Linear Storage and Potentially Constant Time
Hierarchical Clustering Using the Baire Metric
and Random Spanning Paths

Fionn Murtagh and Pedro Contreras

Abstract We study how random projections can be used with large data sets in
order (1) to cluster the data using a fast, binning approach which is characterized in
terms of direct inducing of a hierarchy through use of the Baire metric; and (2) based
on clusters found, selecting subsets of the original data for further analysis. In this
work, we focus on random projection that is used for processing high dimensional
data. A random projection, outputting a random permutation of the observation
set, provides a random spanning path. We show how a spanning path relates to
contiguity- or adjacency-constrained clustering. We study performance properties of
hierarchical clustering constructed from random spanning paths, and we introduce
a novel visualization of the results.

1 Introduction

In our current era of Big Data, and given the central importance of hierarchical clus-
tering for so many application domains, there is a need to improve computationally
on standard quadratic time algorithms (i.e. O(nz) for n observation vectors, see,
e.g., Murtagh 1985). In Murtagh (2004), we even discuss constant time hierarchical
clustering, which presupposes that our data is, naturally or otherwise, embedded
in an ultrametric topological space. In this article, we take further our work in
Contreras and Murtagh (2012) and Murtagh et al. (2008). In those works, we
demonstrated the effectiveness of linear computational time hierarchical clustering,
using a range of examples, including from astronomy and chemistry.
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In particular we focus on very high dimensional data. We have demonstrated
in many clustering case studies that random projection can work very well
indeed. Random projection is a first stage of the processing, which allows both
computationally efficient and demonstrably effective hierarchical clustering, using
the Baire metric (Murtagh et al. 2008; Contreras and Murtagh 2012). The Baire
metric is simultaneously an ultrametric. In this article, we further develop the theory
and the practice of random projection in very high dimensional spaces. We are
seeking a computationally efficient clustering method for massive (large n, number
of rows), very high dimensional, very sparse data. Massive high dimensional data
are typically sparse (i.e. containing many non-presence or 0 terms).

To help the reader to reproduce our results, some ancillary material, including R
code, is available at http://www.multiresolutions.com/HiCIBaireRanSpanPaths

2 Data

We present our methodology using a case study. We used the textual content of
34,352 research funding proposals, that were submitted to, and evaluated by, a
research funding agency in the years 2012-2013. We refer to these proposals as
proposals or documents. Because it permits search, and basic clustering, we used the
Apache Solr software (Solr 2013), which is based on the Apache Lucene indexing
software. Clustering in Solr is nearest neighbour-based, and is termed MLT, “more
like this”. Similarity scores between pairs of documents, based on textual content,
are produced. Murtagh (2013) provides a short description of the MLT similarity.
(Murtagh 2013, is available with this article’s ancillary material.) Our documents
were indexed by Solr, and MLT similarity coefficients were generated for the top
100 matching proposals. A selection of 10,317 of these proposals constituted the set
that was studied. Our major aim in this work was prototyping our approach, based
on the results provided by Solr. The R sparse matrix format (Matrix Market 2013)
was used for subsequent R processing. The maximum MLT score (i.e. similarity
coefficient value) was 3.218811. In matrix terms, we have 10,317 proposals (rows)
crossed by 34,352 proposals (columns). Non-zero values accounted for 0.2854 % of
the elements of this matrix.

Figure 1 serves to describe the properties of this data: a somewhat skewed
Gaussian marginal distribution for the proposals, and a power law for the similar
or matching MLT proposals. In Murtagh et al. (2008), we also find such Gaussian
and power law behaviour for high dimensional chemical data.

In this article, we will seek to cluster the 10,317 proposals, using their similarities
with the fuller set of 34,352 proposals as features. Justification for this feature space
perspective, rather than directly using the MLT similarities, is that MLT similarities
are asymmetric.
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Fig. 1 Marginal distributions by row and by column. Numbers of rows, columns: 10,317, 34,352

3 Random Projection and Use for Clustering

For a discussion of random projections used for clustering, and also description and
use of the Baire distance, see Contreras and Murtagh (2012). See also Sect. 4 below.
Given our input data, i.e. a cloud of points in k-dimensional space, conventional
random projection uses a random valued linear mapping in order to yield a much
reduced dimensionality space: f : R¥ — R’ where £ < k. In our approach we
are not seeking to use this £-dimensional subspace, but rather we take a consensus
ranked set of positions from the values of points on the ¢ axes. For this, we use
a set of £ random projections, each onto a one-dimensional subspace. Therefore
we consider £ random axes. The theory underpinning this, relative to conventional
(Kaski 1998) random projection, is provided in Murtagh and Contreras (2015).

