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Matthias Eckardt

Abstract Graphical models provide a suitable approach of dealing with uncertainty
and complexity by using conditional independence statements and factorizations of
joint densities. Static undirected as well as directed graphical models have been
applied frequently to pattern analysis, decision modelling, machine learning or
image filtering. Several temporal extensions have been published including dynamic
Bayesian networks or temporal Markov random fields. Although, graphical models
are most commonly used within computer science there has been a growing interest
in adjacent disciplines. Recently, a few temporal extensions have been applied to
multivariate time series data and event histories.

1 Introduction

Statistical models for the analysis of highly complex data and processes have gained
strong attraction within the last decade. Graphical models have been proven to be a
sufficient approach of dealing with high dimensionality and uncertainty. A reduction
of complexity is achieved by using factorizations of joint densities. Plotting the
graph offers a simple and intuitive visualization of the underlying dependence
structure. Besides, several statistical models can be seen as special cases of a general
graphical model formalism (e.g. mixture models, factor analysis).

Most research on graphical models have focussed on cross-sectional data,
henceforth referred to as static graphical models. As most prominent cases, this class
includes directed acyclic graphs (also known as Bayesian networks) introduced by
Pearl (1988) as well as undirected graphical models, which are also labelled as
conditional independence graphs or Markov random fields (cf. Lauritzen 1996).
Applications of static models can be found in different scientific fields including
machine learning, decision modelling, artificial intelligence or image analysis.
Markov random fields have played a prominent role in spatial econometrics and
spatial statistics with regard to lattice data. Currently, a strong increase of interest
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in resp. usage of (social) network analysis emerged in economics as well as risk
assessment or natural sciences. A profound treatment of static graphical models
is presented in Lauritzen (1996), Cowell et al. (1999), Edwards (2000), Cox and
Wermuth (1996), Pearl (1988), Spirtes (2000), Whittacker (2008) and Koller and
Friedman (2010).

Recently, several extensions have been introduced aiming to model temporal
dynamics and changing dependence structures including time series data as well
as event histories. The objective of this paper is to review these extensions.

2 Graph Theoretic Preliminaries

Let Y = (7,&) denote a graph with ¥ = {vy,..., v} as finite set of vertices
and & C ¥ x V¥ as set of edges—joining the vertices where &(¥) N ¥ (¥4) = 0.
Two vertices v;, v; are called adjacent if and only if (v, v;)) € &(¥). Otherwise,
v;, v; are non-adjacent. If an edge e; consists of a pair of identical nodes (v;, v;) we
refer to e; as a loop of ¢. Furthermore, if a distinct pair (v;, v;) is joined by more
than one edge, we label this multiple edges or parallel edges. In order to emphasize
graphs containing multiple edges we term any such graph multigraph. Similarly, a
graph is simple if it is not a multigraph. An undirected or unoriented edge exists if
the pairs (v;, v;) and (v}, v;) are both in the edge set &(¥) given v; # v;. We use
v; ~ v; to indicate undirected edges. To specify adjacency in case of undirected
edges we define the neighbourhood as ne (vj) = {v; : v; ~ v;}. If all edges in &(¥)
are undirected ¢ is an undirected graph. In contrast, an edge is called directed or
oriented if the ordered pair (v;, vj) € &(¥), v; # v;. Thus, only (v;,v;) € &(¥)
while (vj,v;) ¢ &(¥). Directed edges are also referred to as arcs and we write
v; —> v; if there is a directed edge from v; to v;. Formally, for v; # v; we define
pa(v)) = {v; : v; —> v;} as the parents. In addition, if v; — v; we call {v;}
children of v; and define ch(v;) = {v; : v; — v;} (see Kolaczyk 2009; Bondy
and Murty 2008). Additionally, let co-pa(v;) = {v; : ch(v;) N ch(v;) # @} be the
co-parents of v;. Hence, if co-pa(v;) = vj it follows that v; and v; share a common
child whereas v; and v; have not necessarily to be joined by an edge. Consequently, a
directed graph or digraph is a graph exclusively build on directed edges. A detailed
discussion on digraphs is given in Bang-Jensen (2001). In addition, a multiple
digraph is a multiple graph exclusively build on directed edges. Following Kolaczyk
(2009), mutual edges are directed parallel edges with diametrically direction (e. g.
if v; — v; and v; — v; are in £(¥)) whereas multi-arcs are multiple edges with
identical orientation.

Let (vo, e1, V1, €2, ..., Vi1, €, V) be a sequence of vertices and edges of & with
endpoints vy and v such that V ¢;, 1 < i < k the pair v,—; and v; is joined by e;.
We call this sequence wy, of potentially repeating pairs of vertices a walk of length
kin ¢ . If a walk passes through every node of a sequence exactly once we label this
as a path. A path with identical endpoints is a cycle and a cycle of length one is a
loop. Thus, a directed acyclic graph is a digraph without any directed cycles which
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is linked to undirected graphs by an operation termed moralization. In a first step an
undirected edge is inserted joining every co-parents in ¢. Hereafter, every directed
edge in ¢ is substituted by an undirected edge.

