, q3, . . . , qm+1 executing algorithm Cm+1 with input v2 (see line 7). If any process in
q2, q3, . . . , qm+1 decides a value in Cm+1, then p2 also decides this value. By Lemma 4,
this execution simulates a run of the consensus algorithm Cm+1 by the m+ 1 processes
of Qm+1 in system Σk

P,n. We now show that p1 and p2 reach consensus.

– (Uniform) Agreement: If p1 and p2 decide, then p1 decides the value that process
q1 decides, and p2 decides the value that some process qj ∈ {q2, q3, . . . , qm+1} de-
cides, in the simulated run of Cm+1 by Qm+1 in system Σk

P,n. Since the algorithm
Cm+1 solves consensus for Qm+1 in system Σk

P,n, by Lemma 2, it also solves uni-
form consensus for Qm+1 in this system. So by the uniform agreement property, q1
and qj decide the same value. Thus, p1 and p2 also decide the same value.

– Termination: If process p1 is correct, then the process q1 that it simulates is also
correct (i.e., q1 takes an infinite number of steps) in the simulated run of Cm+1

by Qm+1 in system Σk
P,n. Since Cm+1 solves uniform consensus for Qm+1 in

system Σk
P,n, by the termination property, correct process q1 decides a value in this

simulated run of Cm+1. So p1 also decides a value.
If process p2 is correct, then at least one process qj ∈ {q2, q3, . . . , qm+1} that p2
simulates is also correct in the simulated run of Cm+1 by Qm+1 in system Σk

P,n. By
the termination property, correct process qj decides a value in this simulated run of
Cm+1. So p2 also decides a value.

– (Uniform) Integrity: If p1 or p2 decides a value v, then some process p ∈ Qm+1 de-
cides v in the simulated run of Cm+1 by Qm+1 in system Σk

P,n. Since Cm+1 solves
uniform consensus for Qm+1 in system Σk

P,n, by the uniform integrity property, v

A Separation of n-consensus and (n+ 1)-consensus Based on Process Scheduling 397

must be the input value of some process q ∈ Qm+1 in this run of Cm+1. Note that
the input value of q in this simulated run of Cm+1 is the input value of p1 or p2
(algorithm lines 1 and 7). So v is the input value of p1 or p2.

Therefore the algorithm in Figure 1 solves consensus for p1 and p2 in the asyn-
chronous system Σ{p1,p2} — contradicting the results in [15,10]. � Theorem 2

From Theorems 1 and 2, we have the following result:

Theorem 4. Let P be any finite set of processes. For all n ≥ 1, there is a system of P
such that:

(a) consensus can be solved for every subset of P with at most n processes, and
(b) consensus cannot be solved for any subset of P with at least n+ 1 processes.

By setting P = {p1, p2, . . . , pn+1} in the above theorem, we have the following:

Corollary 1. For all n ≥ 1, there is a system of P = {p1, p2, . . . , pn+1} such that:

(a) consensus can be solved for every proper subset of P , and
(b) consensus cannot be solved for P .

7 Concluding Remarks

The synchrony, asynchrony, and partial synchrony of systems can be defined in a simple
and natural way by the set of process schedules that these systems allow. In this paper,
we consider such schedule-based systems in the context of read-write shared-memory,
and solve the following basic question: are there read-write shared-memory systems that
can solve consensus for every subset of n processes but not for n+ 1 processes? Since
the answer is “yes”, this work provides a step towards a hierarchy of systems defined
in terms of sets of schedules, akin Herlihy’s hierarchy for wait-free objects, where a
shared object is at level n if it can solve consensus among any set of n processes but
cannot solve consensus for n + 1 processes. In this sense, this work may also provide
a step towards a possible unification of the “separate worlds” of partial synchrony and
shared objects.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Partial synchrony based on
set timeliness. Distributed Computing 25(3), 249–260 (2012)

2. Aguilera, M.K., Toueg, S.: Adaptive progress: a gracefully-degrading liveness property. Dis-
tributed Computing 22(5-6), 303–334 (2010)

3. Biely, M., Robinson, P., Schmid, U.: The generalized loneliness detector and weak system
models for k-set agreement. IEEE Trans. Parallel Distrib. Syst. 25(4), 1078–1088 (2014)

4. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous
computations. In: Proceedings of the 25th Annual ACM Symposium on Theory of Comput-
ing (STOC), pp. 91–100 (1993)

398 C. Delporte-Gallet, H. Fauconnier, and S. Toueg

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225–267 (1996)

6. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Black art: Obstruction-free k-
set agreement with |MWMR registers| < |proccesses|. In: Gramoli, V., Guerraoui, R. (eds.)
NETYS 2013. LNCS, vol. 7853, pp. 28–41. Springer, Heidelberg (2013)

7. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Tight failure detection bounds on atomic
object implementations. Journal of the ACM 57(4), April 2010

8. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagreement power
of an adversary. Distributed Computing 24(3-4), 137–147 (2011)

9. Dolev, D., Dwork, C., Stockmeyer, L.J.: On the minimal synchronism needed for distributed
consensus. Journal of the ACM 34(1), 77–97 (1987)

10. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

11. Gafni, E., Kuznetsov, P.: The weakest failure detector for solving k-set agreement. In: Pro-
ceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC),
pp. 83–91 (2009)

12. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149
(1991)

13. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended
queues as an example. In: ICDCS 2003: Proceedings of the 23rd International Conference
on Distributed Computing Systems, pp. 522–529. IEEE Computer Society, May 2003

14. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. Journal of
the ACM 46(6), 858–923 (1999)

15. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research 4(31), 163–183 (1987)

16. Pike, S.M., Sastry, S., Welch, J.L.: Failure detectors encapsulate fairness. In: Lu, C., Ma-
suzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 173–188. Springer,
Heidelberg (2010)

17. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot model. In:
Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497. Springer, Heidelberg
(2008)

18. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

19. Zielinski, P.: Anti-Ω: the weakest failure detector for set agreement. Distributed Comput-
ing 22(5-6), 335–348 (2010)

Under the Hood of the Bakery Algorithm:
Mutual Exclusion as a Matter of Priority�

Yoram Moses�� and Katia Patkin

Technion - Israel Institute of Technology, Haifa 32000, Israel

Abstract. A new approach to the study and analysis of Mutual Exclusion (ME)
algorithms is presented, based on identifying the priority relation that the ME al-
gorithm constructs. It is argued that by analyzing how a process detects that it has
priority over all other processes, ME algorithms can be better understood and im-
proved. The approach is illustrated by applying it to Lamport’s celebrated Bakery
algorithm in the safe register SWMR model. By analyzing how Bakery estab-
lished and detects priority, cases in which the Bakery algorithm causes processes
to block unnecessarily are identified. Namely, a process that already knows that
it has priority over another process is made to perform reads and wait on regis-
ters of the other process. An optimized version of the Bakery algorithm, called
Boulangerie, is proposed, and is shown to be free of any unnecessary blocking. A
second contribution of the approach is obtaining a clear explanation for how the
Bakery algorithm uses reads from safe registers to detect that a process has prior-
ity. Our analysis provides more insight into the workings of the Bakery algorithm
than is obtained by other proofs of its correctness.

Keywords: mutual exclusion, Bakery algorithm, safe registers, Boulangerie
algorithm.

1 Introduction

Mutual Exclusion (ME) is a fundamental problem in distributed system. Indeed, many
consider the introduction of ME by Dijkstra in [5] as the starting point of the field
of distributed computing. Intuitively, at the heart of every mutual exclusion algorithm
lies a priority relation among processes. To be in the critical section, a process must
have priority over all other processes, who are denied access. We suggest that explicitly
identifying the priority relation underlying a given ME algorithm is helpful for gaining
a better understanding of the workings of the algorithm. One of the benefits of such an
understanding can be identifying inefficiencies in ME algorithms and improving them.
This papers applies this approach to Lamport’s Bakery algorithm in the safe register
SWMR model, providing new insights into the algorithm, and explaining how it obtains
its goals despite the use of safe registers. This allows us to identify inefficiencies and
offer optimizations that strictly improve the Bakery algorithm.

� This work was supported in part by ISF grant 1520/11.
�� Yoram Moses is the Israel Pollak academic chair at the Technion.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 399–413, 2015.
DOI: 10.1007/978-3-319-25258-2_28

400 Y. Moses and K. Patkin

Lamport’s Bakery algorithm for mutual exclusion from 1974 [9] is a very influential
early solution to mutual exclusion.1 Moreover, he was surprised to discover that the
algorithm is correct under the weak memory assumption that registers are safe. For safe
registers, a read operation on a register that overlaps a write to the same register can
return an arbitrary value. As a result, the value obtained by a read is not necessarily a
value that was ever written to it.

There are several proofs of correctness of other variants of the Bakery algorithm
[1,4,18,19], as well as mechanical proofs of Lamport’s original Bakery [8,15]. Typi-
cally, such a proof is based on an inductive invariant, involving a conjunction of several
claims, that are all shown to be maintained by every step of the algorithm. While the
invariants capture an essential aspect of the algorithm, they do not necessarily provide
a clear explanation of the algorithm’s rationale. Our goal is to provide a new analysis
that explains the algorithm in a more transparent fashion.

In a mutual exclusion algorithm, if some process enters the critical section (CS), then,
until it leaves the CS, no other process can enter. In this sense, a process in the CS has
priority over all others. Identifying the priority relation underlying an ME algorithm and
analyzing how processes detect that they have priority over others allows insight into
the workings of the algorithm. The current paper studies the priority relation underlying
the Bakery algorithm. This provides insight into the role of its different components.
Moreover, it points to unnecessary blocking and waiting in the Bakery algorithm, and
allows a strict improvement to be obtained. Indeed, we prove that improved version,
which we call Boulangerie, does not suffer from unnecessary blocking.

The Bakery algorithm gets its name from the scheme used in some bakeries or shops,
whereby a customer obtains a number upon entry, and the one with the smallest number
has priority over the others. In the algorithm, for two processes that are both far enough
along in pursuing the critical section (having “entered the bakery”), the one with the
smaller number has priority over the other, with ties broken according to the process
IDs. For processes that are already in the bakery, priority induces a total ordering. But
the Bakery algorithm allows a process to enter the CS even if some or all of the others
are not in the bakery. In this case, the asynchrony and concurrency of process operations
complicate the picture. Interestingly, the general priority relation implemented by the
Bakery algorithm is not even a partial order on processes. Rather, it is an antisymmetric
binary relation, which suffices for mutual exclusion.

By studying the Bakery algorithm’s priority relation, it is shown that the algorithm
sometimes unnecessarily blocks a process from entering the CS and requires it to wait
unnecessarily for reads of other processes even after the process can deduce that it has
priority over them. Two improvements to the algorithm are shown, one of which takes
advantage of the fact that a safe register will not show inconsistent readings for a register
that is not being written to, and another that removes unnecessary reads and unneces-
sary blocking when contention for the CS is low. It is shown that the resulting algorithm,
which we call the Boulangerie algorithm, does not suffer from unnecessary waiting or
unnecessary blocking. Deployment of the Boulangerie algorithm can be incremental,
in the following sense. Even if an arbitrary subset of the processes follow Boulangerie,

1 On Lamport’s web page on his writings, he mentions that “. . . the bakery algorithm marked
the beginning of my study of distributed algorithms.”

http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html

Mutual Exclusion as a Matter of Priority 401

while the others follow the original Bakery algorithm, the result is a correct ME algo-
rithm. The Boulangerie users may gain efficiency, but the Bakery users do not suffer
any inefficiency or degradation from the fact that others are following Boulangerie.
While our analysis provides a rigorous mathematical argument for the correctness of
the Boulangerie algorithm, Lamport has reported that he has successfully completed a
mechanical proof of Boulangerie, based on his earlier mechanical proof of the Bakery
algorithm [14].

The paper is organized as follows. The next section presents the model of compu-
tation and some preliminary definitions. Section 3 reviews the Bakery algorithm and
discusses two ways of breaking it into blocks. It identifies the priority relation underly-
ing the Bakery algorithm, and uses priority to reason about the algorithm and identifies
the role of central steps of the algorithm. Section 4 identifies superfluous blocking in
the Bakery algorithm, describes the Boulangerie algorithm, which is an optimization of
the Bakery algorithm, and shows that it does not contain superfluous blocking. Finally,
section 5 provides some concluding remarks.

2 Preliminary Definitions

This paper studies the Bakery algorithm in the asynchronous shared-memory model
with safe single-writer, multi-reader (SWMR) registers. Access to these registers is ob-
tained only via read(local var ← shared reg) operations, which read a shared regis-
ter shared reg into a local variable local var , and by write(shared reg ← x) opera-
tions, which write a (local variable or constant) value x to shared reg. Other than that,
computation makes use of local variables only. In the SWMR case, every shared regis-
ter has an “owner” who is the process that can write to it. The others can only perform
read operations on the variable. In contrast to local commands such as assignments to
local variables, reads and writes are not executed instantaneously. Every read or write
operation is associated with a starting time, which is when the process initiates the op-
eration, and a completion time, after which the process proceeds to the next line of code
in its program. In between, the process is suspended.

We assume that shared registers are “safe” in the sense of [12]. Such a register is
considered to have a stable value at time t if its owner is not in the midst of a write
operation to the register at that time. In this case, we define its value at time t to be
the last value written to it by its owner (or at initialization). When a register’s value
is unstable, we find it convenient to define its value to be ‘?’. While safe register are
sometimes modelled as having a different value at every moment [8,15], we find the
direct approach of modelling it as “arbitrary”, denoted by ‘?’, to be more natural.

We consider an asynchronous but fair model of computation, in which every pro-
cess is activated infinitely often, and every read and write operation that is initiated
completes in finite time. At any given time, each process is at a well-defined control
state captured by its program counter. At any point in time, the scheduler chooses an
arbitrary subset of the processes and “activates” them, causing each of them to take a
single step of computation according to its program. A process that is about to perform
a read or write will initiate this operation and move to an “i/o-suspended” state. Acti-
vating a process in an i/o-suspended state advances it to the next command. Moreover,

402 Y. Moses and K. Patkin

for a read(local var ← shared reg) it also assigns a value to local var . If the regis-
ter’s value is ‘?’, then the scheduler may assign an arbitrary value to local var ,2 and
otherwise local var will be assigned the current value of shared reg.

A run r of a given program is identified with an infinite sequence of configurations,
and we refer to the configuration at time t in r by (r, t). Each configuration determines
the values of all local variables, shared registers, as well as the program counters for all
processes. (Recall that shared registers may have a value of ‘?’ as described above.)

Reasoning with propositions. It will be convenient to reason about what is true or
false in a given configuration. We shall write (r, t) |= ϕ to state that a formula ϕ is
true, or holds, at (r, t). Our formulas are boolean combinations3 of basic propositions,
where the basic propositions are either statements regarding the values of variables or
registers, or propositions of the form ini(�), where i is a process and � is a line in the
program. We define (r, t) |= ini(�) to hold if i is either about to execute line � at (r, t),
or if the line contains a read or write, and i is suspended at (r, t) in the middle of
the operation at line �. Given a region L consisting of a set of lines of i’s program, it is
natural to use ini(L) as shorthand for

∨
�∈L ini(�). (In our analysis, L will be a region

of the Bakery algorithm, such as the doorway or the bakery.)

3 The Bakery Algorithm

We consider Dijkstra’s mutual exclusion problem [5] for N > 1 processes in an asyn-
chronous shared-memory setting with safe SWMR registers. Lamport’s Bakery algo-
rithm for this model [9] is a protocol P = (P1, . . . , PN), where for each i = 1, . . . , N
the protocol Pi for process i is given by:

The Bakery protocol for process i

0 Initialize: number[i] = 0; choosing[i] = false;
1 while true do
2 non-critical section;
3 choosing[i] := true;
4 number[i] := 1 + max{number[1], . . . , number[N]};
5 choosing[i] := false;
6 forall the j ≤ N s.t. j �= i do
7 await choosing[j] = false ;
8 await number[j] = 0 ∨ 〈number[i], i〉< L〈number[j], j〉 ;

9 critical section;
10 number[i] := 0;

Intuitively, every process begins operation in the non-critical section. It proceeds to
choose a number in lines 3-5. At this stage, the process checks that it is secure w.r.t. each

2 E.g., if the value of shared reg was ‘0’, and ‘1’ is currently being written to it, then a read
can see an arbitrary value, such as 7456. It is required that the value assigned conform to the
register’s type, however.

3 We will freely use boolean operators ‘¬’ (NOT), ‘∧’ (AND) and ‘⇒’ (IMPLIES), with their
standard interpretation.

Mutual Exclusion as a Matter of Priority 403

of the other processes on 6-8, after which it enters the critical section. Upon exiting
the critical section, it resets its number register to 0. Traditionally, four main regions
are distinguished in the Bakery algorithm: line 2 is called the non-critical, lines 3-5
are the doorway, lines 6-9 are the bakery and line 10 is the exit. Within the bakery
region, lines 6-8 are called the testing region, and line 9 is the critical section (CS).
Our analysis will use a slightly different partition of the algorithm into phases, defined
in section 3.2, in which the doorway and bakery regions are modified. For thorough
discussions of the Bakery algorithm, see [2,16,3,17]. On line 8, we use <L to denote
the lexicographical ordering on pairs. Namely, 〈number[i], i〉 < L〈number[j], j〉 will
hold if either number[i] < number[j] or number[i] = number[j] and i < j.

3.1 The Bakery Algorithm in the SWMR Model

The exposition of the Bakery Algorithm above is very close to the original version from
[9]. However, our SWMR shared-memory model restricts access to shared registers to
consist only of read and write operations. Clearly, lines 3, 5 and 10 correspond to
simple write operations. Lines 4 and 6-8 are shorthand for longer bits of code.4

Progress Assumptions. The convention imposed by Dijkstra’s definition of the mutual
exclusion problem is that a process that has no interest in entering the critical section,
which in the bakery setting means that it is in the non-critical section (i.e., line 2), does
not need to participate in the algorithm. Thus, we consider the non-critical as shorthand
for code from which the process may choose, but is not required to, resume operation
in the Bakery code. We assume that the model is asynchronous but fair, in the sense that
processes not in the non-critical will be scheduled to move infinitely often. Observe that
the only part of the algorithm in which a process may be blocked waiting for another
process to move is in the testing region of lines 6-8. Everywhere else, processes progress
in a wait-free fashion.

3.2 Analysis of the Bakery Algorithm

A New Partition into Regions. Recall that in a contiguous region of i’s code that con-
tains no writes to a particular safe register, this register has a fixed value. Any read
performed to it by other processes while process i is in that region will correctly return
this value. Therefore, to facilitate the analysis of the algorithm, we modify the tradi-
tional partition slightly. Our purpose is to ensure that the doorway involves no writes
to choosing[i] and the bakery region has no writes to number[i]. To this end, we shrink
the doorway region to consist only of line 4, and shift the bakery region up by one line.
We combine the writes on lines 3 and 10 and the non-critical section of line 2 to form
a new region that we call the outside region. While we abuse the language slightly and
maintain the old names for the bakery and doorway regions, we will add a dot on top
of the letters used to denote each of the regions, to signal that our regions are slightly
modified. The regions under the new partition are as follows: The doorway region con-
sists of line 4 and denoted by D

·
i, while the outside region consists of lines 1-3 , 10 and

is denoted by Oi. Finally, the bakery region consists of lines 5-9 and denoted by B
·
i.

4 See, e.g., lines 4.1–4.3 in the related algorithm in the Appendix.

404 Y. Moses and K. Patkin

Observe that the computation of each process i cycles through the sequence of re-
gions (Oi;D

·
i;B
·
i;)

∗. Starting on the outside, it can move to the doorway and proceed
to the bakery. There, after setting choosing[i] to false on line 5, it proceeds to the test-
ing region, and can only exit the bakery if it passes through the critical section. Upon
leaving the critical section, a process is on the outside.

Recall that at any configuration of the algorithm, the program counters of the pro-
cesses are recorded. Thus, each process is associated with a unique line � of the pro-
gram, that the process is either in the middle of executing, or is about to execute, when
in that configuration. In this case we say that the process is on line �. We use the notation
for the regions B· i, D· i and Oi as shorthand for specific propositions of the form ini(L)
for the lines contained in each respective region. At any given configuration (r, t) in a
run r of the Bakery algorithm, exactly one of B· i, D· i or Oi will hold.

According to the new partition of the Bakery algorithm, no writes are performed
on the choosing[i] register in the (modified) doorway region D

·
i and no writes are per-

formed on number[i] in the (modified) bakery region B
·
i. This implies the following

invariants:

Lemma 1. Throughout the Bakery algorithm,

(a) D
·
i ⇒ choosing[i] = true, and

(b) B
·
i ⇒ 0 < number[i], B

·
i ⇒ number[i] �= ‘?’, and number[i] is stable while B

·
i

holds.

Both (a) and (b) are immediate from the new partition and the sequential nature of
the algorithm

3.3 A Priority Relation for the Bakery Algorithm

Intuitively, we’d like to think of process i as having priority over j at a given point,
if it is guaranteed there that j cannot enter the CS before i has entered (an exited)
the CS. It is natural to consider a process i that writes a value to number[i] in line 4 as
obtaining a “ticket” for entering the CS, consisting of the pair 〈number[i], i〉. Tickets are
ordered by the lexicographical ordering ‘<L’ on ordered pairs of numbers. Recall that,
by lemma 1(b), the value of number[i] (and hence also the ticket 〈number[i], i〉) remains
unchanged when i is in the bakery region. Since number[h] �= ‘?’ for all processes h
in the bakery region, the lexicographical ordering induces a total order on the tickets of
all of these processes. Suppose that i and j that are both in the bakery region, and that
〈number[i], i〉< L〈number[j], j〉. Then i should be able to successfully test against j
on line 8, while j will not be able to do so against i, before i enters the CS. Roughly
speaking then, i should be viewed as having priority over j. It is not sufficient to define
priority when among processes that are both in the bakery region, because a process
should be able to enter the CS when other processes are in the non-critical section, for
example. To this end, the Bakery algorithm is designed in such a way that if process i
enters the bakery before j enters the doorway, then 〈number[i], i〉 < L〈number[j], j〉
will hold if and when j might later join i in the bakery region. The algorithm thus
guarantees that j cannot enter the CS before i once B

·
i ∧Oj holds. Indeed, the same is

Mutual Exclusion as a Matter of Priority 405

true even if j then advances into the doorway. Based on these observations, we proceed
as follows.

Our formulation of a priority relation will make use of the “Since” operator ‘S’ in
temporal logic, whose definition is: (r, t) |= ϕSψ if for some time t′ ≤ t both (a)
(r, t′) |= ϕ ∧ ψ and (b) (r,m) |= ϕ for all m in the range t′ ≤ m ≤ t. In particular,
if (r, t) |= ϕSψ then (r, t) |= ϕ. The main “Since” property that we will be interested
in is B· i SOj , which in words states that i is now in its bakery region, and it has been in
the bakery region ever since a point in time at which j was in the outside region (and so
B
·
i ∧Oj was true). The definition of S immediately implies:

Lemma 2. If B
·
i SOj holds, then B

·
i SOj continues to hold as long as B

·
i holds (i.e.,

while i remains in the bakery).

We are now ready to define a binary priority relation ‘ � ’ among processes for the
Bakery algorithm:

Definition 1 (PRIORITY). We say that i has priority over j at (r, t), which we denote
by (r, t) |= i � j, if either

(i) (r, t) |= B
·
i ∧ B

·
j ∧ 〈number[i], i〉< L〈number[j], j〉, or

(ii) (r, t) |= B
·
i ∧¬B

·
j ∧ B

·
i SOj .

Notice that i � j can hold only when process i is in the bakery (i.e., when B
·
i holds).

When i � j is obtained by definition 1(i), both processes are in the bakery. Thus, both
number[i] �= ‘?’ and number[j] �= ‘?’, by lemma 1(b). The lexicographical ordering
is well-defined in this case. Formally speaking, the priority relation i � j is simply
shorthand for a simple temporal formula, obtained by taking the OR of the formulas in
parts (i) and (ii) of definition 1.

We note that Lamport has argued in [11] that it is hard to formally specify what
one means by a priority relation in a distributed setting. We do not attempt to specify
priority. Rather, we show that ‘ � ’ satisfies three properties that, in our opinion, justify
our use of the term priority for this relation. First, we will show that the relation is
antisymmetric, so that if i � j holds then j � i does not hold.5

Then, we will show that once i � j holds it will remain true until process i (enters
and) exits the critical section. Finally, we will show that a process can enter or be in
the critical section only if it has priority over all other processes. We start with the first
property:

Lemma 3. The priority relation ‘ � ’ is antisymmetric.

Proof. We need to show that (r, t) �|= (i � j) ∧ (j � i) for all points (r, t) that arise
in the Bakery algorithm. Assume, by way of contradiction, that (r, t) |= (i � j) ∧
(j � i). Then, by definition, we have that (r, t) |= B

·
i ∧B

·
j . By definition 1, both

〈number[j], j〉 < L〈number[i], i〉 and 〈number[i], i〉< L〈number[j], j〉 hold at (r, t).
This is a contradiction, since ‘<L’ is an ordering relation.
�

5 The relation ‘ � ’ is not a partial order, because it is not transitive. While the transitive closure
of ‘ � ’ is a partial order, the Bakery algorithm detects priority only using the basic clauses in
the definition of � .

406 Y. Moses and K. Patkin

Our next goal is to show that once the priority relation i � j holds, it persists for
as long as i is in the bakery. We first show that if i � j holds by definition 1(ii), i.e.,
when j is not in the bakery, then i � j will continue to hold even if j enters the bakery(
at which time i � j will hold by clause (i)

)
, for as long as i remains in the bakery.

Lemma 4. The formula B
·
i SOj ⇒ i � j is true throughout the Bakery algorithm.

Proof. By definition 1(ii),
(¬B

·
j ∧B

·
i SOj

) ⇒ i � j is valid. We will show that
(
B
·
j ∧B

·
i SOj

) ⇒ i � j is valid as well. Let r be a run of the bakery algorithm,

and assume that (r, t) |= B
·
j ∧B

·
i SOj . It follows that (r, t) |= B

·
i ∧B

·
j and for some

time t1 < t both (a) (r, t1) |= B
·
i ∧Oj , and (b) for all times m in the range t1 ≤ m ≤ t

we have that (r,m) |= B
·
i. Without loss of generality assume that t1 is the latest time

with this property. By lemma 1(b) we have that number[i] �= ‘?’ and it remains un-
changed throughout the interval [t1, t]. Between time t1 at which j is in Oj and time t at
which j is in the bakery, process j executes line 4, after which number[j] > number[i]
holds as long as both processes remain in the bakery region. It follows that (r, t) |= i � j
by definition 1(i).
�

Lemma 4 can be used to show the following:

Corollary 1. If i � j holds, then it remains true as long as B
·
i holds. Formally:

B
·
i S(i � j) ⇒ i � j is valid.

Proof. Suppose that (r, t) |= B
·
i S(i � j), and we will show that (r, t) |= i � j. By

definition of S we have that (r, t) |= B
·
i, and that there exists a time t′ ≤ t such that both

(r, t′) |= B
·
i ∧ i � j and (r,m) |= B

·
i holds for all times m in the range t′ ≤ m ≤ t.