To deal with variability of outcomes in random projections used for clustering,
Fern and Brodley (2003) project to a random subspace, apply a Gaussian mixture
model, using expectation maximization, then an ensemble-based data aggregation
matrix collects interrelationship information, which is submitted to an agglomera-
tive hierarchical clustering. In Boutsidis et al. (2010), a random projection subspace
is Shown to provide bounds on k-means clustering properties. The objective in Kaski
(1998) is to determine the subspace of best metric fit to the original space.

For Urruty et al. (2007): “We begin by clustering the points of each of the selected
uni-dimensional projections.” And: “in the second phase we refine the clustering
by using two processes: bimodulation and cluster expansion.” (The former term
introduced by those authors is for cluster specification using multiple random
projections; and the latter term used by those authors uses hyper-rectangles to find
the largest density cluster.) In this article, we develop in particular the early phase of
clustering on uni-dimensional projections, and we relate such clustering to the Baire
hierarchical clustering. Our objective is to develop a fast multiresolution hashing
approach to clustering, rather than the optimal fit of proximity relations in R,
relative to proximity relations in R¥.
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4 Baire Clustering of a Random Spanning Path

4.1 Random Spanning Paths

Consider a random projection into a one-dimensional subspace, i.e. onto a random
axis, of our set of documents. Such a random projection defines a permutation
of the object set. It thereby defines a random spanning path. Spanning paths are
useful and beneficial for data analysis. An optimal (i.e. minimum summed weight)
spanning path has been used as an alternative to a minimal spanning tree (Murtagh
1985, ch. 4). The spanning path is the solution of the travelling salesman problem
(Murtagh 1985, ch. 1). Braunstein et al. (2007) consider bounds for random path
lengths relative to the optimal path length in the case of Erd6s—Rényi and scale-free
networks.

4.2 Inducing a Hierarchy through Endowing the Data
with the Baire Metric

Our algorithm is as follows. Determine a random projection of our data. Induce
a Baire hierarchy, using a regular 10-way tree. At level 1, the clusters will be
labelled by O, 1, 2, ...9. At level 2, the labelling is 00, 01, ...99. Full details of
the Baire metric, and ultrametric, that endows the data with a hierarchy, is described
in Contreras and Murtagh (2012). Our data values are univariate. Without loss of
generality, take our values as being bounded by 0 and 1. An immediate consequence
of the Baire metric is that, at level 1, all values that start with 0.3 will be in the same
cluster; as will all values that start with 0.4; and so on for the 10 clusters at level 1.
The Baire metric is a longest common prefix metric.

A random projection onto a one-dimensional axis provides a view of the
relationships in the data, and hence a view of the clustering properties. See Contreras
and Murtagh (2012). The random projected values are found to be quite similar in
their interrelationships for different random vectors. We demonstrate this below.
We determine the consensus or majority set of neighbourhood relationships from a
sufficiently large set of random projections.

Now consider a given random projection. We determine a partition into clusters
of the observables, following projection onto the random vector. A set of partitions
can be sought, with their clusters ordered by inclusion.

Traditional approaches to clustering use pairwise dissimilarities, between adja-
cent clusters of points. (In partitioning, k-means takes a set of cluster centres and
stepwise refines this set of cluster centres, together with their cluster assignments.
Hierarchical clustering determines, stepwise, the smallest set of dissimilarities and
agglomerates the associated pair of clusters.)

A direct reading of a partition is the alternative pursued here. Let the distance
defined between adjacent clusters be a p-adic or m-adic distance (where typically
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p refers to a prime number, and m refers to a non-prime integer). We define a cluster
by an m-adic ball: U,(a) = {x : |[x—al,, < r}. A Baire distance is associated with an
ultrametric (a distance defined on a tree, rather than the real number line). Balls are
either disjoint or are ordered by inclusion. It follows that for given r a partition is
defined. For a set of values of r the set of associated partitions have clusters that are
hierarchically structured, i.e. the associated set of clusters is a partially ordered set.

