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Abstract. We address the problem of finding local patterns and related
local knowledge, represented as implication rules, in an attributed graph.
Our approach consists in extending frequent closed pattern mining to the
case in which the set of objects is the set of vertices of a graph, typi-
cally representing a social network. We recall the definition of abstract
closed patterns, obtained by restricting the support set of an attribute
pattern to vertices satisfying some connectivity constraint, and propose
a specificity measure of abstract closed patterns together with an infor-
mativity measure of the associated abstract implication rules. We define
in the same way local closed patterns, i.e. maximal attribute patterns
each associated to a connected component of the subgraph induced by
the support set of some pattern, and also define specificity of local closed
patterns together with informativity of associated local implication rules.
We also show how, by considering a derived graph, we may apply the
same ideas to the discovery of local patterns and local implication rules
in non disjoint parts of a subgraph as k-cliques communities.

1 Introduction

We address here the problem of discovering patterns and associated knowledge
in an attributed graph. Previous work focuses on the topological structure of
the patterns, thus ignoring the vertex properties, or consider only local or semi-
local patterns [4]. In [1] patterns on co-variations between vertex attributes are
investigated in which topological attributes are added to the original vertex
attributes and in [7] the authors investigate the correlation between the support
set of an itemset and the occurrence of dense subgraphs. What we propose in
this article is to consider a graph G = (O,E) whose vertices are labelled by
itemsets and to submit their occurrences in the vertex set O, i.e. their support
sets, to connectivity constraints. We consider attribute patterns in the standard
closed itemset mining approach developed in Formal concept Analysis (FCA)[3],
Galois Analysis [2], and Data Mining (see for instance [6]).

In pattern mining, a support-closed pattern is a pattern which is maximal,
in size, i.e. in terms of specificity, within the equivalence class of all patterns q
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sharing the same support set e = ext(q). The corresponding equivalence relation
is simply denoted ≡. In standard itemset ming, there is a unique support-closed
pattern, i.e. a maximum, in each equivalence class and this support-closed pat-
tern is easily computed using a closure operator f . More precisely, when consider-
ing some pattern q its equivalence class is made of all patterns whose support set
is ext(q) and the unique support-closed pattern is obtained as f(q) = int◦ext(q)
where int simply intersect the object descriptions of the support set. Support-
closed patterns are then simply called closed patterns. The set of (support set,
closed pattern) pairs is organized within a concept lattice and inclusion of sup-
port sets leads to implication rules that hold on the dataset under investigation.
The set of frequent closed patterns, i.e. closed elements whose support is greater
than or equal to some threshold minsupp, represents then all the equivalence
classes corresponding to frequent supports. Such a class has also minimal ele-
ments, called generators. When the patterns belong to 2X , the min-max basis
of implication rules [6] that represents all the implications t → t′ that hold on
O, i.e. such that ext(t) ⊆ ext(t′), is defined as follows:

{g → f | f is a closed pattern, g is a generator, f �= g, ext(g) = ext(f)}

2 Abstract Knowledge

In a previous work [9] the attributed graph G = (O,E) was investigated in the
following way: each pattern support set e ⊆ O, as a set of vertices, induces a
subgraph G(e) of G, and this subgraph is then simplified by removing vertices
in various ways. The vertices of such an abstract subgraph all satisfy some topo-
logical constraint, as for instance belonging to a k-clique, and form the abstract
support set of the pattern. What happens here is that the extensional space is
then reduced to a part A of 2O, called a graph abstraction, and that can be gen-
erated as the union closure of subsets of O we call abstract groups. For instance
the k-clique abstraction is made of union of k-cliques and therefore the abstract
support set of a pattern is the (maximum) subset of its support set made of
k-cliques (Fig. 1).

