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Abstract Generalized canonical correlation analysis (GCANO) is a versatile tech-
nique that allows the joint analysis of several sets of data matrices through
data reduction. The method embraces a number of representative techniques of
multivariate data analysis as special cases. The GCANO solution can be obtained
noniteratively through an eigenequation and distributional assumptions are not
required. The high computational and memory requirements of ordinary eigen-
decomposition makes its application impractical on massive or sequential data
sets. The aim of the present contribution is twofold: (a) to extend the family of
GCANO techniques to a split-apply-combine framework, that leads to an exact
implementation; (b) to allow for incremental updates of existing solutions, which
lead to approximate yet highly accurate solutions. For this purpose, an incremental
SVD approach with desirable properties is revised and embedded in the context
of GCANO, and extends its applicability to modern big data problems and data
streams.

1 Introduction

Numerous procedures for relating multiple sets of variables have been described in
the literature (Van der Burg 1988; Gifi 1990; Kroonenberg 2008). In this paper,
we consider a generalized version of canonical correlation analysis (GCANO)
developed by Carroll (1968). The central problem of GCANO is to construct a
series of components, or canonical variates, aiming to maximize the association
or homogeneity among the multiple variable sets. This version is most attractive
because the solution can be obtained through an eigenequation, strict distributional
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assumptions are not required and, most importantly, the method subsumes a number
of representative techniques of multivariate data analysis as special cases (Takane
et al. 2008; Van de Velden and Takane 2012). In the case of two data sets with
continuous variables, GCANO reduces to canonical correlation analysis. When one
of the two sets of variables consists of indicator variables, the method specializes
into canonical discriminant analysis and into correspondence analysis when both
sets consist of indicator variables. In the case of more than two data sets with
indicator variables, GCANO specializes into multiple correspondence analysis, and
into principal component analysis when each of the data sets consists of a single
continuous variable. Therefore, a useful modification of the GCANO algorithm has
far reaching implications beyond what is normally referred to as GCANO (Takane
et al. 2008).

GCANO has been profitably applied as a tool for integrating data obtained from
different sources (e.g., subjects, stimuli, locations), in fields ranging from marketing
(Bijmolt and Van de Velden 2012) to neuroimaging (Correa et al. 2010). In the last
few years, new application frameworks emerged that usually involve large/massive
amounts of data. Some of the examples that can be given in this context are the
continuous monitoring of consumer preferences plotted on perceptual maps, fusing
data concurrently acquired from different imaging modalities, and monitoring of
word associations that are present in data pulled on-the-fly from social networking
sites. In all these examples there is a high rate of data accumulation coupled with
constant changes in data characteristics. Such type of data is often referred to as data
streams or data flows and require fast response time and efficient memory use.

In fact, the capability of GCANO is challenged by such data and requires a
different approach. The problem is that finding the (generalized) canonical correla-
tions requires a computationally expensive eigendecomposition. More specifically,
the application of ordinary eigenvalue decomposition (EVD) or singular value
decomposition (SVD) to large and high-dimensional data becomes infeasible
because of high computational and memory requirements. This subsequently makes
the application of GCANO impractical on massive or sequential data, i.e., when
new data arrive, one needs to re-run the method with the original data augmented
by the new data and the whole data structures being decomposed have to be kept in
memory.

Literature offers several proposals aiming to overcome the EVD and SVD-related
limitations via efficient eigensolvers (e.g., Baglama and Reichel 2007) or via the
update (or downdate) of existing EVD/SVD solutions according to new data (see
Baker et al. 2012 for an overview). Another strategy for tackling large data problems
is the so-called split-apply-combine (Wickam 2011): the full data set is split into
blocks, each block is analyzed separately and the results are combined to obtain the
global solution. In that case, the solution corresponding to the decomposition of the
starting data block has to be incrementally updated each time new data comes in.

The aim of the present contribution is twofold: (a) to extend the family of
GCANO techniques to a split-apply-combine framework, that leads to an exact
solution, i.e. to the exact calculation of canonical correlations; (b) to allow for
incremental updates of existing solutions, which lead to approximate yet highly
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accurate solutions. For this purpose, an incremental SVD approach with desirable
properties is revised and embedded in the context of GCANO, and extends its
applicability to modern big data problems and data streams.

