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Foreword

Dear Scholars,

The world we live in is producing vast amounts of data everywhere and anytime.
Wider use of the Internet with smartphones and tablets and increasing interconnec-
tion of equipment, vehicles and machines are swelling the data flow into a veritable
flood of information. This flood of information, better known as “Big Data”, is a
valuable resource—if you know how to use it. Only efficient and intelligent analysis
of Big Data can help us to understand linkages and to make better decisions on this
basis. Its potential can be found in many areas: Evaluation of large volumes of data
helps to improve medical care, to optimise use of natural resources, to increase our
security or also to develop new products and services. We are only just beginning to
exploit this treasure. This book is the outcome of the second European Conference
on Data Analysis (ECDA) held in Bremen in 2014. The scientific programme of
the conference covered a broad range of topics. Special emphasis was given to
research on and development of innovative tools, techniques and strategies that
address current challenges in the data analysis process. I warmly invite you to read
this book in order to get a deep insight into the present state of research and into the
pivotal areas of data analysis.

President of the Confederation of German Ingo Kramer
Employers’ Association
(Bundesvereinigung der Deutschen
Arbeitgeberverbände – BDA)
Berlin, Germany
June 2015
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Preface

The volume that you hold now in your hand or read electronically comprises
the revised versions of selected papers presented during the European Conference
on Data Analysis (ECDA 2014) and the Workshop on Classification and Subject
Indexing in Library and Information Science (LIS’ 2014). This second edition
of the European Conference on Data Analysis was held at Jacobs University
Bremen (Germany) under the patronage of Ingo Kramer, President of the Con-
federation of German Employers’ Association (Bundesvereinigung der Deutschen
Arbeitgeberverbände—BDA). The conference marked also the occasion of the
38th anniversary of the German Classification Society (GfKl). The conference was
organised by the German Classification Society (GfKl) in cooperation with the
Italian Statistical Society Classification and Data Analysis Group (SIS-Cladag),
Vereniging voor Ordinatie en Classificatie (VOC), Sekcja Klasyfikacji i Analizy
Danych PTS (SKAD) and the International Association for Statistical Computing
(IASC).

In early July 2014, a total of 193 participants from 27 countries gathered at the
beautiful campus of Jacobs University Bremen to listen to and critically discuss on
154 presentations including two plenary and eight semi-plenary keynote speeches,
six invited symposia and a plenary panel discussion on “The Future of Publications
in Classification and Data Sciences”. Having most participants accommodated on
campus allowed for additional discussions and mutual exchange of knowledge
outside the conference presentations, and it created an excellent stimulus for
fostering international collaborations and networks. With half of the participants
coming from outside of Germany, the conference truly lived up to the idea of
an international convention. The selection of keynote speakers from six European
countries, as well as from China, Israel and the United States of America, is another
indicator for the growing international network of researchers in this area.

The scientific programme extended across a broad range of sessions dealing
with different aspects of the data analysis process. Quite a spectrum of application
fields had been covered in the presentations showing the importance of a close
interaction between theory and practice as well as between scientific disciplines.
The members of the scientific programme committee under the lead of the Scientific

vii



viii Preface

Programme Chair Hans A. Kestler stipulated and selected a truly inspiring and
interdisciplinary programme bridging theory, methods and applications of data
analysis in the following seven thematic areas:

1. Statistics and Data Analysis, organised by Claus Weihs, Francesco Mola,
Roberto Rocci and Christian Hennig

2. Machine Learning and Knowledge Discovery, organised by Eyke Hüllermeier,
Friedhelm Schwenker and Myra Spiliopoulou

3. Data Analysis in Marketing, organised by Józef Pociecha, Daniel Baier, Wolf-
gang Gaul and Reinhold Decker

4. Data Analysis in Finance and Economics, organised by Marlene Müller, Gregor
Dorfleitner and Colin Vance

5. Data Analysis in Medicine and the Life Sciences, organised by Hans A. Kestler,
Matthias Schmid, Iris Pigeot and Berthold Lausen

6. Data Analysis in the Social, Behavioural, and Health Care Sciences, organised
by Ali Ünlü, Ingo Rohlfing, Karin Wolf-Ostermann and Jeroen K. Vermunt

7. Data Analysis in Interdisciplinary Domains, organised by Adalbert F.X. Wil-
helm, Patrick Groenen, Sabine Krolak-Schwerdt, Frank Scholze and Andreas
Geyer-Schulz

8. The Workshop Library and Information Science (LIS’ 2014), organised by Frank
Scholze

For each of these topics, a number of well-elaborated papers have been submitted
for the proceedings volume after the conference took place. The 55 contributions
that you find now in this volume have been accepted after a peer-reviewing process
and provide a good representation of the topics covered at the conference. The
contributions to the proceedings represent a diverse range of scientific disciplines,
namely, Statistics, Psychology, Biology, Information Retrieval and Library Science,
Archeology, Banking and Finance, Computer Science, Economics, Engineering,
Geography, Geology, Linguistics and Musicology, Marketing, Mathematics, Med-
ical and Health Sciences, Sociology and Educational Sciences. In all these disci-
plines, Data Science is a major unifying topic, which is reflected in papers that cover
the meaningful extraction of knowledge from diverse data sources via structural,
quantitative and statistical approaches. Examples are advances in classification and
clustering and other pattern recognition methods. The explicit modelling of complex
data in specific domains also includes the issues that come with Big Data in terms
of numerical stability, set size and model learning or adaptation time and effort.

Empirical research in these fields requires the analysis of multiple data types.
Even though underlying research questions and corresponding data emerge from
most various areas, they often require similar statistical, structural or quantitative
approaches for the analysis of data. The specific scientific impact of the post-
conference volume concerns the presentation of methods, which may commonly
be used for the analysis of data stemming from different domains and domain-
specific research questions with the aim of solving the numerous domain-specific
problems of data analysis on a theoretical as well as on a practical level, fostering



Preface ix

their effective use for answering specific questions in various areas of application as
well as evaluating alternative methods in the framework of applications.

Accordingly, the volume is organised with the following subsections:

Part I Invited Papers
Part II Big Data
Part III Clustering
Part V Regression and Other Statistical Techniques
Part VI Applications
Part VII Data Analysis in Marketing
Part VIII Data Analysis in Finance
Part IX Data Analysis in Medicine and Life Sciences
Part X Data Analysis in Musicology
Part XI Data Analysis in Interdisciplinary Domains
Part XII Data Analysis in Social, Behavioural and Health Care Sciences
Part XIII Data Analysis in Library Science

Organising this second ECDA conference required the coordination of many
people and topics; dedicated colleagues and the great team of the Jacobs University
Bremen made this possible. We would like to thank the area chairs and the LIS
workshop chair for organising the areas during the conference, author recruit-
ment and the evaluation of submissions. We are grateful to all reviewers: Daniel
Baier, Andre Burkovski, Reinhold Decker, Gregor Dorfleitner, Axel Fürstberger,
Wolfgang Gaul, Andreas Geyer-Schulz, Patrick Groenen, Christian Hennig, Eyke
Hüllermeier, Johann Kraus, Sabine Krolak-Schwerdt, Berthold Lausen, Ludwig
Lausser, Francesco Mola, Marlene Müller, Christoph Müssel, Magnus Pfeffer, Iris
Pigeot, Józef Pociecha, Roberto Rocci, Ingo Rohlfing, Florian Schmid, Matthias
Schmid, Frank Scholze, Friedhelm Schwenker, Myra Spiliopoulou, Eric Sträng, Ali
Ünlü, Colin Vance, Jerome K. Vermunt, Claus Weihs, Heidrun Wiesenmüller and
Karin Wolf-Ostermann.

Furthermore, we would like to thank Martina Bihn and Alice Blanck, Springer-
Verlag, Heidelberg, for their support and dedication to the production of this volume.
Last but not least, we would like to thank all participants of the ECDA 2014
conference for their interest and activities, which made the conference such a great
interdisciplinary venue for scientific discussion.

Bremen, Germany Adalbert F.X. Wilhelm
Ulm, Germany Hans A. Kestler
July 2015
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Latent Variables and Marketing Theory:
The Paradigm Shift

Adam Sagan

Abstract An extensive discussion concerning formal, empirical, and ontological
status of latent variables in psychological literature concerns the distinction between
the realist and anti-realist positions within the classical test theory and item
response theory (IRT) psychometric traditions in measurement of latent variables
(Measurement 6:25–53, 2008; Salzberger and Koller, J Bus Res 66:1307–1317,
2013). However, this bi-polar view seems to be too distant from the perspectives
of schools of thought in the marketing discipline and actual developments of mea-
surement models in specific fields of marketing research. An extensive discussion
concerning the reflective–formative latent variables dilemma and relational status
of constructs in the contemporary marketing opens space for the redefinition of
the nature and role of latent variables in marketing science. The aim of the paper
is to outline the interlink between theoretical schools within marketing discipline
and contemporary discussion concerning the nature and use of latent variables in
marketing.

1 Introduction

Latent variables play an important role in testing substantive theories in various
fields of social sciences including psychology, sociology, and marketing.