We prove the claim by induction on k = t − t′. The claim is immediate if t − t′ = 0
since then t = t′ and (r, t′) |= B

·
i ∧ i � j. Let t− t′ = k > 0, and assume inductively

that the claim is true for k− 1. Since (t− 1)− t′ = k− 1 ≥ 0, we have by the inductive
assumption that (r, t− 1) |= i � j. By definition of the ‘ � ’ relation, we consider two
cases:

(a) (r, t − 1) |= B
·
j ∧ 〈number[i], i〉 < L〈number[j], j〉. In this case, if (r, t) |= B

·
j

then the values of number[i] and of number[j] are unchanged from (r, t − 1), so
that (r, t) |= B

·
i ∧B

·
j ∧ 〈number[i], i〉< L〈number[j], j〉 and (r, t) |= i � j holds

by definition 1(i). If, however, (r, t) �|= B
·
j then j moved out of the bakery between

time t − 1 and t, and so (r, t) |= Oj . It follows that (r, t) |= B
·
i ∧¬B

·
j ∧B

·
i SOj ,

and so (r, t) |= i � j holds by definition 1(ii).
(b) (r, t − 1) |= B

·
i SOj . Since (r, t) |= B

·
i we have that (r, t) |= B

·
i SOj , and so

(r, t) |= i � j follows by lemma 4.

�

3.4 Proving Mutual Exclusion

Intuitively, the iteration of the testing region by process i (lines 6 to 8) performed with
parameter j is intended to establish and detect i’s priority over j. For ease of exposition,

Mutual Exclusion as a Matter of Priority 407

we will denote by 7j and 8j the instances of lines 7 and 8 performed by i in this iteration.
We now turn to seeing how this is achieved. First, we consider the precise role that the
wait for choosing[j] = false on line 7j serves. We show that if this wait by i succeeds,
it is guaranteed that j has been out of the doorway region at some point during the wait.
Formally, we state this as:

Lemma 5. B
·
i S¬D· j holds whenever process i leaves line 7j .

Proof. Recall that choosing[j] = true when process j enters D· j . Moreover, in the D
·
j

region, process j does not perform writes to choosing[j]. Thus, a read of choosing[j]
that completely overlaps D· j will necessarily return true. Suppose that process i leaves
line 7j at (r, t), having successfully completed the wait on line 7j . Its last r/w op-
eration on line 7j is a read of the register choosing[j], which returns false. Since
choosing[j] = true �= ‘?’ whenever j is in the doorway, it follows that at some time
t′ < t this read operation did not overlap D

·
j . Moreover, at all times between t′ and t

in r, process i is in the bakery. It follows that (r, t) |= B
·
i S¬D

·
j , as claimed.
�

Lemma 5 implies the following very useful fact:

Corollary 2. If i completes 7j at (r, t) and (r, t) |= i � j, then (r, t) |= B
·
i ∧B

·
j ∧

〈number[j], j〉< L〈number[i], i〉.

Proof. Suppose that i completes 7j at (r, t). By lemma 5 we have that (r, t) |= B
·
i S¬D· j .

Thus, there is an earlier time t′ < t such that B· i holds continuously between t′ and t,
and (r, t′) |= ¬D

·
j . If (r, t′) |= Oj , then (r, t) |= B

·
i SOj and so (r, t) |= i � j holds

by lemma 4. The assumption that (r, t) |= i � j implies that (r, t) |= ¬(B· i SOj

)
.

In particular, (r, t′) |= ¬Oj , and since (r, t′) |= ¬D
·
j we have that (r, t′) |= B

·
j . Since

(a) B
·
i holds continuously between times t′ and t, (b) (r, t) |= ¬(B· i SOj

)
, and (c)

(r, t′) |= B
·
j , it follows that B· i ∧B

·
j also holds continuously between times t′ and t in r.

In particular, (r, t) |= B
·
i ∧B

·
j . Since (r, t) |= i � j holds by assumption, we thus

obtain that (r, t) |= B
·
i ∧B

·
j ∧ 〈number[j], j〉< L〈number[i], i〉, as claimed.
�

When B
·
i ∧B

·
j ∧〈number[j], j〉 < L〈number[i], i〉 holds, we have in particular that

number[j] is stable for as long as B· j holds. If i later reads a larger value for number[j]
(so that test for 〈number[i], i〉< L〈number[j], j〉 succeeds), this will indicate that j has
left the bakery region. But then B

·
i SOj is true—i was in the bakery since j was outside.

By lemma 4, we have i � j at that point. Line 8j waits precisely until such a value is
read by i. We thus have

Lemma 6. i � j holds whenever process i leaves line 8j .

Proof. Suppose that process i leaves line 8j at (r, t), having successfully completed the
wait. Let t′ < t be the most recent time at which i completed 7j . If (r, t′) |= i � j then
(r, t) |= i � j holds by corollary 1, since i does not leave the bakery between time t′

and time t. Otherwise, (r, t′) |= B
·
i ∧B

·
j ∧〈number[j], j〉 < L〈number[i], i〉 holds, by

corollary 2. But line 8j is completed after reading a value k for number[j] that must be

408 Y. Moses and K. Patkin

larger than the one for which 〈number[j], j〉< L〈number[i], i〉 held at time t′. It follows
that j must have left the bakery region at some time t′′ in the range t′ < t′′ ≤ t. Thus,
(r, t′′) |= B

·
i SOj , implying that (r, t) |= B

·
i SOj as well, and so (r, t) |= i � j, as

claimed.
�

Theorem 1. A process i can enter or be in the CS (i.e., be in line 9) only if i � j holds
for all j �= i.

Sketch of Proof. Recall that the testing region of the algorithm on lines 6 to 8 is wholly
contained in the bakery region. Hence, by corollary 1, if i � j holds in that region, it
remains true as long as B· i holds. By the time process i reaches line 9 it has completed
line 8j for all j �= i. For each j �= i, lemma 6 implies that i � j holds at some point
when i is in the testing region. The claim follows.
�

By the antisymmetry of the ‘ � ’ relation (lemma 3), at most one process can have
priority over all others, and so theorem 1 immediately yields:

Corollary 3. The Bakery algorithm guarantees mutual exclusion: At most one process
is in the CS at any time.

3.5 Liveness and Fairness of the Bakery Algorithm

In addition to the mutual exclusion property, the priority relation and our modified par-
tition facilitate reasoning about other properties of the Bakery algorithm. For example,
the algorithm is known to satisfy a form of FCFS (first-come first-serve) fairness. In
[2,16,18], for example, the FCFS property shown is that if i enters (our) bakery region
before j enters the doorway, which in our terminology means that B· i SOj holds, then
i will enter the critical section before j does. This follows immediately from lemma 4,
corollary 1, and theorem 1. We can now state and prove slightly finer fairness properties
of the Bakery algorithm:

Theorem 2 (Fairness). In all runs r of the Bakery algorithm and times t:

(a) If (r, t) |= B
·
i then no process j can enter the CS twice after time t in r before i

enters the CS at least once, and
(b) If (r, t) |= D

·
i then no process j can enter the CS three times after time t in r before i

enters the CS at least once.

Recall from the progress assumptions of section 3.1 that any process that leaves the
non-critical section (line 3) will reach the bakery in a finite amount of time, in a wait-
free fashion. For completeness, we use this fact to state and prove a natural liveness
condition for the Bakery algorithm as follows (similar proofs appear elsewhere; see,
e.g., [3]):

Theorem 3. If at least one process reaches the bakery region, then at least one process
will enter the CS.

Mutual Exclusion as a Matter of Priority 409

4 Boulangerie: A Better Bakery Algorithm

In the testing region (lines 6-8) of the Bakery algorithm process i detects that i � j
holds, for each of the j �= i. As long as i is unable to establish that i � j based on
the checks in lines 7j and 8j , process i will block waiting for j to make progress. Our
analysis showed how succeeding in the tests on both lines guarantees that i � j holds.
We now wish to consider whether the blocking imposed by 7j and 8j is always justified.

Taking Advantage of Inconsistent Reads. Let us first consider the blocking imposed by
line 8j . As our analysis shows (in corollary 2), when 7j is completed either i � j is
already true, or both i and j are in the bakery, and j has a better ticket. Very roughly
speaking, process i blocks on 8j until it reads a value that contradicts the fact that j has
a better ticket. Suppose, for example, that number[i] = 10 and that i reads a value of 5
for number[j]. It blocks correctly, since 5 could be the stable value that j has. Observe
that number[j] is a safe register, and so read operations on it may return arbitrary, and
inconsistent, values when number[j] = ‘?’. So now suppose that i performs another
read on number[j], and obtains a value, say 4 or 6, that is different from 5. This still
corresponds to a better ticket than 〈10, i〉 for j. But as long as j is in the bakery it
performs no writes on number[j]. Thus, number[j] is stable and all reads to it must
return the same value. If i reads two different values for number[j], it has proof that j
was on the outside at some point. Thus, i � j is true, and i can stop blocking on j
and move on to test the next process. We can avoid this case of unnecessary blocking
as follows. When number[j] is read for the second consecutive time or later on line
8j , let previous[j] denote the previous value read by i from number[j], or undefined
if no such read has yet occurred. (See lines 8ja to 8je in the detailed version in the
Appendix.) Then we can replace line 8j in the Bakery algorithm by the following:

8j await number[j] = 0 ∨ 〈number[i], i〉< L〈number[j], j〉 ∨
number[j] �= previous[j];

Optimizing for Low Contention. We now consider the blocking imposed by line 7j .
Roughly speaking, the justification for this blocking is that j may be in the doorway
region, and it might come out of the region with a small number, and thus a winning
ticket (at least one with priority over i). However, suppose that the testing process i
has obtained number[i] = 1. Then the only processes j that can ever have a better
ticket are ones whose ID is smaller than i (so that 〈1, j〉<L〈1, i〉). It follows that when
number[i] = 1, there is no need to perform 7j and 8j for values j > i. To avoid this
form of unnecessary blocking, we can replace line 6 of the Bakery algorithm by the
following two lines:

6a if number[i] = 1 then Limit := i− 1 else Limit := N ;
6b forall the j ≤ Limit s.t. j �= i do

While the values of number[i] can grow without bound in the Bakery algorithm,
we claim that the case of number[i] = 1 is not always a boundary case. Observe that
such unbounded growth requires continuous contention for the critical section. Critical
sections come in many flavors, and in many cases they do not experience continuous
contention. Indeed, it is generally believed that contention for a critical section is rare

410 Y. Moses and K. Patkin

in a well-designed system (see [13]). Notice that whenever all processes are in the non-
critical region at once, even for a brief instant, their number values are all 0. The next
process to leave the doorway will do so with a number value of 1 (others may attain
the same number too). Therefore, when mutual exclusion is applied to a critical section
that repeatedly experiences low contention, this optimization will repeatedly result in a
reduction in the amount of blocking.6

We call the optimized variant of the Bakery algorithm that incorporates both changes
the Boulangerie algorithm. Its full detailed description is given in the Appendix.

The optimization for the case of number[i] = 1, which is beneficial under low con-
tention, utilizes an aspect of priority that the Bakery algorithm admits, but does not try
to detect. Namely, if number[i] = 1 and i < j, then j will not be able to beat i to the
CS. Since Boulangerie makes explicit use of this fact, we need to modify ‘ � ’ slightly
in order to capture the notion of priority that corresponds to the Boulangerie algorithm:

Definition 2. The priority relation i � j is said to hold exactly if (i � j) ∨(
B
·
i ∧¬B

·
j ∧ number[i] = 1 ∧ i < j

)
.

By definition 2, the new relation ‘ � ’ is strictly stronger than ‘ � ’. When both pro-
cesses are in the bakery region, the two relations coincide and reduce to lexicographic
ordering. A very similar analysis as that used to establish lemma 3 and corollary 1 can
show:

Lemma 7. In the Boulangerie algorithm, both

(a) The priority relation ‘ � ’ is antisymmetric, and
(b) If i � j holds, then it remains true as long as B· i holds. Formally: B· i S (i � j) ⇒

i � j is valid.

In the full paper we show that the safety proof for our optimized algorithm, using
the new priority relation ‘ � ’ is analogous to the proof for the Bakery algorithm
presented in section 3.3 and section 3.4. We make some modifications to account for
the new algorithm and the new relation.

4.1 Boulangerie has No Unnecessary Blocking

In a precise sense, Boulangerie strictly improves on the Bakery algorithm. Moreover,
it achieves savings without needing to modify any of the write’s performed by the
Bakery algorithm. Following the observation that the Bakery protocol causes processes
to wait unnecessarily in some cases, we proposed Boulangerie as an optimization in
which some of this waiting is avoided. It is natural, then, to ask whether the new protocol
has unnecessary waiting. As we now show, the answer is No: Boulangerie does not
suffer from unnecessary waiting.

Theorem 4. Let (r, t) be a point of the Boulangerie algorithm in which process i is
in the testing region, and assume that i has not completed line 8j since entering the

6 A particular case in which the savings with this optimization can be striking is when there are
N = 2 processes. In this case, process 1 will not need to perform the testing region when
number[1] = 1.

Mutual Exclusion as a Matter of Priority 411

bakery. If number[i] > 1 or j < i, then based on the sequence of events it has seen thus
far, process i does not know that j is out of the critical section at (r, t).

Theorem 4 is stated in terms of what process i knows. This is a formal claim using
the theory of knowledge in distributed systems (see [6,7]). Here we consider knowledge
based on the agent’s complete local history (the sequence of events that it has observed),
to show that the protocol cannot be improved. The proof of theorem 4 is the main
technical contribution of this paper, and is omitted from the proceedings version due
to lack of space. It consists of an alternative-scenario argument showing that if the
conditions of the theorem hold at a point (r, t), where r is a run of Boulangerie, then
there is another point (r′, t′) satisfying that (a) r′ is a run of Boulangerie, (b) process i
has the same local history in r′ up to the point at (r′, t′) as it does in r up to (r, t), and
(c) (r′, t′) |= CSj , i.e., process j is in the critical section at (r′, t′). This implies that
if process i enters the CS without completing line 8j , then there is a run (the run r′)
in which it would do so when process j is in the CS, and violate the mutual exclusion
property.

The scenario argument is shown by assuming that a point (r, t) satisfies the con-
ditions of the theorem, and constructing a point (r′, t′) satisfying (a)-(c) above. The
run r′ coincides with r up to and including the latest time t0 < t at which i is in the
non-critical section in r. From time t0 on, r′ is constructed so that process i obtains the
same local history up to time t′ as it does between time t0 and t in r, while process j
is in the CS at time t′. The detailed construction is made by way of a case analysis,
depending on i’s local history between (r, t0) and (r, t). We leave the complete details
to the full paper.

5 Conclusions

This paper offers a behind-the-scenes look at the workings of Lamport’s Bakery al-
gorithm in the somewhat challenging case of safe registers. We identified the priority
relation that the algorithm implements and detects, and used it to formally capture the
role of the main components of the algorithm. Based on the analysis, we were able to
find two ways in which the Bakery algorithm admits unnecessary and potentially costly
blocking. An improved version, called Boulangerie, fixes these flaws and is shown to
contain no unnecessary blocking.

Reading from safe registers provides limited information about the state of the sys-
tem, since a value can be read from such a register without ever being written to
it. Indeed, when a test whether number[j] = 0 succeeds, this does not mean that
number[j] = 0 was in fact true at some point during the read operation. As a result, it
is tricky to interpret the tests performed on lines 7j and 8j of the Bakery algorithm.

As lemma 5 illustrates, a value read from a safe register can provide information
about the register and about the state of its writer by way of elimination. Namely, if v is
read, then no other value w �= v was stably written to the register throughout the time
of the read operation. In particular, if a large value v is read, then it is not the case that
a smaller value was stably written throughout the read. With the proper definition of a
priority relation among the processes, these insights allow a process to conclude that it
has priority over other processes by performing the tests on lines 7j and 8j (lemma 6).

412 Y. Moses and K. Patkin

Our analysis of the Bakery algorithm is based on the observation that every mutual
exclusion algorithm breaks symmetry among the processes by implementing a priority
relation of some sort. We saw that Lamport’s original Bakery algorithm is based on
the relation i � j, which combines a lexicographic relation over the register values
with a temporal condition. In particular, i has priority over j if i is in the bakery ever
since j was on the “outside”, before j ever entered the doorway. A slightly different
relation, ‘ � ’, corresponds to the Boulangerie algorithm and to the Bakery algorithm
for regular registers of [10].

This paper proposes that ME algorithms should be studied by considering the prior-
ity relations that they construct and detect. This essential aspect of ME, which has been
in the background all along, can be brought to the fore. As our analysis proves in the
case of the Bakery algorithm, even very familiar solutions can be seen in a new light,
resulting in a better understanding as well as genuine improvements in the algorithm.
Lamport reports that he has been able to machine-verify the Boulangerie algorithm by
fairly simple modifications of his machine proof of the Bakery algorithm. We see this as
both a testament to the quality of his verification tools and to the fact that the logic un-
derlying Boulangerie is a refinement and direct improvement of the Bakery algorithm.
We believe that the view of Mutual Exclusion as a matter of creating and detecting
priority proposed in this paper promises to provide new insight to other existing ME
algorithms, and lead to new ones.

References

1. Abraham, U.: Logical classification of distributed algorithms (Bakery Algorithms as an ex-
ample). Theor. Comput. Sci. 412(25), 2724–2745 (2011)

2. Anderson, J.H.: Lamport on mutual exclusion: 27 years of planting seeds. In: Proceedings of
the 20th ACM PODC Conference, pp. 3–12 (2001)

3. Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and advanced top-
ics, vol. 19 (2004)

4. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties with the TLA+
proof system. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 142–148.
Springer, Heidelberg (2010)

5. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun.
ACM 8(9), 569 (1965)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge (2003)
7. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment.

Journal of the ACM 37(3), 549–587 (1990)
8. Hesselink, W.H.: Mechanical verification of Lamport’s Bakery Algorithm. Science of Com-

puter Programming 78(9), 1622 (2013)
9. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Commun.

ACM 17(8), 453–455 (1974)
10. Lamport, L.: A new approach to proving the correctness of multiprocess programs. ACM

Trans. Program. Lang. Syst. 1(1), 84–97 (1979)
11. Lamport, L.: What it means for a concurrent program to satisfy a specification: Why no one

has specified priority. In: Proceedings of the 12th ACM POPL, pp. 78–83 (1985)
12. Lamport, L.: On Interprocess Communication. Part I: Basic Formalism. Distributed Comput-

ing 1(2), 77–85 (1986)

Mutual Exclusion as a Matter of Priority 413

13. Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5(1), 1–11
(1987)

14. Lamport, L.: A TLA+ mechanical proof of the Boulangerie Algorithm (2015).
http://research.microsoft.com/en-us/um/people/lamport/tla/
boulangerie.html

15. Lamport, L.: The TLA+ Hyperbook (2015). http://research.microsoft.com
en-us/um/people/lamport/tla/hyperbook.html

16. Lynch, N.A.: Distributed Algorithms (1996)
17. Raynal, M., Beeson, D.: Algorithms for Mutual Exclusion (1986)
18. Rosenzweig, D., Börger, E., Gurevich, Y.: The bakery algorithm: yet another specification

and verification. In: Börger, E. (ed.) Specification and Validation Methods, pp. 231–243
(1995)

19. Sedletsky, E., Pnueli, A., Ben-Ari, M.: Formal verification of the ricart-agrawala algorithm.
In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 325–335. Springer,
Heidelberg (2000)

Appendix

Detailed Boulangerie Algoritm for process i

0 Initialize: num[i] = number[i] = 0; choosing[i] = tmp c = false; Limit =

N ; prev n = tmp n = ⊥;

1 while true do

2 non-critical section;

3 write(choosing[i] ← true);

4.1 forall the j ≤ N ; j �= i do read(num[j] ← number[j]);

4.2 num[i] ← 1 + max{num[1], . . . , num[N]};

4.3 write(number[i] ← num[i]);

5 write(choosing[i] ← false);

6a if number[i] = 1 then Limit := i− 1 else Limit := N ;

6b forall the j ≤ Limit s.t. j �= i do
7j repeat read(tmp c ← choosing[j]) until (tmp c = false);

8ja tmp n ← ⊥;

8jb repeat

8jc prev n ← tmp n;

8jd read(tmp n ← number[j])

until8je
(
tmp n = 0 ∨ 〈num[i], i〉<L〈tmp n, j〉 ∨ (tmp n �=

prev n ∧ prev n �= ⊥)
)
;

9 critical section;

10.1 num[i] ← 0;

10.2 write(number[i] ← num[i]);

http://research.microsoft.com/en-us/um/people/lamport/tla/boulangerie.html
http://research.microsoft.com/en-us/um/people/lamport/tla/boulangerie.html
http://research.microsoft.com/en-us/um/people/lamport/tla/hyperbook.html
http://research.microsoft.com/en-us/um/people/lamport/tla/hyperbook.html

The Computability of Relaxed Data Structures:
Queues and Stacks as Examples

Nir Shavit1 and Gadi Taubenfeld2

1 MIT and Tel-Aviv University
2 The Interdisciplinary Center, P.O. Box 167, Herzliya 46150, Israel

shanir@csail.mit.edu, tgadi@idc.ac.il

Abstract. Most concurrent data structures being designed today are versions of
known sequential data structures. However, in various cases it makes sense to re-
lax the semantics of traditional concurrent data structures in order to get simpler
and possibly more efficient and scalable implementations. For example, when
solving the classical producer-consumer problem by implementing a concurrent
queue, it might be enough to allow the dequeue operation (by a consumer) to re-
turn and remove one of the two oldest values in the queue, and not necessarily the
oldest one. We define infinitely many possible relaxations of several traditional
data structures: queues, stacks and multisets, and examine their relative compu-
tational power.

Keywords: Relaxed data structure, consensus number, synchronization, wait-
freedom, queue, stack, multiset.

1 Introduction

1.1 Motivation

Early in our computer science education, we learn how to implement sequential data
structures. In the context of sequential data structures, implementing a queue in which
it is fine for a dequeue operation to return one of the two oldest items in the queue,
instead of always returning the oldest item, does not help in making the problem of
efficiently implementing a queue easier to solve. Maybe for that reason, we sometimes
tend to overlook the fact that in the context of concurrent programming, such relaxations
might help a lot.

Assume that you need to solve the classical producer-consumer synchronization
problem by implementing a concurrent queue. In some cases, it might be fine to al-
low the consumer to return and remove one of the two oldest items in the queue, and
not necessarily the oldest one as is usually required. More generally, in some cases it
makes senses to relax the semantics of traditional concurrent data structures in order to
get more efficient and scalable concurrent implementations.

There is a trade-off between synchronization and the ability of an implementation
to scale performance with the number of processors. Amdahl’s law, implies that even a
small fraction of inherently sequential code limits scaling. Using semantically weaker
data structures may help in reducing the synchronization requirements and hence im-
proves scalability for many-core systems. As a result, there is a recent trend towards

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 414–428, 2015.
DOI: 10.1007/978-3-319-25258-2_29

The Computability of Relaxed Data Structures: Queues and Stacks as Examples 415

implementing semantically weaker data structures for achieving better performance and
scalability [18].

Important research has already been done on implementing semantically weaker data
structure (see for example, [2,3,15,18,19]).While these implementations address com-
plexity issues, less research has been done on the computability of relaxed data struc-
tures. In this paper we investigate the computability of (wait-free) relaxed data struc-
tures, by considering infinitely many possible relaxations of several traditional data
structures: queues, stacks and multisets (i.e., bags), and examine their relative compu-
tational power. Our results demonstrate, for example, that for a concurrent queue small
changes in its semantics dramatically effects its computational power, and that similar
results do not apply for a concurrent stack.

1.2 Data Structures with Relaxed Specifications

We will assume that processes can try to access a shared object at the same time, how-
ever, although operations of concurrent processes may overlap, each operation should
appear to take effect instantaneously. In particular, operations that do not overlap should
take effect in their “real-time” order. This type of correctness requirement for shared
objects is called linearizability [13].

A concurrent queue is a linearizable data structure that supports enqueue, dequeue
and peek operations, by several processes, with the usual queue semantics.1 Below we
generalize this traditional notion of a concurrent queue.

A concurrent queue w.r.t. the numbers a, b and c, denoted queue[a, b, c], is a lin-
earizable data structure that supports the enq.a(v), deq.b() and peek.c() operations,
by several processes, with the following semantics: The enq.a(v) operation inserts the
value v at one of the a positions at the end of the queue;2 the deq.b() operation returns
and removes one of the values at the b positions at the front of the queue; the peek.c()
operation returns one of the values at the c positions at the front of the queue without re-
moving it. If the queue is empty the deq.b() and the peek.c() operations return a special
symbol. We emphasize that the queue queue[a, b, c], is implemented w.r.t. some fixed
numbers a, b and c; these number are defined a priori and are not parameters that are
passed at run time.

When defining the queue queue[a, b, c], the numbers a, b and c can take the values
of any positive integer, and the two special values 0 and ∗. When a, b or c equals 0,
it means that the corresponding operation is not supported; when it equals ∗, it means
that the corresponding operation can insert, remove or return (depending on the type of
operation) a value at a random position (i.e., a position chosen by an adversary).

Thus, queue[1, 1, 1] is the traditional FIFO queue (which is sometimes called aug-
mented queue), where the values are dequeued in the order in which they were

1 The enqueue operation inserts a value to the queue and the dequeue operation returns and
removes the oldest value in the queue. That is, the values are dequeued in the order in which
they were enqueued. The peek operation reads the oldest value in the queue without removing
it. If the queue is empty the dequeue and the peek operations return a special symbol.

2 A position of an item in a queue or in a stack is simply the number of items which precede it
plus one.

416 N. Shavit and G. Taubenfeld

enqueued, and where the peek operation reads the oldest value in the queue with-
out removing it; queue[1, 1, 0] is a queue which supports the standard enqueue and
dequeue operations but does not support a peek operation; queue[1, 1, ∗] is a queue
where the peek operation returns a random value that is currently in the queue; finally
queue[∗, ∗, 0] is exactly a linearizable multiset object that supports insert and remove
operations, by several processes, with the usual multiset semantics.

Relaxed versions of other traditional data structures are defined similarly. A relaxed
concurrent stack, denoted stack[a, b, c], is a linearizable data structure that supports
the push.a(v), pop.b() and top.c() operations, by several processes, which the obvious
semantics. The object stack[∗, ∗, 0] is equivalent to the object queue[∗, ∗, 0] and cor-
responds to a multiset object. The object stack[1, 0, 1] is exactly an atomic read/write
register, where the push and top operations correspond to the write and read opera-
tions, respectively. For k ≥ 1, the object stack[1, 0, k] is exactly a k-atomic register as
defined in [21].

1.3 Consensus Numbers

The (binary) consensus problem is to design an algorithm in which all non-faulty pro-
cesses reach a common decision based on their initial opinions. The problem is defined
as follows: There are n processes p1, p2, . . . , pn. Each process pi has an input value
xi ∈ {0, 1}. The requirements of the consensus problem are that there exists a deci-
sion value v such that: (1) each non-faulty process eventually decides on v, and (2)
v ∈ {x1, x2, . . . , xn}. In particular, if all input values are the same, then that value
must be the decision value.

The notion of a consensus number is central to our investigation and is formally
defined below. A wait-free implementation of an object guarantees that any process
can complete any operation in a finite number of steps, regardless of the speed of the
other processes. A register is an object that supports read and write operations. With an
atomic register, it is assumed that operations on the register (i.e, on the same memory
location) occur in some definite order. That is, reading or writing an atomic register is
an indivisible action.

The consensus number of an object of type o, denoted CN(o), is the largest n for
which it is possible to solve consensus for n processes in a wait-free manner using any
number of objects of type o and any number of atomic registers. If no largest n exists,
the consensus number of o is infinite (denoted ∞). Classifying objects by their con-
sensus numbers is a powerful technique for understanding the relative computational
power of shared objects.

The consensus hierarchy is an infinite hierarchy of objects such that the objects at
level i of the hierarchy are exactly those objects with consensus number i. It is known
that, in the consensus hierarchy, for any positive i, in a system with i processes: (1) no
object at level less than i together with atomic registers can implement any object at
level i; and (2) each object at level i together with atomic registers can implement any
object at level i or at a lower level [10].