The paper is organized as follows: Sect. 2 presents GCANO as a matrix decompo-
sition technique. Section 3 focuses on an incremental SVD approach with desirable
properties in the context of GCANO. Based on this approach, two algorithmic
modifications for incrementally computing the GCANO solution are proposed in
Sect. 4. In Sect. 5 we illustrate a real-world application on data gathered from a
social networking site. The paper concludes in Sect. 6.

2 Generalized Canonical Correlation Analysis

Let Zk denote an n by pk matrix of variables of the kth data set (k D 1; � � � K), where
n is the number of cases. We assume that Zk is column-wise standardized. Let Z
denote an n by p D .˙kpk/ row block matrix, Z D ŒZ1; : : : ; ZK �. Let Wk denote a
pk by d matrix of weights assigned to each variable in Zk, where d is the number of
dimensions. Let F denote an n by d matrix of low dimensional data representations,
known as object scores, which characterize the association or homogeneity among
all Zk’s. The aim of GCANO is to obtain W which maximizes

�.W/ D tr.WTZTZW/ (1)

subject to the restriction that WTDW D It, where D is a p by p block diagonal
matrix formed from Dk D ZT

k Z as the kth diagonal block.
The solution can be achieved through different algorithmic approaches (see

Takane et al. 2008), but the most relevant one to our purpose is via the generalized
singular value decomposition (GSVD) of matrix ZD� with column metric D, where
D� is a generalized inverse of D. In other words, GCANO can be performed as a
principal component analysis applied to the global table Z, with metric correspond-
ing to the block diagonal matrix composed of the inverses of the variance-covariance
matrices internal to every group Zk. This is equivalent to obtaining the ordinary SVD
of:

ZD�1=2 D U˙VT: (2)

Then canonical weights are given by W D D�1=2V and canonical variates by
F D ZW˙ 1=2 (Takane et al. 2008).

A convenient choice of D�1=2 is D�D1=2, where D� is an arbitrary g-inverse and
D1=2 is the symmetric square root factor of D. Different choices of D�1=2 lead to the
different methods which lie under the GCANO framework. For instance, in the case
of correspondence analysis D�1=2 is replaced by .DC/1=2, where DC is the Moore–
Penrose inverse of D and each Zk is a set of column-centered indicator matrices. In
the case of principal component analysis, the solution is simply given by the SVD
of Z; thus D�1=2 D I.
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3 Enhancing the SVD Computation

A downside of SVD and related EVD is their high computational cost. The SVD
has a computational complexity of O.n2p/, assuming n � p (Golub and Van Loan
1996). Therefore, both methods become computationally infeasible for large data
sets. In the literature, we find two broad classes of methods which lead to efficient
eigendecompositions.

The first class, known as batch methods, requires that all the data is available in
advance to perform the decomposition. This class includes methods such as iterative
EVD (Golub and Van Loan 1996) and bilinear diagonalization Lanczos (Baglama
and Reichel 2007). Although these methods enable very efficient computations,
their application is not possible in cases where the data size is too large to fit in
memory, or if the full data set is not available in advance, as in the case of data
streams. In the latter case, it may be advantageous to perform the computations as
the data become available.

The so-called incremental methods can operate on streaming data and aim to
update (or downdate) an existing SVD or EVD solution when new data is processed.
This class of methods includes some expectation-maximization (e.g., Tipping and
Bishop 1999), stochastic approximation (e.g., Herbster and Warmuth 2001), and
sequential decomposition approaches (see Baker et al. 2012; Iodice D’ Enza and
Markos 2015, for an overview). These methods have an advantage over batch
methods as they can be applied to sequential data blocks without the need to store
past data in memory.

In this paper, we utilize the desirable properties of a sequential decomposition
algorithm, (herein referred to as Incremental SVD) described by Ross et al. (2008),
which is based on a series of efficient block updates instead of a full and expensive
SVD. The procedure allows to keep track of the data mean, so as to simultaneously
update the center of the low dimensional space of the solution. This property
is important when the data sets consist of indicator variables, as in the case of
correspondence analysis (Iodice D’ Enza and Markos 2015). Second, the method
offers a computational advantage over alternatives in that the decomposition can
be computed in constant time regardless of data size. This property makes it more
appealing for an incremental GCANO implementation in the case of data streams.