As many authors stress, in a formal sense, there is nothing special about latent
variables (Bartholomew et al. 2011) but usually, they form theory-free measurement
models in which only the structural part is strongly embedded in theoretical
assumptions. Therefore, the measurement models in marketing and social science
are less theory oriented and the theoretical framework of measurement part receives
usually less attention than the structural part of SEM model.

However, the measurement model and latent variable conceptualization are also
connected to theoretical assumptions and stances. This issue in model-building
process is often neglected, taking the assumptions that latent variable definition and
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operationalization is a theory-free process based solely on statistical and numerical
assumptions.

Theoretical assumptions of the latent variables and measurement models are
based not only on so called small-m-methodology (assumptions of statistical model,
sampling size, identification rules, etc.), but also on big-M-methodology connected
with the existing paradigms, meta-theoretical assumptions and schools of thought
in a given discipline (McCloskey 1983).

This problem is important in managerial marketing, where latent variables are
regarded almost exclusively as a tool-box with the avoidance of discussion about
theoretical assumptions and schools of thought in marketing in the context of big-
M-methodology.

2 Marketing Constructs and Latent Variables Models

2.1 The Evolution of Marketing Theory

One of the earliest definitions of marketing says that “Marketing is buying and
selling activities.” This definition was published in Miss Parloa’s New Cookbook
and Marketing Guide around 1880 (Shaw and Jones 2005). The domain of
marketing discipline, its constructs, theories, and methodologies is presented in
Hunt’s three dichotomies model (1976) who tried to summarize the major aspects of
the marketing field of research. He depicted three basic criteria that define marketing
as a scientific discipline: (1) research objects (profit and non-profit organizations),
(2) the level of analysis (micro–macromarketing perspectives), and (3) research
objectives (positive and normative marketing). Within this framework, the dominant
schools of thought in marketing can be located. Three-dichotomy model helps
us to understand the self-identity of marketing and provides a broader context of
marketing discipline.

In the evolution of marketing discipline several schools and research paradigms
have emerged (Jones et al. 2010). Figure 1 presents the dominant schools of thought
within the marketing discipline.

The variety of approaches can be summarized in three dominant views
(paradigms).

1. The cognitive view, based on the realist paradigm that underlines the problems
of causality, functional relations between marketing concepts and, referring
to Hunt, takes macro and positive perspective on marketing. Historically, the
cognitive view is close to famous Bartels’ question in the origin era of scientific
marketing—“can marketing be a science?” (Bartels 1951).

The cognitive view encompassed many schools of thought like distributional,
macro-marketing and social exchange, system school, and information process-
ing theory (IPT) in the field of consumer research.



Latent Variables and Marketing Theory: The Paradigm Shift 5

Functional

Commodity

Institutional

Regional

Marcromarketing

Systems

Historical

Social exchange

Consumer bahaviorManagerial

Consumer culture theory

IMP

SDL

Service
encounter

CRM

Relationship

Instrumentalist paradigm
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Fig. 1 Marketing schools and research paradigms

2. The behavioral view, which is rooted in a predictive-instrumental approach
and “toolbox” analogy of marketing. This approach, mostly popularized and
developed by P. Kotler and J. McCarthy textbooks, is more micro and normative
oriented. The main schools of thought are managerial, functional, CRM and
behavioral perspective models (BPM) in the consumer theory. This view of
marketing is labelled also as “mainstream” or “transactional.”

3. The relationship marketing school opens the perspective for contextual, service-
and process-oriented view on marketing as a business domain integrator (Vargo
and Lusch 2006). Within this perspective several schools are present i.e. the neo-
institutional, Nordic school of relationship marketing, Interactive Marketing and
Purchasing (IMP) group and Service-Dominant Logic approach.

2.2 Domains of Marketing Constructs

The variety of marketing schools outlined above implies many different method-
ological orientations, ways of construct definition, and approaches to model build-
ing. To simplify this view we can distinguish between two dimensions: (1) the
type of causal explanation (prediction–postdiction) and (2) the nature of marketing
constructs (descriptive–relational). The first dimension represents the way of causal
explanation. In predictive, experimental, and nomothetic approach the objective
is to predict future (new) phenomena based on the present (existing) data. In
postdictive, historical and idiographic approach, one can explain the past and
originated causes on the basis of present data. The second dimension deals with
the nature of marketing variables. Descriptive variables are subject-oriented and are
used to describe the “positional” characteristics of subjects under study, like socio-
demographic, attitudes, preferences, and values. Relational variables in marketing
describe the results of interactions, joint actions of the partners (mutual trust,
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Fig. 2 Marketing constructs and research domain

information asymmetry, loyalty, etc.). In the classification depicted in Fig. 2, the
four basic methodological stances of marketing models can be identified.

The first (upper left) represents the predictive models based on descriptive
marketing constructs. This is the mainstream of managerial marketing, and market-
based relationship management (M-B RM). The BPM, consumer metrics indices are
defined to measure variables like market shares, preferences and choices, consumer
lifetime values (CLV), etc.

The second (lower left) is dominant in marketing explanatory models of con-
sumer behavior, social exchange, and institutional schools. Models of attitudes
toward the ad and brand (AAD �AB), IPT-based models involve marketing constructs
like values, attitudes, ethnocentrism, market orientation, etc.

The third (upper right) involves relational variables and predictive models in
marketing. The services school, network-based relationship marketing (N-BRM)
obey many specific models in the area of social media marketing (SMM), the service
encounter approaches that try to predict relationship variables like conflict level,
loyalty, or relational rent.

Fourth quadrant (lower right) represents explanatory models with relational
variables. Social exchange school, IMP Group, and Service Dominant Logic schools
develop the business cluster formation (BCF) models or commitment-trust theories
to model the formal, social and structural bonds, information asymmetry, relational
norms, or mutual trust of business partners.
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Fig. 3 Latent variables and research domains

All of the constructs above involve the concept of latent variables for model
building within the substantial theory. The lack of understanding of the method-
ological assumptions underlying theoretical concepts may lead to misuse of mea-
surement models of latent variables within particular marketing paradigms .

Figure 3 shows four areas of the application of latent variable models in market-
ing domains in fourfold classification from Fig. 2. The first quadrant (A: descriptive–
predictive) represents the structural choice modeling with latent response variables
(with probit or logit parameterization) in discrete choice models (DC) and integrated
latent variable and choice modeling.

The second quadrant (B: descriptive–explanatory) shows construct-oriented
latent variable models with reflective [CFA and item response theory (IRT)]
indicators.

The third quadrant (C: relational–predictive) includes network-structural models
with latent variables and latent state-trait models of consumer satisfaction and
service encounter variables.

The fourth quadrant (D: relational–explanatory) stresses the importance of
explanatory models of interdependences in buyer–seller interactions, formation of
ego networks, and network competencies in business clusters.
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3 Latent Variables in Marketing

3.1 Three Types of Latent Variables

Application of latent variables in marketing can be illustrated by two contradictory
quotations. On one hand “SEM rarely receives any attention in marketing models
textbooks” (Steenkamp and Baumgartner 2000). On the other, “It is probably
difficult to find an issue of a major marketing journal in which SEM is not used in
at least one of the articles” (Steenkamp and Baumgartner 2000). This contradictory
view refers to philosophies of use of latent variables in marketing modeling.

Operational definition philosophy assumes one-to-one correspondence between
a theoretical construct and its measurement. Manifest variables seem to be perfect
measures of the underlying marketing constructs without measurement error and no
errors-in-variables.

Partial interpretation philosophy requires multiple operationalizations of the
underlying construct by individually imperfect but collectively reliable and valid
measures. The observed variables are regarded as the imperfect measures of the
underlying constructs with measurement errors. Latent variables that are variables
when the inference from data structure to variable structure is prone to error
(Borsboom 2008) allows for controlling the bias in model parameters and their
standard errors (type II error) with the presence of masking effect of R2 stability
in both error-free and error-bound models.

As Bollen (2002) stresses, it is impossible to date the first use of latent variables
that capture a wide variety of statistical concepts, including random effects, missing
data, sources of variation in hierarchical data, finite mixtures, latent classes, and
clusters (Muthén 2003; Bentler and Huang 2014). Formal definitions of latent
variables involve true score (expected value) and common cause interpretation, and
are defined as “random variables with no sample realizations, and about which we
make distributional assumptions” (Bollen 2002), “variables in measurement model
where the number of independent variables is greater than manifest one,” “variables
in the equations if the equations cannot be manipulated so as to express these
variables as a function of manifest variables only” (Bentler 1982; Bollen 2002),
“random variables whose realized values are hidden” (Skrondal and Rabe-Hesketh
2007). The diversity of measurement models for latent variables in marketing theory
involves at least three approaches to use of latent variables in marketing research:

1. Common factor latent variables. Common factor (with parallel Likert-type items)
and IRT (with cumulative Guttman-type items) models are rooted in behavior
domain theory (BDT) together with the realist causal theory of measurement
(CTM). In BDT, constructs are conceptualized in terms of domains of behavior,
and item responses are considered as samples from this domain. Conceptual-
ization of latent variables uses the common cause rule of causality and local
independence assumption of indicators from the latent variable.
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In CTM, the constructs refer to common causes that underlie a set of item
responses, so that people respond to items differently because they have a
different construct score (Borsboom 2008; Borsboom et al. 2004).

