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Abstract. Most of the state-of-the-art MapReduce-based entity match-
ing methods inherit traditional Entity Resolution techniques on central-
ized system and focus on data blocking strategies for structured entities
in order to solve the load balancing problem occurred in distributed en-
vironment. In this paper, we propose a MapReduce-based entity match-
ing framework for Entity Matching on semi-structured and unstructured
data. Each entity is represented by a high dimensional vector gener-
ated from description data. In order to reduce network transmission, we
produce lower dimensional bit-vectors called signatures for those entity
vectors based on Locality Sensitive Hash (LSH) function. Our LSH is
required for promising cosine similarity. A series of random algorithms
are designed to ensure the performance for entity matching. Moreover,
our design contains a solution for reducing redundant computation by
one round of additional MapReduce job. Experiments show that our ap-
proach has a huge advantages on both processing speed and accuracy
compared to the other methods.

1 Introduction

Nowadays, the rapid growth of web data and User Generated Content (UGC)
changes the way we used to collect and manage information. By the hands of
the huge amount of web users, data become much easier to be generated. For
instance, in a C2C (Customer to Customer) online business site, it becomes
easy to start an online store and generate personalized structured/unstructured
descriptions for its listed goods. And it is pervasive that different sellers own
the same commodity with variety of descriptions together with diverse schemas.
This results in the difficulty in product managing which may affect product or
price comparison. Additionally, this kind of UGC is becoming large. Then it is
urgent to design an efficient distributed entity matching framework by using of
this UGC to identify entities that represent the same items.

Though there are already a bunch of entity matching algorithms, we face new
challenges which make the traditional methods infeasible. First of all, most of the
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user generated data are semi-structured or unstructured data, which come from
variety data sources and in different formats/schemas. Second, a great quantity
of typos occurred in UGC data dramatically reduce the data quality. Third,
high computation cost occurs due to the large web data size. Traditional well
designed entity matching algorithms are usually for structured data. When they
confront with these three challenges including hybrid data structure without
uniform schema, low data quality and huge data size, their performance is also
challenged.

Lots of works have tried resolving those challenges separately: 1) Document
similarity metrics[20] are introduced to measure the similarity between unstruc-
tured data, such as online documents. They provide standards of similarity
measurements for unstructured data and semi-structured data. 2) Tokenization
technique[18] is used to reduce the negative influence to data quality caused by
typos and human mistakes. It has become an important step in data cleaning
and for improving the accuracy of entity matching. 3) Data blocking strategies
are designed to split data into multiple parts for parallelization and lowering
computation cost. Inspired by those work, we propose a flexible parallel entity
matching framework on MapReduce, which aims to resolve entity matching on
unstructured data with higher efficiency and lower cost. That is for these un-
structured data, our algorithm shall boost the processing speed while promise
load balance and reduce network transmission cost. Those are the

The main contributions can be summarized as follows:

— We sketch out a random-based framework for entity matching based on
MapReduce, and introduce our random algorithm based on this framework.
We propose to generate low dimensional bit-vector signatures for entities,
that are calculated from the high dimensional feature vectors by a specific
Locality Sensitive Hash (LSH) function[16]. It helps to boost computation
efficiency and reduce storage and network transmission costs dramatically.

— We propose a random-based permutation method inspired by PLEBI6]
algorithm for increasing match accuracy, which can be well adapted on
MapReduce framework. Besides, the permutation method ensures load bal-
ance during the matching process.

— We analyze the cause of redundancy problem in our algorithm, which is
pervasive in many of the blocking-based algorithms. We solve this problem
by adding an extra MapReduce job to reduce the redundancy rate.

— We evaluate our approaches and demonstrate their efficiency in comparison
to existing blocking-based matching methods on both semi-structured and
unstructured data.

2 Related Work

The idea of Entity matching (along with Record linkage and deduplication) is
first introduced by geneticist Howard Newcombe in [15] who presents odds ratios
of frequencies and the decision rules for delineating matches and mismatches.
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Fellegi and Sunter[4] provide the formal mathematical foundations of record
linkage. At the end of 20th century, since the data size grew rapidly, the main
problem for entity matching changed from improving calculation accuracy to
handling huge amount of data. Blocking strategy was introduced to solve this
problem for it can filter majority of the entity pairs with low similarity before
similarity comparison. Meanwhile, the proposal of MapReduce[3] also gave us a
better platform to solve this problem.