The Computability of Relaxed Data Structures: Queues and Stacks as Examples 417

1.4 Contributions

New Definitions. The definitions of concurrent queues and stacks with relaxed specifi-
cations together with the following technical results provide a deeper understanding of
the computability issues which are involved in the development of relaxed data struc-
tures.

Relaxing the Enqueue Operation. First we show that, while CN(queue[1, 1, 1]) =
∞, the consensus number drops to two when the enqueue operation is allowed to insert
an item at any position at random, regardless whether the peek and dequeue operations
are relaxed or not. That is,

CN(queue[∗, 1, 1]) = 2. (R1)

It follows from R1 and the known result that CN(queue[∗, ∗, 0]) = 2 (i.e., that the
consensus number of a multiset object is 2), that: for every b ∈ Z+ ∪ {∗}, c ∈ Z+ ∪
{0, ∗} : CN(queue[∗, b, c]) = 2. (Z+ is the set of all positive integers.) Next, we show
that the consensus number of all the queues in which the peek operation is not relaxed
(i.e., peek always returns the element at the front of the queue) is infinity, even when
the enqueue operation is allowed to insert an item at any one of the last k positions for
any fixed k. That is,

For every a ∈ Z+ : CN(queue[a, 0, 1]) = ∞ (R2)

In contrast with R2, the consensus numbers of all possible relaxations of a concurrent
stack are at most 2. In particular, CN(stack[1, 1, 1]) = 2 and CN(stack[1, 0, 1]) = 1
[7,10,16] (as already mentioned, the object stack[1, 0, 1] is exactly an atomic read/write
register).

Relaxing the Peek Operation. Next, we show that the consensus number of all the
queues in which the peek operation is relaxed (i.e., peek is not required to always return
the oldest value in the queue), is exactly two, regardless of how far the enqueue and
dequeue operations are relaxed, as long as these operations are supported. That is,

CN(queue[1, 1, 2]) = 2. (R3)

It follows from R3 and the known result that the consensus number of a multiset object
is 2 [14], that: for every a ∈ Z+ ∪{∗}, b ∈ Z+ ∪{∗}, c �= 1 : CN(queue[a, b, c]) = 2.

Not Supporting the Dequeue Operation. The situation changes dramatically when
dequeue is not supported. The consensus number of all the queues where the dequeue
operation is not supported and the peek operation is slightly relaxed, is just 1. That is,

CN(queue[1, 0, 2]) = 1. (R4)

Thus, while CN(queue[1, 0, 1]) = ∞ and CN(queue[1, 1, 2]) = 2, by removing the
dequeue operation from the object queue[1, 1, 2], we get an object with consensus num-
ber one. It follows from R4 that: for every a ∈ Z+ ∪ {0, ∗} : CN(queue[a, 0, 2]) = 1.

418 N. Shavit and G. Taubenfeld

Atomic Registers vs. Relaxed Queues. It is known that CN(atomic register) = 1
[16]. It is easy to see that a queue[∗, 0, 2] has a trivial wait-free implementation from
a single atomic register. While, for every a ∈ Z+, atomic registers and queue[a, 0, 2]
both have consensus number 1, we observe that,

A queue[a, 0, c] has no wait-free implementation from atomic registers,
for every two positive integers a and c. (R5)

The above results hold for both an initialized queue and an uninitialized queue. These
two cases differ, for example, when the enqueue operation is not supported. For an
initialized queue, CN(queue[0, 1, 0]) = 2 [10], while for an uninitialized queue, it is
obvious that CN(queue[0, 1, 1]) = 1.

1.5 Related Work

The design of concurrent data structures has been extensively studied [9,20]. However,
there are limitations in achieving high scalability in their design [4,6]. Two progress
conditions that have been proposed for data structures which avoid locking are wait-
freedom [10] (defined earlier), and obstruction-freedom [11]. Obstruction-freedom,
guarantees that an active process will be able to complete its pending operations in
a finite number of its own steps, if all the other processes “hold still” long enough.

It is shown in [4] that the worst-case operation time complexity of obstruction-free
implementations is high, even in the absence of step contention. In [6], an Ω(n) lower
bound is proven on the time to perform a single instance of an operation in any imple-
mentation of a large class of data structures shared by n processes, such as counters,
stacks, and queues. It is suggested in [6] that “it might be beneficial to replace lineariz-
able implementations of strongly ordered data structures, such as stacks and queues,
with more relaxed data structures, such as pools and bags”.

In [18], it is pointed out that concurrent data structures will have to go through a
substantial “relaxation process” in order to support scalability: “The data structures of
our childhood – stacks, queues, and heaps – will soon disappear, replaced by looser
unordered concurrent constructs based on distribution and randomization”. A few ex-
amples are given in [18] showing how relaxing a stack’s LIFO ordering guarantees can
result in higher performance and greater scalability.

Another approach to weaken the requirement of traditional data structures is not
to change at all the definition of the data structures, but rather to relax the traditional
correctness requirements. A tutorial which describes many issues related to memory
consistency models can be found in [1]. In the context of relaxing the consistency con-
dition linearizability [13], two relaxations of a queue were presented in [3]. In [15], a
k-FIFO queue was implemented, which may dequeue elements out of FIFO order up to
a constant k ≥ 0. There are various implementations of relaxed data structures where
insertion-order is of no importance, such as pools and bags, see for example [2,19]. In
[8], a systematic and formal framework is presented for obtaining new data structures
by quantitatively relaxing existing ones.

The impossibility result that there is no consensus algorithm that can tolerate even
a single crash failure was first proved for the asynchronous message-passing model in

The Computability of Relaxed Data Structures: Queues and Stacks as Examples 419

[7], and later has been extended for the shared memory model with atomic registers
in [16]. The impossibility result that, for 1 ≤ k ≤ n − 1 there is no k-resilient k-
set-consensus algorithm for n processes using atomic registers, is from [5,12,17] (set-
consensus is defined in section 6). It is shown in [10] that traditional data types, such
as sets which support insert and remove operations, queues which support enqueue and
dequeue operations (i.e., queue[1, 1, 0]), stacks which supports push and pop operations
(i.e., stack[1, 1, 0]), all have consensus number exactly two. In the proofs of [10], it is
assumed that the data structures are initialized. The same results also hold for the case of
uninitialized data structures [14,20]. It is trivial to show that CN(queue[1, 1, 1]) = ∞.

For k ≥ 1, the object stack[1, 0, k] is exactly a k-atomic register [21]. In [21], it is
shown that, for every k ≥ 1, an atomic register can be implemented from k-safe bits.
This result implies that, for every k ≥ 1, a stack[1, 0, 1] object can be implemented
from stack[1, 0, k] objects.

2 Preliminaries

2.1 Model of Computation

Our model of computation consists of an asynchronous collection of n ≥ 2 processes
that communicate via shared objects. We use P to denote the set of all processes. An
event corresponds to an atomic step performed by a process. For example, the events
which correspond to accessing registers are classified into two types: read events which
may not change the state of the register, and write events which update the state of a
register but do not return a value. We use the notation ep to denote an instance of an
arbitrary event at a process p.

A run is a pair (f, R) where f is a function that assigns initial states (values) to the
objects and R is a finite or infinite sequence of events. An implementation of an object
from a set of other objects, consists of a non-empty set C of runs, a set P of processes,
and a set of shared objects O. For any event ep at a process p in any run in C, the object
accessed in ep must be in O. Let x = (f, R) and x′ = (f ′, R′) be runs. Run x′ is a
prefix of x (and x is an extension of x′), denoted x′ ≤ x, if R′ is a prefix of R and
f = f ′. When x′ ≤ x, (x − x′) denotes the suffix of R obtained by removing R′ from
R. Let R;T be the sequence obtained by concatenating the finite sequence R and the
sequence T . Then x;T is an abbreviation for (f, R;T).

Process p is enabled at the end of run x if there exists an event ep such that x; ep is a
run. For simplicity, whenever we say that p is enabled at x we mean that p is enabled at
the end of x. Also, we write xp to denote either x; ep when p is enabled in x, or x when
p is not enabled in x. Register r is a local register of p if only p can access r. For any
sequence R, let Rp be the subsequence of R containing all events in R which involve
p. Runs (f, R) and (f ′, R′) are indistinguishable for p, denoted by (f, R)[p](f ′, R′),
iff Rp = R′

p and f(r) = f ′(r) for every local register r of p.
The runs of an asynchronous implementation of an object must satisfy several prop-

erties. For example, if a write event which involves p is enabled at run x, then the same
event is enabled at any finite run that is indistinguishable to p from x. In the following
proofs, we will implicitly make use of few such straightforward properties.

420 N. Shavit and G. Taubenfeld

2.2 Three Simple Observations

The following lemmas are easy consequences of the above properties and definitions.

Lemma 1. Let w, x and y be runs of an algorithm and p be a process such that (1) w ≤
x and w[p]y, and (2) the states of all the objects (local and shared) that p can access
are the same in w and y, and (x − w) contains only events of p. Then, z = y; (x − w)
is a run of the algorithm and x[p]z.

Proof. By induction on the length of (x− w). 	

Next, we state two simple lemmas regarding relaxed queues. The first states that in
any component, going from a ∈ Z+ to a + 1 or to ∗ does not increase the power of
the object since it just gives the adversary more choices of what to return. The second
lemma states that going from a ∈ Z+ ∪ {0, ∗} to 0 in any component does not increase
the power of the object, since it just eliminates a possible operation.

Lemma 2. For every a1, b1, c1, a2, b2, c2 in Z+ ∪ {0, ∗},
if ((a2 = ∗ ∧ a1 �= 0) ∨ 0 < a1 ≤ a2 ∨ a2 = 0) ∧ ((b2 = ∗ ∧ b1 �= 0) ∨ 0 < b1 ≤
b2 ∨ b2 = 0) ∧ ((c2 = ∗ ∧ c1 �= 0) ∨ 0 < c1 ≤ c2 ∨ c2 = 0)
then CN(queue[a1, b1, c1]) ≥ CN(queue[a2, b2, c2]).

Proof. The proof of the lemma follows immediately from the definitions. 	

Lemma 3. For every a, b, c in Z+ ∪ {0, ∗},

1. CN(queue[0, b, c]) ≤ CN(queue[a, b, c]), and
2. CN(queue[a, 0, c]) ≤ CN(queue[a, b, c]), and
3. CN(queue[a, b, 0]) ≤ CN(queue[a, b, c]).

Proof. The proof of the lemma follows immediately from the definitions. 	

2.3 Known Results

Lemma 4. (a) CN(queue[∗, ∗, 0]) = 2, (b) CN(queue[1, 1, 0]) = 2, and
(c) CN(stack[1, 1, 1]) = 2.

The proofs that CN(queue[∗, ∗, 0]) = 2, CN(queue[1, 1, 0]) = 2, and
CN(stack[1, 1, 0]) = 2 (with and without initialization) are from [10,14]. The wait-
free consensus algorithm which uses a single queue and registers from [14], is also
correct when the queue is replaced with a stack or with a multiset. Proving that
CN(stack[1, 1, 1]) = 2, can be establish by modifying the existing proof from [10],
that CN(queue[1, 1, 0]) = 2.3

3 To our surprise, we could not find any publication in which it is claimed that
CN(stack[1, 1, 1]) = 2. Nevertheless, we consider it as a known result.

The Computability of Relaxed Data Structures: Queues and Stacks as Examples 421

3 Basic Properties of Wait-Free Consensus Algorithms

The first four lemmas below are known and have appeared (using different notations)
or follow from known impossibility proofs for wait-free consensus. The definitions be-
low refer to runs of a given consensus algorithm. A (finite) run x is v-valent if in all
extensions of x where a decision is made, the decision value is v (v ∈ {0, 1}). A run
is univalent if it is either 0-valent or 1-valent, otherwise it is bivalent. We say that two
univalent runs are compatible if they have the same valency, that is, either both runs are
0-valent or both are 1-valent. A run is critical if: (1) it is bivalent, and (2) any extension
of the run is univalent. A run (f, R) is an empty run if the length of R is 0 (that is, no
process has taken a step yet). Recall that n ≥ 2.

Lemma 5. In every wait-free consensus algorithm, if two univalent runs are indistin-
guishable for some process p, and the states of all the objects that p can access are the
same at these runs, then these (univalent) runs must be compatible.

Proof. Let w and y be univalent runs, such that w[p]y and the states of all the objects
(local and shared) that p can access are the same at w and y. By the wait-free property,
w has an extension x such x − w contains only events of process p, and p has decided
in x. Let w be v-valent, for v ∈ {0, 1}. Then p decide v in x. (The event in which p
decides on v, may be implemented by p writing v into a special single-writer output
register.) By Lemma 1, z = y; (x − w) is a run of the algorithm such that z[p]x. Since
p decides on v (i.e., p writes v to its output register) in z, z is v-valent. Hence, since
y ≤ z, y must also be v-valent. 	

Lemma 6. Every wait-free consensus algorithm has a bivalent empty run.

Proof. We show that a bivalent empty run must exist. Assume to the contrary that every
empty run is univalent. The empty run with all 0 inputs must be 0-valent, and similarly
the empty run with all 1 inputs must be 1-valent. Thus, by Lemma 5, all the empty runs
with all but one 0 inputs are 0-valent, and similarly all the empty runs with all but one
1 inputs are 1-valent. By repeatedly applying this argument i times we get that, all the
empty runs with all but i 0 inputs are 0-valent, and similarly all the empty runs with all
but i 1 inputs are 1-valent. Thus, when i is half the number of processes, we get that
there are two empty runs x0 and x1 that differ only at the value of a single input, for
process p, such that x0 is 0-valent and x1 is 1-valent. However, this contradicts Lemma
5. Hence, an empty bivalent run exists. 	

Lemma 7. Every wait-free consensus algorithm has a critical run.

Proof. Let Cons be an arbitrary wait-free consensus algorithm. By Lemma 6, Cons
has an empty bivalent run x0. We begin with x0 and pursue the following round-robin
bivalence-preserving scheduling discipline (Recall that P denotes a set of processes, x
and y denote runs and yp is an extension of the run y by one event of process p):

1 x := x0; P := ∅; i := 0 /* initialization */
2 repeat
3 if x has a bivalent extension ypi /* which involves pi */

422 N. Shavit and G. Taubenfeld

4 then x := ypi /* bivalent extension of x */
5 else P := P ∪ {pi} /* no such bivalent extension */
6 i := i+ 1(mod n) /* round-robin */
7 until |P | = n.

If the above procedure does not terminate, then there is an infinite run with only bivalent
finite prefixes. However, the existence of such a run contradicts the definition of a wait-
free consensus algorithm. Hence, the procedure will terminate with some critical run
x. 	

Lemma 8. Let x be a critical run of a wait-free consensus algorithm and let p and q
be two different processes such that the runs xp and xq are not compatible. Then, in
their next events from x, p and q are accessing the same object, and this object is not a
register.

Proof. We consider the following three possible cases, and show that each one of them
leads to a contradiction. We will assume that in the last event in xp process p is accessing
some object, say o, and in the last event in xq process q is accessing some object, say o′.

Case 1. o �= o′. Since the next events from x of p and q are independent, xpq[p]xqp,
and the values of all objects are the same in both xpq and xqp. Hence, by Lemma 5,
xpq and xqp are compatible; since xpq is an extension of xp and xqp is an extension of
xq, it must be that xp and xq are also compatible. A contradiction.

Case 2. o = o′ is a register and in xp the last event is a write event by p to o. Since p
writes to o in its next operation from x, the value of o must be the same in xp and xqp.
(Here we use the fact that the write by p overwrites the possible changes of o made by
q.) Hence, xp[p]xqp and the values of all the objects, which are not local to q, are the
same in xp and xqp. By Lemma 5, xp and xqp are compatible. Since xqp is an exten-
sion of xq, it must be that xp and xq are also compatible. A contradiction.

Case 3. o = o′ is a register and in xp the last event is a read event by p. Thus, xpq[q]xq,
and the values of all the objects, which are not local to p, are the same in both xpq and
xq. Hence by Lemma 5, xpq and xq are compatible. Since xpq is an extension of xp, it
must be that xp and xq are also compatible. A contradiction.

Thus, it must be the case that o = o′ and o is not a register. 	

Lemma 9. Let x be a critical run of a wait-free consensus algorithm, and assume that
the next event of p from x is a relaxed peek event which may return one of the two oldest
items in a queue. Let xp1 (resp. xp2) denotes an extension of x by a peek event by p
that has returned the oldest (resp. second oldest) item in a queue. Then, xp1 and xp2

are compatible.

Proof. Let p and q be two different processes. Because the value the peek operation by
p returns (i.e., the first or second) does not affect the state of the queue object visible to
q, it follows that xp1[q]xp2 and and the states of all the objects that q can access are the
same at these runs. Thus, by Lemma 5, xp1 and xp2 are compatible. 	

The Computability of Relaxed Data Structures: Queues and Stacks as Examples 423

4 Relaxing the Enqueue Operation

It is obvious that CN(queue[1, 0, 1]) = ∞. Each process inserts its input value into the
queue using an enqueue operation, and then uses a peek operation to find out what is the
value at the front of the queue and decides on it. Also, it is obvious that, for an uninitial-
ized queue, CN(queue[0, 1, 1]) = 1.4 That is, a relaxed uninitialized queue where the
enqueue operation is not supported is useless. Assume a queue object where only the
enqueue operation may be relaxed. We show that only when the enqueue operation can
insert a value at a random position, the consensus number drops to two; otherwise, in all
other possible relaxations in which the enqueue operation is supported, the consensus
number is not effected (i.e., it is ∞).

Theorem 1. CN(queue[∗, 1, 1]) = 2.

Proof. It follows immediately from Lemma 2, Lemma 3, and Lemma 4(a) that
CN(queue[∗, 1, 1]) ≥ 2. We prove that CN(queue[∗, 1, 1]) ≤ 2. A possible correct
behavior of a queue[∗, 1, 1] object, is that every enqueue operation always inserts a
data item at the head of the queue. In such a case, the queue[∗, 1, 1] object, behaves like
a stack[1, 1, 1] object. This implies that CN(queue[∗, 1, 1]) ≤ CN(stack[1, 1, 1]).
Thus, by Lemma 4(c), CN(queue[∗, 1, 1]) ≤ 2. 	

Corollary 1. For every b ∈ Z+ ∪ {∗}, c ∈ Z+ ∪ {0, ∗} : CN(queue[∗, b, c]) = 2.

Proof. The corollary follows from Lemma 2, Lemma 3, Lemma 4(a) and Theorem 1.
	

Next we show that when the enqueue operation is relaxed but can not insert a value at
a random position, the consensus number is infinity.

Theorem 2. For every a ∈ Z+ : CN(queue[a, 0, 1]) = ∞.

Proof. For any given number a ∈ Z+, we present a simple consensus algorithm for any
number of processes using a singe queue[a, 0, 1] object. Each process first enqueues its
input value a + 1 times. Then, the process uses a peek operation to find out the value
of the first item in the queue, and decides on that value. Clearly, once some process
finishes to enqueue its input value a + 1 times, the value of the item at the head of the
queue never changes. The result follows. 	

Corollary 2. For every a ∈ Z+, b ∈ Z+ ∪ {0, ∗} : CN(queue[a, b, 1]) = ∞.

Proof. The corollary follows immediately from Lemma 2, Lemma 3 and Theorem 2.
	

5 Relaxing the Peek Operation

Assume a queue object where only the peek operation may be relaxed. We show that
in all possible relaxations of the peek operation the consensus number drops (from
infinity) to two.

4 This is false, if the queue initially contains one element. In such a case, two processes can solve
consensus, by deciding on the input of the process that successfully dequeues the element.

424 N. Shavit and G. Taubenfeld

Theorem 3. CN(queue[1, 1, 2]) = 2.

Proof. It follows from Lemma 3 and Lemma 4(b) that CN(queue[1, 1, 2]) ≥ 2. Below
we prove that CN(queue[1, 1, 2]) ≤ 2. By contradiction, assume that we have a wait-
free consensus algorithm for three processes p, q and g using only queue[1, 1, 2] objects
and registers. By Lemma 7, the algorithm has a critical run x. By definition of a critical
run, for two of the processes, say p and q, a run resulting by an extension of x by a
single event of p and a run resulting by an extension of x by a single event of q are not
compatible. Thus, by Lemma 8, in their next events from x, p and q are accessing the
same object, which must be a queue[1, 1, 2] object. By Lemma 9, if the next event of p
(resp. q) from x is a relaxed peek event which may return one of the two oldest items in
a queue, xp1 and xp2 (resp. xq1 and xq2) are compatible. Below, when the next event
of p from x is a peek event, xp refers to xp1 and xp2.

Without loss of generality, we can assume the xp is 0-valent and xq is 1-valent. Since
xp is 0-valent also xpq is 0-valent. Since xq is 1-valent also xqp is 1-valent. Thus, xpq
and xqp are not compatible. Next, we consider all the possible cases, regarding the
next two events of p and q from x and show that each one of these cases leads to a
contradiction.

Case 1. Both events are peek events. Because a peek operation does not have any effect
on the state of a queue[1, 1, 2] object, it follows that xpq[g]xqp and the states of all the
objects that g can access are the same at these runs. Thus, by Lemma 5, xpq and xqp
must be compatible, a contradiction. Notice that we do not really care what value a peek
operation returns (i.e., the oldest or second oldest), since this will not affect the state of
the object visible to g.

Case 2. Exactly one of the two events is a peek event. Because the peek operation does
not have any effect on the state of a queue[1, 1, 2] object and the other operation has
the same effect in both xpq and xqp, it follows that xpq[g]xqp and the states of all the
objects that g can access are the same at these runs. Thus, by Lemma 5, xpq and xqp
must be compatible, a contradiction. Notice that again we do not really care what value
the peek operation returns.

Case 3. Both events are dequeue events. In the last two events in xpq and xqp the same
two items were removed from the queue, thus, xpq[g]xqp and the states of all the objects
that g can access are the same at these runs. Thus, by Lemma 5, xpq and xqp must be
compatible, a contradiction.

Case 4. One event is a enqueue and the other is a dequeue. Assume w.l.o.g. that the
enqueue event is by p and the dequeue event is be q. If the queue is nonempty, the two
events commute since each operates on a different end of the queue. Thus, xpq and xqp
are indistinguishable for all the processes and the states of all the objects is the same
in xpq and xqp, and thus by Lemma 5 the contradiction is immediate. If the queue is
empty, xp[g]xqp and and the states of all the objects that g can access are the same at
these runs. Thus, by Lemma 5, xp and xqp must be compatible, a contradiction.

The Computability of Relaxed Data Structures: Queues and Stacks as Examples 425

Case 5. Both events are enqueue events. Assume that p enqueues the value vp and q
enqueues the value vq . Consider the runs xpq and xqp. The valency of each one of
these two runs is determined by the process that has taken the first step from x. If p
or q runs uninterrupted starting from either xpq or xqp, the only way for each one of
them to observe the queue’s state is via a dequeue or a peek operation. However, since
the peek operation can return one of the first two items at the head of the queue, a peek
can not be used to determine which process enqueue operation was first. That is, once
the values vp and vq are at the head of queue, a peek operation by p can always return
vp, and a peek operation by q can always return vq . Thus, the only way for a process
to determine which process went first is via dequeue operations. Next we consider the
following two extensions of xpq and xqp.

– Let y be an extension of xpq that results from the following execution: Starting from
x let p enqueue vp and then let q enqueue vq . Run p uninterrupted until it dequeues
vp (as explained above this is the only way for p to observe which process went
first). Then, run q uninterrupted until it dequeues vq .

– Let y′ be an extension of xqp that results from the following execution: Starting
from x let q enqueue vq and then let p enqueue vp. Run p uninterrupted until it
dequeues vq Then, run q uninterrupted until it dequeues vp.

Since y is and extension of xpq, y is 0-valent, and since y′ is and extension of xqp, y′ is
1-valent. Clearly, y[g]y′ and the states of all the objects that g can access are the same
at these runs. Thus, by Lemma 5, y and y′ must be compatible, a contradiction. 	

Corollary 3. For every a ∈ Z+∪{∗}, b ∈ Z+∪{∗}, c �= 1 : CN(queue[a, b, c]) = 2.

Proof. The corollary follows from Lemma 2 and Lemma 4(a) and Theorem 3. 	

6 Not Supporting the Dequeue Operation

The consensus number of all the queues where the dequeue operation is not supported
and the peek operation is relaxed, is just 1. Put another way, while CN(queue[1, 0, 1])
= ∞ and CN(queue[1, 1, 2]) = 2, by removing the dequeue operation from the object
queue[1, 1, 2], we get an object with consensus number one. That is,

Theorem 4. CN(queue[1, 0, 2]) = 1.

Proof. By contradiction, assume that we have a wait-free consensus algorithm for two
processes p and q using only queue[1, 0, 2] objects and registers. By Lemma 7, the
algorithm has a critical run x. By definition of a critical run, a run resulting by an
extension of x by a single event of p and a run resulting by an extension of x by a single
event of q are not compatible. By Lemma 8, in their next events from x, p and q are
accessing the same object, which must be a queue[1, 0, 2] object. By Lemma 9, if the
next event of p (resp. q) from x is a relaxed peek event which may return one of the two
oldest items in a queue, xp1 and xp2 (resp. xq1 and xq2) are compatible. Below, when
the next event of p from x is a peek event, xp refers to xp1 and xp2.

Without loss of generality, we assume the xp is 0-valent and xq is 1-valent. Since
xp is 0-valent also xpq is 0-valent. Since xq is 1-valent also xqp is 1-valent. Thus, xpq

426 N. Shavit and G. Taubenfeld

and xqp are not compatible. Next, we consider all the possible cases, regarding the next
events of p and q from x and show that each one of these cases leads to a contradiction.

Case 1. Both events are peek events. Because a peek operation does not have any
effect on the states of the queue[1, 1, 2] object, it follows that xp1[p]xqp1 and the states
of all the objects that p can access are the same at these runs. Thus, by Lemma 5, xp1

and xqp1 must be compatible, a contradiction. We do not really care what value a peek
operation by q returns since this will not affect the state of the object visible to p.5

Case 2. Exactly one of the two events is a peek event. Assume w.l.o.g. that the peek
event is by process q. Because the peek operation does not have any effect on the states
of the queue[1, 0, 2] object and the operation by p has the same effect in both xp and
xqp, it follows that xp[p]xqp and the states of all the objects that p can access are the
same at these runs. Thus, by Lemma 5, xp and xqp must be compatible, a contradiction.
Notice that again we do not really care what value the peek operation returns.

Case 3. Both events are enqueue events. Assume that p enqueues the value vp and
q enqueues the value vq . Consider the 0-valent run xpq and the 1-valent run xqp. The
valency of each one of these two runs is determined by the process that has taken the
first step from x. If p or q runs uninterrupted starting from either xpq or xqp, the only
way for each one of them to observe the queue’s state is via a peek operation. Since the
peek operation can return one of the first two items at the head of the queue, a peek can
not be used to determine which process enqueue operation was first.

More precisely:

1. If the queue is not empty at x then after the two enqueue events by p and q, the
adversary can force every peek event to always return the item at the head of the
queue, and thus it is not possible for p or q to decide which process enqueue event
was first.

2. If the queue is empty at x then after the two enqueue events by p and q, the values
vp and vq are at the head of queue (in some order). Now the adversary can force
every peek operation by p to always return vp, and every peek operation by q can
always return vq . Thus, again, it is not possible to decide which process enqueue
event was first.

Thus, it can not be that both events are enqueue events, a contradiction. 	

Corollary 4. For every a ∈ Z+ ∪ {0, ∗}, c ≥ 2 : CN(queue[a, 0, c]) = 1.

Proof. The corollary follows from Lemma 2, Lemma 3 and Theorem 4. 	