2. Composites. The latent construct depends on a constructivist, operationalist, or
instrumentalist interpretation of latent variables (Borsboom et al. 2003). The
operational definition treats composites as weighted linear combination of its
indicators (Diamantopoulos et al. 2008; Williams et al. 2003). In marketing,
the models with composites are popular in instrumentalist paradigm and for
prediction rather than explanation of marketing phenomena (CRM, BPM, service
encounter, SMM, etc.).

3. Formative latent variables. They differ from the composites having disturbance
term reflected unexplained residuals in measurement model. In composites it is
assumed that linear combination of indicators is a perfect measure of the latent
variable without an error.

However, the use of formative latent variables have both strong opponents and
proponents in marketing and statistical literature. Bollen and Lennox argue that in
isolation, the formative measurement model is statistically underidentified (Bollen
and Lennox 1991) and can only be estimated if it is placed within a larger model that
incorporates consequences of the latent variable in question (Bollen 1989; Cadogan
and Lee 2013). A necessary condition for identifying the disturbance term is that the
latent variable emits at least two paths to other constructs measured with reflective
indicators (2+ rule of identification) (MacCallum and Browne 1993).

With respect to dependent formative latent variables, Rigdon (2014) underlines
that any distinction between a “measurement model” and a “structural model” is
only a mental convenience, and not a mathematical reality because of necessary
misspecification of the structural or measurement part of the whole model and the
impossibility of co-existence of the formative measurement model and the structural
one (if the structural part of the model is correct, then the measurement model is
misspecified and vice versa Rigdon 2014).

The intermediate solution that combines two approaches above is the MIMIC
model which consists of both reflective and formative indicators. Causality effect
between latent variables and indicators is linked conceptually to Markov causal
condition, instead of the common cause and local independence rule mentioned
above.

4. Relational latent variables. They support the view on marketing constructs
as emerging from the interactions or relationships between partners (mutual
trust, loyalty, etc.), whose roles are often interchangeable (i.e. consumers and
producers as value co-creators). This view broadens the psychometric and
operational tradition in marketing and takes into account the interactive nature
of marketing variables and the Service Dominant Logic idea of value co-
creation.

Conceptually, these variables are close to common factors that represent con-
structs of both parties that form the dyadic or network structure as a unit of
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analysis with a dependency between subjects and correlated errors. Those kinds
of models are in the family of actor–partner interdependence models (APIM). Also,
the network structures and network indices (i.e. centrality, betweenness, in-degree,
or out-degree) may be explained by the latent traits of both actors in logit p� models
or network-structural models with latent variables.

Contextual and situation specific marketing constructs are measured by the
estimation of latent variable models with fixed and random effects like latent state-
trait models (LS-T), multilevel actor–partner interdependence (APIM) with random
loadings.

3.2 Reflective: Formative Dichotomy in Comparative Analysis

The direction of causal flow between a construct and its indicators evokes the
problem of separation between these two entities, and raises the questions whether
the measurement items are separate entities from the latent variable. In the realist
perspective and reflective measurement, the indicators y (dependent variables) vary
as a consequence of the variation in the latent variable � (independent variable) and
their independence is represented by error terms. Causality effect between latent
variables and indicators is linked to the common cause and the local independence
rules.

In the constructivist approach and formative measurement, the latent variable
� (dependent variable) varies as a consequence of the variation in its indicators x
and their independence is represented by the disturbance term. In case of FLV the
causality effect between indicators and latent variables is not directly measured or
controlled.

To summarize the broad discussion concerning the conceptualization of latent
variables in marketing as reflective or formative, many authors (Borsboom et al.
2003; Ping 2004; Wilcox et al. 2008) question the status of formatively measured
constructs as latent variables in marketing. From practical point of view, reflective
model is sometimes used for masking the problem with collinearity of formative
indicators and formative one is adopted because of the problems with reliability of
reflective items.

On the other hand, Diamantopoulos (2008) argues that both reflective and
formative measurement models have a place in research, and neither formative nor
reflective measurement is inherently wrong or right.

In order to illustrate the reflective–formative dichotomy we use the database
satisfaction in plspm library of R package (Sanchez et al. 2008). The sample
consists of 250 clients of a credit institution in Spain. The 10-point Likert scaled
items were used to measure several customer satisfaction constructs like image
(IMA—reputation, trustworthiness, seriousness, and caring about customer needs),
customer expectation (EXP—products and services provided and expectations for
the overall quality), (QUA—reliable products and services, range of products
and services, and overall perceived quality), benefits (VAL—beneficial services
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and products, valuable investments, quality relative to price, and price relative
to quality), overall satisfaction (SAT—overall rating of satisfaction, fulfillment
of expectations, satisfaction relative to other banks, and performance relative to
customer’s ideal bank), and loyalty (LOY—propensity to choose the same bank
again, propensity to switch to another bank, intention to recommend the bank to
friends, and a sense of loyalty). Taking into account the semantic relations between
constructs and indicators, most of items seem to be formative rather than reflective.

In SEM model (maximum likelihood estimation), the reflective indicators were
used. PLS-PM model included formative indicators (model B) and internal weights
estimated by path weighting. In both cases the 1000 bootstrap samples were used
during the estimation of loadings and path parameters. Table 1 depicts the loadings
for measurement (outer) models of SEM and PLS-PM. In measurement parts of the

Table 1 SEM and PLS-PM outer models

Latent Manifest SEM PLS-PM
variables variables estimates Confidence interval estimates Confidence interval

IMA I1 1:16 0.84–1.41 0:57 0.39–0.74

I2 1:67 1.44–1.93 0:84 0.73–0.92

I3 1:52 1.27–1.77 0:87 0.77–0.93

I4 0:81 0.59–1.05 0:50 0.29–0.68

I5 1:30 1.00–1.67 0:80 0.69–0.89

LOY L1 1:33 1.03–1.63 0:93 0.83–0.98

L2 0:71 0.46–0.96 0:58 0.37–0.73

L3 1:34 1.03–1.64 0:92 0.84–0.97

L4 0:78 0.46–1.10 0:50 0.29–0.72

SAT S1 0:47 0.20–0.74 0:96 0.92–0.98

S2 0:24 0.20–0.71 0:92 0.86–0.96

S3 0:36 0.14–0.58 0:74 0.60–0.82

S4 0:36 0.14–0.59 0:79 0.67–0.88

VAL V1 0:71 0.39–1.04 0:91 0.86–0.95

V2 0:52 0.24–0.80 0:77 0.62–0.88

V3 0:52 0.25–0.79 0:66 0.51–0.77

V4 0:68 0.37–0.98 0:85 0.77–0.91

QUA Q1 0:19 0.00–0.38 0:78 0.63–0.88

Q2 0:24 0.01–0.47 0:90 0.84–0.94

Q3 0:21 0.00–0.41 0:74 0.61–0.84

Q4 0:17 0.00–0.36 0:81 0.70–0.90

Q5 0:21 0.00–0.41 0:81 0.72–0.88

EXP E1 0:99 0.73–1.24 0:71 0.53–0.83

E2 1:28 1.05–1.50 0:88 0.77–0.93

E3 1:08 0.84–1.32 0:70 0.54–0.80

E4 0:86 0.65–1.08 0:78 0.65–0.87

E5 1:27 1.03–1.50 0:80 0.70–0.87
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model, the SEM parameters, have in comparison to PLS-PM, broader bootstrapped
confidence intervals and higher point estimates of the parameters (see also Ringle
et al. 2012). We can see that formative PLS-PM indicators have a higher precision
of estimates, but loadings are attenuated due to unknown reliability of the latent
variables (as composites). On the other hand, the SEM latent variables account for
unreliability of reflective indicators and the factor loadings have a higher but partly
insignificant values, indicating smaller type I error probability.

Table 2 presents the path coefficients for SEM and PLS-PM models and R2 for
dependent latent variables.

Similarly to the outer model, in the inner model the precision of the estimates
(sampling variance) is lower for PLS-PM. Also, some of the path coefficients
are insignificant in SEM model. However, the R2 determination coefficients are
generally higher in SEM than PLS-PM which indicates a greater explanatory power.

This comparative analysis shows the bias and sampling variance trade-off effects
between these two models. PLS-PM are used in the instrumentalist paradigm (func-
tional school, managerial marketing, and CRM) where latent variables represent
the effect of data reduction and are nothing more than the empirical content of
its indicators. Predictive power of such models benefits with a smaller sampling
variance of estimates and a greater precision of the measurement of parameters’
values.

SEM models are used within the realist paradigm in marketing (institutional,
macromarketing, system schools) and are characterized by the higher explanatory

Table 2 SEM and PLS-PM inner models

Paths and SEM Confidence PLS-PM Confidence
Parameter variables estimates interval estimates interval

Paths IMA! EXP 0:90 0.63–1.13 0.60 0.51–0.70

IMA! LOY 0:35 0.11–0.60 0.23 0.10–0.39

IMA! SAT 0:65 0.15–2.50 0.20 0.10–0.32

EXP! QUA 5:88 2.09–7.67 0.85 0.81–0.89

EXP! VAL �3:22 �6.87–2.00 0.15 0.02–0.30

EXP! SAT �2:73 �12.37–7.18 0.00 �0.12–0.13

QUA! VAL 0:82 �0.09–1.92 0.65 0.49–0.78

QUA! SAT 0:38 �3.04–2.54 0.08 �0.08–0.26

VAL! SAT 1:47 0.70–6.44 0.62 0.47–0.76

SAT! LOY 0:28 0.09–0.46 0.56 0.42–0.69

R2 EXP 0:45 0.37

QUA 0:98 0.72

VAL 0:84 0.61

SAT 0:93 0.73

LOY 0:65 0.55

GFI/GoF 0.756 0.609
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power, smaller bias of estimates, and account for unreliability of the indicators
(correction for attenuation of the parameters).

