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Abstract Multi-class learning requires a classifier to discriminate among a large set
of L classes in order to define a classification rule able to identify the correct class
for new observations. The resulting classification rule could not always be robust,
particularly when imbalanced classes are observed or the data size is not large.

In this paper a new approach is presented aimed at evaluating the reliability of
a classification rule. It uses a standard classifier but it evaluates the reliability of
the obtained classification rule by re-training the classifier on resampled versions of
the original data. User-defined misclassification costs are assigned to the obtained
confusion matrices and then used as inputs in a Beta regression model which
provides a cost-sensitive weighted classification index. The latter is used jointly
with another index measuring dissimilarity in distribution between observed classes
and predicted ones. Both indices are defined in Œ0; 1� so that their values can be
graphically represented in a Œ0; 1�2 space. The visual inspection of the points for
each classifier allows us to evaluate its reliability on the basis of the relationship
between the values of both indices obtained on the original data and on resampled
versions of it.

1 Introduction

In a classification problem it is common practice testing a wide variety of learning
algorithms by varying threshold values and by using different tuning parameters.
In that way different classifiers are obtained which can be compared in order
to evaluate their predictive ability, which is usually evaluated starting from the
confusion matrix. This is a contingency table in which each column represents the
observations in a predicted class, while each row represents those in an actual class.
Notationally, given a classification problem on L classes observed on n cases, let
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Q be a confusion matrix resulting from a classifier k. In this framework rows of Q
refer to the true classes, and columns of Q to the predicted ones. By checking rows,
the elements q`j indicate how many cases have been classified in each predicted
class Ò

j (j D 1; : : : ; L). By checking columns, the elements qi` indicate how many
cases of each predicted class have been classified as `i (i D 1; : : : ; L). Starting
from the confusion matrix Q several measures and approaches have been proposed
to evaluate classifier performance (accuracy, sensitivity, specificity, etc.). Likewise,
the confusion entropy index (Wei et al. 2010), the global performance index (Freitas
et al. 2007), the entropy of a confusion matrix (Van Son 1995), the transmitted
information of the classifier (Abramson 1963), and the relative classifier information
(Sindhwani et al. 2001) are all measures that have been defined in order to compare
classifiers performance on the basis of the misclassification cells obtained from
confusion matrices. Among all these measures, accuracy is the most known. It refers
to the proportion of true results (both true positives and true negatives) among the
total number of cases examined. This measure is very plain, overlooking a lot of
information about the costs of different elements of misclassification (Hand and
Till 2001).

The goal of this paper is to propose a new approach that enables us to compare
performances of several classifiers in the framework of multi-class learning (i.e.,
when a new observation has to be classified into one, and only one, of L non-
overlapping classes). The output is a bivariate classifier performance index obtained
from two different measures. The first one refers to a cost-sensitive weighted
classification accuracy index. The second one refers to an index measuring the
similarity in distribution between the n observations which have been classified
in one of the L classes by a classifier and the original distribution of the n cases
among the L classes. Both indices are defined in Œ0; 1� 2 R, so that a comparison of
different classifier performance can be represented in a Œ0; 1�2 space. Additionally,
introducing a measure which is not one-dimensional allows us to study the reliability
of each classifier by re-training the classifier on resampled versions of the original
data and computing the convex hull of the area obtained in the 2 dimensions in
which values of the bivariate classifier performance index are projected.

The rest of the paper is organized as follows. Section 2 presents the main features
of the proposed bivariate classifier performance index and describes the three steps
characterizing it, while Sect. 3 concentrates on reliability. Section 4 presents the
results of the performance of the proposed approach on real data and Sect. 5 ends
the paper with some concluding remarks.

2 The Bivariate Classifier Performance Index

The bivariate classifier performance index derives from a three steps procedure to
be carried out for each candidate classifier. They can be briefly identified with: (1)
the model-based measurement of classification accuracy; (2) the measurement of
the similarity in distribution between observed classes and predicted ones; (3) the
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visualization of the results of the previous steps in order to assess global classifier
performance.