7 Atomic Registers vs. Relaxed Queues

It is known that CN(atomic register) = 1 [16]. It is easy to see that a queue[∗, 0, 2]
has a trivial wait-free implementation from a single atomic register, which raises the
question whether also queue[1, 0, 2] has a wait-free implementation from atomic regis-
ters. The answer to this question is negative. We prove the following general result:

5 Notice that we reach a contradiction, by assuming that p’s peek operation returns the first
element in both passes. Since this implies that it cannot be the case that both events by p and q
are peek events, there is no need to consider the sub-case where p’s peek operation returns the
first element in one path and the second element is the other path.

The Computability of Relaxed Data Structures: Queues and Stacks as Examples 427

Theorem 5. A queue[a, 0, c] has no wait-free implementation from atomic registers,
for every two integers a ≥ 1 and c ≥ 1.

Proof. The (n, k)-set consensus problem is to find a solution for n processes, where
each process starts with an input value from some domain, and must choose some par-
ticipating process’ input as its output. All n processes together may choose no more
than k distinct output values. An (n, k)-set consensus object (or algorithm) is an object
which solves the (n, k)-set consensus problem. One of the most celebrated impossibil-
ity results in distributed computing is that, for any 1 ≤ k < n, a wait-free (n, k)-set
consensus object can not be implemented using any number of wait-free (n, k + 1)-set
consensus objects and atomic registers [5,12,17].

We observe that, for any 1 ≤ k < n, a wait-free (n, k)-set consensus object has
a simple wait-free implementation using a single (initially empty) queue[a, 0, c] object
where a and c are positive integers and k = a+c−1, as follows. Each process pi inserts
its input value vi into the queue using an enq.a(vi) operation, and then uses a peek.c()
operation to find a value in one of the c positions at the front of the queue, and decides
on it. During the execution any one of the a+ c− 1 values that are inserted first into the
queue can occupy (at some point in time) one of the c positions at the front of the queue.
Any value that is inserted later will never occupy one of the c positions at the front of
the queue. Thus, processes together will never choose more than k = a+ c− 1 distinct
output values. Since, for every two positive integers a and c, it is possible to solve in a
wait-free manner the (a + c, a + c − 1)-set consensus problem using a queue[a, 0, c]
object, but it is not possible to solve it in a wait-free manner using atomic registers, the
result follows. 	

8 Discussion

Synchronization inherently limits parallelism. As a result, there is a recent trend towards
implementing semantically weaker data structures which reduce the need for synchro-
nization and thus achieve better performance and scalability. We have considered in-
finitely many possible relaxations of queues and stacks, and examined their relative
computational power by determining their consensus numbers.

Our results demonstrate, somewhat surprisingly, that each one of the infinitely many
relaxed objects considered has one of the following three consensus numbers: 1, 2 or
∞. Another conclusion is that a queue is more sensitive than a stack to changes in its
semantics. It would be interesting to extend our results to other data structures.

It would be interesting to find out the internal structure among relaxed objects in
the same level of the consensus hierarchy. In particular, for i ∈ Z+, is it possible to
implement a queue[1, 1, i+1] object using queue[1, 1, i+2] objects and registers? Is it
possible to implement a queue[1, 1, 2] object using queue[1, 1, 0] objects and registers?

Acknowledgements. Support is gratefully acknowledged from the National Science
Foundation under grants CCF-1217921, CCF-1301926, and IIS-1447786, and the De-
partment of Energy under grant ER26116/DE-SC0008923.

428 N. Shavit and G. Taubenfeld

References
1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. IEEE Com-

puter 29(12), 66–76 (1996)
2. Afek, Y., Korland, G., Natanzon, M., Shavit, N.: Scalable producer-consumer pools based

on elimination-diffraction trees. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010, Part II. LNCS, vol. 6272, pp. 151–162. Springer, Heidelberg (2010)

3. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: Relaxed consistency for improved
concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490,
pp. 395–410. Springer, Heidelberg (2010)

4. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The complexity of obstruction-free
implementations. J. ACM 56(4), 1–33 (2009)

5. Borowsky, E., Gafni, E.: Generalizecl FLP impossibility result for t-resilient asynchronous
computations. In: Proc. 25th ACM Symp. on Theory of Computing, pp. 91–100 (1993)

6. Ellen, F., Hendler, D., Shavit, N.: On the inherent sequentiality of concurrent objects. SIAM
Journal on Computing 41(3), 519–536 (2012)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

8. Henzinger, T., Kirsch, C., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation of
concurrent data structures. SIGPLAN Not 48(1), 317–328 (2013)

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, p. 508. Morgan Kaufmann
Publishers (2008)

10. Herlihy, M.P.: Wait-free synchronization. ACM Trans. on Programming Languages and Sys-
tems 13(1), 124–149 (1991)

11. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended
queues as an example. In: Proc. of the 23rd International Conference on Distributed Com-
puting Systems, p. 522 (2003)

12. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. Journal
of the ACM 46(6), 858–923 (1999)

13. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
TOPLAS 12(3), 463–492 (1990)

14. Jayanti, P., Toueg, S.: Some results on the impossibility, universality, and decidability of con-
sensus. In: Rozenberg, G. (ed.) APN 1993. LNCS, vol. 674, pp. 69–84. Springer, Heidelberg
(1993)

15. Kirsch, C.M., Payer, H., Röck, H., Sokolova, A.: Performance, scalability, and semantics of
concurrent FIFO queues. In: Xiang, Y., Stojmenovic, I., Apduhan, B.O., Wang, G., Nakano,
K., Zomaya, A. (eds.) ICA3PP 2012, Part I. LNCS, vol. 7439, pp. 273–287. Springer,
Heidelberg (2012)

16. Loui, M.C., Abu-Amara, H.: Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research 4, 163–183 (1987)

17. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM Journal on Computing 29 (2000)

18. Shavit, N.: Data structures in the multicore age. Communications of the ACM 54(3), 76–84
(2011)

19. Sundell, H., Gidenstam, A., Papatriantafilou, M., Tsigas, P.: A lock-free algorithm for con-
current bags. In: Proc. of the Twenty-Third Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, SPAA 2011, pp. 335–344 (2011)

20. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming, 423 p. Pearson /
Prentice-Hall (2006). ISBN 0-131-97259-6

21. Taubenfeld, G.: Weak read/write registers. In: Frey, D., Raynal, M., Sarkar, S., Shyamasun-
dar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 423–427. Springer, Heidelberg
(2013)

Comparison-Based Interactive Collaborative

Filtering

Yuval Carmel and Boaz Patt-Shamir�

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

Abstract. We study the interactive model of comparison-based collab-
orative filtering. Each player prefers one object from each pair of objects.
However, revealing what is a player preference between two objects can
be done only by asking the player specifically about that pair, an action
called probing. The goal is to (approximately) reconstruct the players’
preferences with the smallest possible number of probes per player. The
per-player number of probes can be reduced if there are many players
who share a similar taste, but a priori, players do not know who to col-
laborate with. In this paper, we present the model of comparison-based
interactive collaborative filtering, analyze a few possible taste models and
present distributed algorithms whose output is close to the best possible
approximation to the players’ taste.

Is there anyone so wise as to learn by the experience of others? Voltaire

1 Introduction

Recommendation systems have become a significant part of our lives in the past
few years. Most people encounter recommendation systems on a daily basis,
while buying a book, choosing which movie to watch, buying groceries in the
supermarket, or even finding a life mate. Collaborative Filtering is one of the
prevalent approaches to recommendation systems, especially large scale systems
(such as Netflix [7]). The idea in collaborative filtering is to take advantage of
the existence of many players with similar preferences which can collaborate by
sharing the load of trying the objects and identifying objects they perceive as
good.

Following Drineas et al. [10], we distinguish between interactive and non-
interactive recommendation systems, which differ in assumption and usage. In
non-interactive recommendation systems, the algorithm is fed all known prefer-
ences as collected from the users in the past, and the goal is to output (possibly
few) unknown preferences. This model is very popular, and conceptually easy to
implement, but it does not take into account the dynamics of the system after
the output is made.

� Supported in part by the Israel Science Foundation (grant No. 1444/14).

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 429–443, 2015.
DOI: 10.1007/978-3-319-25258-2_30

430 Y. Carmel and B. Patt-Shamir

In interactive recommendation systems (called “competitive” in [10]), on the
other hand, while the goal remains to predict preferences, it is assumed that no
preference is known a priori, and the focus is on the evolution of the system.
Specifically, an interactive algorithm proceeds by asking players to reveal specific
preferences in an action called probe. The results of probes not only determine
the predictions the algorithm makes, but also determine the identity of future
objects to be probed. The goal of interactive algorithms is to predict players’
preferences while minimizing the number of probes, since probing is assumed to
be costly.

The interactive model is as follows (cf. Section 2). There are n players and
m objects; each player has his1 preferences over the objects, represented by his
preference vector or taste. An entry in the vector of a player can be revealed
only by asking that player to preform the appropriate probe. Probe results are
assumed to be posted on a shared “billboard” (modeling eBay feedback records,
IMDb reviews, etc.), so that each player can run his algorithm to find which
probe to do next, as well as compute preference predictions.

The existence of a billboard does not solve the problem, since players still
need to decide whose results to adopt. We assume that some tastes are popular,
namely many players have them. Concretely, given a popularity factor 0 < α ≤ 1,
and a distance parameter D ≥ 0, we say that a preference vector vj is (α,D)-
popular if there are at least αn players whose preference vectors differ from vj by
at mostD entries. Note that in order to reconstruct any taste (preference vector),
Ω(m) probes are required just to cover all objects, and hence, to reconstruct his
preferences to within O(D) errors, the average number of probes per player with
an (α,D)-popular taste cannot be less than Ω(m−D

αn).
In most previous work, preferences are simply an absolute grade for each

object. The grades are typically binary, with the interpretation of “the user
likes/dislikes object a.” In this paper we introduce a comparison-based interac-
tive collaborative filtering model, where preferences are expressed only over pairs
of objects, with the interpretation of “the user prefers object a over object b.”
In the interactive model, a comparison-based probe means that the user is pre-
sented with two objects, and responds with his preference between them (which
may also include “equal” or “incomparable”). We note that it is well known
that comparison-based preferences are more intuitive, consistent and accurate
than absolute grading (we elaborate below). However, it is not quite clear what
can be assumed about the structure of comparison-based preferences. In this
paper we study a few simple user models. The simplest model is that the user
preference between a pair of objects is independent of his preferences over other
pairs, and possibly the most structured model is when the pairwise preferences
are induced by an underlying total order over all objects. In between, one can
consider pairwise preference induced by partial order.

Our Contribution. The main technical contribution of this paper is a compari-
son-based algorithm for reconstructing preferences induced by an underlying to-
tal order. First we present Algorithm DP (Section 3) for instances with distance

1 Or her. For uniformity, we have arbitrarily chosen to refer to players as males.

Comparison-Based Interactive Collaborative Filtering 431

parameter D = 0. With high probability, Algorithm DP reconstructs (α, 0)-
popular preference vectors exactly, incurring at mostO(1

α logn(log logn+ log 1
α))

probes per player, assuming m = n.2

Our main result is Algorithm DPD (Section 4), that uses Algorithm DP
as a subroutine, and solves problem instances with distance parameter D > 0
w.h.p. Algorithm DPD reconstructs (α,D)-popular preference vectors with at

most O(D) errors and using at most O(D
2

α log2 n(log logn+ log 1
α)) probes per

player. We also consider the case where each user perceives the object set as a
disjoint union of a few object categories, such that objects within a category are
totally ordered, but objects in different classes are incomparable. This model is
appropriate in the case that the object set is eclectic, e.g., cars and restaurants.
We show how to reconstruct the taste in this case without prior knowledge on
the categorizations, and even when different users have different categorizations.

Related Work. Collaborative filtering is studied quite intensively, but mostly
from the non-interactive perspective (see, e.g., [7, 11, 16]). The interactive model
was introduced by Drineas et al. [10] (referred to there as “competitive recom-
mendation systems”). In the absolute grade model, where a preference vector
specifies a grade for each object, it was shown by Awerbuch et al. [5], that all
(α, 0)-popular preferences can be reconstructed exactly, using O(1

α logn) user
probes (assuming m = Θ(n) for simplicity). Alon et al. [4] extend this result
with instances in which the distance parameter is D > 0 and provide a re-
construction for all (α,D)-popular users preferences using O(1

αD
3/2 log2 n) user

probes with at most O(D) errors. In addition, [4] provides an algorithm which
reconstructs all (α,D)-popular tastes with O(D/α) errors using O(log3.5 n/α2))
user probes. Nisgav and Patt-Shamir [15] improve these results, presenting al-
gorithms for reconstructing (α,D)-popular users preferences with O(D) errors
and probe complexity either O(Dα log2 n) or O(1

α log3 n).
Comparison-based recommendation systems are considered superior to abso-

lute grading systems in stability and more natural for human interaction based
ratings. For example, in an experiment held by Jones et al. [12], user prefer-
ences expressed by comparisons were measured as 20% more stable over time
than preferences expressed by 5-star grading scale. Since a 10% increase in ac-
curacy is considered significant (that was the goal of the million-dollar Netflix
challenge [7]), a 20% reduction in inconsistency is clearly meaningful in this con-
text. Moreover, users tend to prefer comparison-based grading, finding it more
intuitive than 5-star rating-based grades [8, 12].

It is therefore not surprising that there are some proposals for comparison-
based model recommendation systems. Loepp et al. [14] provide an interactive
collaborative filtering algorithm which uses a priori knowledge about the ob-
jects to optimize the estimations of user preferences. Desarkar et al. [9] provide
a comparison-based non-interactive algorithm to predict preferences using ma-
trix factorization. Both [9] and [14] present experimental results, which show
that comparison-based preferences perform well against other user correlation

2 In general, the probe complexity results should be multiplied by �m/n�. For sim-
plicity, we usually omit this factor and assume m = n.

432 Y. Carmel and B. Patt-Shamir

methods in collaborative filtering algorithms. From the theoretical-algorithmic
viewpoint, Ailon [1] gives an active learning algorithm to produce approximate
ranking from pairwise preferences, which reconstructs a single vector (equivalent
to a single taste) using O(n · polylog(n, ε−1)) queries, where 0 < ε < 1 is the
error tolerance parameter. However, to the best of our knowledge, the current
paper is the first to present an interactive comparison-based recommendation
system with worst-case guarantees.

Our Techniques. Our algorithms use ideas from the interactive non comparison-
based algorithms of [3, 5]. We also use the parallel merge sort algorithm of Valiant
[17] to speed up computation, and the approximation algorithm for minimum
feedback arc set in tournaments from [2, 13] to obtain approximate total order.

Organization. The remainder of this paper is organized as follows. In Section 2
we define the comparison-based model and on the different possible user models.
Then, focusing on the total order case, in Section 3 we give our algorithm DP for
problem instances with distance parameter D = 0, and in Section 4 we give our
second algorithm DPD, which solves problem instances with distance parameter
D > 0. In Section 5 we consider the case where objects can be classified into
disjoint categories.

2 Preliminaries

Instances. An instance of the comparison-based reconstruction problem is de-
fined as follows. There is a set P of n players (a.k.a. users), and a set O of m
objects. For every two objects i, i′ ∈ O and player j ∈ P , there is a comparison
value cj(i, i

′) ∈ {−1, 0, 1,⊥}, called the personal preference of player j over ob-
jects i, i′, interpreted as follows. If cj(i, i

′) = 1 then player j prefers i over i′,
and if it is −1 then player j prefers i′; if cj(i, i′) = 0 then player j likes i and
i′ the same, and if cj(i, i

′) = ⊥ then player j cannot compare objects i and i′.
We define the vector vj := (cj(1, 2), cj(1, 3), . . . , cj(m,m− 1)) of length

(
m
2

)
to

be the preference vector or taste of player j.

Distances and Popularity. Fix an instance of the problem, and let O′ ⊆ O
be an object set. The distance between two players j, j′ w.r.t O′ is defined by

distO′(vj , v
′
j) = |{(i, i′) : i, i′ ∈ O′ ∧ cj(i, i

′) �= c′j(i, i
′)}| .

Namely, distO′(vj , v
′
j) is the number of object pairs from O′ on which j and j′

disagree. A taste is a vector v containing a comparison value c(i, i′) for each
pair (i, i′) ∈ O. Given 0 < α ≤ 1 and D ≥ 0, a taste v is (α,D)-popular if
there are at least αn players, whose taste is at distance at most D from v. A
player is (α,D)-popular if his taste is (α,D)-popular. Note that for any taste
v and 0 ≤ α ≤ 1 there is a 0 ≤ D ≤ (

m
2

)
such that v is (α,D)-popular, and

similarly, for any given 0 ≤ D ≤ (
m
2

)
there exists an 0 ≤ α ≤ 1 such that v is

(α,D)-popular.

Algorithms. An Algorithm proceeds in parallel rounds, where in each round
the algorithm may present to each player j a pair of objects (i, i′) and obtain

Comparison-Based Interactive Collaborative Filtering 433

cj(i, i
′). This action is called a probe by player j. Players communicate through

a shared billboard, i.e., all probes results are immediately visible to all players.
An algorithm makes output and chooses which objects to probe based on the
results of all past probes (including probes taken by other players), and possibly
coin tosses. The algorithms we consider in this paper are required to output
preference vectors that approximate the pairwise preferences of the players, up to
some specified number of errors. The maximal number of probes a player is asked
to perform in an algorithm execution is the probe complexity of the algorithm.
Our algorithms are randomized and all guarantees are with high probability, i.e.,
holds with probability 1−n−Ω(1), where probability is taken over the coin tosses
of the algorithm.

We assume random partitioning and sampling is always done uniformly. Split-
ting a set in two, for instance, is done by choosing, for each element, its part
independently with probability 1/2.

2.1 User Models

We consider the following variants of the comparison-based preferences model.

General Model. In the general model, the
(
m
2

)
comparison values of a player are

completely independent. In particular, no transitivity of preferences is assumed.
This model is equivalent to a model of

(
m
2

)
virtual objects where each virtual

object represents a pair of two physical objects, with four possible grades. For an
upper bound, one can apply Algorithm 1 of Azar et al. [6] for recommendations
with discrete grades, which reduces the problem to the binary grade model.
Plugging in that algorithm the algorithm of [15] for binary recommendations,
we obtain the following result.

Theorem 1. In the comparison-based model, any (α,D)-popular taste can be

reconstructed to within O(D) errors in probe complexity O(
⌈
m2

n

⌉
1
α log3(m+n)).

The general model also admits easy lower bounds. In particular, the total
probe complexity (the sum of individual probe complexity over all players) in

the general model is Ω(
⌈
m2−D

n

⌉
). Intuitively, even in the case where all players of

some (α,D)-popular taste are perfectly coordinated, each individual object (with
the exception of at most D objects) must be probed at least once. Therefore,
Ω(

(
m
2

)−D) total probes must be taken by these players just to cover all pairs.
Next, consider the case where all players know all the possible tastes in advance
(they are common knowledge). Still, to find his own taste, each user must make
at least one probe, giving rise to total probe complexity of at least Ω(n). Hence

the average probe complexity is Ω(
(m2)−D+n

n) = Ω(
⌈
m2−D

n

⌉
).

Total Order Model. In this model we assume the player taste is induced
by a total order over the objects. Comparisons may not have “⊥” as a value:
cj(i, i

′) ∈ {−1, 0, 1} for all players j and objects i, i′. In this model, a preference
vector can be represented by a permutation of the objects. We note that in this

434 Y. Carmel and B. Patt-Shamir

case distances, as defined above, are just the number of transpositions of one
permutation with respect to the other.

We have the following straightforward lower bound on the number of probes
in this model.

Theorem 2. Consider an (α,D)-popular taste which is a total order. The num-

ber of probes for reconstructing it is Ω((m−2D) log(m−2D)
αn) probes on average.

Proof: [sketch] We use a variant of the sphere packing bound. The number
of permutations that are at distance at most 2D from a given permutation is
at most

∑2D
i=0

(
m
i

)
i! ≤ (2D + 1)m2D. Therefore, if we cannot specify at least

m!
(2D+1)m2D distinct inputs, there will be instances containing two tastes at dis-

tance greater than 2D, and both will have the same output, so necessarily one
of them is at distance more than D from its output. Since specifying m!

(2D+1)m2D

distinct outcomes requires Ω((m− 2D) log(m− 2D)) bits, and since each probe
provides only O(1) bits, the result follows.

Disjoint Categories Model. In this model we assume that the object set can
be broken into disjoint classes, or categories, where only objects in the same
category are comparable. The categorization of objects may be different for
different tastes.

Specifically, we assume that for each taste, the object set can be partitioned
into k disjoint sets O =

⋃k
i=1 Oi, and that there is a total order σi defined

over each Oi. The preference between two objects is either ⊥ if they belong to
different subsets, or given by σi if they both belong to Oi for some i. This model
is appropriate in cases where the objects may be of incompatible nature, e.g., O1

consists of films and O2 is a set of pets: it doesn’t make sense to compare a film
with a pet. Moreover, different tastes may have different categorizations, which
allows our algorithm to be applicable even when the categories are unanimously
acceptable.

3 Exact Total Order: Algorithm DP
In this section we consider the case where the algorithm receives as input a
popularity factor α, and the goal is to reconstruct the preferences precisely for
all (α, 0)-popular players, i.e., players whose exact taste is shared by at least
αn players. Most importantly, we assume that these (α, 0)-popular tastes are
induced by total orders over the objects. Our solution to this case is a randomized
distributed algorithm called DP, based on Algorithm Zero Radius of [4] for
the binary grade model. While D = 0 is an interesting case in its own right, we
shall use Algorithm DP as a subroutine in the algorithm for D > 0, presented
in Section 4.

The algorithm works as follows (see pseudo code in Algorithm 3.1). The input
consists of a set of players P and a set of objects O. If either P or O is small
enough, each player in the current player set P sorts all objects in the current

Comparison-Based Interactive Collaborative Filtering 435

object set O, using a straight-forward adaptation of any efficient comparison-
based sorting algorithm, such as Quicksort, Heapsort, Mergesort, etc. Otherwise,
the algorithm randomly splits the object set and the player set into O′, O′′ and
P ′, P ′′ respectively, and calls itself recursively: P ′ with O′ and P ′′ with O′′.
When the recursive call returns, each player in P ′ knows his complete preferences
(ordering in our case) over O′ and each player in P ′′ knows his ordering over
O′′. Consider w.l.o.g. a player j ∈ P ′: j needs to find the ordering over O′′ it
agrees with, and then to merge the order of O′ with the order of O′′, to obtain
a sorted order on O.

This is done as follows. Looking at the billboard, a player in P ′ first identifies
the preference vectors over O′′ with popularity larger than α/2 (line 8) as “can-
didate tastes.” From these candidates, he selects the vector compatible with his
taste by probing controversial pairs, i.e., pairs on which some candidate vectors
differ. Formally, for two vectors v1 and v2, there exist a pair (i, i′), for which,
i <v1 i′ and i >v2 i′, namely i is preferred over i′ in v2 but not in v1 (lines 11–
12). Each such probe eliminates at least one candidate. Eventually, the player is
left with a single vector. This vector, which is an ordering of O′′, is then merged
with the vector the player has already computed for O′. This is done using the
parallel merging algorithm of Valiant [17].

Algorithm 3.1. DP(P,O) Pseudo-code executed by player j ∈ P

1: if min(|P |, |O|) < 16c lnn
α

then � base case
2: Sort O using any reasonable sorting algorithm and return the sorted vector.
3: end if
4: Randomly partition P = P ′ ∪ P ′′, and O = O′ ∪O′′.
5: if j ∈ P ′ then call DP(P ′, O′)
6: else call DP(P ′′, O′′)
7: end if

Assume w.l.o.g. that j ∈ P ′. Upon returning, j has v′ his complete order over O′,
and sees the order selected by each player j′ ∈ P ′′

8: Let V be a set of vectors of O′′ chosen by at least α/2 players from P ′′.
9: while |V | > 1 do
10: Let C = {(i, i′) ∈ O′′ ×O′′ | ∃v1, v2 ∈ V s.t. i <v1 i′ and i >v2 i′}
11: Choose an arbitrary pair (i, i′) ∈ C.
12: Let c = probe(i, i′)
13: Remove from V all vectors whose value on (i, i′) is not c.
14: end while
15: Suppose V = {v′′}. � |V | = 1 w.h.p. if j is in an α-popular tatse
16: Let Pj = {j′ ∈ P ′ : player j′ chose vector v′′}.
17: return Merge(Pj , v

′, v′′).

Analysis. Consider an α-popular taste. The algorithm’s success critically de-
pends on having more than |P |α/2 players of that taste in any invocation with
player set P . The following lemma ensures this w.h.p.

436 Y. Carmel and B. Patt-Shamir

Lemma 1. Fix an α popular taste v, and let Pv be the set of players of taste v.
Then, with probability 1−n−Ω(1), in all invocations of DP(P,O) at least |P |α/2
of the players in P have taste v, i.e., |Pv ∩ P | ≥ α|P |/2.
Proof: Observe that the set of players P in any invocation is a random sample
of the set of all players. By the Chernoff bound we have that the number of
players in any random sample P is

Pr [# players of taste v < α|P |/2] ≤ e−
α|P |

8 ≤ e
2c lnn

α = n−2c ,

because by the code, |P | ≥ 16c
α lnn. Since the total number of invocations is

bounded by n, the result follows from the union bound.

Next, we state the correctness of Algorithm Merge(P, v1, v2) used in line 17.

Lemma 2. Let v1, v2 be two sorted vectors with |v1| = Θ(|v2|) and let P be the
set of players agreeing on the joint order of the objects in v1 and v2. Then the

merged sorted vector can be computed using probe complexity O(|v1||P | log log |v1|)
per player.

The algorithm is based on [17] in a straightforward way. Details omitted.

Theorem 3. Under Algorithm DP, with probability 1 − n−Ω(1), all outputs by
α-popular players are correct. The number of probes per player is bounded by
O(Y (log Y + log logm)), where Y = log n

α

⌈
m
n

⌉
.

Proof: Fix an α-popular taste v. By Lemma 1, w.h.p., all invocations have at
least α/2-fraction of players whose taste is v. Hence the set V selected in line 8
contains the projection of v onto O′′, and it will be the only vector not eliminated
by any player from P ′ whose taste is v. Since this is true symmetrically also for
P ′′, it follows that with high probability, all outputs are correct.

Regarding complexity, note that probing is done by the algorithm only in
lines 2, 12, and 17. The probing of line 2 is done according to the sorting algo-
rithm, at the cost of O(|O| log |O|) probes. Let P and O be the set of players
and objects respectively, when the sorting algorithm is executed. Since the base
condition is min(|P |, |O|) < 16c lnn

α and since both the player and the object sets
are approximately halved in every recursive call, we have that, with high proba-
bility, |O| = O(Y), and hence the number of probes due to line 2 is O(Y log Y).
Note that line 2 is executed once throughout the algorithm by each player.

Next, consider line 8. Since each vector in V represents at least an α
2 fraction

of the players of P ′′, |V | ≤ 2
α . Since in each iteration of the while loop, at least

one vector is removed from V in line 13, we have that each player makes at most
2/α probes in line 12 in an invocation of Algorithm DP . Finally, the probing
of line 17 is done using Valiant’s merging algorithm [17]. By Lemma 2, we have
that each player makes O(m

nα log logm) probes in line 17. It follows that the total
number of probes due to lines 8 and 17 in a single invocation of the algorithm
is O(1

α log logm). Since the number of recursive levels is O(log n), the result
follows.

Comparison-Based Interactive Collaborative Filtering 437

Corollary 1. If m = Θ(n) and α = (logn)−Ω(1), the probe complexity of Algo-

rithm DP is O
(

1
α logn log logn

)
.