4 Measurement Models Life Cycles

The diversity of the use of latent variables in marketing makes it almost impossible
to outline the evolution of latent variable concepts in the field of marketing.
However, one can identify at least five basic steps in the development of latent
variable models in marketing research.

The first stage (1960–1980) is based on classic psychometric approach (classical
test theory) with the exploratory factor analysis (or PCA) as a basic model for
estimation of latent variables. The validity and reliability were assessed by MTMM
approach and Cronbach’s ˛. The second stage (1980–1995) is a remarkable growth
of CFA and classic SEM models and model-based methods of validity (correlated-
traits correlated methods or correlated-traits correlated uniqueness) and reliability
analysis (Jöreskog and McDonald’s rho). The third era (1995-) represents the
popularity of FLV and PLS-PM models in marketing and consumer behavior. Fourth
stage (2000-) opens the growing importance of IRT and Rasch (Birnbaum) scaling
in marketing. And the last developments (2005-) involve SEM/PLS models in
the situation of population heterogeneity (multilevel CFA, models with random
loadings, FIMIX-PLS, and REBUS-PLS).

Figure 4 presents the popularity of particular approaches in a selected marketing
journals over the last 10 years. Undoubtedly, the major approach in marketing
literature is the confirmatory factor analysis with reflective items (RCFA), which is
the leading method used in marketing journals [Journal of Marketing (JM), Journal
of Marketing Research (JMR), International Journal of Research in Marketing
(IJRM), and Journal of Academy of Marketing Science (JAMS)].

However, many journals promote also partial least squares approach with
formative indicators (FPLS). Marketing Information Systems Quarterly (MISQ),
Academy of Marketing Science Review (AMSR), Journal of Marketing Targeting
and Positioning (JMTP), Journal of Business Research (JBR), and Long Run
Planning (LRP) among others, provide the platform for interesting (and often
emotional) discussions concerning latent variables with formative indicators.

The IRT and Rasch modeling have also growing importance in marketing
literature (Salzberger 2009; Salzberger and Koller 2013). JBR and JAMS are the
representative journals for this approach.
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Fig. 4 Latent variables in selected marketing journals

5 Summary

Operational definitions of latent variables are strongly related to the underlying
marketing paradigms. In last two decades the changing of marketing paradigms
(with respect to Service Dominant Logic) has opened space for the analysis of state-
based and dyadic/network relations among marketing actors.

Hence, the reference for the use of latent variables is rather a “descriptive–
relational” dimension than “reflective–formative” for the measurement of the
constructs within marketing theories. The use of latent variables in marketing
is more oriented toward the measurement of interaction and shared values of
dyadic/network entities as a unit of analysis. The growing acceptance of PLS-PM
and IRT approaches in marketing discipline confirms the (Bollen 2002) claim that
“there is no right or wrong definition of latent variables. It is more a question
of finding the definition that is most useful and that corresponds to a common
understanding of what should be considered latent variables.”

Understanding the statuses of the latent variables and schools of thought in
marketing may help to improve both the use of latent variables within discipline
and the effectiveness of communication between scholars.
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Business Intelligence in the Context
of Integrated Care Systems (ICS): Experiences
from the ICS “Gesundes Kinzigtal” in Germany

Alexander Pimperl, Timo Schulte, and Helmut Hildebrandt

Abstract Patients generate various data with every contact to the health care
system. In integrated care systems (ICS) these fragmented patient data sets of
the various health care players can be connected. Business intelligence (BI)
technologies are seen as valuable tools to gain insights and value from these huge
volumes of data. However so far there are just sparse experiences about BI used
in the integrated care (IC) context. Therefore the aim of this article is to describe
how a BI solution can be implemented practically in an ICS and what challenges
have to be met. By the example of a BI best practice model—the ICS Gesundes
Kinzigtal—it will be shown that data from various data sources can be linked in
a Data Warehouse, prepared, enriched and used for management support via a BI
front-end: starting with the project preparation and development via the ongoing
project management up to a final evaluation. Benefits for patients, care providers,
the ICS management company and health insurers will be characterised as well as
the most crucial lessons learned specified.

1 Background

Integrated Care (IC)—the networking of different healthcare providers—has had an
increased presence on the German political agenda in the last decade (SVR 2012).
Also internationally integrated care initiatives get political attention (Stein et al.
2013; Sun et al. 2014). These efforts can be seen as part of the governmental attempt
to address a variety of problems observed in their healthcare systems resulting from
institutional fragmentation. These problems include gaps in information exchange,
difficulties in coordination between different levels of care, lack of coordination
between sectors, poor financial incentives for unquantifiable service expansions as
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well as missing common goals and values (Amelung et al. 2012). These problems
are associated with unnecessary risks for patients, such as: double examinations with
X-rays (Schonfeld et al. 2011), untuned and inappropriate medication resulting in
avoidable hospital admissions and deaths (Schrappe 2005). It has to be assumed
that these problems will be further enhanced in the future with the high and ever-
increasing number of patients with chronic and psychological conditions (Amelung
et al. 2008).

Effective Information and Communication Technology (ICT) is seen as a vital
tool to reduce this burden (Hammersley et al. 2006). ICT ensures in IC that the
correct information is exchanged and understood, while at the same time laying the
foundation for stable cooperation and changes (Janus and Amelung 2005).

However, the establishment of an ICT structure alone may likely be insufficient.
Data which could be generated by such an ICT structure must in addition be
processed in a way that it can trigger a continuous learning and improvement process
(Kupersmith et al. 2007; Vijayaraghavan 2011). “Business Intelligence” (BI) is often
used as generic term for this: “Business Intelligence is the process of transforming
data into information and, through discovery, into knowledge” (Behme 1996).

In Germany most IC approaches are in practice still a long way from BI solutions.
A study of practice networks, showed, for instance, that only a very few networks
have a common IT architecture or strategy, let alone a BI system (Purucker et al.
2009). One of the leading networks is Gesundes Kinzigtal (GK). The OptiMedis
AG, the shareholder and management partner of the Gesundes Kinzigtal (GK)
GmbH, was awarded with the “BARC Best Practice Award for Business Intelligence
and Data Management 2013,” for the BI system it runs for GK. The award was
granted by a jury of experts and 300 visitors from the BARC Business Intelligence
Congress in 2013 (BARC 2013).

The regional healthcare network GK was established in 2006 by two statutory
health insurers (SHI)—AOK Baden-Württemberg (AOK BW) and LKK Baden-
Württemberg (LKK BW)—and the GK GmbH. This company is two-thirds owned
by the Medizinisches Qualitätsnetz Ärzteinitiative Kinzigtal e.V. (MQNK—a net-
work of physicians in the region) and one-third by the management and investment
company OptiMedis AG. It is the only population-based IC-contract in Germany
that took on joint economic and medical responsibility for all indications and health
service sectors (excluding dental health) in a long term contract (9 years) with
sufficient investment and which is thoroughly scientifically evaluated compared to
standard care (Siegel et al. 2014). The IC-contract includes approximately 33,000
insured persons, of both SHI, living in the region of Kinzigtal. This is approxi-
mately half of the whole population living in this region (Hermann et al. 2006).
Compensation of GK by cooperating SHIs is based on performance. Only when
the quality of medical care is at least as good or better than, and simultaneously
less expensive than, similar treatment and results for comparable insured persons
of similar age, gender and health, does GK receive appropriate remuneration
(Hildebrandt et al. 2010). Besides the improvement in the health of the population
and the economic efficiency of healthcare, improving the patient’s experience
represents the third substantial goal of the IC agreement. This goal triangle of
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GK resembles the Triple Aim developed by the IHI Institute (Berwick et al.
2008; Hildebrandt et al. 2012). To achieve these objectives GK coordinates care
processes across sectors, implements its own disease management and prevention
programs, but also makes extensive use of other existing disease management
programs. In addition, it concludes on-site contracts with service providers for
additional services and compensation, integrates sports and social clubs, social
services and self-help organisations and conducts healthcare research studies as
well as regular controlling (Hildebrandt et al. 2010). A fundamental requirement
for both of the last-named tasks is efficient networking through ICT infrastructure
with an adequate BI system built onto that. In the following sections the BI system
in GK is discussed in more detail, starting from the data sources through the data
processing and the Data Warehouse to the analytical capabilities and application
in a continuous improvement process. Finally, challenges and lessons learned are
outlined.