2.1 Model-Based Measurement of Classification Accuracy

In this section, we present a model-based and cost-sensitive index for measuring
accuracy of a multi-class classifier. The basic idea is to use the cells of the observed
confusion matrix, i.e., the confusion matrix obtained from training a classifier on
the original data, within a regression model in order to derive the estimated cost-
sensitive classification accuracy. The regression model is firstly estimated using
data obtained from simulated confusion matrices which present the same marginal
frequencies of the observed confusion matrix but they refer to situations in which a
perfect or random classification is observed. Next, cells of the observed confusion
matrix are used together with the estimated regression parameters to derive the
value of the index. Let � 2 Œ0; 1� be a misclassification level, so that 1 � � is
the classification accuracy level. If K different classifiers are considered, K values
of � can be observed and those values, defined in Œ0; 1�, can be modeled on the basis
of other information related to each classifier. The model specified for � allows us to
assess classifier performance through a model-based classification accuracy index.

In a regression modeling framework characterized by a continuous response
variable Y defined in Œ0; 1�, data are usually transformed in order to map the
domain of Y in the real line and then a standard linear regression analysis
is applied. This approach has some shortcomings (see Cribari-Neto and Zeileis
2010), such as heteroskedasticity and difficulties in the interpretation of estimated
parameters, which are expressed in terms of the transformed variable instead of
the original one. Ferrari and Cribari-Neto (2004) proposed a regression model for
continuous variables that assumes values in Œ0; 1�, called Beta Regression Model.
The assumption of this model is that the response variable is beta-distributed,
Y � Beta.a; b/ with a; b > 0. The authors proposed a particular parameterization of
the beta density in order to obtain a regression structure for the mean of the response
along with a precision parameter. They showed that, through setting � D a=.a C b/

and � D a C b, it is possible to express expectation and variance of Y as E.Y/ D �

and VAR.Y/ D �.1 � �/=.1 C �/, respectively. The parameter � conveys a rate of
precision because for larger � VAR.Y/ decreases.

The Beta regression model introduced in Ferrari and Cribari-Neto (2004) is
applied in the framework of the present study in order to estimate � and, indirectly,
1 � � . Specifically, the goal is to estimate a Beta regression model using a large
number of simulated confusion matrices weighted by some proximity measures
and misclassification costs, in order to obtain estimated regression parameters and
associated � values. Weighting is very important in this framework, because it
conveys essential information to the model about the different importance attributed
to possible different misclassification levels. Once the model is estimated, it is
applied to the confusion matrix resulting from each classifier in order to estimate
a cost-sensitive (model-based) weighted classification index. For a classifier k (k D
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1; : : : ; K) and assuming �k � Beta.�k; �/, the Beta regression model is defined as

g.�k/ D
LX

iD1

LX

jD1

ˇijq
k
ijd.`i; `j/ D �k (1)

where d.`i; `j/ is a cost-weighted proximity measure as defined in Eq. (2), qk
ij is

the frequency of the cell of the i-th row and j-th column of the confusion matrix
resulting from the classifier k, and ˇij is the model coefficient that expresses the
contribution of qk

ij to global misclassification of classifier k. Finally, g.�/ is a link
function. In Eq. (1) the probit distribution is chosen for specifying the link function
g.�/, so that the expectation of �k can be defined as �k D g�1.�k/ D ˚.�k/, where
˚.�/ is the cumulative distribution function of a standard normal distribution. As
already mentioned, for estimating the ˇij in Eq. (1) a large number B of confusion
matrices are simulated. A proportion ˛ with � D 0 and non-zero elements in the
diagonal only, and the other proportion 1�˛ with random assigned elements in order
to simulate random classifications, so that � D 1. A random classified confusion
matrix is quite simple to obtain. All confusion matrices stemmed by classifiers have
the same marginal row frequencies. In fact, since they come from the same dataset
the number of true classes is fixed for all matrices. Hence, it is sufficient to simulate
matrices with uniformly distributed rows by setting their marginal row frequencies
equal to those of the confusion matrices resulting from the classifiers. Next step
consists in excluding diagonal cells from simulated matrices, leaving just cells
that convey misclassification information. Additionally, the cells of the simulated
confusion matrices are weighted by some proximity measures, which are defined,
for all entries qij (with i ¤ j) corresponding to off-diagonal elements of confusion
matrix, as

d.`i; `j/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

`L � `1

j`i � `jjwij if x is numerical

L � 1

ji � jjwij if x is ordinal (2)

wij if x is nominal

where wij is a weight, fixed by the researcher, that specifies the importance in terms
of misclassification cost attributed to the proximity level between `i and `j. As
such, weighting is motivated by the idea of adding information deriving from expert
knowledge. Once the simulated matrices are weighted, the model could be fitted
through them in order to derive the estimated value O�k of �k for the k-th classifier as