We note that the probe complexity of Algorithm DP is larger than the lower
bound of Theorem 2 only by a factor of O(log logn) .

4 Approximate Total Order: Algorithm DPD
In this section we present our main result. As in Section 3, we assume that
the taste of each player is induced by a total order on the objects, but whereas
previously we assumed that there are αn players whose taste is exactly the same,
here we require only that the taste is (α,D)-popular, namely there are αn players
such that any two players in the set may disagree on the outcomes of at most D
comparisons. We use Algorithm DP from Section 3 as a subroutine, but we can
still reconstruct the taste to within O(D) errors with polylogarithmic overhead.
Our solution is a distributed algorithm we call DPD, which extends Algorithm
S from [15] to the comparison-based model.

Algorithm Description. The algorithm consists of three conceptual steps as
follows (see pseudocode in Algorithm 4.1). In the first step, we split the object
set uniformly at random into S = cD disjoint subsets, for some constant c >
8. We apply Algorithm DP to each subset by all players. This splitting and
application of DP is repeated K = Θ(D logm) times, thus making sure (w.h.p.)
that each pair of objects appears in the same subset Θ(logm) times. After this
step, we have, for each pair of objects, Θ(logm) estimates for each player. Next,
using these estimates, each player j builds a directed graph Gj = (O,Ej) as
follows. There is a directed edge between every pair of objects, whose direction
is determined by the majority of outcomes computed in the first step. Note that
Gj is a tournament, but it may be inconsistent, i.e., contain cycles. These are
eliminated in the last step by applying the algorithm of Ailon et al. [2] to Gj ,
which finds a 3-approximation to MFAST : MFAST is the problem of deleting
the minimum number of edges from a tournament so that the result is acyclic.3

No probing is required for this step. The result is the output of player j.

Algorithm Analysis. We first define some notation. Let vj denote the taste
of player j, and vj(i, i

′) denote the preference of player j on the pair (i, i′). For
each player j, define P (j) = {j′ ∈ P : dist(vj , vj′) ≤ D}, namely P (j) is the set
of players whose preference vectors differ from j on at most D object pairs.

Now, define, for each player j, the set of object pairs O(j) to be the pairs on
which player j agrees with the majority of the players in P (j), i.e.,

O(j) =
{
(i, i′) ∈ O ×O : | {j′ : vj′(i, i

′) = vj(i, i
′)} | > |P (j)|

2

}

3 MFAST stands for Minimum Feedback Arc Set in Tournaments (an NP-hard prob-
lem, according to Alon [3]). The approximation algorithm of Ailon et al. [2] has
running time O(|O| log |O|) . Kenyon-Mathieu and Schudy [13] give a PTAS for
MFAST with running time O(|O|6)).

438 Y. Carmel and B. Patt-Shamir

Algorithm 4.1. DPD reconstruct approximate taste

Require: P,O, α,D
1: for all k ∈ 1, .., K do � K = Θ(D logm)
2: Partition O into S = cD disjoint subsets O =

⋃
s∈1..S Os. � c > 8 is a constant

3: for all s ∈ 1, .., S do
4: Invoke DP(P,Os, α/4)
5: end for
6: Let Ck

j (i, i
′) be the reconstructed output of pair (i, i′) for player j on round k.

7: end for
8: For all object pairs (i, i′), let L(i, i′) denote the set of iterations in which the objects

i and i′ are in the same subset.
9: For all i, i′ ∈ O, let Cj(i, i

′) be the majority of {Ck
j (i, i

′) : k ∈ L(i, i′)}
10: Let Gj = (O,Ej) be a directed graph, where, Ej = {(i, i′) : Cj(i, i

′) ≥ 0}
11: Invoke MFAST-Approx(Gj) for each player j ∈ P
12: Output the resulted ranking for each player j.

The following lemma helps to get a lower bound on |O(j)|.

Lemma 3. For all 0 < δ ≤ 1 it holds that any player j disagrees with at most
a δ-fraction of the players in P (j) on at most D/δ object pairs.

Proof: By definition, each player in P (j) disagrees on at most D pairs with
player j. Hence the total number of disagreements between j and all players in
P (j) is less than |P (j)|D. Therefore the number of players in P (j) with which
j disagrees on more than D/δ pairs is at most δ|P (j)|.

Next, we show that for any (i, i′) ∈ O(j), in each iteration k ∈ L(i, i′) of
algorithmDPD (cf. line 8), AlgorithmDP computes a correct estimate of vj(i, i

′)
in line 4 with “good” probability.

Lemma 4. For all j ∈ P , (i, i′) ∈ O(j) and iteration k ∈ L(i, i′), we have that
Pr[Ck

j (i, i
′) = vj(i, i

′)] ≥ 1− 4
c .

Proof: Fix player j and an object pair (i, i′). Consider a random subset Os for
which i, i′ ∈ Os. Let Ps(j) be the set of players that agree with player j on all

objects in Os, i.e., Ps(j) = {j′ : distOs(j, j
′) = 0}. If |Ps(j)| ≥ α|P |

4 , then DP will

return correct results. It therefore suffices to show that Pr[|Ps(j)| ≥ α|P |
4] ≥ 1− 4

c ,
where the probability here is over the choice of Os.

To do that, we first observe that for any 0 < β < 1, we have that if∑
j′∈P (j) distOs(j, j

′) ≤ β · |P (j)|, then |Ps(j)| ≥ (1 − β)|P (j)| . It follows that
it suffices to bound the probability that the sum of distances for players in P (j)
is at most 3

4 |P (j)|, i.e., the probability that
∑

j′∈P (j) distOs(j, j
′) < 3

4 |P (j)|.
Let O∗

s = Os \ {(i, i′)}. Consider the random variable
∑

j′∈P (j) distO∗
s
(j, j′),

namely, the sum of distances between j and all P (j) players, ignoring the

pair (i, i′). As (i, i′) ∈ O(j), we have that
∑

j′∈P (j) |vj(i, i′)− vj′ (i, i
′)| < |P (j)|

2 .

Comparison-Based Interactive Collaborative Filtering 439

Clearly,

Pr
[∑

j′∈P (j)

distOs(j, j
′) ≤ 3

4
|P (i)|

]
≥ Pr

[∑

j′∈P (j)

distO∗
s
(j, j′) ≤ |P (j)|

4

]
.

Since distance is measured by object pairs and from the definition of P (j), we
have

D|P (j)| ≥
∑

j′∈P (j)

distO(j, j
′) ≥

S∑

�=1

∑

j′∈P (j)

distO�
(j, j′) ,

which implies that
∑

j′∈P (j) distO�
(j, j′) > |P (j)|

4 for at most 4D subsets O�.
From that we have

Pr
[∑

j′∈P (j)

distO∗
s
(j, j′) ≤ |P (j)|

4

]
≥ S − 4D

S
= 1− 4

c
.

Since we consider (α,D)-popular players, the definition of P (j) implies that

|P (j)| ≥ αn. Therefore, |Ps(j)| ≥ |P (j)|
4 ≥ αn

4 with probability ≥ 1 − 4
c . The

result follows.

Lemma 5. W.h.p., each pair (i, i′) occurs together in Ω(log n) invocations of
DP.

Proof: Consider object i. The probability that i′ is chosen to the same subset
as i in a given iteration is D

S = 1
c . It follows that the expected number of subsets

they occur together is K
c = Ω(logm). Since choices in different iterations are

independent, the result follows from the Chernoff bound.

By Lemma 4, the probability that each invocation of DP is successful is at least
1−4/c > 1/2 because c > 8. By Lemma 5, each pair occurs together in Ω(logm)
invocations of DP . Therefore, by the Chernoff bound and the union bound, we
have that w.h.p, the majority value is correct for all pairs for all players.

Lemma 6. Pr
[
Cj(i, i

′) �=vj(i, i
′) for some j and (i, i′)∈O(j)

] ≤ n−Ω(1).

We can now summarize the properties of Algorithm DPD as follows.

Theorem 4. With probability 1 − n−Ω(1), algorithm DPD predicts for each
player j ∈ P its preference vector with at most O(D) errors. The probe com-
plexity for each player is O(D2 logm · TDP(n,m/cD, α/4)), where TDP(n,m, α)
is the probe complexity of Algorithm DP with n users, m objects and popularity
factor α.

Corollary 2. For m = Ω(nD) and α = (logn)−O(1), the probe complexity of
Algorithm DPD for reconstructing an (α,D)-popular taste is

O

(
m

n

D

α
log2 m log logm

)
.

440 Y. Carmel and B. Patt-Shamir

Proof: [of Theorem 4] Fix a player j. Forevery object pair (i, i′)∈O(j), we have
that Cj(i, i

′) = vj(i, i
′) w.h.p. Since this is guaranteed only for object pairs in

O(j), and since |O(j)| ≥ m − 2D (by Lemma 3), we have distO(vj , Cj) ≤ 2D,
i.e., the number of object pairs on which the results of the majorities differ from
the true preferences of j (which is a consistent total order) is at most 2D. Since
the Algorithm MFAST-Approx of [2] finds a 3-approximation to the optimal
number of edges that need to be reversed, MFAST-Approx finds a permutation
whose distance from vj is at most 6D errors. The query complexity follows from
Theorem 3, along with the fact that DP is invoked KS = KcD times, with
|P | = n, |Os| =

⌈
m
D

⌉
and popularity factor α/4. The probability of correctness

follows from Lemma 4 and Lemma 6.

5 The Case of Disjoint Categories

In many cases, the object set is eclectic in the sense that it consists of a few kinds
of objects, e.g., cats and cars. Typically, in these cases one may have preference
over pairs of objects of the same kind, but there is no sense in comparing objects
of different kinds. The problem becomes more complicated when there may be
ambiguity about object classification: For example, some users may classify a
jaguar a as a cat, while others may classify it as a car.

In this section we model this situation and present algorithms to reconstruct
preferences.

Preference Model. A user j is said to have a categorized taste if the object
set can be partitioned into k disjoint subsets O =

⋃k
�=1 O

j
� called the categories

of user j, and if j has a total order σj
� over each category Oj

� . Formally, if user
j has a categorized taste then

cj(i, i
′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i = i′

1 if i, i′ ∈ Oj
� for some 	 and σj

� (i) > σj
� (i

′)
−1 if i, i′ ∈ Oj

� for some 	 and σj
� (i) < σj

� (i
′)

⊥ otherwise.

For simplicity, we say that users have the same taste if their preferences are
identical. However, in the case of categorized tastes, we also define the notion of
crude taste: two users j and j′ are said to have the same crude taste if they have
the same object categorization (but not necessarily the same ordering within

each category), i.e.,
{
Oj

1, . . . , O
j
k

}
=

{
Oj′

1 , . . . , Oj′
k

}
.

Algorithm. Clearly, if the user categorizations are given, one can run algorithm
DP on each user category with all users that have this category; if a taste is
α-popular. Formally, we have the following result.

Lemma 7. Suppose that in a given instance, all tastes are categorized. If the
categories of all users are known, then preferences can be reconstructed w.h.p.
with probe complexity O((m

αn + k) logn
α log(

⌈
m
n

⌉
logm
α)), where k is the number of

categories.

Comparison-Based Interactive Collaborative Filtering 441

Proof: Consider an arbitrary user, say j. Let m� = |Oj
� |, i.e., m� is the size of

category 	 of user j. Let n� be the number of users with category Oj
� . Note that

n� ≥ αn because at least all users with the taste of j have category Oj
� , and

possibly others too. User j takes part in k invocations of DP , where invocation
	 has m� objects and n� ≥ αn players participating. By Theorem 3, the total
probe complexity for user j is therefore

k∑

�=1

TDP(n,m�, n�/n) =

k∑

�=1

⌈
m�

n�

⌉
O

(
logn

α
log

(⌈
m�

n�

⌉
log(m+ n)

α

))

≤ O

((m

αn
+k

) log n

α
log

(⌈m
n

⌉ log(m+ n)

α

))
.

Note that by using algorithm DPD, Lemma 7 can be extended to handle (α,D)-
popular tastes, so long as each category is shared by at least αn users.

In view of Lemma 7, we now consider the question of reconstructing the
crude taste of the users. This can be done by adapting algorithm DP to crude
probes. A crude probe, or c-probe for short, is just a regular comparison probe,
except that its return value is either 1 if the two object probed are comparable
(no matter what is the comparison result), or 0 is the pair if incomparable
(i.e., the comparison probe returns ⊥). Algorithm DPC (see Algorithm 5.1 for
pseudocode) for reconstructing crude tastes has the same structure as Algorithm
DP , but with different base procedure (called Classify, line 2) and different
merging procedure (called Combine, line 17). We explain these two now.

Procedure Classify works by picking an unclassified object i0 and applying c-
probe of i0 against all other unclassified objects. If the result of c-probe(i0, i) = 1
then i is in the same category as i0, and otherwise i remains unclassified. Clearly
the probe complexity of a set O is O(k|O|).

Procedure Combine gets as input two classifications v′, v′′, each with at most k
categories. It applies c-probe for each pair of categories: one from v′ and the other
from v′′. These probes are done using representatives from the categories, i.e.,
O(k2) probes need to be executed in total. Moreover, these probes can be split
among all players in Pj , resulting in individual probe complexity of O(k2/|Pj |).

We can therefore summarize the properties of Algorithm DPC as follows.

Theorem 5. W.h.p., Algorithm DPC outputs the α-popular crude taste for each
user with probe complexity O(k(

⌈
m
n

⌉
logn+ k) + logn

α).

Proof: The probing of the base case (line 2) costs O(
m/n� k logn) because
in the base case, the number of objects is O(
m/n� logn). The elimination step
(line 12) costs O(1/α) probes in each iteration as before. regarding the probing
due to Combine (line 17), let nt denote the number of users in Pj in iteration t.
Then the total cost of Combine for user j over all iterations is

log(αn)∑

t=1

⌈
k2

nt

⌉
= O(k2 + log(αn))

log(αn)∑

t=1

1

αn2−t
≤ O(k2 + logn) ,

442 Y. Carmel and B. Patt-Shamir

Algorithm 5.1. DPC(P,O) reconstruct crude taste Pseudo-code executed by
player j ∈ P

1: if min(|P |, |O|) < 16c lnn
α

then � base case
2: return Classify(O). � see text
3: end if
4: Randomly partition P = P ′ ∪ P ′′, and O = O′ ∪O′′.
5: if j ∈ P ′ then call DPC(P ′, O′)
6: else call DPC(P ′′, O′′)
7: end if

Assume w.l.o.g. that j ∈ P ′. Upon returning, j has v′ as his classification of O′,
and sees the classifications of each player j′ ∈ P ′′

8: Let V be a set of classifications of O′′ chosen by at least α/2 players from P ′′.
9: while |V | > 1 do
10: Let C be the set of object pairs (i, i′) ∈ O′′ × O′′ for which there are classi-

fications v1, v2 ∈ V such that v1 classifies i, i′ together and v2 classifies them in
different categories.

11: Choose an arbitrary pair (i, i′) ∈ C.
12: Let c = c-probe(i, i′)
13: Remove from V all classifications whose value on (i, i′) does not agree with c.
14: end while
15: Suppose V = {v′′}. � |V | = 1 w.h.p. if j is in an α-popular taste
16: Let Pj = {j′ ∈ P ′ : player j′ chose classification v′′}.
17: return Combine(Pj , v

′, v′′). � see text

because w.h.p., nt = O(αn/2t). The result follows.

Corollary 3. For m = Θ(n), the probe complexity of Algorithm DPC for re-
constructing an α-popular crude taste is O((1

α + k) logn+ k2).

6 Conclusions and Open Problems

In this paper we showed that preferences can be reconstructed in a comparison-
based model if tastes are derived from a total order. We also showed how to
deal with tastes which can be decomposed into unrelated categories, assuming
that within each category objects are totally ordered. Our results are tight up
to a polylogarithmic factor, except for Algorithm DPD, whose complexity has
an extra factor of O(D2) when the number of objects is roughly the same as the
number of users.

While we know that if the comparison results are arbitrary the probe com-
plexity of taste reconstruction is Ω(

⌈
m2/n

⌉
) in the worst case, we leave open

the question of reconstructing tastes derived from a general partial order (i.e.,
assuming transitivity) in the comparison-based model.

Comparison-Based Interactive Collaborative Filtering 443

References

[1] Ailon, N.: Active learning ranking from pairwise preferences with almost optimal
query complexity. In: Proc. NIPS, pp. 810–818 (2011)

[2] Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM 55(5), 23 (2008)

[3] Alon, N.: Ranking tournaments. SIAM Journal on Discrete Mathematics 20(1),
137–142 (2006)

[4] Alon, N., Awerbuch, B., Azar, Y., Patt-Shamir, B.: Tell me who I am: an in-
teractive recommendation system. Theory of Computing Systems 45(2), 261–279
(2009)

[5] Awerbuch, B., Azar, Y., Lotker, Z., Patt-Shamir, B., Tuttle, M.R.: Collaborate
with strangers to find own preferences. Theory of Computing Systems 42(1), 27–41
(2008)

[6] Azar, Y., Nisgav, A., Patt-Shamir, B.: Recommender systems with non-binary
grades. In: Proc. 23rd SPAA, pp. 245–252. ACM (2011)

[7] Bell, R.M., Koren, Y.: Lessons from the netflix prize challenge. SIGKDD Explo-
rations 9(2), 75–79 (2007)

[8] Carterette, B., Bennett, P.N., Chickering, D.M., Dumais, S.T.: Here or there. In:
Proc. 30th European Conf. on Advances in Information Retrieval, pp. 16–27 (2008)

[9] Desarkar, M.S., Saxena, R., Sarkar, S.: Preference relation based matrix factoriza-
tion for recommender systems. In: Masthoff, J., Mobasher, B., Desmarais, M.C.,
Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 63–75. Springer, Heidelberg
(2012)

[10] Drineas, P., Kerenidis, I., Raghavan, P.: Competitive recommendation systems. In:
Proc. 34th Ann. ACM Symp. on Theory of Computing, pp. 82–90. ACM (2002)

[11] Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)

[12] Jones, N., Brun, A., Boyer, A.: Comparisons instead of ratings: Towards more
stable preferences. In: Proc. Int. Conf. on Web Intelligence and Intelligent Agent
Technology, pp. 451–456. IEEE Computer Society (2011)

[13] Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proc. 39th
Ann. ACM Symp. on Theory of Computing, pp. 95–103. ACM (2007)

[14] Loepp, B., Hussein, T., Ziegler, J.: Choice-based preference elicitation for collabo-
rative filtering recommender systems. In: Proc. 32nd Ann. ACM Conf. on Human
Factors in Computing Systems, pp. 3085–3094 (2014)

[15] Nisgav, A., Patt-Shamir, B.: Improved collaborative filtering. In: Asano, T.,
Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074,
pp. 425–434. Springer, Heidelberg (2011)

[16] Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation al-
gorithms for e-commerce. In: Proc. 2nd ACM Conf. on Electronic Commerce,
pp. 158–167. ACM (2000)

[17] Valiant, L.G.: Parallelism in comparison problems. SIAM J. on Computing 4(3),
348–355 (1975)

Coalescing Walks on Rotor-Router Systems�

Colin Cooper1, Tomasz Radzik1, Nicolás Rivera1, and Takeharu Shiraga2

1 Department of Informatics, King’s College London, United Kingdom
{colin.cooper,tomasz.radzik,nicolas.rivera}@kcl.ac.uk

2 Theoretical Computer Science Group, Department of Informatics,
Kyushu University, Fukuoka, Japan

shiraga@tcslab.csce.kyushu-u.ac.jp

Abstract. We consider the rotor-router mechanism for distributing par-
ticles in an undirected graph. If the last particle passing through a vertex
v took an edge (v, u), then the next time a particle is at v, it will leave
v along the next edge (v, w) according to a fixed cyclic order of edges
adjacent to v. The system works in synchronized steps and when two or
more particles meet at the same vertex, they coalesce into one particle.
A k-particle configuration of such a system is stable, if it does not lead to
any coalescing. For 2 ≤ k ≤ n, we give the full characterization of stable
k-particle configurations for cycles. We also show sufficient conditions for
regular graphs with n vertices to admit n-particle stable configurations.

1 Introduction

We consider an undirected connected graph G = (V,E) and the rotor-router
mechanism which keeps moving simple entities along the edges of G in synchro-
nized steps. We call these entities particles, but terms like agents, tokens or chips
may be used by others. Each edge {v, u} is viewed as a pair of opposite arcs (v, u)
and (u, v), and for each vertex, the arcs outgoing from this vertex are kept in a
fixed cyclic order. In each step, each particle moves from its current vertex to
an adjacent vertex. For each vertex v, if (v, u) is the most recently traversed arc
outgoing from v, then the next particle leaving v will traverse the next arc (v, w).
This is implemented by maintaining at each vertex v the vertex pointer πv which
indicates which arc outgoing from v should be taken next. While particles keep
passing through v, the pointer πv is the ”rotor” moving around the cyclic order
of arcs outgoing from v. This model was introduced by Priezzhev et al. [17], was
further studied and popularised by James Propp, and hence also referred to as
the Propp machine.

The rotor-router mechanism can be viewed as a model of graph exploration
by simple mobile entities and the efficiency of such exploration has been exten-
sively studied. While the earlier works refer mostly to single-particle rotor-router
exploration, there are now also a few recent results concerning the multi-particle

� This work was supported in part by EPSRC grant EP/M005038/1, “Randomized
algorithms for computer networks”.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 444–458, 2015.
DOI: 10.1007/978-3-319-25258-2_31

Coalescing Walks on Rotor-Router Systems 445

case. In both the single-particle and the multi-particle cases, some similarities
with graph exploration by random walks have been observed. This further mo-
tivates investigations of the rotor-router mechanism as a possible deterministic
alternative to random walks. For example, one random walk on a cycle of length
n covers (visits) all vertices in expected Θ(n2) time and a single-particle rotor-
router does this in deterministic Θ(n2) worst-case time. Wagner et al. [18, 19]
showed that for an arbitrary connected n-vertex m-edge graph and an arbitrary
initial configuration of the single-particle rotor-router system (arbitrary cyclic
orders of arcs, arbitrary initial setting of the vertex pointers and an arbitrary
starting vertex for the particle) the particle visits all vertices of this graph in
O(nm) steps. Subsequently a number of more detailed analyses of single-particle
rotor-router systems in various types of graphs have been published [4–6,20], but
it can be shown that Θ(nm) is the worst-case bound for the general graphs. The
expected cover time by a random walk has the same general bound O(nm).
More recently the cover time by (parallel) k random walks has been analyzed
and speedups over a single random walk between Θ(log k) and Θ(k) have been
shown for various classes of graphs and various initial settings [3, 9, 11, 12]. The
similar range of speedups for k-particle rotor router (over the single-particle
system) have been demonstrated in [10, 14].

In this paper we look at another aspect of multi-particle systems: coalescence
of particles. Whenever two or more particles meet at the same step in the same
vertex of the graph, then they coalesce (merge) into one particle. This parti-
cle continues moving through the graph, following the underlying protocol (for
example, the random-walk protocol or the rotor-router mechanism). Coalescing
random walks is a long established topic, attracting research interest partly due
to its close relation to the randomized pull-voting process [1]. The main case
considered is when initially each vertex has one particle and the question is to
provide good bounds on the expected time (number of steps) until full coalesc-
ing into one particle. Aldous [2] conjectured that this expected full-coalescence
time is at most of the order of the maximum hitting time of a single random
walk. This conjecture has not been fully settled yet, but considerable progress
has been made [8, 16].

Systems with coalescing particles may find applications in parallel comput-
ing. For example, Israeli and Jalfon [13] proposed coalescing random walks as
the basis of a self-stabilizing mutual exclusion algorithm. In a network of inter-
connected processing units (PUs) competing for access to some resource, each
PU creates a token and sends it for a random walk through the network. Tokens
coalesce whenever they meet at the same PU, eventually only one token remains
in the network (provided the network is connected and non-bipartite) and the
PU with the token gets exclusive access to some resource.

In this paper we want to initiate investigation of rotor-router systems with
coalescing particles. While the coalescing random walks will always eventually
merge into a single walk (or two walks in the case of bipartite graphs), and good
bounds for expected coalescence time are known, it is not difficult to come up
with examples of rotor-router configurations with multiple particles which do

446 C. Cooper et al.

not lead to any coalescence. Thus a reasonable first question is to characterize
such stable multiple-particle configurations. Other interesting questions are to
bound the probability that a random initial configuration (defined, for example,
by random initial settings of the vertex pointers) leads to full coalescing, and
to analyze the coalescence time. We give some answers to the first question,
leaving the other two as directions for further research. In particular, we give
a full characterization of stable configurations in cycles. This characterization
implies that if the length n of the cycle is prime, then any initial configuration
with k < n particles leads to full coalescing. We also show that all n-vertex
even-degree regular graphs admit n-particle stable configurations and give a
sufficient condition for odd-degree regular graphs to admit such configurations.
For graphs which have vertices of degree greater than 2 and for k < n particles,
the full coalescence may depend more on the structure of the graph than on the
primality of the number of edges or the number of vertices. As an example of this,
we show a graph with m edges and constant maximum degree, which admits k-
particle stable configuration, for any sufficiently largem and any 2 ≤ k ≤ 3

√
m/6.

The important property of non-coalescing rotor-router systems which we use
in our work is the long run behaviour of such systems. For single-particle rotor-
router systems, Bhatt et al. [6] showed that within O(nm) steps, the particle
enters (establishes) an Eulerian cycle. More precisely, after the initial stabilisa-
tion period of O(nm) steps, the particle keeps repeating the same Eulerian cycle

of the whole set
−→
E of directed arcs. The long run behaviour of multiple-particle

rotor-routers was open for a long time, but has been recently settled by Chalopin
et al. [7]. They showed that in polynomial number of steps the system reaches
a stable configuration S, that is a configuration which will be repeated after
some (potentially exponential) number of steps. Most importantly, they provide
a strong characterization of the way the particles will be moving around the

graph starting from a stable configuration. The set
−→
E can be partitioned into

arc-disjoint Eulerian circuits and the particles can be assigned to these circuits
such that each particle will be perpetually following the circuit it is assigned
to. The circuits are arc disjoint, but may share vertices, and two or more parti-
cles can be assigned to the same circuit. Our analysis of coalescing rotor-router
systems is directly based this characterization of the stable configurations of
non-coalescing rotor-router systems.

2 Preliminaries

We consider an undirected, simple (no loops or multiple edges), connected graph

G = (V,E) with n ≥ 3 vertices and m edges. We define
−→
E = {(v, w), (w, v) :

{v, w} ∈ E} as the set of (directed) arcs in G. For each v ∈ V , the arcs outgoing
from v are arranged in a fixed cyclic order. The vertex pointer πv indicates the
arc outgoing from v which will be taken by the next particle leaving v. When a
particle leaves v along the arc indicated by the pointer πv, the pointer advances
to the next arc outgoing from v. The system works in synchronised steps and
each particle moves in each step (that is, a particle never waits in the same

Coalescing Walks on Rotor-Router Systems 447

vertex). In a coalescing rotor-router system, if two or more particles arrive at
the same vertex v at the same step, they coalesce into one particle, which moves
out of v in the next step in the direction indicated by the vertex pointer. In a
non-coalescing system, if q ≥ 2 particles arrive at the same vertex v at the same
time, they all leave v in the next step taking the q consecutive arcs outgoing from
v, starting from the arc indicated by the vertex pointer and wrapping-around,
if q is greater than the degree of v. The vertex pointer changes to the arc next
after the last arc taken by a particle. We do not distinguish among particles, so
the order in which the particles leave vertex v in the same step is not important.