A number of blocking-based entity matching algorithms under MapReduce
framework have been presented to help dealing with big data sets[7,8,19,14].
These works are based on a assumption that there is only one key for an en-
tity and use a map/reduce phase to handle the problem. They design different
blocking strategies for map phase and then do the matching step in reduce
phase. Some of the most influential works includes sorted neighborhood[12] and
load-balanced entity matching[11,10]. The sorted neighborhood is a blocking
technique by sorting all entities according to blocking keys, assigning a window
size w and comparing entities in the window while sliding. This gives us some
inspiration of the pair generation method. However, this part of work and its
joint works[9] didn’t mention the load balancing problem on MapReduce.

Both BlockSplit and PairRange blocking strategies mentioned in [11] focus on
solving the imbalance problem. But they rely on a data analysis phase before
matching job. This phase scan the input entities to collect a list of all possible
pairs, then make a blocking plan to evenly divide those pairs into multiple blocks
by the above two strategies. It can perfectly solve the load balancing problem
on MapReduce by adding an expensive cost before matching process. Therefore,
both of these two strategies are suitable for processing skewed data, but far more
slow to deal with regular data or data with enormous size. Another algorithm
has been presented for document-similarity computation[1] which have the same
background to our work, we will compare our performance with this algorithm.

3 MapReduce-Based Entity Matching Framework

In order to get good matching accuracy for high dimensional data, the distributed
entity matching framework is expected to have the following functionalities: a)
Fast Entity Similarity Calculation method, b) Efficient Candidate Entity Pair
Generation algorithm and ¢) Redundant pairs removing plan. Figure 1 shows
the framework of our algorithm.

3.1 Random-Based Similarity Calculation

Cosine similarity is appropriate for measuring similarity of semi-structured and
unstructured entities. However, high dimensional vectors may cause the
dimensional-curse on entity matching calculation. Locality Sensitive Hashing
(LSH) function which keep the property of cosine similarity, proposed by Charikar
in [2], provides an option for high dimensional vectors similarity calculation dis-
tributively.
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Fig. 1. Framework of random-based entity matching on MapReduce

Theorem: Suppose we have a collection of vectors in a k dimensional vector
space (that is N*). We generate a random vector r of unit length from this k&
dimensional space, and define a hash function h, as Eqn.1. Then for vectors u
and v, we have the corresponding relationship as calculated by Eqn.2. Goemans
and Williamson[5] prove that this hash function can promise the cosine similarity
in a high probability.

Since high dimensional vectors computation is time-consuming, dimension
reducing is generally done for improving calculation performance. Note that the
above equation is probabilistic in nature. Hence, we start to generate d numbers
of random vectors from N* and get R={r}, with |R| = d and d < k. For each
vector u in N*, we can get a d-bit vector {h,1(u), hr2(u), ..., hrq(u)} by using
hash function h,(u) for v and each vector r; € R. In such a way, we represent
each vector u by a d-bit signature S,,. Then dimension k is successfully reduced
to d whilst it still preserves the cosine similarity, where d < k. This d-dimension
signature keeps features of the original vector. Then the huge deviation between
two signatures means big difference between two entity vectors.

Cosine similarity between any two vectors is achieved by Eqn. 3. On the other
hand, if we use the similarity between signatures to represent the probability in
Eqn. 3, we can observe:

Prih,.(u) = h,.(v)] = 1 — (hamming distance)/d.

Thus, it converts the problem of finding cosine similarity between vectors to
the problem of calculating hamming distance between signatures. It is more
efficient in both processing speed and memory utilization. So in the following
descriptions, hamming distance has the same meaning as cosine similarity.

0(u, v)

™

Prihy(u) = hy(v)]=1- (2)

1 ru=0

r () = {0 r.u<0 e
' cos(f(u,v)) = cos(1l — Prh,(u) = hr(v))7  (3)

3.2 Entity Pairs Generation

As shown above, highly similar entities usually have similar signatures. Then
sorting by lexicography will make them close to each other except the deviations
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occur in the first few bits of their signatures. In order to reduce this kind of
deviation and increase the opportunity of getting close for similar signatures, we
propose to do random permutation for these signatures as proposed by PLEB
(Point Location in Equal Balls), which was first mentioned in [6] and improved
in [2]. This algorithm takes random permutations to signatures and sort the
permuted signatures. It aims to find vectors with short hamming distances.