Example 1. Consider the graph G = (O,E) where O = {1, 2, 3, 4, 5, 6, 7, 8}
and E = {12, 13, 23, 34, 45, 56, 67, 57, 68, 78}. Each vertex o is described by
d(o) ∈ 2abc, i.e. d(1) = d(2) = d(3) = ab, d(4) = d(5) = ac, d(6) = d(8) =
bc, d(7) = abc. Consider then the 3-clique abstraction A. The support set of
a is ext(a) = {1, 2, 3, 4, 5, 7} and induces the subgraph G(e) whose edges are

Fig. 1. An attributed graph
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{12, 23, 13, 34, 45, 57}. Its abstract support set is extA(a) = {1, 2, 3} as no vertex
amongst 4, 5, 7 belongs to a triangle in G(e).

Abstract support sets are obtained applying an interior operator p such that
p[2O] = A, i.e. extA = p ◦ ext. As an interior operator on 2O, p has the following
properties: for any e, e′ ∈ 2O, i) p(e) ≤ e, ii) p(p(e)) = p(e) and iii) e ≤ e′ ⇒
p(e) ≤ p(e′). Abstract implications are then defined by considering inclusion of
abstract support sets, i.e. �Aq → �Aw is valid if and only if extA(q) ⊆ extA(w).
Such an abstract rule has the following meaning “whenever the members of
some abstract group share pattern q, they also share pattern w”. Because of
the monotony (condition iii)) of the interior operator p, abstraction preserves
implication validity:

Lemma 1. Let A be an abstraction, q and w two patterns, then q → w ⇒
�Aq → �Aw

In the case of the k-clique abstraction mentioned above, this means that by
restricting the support sets of patterns to be made of k-cliques, we preserve pre-
vious valid implications and possibly obtain some new valid abstract implications
representing abstract knowledge.

Consider then the equivalence relation ≡A defined by q ≡A w iff extA(q) =
extA(w). Equivalence classes of ≡A have a maximum obtained, by applying the
closure operator int ◦ p ◦ ext and called an abstract closed pattern, while its
minimal elements are called A-generators. We then obtain the abstract min-
max basis of abstract implications rules where extA replaces ext. The abstract
min-max basis is made of abstract implications relating A-generators of some
equivalence class of ≡A to the abstract closed pattern of the same class:

{�Ag → �Ac | c is an A-closed pattern, g is a A-generator, c �= g, extA(g) =
extA(c)}
Example 2. Consider the data and 3-clique abstraction of Example 1. Intersect-
ing the vertex descriptions of extA(a) = {1, 2, 3} we obtain the abstract closed
pattern ab. The equivalence class of patterns having abstract support set {1, 2, 3}
is {a, ab} and a is therefore a A-generator. This means that �a → �ab belongs
to the abstract min-max basis extracted from G and means “whenever the ver-
tices of a triangle in G share pattern a, they also share pattern ab”. Note that
a → b was not a valide rule, i.e. when considering some vertex o to infer b from
a we have to consider some triangle to which o belongs and whose two other
vertices also have a.

3 Measuring Abstract Knowledge

When considering frequent abstract closed patterns, we are interested in order-
ing or selecting them according to to what extent they are related to the graph
structure. For that purpose we generalize hereunder the structural correlation
measure introduced by A. Silva and co-authors [7], originally introduced to com-
pute the ratio of vertices involved in quasi-cliques in the subgraph induced by a
pattern, and rename it as specificity.
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Definition 1. Let q be a pattern, A an abstraction of some powerset of objects
O, the specificity of q with respect to A is defined as:

sA(q) =
| extA(q) |
| ext(q) |

Apart from measuring through specificity what is specific to the pattern in
its abstract view, we are also interested when considering abstract rules in how
informative they are. For that purpose we consider abstract rules whose left and
right patterns are equivalent in the abstract space A, i.e. have same abstract
support set, as in the min-max abstract rule basis defined above. Whenever
these patterns are also equivalent in the original space 2O intuitively the rule is
uninformative. Assume for instance that both a → abc and �Aa → �Aabc are
valid, then the abstract rule did not bring any new information. On the contrary,
assume that �Aa → �Aabc is valid while a → abc has only confidence 0.5, i.e.
ext(abc) = 0.5 ∗ ext(a), then clearly the abstract rule brings some information.
We simply measure here informativity as the inverse of confidence.