O�k D ˚

0

@
LX

iD1

LX

jD1

Ǒ
ijq

k
ijd

�
`i; `j

�
1

A (3)

O�k is the model-based classification accuracy index used in the rest of the paper.
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2.2 Similarity in Distribution Index

One of the main problem in the framework of classifier performance measurement
is the choice of the best classifier once that two (or more) classifiers present
the same value of the classification accuracy 1 � � but the latter derives from
different confusion matrices. To define a classifier performance measure that also
considers information about the difference in distribution among classifier confusion
matrices, a normalized similarity in distribution index is considered. It derives from
a dissimilarity index introduced by Gini and used, among others, in Rachev (1985).
In general, for a L-class classification problem D, the Gini index of dissimilarity in
distribution, is defined as

D D
vuut 1

L2 � 1

L2�1X

hD1

jFv1

h � Fv2

h j2 (4)

where Fv1

h and Fv2

h are the cumulative frequencies in h of the vectors v1 and v2,
whereas

p
L2 � 1 is equal to the maximum value of this index, and it is used to

normalize it. D is defined in Œ0; 1� and is susceptible to change in values as long as
one or more observations are assigned to the class j instead of the true class i (i ¤ j
and i; j 2 f1; : : : ; Lg).

In the framework of the bivariate classifier performance index described so far,
the dissimilarity in distribution index introduced in Eq. (4) is reformulated in terms
of a similarity in distribution index. To this aim, let us consider two confusion
matrices, Qk1 and Qk2 , corresponding to classifiers k1 and k2, respectively. They
refer to a situation in which the value of classification accuracy is the same for
both classifiers, even if the two confusion matrices are clearly different. Measuring
similarity between Qk1 and Qk2 requires the comparison of each element of the
two matrices with those of a common reference matrix Qmax. The latter is the
matrix which refers to the situation of maximum accuracy so that all predicted
values correspond to observed ones. To make such a comparison, the matrices Qmax,
Qk1 and Qk2 are transformed into vectors vmax, vk1 , and vk2 by writing the matrix
elements in row-major order. To compute the similarity in distribution for Qk1 and
Qk2 , it is necessary to compare the distribution of vk1 and vk2 with that of vmax.
Considering the difference 1 � D, where D has been defined in Eq. (4), we define a
similarity in distribution index for Qk1 and Qk2 whose values are in Œ0; 1� as

SQki
D 1 �

sPL2�1
hD1 jFvki

h � Fvmax
h j2

L2 � 1
; 8i D 1; 2 (5)
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2.3 Visualization

Once both values of the cost-sensitive (model-based) weighted classification index
introduced in Sect. 2.1 and the normalized similarity in distribution index introduced
in Sect. 2.2 are available for each classifier, their values can be projected in a
Œ0; 1�2 space in order to evaluate their performance from the perspective of both
classification accuracy and similarity in distribution. The possibility of analyzing
classifier performance in a two-dimensional space is very useful since it facilitates
the comparison among different classifiers and allows the user to understand which
of the two considered items (weighted classification and similarity in distribution)
mostly influences classifier performance. Of course, the two-dimensional represen-
tation is particularly helpful when the number of considered classifiers is very large.

3 Assessing Reliability

Besides measuring the performance of a classifier on the basis of classification
accuracy and similarity in distribution, it is very important to define its reliability.
The cost-sensitive (model-based) weighted classification index can be used to
accomplish this goal also. In fact, the measurement of the performance of a classifier
can be used as a tool in order to define a measure of its reliability. To this purpose,
the basic idea is that applying the same classifier to slightly modified versions of the
original data, we expect that its results are rather similar, so that the closer they are
to each other the more reliable the classifier can be considered. Thus, the proximity
of the results obtained from the same classifier by resampling and measured by
the bivariate classifier performance index of Sect. 2 is considered as a measure
of classifier performance reliability. Formally, if we have p different measures of
classification accuracy of a classifier k (including O�k and SQki