3.1 Incremental SVD

In this section, we present an algorithm which exploits the fact that a low-rank
update to the eigenbasis is decomposable into efficient block operations. In the
original description of the method (Ross et al. 2008), the data is updated column-
wise, but here we derive a row-wise update formulation of the method. This is
subsequently utilized in the following section to provide an incremental GCANO
approach, suitable for analyzing data streams.
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Before describing the core of the method, we introduce some necessary defini-
tions. An eigenspace is a collection of the quantities needed to define the result of a
matrix eigendecomposition as it involves eigenvalues (singular values), eigenvectors
(singular vectors), data mean, and size. In particular, with respect to the SVD, for a
n.x/ � p matrix X and a n.y/ � p matrix Y, we define two eigenspaces as

˝.x/ D
�

n.x/; �.x/; U.x/;˙ .x/; V.x/
�

and ˝.y/ D
�

n.y/; �.y/; U.y/;˙ .y/; V.y/
�
:

The aim of incremental decomposition is to obtain an eigenspace ˝.xy/ for the

matrix

�
X
Y

�
, using uniquely the information in ˝.x/ and ˝.y/.

The total number of statistical units and the global data mean are easily updated:

n.xy/ D n.x/ C n.y/ and �.xy/ D n.x/�.x/Cn.y/�.y/

n.xy/ . Adding the eigenspaces acts to
rotate the eigenvectors (or singular vectors) and to scale the eigenvalues (or singular
values) relating to data spread; furthermore, the new eigenvectors must be a linear
combination of the old.

Let QX and QY be the centered versions of X and Y, respectively. In order to take

into account the varying mean, the row vector
q

n.x/n.y/

n.x/Cn.y/

�
�.y/ � �.x/

�
is added to

the QY matrix. Given the SVD of QX D U.x/˙ .x/
�
V.x/

�T
, the projection L of QY onto

the orthogonal basis
�
V.x/

�T
is described by:

L D QY �
V.x/

�T
:

Let H be the component of QY orthogonal to the subspace spanned by
�
V.x/

�T
:

H D QY
�

I � �
V.x/

�T
V.x/

�
D QY � LV.x/:

H is decomposed such that an orthogonal matrix V.h/ is obtained, as follows:

V.h/ D orth
� QY � LV.x/

�
:

Then,

� QX
QY
�

is given by

� QX
QY
�

D
��

U.x/ 0
0 I

�
U.r/

	
˙ .r/

�
V.r/

�
V.x/

V.h/

�	
; (3)

where U.r/˙ .r/
�
V.r/

�T
is the SVD of R D

"
˙ .x/ 0

L H
�
V.h/

�T

#
.
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Finally, U.xy/ D
�

U.x/ 0
0 I

�
U.r/, ˙ .xy/ D ˙ .r/ and V.xy/ D V.r/

�
V.x/

V.h/

�
.

It should be noted that in many practical situations, it suffices to obtain only V.xy/,
the basis for the right singular subspace.

4 Dynamic Modifications of GCANO Solutions

This Section describes two dynamic modifications of the GCANO algorithm,
referred to as “Exact” and “Live.” The Exact approach is an incremental GCANO
which leads to the same exact solution as the one obtained using ordinary GCANO.
This approach requires all the data to be available from the start. On the other hand,
the Live approach is suitable for analyzing data blocks incrementally as they arrive,
but leads to an approximate GCANO solution. The main difference between the
two approaches lies in the calculation of the block diagonal matrix D. With regard
to the Exact approach, its calculation is based on the “global” variance-covariance
matrices internal to every data block, that is, the matrices which correspond to
the whole data matrix, which is available in advance. For the Live approach, the
whole matrix is unknown and the variance-covariance matrices internal to every
data block are approximated by the “local” matrices, that is, the average variance-
covariance matrices of the data analyzed insofar. A detailed description of the
two implementations follows and the corresponding pseudo-code is provided in
Algorithms 1 and 2.

4.1 Exact GCANO

Algorithm 1 summarizes the Exact approach. The procedure is iterated k times,
where k is the total number of incoming blocks leading to k updates. The superscript
“.x/” indicates a quantity referred to the current block, whereas the superscript
“.y/” refers to the incoming block. The updated quantities are then indicated by the
superscript “.xy/”. The merging of eigenspaces is achieved using the SVD-based
method described in Sect. 3.1.