Definition 2. Let q be a pattern, A an abstraction of 2O, the informativity of
the valid rule r : �Aq → �Aw is defined as:

IA(r) =
| ext(q) |

| ext(qw) |
An alternative Informativity measure, ranging between 0 and 1, would be

the (estimated) probability of not having w whenever we have q i.e. 1− |ext(qw)|
|ext(q)| .

This quantity has value 0 whenever q → w holds and has limit 1 whenever
| ext(qw) | approaches 0, i.e. restricting the support set of patterns to elements
of A concentrates the support set of q to the very few sharing also w. In the
remaining of the article we keep Definition 2 to define informativity.

Considering an implication rule from the abstract min-max basis �Ag →
�Ac, we are then interested in the specificity sA(c) of the abstract closed pattern
and in the informativity IA(r) = |ext(g)|

|ext(c)| of the rule.

Example 3. Considering the attributed graph and triangle abstraction of
Examples 1 and 2, ab has specificity 3 ÷ 6 = 0.5 while �Aa → �Aab has infor-
mativity 6 ÷ 4 = 1.5.

4 Local Knowledge

Given some attribute pattern, we are now interested in extracting local support
closed patterns, i.e. maximal attribute patterns each associated to one dense
subgraph, so allowing to extract local implication rules particular to specific
dense groups of objects. Recently the closed pattern mining methodology has
been extended to local closed patterns: they are obtained by applying a set of
local closure operators [8]. In the graph case, this means that from the support
set of some (closed) pattern c, various dense support sets, called local support
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sets are extracted each associated to a local closed pattern, i.e. the most specific
pattern l common to the elements of the local support set. Again we obtain a
set of local implication rules corresponding to inclusion of local support sets,
but now such an implication is only valid in the vicinity of some dense group of
vertices.

4.1 Direct Local Knowledge

The simplest case appears when the extensional space is reduced to the set
F of connected subgraphs induced by vertex subsets belonging to some graph
abstraction A. To a pattern q is associated one of its connected component e
as a local support set, and int(e) as the corresponding local closed pattern. We
may then consider, for instance, as A the 3-clique abstraction and obtain as local
support sets connected subgraphs made of 3-cliques. In this simple case, F is a
confluence of A [8], i.e. a partially ordered set made of several lattices, and that
has in general a set min(F ) of minimal elements. More precisely, in our connected
3-clique subgraphs case, these minimal elements are the 3-cliques of our graph
G. We call such a confluence, whose elements are connected components, a cc-
confluence. Let q be a pattern, m ∈ min(F ), and m ⊆ extA(q), we obtain the
connected component containing the 3-clique m as extAm = pm ◦ extA(q) where
pm is again an interior operator, and therefore is monotonic. Note that in a cc-
confluence, each vertex appears in only one such connected components and we
may as well replace m by one of its vertex s in our definitions.

Whenever we have pm ◦ extA(q) ⊆ pm ◦ extA(w) we rewrite this as the local
implication �A

mq → �A
mw stating that if q has a local support set containing m,

then w has a larger than or equal to local support set. Because of monoticity of
pm, again validity of implications is preserved:

Lemma 2. Let F be a confluence of an abstraction A, q and w two patterns,
then �Aq → �Aw ⇒ �A

mq → �A
mw

When considering a given abstract closed pattern c which has a local support
set e in F that contains m, and whose corresponding local closed pattern is l, we
have then that the implication rule �A

mc → �A
ml holds. The set {�Ac → �Al |

l a local closed pattern, c an abstract closed pattern, c �= l, extAm(c) = extAm(l)}
represents (a basis for) the local knowledge deriving from the reduction of the
extensional space from A to the confluence F .