2 Transforming Data into Information: Data Sources, Data
Processing and Data Warehouse of Gesundes Kinzigtal

As a first step, in a BI system data have to be collected and transformed into
information (cf. hierarchical process in Fig. 1,1) whereas for this article the term
data relates to discerned elements (Liebowitz 2006). Data is raw and can exist in
any form useful, such as structured data (spreadsheet holding diagnoses data coded
with ICD10) or not easily useful, i.e. unstructured data (clinical findings as free text)
(Ackoff 1989 as cited in Riley and Delic 2010). In the context of the integrated care
systems (ICS) GK there is a multitude of data sources used by OptiMedis in the
Data Warehouse (for further details on the data sources and the Data Warehouse
cf. Pimperl et al. 2014a). The main data source are the monthly updated insured
person-based, but pseudonymised,2 claims data from the two cooperating SHI for
their 33,000 people living in the Kinzigtal region. These include data starting in
2003 for all care sectors, e.g. hospital claims including principle and secondary
diagnoses, operations, fee schedule numbers and diagnoses by outpatient providers
as well as drug remedy and aid prescriptions and much more (additional information
on SHI data can be found at: GKV Spitzenverband 2013).

1This article follows the theoretical model of Ackoff (1989) as cited in Riley and Delic (2010)
to define data, information and knowledge and bring them in a hierarchical connection. However,
there are various perspectives on this field. For an in-depth discussion, see, e.g., Zins (2007).
2In terms of data protection law this actually concerns semi-anonymous data, since there is no
way for OptiMedis and GK to resolve the unique pseudonyms related to insured persons. The
pseudonyms are generated by the SHIs, and are not disclosed.
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This SHI data is supplemented by further pseudonym-linked information from
service providers contracted by the GK GmbH as well as documentation of
the local management company GK. This includes, inter alia, secondary claims
and medical data (e.g. laboratory or cytology results) extracted directly from
the physicians’ electronic medical records (EMRs), electronic documentation for
disease management programs (eDMP) as well as billing or treatment pathway
documentation3 from the standardised IT solution for medical networking, CGM-
NET,4 used by the GK GmbH. The advantages of this data is that it is more readily
and quickly accessible and also includes additional care relevant information. Above
that, also primary data (e.g. from patient satisfaction surveys Stoessel et al. 2013),
external catalog data (e.g. ICD, OPS, ATC) and external comparative data, such
as risk structure equalisation scheme (=Morbi-RSA) allocations or quality report
findings, are used.

This diverse data is integrated via various ETL (extract, transform, load)
processes in the Core Data Warehouse (MS SQL Server). Thereby data are brought
into relational connections, standardised (e.g. standardised unique pseudonyms for
insured parties and service providers etc. across all data sources) and subjected to
quality checks, cleansing and normalisation. After this stage, data are, via additional
ETL processes, prepared for the analytical database. Amongst others, for instance,

• insurance selections,
• risk adjustment methods like propensity score and exact matching,
• relative time references (i.e. for example what happened a quarter prior or post

enrolment on a Disease Management Program),
• model and scenario calculations (e.g. risk structure equalisation schemes calcu-

lations, disease-related expense attribution models) and
• predictive modelling approaches

are implemented (for further details see Pimperl et al. 2014a,b; Schulte et al.
2012). Subsequently the data is processed in a Health Data Analytics- and Cost-
Accounting-OLAP Cube.5 Once the data is patterned in that way and can be
given meaning—this meaning can, but does not have to be useful—it becomes
information (Ackoff 1989 as cited in Riley and Delic 2010; Liebowitz 2006) and can
therefore be used in the Deltamaster BI front-end for various analyses and reports
(cf. Fig. 1).

3In the Gesundes Gewicht program, for example, the following are recorded: weight, girth, blood
pressure, fasting blood glucose, standard blood glucose, etc.
4For more information see OptiMedis AG (2014).
5OLAP is short for On-Line Analytical Processing and is often used as a synonym for multidimen-
sional data analyses. More detailed explanations can be found in Azevedo et al. (2009).
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Fig. 1 Schematic overview of the OptiMedis BI system (cf. Pimperl et al. 2014a)

3 From Information to Knowledge to Action: Applications
of the BI-System in Gesundes Kinzigtal

Information is factual (per definition of Kahaner 1997). It is “data that has been
given meaning by way of relational connection” (Ackoff 1989 as cited in Riley
and Delic 2010), such as in the Data Warehouse of OptiMedis. On its own this
“meaning”, as Ackoff further states, “can be useful, but does not have to be.” Infor-
mation pieces have to be filtered, distilled, analysed and synthesised in a collection
that is intended to be useful and can be acted upon (Ackoff 1989 as cited in Riley
and Delic 2010). Then, by adding insights and experience, information becomes
knowledge (Liebowitz 2006), respectively (business) intelligence (Kahaner 1997),
and may initiate actions. For that purpose the whole design of the BI system has
been embedded in the organisational and management structure of the ICS GK.
It supports the entire Plan-Do-Study-Act (PDSA)-management cycle, from setting
goals, through creating necessary conditions to measuring performance, followed
by taking action for further improvement and then repeat the model to anchor
sustainable change (Furman and Caplan 2007).

In the planning phase, analyses are used to generate the initial findings required
to determine the burden of disease, from a medical/epidemiological as well as an
economic perspective, in the relevant population. The goal is to identify the needs
and opportunities for intervention and then create priorities. Exemplary analyses
used in the project preparation by GK project managers as well as the doctors on
site in the project group, normally established for that reason, are shown in Fig. 2.
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Age and gender distribution: patients with heart failure vs. standard Gesundes Kinzigtal 
population 

Health care cost distribution per patient: patients with heart failure vs. standard 
Gesundes Kinzigtal population

Top 10 hospital diagnoses of heart failure patients
Drill-Down

Fig. 2 Schematic overview of the OptiMedis BI system (cf. Pimperl et al. 2014a)
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It illustrates a simple overview of the age and gender distribution of patients
with heart failure in comparison to the standard GK population (= all 33,000
insured persons, of both AOK and LKK BW, living in the region of Kinzigtal).
Via difference-bar-charts the difference between the heart failure patients and the
standard GK population are plotted. In this way significant differences of the
selected patient group can be easily spotted and the most relevant age groups
for an intervention can be identified. To complete the picture, also mean age,
life expectancy and incidence and prevalence are reported. Further, the health
care cost distribution, the allocations from the Morbi-RSA (= revenues of the
SHIs in Germany) and resulting contribution margins per patient for people with
heart failure are also analysed in comparison to the standard GK population. The
development over a period of 5 years is visually represented in small inline column
charts (sparklines) directly next to the actual value. A trend arrow indicates if there
is a significant increase or decrease. The exact alteration rate is also calculated for
1 year and 5 years. Since in this case hospital costs are high, a drill down on the
hospital sector is shown (top 10 hospital diagnoses of heart failure patients) to
further analyse comorbidities leading to a hospital case. Using OLAP-technology
such an analysis could also easily be applied to other diseases, such as depression
or hypertension, since only the selection on the medical indication would have to
be changed. The analysis displayed in Fig. 2 will automatically be calculated for the
new disease selected because of the underlying connections within the data in the
OLAP-cube. If the joint decision is made to implement a special systematic support
program for patients with a special condition, as it has happened, for example,
for the disease heart failure shown above in Fig. 2 (Schmitt et al. 2011), then this
program is also regularly evaluated (OptiMedis AG 2014). Control-group based
approaches (exact matching, propensity score matching) are used for that purpose
to reduce bias. These evaluations are carried out for the support, preventive and
health promotion programs for specific conditions, such as heart failure (OptiMedis
AG 2012) or osteoporosis (Schulte and Fichtner 2013), as well as for all enrolled
insured persons on a whole (Schulte et al. 2012).

Besides this a comparative benchmarking approach, based on a combination6

of Donabedian’s (2005) (hierarchical) structure-process-outcomequality framework
and Kaplan and Norton’s balanced scorecard approach (Kaplan and Norton 2001,
2004), is used to stimulate continuous improvement in the network providers.7

Performance measures for the evaluation are thereby grouped into the following
dimensions:

• Structure, divided into the subdimensions “Learning and Innovation” and
“Patient Structure” (illustrated e.g. by the indicators: participation in quality
circles, age and morbidity structure indicators of patients/doctors),

• Processes (e.g. review of quality of medical care measures—amongst others
guideline orientation, implementation of contracts as well as economical

6Cf. also similar approach in Gröbner (2007).
7For further details see Pimperl et al. (2013, 2014a).
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process measures like economically sound prescriptions: me-too/generic
quotas) and

• Healthcare outcomes, divided into the Triple Aim dimensions (operationalised
e.g. via mortality ratio, years of potential life lost, contribution margin, patient
experience).

This comparative performance management approach was and is continuously
being rolled out across the depth and breadth of the network, from network
management level to the individual network partners (GPs, specialists, hospitals,
pharmacies etc.). An example of such a report (health services cockpit for a GP
practice) is shown in Fig. 3.