A k-particle configuration S is defined by the values of the vertex pointers
and the position of the particles. For a configuration S, we denote by σ(S) the
set of all configurations visited starting from S (we assume the system works
perpetually). We say that a configuration S is stable, if after starting from S we
eventually return to S. Clearly, a configuration S is stable, if and only if, for
each S′ ∈ σ(S), σ(S′) = σ(S). A set of configurations is stable, if it is equal to
σ(S) for a stable configuration S. Two configurations of a rotor-router system
are isomorphic, if there is a one-to-one mapping on V which preserves the cyclic
orders of arcs, the vertex pointers and the particle counts at vertices. We say
that a graph G admits a k-particle stable configuration, if there exist cyclic
orders of arcs at the vertices of G, the initial positions of vertex pointers and
the initial locations of k particles, which define a k-particle stable configuration
of the coalescing rotor-router system.

By definition, the rotor-router system is locally fair, sending, in the long run,
the same number of particles into each of the arcs outgoing from the same vertex.
More precisely, if S is a stable configuration and it takes T steps to return to
S, then during these T steps each of the arcs outgoing from the same vertex
is traversed the same number of times (otherwise the vertex pointer does not
return to its initial position). This local fairness implies the global fairness.

Lemma 1. If S is a stable configuration and it takes T steps to return to S,
then during these T steps each arc has been traversed the same number of times.

Proof. For each vertex v, during these T steps each arc outgoing from v has
been traversed the same number of times. Let α(v) denote this number, let
αmin = min{α(v) : v ∈ V } and assume, by contradiction, that U = {v ∈
V : α(v) = αmin} �= V . Each arc from U to V \ U has been traversed αmin

times but each arc from V \ U to U has been traversed more than αmin times.
This contradicts the assumption that after T steps we are back in the initial
configuration S, so the number of traversals from U to V \ U must have been
the same as the number of traversals from V \ U to U .

Chalopin et al. [7] proved the following strong characterization of stable con-
figurations of non-coalescing rotor-router systems, which is valid also for the
coalescing systems.

Theorem 1. [7] A configuration S is stable, if and only if, there exists a decom-

position of
−→
E into arc-disjoint Eulerian circuits and an assignment of particles

448 C. Cooper et al.

to circuits (possibly with more than one particle assigned to the same circuit)
such that starting from S, each particle follows perpetually the circuit to which
it is assigned.

This theorem says that while a rotor-router system keeps changing from con-
figuration to configuration within a stable set, each particle keeps tracing the
same Eulerian circuit. The circuits are arc disjoint and cover the whole set of

arcs
−→
E . Two or more particles can trace the same circuit and each circuit must

be traced by at least one particle (see Lemma 1). Note that opposite arcs (v, w)
and (w, v) may belong to the same circuit or to two different circuits.

Corollary 1. Let C0, C1, . . . , Cq−1 be a circuit decomposition associated with a
stable set σ and let ki ≥ 1 denote the number of particles which follow the circuit
Ci. Then the ratio |Ci|/ki is the same for each circuit.

For a stable configuration of a coalescing rotor-router system, the Eulerian
circuit decomposition of Theorem 1 must be unique. Note also that while each
stable configuration has an associated Eulerian circuit decomposition, the con-

verse is not true. A decomposition of
−→
E into arc-disjoint Eulerian circuits might

not correspond to any stable configuration, because it might not be possible
to set up the vertex pointers and the initial positions of particles to make the
particles follow the circuits.

3 Stable Configurations in a Cycle

We consider the coalescing rotor-router system based on the n-vertex cycle
Cn. We first show various types of stable k-particle configurations and then
prove that these are the only possible stable configurations. Throughout this
section we assume that n ≥ 3 and k ≥ 2. Let Cn = (v0, . . . , vn−1, v0), so−→
E = {(vi, vi+1), (vi+1, vi) : i = 0, 1, . . . , n − 1}, assuming vn ≡ v0. Each de-

compositions of
−→
E into arc-disjoint Eulerian circuits is either of the Cycle type

(the C type) or the Path type (the P type), with the latter split further into two
categories P1 and P2.

C: Two Eulerian circuits (v0, . . . , vn−1, v0) and (v0, vn−1, vn−2, . . . , v0).
P: The Eulerian circuits are defined by a partitioning of the edges of the cycle

Cn into edge-disjoint paths P0, ..., Pq−1, q ≥ 1. The last vertex of path Pi is
the first vertex of path Pi+1, for i = 0, 1, . . . , q − 1, with Pq ≡ P0. Each of
these paths P = (w0, w1, ..., wj) defines the Eulerian circuit
(w0, w1, · · · , wj−1, wj , wj−1, · · · , w1, w0).

P1: There is only one path, which covers the whole cycle, that is, there is

only one Eulerian circuit, which covers all arcs in
−→
E . Each such circuit is

isomorphic to the circuit (v0, v1, · · · , vn−1, v0, vn−1, · · · , v1, v0).
P2: There are at least two paths, so there are at least two circuits in the de-

composition.

Coalescing Walks on Rotor-Router Systems 449

q−1

0

y1

y0

x1

r
passing edges

xq−1

y

x
q−10

y0

x1

y1

x2

y2

xq−1

yx

(a) (b)

Fig. 1. Stable k-particle configurations of type C, with k = 2q and n = k(r + 1), for
integers q ≥ 1, r ≥ 0. The particles on one circuit are passing the particles on the other
circuit when traversing the ”passing edges.” There are r edges between two consecutive
passing edges. (a) The case r ≥ 1. (b) The case r = 0: each edge is a passing edge.

We say that a stable configuration, or a stable set, is of type X, if the associated
circuit decomposition is of type X. Figure 1 shows configurations representing
stable sets of type C. There are k = 2q particles, for an integer q ≥ 1, which
are marked on the diagrams with small black squares. Particles x0, x1, . . . , xq−1

are assigned to the anti-clockwise circuit and the particles y0, y1, . . . , yq−1 are
assigned to the clockwise circuit. The particles are evenly spaced along both
circuits, with 2(r+1) edges between each two consecutive particles on one circuit,
for an integer r ≥ 0 (in Figure 1(a), r = 3). Thus the length of the cycle is
n = k(r + 1). Consider the relative positions of particles x and y as shown in
Figure 1, when the particles x0 and y0 are about to traverse the same edge in
opposite directions. The arrow at a vertex shows the direction where the next
particle will leave this vertex. In this configuration, each pair of particles xi and
yq−i, for i = 0, 1, . . . , q − 1 (with yq ≡ y0), is about to traverse the same edge
in opposite directions. Such traversing of the same edge in opposite directions
is repeated every r + 1 steps, and each edge which is traversed at some step by
a particle xi in one direction and a particle yj in the other direction is called
a passing edge. There are n/(r + 1) = k passing edges, evenly spaced along the
cycle. In the case r = 0 (shown in Figure 1(b)), there are n particles in total,
one on each vertex, and each edge is a passing edge.

We now show two different stable sets of type P2, one with one particle as-
signed to each circuit and one with two particles assigned to each circuit. We
refer to these two types of stable sets as types P2.1 and P2.2, respectively. Sta-
ble sets of type P2.1 are illustrated in Figure 2. The cycle has n = kr vertices,
for an integer r ≥ 1, the circuit decomposition is defined by k paths of equal
length r, and each circuit has one particle assigned to it. Consider one config-
uration, which is defined by the positions of the particles in their circuits. To

450 C. Cooper et al.

avoid collisions, these positions are restricted by the following condition. Let Ci

and Ci+1 be adjacent circuits which share vertex ui+1, and let xi and xi+1 be
the particles assigned to these circuits. The distance from xi to ui+1 along the
circuit Ci must be different than the distance from xi+1 to ui+1 along the circuit
Ci+1. Figure 2 shows two stable configurations of type P2.1, which belong to
two different (non-isomorphic) stable sets.

r

k−1

u3

u2

x0

x1
x2

xk−1

u1

u0

u k−1

u3

u2u1

u0 x0

x1 x2

xk−1

u

(a) (b)

Fig. 2. Stable k-particle configurations of type P2.1; n = kr and r ≥ 1. Configurations
(a) and (b) belong to two different (non-isomorphic) stable sets. In (a), each particle
xi is in the same position within its Eulerian circuits, that is, within the same distance
from vertex ui, moving in the same direction along the cycle (all clock-wise or all anti-
clockwise). In (b), the particles are in different positions within their Eulerian circuits.

Figure 3 illustrates stable sets of type P2.2: the Path type, at least 2 circuits
and exactly 2 particles in each circuit. The cycle has n = q(2r + 1) vertices,
for integers q ≥ 2 and r ≥ 1, and the circuit decomposition is defined by q
paths of equal length 2r + 1. Each circuit has two particles assigned to it, so
k = 2q ≥ 4. The two particles xi and yi assigned to the same circuit Ci are
exactly half-way around the circuit from each other. They will pass each other
every 2r+1 steps, traversing in opposite directions the middle edge of the path
which defines this circuit. To avoid collisions, we have a condition restricting the
relative positions of particles on the adjacent circuits, which is analogous as in
the stable configurations of type P2.1 described above.

The following theorem, proven in Sections 3.1 and 3.2, gives a full character-
ization of the stable sets in a cycle.

Theorem 2. Assume n ≥ 3 and 2 ≤ k ≤ n, and consider the coalescing rotor-
router system based on the cycle Cn.
(i) If k is odd and n is a multiple of k, then there exist k-particle stable sets

and they all are of type P2.1 shown in Figure 2.

Coalescing Walks on Rotor-Router Systems 451

(ii) If k is even and n is a multiple of k, then there exist k-particle stable sets
and each stable set is either of type C shown in Figure 1, or of type P2.1
shown in Figure 2.

(iii) If k ≥ 4 is even and n is an odd multiple of k/2, then there exist k-particle
stable sets and they all are of type P2.2 shown in Figure 3.

(iv) For any other combination of n and k, each k-particle configuration leads
to at least one coalescing.

Corollary 2. Consider the coalescing rotor-router system based on the cycle Cn,
where n ≥ 3 is prime. If 2 ≤ k ≤ n− 1, then each k-particle configuration leads
to full coalescing (into one particle). For k = n, there is only one unique (up to
isomorphism) stable configuration, which is shown in Figure 2(a) with r = 1.

Proof. The first part follows by repeatedly applying the case (iv) of Theorem 2,
while k > 1. The second part follows from the case (i) of Theorem 2.

q−1

3

x1

u1

x0

y0 u2
y1

x2

y2

u0

2r+1

yq−1

xq−1

u

u

q−1

3

u2u1

u0 x0

y0

y1

x1

y2
x23

yq−1 xq−1

u

u

Fig. 3. Stable k-particle configurations of type P2.2, with k = 2q and n = q(2r + 1),
for integers q ≥ 2 and r ≥ 1. (a) The general case r ≥ 1. (b) The case r = 1, where
each circuit is in one of three states, illustrated by the three circuits with particles x0

and y0, x1 and y1, and x2 and y2.

3.1 Stable Configurations of the Cycle Type

Lemma 2. If n is odd or k is odd, then there is no stable set with Eulerian
decomposition of type C.

Proof. Let σ be a k-particle stable set for Cn with an Eulerian decomposition of
type C. Corollary 1 implies that the same number of particles must be assigned
to each of the two circuits, so k must be even. Let C1 and C2 denote the two
circuits and let x be a particle assigned to C1 and y a particle assigned to C2.
Consider a configuration S ∈ σ such that x and y face each other along an edge
{v, u}: x is at v and will move to u in the next step, while y is at u and will
move to v in the next step. If n were odd, then after (n+ 1)/2 steps particles x
and y would collide on the opposite side of the cycle.

452 C. Cooper et al.

Lemma 3. For n and k both even, if there is a stable set with Eulerian de-
composition of type C, then each of the two circuits has the same number of
particles assigned to it, and the particles assigned to the same circuit must be
evenly spaced along this circuit.

Proof. The condition that each of the two circuits has the same number of
particles assigned to it follows from Lemma 1. To prove the second part of
the lemma, assume by contradiction that particles on one of the circuits (or on
both of them) are not evenly spaced. This implies that there are two consecutive
particles x1 and x2 on C1 (x1 next after x2 in the direction of C1) and two
consecutive particles y1 and y2 on C2 (y1 next after y2 in the direction of C2)
such that x1 is ahead of x2 by l1 arcs and y1 is ahead of y2 by l2 arcs, for some
l1 �= l2. Assume by symmetry that l1 < l2 and consider the step when particles
x1 and y1 have just passed each other, as shown in Figure 4. Particle x1 is at
a vertex v and will be moving towards particle y2, which is at distance l2 − 1
from x1. Particle y1 is at the vertex u next after to vertex v in the direction of
circuit C2, and will be moving towards particle x2, which is at distance l1 − 1
from y1. If l2 = l1 + 1, then either l2 − 1 or l1 − 1 is even, so either particles x1

and y2 or particles y1 and x2 collide: contradiction. If l2 ≥ l1 + 2, then particle
x2 reaches vertex v before particle y2 gets there, so x2 turns back at v, switching
from circuit C1 to C2: contradiction.

u
1

1y

x2

y2

l2

l1

v

x

Fig. 4. For the proof of Lemma 3: Eulerian decomposition of type C and particles are
not evenly spaced along the circuits.

Lemma 4. For n and k both even and k � n, there is no stable set with Eulerian
decomposition of type C.

Proof. Let n and k be both even and k � n, that is, k = 2q and n = pk + 2r,
for some positive integers q, p, r such that r < q. Observe that we must have
q ≥ 2. Assume, by contradiction, that there is a stable set σ with an Eulerian
decomposition {C1, C2} of type C, and start in a configuration S ∈ σ. Each of the
two circuits has q particles assigned to it and they are evenly spaced along the
circuit (Lemma 3). This implies that q | n, so we must have q = 2r. The distance
between two consecutive particles on the same circuit is equal to n/q = 2p+ 1,
so it is odd. Consider a particle x on circuit C1 and two consecutive particles y1
and y2 on the other circuit. Since the distance between y1 and y2 is odd, then
either the distance along circuit C1 from x to y1 is even or the distance along
C1 from x to y2 is even. Thus x will collide with y1 or y2: contradiction.

Coalescing Walks on Rotor-Router Systems 453

Lemma 5. For n and k both even and k | n, there exists a unique (up to isomor-
phism) stable set with an Eulerian decomposition of type C. This unique stable
set is illustrated in Figure 1.

Proof. Let k = 2q and n = k(r + 1) for an integer r ≥ 0. From Lemma 3, a
stable set with an Eulerian decomposition of type C has q particles assigned to
each circuit and the distance between any two consecutive particles on the same
circuit is equal to 2(r + 1). This is the stable set illustrated in Figure 1.

3.2 Stable Configurations of the P Type

Lemma 6. Let σ be a stable set of type P and let C be one of the circuits in
the Eulerian decomposition associated with σ. Then no more than two particles
are assigned to C.

Proof. Recall that C spans a path P in the cycle and the particles assigned to
C keep walking along the path from one end to another. For any two particles x
and y assigned to C, the parity of the distance along P between these particles
remains constant. This distance must be odd, because if it were even, then
particles x and y would eventually meet. If there were three particles assigned
to C, then not all three pairwise distances between these particles could be odd,
so two of the three particle would have to meet.

Lemma 7. Let σ be a stable set of type P and let C be one of the circuits of
the Eulerian decomposition associated with σ, and assume that two particles are
assigned to C. Then (i) the two particles are at the same time at the opposite
ends of the path P which is spanned by C, (ii) path P has an odd number of
edges and (iii) the two particles on C always pass each other when traversing (in
the opposite directions) the middle edge of the path.

Proof. Let x and y be the particles assigned to C and let u and v be the end
vertices of the path P . To show (i), assume by contradiction that at some step
particle x is at vertex v but particle y is not at the other end u. Assume that
y is moving towards vertex v. (If y is moving towards u, wait until y reaches
u to get an analogous arrangement: y at u and x not at the other end of the
path and moving towards u.) Particles x and y will now be moving towards
each other, eventually overpassing at step t along some edge {w, r}: particle x
traverses this edge from r to w while particle y traverses from w to r. When now
x leaves vertex w to go towards u, the pointer at w is changed to arc (w, r). The
distance between w and u is at least the distance between w and v, so the next
time a particle comes to w, it will be particle y and it will go back from w to r,
contradicting the movement of both particles along the circuit C.

We have shown that at some step particles x and y are the opposite ends of
path P . If P had an even 2q number of edges, then the particles would meet
after the next q steps. The particles must be passing each other when traversing
(in the opposite directions) the middle edge of the path, or otherwise they would
not be at the end vertices of the path at the same time.

454 C. Cooper et al.

Corollary 3. There is no stable set of type P1, that is, for each stable set of
type P, its Eulerian circuit decomposition must have at least two circuits.

Lemma 8. Suppose σ is a stable set of type P2. Then all circuits of the Eulerian
decomposition associated with σ have the same length and the same number of
particles. That is, each stable set of type P2 is either of type P2.1 shown in
Figure 2, or of type P2.2 shown in Figure 3.

Proof. Assume that the Eulerian decomposition contains a circuit C1 with one
particle and a circuit C2 with two particles. Then Corollary 1 implies that |C1| =
|C2|/2, but |C1| is even while Lemma 7 implies that |C2|/2 is odd; contradiction.
Thus all circuits in the Eulerian decompositions must have the same number of
particles, either one or two, and Corollary 1 further implies that they all must
have the same length.

Lemma 9.

(i) If n is a multiple of k, then each stable set of type P2 is of type P2.1.
(ii) If k is even and n is an odd multiple of k/2, then each stable set of type

the P2 is of type P2.2.

Proof. Lemma 8 says that each stable set of type P2 must be either P2.1 or
P2.2. Part (i) holds because if we have a stable set of type P2.2, then k is even
and Lemma 7 implies that n = (k/2)(2r+1), for some integer r ≥ 0, so n is not
a multiple of k. Part (ii) holds because if we have a stable set of type P2.1, then
Lemma 8 implies that n is a multiple of k.

4 General Graphs

For general graphs, we first look at the case k = n. We saw that in cycles there
can be only two different n-particle stable sets. One requires an even n and is
shown in Figure 1(b), while the other applies to an arbitrary n ≥ 3 and is shown
in Figure 2(a) with r = 1. The stable set in Figure 1(b) can be viewed in the
following way. The set of edges E of an even-length cycle is partitioned into two
perfect matchings M1 and M2. For any configuration in this stable set, either all
vertex pointers are set onto the edges in M1 or all of them are set onto the edges
in M2. We describe now a generalization of such stable sets to graphs with higher
vertex degrees, considering perfect matchings as well as 2-factors (collections of
vertex-disjoint cycles covering all vertices). We show first that n-particle stable
sets can exist only in regular graphs.

Theorem 3. If a connected n-vertex graph has an n-particle stable set, then the
graph must be regular.

Proof. Consider a connected n-vertex graph G = (V,E) which has an n-particle
stable set. Let C be a circuit in the Eulerian decomposition for this stable set.
In each step one particle leaves each vertex, so in each step each vertex pointer
advances to the next arc. Therefore, if a particle x assigned to C passes in the

Coalescing Walks on Rotor-Router Systems 455

current step through an arc (v, w), then the next particle on C will pass through
(v, w) in exactly deg(v) steps, where deg(v) is the degree of v in G. This means
that the particles assigned to C must be equally spaced around C, with distance
deg(v) between the consecutive particles. Since v is an arbitrary vertex on C,
all vertices on C must have the same degree. Thus if two circuits share a vertex,
then all vertices on these two circuits have the same degree. Since the graph is
connected, all vertices must have the same degree.

Lemma 10. A connected d-regular n-vertex graph has an n-particle stable con-

figuration if and only if the set of arcs
−→
E can be partitioned into sets H1,

H2, . . . , Hd, such that each Hi is a collection of vertex-disjoint simple arc-cycles.

Proof. If there is an n-particle stable configuration S in a d-regular graph, then
denote by Si, for i = 1, 2, . . . , d, the configuration at the beginning of step i,
starting form configuraton S = S1. Let Hi be the set of pointer arcs in con-
figuration Si. Each Hi is a collection of vertex-disjoint simple arc-cycles (the
movement of the n particles in a given step defines a one-to-one mapping on V)
and each arc belongs to exactly one Hi (from the rotor-router property).

Conversely, if H1, H2, . . . , Hd are collections of vertex-disjoint simple arc-

cycles and these collections partition
−→
E , then the d arcs outgoing from any

vertex belong to different collections. For each vertex v, set the order of the arcs
outgoing from v so that the i-th arc is the arc belonging to Hi, and initialize the
vertex pointer to the first arc. These orders of arcs, the vertex pointers, and the
assignment of one particle to each vertex define an n-vertex stable configuration.

Lemma 11. If the edges of a connected regular graph can be partition into 2-
factors and perfect matchings, then this graph admits an n-particle stable con-
figuration.

Proof. Each perfect matching defines one vertex-disjoint collection of simple
arc-cycles covering V : each edge of the matching defines one two-arc cycle. Each
2-factor gives two vertex-disjoint collections of arc-cycles: for each cycle in the
2-factor, one orientation of this cycle is included in one collection and the other
orientation in the other collection.

Corollary 4. Let d be a positive integer. Each n-vertex, (2d)-regular graph ad-
mits an n-particle stable configuration. Each n-vertex, (2d + 1)-regular graph
which has a perfect matching admits an n-particle stable configuration. These
graphs include all (2d+ 1)-regular (2d)-connected graphs.

Proof. Petersen’s 2-factor theorem says that every regular graph of even degree
has a 2-factor, so (by iterating this theorem) it can be partitioned into 2-factors
(see [15]). If a (2d + 1)-regular graph has a perfect matching, then the edges
which are not in this perfect matching form a (2d)-regular graph.

Petersen’s matching theorem says that every 3-regular, 2-connected graph
has a perfect matching. Babler’s generalization of this theorem says that every
(2d+ 1)-regular, (2d)-connected graph has a perfect matching (see [15]).

456 C. Cooper et al.

We now consider the case when k < n. In cycles, k-particle stable configura-
tions exist only if n is a multiple of k, or a multiple of k/2 for an even k ≥ 4.
Thus in a cycle of prime length any initial configuration leads to full coalescing.
There are no similar strong conditions for general graphs. Actually, if we allow
vertices of degree 3 or higher, then the coalescence seems to depend more on the
structure of the graph than on the primality of n or m. As an example, we show
that for each sufficiently large m (which can be prime) and each 2 ≤ k ≤ 3

√
m/6,

there is a connected graph with m edges which admits a k-particle stable con-
figuration. Both the number of edges and the number of nodes in this example
can be co-prime with the number of particles.

Our example is illustrated in Figure 5. The set of edges E is partitioned into
k + 2 components: a tree T with k + 1 leaves r0, r1, . . . , rk, and at most k − 1
internal vertices, each of degree at least 3, and vertex-disjoint connected sub-
graphs H0, H1, . . . , Hk. Sub-graph Hi shares vertex ri with T and has either �h	
or
h� edges, where h = (m − |T |)/(k + 1) and |T | ≤ 2k − 1 is the number of
edges in T . We now show a k-particle stable configuration in this graph. Fix an

Eulerian cycle C of the whole set
−→
E . The arcs of Hi form one segment of C,

which is an Eulerian circuit Ci of the arcs of Hi. If we remove all circuits Ci

from C, then the remaining arcs form an Eulerian tour of T . The numbering
r0, r1, . . . , rk of leaves of T is consistent with the reverse order of this Eulerian
tour of T . For each component Hi, we set the cyclic orders of arcs and the vertex
pointers in such a way that one particle starting from vertex ri would first follow
the whole circuit Ci before entering tree T . The positions of the pointers are not
final yet; they will be adjusted. The (cyclic) order (v, w1), . . . , (v, wdeg(v)) of the
arcs outgoing from an internal vertex v in T is consistent with the numbering of
the leaves of T : if arcs (v, w1), . . . , (v, wj) lead to leaves ri1 , . . . , rij , respectively,
then ri1 < ri2 < · · · < rij (the anti-clockwise order in Figure 5). The pointers at
the internal vertices in T are set in the direction of vertex rk.

The final stage of our construction of a stable configuration is the placement
of the k particles x0, x1, . . . , xk−1 and the adjustment of the vertex pointers.
All particles will be following the Eulerian circuit C and we show their initial
positions in relation to this circuit. We place particle x0 at vertex r0 and change
the vertex pointer at r0 to the arc (r0, p) of the tree T . This will be the next arc
on C taken by x0. We place particle x1 on C at distance either �g	 or
g� arcs
behind particle x0, where g = 2m/k. Generally, we place particles x1, x2, . . . , xk

so that each distance from xi to xi−1 (including from x0 to xk−1) is either �g	 or

g�. Thus the distance from xi to x0 is between i�g	 and i
g�. The values h and
g and the assumption that k ≤ 3

√
m/6 imply that for each i = 1, 2, . . . , k − 1,

i�g	 ≥ 2(|H0|+|H1|+· · ·+|Hi−1|+|T |) and i
g� ≤ 2(|H0|+|H1|+· · ·+|Hi|). This
means that particle xi is in Hi and Hk is empty (does not have any particle).
Finally, for each i = 1, 2, . . . , k − 1, we adjust the vertex pointers in Hi by
simulating the rotor-routermovement of a ”ghost” particle from ri to the position
of particle xi. With this adjustment of vertex pointers in Hi, particle xi will
complete traversing circuit Ci (the traversing started by the ghost particle) and

Coalescing Walks on Rotor-Router Systems 457

then will enter tree T (assuming no interference from other particles). This
completes the construction of a stable configuration.

Starting from the constructed configuration, the particles will move according
to the following pattern. First particle x0 moves to rk along the r0 − rk path in
T in O(k) steps, while the other particles move inside their initial H sub-graphs.
Then particle x1 completes the traversing of H1, arrives at vertex r1 and is
ready to enter tree T . This completes the first phase and at this point, we have
a configuration similar to the initial configuration, but now H0 is empty. In the
next phase, first particle x1 moves to r0 along the r1 − r0 path in T , while the
other particles move inside their current H sub-graphs and x2 reaches r2. In
the subsequent phases, particle x2 moves from H2 to H1, then particle x3 moves
from H3 to H2, and so on. After k(k+1) phases, the system is back in the initial
configuration. It can be shown that no two particles will be at the same time in
T or in the same H component, so no two particles ever collide.

T

0

x1

x2

xk−1rr

r r

21

k0

H

H H
H

H

0

1 2
k−1

k

x

Fig. 5. A graph withm edges and a stable k-particle configuration, where k = Θ(m1/3).