Example 4. Still considering the attributed graph G and triangle abstraction of
Examples 1 and 2, we consider the cc-confluence F of vertex subsets inducing
connected subgraphs of G made of triangles. We have extA(b) = {1, 2, 3, 6, 7, 8}
that induces a subgraph made of two connected components {1, 2, 3} and
{6, 7, 8}. The corresponding local closed patterns are int({1, 2, 3}) = ab and
int({6, 7, 8}) = bc. As b = int({1, 2, 3, 6, 7, 8}, b is an abstract closed pat-
tern and we have the following local implications: �{1,2,3}

A b → �{1,2,3}
A ab and

�{6,7,8}
A b → �{6,7,8}

A bc we may rewrite, since A is a cc-confluence, as, for instance:
�1

Ab → �1
Aab and �6

Ab → �6
Abc.
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4.2 Measuring Direct Local Knowledge

To measure how much a local closed pattern is specific to the associated con-
nected component, and in the same way as in the abstract case where we con-
sidered the ratio between the abstract and standard support sets, we are here
interested in the ratio between the local and the global (standard or abstract)
support set:

Definition 3. Let q be a pattern, F an extensional confluence of some abstrac-
tion A of 2O, and m ∈ F such that m ⊆ extA(q), the specificity of q in the
vicinity of m is defined as:

sF (q,m) =
| extAm(q) |
| extA(q) |

In the same way as in the abstract implication case, we measure informativity
of a local rule with respect to the corresponding global rule. The idea here is
that in a valid local implication the patterns left and (left+)right have same local
support set while their global support sets are different. Again informativity is
defined as the inverse of the (abstract) confidence.

Definition 4. Let q be a pattern, F an extensional confluence of some abstrac-
tion A of 2O, and m ∈ F such that m ⊆ extA(q), the informativity of the valid
local rule r : �A

mq → �A
mw is defined as:

IF (r) =
| extA(q) |

| extA(qw) |
Intuitively, informativity measures what we have learned when discovering

that q and qw had same local support sets with respect to m while they had
different abstract support set. Considering a local implication rule r : �A

mc →
�A

ml we are interested in the specifcity sF (l,m) of the local closed pattern l and
in the informativity IF (r) = |extA(c)|

|extA(l| of the rule.

Example 5. Always following Examples 1,2,3 and 4, we obtain bc local specificity
w.r.t. triangle {6, 7, 8}, sF (bc, {6, 7, 8}) = 3 ÷ 3 = 1, i.e. pattern bc is specific of
the local support set {1, 2, 3}. Furthermore, implication �{6,7,8}

A b → �{6,7,8}
A bc

has informativity 6÷3 = 2, i.e. in the abstract extensional space A �Ab → �Abc
has confidence 0.5 while the implication holds at the local level.

4.3 Indirect Local Knowledge and Associated Measures

Local knowledge is related above to a notion of locality in a graph expressed
through a confluence structure of the vertex space. This is mainly illustrated on
the idea that the subgraph induced by the (abstract) support set of some pattern
is made of several connected components, and that there may be specific patterns
associated to each connected component. However, we are also interested in
locality notions closer to the notion of community in Social Network Analysis.
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A well known example of community definition is the k-clique community [5]
which is defined as a maximal vertex subset made of adjacent (i.e. sharing k− 1
vertices) k-cliques. Such a k-clique community may alternatively be defined as a
connected component of a graph whose vertices are k-cliques and edges relate two
adjacent k-cliques. What we discuss, more generally, in this section is a way to
define local knowledge associated to subgraphs which are connected components
of a derived graph made of particular vertex subsets, as k-cliques in the k-clique
community case. This local knowledge, stated as indirect, is obtained by using
the methodology described in Sect. 4 on the derived graph.

We start from a family T of elements of 2O, and consider T as the vertex
set of a new graph GT = (T,ET ). We consider then a confluence F of 2T as the
extensional space and search for the corresponding local closed patterns. The
corresponding local support sets are afterwards transformed into support sets in
2O: when considering a (local support set, local closed pattern) pair (eT , l) we
may transform it into the pair (e, l) where e is the union of the elements of eT .
Let T ⊆ 2O, and u : 2T → 2O be such that u(eT ) = ∪t∈eT t. u(eT ) is called the
flattening of eT . We consider then two maps extT and intT relating L to 2T :

– extT : L → 2T with extT (q) = {t|t ⊆ ext(q)}
– intT : 2T → L with intT (eT ) = int ◦ u(eT )

extT (q) represents the support set of q in 2T when considering that q occurs
in t whenever q occurs in all elements of t. Conversely intT (eT ) represents the
greatest pattern in L whose support set in T includes eT , i.e. whose support set
in O contains, as subsets, the elements of eT . We have then the following result
when flattening the (local ) support sets so found in F :

Proposition 1. Let F be a confluence of 2T, u be the flattening operator on
O and (eT , l) be a (local support set, local closed pattern) pair with eT ≥ m ∈
min[F ], then u(eT ) is the greatest element of u[Fm] among elements e such that
int(e) = l.