To address variability in results furnished by different random projections, we
adopt the following approach: first, determine a stable, mean random projection.
Then use it as the basis for a Baire clustering.

Parenthetically, let us address a comment sometimes made in regard to the m-adic
distance used by us here. (We use m = 10; p-adic distances, where p is a prime, lead
to an alternative to the real number system.) Consider two real measurements with
values 2.99999. .. and 3.0000. ... These would be mapped onto different clusters
in our approach. The following remark is however an appropriate one here: “two
points on a complex protein may be close in Euclidean space but distant in terms
of chemical reaction propensity” (Manton et al. 2008, pp. 81-82). In other words, if
our digits have some form of inherent meaning, then it may well be fully appropriate
to consider very similar real values to be quite separate and distinct.

4.3 Stability of Random Spanning Path

In Fig. 2 we assess the convergence, based on the first random projection, and
the successive means of 2, 3, 4, ..., 98 random projections. The squared error is
between the mean of these random projections, each normalized by its maximum
value, and the mean of the 99 random projections, also normalized. We note the
fast and stable (although not uniform) convergence. (The R code carrying out this
processing is available on the web site containing our ancillary material.)
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Fig. 2 Squared error of the mean of 1, 2, 3, ..., 98 random projections, relative to the mean of 99
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4.4 Random Spanning Paths are Highly Correlated

In the case of random projection sets (mean of 99 realizations, sorted), for
reproducibility we set the initialization seeds. For seeds 1471 and 3189, we had
a correlation coefficient of 0.9999919.

Another random projection set (mean of 99 realizations, sorted) was generated
with seed 7448. The correlations with the first two random projections were
0.9999937 and 0.9999905.

A further random projection was generated (seed 8914), and correlations with
the first three sets were: 0.9999933,0.9999898, 0.9999933. We conclude that using
a given random projection set, in our work here resulting from 99 realizations, this
is a fully sufficient basis for further cluster analysis.

In Murtagh and Contreras (2015) we consider theoretical properties of one-
dimensional random projection in very high dimensional spaces.

5 Applying the Baire Distance to Obtain the Hierarchical
Clustering

5.1 The Baire Metric and Ultrametric

As we have noted, the Baire distance is a longest common prefix distance which is
also an ultrametric, or distance defined on a tree. In a given random projection, we
can read off clusters using their Baire distance properties. Consider four adjacent,
in rank order, projected values: 3.493297, 3.493731, 3.499185, 3.499410. The
maximum value found for this particular random vector was 35.21912. We fix, in
this instance, the projected values to be 8 digit values (viz., 2 digits in the integer
part, and 6 digits in the fractional part, with zero padding if necessary). We define
the Baire distance, with base 10, as 10 to the negative power of the last common,
shared, digit.

The first two of our projected values above have Baire distance equal to 10~
(because they share these digits: 3.493). The second two of our projected values
above have Baire distance equal to 10~*. The Baire distance between the second
and third of our projected values above is 1073, The first and the fourth of our
projected values have this same Baire distance, 1073,

Having defined the Baire distance between projected values, we next consider
the Baire distance between clusters of projected values. Consistent with our
consideration of adjacency of projected values, a cluster is a segment or succession
of adjacent values. A singleton cluster is a single projected value. By considering the
agglomeration of adjacent values 3.493297, 3.493731 at Baire distance 10~*, and
furthermore the adjacent values 3.499185, 3.499410 also at Baire distance 1074, we
have the agglomeration of these two clusters, or segments, at Baire distance 1073,
since the digits 3.49 are shared.
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Computational analysis is as follows. For a random projection, we have the
product of a (sparse) k x £ matrix and a vector. Before taking sparsity into account,
this gives O(k{) time. The mean of a fixed number of random projections requires
O(k) time. The potentially linear Baire distance clustering comes from reading the
mean random projection values, with assignment of each in turn to cluster nodes
in the Baire hierarchy. In this way, a linked list of cluster (or node in the Baire
hierarchy) members is built up.