References

1. Aldous, D., Fill, J.A.: Reversible markov chains and random walks on graphs 2002.
Unfinished monograph, recompiled (2014).
http://www.stat.berkeley.edu/~aldous/RWG/book.html

2. Aldous, D.J.: Meeting times for independent markov chains. Stochastic Processes
and their Applications 38(2), 185–193 (1991)

3. Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. In: Proc. 20th Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA 2008, pp. 119–128. ACM (2008)

4. Bampas, E., G ↪asieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler
tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS,
vol. 5805, pp. 423–435. Springer, Heidelberg (2009)

5. Bampas, E., Gasieniec, L., Klasing, R., Kosowski, A., Radzik, T.: Robustness of
the rotor-router mechanism. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.)
OPODIS 2009. LNCS, vol. 5923, pp. 345–358. Springer, Heidelberg (2009)

http://www.stat.berkeley.edu/~aldous/RWG/book.html

458 C. Cooper et al.

6. Bhatt, S.N., Even, S., Greenberg, D.S., Tayar, R.: Traversing directed eulerian
mazes. J. Graph Algorithms Appl. 6(2), 157–173 (2002)

7. Chalopin, J., Das, S., Gawrychowski, P., Kosowski, A., Labourel, A., Uznanski, P.:
Lock-in problem for parallel rotor-router walks. CoRR, abs/1407.3200 (2014)

8. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing random walks and voting
on connected graphs. SIAM J. Discrete Math. 27(4), 1748–1758 (2013)

9. Cooper, C., Frieze, A.M., Radzik, T.: Multiple random walks in random regular
graphs. SIAM J. Discrete Math. 23(4), 1738–1761 (2009)

10. Dereniowski, D., Kosowski, A., Pajak, D., Uznanski, P.: Bounds on the cover time
of parallel rotor walks. In: 31st International Symposium on Theoretical Aspects
of Computer Science, STACS 2014, pp. 263–275 (2014)

11. Efremenko, K., Reingold, O.: How well do random walks parallelize? In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS,
vol. 5687, pp. 476–489. Springer, Heidelberg (2009)

12. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random
walks. Theor. Comput. Sci. 412(24), 2623–2641 (2011)

13. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, PODC 1990, pp. 119–131. ACM (1990)

14. Kosowski, A., Paj ↪ak, D.: Does adding more agents make a difference? A case
study of cover time for the rotor-router. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 544–555.
Springer, Heidelberg (2014)

15. Lovász, L., Plummer, D.: Matching Theory. AMS Chelsea Publishing Series. Amer-
ican Mathematical Soc. (2009)

16. Oliveira, R.: On the coalescence time of reversible random walks. Trans. Amer.
Math. Soc. 364, 2109–2128 (2012)

17. Priezzhev, V.B., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a
model of self-organized criticality. Phys. Rev. Lett. 77, 5079–5082 (1996)

18. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Smell as a computational re-
source - A lesson we can learn from the ant. In: ISTCS, pp. 219–230 (1996)

19. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-
robots using evaporating traces. IEEE T. Robotics and Automation 15(5), 918–933
(1999)

20. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for
efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

Secure Multi-party Shuffling�

Mahnush Movahedi, Jared Saia, and Mahdi Zamani

Department of Computer Science, University of New Mexico
{movahedi,saia,zamani}@cs.unm.edu

Abstract. In secure multi-party shuffling, multiple parties, each holding
an input, want to agree on a random permutation of their inputs while
keeping the permutation secret. This problem is important as a primitive
in many privacy-preserving applications such as anonymous communica-
tion, location-based services, and electronic voting. Known techniques for
solving this problem suffer from poor scalability, load-balancing issues,
trusted party assumptions, and/or weak security guarantees.

In this paper, we propose an unconditionally-secure protocol for multi-
party shuffling that scales well with the number of parties and is load-
balanced. In particular, we require each party to send only a polylogarith-
mic number of bits and perform a polylogarithmic number of operations
while incurring only a logarithmic round complexity. We show security
under universal composability against up to about n/3 fully-malicious
parties. We also provide simulation results showing that our protocol
improves significantly over previous work. For example, for one million
parties, when compared to the state of the art, our protocol reduces the
communication and computation costs by at least three orders of mag-
nitude and slightly decreases the number of communication rounds.

1 Introduction

Shuffling a sequence of values is a fundamental tool for randomized algorithms;
applications include fault-tolerant algorithms, cryptography, and coding theory.
In secure multi-party shuffling (MPS) problem, a group of parties each hold-
ing an input value want to randomly permute their inputs while ensuring no
party can map any of the outputs to any of the input holders better than can
be done with a uniform random guess. An MPS protocol is a useful primitive
for achieving privacy and robustness in many applications such as anonymous
communication [12], location-based services [23], electronic voting [28], secure
auctions [18], and general multi-party computation [9].

Despite many applications of MPS, we are not aware of any technique that
can be used to achieve a scalable and secure MPS protocol. We believe this is
of increasing importance with the growth of modern networks. Moreover, most
protocols lack load-balancing – a crucial requirement for protocols running in
large networks. With the rise of sophisticated cyber-attacks, it is now essential to
provide provable guarantees against strong adversaries. Also, relying on trusted
parties has become a major security issue in today’s world.

� An extended version of this paper is available at
http://cs.unm.edu/∼zamani/papers/sirocco15

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 459–473, 2015.
DOI: 10.1007/978-3-319-25258-2_32

http://goo.gl/8AxB9f

460 M. Movahedi, J. Saia, and M. Zamani

In this paper, we address these concerns by proposing a scalable and load-
balanced protocol for MPS that is unconditionally-secure against malicious at-
tacks and does not rely on trusted parties.

Our Contribution. We first propose a formal definition of security for MPS.
Our definition is different from the standard definition of security for multi-
party computation (MPC) [7], where a group of parties each holding a private
input want to compute a known function over their inputs, without revealing
any more information about their inputs than what is revealed by the output
of the function. Instead of focusing on inputs privacy, we base our definition on
the secrecy of the output permutation.

Next, we propose an unconditionally-secure MPS protocol that scales poly-
logarithmically with the number of parties, tolerates malicious faults, and is
load-balanced. Simulations of our protocol suggest that it compares favorably
with the current state of the art in terms of communication cost, computation
cost, and the number of communication rounds.

In our protocol, we achieve sublinear per-party communication complexity by
requiring each party to only communicate with polylogarithmic-size groups of
parties rather than with all parties. This approach, however, introduces impor-
tant technical challenges to our model; the most important one is to guarantee
the adversary cannot break the security of our protocol via coalitions of corrupted
parties in more than one group, when we share the same secret information with
the parties in these groups. Some prior work solve this by relaxing the load-
balancing requirement [9], the resiliency bound [33], or practical efficiency [17].
We propose a novel technique called share renewal without relaxing any of these
requirements.

When a protocol is concurrently executed alongside other protocols, one re-
quires to ensure this composition preserves the security of the protocol. Since
our goal is to design modular MPS protocols that can be flexibly used with other
protocols, we show security of our protocol under the universal composability
framework as described by Canetti [11].

Our Model. Consider n parties P1, ..., Pn in a fully-connected synchronous net-
work with private and authenticated channels. We assume the parties have no
access to any trusted party and/or to any reliable broadcast channel. We con-
sider a malicious adversary who corrupts at most t < n of the parties and can
see (and analyze) the entire traffic in the network, but cannot see the content
of messages transmitted between uncorrupted parties since we assume private
links. The corrupted parties not only can gossip their information with other
corrupted parties but also can deviate from the protocol in any arbitrary man-
ner, e.g., by sending invalid messages or remaining silent. We finally assume that
the adversary is static meaning that it has to select the set of corrupted parties
at the start of the protocol.

Problem Statement. Let F be a finite field, and π : {1, ..., n} → {1, ..., n} de-
note a permutation; a one-to-one and onto function that maps a sequence of
n elements (x1, ..., xn) ∈ F

n to another sequence (xπ(1), ..., xπ(n)) ∈ F
n. For

i ∈ {1, ..., n}, every party Pi holds an input xi ∈ F. Amulti-party shuffling (MPS)

Secure Multi-party Shuffling 461

protocol allows these parties to agree on a permutation π of the sequence
(x1, ..., xn). We consider two variants of this problem. In the first variant, which
we call single-output MPS, each party Pi is required to receive only one of the
shuffled inputs xπ(i). In the second variant, which we call all-output MPS, each
party receives the entire output sequence (xπ(1), ..., xπ(n)). We now define our
notion of security.

Definition 1. An MPS protocol is said to be t-secure if and only if, in the pres-
ence of a malicious adversary corrupting up to t < n of the parties, the protocol
ensures

– Unlinkability: the adversary can guess π correctly with probability at most
1

(n−t)! . We refer to the set of possible permutations from which the adversary

tries to guess the secret permutation π as the unlinkability set.

– Correctness: each party is guaranteed that the output it receives is one of the
inputs (for single-output MPS) or contains all (and only all) the inputs (for
all-output shuffle).

– Output delivery: corrupted parties cannot prevent honest parties from receiv-
ing their output.

In this paper, we consider a relaxed version of Definition 1. This allows us to
achieve the highest level of efficiency in our protocol in exchange of a very small
increase in the success probability of the adversary.

Definition 2. We say an MPS protocol is almost t-secure if and only if in
the presence of a malicious adversary corrupting up to t < n of the parties, the
protocol guarantees correctness and output delivery, and that the adversary can
guess π correctly with probability at most 1

(n−t)! (1 + δ), where δ = o(1) is called

the deviation factor.

1.1 Our Results

We prove the following main theorem in [1].

Theorem 1. There exists a universally-composable MPS protocol such that with
probability 1−O(n−3), it guarantees the following properties:

– The protocol is almost t-secure against a computationally-unbounded mali-
cious adversary with static corruptions, where t < (1/3− ε)n, for some pos-
itive constant ε.

– The deviation factor is O(2−2k
√

log n

), for some constant k > 1.

– Each party sends Õ(1) bits and computes Õ(1) operations.1

– The protocol terminates after O(log n) rounds of communication.

In [1], we also construct a computationally-secure variant of Theorem 1 to ob-
serve (via simulations) how much cryptographic techniques can influence prac-
tical efficiency of our protocol. This protocol provides the same guarantees as

1 The symbol Õ is used as a variant of the big-O notation that ignores the logarithmic
factors. Thus, f(n) = Õ (g(n)) means f(n) = O

(
g(n) logk g(n)

)
, for some k.

462 M. Movahedi, J. Saia, and M. Zamani

Theorem 1 except for a polynomially time-bounded adversary. We provide our
simulation results in Section 4.

1.2 Related Work

Shuffling in the multi-party setting has already been studied, primarily in the
context of mix-nets. As first defined by Chaum [12], a mix-net consists of a chain
of servers (called mixes) that randomly reorder a sequence of messages in a
way that the correlation with the corresponding input messages remains hidden.
To ensure honest behavior in the malicious setting, a verifiable shuffling [2,28]
technique is often used, where each mix is asked to prove correctness of its
shuffles without leaking how the shuffle was performed.

Unfortunately, Mix-nets and verifiable shuffling techniques rely on crypto-
graphic assumptions. Moreover, mix-nets require semi-trusted servers and are
known to be vulnerable to traffic-analysis attacks [29]. Protocols such as [8,30]
attempt to solve this with provable guarantees. However, they are either compli-
cated and scale linearly with the number of parties [30], or are not secure against
malicious attacks and an adversary monitoring all communication channels [8].

Chaum [13] usesMPC to introduce the dining cryptographers network (DC-net)
for achieving unlinkability between inputs and outputs; a crucial requirement for
both anonymous communication and MPS. The DC-net eliminates the two limi-
tations of Mix-nets: cryptographic assumptions and traffic-analysis vulnerability.

Although the original DC-net allows only one participant to broadcast at a
time, there are variants such as [31] that implement all-to-all anonymous broad-
cast and thereby enable multi-party shuffling of the inputs. Unfortunately, DC-
nets suffer from collision and jamming attacks. Although several work address
these issues [14,21,31], they either do not scale well with the number of par-
ties [21,31] or require a few highly-available servers [14].

MPS is closely related to data-oblivious protocols [20]. A protocol is data-
oblivious if its control flow is independent of input data. Such a protocol can be
used to anonymize access patterns or prevent an adversary from taking over a
certain fraction of protocol inputs. Customized shuffling techniques are designed
in the context of oblivious RAMs [20], oblivious database manipulation [26],
oblivious sorting [22,24,34], and evaluation of sublinear functions [9].A multi-
party sorting protocol such as that of [24,34] can be used to perform MPS.
Although these protocols scale well with n, they scale poorly with the number
of parties.

Rackoff and Simon [30] show that if all parties send at each time step, then
the traffic-analysis problem can be solved using MPC. This means that a general
MPC scheme such as [7] that can securely compute any functionality (including
shuffling), can be used to design an MPS protocol with traffic-analysis resistance.
Although much theoretical progress has been made in the MPC literature to
achieve polylogarithmic overhead [9,17], there is a lack of practical solutions,
especially for large number of parties. Moreover, most of these techniques cannot
be easily implemented due to a lack of detailed protocol specifications.

In Table 1, we compare our main protocol with several other ones that can be
used to solve the MPS problem. To make a fair comparison with the MPC proto-

Secure Multi-party Shuffling 463

Table 1. Comparison of MPS techniques

Protocol
Adversarial

Power

Malicious

Adversary?

Fraction

of Parties

Controlled

MPS

Security
Latency Bandwidth

Easy to

Implement?

Chaum [12] Computational No O(1)† See note§ polylog(n) polylog(n) Yes

Rackoff et al. [30] Computational No O(1)† Statistical£ polylog(n) Õ(n) No

Berman et al. [8] Computational No O(1)† Statistical£ polylog(n) polylog(n) Yes

Boyle et al. [9] Computational Yes 1/3 − ε Almost polylog(n) Õ(n) No

Dani et al. [17] Unconditional Yes 1/3 − ε Almost O(log n) Õ(
√

n) No

This paper Unconditional Yes 1/3 − ε Almost O(log n) Õ(1) Yes

†This protocol assumes the rest of parties are trusted.
‡[29] shows traffic-analysis attacks on this protocol if all links are monitored by the adversary.
§Originally supposed to generate perfect shuffles but known attacks reduce shuffle security.
£Measures the statistical distance between the distribution generated by the system and the
uniform distribution [30].

cols of [9,17], we use their techniques to compute our own shuffling functionality
described in Section 3. In this table, by bandwidth we mean the communication
complexity per shuffled message delivered.

2 Preliminaries

We now define our notation and describe the tools used throughout this paper.

Notation. For prime p, let Fp denote a finite field with p elements. We say an
event occurs with high probability, if it occurs with probability 1−1/nc, for some
positive constant c.

Verifiable Secret Sharing. A secret sharing protocol allows a party (called
the dealer) to share a secret among n parties such that any set of t or less
parties cannot gain any information about the secret, but any set of at least
t + 1 parties can reconstruct it. A verifiable secret sharing (VSS) protocol is a
secret sharing protocol with the additional property that after the sharing phase,
a corrupted dealer is either disqualified or the honest parties can reconstruct the
secret, even if shares sent by corrupted parties are spurious. In our protocol, we
use the VSS scheme of Ben-Or et al. [7]. We refer to the sharing protocol of this
scheme as VSS-Share and to its reconstruction protocol as VSS-Reconst.

Theorem 2 ([7]). There exists a synchronous linear VSS scheme for t < n/3
that is unconditionally-secure against a static malicious adversary.

Quorum Building. King et al. [25] give a protocol that can be used to bring
all parties to agreement on a collection of n quorums. A quorum is a set of
N = O(log n) parties, where it is guaranteed that at most a fixed fraction of the
parties in the set are corrupted. In general, one can use any BA algorithm (such
as [10]) to build a set of quorums in the way described in [25].

Theorem 3 ([10,25]). There exists an unconditionally-secure protocol that
brings all honest parties to agreement on n quorums with probability 1−O(n−3).
The protocol has Õ(n) amortized communication and computation complexity
over the number of parties, and it can tolerate up to (1/3 − ε)n corrupted par-
ties, for any positive ε. Each quorum is guaranteed to have T < N/3 corrupted
parties.

464 M. Movahedi, J. Saia, and M. Zamani

We refer to this protocol as Build-Quorums. Several recent MPC schemes [9,33]
make use of quorums to achieve scalability. We are particularly inspired by Dani
et al. [17].

Sorting Networks. A sorting network is a network of comparators. Each com-
parator is a gate with two input wires and two output wires. When two val-
ues enter a comparator, it outputs the lower value on the top output wire,
and the higher value on the bottom output wire. Ajtai et al. [4] describe an
asymptotically-optimal O(log n) depth sorting network. However, this network
is not practical due to large constants hidden in the depth complexity. Leighton
and Plaxton [27] propose a probabilistic sorting circuit with depth 7.44 logn that
sorts a randomly chosen input permutation with very high probability mean-
ing that it sorts all but σ · n! of the n! possible input permutations, where

σ = 1/22
κ
√

log n

, for some constant κ > 0.2

Secure Comparison. Given two linearly secret-shared values a, b, Damg̊ard
et al. [16] propose an efficient protocol for computing a new secret-shared value
ρ = (a ≤ b) meaning that ρ is 1 if a ≤ b and 0 otherwise. Their protocol is un-
conditionally secure, has O(1) rounds, and requires O(�) invocations of a secure
multiplication protocol, where � is the bit-length of elements to be compared.
We denote this protocol by Compare. For multiplication of secret-shared val-
ues, we use the protocol of Ben-Or et al. [7] with the simplifications of Gen-
naro et al. [19]. By plugging the VSS of Theorem 2 into the protocol of [19], we
achieve an unconditionally-secure multiplication protocol, which we denote by
Multiply.

3 Our Protocol

We now describe our MPS protocol. Consider two finite fields Fp and Fq of prime
orders p and q respectively. The high-level idea is as follows: for each party Pi

holding an input xi ∈ Fp, a uniform and independent random value ri ∈ Fq is
chosen to form an input pair (ri, xi), where i ∈ [n]. Then, the sequence of pairs
((r1, x1), ..., (rn, xn)) is sorted according to the first elements of the pairs. We
show that, for sufficiently large prime q, this algorithm randomly shuffles the
sequence of inputs (x1, ..., xn) with high probability.

To compute this functionality securely, we construct the circuit shown in
Figure 1, which we denote by M. This circuit consists of the probabilistic sorting
circuit of [27] augmented by n input gates; the functionality of each gate is
computed by a quorum. M is created jointly by all parties before the protocol
starts during an input-independent setup phase. Then, it is jointly evaluated by
all parties possibly many times to shuffle many input sequences3.

2 This gives a Monte Carlo guarantee: for (1 − σ)n! of input permutations, the cir-
cuit sorts correctly, but for the rest σn! permutations, it simply fails and gives no
guarantees.

3 This setup phase is information-theoretically secure and does not rely on one-time
pads. Thus, the same M can be used any number of times for shuffling many input
sequences.

Secure Multi-party Shuffling 465

Fig. 1. MPS circuit

The circuit M is constructed in the following way. First, we create n quorums
Q1, ..., Qn each with N = O(log n) parties. We assign each party Pi to Qi, for
all i ∈ [n]. This quorum is responsible for receiving Pi’s input xi and choosing
a random value ri on behalf of Pi. Now, let C denote the probabilistic sorting
network of [27] and m = Θ(n log n) be the number of gates in C.

For all j ∈ [m], we assign the j-th gate of C to Q(j mod n). This quorum is later
used for secure evaluation of the gate’s functionality. For simplicity of notation,
we assume the quorums associated with the output gates of C are Q1, ..., Q�n/2�.4

When used to receive inputs of M, we refer to Q1, ..., Qn as input quorums.
When used to send outputs of M to all parties, we refer to Q1, ..., Q�n/2� as
output quorums.

Creating the probabilistic sorting circuit C requires O(log2 n) random bits
known to all parties. We generate these bits by asking one of the quorums to
agree on a sequence R of O(log2 n) random bits, and then send R to all parties
via a binary tree of quorums. This randomness is then used by the parties to
agree on the structure of C using the random butterfly tournament procedure
described in [27].

To ensure privacy, every quorum in M receives and maintains its inputs in a
secret-shared format, i.e., eachparty receives only a share of each input rather than
the actual input. Moreover, all computations in these quorums are performed over
secret-shared values. When we say a partyVSS-shares (or secret-shares) a value s
in a quorum Q (or among a set of parties), we mean the party participates as the
dealer with input s in the protocol VSS-Share with all parties in Q (or in the set
of parties). As a result, the parties agree on a random polynomial f(x) such that
f(0) = s, and the i-th party receives f(i) as his verified share of s.

4 Note that a quorum can be re-used any number of times for local computations as
long as its inputs for each use are secret-shared independently from other uses.

466 M. Movahedi, J. Saia, and M. Zamani

Protocol 1. Secure Multi-Party Shuffling Scheme

Inputs. For all i ∈ [n], party Pi holds an input xi. Let C denote the probabilistic sorting
network of [27] and d denote its depth.

Goal. Parties jointly compute a random shuffle of their inputs.

The protocol:

1. Setup.

(a) Parties run Build-Quorums to agree on n quorums Q1, ..., Qn.

(b) Parties in Q1 run Gen-Rand and VSS-Reconst repeatedly to generate a sequence
R of Θ(log2 n) random bits.

(c) Parties in Q1 send R to all other quorums in the following way. For all
i ∈ {2, .., n}, parties in Qi receive R from Q�i/2�, and then send it to all parties
in Q2i and Q2i+1.

(d) For all i ∈ [n] and j ∈ [m], parties assign Qi to Pi and Q(j mod n) to the j-th
gate of C, and connect the gates based on the random butterfly tournament
described in [27] and the random sequence R.

2. Input Sharing. Party Pi VSS-shares his input xi with Qi.

3. Random Generation. Parties in input quorum Qi perform the following steps:

(a) Run Gen-Rand to generate a random secret-shared value ri ∈ Fq, where
q > 3

2
kn2 log n for any k > 0.

(b) Run Renew-Shares to send the secret-shared pair (ri, xi) to Q�i/2�.

4. Sorting. C is evaluated level-by-level starting from the input gates. For each gate
G in C and quorum Q assigned to G, parties in Q perform the following steps:

(a) Comparison. Let (r, x) and (r′, x′) be the secret-shared inputs of G. The
parties run Compare to securely compare the secret-shared values r, r′. Let
ρ = (r ≤ r′) be the resulting secret-shared value. The parties compute the
output secret-shared pairs (s, y) and (s′, y′) from

s = ρ · r + (1− ρ) · r′, y = ρ · x+ (1− ρ) · x′

s′ = ρ · r′ + (1− ρ) · r, y′ = ρ · x′ + (1− ρ) · x
For every addition of secret-shared values a, b, parties locally compute a+ b.
For every multiplication, they run Multiply.

(b) Output Resharing. Parties run Renew-Shares to send secret-shared values
s, y, s′, y′ to the parent quorum.

5. Output Delivery. For all i ∈ [n− 1], let (si, yi) and (si+1, yi+1) be the pairs of
secret-shared values the output quorum Q�i/2� computes in the previous step.

(a) Each party in this quorum sends his share of yi to party Pi and his share of
yi+1 to party Pi+1.

(b) Parties Pi and Pi+1 run VSS-Reconst to reconstruct yi and yi+1 respectively.

Protocol 1 shows our main protocol, where M is evaluated level-by-level until
the final outputs are generated by the output quorums. For all i ∈ [n], parties
in the output quorum Qi send their shares directly to Pi who reconstructs the

Secure Multi-party Shuffling 467

corresponding secret xπ(i), where π denotes the permutation generated by the
circuit.

It is left to implement two subprotocols used in Protocol 1: Renew-Shares and
Ran-Gen. In Section 3.1, we describe Renew-Shares as a protocol that allows par-
ties of a quorum to securely send a secret-shared value to parties of another
quorum. In [1], we describe Ran-Gen as a protocol that allows a group of parties
to agree on a uniformly random value. We prove the security of Protocol 1 (and
Theorem 1) in [1]. In particular, we show that for sufficiently large k > 0 and
q = Ω(kn2 logn), this protocol provides almost t-secure MPS with high proba-
bility.

3.1 Share Renewal

Once the computation of each gate is finished, parties in the quorum associated
with that gate send the secret-shared result to any quorums associated with gates
that need this result as input. Let Q denote a quorum at which the computation
of a gate has finished, and let Q′ denote a quorum that requires the output of
that computation. In order to secret-share the result to Q′ without revealing
any information to any individual party (or to any coalition of corrupted parties
in both Q and Q′), a fresh sharing of the result must be distributed in Q′. If
s is secret-shared using a polynomial f(x) of degree t, then a fresh sharing of
s is a new secret sharing of s defined using another polynomial g(x) of degree
t chosen uniformly and independently at random. We refer to the problem of
generating a fresh sharing of a secret-shared value among a new set of parties as
share renewal.

Handling the share renewal problem efficiently and robustly is challenging.
Dani et al. [17] solve it by masking the result in Q using a fresh random value
and unmasking it in Q′. Although their approach is secure against up to T < N/3
corrupted parties in each quorum, they do not provide an explicit construction
and simple constructions seem very expensive in terms of both communication
and computation costs.5

Boyle et al. [9] overcome this problem by sending encrypted inputs to only one
quorum which does all of the computation using fully-homomorphic encryption.
This is not load-balanced, as it incurs a large computation and communication
overhead to parties in that quorum. Zamani et al. [33] propose a simple tech-
nique for this problem that is, unfortunately, secure only against up to T < N/6
corrupted parties in each quorum.

We now describe a novel technique for share renewal that is secure against
up to T < N/3 corrupted parties in each quorum. Let s denote the output of
Q that is secret-shared among parties in Q using a random polynomial f(x) of
degree t. Our technique is based on the observation that if every share of s is
reshared using a fresh random polynomial, then a specific linear combination
of the new shares defines a new random polynomial g(x) such that g(0) = s.

5 Their approach relies on the existence of an unmasking circuit securely evaluated
by parties in Q′. Such a circuit must implement an error-correcting technique which
requires many multiplication gates.

468 M. Movahedi, J. Saia, and M. Zamani

Protocol 2. Renew-Shares
Inputs. A set of parties P1, ..., PN jointly hold a secret-shared value s, i.e., a polynomial
f(x) of degree T < N/3 is defined such that f(0) = s, and for all i ∈ [N], Pi holds
f(i).

Goal. Generate a fresh sharing of s among another group of parties P ′
1, ..., P

′
N . This

means that the protocol must calculate a polynomial g(x) of degree T uniformly and
independently at random such that g(0) = s, and for all j ∈ [N], P ′

j holds g(j).

The protocol:

1. Each party Pi runs Reshare to VSS-share f(i) among P ′
1, ..., P

′
N using a random

polynomial hi(x) of degree T such that hi(0) = f(i).

2. Each party P ′
j locally computes its share of s from g(j) =

∑N
i=1 λihi(j).

This was first observed by Gennaro et al. [19] as a simple method for polynomial
randomization and degree-reduction in the multiplication protocol of [7].

Let g(x) = s + a1x + ... + aTx
T . Our goal is to calculate the coefficients

a1, ..., aT . Following [19], we write
⎡

⎢⎢
⎢
⎢
⎢
⎣

1 1 · · · 1

1 2 · · · 2N−1

...

1 N · · · NN−1

⎤

⎥⎥
⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎢
⎣

s

a1

...

aN

⎤

⎥⎥
⎥
⎥
⎥
⎦
=

⎡

⎢⎢
⎢
⎢
⎢
⎣

f(1)

f(2)

...

f(N)

⎤

⎥⎥
⎥
⎥
⎥
⎦
,

where aT+1, · · · , aN = 0. The matrix above is an N -by-N Vandermonde matrix
that is non-singular and hence is invertible. Let

[
λ1 λ2 · · · λN

]
be the first row

of the inverse matrix. Thus, s = λ1f(1)+ ...+λNf(N). For all i ∈ [N], consider
a fresh polynomial hi(x) of degree T , where hi(0) = f(i). We define g(x) =∑N

i=1 λihi(x). Since g(0) = λ1f(1) + ... + λNf(N) = s, the polynomial g(x)
defines a fresh sharing of s. Using this, we define our share renewal protocol
Renew-Shares in Protocol 2.

In the first step of Renew-Shares, we ask each party to reshare its share f(i)
by running a protocol called Reshare. This protocol ensures that every corrupted
party shares its correct share f(i) instead of some random or maliciously-chosen
value. Asharov and Lindell [5] implement a protocol (called subshare) that en-
sures this resharing process is done robustly. We refer to this protocol as Reshare.
In [1], we prove Renew-Shares is UC-secure against at most T < N/3 corrupted
parties in each quorum.

3.2 Remarks

In the following, we discuss alternative approaches that could be used to design
different MPS protocols from Protocol 1.