) we can measure such
a proximity as the convex hull of a set of points P in p dimensions. The convex hull
is computed by measuring the intersection of all convex sets containing P . For N
points p1; : : : ; pN , the convex hull C is then given by:

C D
8
<

:

NX

jD1

�jpj W �j � 0 8j and
NX

jD1

�j D 1

9
=

; (6)

In the case of a bivariate index, like the one introduced in Sects. 2.1 and 2.2,
this proximity is measured by the convex hull of a set of points defined in the
Euclidean space obtained with respect to the two dimensions of the bivariate
classifier performance index. In order to obtain this measure of reliability three steps
are necessary:

1. Re-train the classifier B times on resampled versions of the original data;
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2. Use the resulting B confusion matrices as inputs for the two indices measuring
cost-weighted accuracy and similarity in distribution;

3. Measure the classifier reliability as the area of the convex hull C of the set of
points P defined by the values of two indices obtained over the B runs.

In our computations, the area of C is measured with the function convhulln
implemented in the R package geometry (Habel et al. 2014).

4 Real Data Example: Classification of Botany Seeds

During the last decades, one of the most important target for botanists is to call a
halt to the loss of plant diversity. To achieve that, two strategies are possible: In situ
and ex situ plant conservation. In situ conservation consists in protecting threatened
plant species in their natural habitat, whereas ex situ conservation consists in
protecting them outside their natural habitat. Although the in situ conservation
strategy is considered the best one for preserving plant diversity, its measures
are more expensive than ex situ ones. For this reason, in the last two decades,
the latter conservation approach has been used more often. Among all ex situ
methods, the most effective is storage of plant seeds in seed banks. It allows us
to save large amounts of genetic material in a small space and with minimum
risk of genetic damage. Therefore, several seed banks and other structures have
been established. Due to the increasing number of seeds gathered, more attention
has been focused on classification of accessions in entry. Manual classification
of seeds is still a common practice. It is labor-intensive, subjective, and suffers
from inconsistencies and errors. It is also a time-consuming task even for highly
specialized botanists, and the increasing number of seeds to classify is making the
time spent for classification unbearable. For those reasons, application of statistical
classifiers for seeds classification is ever more useful and common. Hence botanists
require a tool that helps them to evaluate performance and reliability of classifiers,
in order to be able to choose among them.

In this study a dataset containing seven variables and n D 5712 cases is
considered. The response variable is plant family and has five classes (Cyperaceae,
Dipsacaceae, Fabaceae, Iridaceae, Lamiaceae). The other six variables are used
as predictors and consist in measurements of colorimetric characteristics of seeds.
These are the mean of hue, the saturation, the luminance as well as the red channel,
green channel, and blue channel intensity.

To measure classification accuracy and reliability the original data were ran-
domly split into two subsets: a proportion of 0:5 � n defines the training set and
the remaining observations the test set. The experiment involves three different
classifiers: CART-like recursive partitioning (CART), Random Forests (RF), and
Support Vector Machines (SVM). The choice of these classifiers is based on the
consideration that CART is notably known as unstable in terms of reliability of
the classification outcome whereas the other two methods are presumably more
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reliable and able to provide more accurate classification. The bivariate classification
accuracy index and the classifier reliability measured and visualized through the
convex hull are used to verify that the approach presented in Sects. 2 and 3 provides
new insights for the analyzed dataset.

4.1 Results

When classifying botany seeds the goal was to measure the performance and
reliability of three classifiers using the approach discussed above. It is worth to
remember that the cost-sensitive (model-based) weighted classification index is
made up of two measures: (1) the model-based measurement of classification
accuracy and (2) the measurement of the similarity in distribution between observed
classes and predicted ones.

To obtain the cost-sensitive weighted classification accuracy index as defined
in Eq. (3) it is necessary to define a proximity measure between each pair of
classes of the response variable. To this purpose, observations of the training
set are standardized and the proximity is measured as the normalized Euclidean
distance between the centroids related to pairs of response classes. Furthermore,
for estimating the coefficients of the Beta regression model introduced in Eq. (1),
B D 1000 confusion matrices were simulated, with a proportion ˛ D 0:5 of cases
of perfect classification .� D 0/ and the same proportion of cases of random
classification .� D 1/. The classifier (CART, SVM , or RF) was trained on the
training set observations and predicted classes for the test set observations were
used to obtain the confusion matrices, which are the input of the Beta regression

model estimated according to the specification introduced in Eq. (1). As for
the measurement of the similarity in distribution between observed classes and
predicted ones, the Eq. (4) was applied to the three confusion matrices obtained by
predicting the response classes of the test set observations for the classifiers CART,
RF, and SVM , respectively.