Fig. 3 Health services cockpit for the GP practice (sample export of an overview dashboard from
the Deltamaster Business Intelligence Suite)
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These quarterly reports are sent to all GPs cooperating with the ICS GK. Each
practice can see their results in comparison to those of their colleagues in the ICS
(LP) as well as with practices in the region not contracted to GK, respectively
not participating in the ICS (NLP). Also the minimum and maximum value for a
measure is represented as a benchmark and every indicator has sparklines (small
inline charts) showing the development over time as well as trend arrows indicating
significant increases or decreases. A notation concept is also included: For example
the colours blue, red and grey are used to indicate that a value of an indicator should
be kept high (=blue), low (=red) or if the measure has just a general information
character (=grey), for instance. An example for a red-coloured quality indicator
that should be kept low is patients �65 with inadequate prescriptions in terms
of the FORTA D classification (Kuhn-Thiel et al. 2014). The concrete evaluation
is nevertheless left to the doctor concerned. For this purpose predefined detailed
reports for each indicator, through which the doctor can browse when necessary, are
also included: i.e. detailed benchmarking reports, or a list of medications that have
been prescribed to patients of the practice and which are, in terms of the FORTA
D list, potentially inadequate. To support the transformation of the knowledge
gainable through the health services cockpits to actions of improvement along with
the electronic dispatch of the feedback reports to the network providers, these are
integrated, in a variety of ways, in the GK management routine. For example, they
are utilised in the monthly Medical Advisory Board meetings, in project groups
and quality circles (e.g. the ICS drug commission), for regular practice visits by
employees of GK, at annual meetings between network management and network
partners as well as for preparing selected extracts in the internal newsletter and
during training and general meetings.

4 Lessons Learned and Outlook

Looking back at the more than 9-year history of the development and continuous
improvement of the BI system, there are lessons learned which could be relevant to
other ICS.8 A critical success factor is the commitment of the independent network
partners (doctors, SHIs etc.). These, with their data and engagement, are forming the
basis for establishing a data-based management process. At GK close trustful coop-
eration in an organisational-contractual framework (heterarchic network) is seen as a
fundamental prerequisite for the commitment and involvement of network members.
First, network members have—besides their intrinsic motivation to deliver good
medicine—on the basis of the contractual arrangement as partners in GK coupled
with the success-oriented remuneration model of the SHIs, a reinforced desire to
learn from the data and initiate a continuous process of improvement. On the other
hand, from the start the content in the BI system has been developed in conjunction

8Cf. also book contribution in German on this topic from Pimperl et al. (2014a).
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with the network members. This has created in turn confidence and trust, as well as
identification with the BI project. In addition, a simple, unified and well-structured
report design9 is essential to ensure acceptance. Detailed information on feedback
reports is even actively requested by some service providers now. For the majority,
however, it is still necessary to combine electronic distribution with concrete face-
to-face meetings in connection with the practice visits by employees of GK, project
groups etc. Furthermore the BI system must be extended to include health science
logic (cf., e.g. propensity score matching for risk adjustment), in order to generate
valid analyses. This must be done in such a way so as to make standardised
and automated analysis and reporting possible, since the evaluation of production
can otherwise not be commercially viable. Simultaneously the BI System must
maintain the flexibility necessary for ad-hoc analyses. This can be ensured by
using the sophisticated models already on the database level combined with a high-
performance OLAP system. Securing the quality, completeness and actuality of
the data is a major challenge. To ensure the best possible results here, on one
hand a variety of cleaning and projection modelling needs to be integrated in the
Data Warehouse while, on the other hand, new and further developments (e.g. the
networking software CGM-NET, developed with CGM) need to be implemented in
the source systems. And there is still great future potential. To date GK has only
really tapped into data from the medical service providers/partners in addition to the
claims date delivered by the SHIs and the own data collected. Yet, data extracted
directly from other partners, such as hospitals, pharmacies and physiotherapists
etc., could increase the speed of availability, just as additional information not
yet in the claims data could add important value to understanding and improving
healthcare processes. Over and above this, for example, a medical training centre
operated by GK is in the planning stages. In this centre a wide range of data for
training development and the state of health of the insured will be generated by
the training equipment, mobile apps and other devices, which could then also be
made available to all participants in the treatment process. On the whole the quick
provision of accurate, complete and quality-assured data is just a first step. The
greatest added value will only be seen with the enrichment and combination of the
data with other information already in the BI system, from which decision support
at the right time in the workflow, for the right actor, can be generated. Naturally the
highest priority in such a BI solution is also the protection of the sensitive data
of the insured persons being treated. It is important here to weigh the potential
benefits against the risk. In Germany to date there is also much which has not
been clearly defined by the law, creating some challenges for the IC projects. Often
sensible applications are blocked because of data protection, as unclear statutory
regulations are, out of a need to be cautious, applied more restrictively by data
protection authorities. Applications such as predictive modelling, in which the risk
of patients before the potential occurrence of severe health events (hospitalisation,

9Reduction in complexity with simultaneous density of information, e.g. graphic table, sparklines,
notation etc. (Bissantz 2010; Gerths and Hichert 2011).
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for example) can be assessed, with patients then being enrolled on appropriate
disease management programs, are currently possible in principle in GK, but require
substantial effort and have therefore not been applied fully. On the other hand, the
data protection topic in healthcare is, correctly so, a particularly sensitive issue, and
could—in the event of abuse—severely discredit IC. At GK the protagonists, i.e.,
besides management and, amongst others, a specially contracted external and legally
qualified data protection supervisor are therefore in very close consultation with
the various authorities in Baden-Württemberg and at federal level. This has already
led to legislative improvements as a result of federal initiatives. Even if this isn’t
the right place for an intensive cost–benefit ratio analysis of the investment effort,
since 2006, in the Data Warehouse and the evaluation routine,10 it can still be stated
that the very high levels of investment have nonetheless paid off, and that without
this investment the ever-growing seven figure savings contract results produced by
GK would not have happened. Above all, without this database, GK would not
have gained the ability to implement their own results, and would not be in a fair
negotiation position with SHIs. A business which depends on goodwill and blind
acceptance of the evaluation of their contract partners, is not really an independent
business, nor is it an equal partner. To conclude it should be noted that a variety of
data-based management opportunities already exist under the current conditions.
It is assumed that their full exploitation—and even more so their development
into a comprehensive BI system—including mobile and patient-generated health
data, real-time decision support systems and sophisticated predictive management
approaches—will still require some time. The goal remains that the management of
ICS must continue to evolve from pure empiricism to data-based evidence.
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Clustering and a Dissimilarity Measure
for Methadone Dosage Time Series

Chien-Ju Lin, Christian Hennig, and Chieh-Liang Huang

Abstract In this work we analyse data for 314 participants of a methadone study
over 180 days. Dosages in milligram were converted for better interpretability to
seven categories in which six categories have an ordinal scale for representing
dosages and one category for missing dosages. We develop a dissimilarity measure
and cluster the time series using “partitioning around medoids” (PAM). The
dissimilarity measure is based on assessing the interpretative dissimilarity between
categories. It quantifies the structure of the categories which is partly categorical,
partly ordinal and also involves quantitative information. The principle behind
the measure can be used for other applications as well, in which there is more
information about the meaning of categories than just that they are “ordinal” or
“categorical”.

1 Introduction

Heroin is an expensive and highly addictive drug. Heroin-dependent individuals
who aim at overcoming their addiction are offered a methadone maintenance
therapy (MMT) for many years. The main purpose of the MMT is not to help them to
achieve abstinence but to minimize the harm associated with the use of heroin. The
idea of MMT is to let drug users reduce the use of heroin by addicting to methadone
and then to quit the use of methadone. The effect of methadone lasts 24 hours and
consequently it has to be taken on a daily basis. To date there is no clear principle
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for the determination of the methadone dosage. Physicians prescribe dosages based
on their own intuition.

Research has been done on daily methadone dosage taken by participants. Strain
et al. (1993) studied treatment retentions and illicit drugs use and found that low
dose of methadone (�20 mg) may improve retention but were inadequate for
suppressing illicit drug use. Langendam et al. (1998) observed that participants
requested to stay at a lower dosage (�60 mg) because of fear of double addiction.
Bellin et al. (1999) studied associations between criminal activity and methadone
dosage and found drug users on a high dose (�60 mg) were less likely to return
to jail. Murray et al. (2008) found that methadone dosage might be a response to
misery. Peles et al. (2007) reported that the major risk factors for depression were
female gender and high dose (>120 mg). Gossop et al. (2000) applied the K-Means
clustering method with four groups to a 1 year follow-up study. Two groups showed
substantial reductions in their illicit drug use and criminality. They concluded that
in a certain group MMT was appropriate.

Ideally, drug users are expected to reduce the use of heroin by addicting to
methadone and then to quit use of methadone. The dosages should consequently
have a pattern in which they go up at the beginning of the treatment and later go
down. This would indicate detoxification. Physicians think that participants with
such a dosage pattern and a high attendance rate most likely will have a positive
outcome. Therefore, our objective is to develop a method to divide participants into
groups according to their behaviour, that is, patterns of daily methadone dosage,
and then find the differences between the groups. By clustering, we can study
the association between dosage patterns and demographic factors, the degrees of
addictions and retention of MMT. Also, the dosage patterns provide the possibility
of developing a guideline for prescribing a proper methadone dosage.