A random permutation is considered as a random jumble of the bits of each
signature, so the prefix deviation of two similar signatures can be prevented in
some of their permutations. We apply several rounds of permutations on sig-
nature set. At each round, it generates a set of permuted signatures. Signature
pairs with lower hamming distance are expected to get close in some of the sort-
ing lists. Accordingly, we can find the top m closest neighbors for each signature
and generate our entity pair candidates. Implementation details can be found in
the following content.

3.3 Entity Matching on MapReduce

We aim at solving the entity matching problem on semi-structured and unstruc-
tured data. We first tokenizing the input data and generating high dimensional
feature vectors based on the words frequency. We use these vectors as our data
input. The goal is to find all matching pairs among these entity vectors. We
define that two entities are matched when the hamming distance between their
feature vectors is lower than a predefined threshold. We can also output the top
N similar vectors by an additional sorting process on the result set.

Figure 1 shows matching framework on MapReduce. Before doing the match-
ing process, we carry out three steps of preprocessing on the source data to get
our expected input. Initially, we split the input entities into tokens using the
Part-Of-Speech Tagger[17]. Then we generate a dictionary containing all & dif-
ferent tokens occurred in the data set. Finally, for each entity u, a k-dimension
vector V,, is generated, in which the nth dimension represent the word frequency
of the nth token in entity u. The input of our method is a set of (key, value) pairs
made up of entity ID F, and its k-dimension vector V. In addition, another
standard vector set R is introduced into the MapReduce job, which contains d
(d << k) numbers of k bits random vectors of unit length, that is {r1,r2,...,ra}.

Figure 2 illustrates the workflow of our MapReduce job. Map phase contains
steps as followings:

1. Initially, we apply A, (u) to each input entity (E,, V,,) using R as the standard
vector set. We pair V,, with every vector r; in R (1 < i < d) and calculate
hyi(u), then we get a d bit binary signature S, for V,, represented as: S, =
{hm(u), hrz(u), ceeey hrd(u)}

2. After converting the input vectors into signatures .S,,, we randomly permute
them ¢ times. The permutation function can be approximated as:

m(z) = (ax 4+ b) mod p (4)

where p is prime and 0 < a < p,0 < b < p. Both ¢ and b are chosen
randomly. We apply ¢ different random permutation for every signature (by
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Fig. 2. Example of random-based matching algorithm on MapReduce

choosing random values for a and b, ¢t number of times). Thus for each
signature Sy, we have ¢ different permutation results: { P,1, Pu2, ..., Put }. We
regard this result as our map output. As a consequence, we have ¢ different
map output for each entity represented as (i, Py, E.,), with ¢, P,; and E,
referring permutation number, the corresponding permutation result and the
entity ID.

In reduce phase, we expect to achieve entity pair similarity. After an auto-
matic sorting procedure during the shuffle between map and reduce, the reduce
phase faces ¢t number of groups represented as (¢, L;) , in which L; is the sorted
list on all signatures in the i, round of permutation. Then we generate match-
ing pairs between every entity u and its closest m neighbors in the sorted list.
Finally, we calculate the hamming distance of every paired entities and output
those with distance below a predefined threshold. The output is formatted as
(ELEy, similarity)(u < v) , which are the ID concatenation of paired entities’
with its similarity value.

Overall, The map tasks change each k-dimension vector into ¢ number of d-bit
signatures. d and ¢ are always far less than k. Generally d and t are between tens
to hundreds while k£ are normally more than tens of thousands determined by the
characteristic and size of input data. That gives a significant reduction on data
volume, and also a huge cut on the network transmission cost between map and
reduce. Unlike most of the blocking-based entity matching methods comprised
by multiple MapReduce tasks, our matching algorithm is finished in one MapRe-
duce job. Since each MapReduce task spends extra cost on task scheduling and
network communication, the cutting on the number of MapReduce jobs can lead
to performance promotion. Furthermore, since all permutations of a signature
are sent to reducers evenly, which are partitioned by their permutation number 1.
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There are the same number of pairs for each reduce task. Therefore, our model
easily solve the load balancing problem.

4 Redundancy Reduction

During the pair generation step in reduce phase, all pairs are generated in parallel
from different groups. As the same entity pair may be generated from multiple
groups, there can be many duplicated pairs, such as the circled pairs FoF4 and
FEs Ey in Figure 2. It may cause redundant computation cost, which is a pervasive
problem in many MapReduce-based matching algorithms. The reason for the
occurrence of these redundancy is that the features of one entity are separated
into multiple parts during the map phase, and each part may possibly match
any part of the other entity in the reduce phase. It may happen more frequently
among these highly similar entity pairs, because of the higher possibility for each
part to be matched.