A graph build on directed as well as undirected edges is called a mixed graph. As
a special case hereof, a chain graph is a simple mixed graph without any partially
directed cycle where ¥ (%) is partitioned into k blocks %) such that ¥ (¥) = %, U
%’ZU...U%’;(_1 U%kand

1. v — v;ifand only if v; € %; and v; € %, i < j
2. v; ~ vjif and only if v; € %; and v; € ;.

Hence, undirected and directed acyclic graphs are special cases of chain graphs.

3 Causality in Graphical Models

Graphical models relate conditional independence statements among random vari-
ables of a multivariate probability distribution to graphs such that the nodes
represent random variables and edges encode the dependence structure. Recently,
these models have been extended to the time domain based on different definitions of
causality. Eichler (2013), Didelez (2011) as well as Eichler and Didelez (2010) have
discussed alternative formulations including Granger causality, Sims causality,
local dependence and causality in terms of interventions. Hereof, Granger causality
and local dependence have been most prominent with regard to graphical models. As
shown in Florens and Fougere (1996) local dependence can be seen as a continuous
time version of Granger causality.

Definition 1 (Granger Causality). Let {X(z)} and {Y(¢)} be stochastic processes
on (2, .%#,IP) where t € T C 7. Given {§2(¢)} as all information in the universe
{X(@®)} C {£2(r)} is causal with respect to {¥ ()} if the prediction is less precise
based on {£2(¢)}\{X(?)} (ct. Granger 1969; Liitkepohl 2005).

Different levels of Granger causal relations have been discussed in Florens and
Fougere (1996). Obviously, conditional on all information in the universe seems
impracticable and might be replaced by all available information with regard to a
vector valued process.

Local dependence has been introduced by Schweder (1970) who focussed on
transition intensities in discrete state-space Markov processes. As an extension
hereof, Aalen (1987) considered non-causality in continuous time restricted to
processes satisfying the Doob—Meyer decomposition.

Definition 2 (Local Independence). Let .%, denote the information which is
available at time t € T C R4+ = [0,00). Then, {Y(¢)} is locally independent of
{X (1)} given {Z(1)} if the compensator AY(¢) of {Y(f)} remains unchanged whether
conditional on 9‘,’9’2 or conditional on ﬁ,{z (ct. Schweder 1970; Aalen 1987,
Florens and Fougere 1996).
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4 Graphical Modelling of Temporal Processes

Several graphical models have been developed to approach temporal stochastic
processes either in the time as well as in the frequency domain. Misleadingly,
different models have been named identical. Generally, two different classes can
be differentiated with regard to the underlying definition of the nodes. Firstly, the
vertex set can encode random variables at different times. Secondly, the components
of a vector valued process can be represented by individual nodes which lead to a
coarser modelling of the graphical structure.

4.1 Time Series Data

Most of the research regarding graphical modelling of time series data focussed
on vector valued stationary processes in discrete time. Different approaches of
graphical modelling towards autoregressive processes are summarized in Songsiri
et al. (2010).

Static graphical models have been applied to time series data manifold. Chain
graph models in which time slices are represented by blocks have been discussed
in Lynggarrd and Walther (1993) and Dahlhaus and Eichler (2003). Furthermore,
Queen and Smith (1992) and Anacleto and Queen (2013) introduced a dynamic
chain graph model based on multivariate Bayesian dynamic models.

Extensions of directed acyclic graphs (so-called dynamic Bayesian networks)
have extensively been treated by Murphy (2002). Defined as a sequence of directed
acyclic graphs such that time is displayed in form of stacked time slices these models
include hidden Markov models and Kalman filters besides other latent state-space
models as special cases. An overview of different models belonging to this class of
graphs is given in Barber and Cemgil (2010). Anacleto et al. (2013a,b) extended the
multiregression dynamic model as introduced in Queen and Smith (1993) and used
directed acyclic graphs to analyse multivariate time series from traffic flows. These
graphs have been called Bayesian dynamic graphical models.

Several papers have focussed on structural vector autoregressive processes and
discussed the sufficiency of learning structural constraints from static graphical
models. Moneta (2008) proposed the usage of a structural learning algorithm with
regard to directed acyclic graphs in order to obtain the contemporaneous dependence
structure. Alternatively, Oxley et al. (2008), Meurk et al. (2007) as well as Penny
and Reale (2004) presented a two-step estimation procedure based on a novel graph
linkage called demoralization. Thereby, the optimal directed acyclic graph is chosen
from a list of suitable graphs obtained from an undirected graphical model by the
inverse moralization operation.