This means that the support closed patterns with respect to the confluence F
are the same as the support closed patterns with respect to the extensional space
U = u[F ]. Note that as flattened support sets are obtained by joining elements
of T , they belong to the abstraction A = UnionClosure(T ).1

This will be illustrated by considering T as the set of 3-cliques of G (further
called triangles) and stating that (t1, t2) belongs to GT whenever t1 and t2 share
an edge in G. In this case, a flattened local support set of pattern q represents
a triangle community in the pattern q subgraph G(ext(q)). An example of both
graphs G and GT is displayed Fig. 2.

It is then natural to extend the definition of specifity to make it relative to
the flattened support sets:
1 defined by (i) T ⊆ UnionClosure(T ) and (ii) if q and w belong to UnionClosure(T )
then q ∪ w belongs to UnionClosure(T ). By considering any subset T ⊆ 2O and
closing it under union we obtain an abstraction of 2O [10].
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Fig. 2. On the left we have a graph of objects each described as an itemset included
in {a, b, c}. This graph represents the triangle abstraction of some input graph. On
the right, the graph GT whose vertices are the triangles of G. The itemset describ-
ing a vertex in GT is the intersection of the itemsets describing the elements of the
corresponding triangle in G.

Definition 5. Let q be a pattern, F an extensional confluence of 2T where T ⊆
2O, A is the abstraction generated from T and m ∈ F such that m ⊆ extT (q),
the flattened specificity of q in the vicinity of m is defined as:

sfF (q,m) =
| u ◦ pm ◦ extT (q) |

| u ◦ extT (q) | =
| u ◦ pm ◦ extT (q) |

| extA(q) |
Coming back to the example of triangles communities, sF (q,m) states to

what extent a pattern q is specific to the community containing a particular
triangle m with respect to its abstract support set in O when considering only
triangles.

From Sect. 4.1 we know that we may rewrite pm ◦ extT (q) ⊆ pm ◦ extT (w) as
a local implication �mq → �mw. As the flattening operator is monotonic when
the rule �mq → �mw is valid on the set T , we also have u◦pm◦extT (q) ⊆ u◦pm◦
extT (w). We may then define the flattened informativity of r = �mq → �mw as

IfF (r) =
| u ◦ extT (q) |

| u ◦ extT (qw) | =
| extA(q) |

| extA(qw) |
Let us consider a (flattened local support set, local closed pattern) pair (e, l),

where e is a community containing a given triangle m, l the corresponding local
closed pattern, and c an abstract closed pattern whose support set in G induces a
subgraph in which e forms a triangle community. This means that �mc → �ml
is a valid local implication rule stating that when we consider the subgraph
induced by the support set of c, all the members of the community containing
the triangle m also has pattern l (see Fig. 3). The set of such �mc → �ml local
implications, with c �= l, represents (a basis for) the local knowledge deriving
from the reduction of the extensional space to triangle communities.

Example 6. Let G = (O,E) be the graph displayed on the left part of Fig. 2.
Each vertex of G belongs to some triangle in G, therefore G is the same as
its triangle abstraction. Each vertex has an itemset included in {a, b, c} as a
label. The set of triangles is T = {t0, t1, t2, t3, t4, t5, t6, t7} and forms a trian-
gle graph GT displayed on the right part of Fig. 2. An edge relates any pair
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of triangles sharing two vertices in G, as for instance (t0, t1). Each triangle in
GT has as its itemset the intersection of the itemsets of its three vertices in
G. For instance, the description of t1 in GT is ac = abc ∩ ac ∩ ac. The ver-
tex subsets inducing connected subgraphs of GT form the cc-confluence FT =
{{t0}, {t1}, {t0, t1}, {t2}, {t3}, {t2, t3}, {t4}, {t5}, {t4, t5}, {t6}, {t7}, {t6, t7}}.