In terms of time complexity, the Exact GCANO algorithm is data dependent
and is expected to yield much lower space complexity than ordinary GCANO.
More specifically, computing an eigenspace model of size n � p using the
SVD, usually incurs a computational cost of O.n2p/. Therefore, using the batch
approach, the merging of two consecutive eigenspaces requires approximately
O..n.x/ C n.y//2p/ operations. Now we focus on the parts which dominate the
computational complexity of the Exact algorithm. The starting and the incoming
eigenspaces (Steps 4 and 8) need a total of O...n.x//2 C .n.y//2/p/ operations
and eigenspace merging (Step 11) requires at most O..d C n.y/ C 1/2p/. Note
that d is the number of the largest singular values retained in each step.
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Algorithm 1: Exact GCANO
Require: Z D ŒZ1; � � � ; ZK � {n � p, K sets}

1: DŒk; k� D ZT
k Zk {form block-diagonal D}

2: X D ZD�1=2 D ŒX1I X2I � � � I Xs� {calculate X and split into s blocks}
3: X.x/ D X1

4: ˝ .x/ D .n.x/; �.x/; U.x/;˙ .x/; V.x/) {starting eigenspace}

5: while (incoming data block) do
6: X.y/ D XmC1 {incoming block}

7: �.y/ D �
n.y/

�
�1 �

X.y/
�T

1n.y/ {mean vector}

8: ˝ .y/ D .n.y/; �.y/; U.y/;˙ .y/; V.y/) {new eigenspace}

9: n.xy/ D n.x/ C n.y/ {data size update}

10: �.xy/ D 

�.x/n.x/ C �.y/n.y/

� �
n.x/

�
�1

{mean vector update}

11: ˝ .xy/ D ˝ .x/ ˚ ˝ .y/ D .n.xy/; �.xy/; U.xy/;˙ .xy/; V.xy// {eigenspace update}

12: W.xy/ D D�1=2V.xy/ {canonical weights}

13: F D ZW.xy/
�
˙ .xy/

�
�1=2

{canonical variates}

14: n.x/ D n.xy/; �.x/ D �.xy/; U.x/ D U.xy/;˙ .x/ D ˙ .xy/; V.x/ D V.xy/ {update}

15: end while

4.2 Live GCANO

This section introduces the Live GCANO algorithm and discusses some of its basic
properties, in comparison with the Exact case of the previous section. The pseudo-
code for the Live case is presented in Algorithm 2. Since the data is not available
from the beginning, k, the total number of blocks being analyzed, is not defined
in advance. The most crucial difference between the Exact and Live approach lies
in the computation of the block diagonal matrix D of the incoming block. In fact,
an additional step (Step 7) is required within the loop of Algorithm 2, where the
average of the “local” variance-covariance matrices is obtained.

The complexity of the Live algorithm can be summarized in a similar way to that
of the Exact case. Each update (Step 13) requires approximately O..d Cn.y/ C1/2p/

flops, versus O..n.x/ C n.y//2p/ with the naive approach. Another important feature
is that the decomposition can be computed in constant time by constraining the
update block size (see Iodice D’ Enza and Markos 2015 for details). The storage
required for the n.y/ new rows reduces significantly the space complexity to
approximately O..d C n.y/ C 1/p/, down from O..n.x/ C n.y//2p/ required for the
naive SVD.
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Algorithm 2: Live GCANO
Require: Z D ŒZ1I Z2I � � �� {incoming data stream}

1: Z.x/ D Z1

2: D.x/Œk; k� D
�

Z.x/
k

�T
Z.x/

k {form block-diagonal Dx}

3: X.x/ D Z.x/
�
D.x/

�
�1=2

{calculate X.x/}

4: ˝ .x/ D .n.x/; �.x/; U.x/;˙ .x/; V.x/) {starting eigenspace}

5: while (incoming data block) do
6: Z.y/ D ZmC1 {incoming block}

7: D.xy/Œk; k� D
��

Z.x/
�T

Z.x/ C �
Z.y/

�T
Z.y/

�
=n.x/ {update block-diagonal D}

8: X.y/ D Z.y/
�
D.xy/

�
�1=2

{calculate X.y/}

9: �.y/ D �
n.y/

�
�1 �

X.y/
�T

1n.y/ {mean vector}

10: ˝ .y/ D .n.y/; �.y/; U.y/;˙ .y/; V.y/) {new eigenspace}

11: n.xy/ D n.x/ C n.y/ {data size update}

12: �.xy/ D 

�.x/n.x/ C �.y/n.y/

� �
n.x/

�
�1

{mean vector update}

13: ˝ .xy/ D ˝ .x/ ˚ ˝ .y/ D .n.xy/; �.xy/; U.xy/;˙ .xy/; V.xy// {eigenspace update}