Additionally, sequences of undirected Gaussian graphical models arranged in
independent and identically distributed blocks have been used by Talih and Hen-
gartner (2005), Talih (2003) and Cai and Li (2012) to capture changing dependence
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structures of multivariate time series. Thus, a new block only emerges if a new edge
is included or excluded into &(¥) such that consecutive blocks contain different
graphs. Xuan and Murphy (2007) presented a similar approach. Gao and Tian (2010)
proposed a mixed graphical model called latent ancestral graph to model latent
variables in case of structural vector autoregressive processes.

A first approach focussing on graphical models related to components of vector
valued stationary time series in discrete time has been presented by Brillinger (1996)
in frequency domain. Dahlhaus (2000) introduced a refined version hereof called
partial correlation graph based on partial spectral coherence between components
of a multivariate time series. The resulting graph is a simple undirected graph in
which the nodes correspond to the components of a vector valued process. Partial
spectral coherence measures the dependence of two components after removing
linear time invariant effect of the remaining series (cf. Brillinger 1981). Thus, two
components are conditional orthogonal if the partial error processes are uncorrelated
after filtration. This is equivalent to conditional independence only in cases of
Gaussian time series. Efficiently, instead of computing the correlation between
partial error processes conditional orthogonality can equivalently be achieved from
the partial spectra coherence and similarly been read of zero entries of the inverse
spectral matrix. Partial correlation graphs have been applied in various fields by
Gather et al. (2002), Fried et al. (2004), Feiler et al. (2005) and Allali et al. (2008).
Avventi et al. (2013) discussed the usage of these graphs in case of autoregressive
moving average processes. Additionally, structural learning has been treated in Bach
and Jordan (2004).

Eichler (1999, 2012) has introduced a mixed graph called Granger causality
graph since it encodes Granger causal as well as contemporaneous relationships
between time series components. This graph has also been called dynamic chain
graph by Murphy (2002). Corander and Villani (2003, 2006) discussed Granger
causal graphs from a Bayesian perspective. Additionally, Marttinen and Corander
(2009) dealt with the task of Bayesian learning of such graphs. Application of
Granger causal graphs are presented in Wild et al. (2010), Allali et al. (2011) and
Arnold et al. (2007). Focussing on latent variables Eichler (2010) recently intro-
duced extended Granger causality graphs related to autoregressive moving average
processes which he called dynamic maximal anchestral graphs. In difference to
Granger causality graphs these graphs consist of one additional edge type.

4.2 Event History Data

Based on the concept of local dependence as described in Sect. 3 Didelez (2000)
introduced extensions of directed acyclic graphs with regard to counting processes
which she termed local dependence graphs. These models are defined in case
of marked point processes (Didelez 2008) as well as composable finite Markov
processes (Didelez 2007). Similarly, Gottard (2007) presented so-called graphical
duration models as extensions of chain graph models displaying marked point
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processes. Dreassi and Gottard (2007) dealt with Bayesian estimation of this
duration models. This graphs might also allow to model frailty terms besides the
hierarchical structures discussed in Gottard and Rampichini (2007). Additionally,
Fosen et al. (2006) derived dynamic path analysis models based upon Aalens
additive hazard model. A further discussion of these models is given in Aalen
et al. (2008), whereas the large sample properties are derived in Martinussen (2010).
Alternatively, dynamic Bayesian networks build on two time slices have been used
to model duration data. Confusingly, Donat et al. (2008, 2010) named these models
also graphical duration models.

Graphical modelling of counting processes in the frequency domain has been
described in Dahlhaus et al. (1997) and Eichler et al. (2003). In both papers partial
correlation graphs are used to model intensity functions.

4.3 Beyond Discrete Time

Besides discrete time a limited number of papers have been published with regard
to stochastic processes that evolve in continuous time. Shelton et al. (2010) and
Nodelman et al. (2002, 2003) introduced continuous time Bayesian networks
(CTBN). Alternatively, El-Hay et al. (2006) presented an extended version of
undirected graphical models which they called continuous time Markov network
(CTMN).

5 Discussion

This review has shown the state of the art and the great variety of graphical models in
the temporal domain. Mostly, they are closely related to classical graphical models
and satisfy the traditional Markov properties. The main difference between the
approaches arises with regard to the inherent definition of the nodes. Relating the
vertices to the components of a multivariate process leads to a coarser modelling of
the dependence structure. Oppositely, the dimension of the graphical model strongly
increases in case of temporally separated nodes as dim(¥) = N x T. This might
negatively impact the costs of estimation and computational efficiency, especially
in case of high dimensional data structures evolving in time. Contrary, parameter
as well as structural estimation can be built on already existing algorithms when
applying static models to time series data.

Additionally, Granger causality graphs are strongly effected by the choice of
the correct time intervals taking into account. Hence, larger intervals correspond to
marginalization over time and create additional correlation. Nonetheless, the graphs
are suitable models for structural learning in high dimensional time series and might
easily be extended to more complex dimensions. Furthermore, extensions to non-
linear relationships can be achieved conditioning on o-algebras.
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