In redundancy-free similarity computation model [13], it adds additional an-
notate on each map output to tell the reducer which reducers the rest parts of
this entity will be sent to. Though it is efficient, it bases on a strong precondition
that all entities sent to the same reducer will definitely be paired among each
others. In our algorithm, the permuted signatures of the same entity is sent to all
reducers, and for each reducer a signature is only paired with its neighborhoods.
So this redundancy-free solution is inapplicable for our random-based method.
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Fig. 3. Example of the deduplication method

We introduce an extra MapReduce job to reduce duplication. Figure 3 shows
an example of our method. We modify the original MapReduce job in the reduce
phase by cutting off the similarity computation. After generating all pairs, the
reduce task terminates and outputs those pairwise information with entity IDs
E.,E, (u < v) concatenated as key and their ith permuted signatures P,;, Py;
concatenated as value, that is (E,Ey, PyuiPyi).

The map phase of the second MapReduce job is an identity mapper which
does nothing. In the following shuffle phase, all pairs with the same entity ID
are grouped together. It means that all those duplicated pairs come together.
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Then reducers will process the data like (Ey, E.,, list(Py1 Py1, PuaPoa, .., Put Pot)).
Then we need to pick one pair of permuted signatures in the list and calculate its
hamming distance. At last, we output the pair like (F,F,, similarity) as final
result.

5 Experiments

We run experiments on a 22-node HP blade cluster. Each node has two Intel
Xeon processors E5335 2.00GHz with four cores and one thread per core, 16GB
of RAM, and two 1TB hard disks. All nodes run CentOS 6.5, Hadoop 1.2.1, and
Java 1.7.0. We evaluate the performance of our algorithm in two aspects: 1) We
measure the effect on calculation performance and matching quality by using
different parameters. 2) We compare the performance of our algorithm with two
other state-of-the-art matching algorithms namely Document Similarity Self-
Join (DSSJ)[1] and Dedoop[10].

5.1 Data Set Description

We use CiteSeerX data set. It contains nearly 1.32 Million citations of total size
2.89 GB in XML format. Each citation includes structured attributes such as
record ID, author, title, date, page, volume, publisher, etc. It also has document
abstract. We select a few records from CiteseerX and manually make validation
sets for accuracy evaluation.

5.2 Parameter Description and Evaluation Metrics
There are three parameters that may affect the performance:

— d: The length of the signature. It directly determines the network transmis-
sion cost and accuracy. A bigger d leads to a longer signature, and therefore
increases the burden of network transmission, but it can benefit the accuracy
since the signature may contain more information of the entity.

— t: The number of permutations. It multiplies the data transmission between
map and reduce. The increase of ¢ can also raise the pair redundancy and
increase the run-time, but improve the matching accuracy.

— m: The window of selecting neighborhoods. It decides the amount of pairs
and also causes a change on redundancy ratio. It can influence the result
accuracy and execution time as well.

We introduce four metrics to evaluate system performance:

— The network transmission cost is measured by summing up the size of
map output since all output of map phase will be sent to reducers through
network.

— The run-time of MapReduce jobs is recorded to compare the speed of our
algorithm with different parameters.
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— The redundancy rate is calculated as total number of generated pairs /
distinct candidate pairs to show the redundancy ratio.

— The accuracy is also measured in this part. In order to calculate the ac-
curacy, we prepare a validation set which contains 200 entity records for
accuracy measurement. We calculate the similarity between those entities
manually and generate a set of top 50 similar entity pairs as the standard
result set. The accuracy is measured as the fraction of pairs that appear
within the standard top 50 results.

sion

1800
1600
1400
1200

Z 1000

o

£ 500
=

AN\ MR 2

w MR 1

«=NetWork
Transmission

N\NMR 2

it MR 1

=8=—NetWork

Transmission

30

A\\\\\\\\\\\\///// 74

ERNNN\\\\\\\\N\\\\\ 22

N
%
%

50 60 70

®
S
B
rate

160 1.035
140
120

1.025
100

o 2

80 B g 102
60

1015
40

20

0 1.005

LT T =

= & = Redundancy

—e— Accuracy

100 200 300 400 500
d

600

700

800

-
-
Prae

=& = Redundancy

—8— Accuracy

10 20 30 40 50
t

60

70

80

© ® o v W W w0

£ 8 &8 8 8 2 @

= =X X X xR X =
percentage

1%
]
X

80%

.4. Run-time and network transmis- Fig. 5. Redundancy rate and accuracy for
for different value of d (t=40, m=8) different value of d (t=40, m=8)