The problems of clustering the participants in our study are the fluctuations of
dosages and missing dosages. First of all, some participants who abused heroin
while receiving the MMT did not need the full dosages indicated on their prescrip-
tions to accommodate their addictions. In fact, they took a combination of drug and
methadone in order for their addictions to be satisfied, so it was not guaranteed
that the observed methadone dosages represented detoxication. Secondly, missing
dosages were not missing at random. They were recorded as zeroes but zero is not
normally a proper description of their state of addiction. We take account of these
issues and propose to categorize dosages for alleviating the fluctuations of observed
dosages and for keeping the sequences of missing dosages. Also, we propose a new
dissimilarity (“p-dissimilarity”) that quantifies the structure of the categories and
involves quantitative information. The dosage patterns will then be represented by
sequences of categories.
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2 Data

2.1 Plain Dosage Data

Daily dosages in milligram for 314 participants who received MMT between 01
January 2007 and 31 December 2008 were collected. These participants were
selected from a larger study using the criterion that they had not left the study
before the completion of 180 days and that they had at least 70 % nonzero records
of taking methadone. One month is often regarded as the minimum length of
receiving methadone treatment. Participants who stay in MMT for 6 months are
considered to be candidates who can achieve abstinence. We considered data over
180 days. Normally, participants got weekly prescriptions. They would occasionally
have multiple prescriptions but only one record of dosage taken on a single day.
Besides, there was a chance that participants abused drugs, so their demand for
daily methadone differed. Participants were allowed to take a dosage that was lower
than the prescribed dosage to avoid overdosing. Their behaviour of abusing drugs
was reflected by fluctuations in their dosage taken records. By and large, following
a weekly prescription, a participant took methadone daily for a period of 7 days.
Many participants dropped out and later returned to the treatment, or missed their
treatment on a number of days. This resulted in many “zero dosage” records.
However, their addiction to drugs was not zero, and these records were therefore
treated as “missing values”.

2.2 Category-Ordered Data

There are two problems with the plain dosages data. Firstly, some degrees of
dosage fluctuation are not meaningful. We take the assessment of the physician,
reflected in the prescription, as being more meaningful of the participant’s state of
addiction than occasional drug use or mood changes that may have led them to select
slightly lower dosages on specific days. However, daily dosages are still of some
informative value because not for every dosage taken there is a unique prescription
explaining it; sometimes participants had more than one prescription from more
than one physician to choose from. In principle, if no drugs are abused, methadone
taken by participants should show long sequences of stability. Secondly, missing
dosages are to be taken into account. These missing dosages usually have a specific
meaning, namely that the participant did not show up for receiving methadone.
Technically, these events are recorded as zero, but they could have various meanings.
In some occasions there was no change to the status of the participant compared to
surrounding days at which methadone was taken; the participant was just unreliable
or felt so well on the day that they did not believe that they needed methadone.
However, in some cases, particularly if there were longer absences, missing values
point to more severe problems of the participant, or a tendency to leave the study,
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or illicit drug use. In any case, this cannot be properly reflected by the value “zero”.
In this paper, we treat missing values as a specific category. Lin (2014) also carried
out experiments with imputation. A sensible scheme for imputation is difficult to
define, because it should depend on the non-missing values surrounding the missing
days, and also on length of periods of missingness.

Therefore we constructed a new data format by categorizing daily dosage. In
our study, cut points for categorizing dosages were defined by the physician. He
suggested that dosage in the range of 20 mg could be considered virtually the
same. This meant that the qualitative difference between two dosages in the same
interval could be treated as irrelevant. This corresponds to the fact that physicians
often used multiples of 20 mg in their prescriptions. We defined six categories for
dosages smaller than or equal to 20 mg, 21–40 mg, 41–60 mg, 61–80 mg, 81–100 mg
and greater than 100 mg, recoded as 1,. . . , 6 (Likert-coding). Another category
was “missing (zero)”. The resulting dataset is called “category-ordered data”. This
minimized the implications of irrelevant daily fluctuations and outliers (although
there were no really extreme ones), and reflected the interpretation of the dosages
by the physicians.

To explore the uncategorized and the categorized datasets, a heatplot is used.
This is a technique to represent data by colour. Each horizontal line in a heatplot
represents the data of each participant. Figure 1 shows the heatplots of plain dosage
and of the category-ordered data. Each horizontal line represents records of a
participant from day 1 to day 180. In the graph, 314 participants are ordered by
the average of their dosages. The colour spectrums of dosage and that of category
are displayed below the heatplots. We observe that most dosage records in the first
week are in category 1, as the initial prescription dosage for participants, most of
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Fig. 1 Heatplot of plain dosage data and heatplot of category-ordered data. Each horizontal line
represents records of a participant from day 1 to day 180. The 314 participants are ordered by the
average of their dosages
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which have no previous experience of the MMT, is 20 mg. Subsequently, the colours
of dosage start to change, reflecting the fact that the doctors started adjusting the
dosage. Also, it can be seen that most of these movements from category to category
go to the next nearest category.

3 The New p-Dissimilarity Measure

3.1 Motivation

We define a new dissimilarity measure called “p-dissimilarity” for the category-
ordered data by summing up daily dissimilarities between categories. In Lin (2014)
there is a discussion of dissimilarity measures that take into account the time series
structure, but as far as such measures are already in the literature, they cannot be
easily adapted to our data structure (such as methods related to fitting autoregressive
models to time series with continuous data) or they seem inappropriate such as
“time warping” (Berndt and Clifford 1994) because the absolute length of periods
of stability is very meaningful in the context of methadone therapy whereas such
lengths are treated as unimportant in time warping.

We will follow the philosophy outlined in Hennig and Hausdorf (2006), accord-
ing to which a dissimilarity measure should formalize the “interpretative distance”
between objects according to knowledge of the subject matter.

A specific feature of the “interpretative distance” for the data at hand is that
similarity between participants is mainly governed by periods in which they are
on the same dosage (category). The distinction whether categories on a day
are the same or different is more important than how different they are given
that they are different, because changing categories even between neighbouring
categories is interpreted as indicating a substantial change in the condition of the
participant. We will define a dissimilarity function that assigns a quantitative value
to distances between neighbouring categories and categories further apart in a
concave monotonic fashion, i.e. further categories are further away, according to the
dissimilarity, but the increase of the distance becomes smaller moving further away
from a category and its neighbours. This implies information that can be seen as
stronger than ordinal; note, however, that any method for defining distances between
ordinal categories amounts to imposing a quantitative effective distance between
them. This may be governed by the distribution of the data (as when midranks are
assigned or latent normality is assumed) or by the meaning of the categories and
the context, which we prefer. Our dissimilarity will involve a tuning constant p,
which will tune the level of information between treating the categories as purely
categorical (for p D 0, the dissimilarity will only count how often participants are
in different categories) and treating them as quantitative and equidistant (p D 1).
The “missing value” category will be treated in a specific way, as having the same
dissimilarity from all other categories.
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An example for the above is that if data for three participants (A,B,C) for 7 days
are [1, 1, 1, 1, 1, 2, 2], [1, 1, 4, 1, 1, 2, 2] and [1, 2, 1, 2, 1, 3, 2], we want to define
a dissimilarity measure that treats A and B as more similar than A and C, so the
effective distance between 1 and 4 between A and B on day 3 should not dominate
the fact that A and C differ on three different days.

3.2 Definition of the p-Dissimilarity

Let D.�; �/ denote the dissimilarity between participants and d.�; �/ denote the
dissimilarity between categories. Let xit 2 � D f1; : : : ; �; � C 1g be the category-
ordered data for the participant i on the tth day since they joined the MMT. � is the
number of Likert-coded dosage categories, and missing values are coded as � C 1.
The p-dissimilarity between participants i and i0 with a category for missing values
is defined by

d.x; y/ D ı.x; y/.1 � p˛.x;y/ C .1 � ı.x; y//.1 � pˇ/; (1)

D.i; i0/ D
TX

tD1

d.xit; xi0t/: (2)

where ı.x; y/ D 1.x � �; y � �/, an indicator that neither x nor y are missing,
0 < p < 1, ˛.x; y/ D jx � yj, the difference between the Likert codes of the
categories, and 1 < ˇ < .� � 1/.

The constant p tunes the dissimilarity between categories. The p can be inter-
preted as a switch between data being treated as categorical and linear in the
Likert codes. For x ¤ y and both non-missing, it can be shown that d.x; y/ D
.1 � p/

Pjx�yj�1
lD0 pl. Therefore d is monotonic in jx � yj and concave, see Fig. 2. For

Fig. 2 p-dissimilarity
between categories
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p � 1 this is almost linear in ˛.xit; xi0t/, whereas for p � 0 this is close to 1 for all
nonzero differences between the Likert codes.

The dissimilarity between any category and a missing value is .1 � p/ˇ. Missing
values can have very different meanings as explained above. Therefore missing
values were not treated as particularly close to any specific category, and the
constant of .1 � p/ˇ was even applied between two missing values, implying that
there could be a nonzero dissimilarity between two participants with the same values
on all 180 days if this included missing values. Also it means that in general the
p-dissimilarity violates the triangle inequality (although this is not the case if no
missing values occur). Note that Hennig and Hausdorf (2006) argue that fulfilling
the triangle inequality is not in itself a virtue of a dissimilarity measure, but only
if there are subject matter reasons why it should be fulfilled for the “interpretative
distance” between objects.

The parameter ˇ tunes the dissimilarity involving missing values compared to
the distances between non-missing values. ˇ D 1 means that missing values are
treated as if they were neighbouring to any category.