14: W.xy/ D �
D.xy/

�
�1=2

V.xy/ {canonical weights}

15: F.xy/ D Z.xy/W.xy/
�
˙ .xy/

�
�1=2

{canonical variates}
16: n.x/

D n.xy/ ; �.x/
D �.xy/ ; U.x/ D U.xy/ ;˙ .x/

D ˙ .xy/ ; V.x/
D V.xy/ ; Z.x/

D Z.y/ {update}

17: end while

5 Application

The two proposed approaches were applied to a real-world data set. For conve-
nience, we consider only sets of categorical variables, thus GCANO results coincide
with those of multiple correspondence analysis (MCA). A detailed description of
Algorithms 1 and 2 in the case of MCA can be found in Iodice D’ Enza and Markos
(2015). The data refers to a small corpus of messages or tweets mentioning seven
major hotel brands. It was gathered by continuously querying and archiving the
Twitter Streaming API service, which provides a proportion of the most recent
publicly available tweets, along with information about the user. The data was
collected using the twitteR package in R (Gentry 2011). A total of about 10,000
tweets in English were extracted within a time period of 6 consecutive days.

Apart from brand name, two additional variables were considered. A sentiment
score was assigned to each tweet by first counting the number of occurrences
of “positive” and “negative” words according to a sentiment dictionary and then
subtracting the number of occurrences of negative words from the number of posi-
tive. Larger negative scores correspond to more negative expressions of sentiment,
neutral (or balanced) tweets net to zero, and very positive tweets score larger,
positive numbers. A sentiment polarity variable of either “positive +”, “neutral
C=�” or “negative �” sentiment was finally obtained by simply taking the sign
of the sentiment score. Another variable, user visibility or popularity, as measured
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Fig. 1 Exact and Live MCA map of attributes and tweets. (a) Attributes. (b) Tweets

by the number of followers each user had, was also included in the data set. The
variable was categorized into three groups, “low,” “medium,” and “high.”

The potential of the proposed methodology lies in monitoring the competitive
position of each brand relative to rival brands over time, as new data blocks are
processed, according to standard MCA interpretation. The first block consisted of
500 rows (tweets), and five equally sized blocks were consequently added to update
the original solution. In Fig. 1, we plot the final solutions of both approaches (Exact
and Live) on the same map for the attributes and tweets, respectively. The similarity
between the two configurations was measured by the R index, that equals

p
1 � m2,

where m2 is the symmetric orthogonal Procrustes statistic. The index ranges from
0 to 1 and can be interpreted as a correlation coefficient. The similarity was found
very high (R D 0:997 for both tweets and attributes), which indicates that the “Live”
approach in this case is highly accurate. An implementation in the R language
available on http://www.amarkos.gr/research/dynMCA/ allows the reader to directly
experiment with the proposed methods.

6 Conclusions

The applicability of GCANO and related SVD-based methods has been extended
to big data settings and data streams. The so-called Exact implementation leads to
an exact solution and follows the split-apply-combine paradigm; this is a desirable
feature for the incremental processing of previously available data or for parallel
execution. The “Live” implementation extends the applicability of GCANO in cases
when the whole data set is not available from the beginning, as in the case of
data streams. The discrepancy between Live and ordinary approaches, as well as
the accuracy of the Live approach are thoroughly discussed in Iodice D’ Enza and
Markos (2015), albeit only in the case of indicator variables. These properties are
left to be studied in the case of continuous variables. Since the proposed incremental

http://www.amarkos.gr/research/dynMCA/
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approach was based on sequential decomposition, an interesting perspective would
be to investigate its relationship with a probabilistic approach, i.e. based on stochas-
tic approximation. We defer consideration of these possibilities to future work.
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