Results are summarized in Table 1, where the two above-mentioned measures are
compared with other measures which are frequently used to evaluate the accuracy
of a classifier, namely: the proportion of data points in the main diagonal of the
confusion matrix; the Rand index and the confusion entropy index (Wei et al. 2010).
In order to assess reliability of the three classifiers we used the approach explained
in Sect. 3. Firstly, we re-trained each classifier on 100 resampled versions of the
training set. Next, we used the 100 confusion matrices obtained from each sample
as inputs for the two considered accuracy indexes. Finally, we computed the convex
hull C of the area defined by the values of two indexes obtained over the 100 runs
as a measure of reliability.
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Table 1 Accuracy and reliability results for the Random Forest (RF), Support Vector Machine
(SVM), and CART-like recursive partitioning classifiers

Classifier Diag Rand Cen .1 � O�k/ OSQ C

RF 0:687 0:697 0:403 0:833 0:952 0.193

.0:667/ .0:686/ .0:423/ .0:778/ .0:950/

SVM 0:677 0:654 0:346 0:810 0:948 0.155

.0:674/ .0:653/ .0:350/ .0:802/ .0:947/

CART 0:623 0:618 0:408 0:602 0:943 0.409

.0:616/ .0:618/ .0:411/ .0:588/ .0:940/

Notes: diag is the proportion of data points in the main diagonal of the confusion matrix; rand is
the Rand index; cen is the confusion entropy index; .1 � O�k/ is the accuracy measure defined in
Eq. (3); OSQ is the similarity in distribution as defined in Eq. (4); C is the reliability of a classifier as
defined in Eq. (6). Each cell reports the value of the index obtained for test set observations and,
in parentheses, the same value obtained as an average from 100 resampled versions of the original
data
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Fig. 1 Accuracy and reliability of the Random Forests, Support Vector Machines, and CART-
like recursive partitioning classifiers. The triangles correspond to the cost-sensitive (model-based)
weighted classification index and the similarity in distribution index obtained from the original
data, whereas the stars are values of the same indices obtained on resampled versions of the original
data. Reliability is measured through the convex hull of the area defined by each set of points

As it is possible to note from both Table 1 and Fig. 1, Random Forest is the best
classifier in this example with respect to accuracy. In fact, it has both the highest
classification accuracy (0.833) and the highest similarity in distribution (0.952). In
contrast, the most reliable classifier is SVM as it provides the smallest convex hull
area (C D 0:155). As expected, CART has to be considered as the worst one for
both accuracy and reliability.
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5 Concluding Remarks

Cost-sensitive classification is one of the mainstream research topics in data mining
and machine learning that induces models from data with an unbalanced class
distribution and impacts by quantifying and tackling the unbalance. In this paper
a bivariate index based on a model-based accuracy measure and a similarity
in distribution measure has been introduced. In addition, classifier performance
reliability is also considered by computing the convex hull of the set of points in
the two-dimensional space defined by the values of the above-mentioned bivariate
index computed on resampled versions of the original data. Results obtained for
a real data classification problem involving botanic seeds provide evidence about
the effectiveness of the proposed approach, since they confirm the expectation
that less accurate and less reliable classifiers (CART-like recursive partitioning)
do not outperform more robust and accurate ones (SVM and Random Forest).
Future research efforts will be directed to the identification and computation of
other possible dimensions of accuracy and reliability (like those mentioned in
Sect. 1). In addition, following the approach proposed in Müssell et al. (2012), the
proposed measures will be framed within the context of Pareto dominance through
the visualization of the relative Pareto fronts. Next, our method for measuring cost-
sensitive classification accuracy and reliability will be tested on several datasets,
with particular attention to multi-class learning problems characterized by an
unbalanced distribution of the response classes and/or a reduced data size.
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