© ® ® w © W ©

E 8 & 8 8N & @

=X X X X = =X x
percentage

®
]
X

80%

Fig. 6. Run-time and network transmis- Fig. 7. Redundancy rate and accuracy for
sion for different value of ¢ (d=400, m=8) different value of ¢ (d=400, m=8)

To evaluate the performance, we first use a 200MB subset of CiteSeerX as
our input to the effect of changing parameters. Figure 4 to 9 show the perfor-
mance variations of our algorithm when changing one of the three parameters.
Figures 4, 6, and 8 illustrate the run-time for both of two MapReduce jobs with
MRI1 for pair generation and MR2 for deduplication, and the transmission cost
during MapReduce tasks. We can see from Figure 4 that when we increase the
length of signature d, the network transmission cost together with the run-time
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of MapReduce jobs has a linear growth. Meanwhile, in Figure 5, as the increas-
ing of d,the redundancy decreases steadily and the accuracy increases smoothly.
The reason is that as the signature extends, the differences between entities can
be found more easily. So they may have fewer chances to be paired. Therefore,
the redundancy rate decreases. The performance variations with changing ¢ and
m are listed in Figure 6 to 9. Figure 6 and 8 shows similar performance with
Figure 4, but it seems that in Figure 8 we spend large part of time on MR1 when
m = 2 or m = 4. It is because a smaller m cannot reduce the cost on map phase
when generating signatures and doing permutations. Figure 7 clearly shows that
the number of permutations ¢ can determine the redundancy rate directly. All
these three parameters can strongly influence the performance. Figure4,6,8 show
that when d > 400,¢ < 50 and m > 8, we get a better performance on both
redundancy rate and accuracy. So we choose d=500, t=50 and m=10 to do the
rest of evaluations. Furthermore, the linear growth of run-time shows a good
scalability of our matching method, which has a huge advantage in processing
big data set.

5.3 Different System Comparison

The baseline methods for our comparison are Document Similarity Self-Join
(DSSJ) and Dedoop.

Table 1. Comparison of accuracy with DSSJ (d=500,t=50,m=10)

Name Top 10 Top 20 Top 50
DSSJ 90% 95% 94%
Random-base Matching 90% 100% 94%
Dedoop 100% 100% 100%

In order to measure the accuracy, we use the validation set mentioned pre-
viously, and compare our matching result with DSSJ and Dedoop results. The
standard result tests contain top 10, 20 and 50. Table 1 shows the accuracy
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of these top N tests. Since Dedoop compares all possible pairs of entities and
calculates cosine similarity directly, the similarity result of Dedoop are always
correct. However, the transmission cost is problematic that will be analyzed in
the following content. When using the parameters (d=500,t=50,m=10), we can
get almost the same accuracy as DSSJ method does. At the same time, we eval-
uate the processing speed of our method comparing with Dedoop and DSSJ
using these parameters. Figure 10 shows run-time between our method and the
baseline methods. We just run a small size of data since the run-time of both
Dedoop and DSSJ would exceed hours if the size of data is larger than 100MB.
The reason is that both of these two methods generate enormous size of pair
candidates. We get nearly 100GB map output data when running Dedoop on
200MB data set. It can burden the system drastically on network transmission
and is hard to be processed in memory. On the contrary, our random-based
matching method shows a good scalability on data set size. The speed of our
algorithm is significantly faster than Dedoop, and far more stable even when
dealing with gigabytes of input data.
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Fig. 10. Comparison of run-time with Dedoop and DSSJ (d=500,t=50,m=10)

6 Conclusion

In this paper, we study the problem of entity matching on unstructured data,
which will be formatted as high-dimensional feature vectors. We take the MapRe-
duce framework as our programming model and point out the two major
challenges met on this model, which are load balancing problem and network
transmission cost. We propose a random-based matching method to solve the
matching problem which will help to greatly reduce the transmission cost. We
use a special LSH function to generate signatures for entities, which helps to
reduce entity dimensions. We take PLEB fast search algorithm to generate the
candidate pairs efficiently. In addition, we propose our approach to reduce the
redundancy during reduce tasks. Given the proposed algorithm, we implement
it in Hadoop and analyze its performance on real data sets.
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