5.2 A Theorem Ensuing from the Baire Ultrametric

The agglomeration of clusters takes a cluster or segment of ordered values
(X1 - - - Xpj) to be agglomerated with a cluster of ordered values (y . . . yh;)- Based
on adjacency in the clustering of random projections, and our definition of Baire
distance between clusters, we have the following, where dp is the Baire distance:
dg(X10: Yhi) = db(xhi: Yio)-

If the two adjacent clusters are labelled c, and cy, then max{dg(i.j) | i € cy,j €
¢y} = dp(X]g, ypi)- Call this Baire distance dmax (cx, ¢y). Similarly, min{dg (i, j) | i €
cx.j € ¢y} = dp(xpi,y1o)- Call this Baire distance dyyi,(cx, ¢y). What we availed
of here was: x|y < Xpj < Y]o < Yhi- From the foregoing description, the following
theorem holds.

Theorem for Baire distance, d: dy,j,(cx.cy) = dmax(cx, ¢y) for all contiguous
clusters, cy, cy.

To show this, we start with singleton clusters, and the definition of the Baire
distance, d. Following cluster formation, the cardinalities of the clusters will grow.
By induction this theorem is extended to clusters c, ¢, of any cardinality. A simple
example ensues from the 4 points, together with their projected values, that were
discussed above in Sect. 5.1. Given the terms “single link” and “complete link”, as
used in traditional hierarchical clustering, this theorem establishes that single and
complete link agglomerative criteria are identical. This finding is consistent with
having endowed our data not just with a metric, but with an ultrametric.

It has been noted how a random projection on a one-dimensional subspace is a
random spanning path. This also establishes a contiguity or adjacency relationship
between all points that we are analysing. So our hierarchical clustering can also be
considered as a contiguity-constrained hierarchical clustering.

In Murtagh (1985) two contiguity-constrained hierarchical clustering algorithms
were discussed. Proofs were provided that both would guarantee that no inversions
could arise in the hierarchy, that is, there could be no non-monotonic change in
cluster criterion value. One algorithm, also developed by other authors, Ferligoj
and Batagelj (1982) and Legendre and Legendre (2012), was contiguity constrained
complete link clustering: the pairwise most distant set of (by requirement, con-
tiguous) cluster members determines the inter-cluster dissimilarity: dmax(cx. xy).
The other contiguity-constrained hierarchical clustering was single link, where
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inter-cluster dissimilarity is defined as the pairwise closest set of cluster members
(min{dj|i € c1,j € c2}), subject to the contiguity constraint.

By virtue of the theorem above, for all adjacent and agglomerable clusters cy, c,,
dpin(cx. ¢y) = dmax(cx, ¢y), we also have that the above described contiguity-
constrained complete link and the contiguity-constrained single link hierarchical
clustering methods are identical. This holds because of the Baire distance.

These perspectives add to the importance, in practice and in its theoretical
foundations, of the theorem for the Baire distance.

5.3 Visualization of Baire Hierarchy

Using a regular 10-way tree, Fig. 3 shows a Baire hierarchy with nodes colour-
coded (rainbow colour lookup table used), and with the root (a single colour, were
it shown), comprising all clusters, to the bottom. The terminals of the 8-level tree
are at the top. Ancillary material for this article, as noted in the “Introduction”, is
available. The R code used for Fig. 3 is listed there, and the code for the subsequent
analysis of clusters extracted from the hierarchy.

The first Baire layer of clusters, displayed as the bottom level in Fig. 3, was
found to have 10 clusters. (8 are very evident, visually.) The next Baire layer has 87
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Fig. 3 Means of 99 random projections. Abscissa: the 10,118 (non-empty) documents are sorted
(by random projection value). Ordinate: each of 8 digits comprising random projection values
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clusters, and the third Baire layer has 671 clusters. See our ancillary material for a
study of the clusters at layers 1 and 2.

6 Conclusions

In Contreras and Murtagh (2012), there is reporting on analysis of clusters found
using the methodology developed here (in application domains that include astron-
omy and chemistry) and there is comparison with other, alternative processing
approaches.

We can state that our work is oriented towards inter-cluster analysis, rather than
intra-cluster analysis. That is to say, we want candidate observation classes, and
furthermore we seek to be selective about what we derive from the data, in order
to carry on to further use of the selected, derived clusters. Such overall processing
is very suitable for big data analytics. The theorem stated in Sect. 5.2 points to the
major importance of the Baire viewpoint. Further theoretical results are presented
in Murtagh and Contreras (2015).
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