The support set of the pattern a is ext(a) = {t0, t1, t2, t3, t6, t7}. The local
support with respect to t0 is pt0({t0, t1, t2, t3, t6, t7}) = {t0, t1}, i.e. the connected
component containing {t0} of the subgraph induced by ext(a). The local closed
patterns, where fi(q) denotes a closed pattern which is local w.r.t. triangle ti,
are as follows:

– f0(a) = f1(a) = ac, f2(a) = f3(a) = ab, f6(a) = f7(a) = ab

In the same way, the pattern b whose support set is ext(b) = {t2, t3, t4, t5, t6,
t7}. leads to the following local closed patterns:

– f2(b) = f3(b) = ab, f4(b) = f5(b) = bc, f6(b) = f7(b) = ab

Note that ab appears both as a local closed pattern resulting from a with
respect to f0, f1 and to f6, f7 and as a local closed pattern resulting from b with
respect to f2, f3 and again to f6, f7. This leads to three different sets of local
implications:

– �t2a → �t2ab, �t3a → �t3ab, �t6a → �t6ab, �t7a → �t7ab,
– �t2b → �t2ab, �t3b → �t3ab, �t6b → �t6ab, �t7b → �t7ab,

As a whole, a local closed pattern is part of a pair (eT , l) where l is the local
closed pattern and eT is a local support set corresponding to one of the con-
nected components induced by the support set. Two examples of such pairs are
({t2, t3}, ab) and ({t6, t7}, ab). When interested in implication rules, we have to
consider triples (c, ti, l) where c is a pattern whose support set is split in different
local support sets one of which, namely e, contains ti. ��
Example 7. The dataset is denoted as s50-1 and is a standard attributed graph
dataset.2 It represents 148 friendship relations between 50 pupils of a school in
the West of Scotland, and labels concern the substance use (tobacco, cannabis
and alcohol) and sporting activity (see [9]). We want to answer to the ques-
tion:”what knowledge can be extracted when considering groups of pupils con-
nected by friendship relationships?”. For that purpose, we computed the local
abstract closures associated to the cc-confluence representing 3-clique commu-
nities in subgraphs of the triangle graph GT derived from the original graph
and the ”support≥ 4” constraint on O. In Fig. 3 we represent the flattened local
support set e of the local closed pattern l shared in a community (in black
lines and dots) of the subgraph induced by the abstract support set of l (in
black+grey lines and dots) (w.r.t. the 3-clique abstraction). We also represent
(in dashed+ black + grey lines and dots) the abstract support set of the abstract

2 http://www.stats.ox.ac.uk/∼snijders/siena/s50 data.htm.

http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
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Fig. 3. Representation of a local rule �mc → �ml extracted from a West of Scotland
school friendship network. c is the abstract closed pattern shared by the friendship
triangles displayed in black+ grey+ dashed lines and dots. l is a local closed pattern
specific to the 3-community, to which the triangle m belongs, represented in black lines
and dots. This local closed pattern is shared by all the friendship triangles displayed
in black+grey lines and dots.

closed pattern c that also induces a subgraph in which e is a connected compo-
nent. Overall �mc → �ml is a valid local implication rule whose informativity is
IfF (r) = |extA(c)|

|extA(l| = (5 + 9 + 4)÷(5 + 9) = 1.286. The specificity sfF (r) of the local
closed pattern l is 5 ÷ (5 + 9) = 0.357. Here l means “Never has tried Cannabis,
drinks moderately, does not smoke“while c means” Has tried Cannabis at most
once, drinks moderately, does not smoke”. The specificity of the 3-community,
with respect to the whole set of pupils sharing ”Have tried Cannabis at most
once, drink moderately, does not smoke“ is to be composed only of pupils who
have never tried Cannabis.

5 Conclusion

We have discussed here a framework extending the closed itemset mining frame-
work to abstract and local information in an attributed network. Our focus in
this article was on the abstract and local knowledge to be extracted as abstract
and local rules, together with measures about how specific and informative is
abstraction or locality.
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