All-Output MPS. Protocol 1 describes a single-output MPS construction,
where each party receives only one element of the output sequence. Although
this is useful in many applications such as data-oblivious protocols that often
use MPS as an intermediate step, an all-output MPS protocol can be used in

Secure Multi-party Shuffling 469

some applications such as anonymous broadcast. To achieve all-output MPS, the
output delivery step of Protocol 1 becomes as follows. For all i ∈ [n− 1], parties
in the output quorum Q�i/2� run VSS-Reconst to reconstruct yi and yi+1 and
then send (yi, yi+1) to all n parties. Each party receiving a set of N pairs from
each output quorum, chooses one pair via majority filtering and considers it as
the output of that quorum.

Remark on Deterministic Sorting Networks. While the probabilistic sort-
ing network of [27] is sufficient for us to achieve an almost t-secure MPS with
logarithmic latency (Theorem 1), one can instead use a deterministic sorting
network such as those of [3,6] to achieve t-secure MPS (i.e., uniform shuffling)
at the expense of increased latency, communication, and computation costs. We
are not aware of a sorting network that can result in better asymptotic and prac-
tical costs than the sorting network of [27] in terms of latency, communication,
and computation costs.

Remark on Permutation Networks. One approach for solving MPS is to
securely evaluate a permutation network instead of obliviously sorting random
values. A permutation network is a network of swappers, where each swapper is
a gate with two inputs and two outputs; it permutes the inputs randomly with
probability 1/2. A permutation network with n input wires is typically used
to generate a random permutation of n values. A network consisting entirely of
switches with swapping probability of 1/2 cannot generate uniform permutations
of n values, because for a network with m swappers, there are 2m different
outcomes. Since n! is not a power of 2, some of the possible n! permutations are
generated with higher probability than others.

Waksman [32] suggests an O(n log n) time and memory algorithm for generat-
ing unbiased permutations. The idea is to first choose a permutation uniformly at
random and then compute a proper setting of swappers that represents the per-
mutation. Unfortunately, it is not clear how this algorithm can be implemented
efficiently in a load-balanced multi-party setting. Czumaj et al. [15] propose a
permutation network with O(1/n2) statistical distance from the uniform distri-
bution. To the best of our knowledge, this network provides the smallest distance
among known networks with polylog(n) depth. Still, this result cannot be used
to achieve an almost t-secure MPS (as in Definition 2) because in worst case,
the adversary can guess the correct permutation with probability 1/n!+O(1/n2)
that is ω(1/n!).

3.3 Security Proofs Outline

The error probability in Theorem 1 comes entirely from the following steps of
Protocol 1 failing to output correct results with some probability:

– Setup: Protocol Build-Quorums may fail to create good quorums. Theorem 3
shows this failure happens with probability o(1).

– Random Generation: It is possible that two or more input quorums choose
exactly the same random elements from Fq. Such collisions increase the
probability that the adversary can correctly guess the secret permutation

470 M. Movahedi, J. Saia, and M. Zamani

generated by the protocol. In [1], we prove that, for sufficiently large q, fail-
ure due to collisions happens with probability o(1).

– Sorting: The circuit of [27] may fail to sort correctly with probability o(1).

All other components of our protocol are deterministic and thus have no
error probability. For simplicity, we assume the three steps above return without
failure. However, even assuming the sorting step of Protocol 1 returns without
failure, the adversary can still take advantage of the a priori knowledge that a
σ fraction of the input permutations are never sorted by the circuit, to reduce
the set of possible input permutations; thus increasing his chance of correctly
guessing the secret permutation. In [1], we show this a priori knowledge increases
the chance of the adversary in correctly guessing the secret permutation by only
a small (i.e., o(1)) amount. Hence, Protocol 1 achieves an almost t-secure MPS.

4 Simulation Results

To study the feasibility of our scheme and compare it to previous work, we
simulated a proof-of-concept prototype of our protocol (and the cryptographic
variant described in [1]) along with two others that are based on a similar model
to ours. These protocols are due to Dani et al. [17] and Boyle et al. [9]. To the
best of our knowledge, these protocols are the most efficient in terms of commu-
nication cost, computation cost, and the number of rounds for large networks.
Since the protocols of [17] and [9] are general MPC algorithms, we use them for
computing our (single-output) shuffling functionality described in Section 3. We
are interested in evaluating our protocols for large networks; thus, our choice of
protocols for this section is based on their scalability for large values of n.

We set the parameters of our protocols in such a way that we ensure the
probability of error for the quorum building algorithm of [10] is smaller than
10−5. For the sorting circuit, we set k = 2 to get σ < 10−8 for all values of n in the
experiment. Clearly, for larger values of n, the error becomes superpolynomially
smaller, e.g., for n = 225, we get σ < 10−300. For all protocols evaluated in
this section, we assume cheating (by corrupted parties) happens in every round
of the protocols. This is done by having t = �n/3� of the parties send random
message in every round of the protocols.

Figure 2 illustrates the simulation results obtained for various network sizes
between 25 and 230 (i.e., between 32 and about 1 billion). To get a system-
independent estimation of the computation costs, we implemented a wrapper
that counts the number of processor instructions evaluated during the execution
of each protocol. We repeat each experiment five times and report the average for
each network size. To better compare the protocols, the vertical and horizontal
axis of all plots are scaled logarithmically.

In Figure 2, we report results from three different versions of our protocols.
The first plot (marked with triangles) refers to our unconditionally-secure pro-
tocol (Protocol 1). The second plot (marked with circles) represents the cryp-
tographic variant of Protocol 1 described in [1]. The third plot (marked with
diamonds) shows the cost of our unconditionally-secure protocol with amortized
(averaged) setup cost. To obtain this plot, we run the setup phase of Protocol 1

Secure Multi-party Shuffling 471

Fig. 2. Simulation results

once and then use the setup data to run the online protocol 100 times. The total
number of bits sent was then divided by 100 to get the average cost.

We observe that our protocol performs significantly better than the prior work.
For example, for n = 215 (about 33 thousand parties), our amortized protocol
requires each party to send about 128MB of data, while the protocols of [9] and
[17] each send more than one terabyte of data per party. For the computation
cost, our amortized protocol requires each party to perform about one billion
operations, while the other protocols require each party to perform more than
1013 operations. Finally, our amortized protocol requires about 500 rounds of
communication, while the protocols of [9] and [17] require about 1500 and 4100
rounds of communication respectively.

5 Conclusion

We described a multi-party shuffling protocol that is fully decentralized and
tolerates up to t < (1/3− ε)n malicious faults. Moreover, our protocol is load-
balanced and can tolerate traffic-analysis attacks. The amount of information
sent and the number of computations performed by each party scales polylog-
arithmically with the number of parties. Scalability is achieved by performing
local communications and computations in groups of logarithmic size.

Several open problems remain. First, can we decrease the number of rounds of
our protocol using a smaller-depth sorting circuit? For example, since our pro-
tocol sorts uniform random numbers, it seems possible to use a smaller depth
non-comparison-based sorting circuit like bucket sort. Second, can we improve
performance even further by detecting and blacklisting parties that exhibit ad-
versarial behavior? Finally, can we adopt our results to the asynchronous model
of communication? We believe that this is possible for a suitably chosen upper
bound on the fraction of faulty parties.

Acknowledgment. The authors would like to acknowledge supports from NSF
under grants CCF-1320994, CCR-0313160, and CAREER Award 644058. We
are also grateful for valuable comments from Ran Canetti (Boston University),
Bryan Ford (Yale University), Shafi Goldwasser (MIT), Aniket Kate (Purdue
University), Yehuda Lindell (Bar-Ilan University), and anonymous reviewers of
this paper.

472 M. Movahedi, J. Saia, and M. Zamani

References

1. Extended version of this paper. http://cs.unm.edu/~zamani/papers/sirocco15
2. Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC 2007.

LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007)
3. Ajtai, M., Komlós, J., Szemerédi, E.: An 0(n log n) sorting network. In: Proceedings

of STOC 1983, pp. 1–9. ACM, New York (1983)
4. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Combinator-

ica 3(1), 1–19 (1983)
5. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly-secure

multiparty computation. Cryptology ePrint Archive, Report 2011/136 (2011)
6. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the

April 30–May 2, 1968, Spring Joint Computer Conference. AFIPS ’68 (Spring),
pp. 307–314. ACM, New York (1968)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In: Proceedings of the Twen-
tieth ACM Symposium on the Theory of Computing (STOC), pp. 1–10 (1988)

8. Berman, R., Fiat, A., Ta-Shma, A.: Provable unlinkability against traffic analysis.
In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 266–280. Springer, Heidelberg
(2004)

9. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-
party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376.
Springer, Heidelberg (2013)

10. Braud-Santoni, N., Guerraoui, R., Huc, F.: Fast Byzantine agreement. In: Proceed-
ings of the 2013 ACM Symposium on Principles of Distributed Computing, PODC
2013, pp. 57–64. ACM, New York (2013)

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2001, pp. 136–145, October 2001

12. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–90 (1981)

13. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1, 65–75 (1988)

14. Corrigan-Gibbs, H., Wolinsky, D.I., Ford, B.: Proactively accountable anonymous
messaging in verdict. In: Proceedings of the 22nd USENIX Security Symposium,
Berkeley, CA, USA, pp. 147–162 (2013)

15. Czumaj, A., Kanarek, P., Lorys, K., Kutylowski, M.: Switching networks for gen-
erating random permutations (2001)

16. Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally se-
cure constant-rounds multi-party computation for equality, comparison, bits and
exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
285–304. Springer, Heidelberg (2006)

17. Dani, V., King, V., Movahedi, M., Saia, J.: Brief announcement: breaking the
o(nm) bit barrier, secure multiparty computation with a static adversary. In: Pro-
ceedings of the 2012 ACM Symposium on Principles of Distributed Computing,
PODC 2012, pp. 227–228. ACM, New York (2012)

18. Frank, S., Anderson, R.: The cocaine auction protocol: On the power of anonymous
broadcast. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 434–447. Springer,
Heidelberg (2000)

http://cs.unm.edu/~zamani/papers/sirocco15

Secure Multi-party Shuffling 473

19. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 1998, pp. 101–111. ACM, New York (1998)

20. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

21. Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg
(2004)

22. Goodrich, M.T.: Randomized shellsort: A simple data-oblivious sorting algorithm.
J. ACM 58(6), 27:1–27:26 (2011)

23. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, MobiSys 2003, pp. 31–42. ACM,
New York (2003)

24. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013)

25. King, V., Lonargan, S., Saia, J., Trehan, A.: Load balanced scalable byzantine
agreement through quorum building, with full information. In: Aguilera, M.K.,
Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS,
vol. 6522, pp. 203–214. Springer, Heidelberg (2011)

26. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011)

27. Leighton, T., Plaxton, C.G.: A (fairly) simple circuit that (usually) sorts. In: Pro-
ceedings of the 31st Annual Symposium on Foundations of Computer Science,
FOCS 1990, pp. 264–274, October 1990

28. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Proceedings
of the 8th ACM Conference on Computer and Communications Security, CCS 2001,
pp. 116–125. ACM, New York (2001)

29. Pfitzmann, A., Waidner, M.: Networks without user observability – design options.
In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 245–253. Springer,
Heidelberg (1986)

30. Rackoff, C., Simon, D.R.: Cryptographic defense against traffic analysis. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
STOC 1993, pp. 672–681. ACM, New York (1993)

31. von Ahn, L., Bortz, A., Hopper, N.J.: k-anonymous message transmission. In: Pro-
ceedings of the 10th ACM Conference on Computer and Communications Security,
CCS 2003, pp. 122–130. ACM, New York (2003)

32. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
33. Zamani, M., Movahedi, M., Saia, J.: Millions of millionaires: Multiparty computa-

tion in large networks. Cryptology ePrint Archive, Report 2014/149 (2014)
34. Zhang, B.: Generic constant-round oblivious sorting algorithm for MPC. In:

Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 240–256. Springer,
Heidelberg (2011)

Author Index

Barenboim, Leonid 164, 209
Bienkowski, Marcin 91
Bilò, Davide 239
Bouchard, Sébastien 179
Bramas, Quentin 313
Bury, Marc 254

Carmel, Yuval 429
Censor-Hillel, Keren 270
Colella, Feliciano 239
Cooper, Colin 444
Cordasco, Gennaro 119
Czyzowicz, Jurek 285

D’Andrea, Annalisa 224
Das, Shantanu 357
Delporte-Gallet, Carole 385
D’Emidio, Mattia 224
Dereniowski, Dariusz 357
Dieudonné, Yoann 179
Ducourthial, Bertrand 179

Elkin, Michael 209
Eugster, Patrick 61

Fauconnier, Hugues 385
Feinerman, Ofer 16
Förster, Klaus-Tycho 342
Fraigniaud, Pierre 31
Frigioni, Daniele 224
Fuchs, Fabian 149

Gargano, Luisa 119
Gavoille, Cyril 209
Gualà, Luciano 239

Hirvonen, Juho 31

Izumi, Taisuke 299

Jeż, �Lukasz 76

Kari, Jarkko 370
Karousatou, Christina 357
Kesselman, Alex 61

Kogan, Kirill 61
Komm, Dennis 328
Korman, Amos 16
Královič, Rastislav 328
Královič, Richard 328
Kranakis, Evangelos 285
Kraska, Artur 91

Leucci, Stefano 224, 239
Lukovszki, Tamás 104

Mansour, Yishay 76
Matamala, Martin 370
Moses, Yoram 399
Mostéfaoui, Achour 194
Movahedi, Mahnush 459

Nikolenko, Sergey 61
Nuridini, Rijad 342

Pacheco, Eduardo 285
Paj ↪ak, Dominik 285
Patkin, Katia 399
Patt-Shamir, Boaz 76, 429
Peleg, David 164
Proietti, Guido 224, 239
Prutkin, Roman 149

Radzik, Tomasz 444
Rapaport, Ivan 370
Raynal, Michel 1, 194
Rescigno, Adele A. 119
Rivera, Nicolás 444
Rybicki, Joel 46

Saia, Jared 459
Salo, Ville 370
Schmid, Stefan 104
Schmidt, Pawe�l 91
Shavit, Nir 414
Shiraga, Takeharu 444
Sirotkin, Alexander 61
Smula, Jasmin 328
Stamoulis, Georgios 135
Suomela, Jukka 31, 46

476 Author Index

Taubenfeld, Gadi 414
Tixeuil, Sébastien 313
Toueg, Sam 385
Toukan, Tariq 270

Uitto, Jara 342

Vaccaro, Ugo 119

Wattenhofer, Roger 342

Zamani, Mahdi 459

	Preface
	Organization
	Contents
	Communication Patterns and Input Patterns in Distributed Computing
	1.Introduction
	2.Ensuring the Causal Delivery Message Pattern
	3.Message Pattern: Coping with Hidden Dependencies
	3.1.The Concept of a Consistent Global State
	3.2.A Few Fundamental Questions and Their Answers
	3.3.Consistent Checkpoint and Communication Pattern

	4.Input Patterns: The Condition-Based Approach for Agreement
	4.1The Consensus Problem and Its Solvability
	4.2The Condition-Based Approach
	4.3Input Patterns vs Error-Correcting Codes

	5.Conclusion
	References

	Clock Synchronization and Estimation in Highly Dynamic Networks: An Information Theoretic Approach
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contribution

	2 Preliminaries
	3 Lower Bounds on the Variance of Opt
	3.1 An Upper Bound on the Fisher Information Ja(t)

	4 A Highly-Competitive Elementary Algorithm
	5 The Fisher Channel Capacity and Convergence Times
	References

	Node Labels in Local Decision
	1 Introduction
	1.1 Context and Background
	1.2 Objective
	1.3 Our Results
	1.4 Additional Related Work

	2 Model and Definitions
	2.1 Computational Model
	2.2 Local Decision Tasks
	2.3 Distributed Oracles

	3 Proof of the Main Theorem
	3.1 Small Oracles Do Not Capture the Power of Unique Identifiers
	3.2 Large Oracles Capture the Power of Unique Identifiers

	4 Full Characterisation of LDf, LDOf, LD, and LDO
	4.1 Large Oracles Can Be Stronger than Identifiers
	4.2 Small Oracles and Identifiers Are Incomparable

	References

	Exact Bounds for Distributed Graph Colouring
	1 Introduction
	1.1 Problem Setting
	1.2 Prior Work
	1.3 Contributions
	1.4 Applications

	2 Preliminaries
	3 The Upper Bound
	4 The Lower Bound
	4.1 The Speed-Up Lemma
	4.2 Proof of Theorem 3
	4.3 Proof of Lemma 7 via Successor Graphs
	4.4 A Human-Readable Proof of Lemma 10
	4.5 Computational Proof of Lemma 10

	5 Main Theorems
	6 Conclusions and Discussion
	References

	Essential Traffic Parameters for Shared Memory Switch Performance
	1.Introduction
	2.Related Work
	3.Model Description
	4.The Quest for an Ideal Policy with Heterogeneous Processing
	5.Scheduling with Heterogeneous Processing
	6.Scheduling with Heterogeneous Values
	7.Conclusion
	References

	Scheduling Multipacket Frames with Frame Deadlines
	1 Introduction
	2 Model and Preliminary Observations
	2.1 On the Relation between s and
	2.2 Uniform Instances and Polylog Competitiveness

	3 Similar Periods, Uniform Density
	3.1 The Algorithm
	3.2 Analysis

	4 Common Size, Different Periods
	4.1 A Non-preemptive Algorithm
	4.2 Upper Bound for the Algorithm
	4.3 Analysis of the Algorithm

	5 Common Period, Unit Value
	References

	A Randomized Algorithm for Online Scheduling with Interval Conflicts
	1 Introduction
	1.1 Our Result
	1.2 Related Work
	1.3 Preliminaries

	2 Randomized Algorithm
	2.1 Unknown Value of n

	3 Analysis
	3.1 Core Subsequence
	3.2 Crucial Lemma
	3.3 Bounding the Gain of RAND
	3.4 Integer Sequences (Proof of Lemma 7)

	4 Lower Bound
	References

	Online Admission Control and Embedding of Service Chains
	1 Introduction
	1.1 Paper Scope
	1.2 Our Contribution
	1.3 Outline

	2 Model
	2.1 Putting the Model into Perspective

	3 Competitive Online Algorithm
	3.1 Algorithm
	3.2 Analysis

	4 Optimality and Approximation
	5 Optimal 0-1 Program and NP-Completeness
	6 Summary and Conclusion
	References

	Optimizing Spread of Influence in Social Networks via Partial Incentives
	1 Introduction
	1.1 The Model
	1.2 Related Works
	1.3 Our Results

	2 Hardness of WTSS and TPI
	3 An Algorithm for Weighted Target Set Selection
	4 Targeting with Partial Incentives
	5 Experiments
	References

	Approximation Algorithms for Multi-budgeted Network Design Problems
	1 Introduction
	2 Characterization of Extreme Point Solutions
	3 A (3,3) Bi-criteria Algorithm
	References

	Simple Distributed +1 Coloring in the SINR Model
	1 Introduction
	1.1 Related Work and Contributions

	2 Model and Preliminaries
	3 Simple 4 Coloring
	3.1 Analysis of Rand4DeltaColoring
	3.2 Asynchronous Simple Coloring
	3.3 Experimental Evaluation

	4 Asynchronous Color Reduction
	4.1 MIS, and Notation for AsyncColorReduction
	4.2 Analysis

	5 Conclusion
	References

	Nearly Optimal Local Broadcasting in the SINR Model with Feedback
	1 Introduction
	2 Local Broadcasting in Networks with Feedback
	3 Distant Coloring
	4 A Lower Bound for = 2
	References

	Byzantine Gathering in Networks
	1 Introduction
	1.1 Context
	1.2 Model and Problem
	1.3 Our Results
	1.4 Related Works

	2 Preliminaries
	3 Known Graph Size
	4 Unknown Graph Size
	5 Conclusion
	References

	Signature-Free Asynchronous Byzantine Systems: From Multivalued to Binary Consensus with t<n/3, O(n2) Messages, and Constant Time
	1 Introduction
	2 Computing Model and Intrusion-Tolerant Byzantine Consensus
	2.1 Distributed Computing Model
	2.2 Measuring Time Complexity
	2.3 Multivalued Intrusion-Tolerant Byzantine Consensus

	3 The Reducing All-to-All Broadcast Abstraction
	3.1 Definition
	3.2 An RD-Broadcast Algorithm
	3.3 Proof of the RD-Broadcast Algorithm
	3.4 RD-Broadcast vs Byzantine k-Set Agreement

	4 The Multivalued Validated All-to-All Broadcast Abstraction
	4.1 Definition
	4.2 An MV-Broadcast Algorithm
	4.3 Proof of the MV-Broadcast Algorithm

	5 Multivalued Intrusion-Tolerant Byzantine Consensus
	5.1 Enriched Computation Model for Multivalued ITB Consensus
	5.2 An Efficient Algorithm Solving the Multivalued ITB Consensus Problem
	5.3 Proof of the Multivalued ITB Consensus Algorithm and Two Remarks

	6 Conclusion
	References

	A Fast Network-Decomposition Algorithm and Its Applications to Constant-Time Distributed Computation
	1 Introduction
	1.1 Network-Decompositions
	1.2 Constant-Time Distributed Algorithms
	1.3 The Minimum Dominating Set Problem
	1.4 Additional Results
	1.5 Comparison of Our and Previous Techniques
	1.6 Related Work

	2 Preliminaries
	3 Network Decomposition
	3.1 Procedure Decompose

	4 Applications
	4.1 An Approximation Algorithm for the Coloring Problem
	4.2 An Approximation Algorithm for the Minimum Dominating Set Problem

	References

	Path-Fault-Tolerant Approximate Shortest-Path Trees
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Notation
	3 Our PASPT Structure and the Corresponding Oracle
	3.1 Oracle Setting

	4 Our 3-PASPT Structure for Paths of 2 Edges
	5 Experimental Study
	References

	A Faster Computation of All the Best Swap Edges of a Tree Spanner
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Other Related Work

	2 Preliminaries
	3 The Weighted Case
	3.1 A Corresponding Algorithm

	4 The Unweighted Case
	5 Conclusions
	References

	Randomized OBDD-Based Graph Algorithms
	1 Introduction
	2 Preliminaries
	3 OBDD Size of k-wise Independent Random Functions
	4 Almost k-wise Independent Random Functions
	5 Randomized Implicit Algorithms
	References

	On Fast and Robust Information Spreading in the Vertex-Congest Model
	Introduction
	1.1Our Contribution
	1.2Additional Background and Related Work
	1.3Preliminaries

	2.A Fast Information Spreading Algorithm
	3.Time Analysis for Gn,k
	3.1Analysis of the Random Phase
	3.2Analysis of Ranking Phases

	4.Fault Tolerance
	4.1Shuffle Phases
	4.2Resilience to Faults

	5.Discussion
	References

	Information Spreading by Mobile Particles on a Line
	1.Introduction
	1.1Related Work
	1.2Our Results

	2.Preliminaries
	3.Transmission Range of Bouncing Particles
	4.Deciding the Feasibility of Communication
	5.Time of Transmission
	6.Conclusions
	References

	On Space and Time Complexity of Loosely-Stabilizing Leader Election
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Agent and Algorithm
	3.2 Execution and Scheduler
	3.3 Loosely-Stabilizing Leader Election
	3.4 Knowledge on the Number of Agents

	4 Complexity Lower Bounds for (,)-stabilization
	4.1 Lower Bound for Space
	4.2 Lower Bound for Convergence Length

	5 Matching Upper Bound
	5.1 Leader Detector
	5.2 Main Algorithm

	6 Concluding Remarks
	References

	Wait-Free Gathering Without Chirality
	1 Introduction
	2 Preliminaries
	2.1 Model
	2.2 Weber Point

	3 Robot Configurations
	3.1 Classification
	3.2 Safe Robots
	3.3 Properties of Configurations

	4 The Algorithm
	5 Proof of Correctness
	6 Conclusion and Perspectives
	References

	Treasure Hunt with Advice
	1 Introduction
	2 Our Contribution
	3 Conclusion
	References

	Lower Bounds for the Capture Time:Linear, Quadratic, and Beyond
	1Introduction
	1.1Further Related Work

	2Model
	3One Cop, Many Robbers
	4Many Cops, One Robber
	4.1Evasion Strategy
	4.2The Cop Number

	5Many Cops, Many Robbers
	5.1The Graph Construction of Gk,,b
	5.2The Robber Strategy
	5.3A Lower Bound for the Capture Time
	5.4A Superlinear Number of Robbers

	References

	Collaborative Exploration by Energy-Constrained Mobile Robots
	1 Introduction
	2 The Model
	3 Exploration with Global Communication
	4 Exploration with Local Communication
	4.1 Semi-local Communication Model
	4.2 Local Communication between Levels

	5 Competitive Ratio of Online Exploration
	6 Conclusions
	References

	Solving the Induced Subgraph Problem in the Randomized Multiparty Simultaneous Messages Model
	1 Introduction
	1.1 Minors
	1.2 Subgraphs
	1.3 Induced Subgraphs
	1.4 Notation
	1.5 Our Results

	2 Lower Bounds for Detecting Subgraphs and Induced Subgraphs
	3 The Problem H-Induced Subgraph
	3.1 The Problem P3-Induced Subgraph
	3.2 A Deterministic Protocol for P3-Induced Subgraph

	4 The Problem P4-Induced Subgraph
	4.1 A Deterministic Protocol for P4-Induced Subgraph

	References

	A Separation of n-consensus and (n+1)-consensus Based on Process Scheduling
	1 Motivation and Related Work
	2 Model
	2.1 Process Schedules
	2.2 Systems and Subsystems
	2.3 Examples of Schedules in P,nk

	3 Consensus
	4 Main Results
	5 Possibility of n-consensus in P,nk
	6 Impossibility of (n+1)-consensus in P,nk
	7 Concluding Remarks
	References

	Under the Hood of the Bakery Algorithm : Mutual Exclusion as a Matter of Priority
	1 Introduction
	2 Preliminary Definitions
	3 The Bakery Algorithm
	3.1 The Bakery Algorithm in the SWMR Model
	3.2 Analysis of the Bakery Algorithm
	3.3 A Priority Relation for the Bakery Algorithm
	3.4 Proving Mutual Exclusion
	3.5 Liveness and Fairness of the Bakery Algorithm

	4 Boulangerie: A Better Bakery Algorithm
	4.1 Boulangerie has No Unnecessary Blocking

	5 Conclusions
	References

	The Computability of Relaxed Data Structures: Queues and Stacks as Examples
	1 Introduction
	1.1 Motivation
	1.2 Data Structures with Relaxed Specifications
	1.3 Consensus Numbers
	1.4 Contributions
	1.5 Related Work

	2 Preliminaries
	2.1 Model of Computation
	2.2 Three Simple Observations
	2.3 Known Results

	3 Basic Properties of Wait-Free Consensus Algorithms
	4 Relaxing the Enqueue Operation
	5 Relaxing the Peek Operation
	6 Not Supporting the Dequeue Operation
	7 Atomic Registers vs. Relaxed Queues
	8 Discussion
	References

	Comparison-Based Interactive Collaborative Filtering
	1 Introduction
	2 Preliminaries
	2.1 User Models

	3 Exact Total Order: Algorithm DP
	4 Approximate Total Order: Algorithm DPD
	5 The Case of Disjoint Categories
	6 Conclusions and Open Problems
	References

	Coalescing Walks on Rotor-Router Systems
	1 Introduction
	2 Preliminaries
	3 Stable Configurations in a Cycle
	3.1 Stable Configurations of the Cycle Type
	3.2 Stable Configurations of the P Type

	4 General Graphs
	References

	Secure Multi-party Shuffling
	1.Introduction
	1.1Our Results
	1.2Related Work

	2Preliminaries
	3Our Protocol
	3.1Share Renewal
	3.2Remarks
	3.3Security Proofs Outline

	4Simulation Results
	5Conclusion
	References

	Author Index