For practical application, the parameters p and ˇ need to be specified. p was
specified by subject matter considerations. Given the arguments before, it is clear
that p should neither be very close to 1 nor very close to zero, because the very
motivation for the p-dissimilarity is that a compromise between these extremes is
attempted. Guided by medical considerations, we chose p D 0:6, for which jx �
yj D 2 leads to a dissimilarity already very close to the maximum value, i.e. a
difference of two dosage categories between participants is already implied to be
very substantial, but d.x; y/ with jx � yj D 2 is still considerably larger than with
jx � yj D 1. ˇ was chosen as 1.42, which was the average of all jx � yj occurring
in the dataset between different participants on the same day with ı.x; y/ D 1, so
missing values were treated as “in average distance to everything”.

Arguments for choosing these parameters can only be imprecise. Lin (2014)
carried out sensitivity analyses using other values of p and ˇ, showing that changing
p and ˇ to values that can be seen as having a similar interpretation does not affect
the clustering below much.

4 Clustering of the Category-Ordered Data

We apply the PAM clustering method (Kaufman and Rousseuw 1990) with five
clusters and the p-dissimilarity with .p D 0:6; ˇ D 1:42/ to the category-ordered
data. The clustering is then related with further information about the participants.
In Lin (2014), various clustering methods (PAM, complete, average and single
linkage clustering) (Gordon 1999) have been compared for this dataset regarding
the average silhouette width (Kaufman and Rousseuw 1990) and the prediction
strength (Tibshirani and Walther 2005), which resulted in the choice of PAM with
five clusters.
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Fig. 3 Frequency of the categories from day 1 to day 30 for the five clusters. Each horizontal line
represents the number of participants in each of the seven categories from day 1 to day 30. The
colour designates the number of participants
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Several one-way ANOVAs and �2-tests were run to see whether characteristics
of the participants varied across clusters. There is not enough evidence to conclude
that the mean participant ages differ between the five clusters (p-value is 0.084).
The result of the ANOVA test about the cluster-wise mean ages of heroin onset
is borderline significant (p-value is 0.062), there could be some effect of age of
heroin onset. �2 tests show that there is not enough evidence to conclude that there
exists a relationship between clusters with respect to gender (p D 0:377), education
(p D 0:996), marital status (p D 0:429) and occupation, which is a binary variable
indicating whether the participant is occupied or not (p D 0:310). Figure 3 shows
the frequency of the categories from day 1 to day 30 for the five clusters. The y-axis
indicates category and the x-axis indicates days. The colour designates frequency.
We observe the following: (1) There is an upward trend in categories over time,
particular in cluster 5. (2) Cluster 1 seems to have more missing values than cluster
5. For convenience, we define the pattern of detoxification in three stages. Stage I
represents that the methadone dosage goes up, stage II represents the dosage staying
stable, and stage III represents the dosage going down. We attempt to summarize the
pattern of detoxification for each cluster by the (rough) time point on which the three
stages are observed to start: Cluster 2 (day 1-40-100), Cluster 3 (day 1-80-140),
cluster 4 (1-100-150), cluster 5 (1-100-150). Also, the majority of patients in cluster
4 and cluster 5 have their dosages in high categories. This means that participants
who are highly addicted to heroin might take longer to finish the detoxification
process.

5 Discussion

We selected a meaningful sample with 314 participants. We took account of the
weekly prescriptions, fluctuations in dosage taken records and patterns of missing
dosages, and defined the category-ordered data. The final clusters were obtained
by using the PAM method with five clusters and the p-dissimilarity. Unfortunately,
without the data of whether participants achieve abstinence or not, we cannot
understand the relationship between treatments and final outcomes. Despite the fact
that none of the five clusters could very easily be distinguished in terms of, say,
their demographics, the sequences of categories for the five clusters were clinically
useful. We found that the heroin onset age might have an influence on the patterns
of detoxification. Participants with low addiction reduced the use of heroin by
addicting to methadone in the first month and attempted to reduce/quit the use
of methadone by the third month. As for participants with high addictions, few
attempted to reduce the use of methadone up until the fifth month and most required
more time to finish the detoxification process.

Lin (2014) presents more cluster validation and discussion. She found that
the data could not be significantly distinguished from a Markov model without
clustering structure, which means that the observed patterns cannot be safely be
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assumed to correspond to a “real” clustering of methadone participants. She also
computed a clustering based on raw data (instead of category-ordered data), again
with PAM and five clusters. The adjusted Rand index between this clustering and
the one presented here was 0.54. In any case the clustering can be used for helping
physician’s decision making, because they give a simple summary of the complex
range of existing dosage patterns.

The p-dissimilarity is based on assessing the interpretative dissimilarity between
categories and focused more on sequence of constancy and less on sudden changes
in categories. This was used to measure dissimilarity between the 180-day time
series of the participants. It implements concepts of variables the categories of which
cannot properly be classified as purely categorical or ordinal, and can be used for
incomplete data. It could be applied in wider areas of application where researchers
have a quantitative idea about the interpretative distance between categories, which
could be between a categorical concept in which all differences between categories
have the same distance, and a Likert-scaling concept with linearity in the Likert
codes. See Hennig and Liao (2013) about related ideas for quantifying distances
between categories.
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Linear Storage and Potentially Constant Time
Hierarchical Clustering Using the Baire Metric
and Random Spanning Paths

Fionn Murtagh and Pedro Contreras

Abstract We study how random projections can be used with large data sets in
order (1) to cluster the data using a fast, binning approach which is characterized in
terms of direct inducing of a hierarchy through use of the Baire metric; and (2) based
on clusters found, selecting subsets of the original data for further analysis. In this
work, we focus on random projection that is used for processing high dimensional
data. A random projection, outputting a random permutation of the observation
set, provides a random spanning path. We show how a spanning path relates to
contiguity- or adjacency-constrained clustering. We study performance properties of
hierarchical clustering constructed from random spanning paths, and we introduce
a novel visualization of the results.

1 Introduction

In our current era of Big Data, and given the central importance of hierarchical clus-
tering for so many application domains, there is a need to improve computationally
on standard quadratic time algorithms (i.e. O.n2/ for n observation vectors, see,
e.g., Murtagh 1985). In Murtagh (2004), we even discuss constant time hierarchical
clustering, which presupposes that our data is, naturally or otherwise, embedded
in an ultrametric topological space. In this article, we take further our work in
Contreras and Murtagh (2012) and Murtagh et al. (2008). In those works, we
demonstrated the effectiveness of linear computational time hierarchical clustering,
using a range of examples, including from astronomy and chemistry.
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In particular we focus on very high dimensional data. We have demonstrated
in many clustering case studies that random projection can work very well
indeed. Random projection is a first stage of the processing, which allows both
computationally efficient and demonstrably effective hierarchical clustering, using
the Baire metric (Murtagh et al. 2008; Contreras and Murtagh 2012). The Baire
metric is simultaneously an ultrametric. In this article, we further develop the theory
and the practice of random projection in very high dimensional spaces. We are
seeking a computationally efficient clustering method for massive (large n, number
of rows), very high dimensional, very sparse data. Massive high dimensional data
are typically sparse (i.e. containing many non-presence or 0 terms).

To help the reader to reproduce our results, some ancillary material, including R
code, is available at http://www.multiresolutions.com/HiClBaireRanSpanPaths

2 Data

We present our methodology using a case study. We used the textual content of
34,352 research funding proposals, that were submitted to, and evaluated by, a
research funding agency in the years 2012–2013. We refer to these proposals as
proposals or documents. Because it permits search, and basic clustering, we used the
Apache Solr software (Solr 2013), which is based on the Apache Lucene indexing
software. Clustering in Solr is nearest neighbour-based, and is termed MLT, “more
like this”. Similarity scores between pairs of documents, based on textual content,
are produced. Murtagh (2013) provides a short description of the MLT similarity.
(Murtagh 2013, is available with this article’s ancillary material.) Our documents
were indexed by Solr, and MLT similarity coefficients were generated for the top
100 matching proposals. A selection of 10,317 of these proposals constituted the set
that was studied. Our major aim in this work was prototyping our approach, based
on the results provided by Solr. The R sparse matrix format (Matrix Market 2013)
was used for subsequent R processing. The maximum MLT score (i.e. similarity
coefficient value) was 3.218811. In matrix terms, we have 10,317 proposals (rows)
crossed by 34,352 proposals (columns). Non-zero values accounted for 0.2854 % of
the elements of this matrix.

Figure 1 serves to describe the properties of this data: a somewhat skewed
Gaussian marginal distribution for the proposals, and a power law for the similar
or matching MLT proposals. In Murtagh et al. (2008), we also find such Gaussian
and power law behaviour for high dimensional chemical data.

In this article, we will seek to cluster the 10,317 proposals, using their similarities
with the fuller set of 34,352 proposals as features. Justification for this feature space
perspective, rather than directly using the MLT similarities, is that MLT similarities
are asymmetric.

http://www.multiresolutions.com/HiClBaireRanSpanPaths
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Fig. 1 Marginal distributions by row and by column. Numbers of rows, columns: 10,317, 34,352

3 Random Projection and Use for Clustering

For a discussion of random projections used for clustering, and also description and
use of the Baire distance, see Contreras and Murtagh (2012). See also Sect. 4 below.
Given our input data, i.e. a cloud of points in k-dimensional space, conventional
random projection uses a random valued linear mapping in order to yield a much
reduced dimensionality space: f W R

k ! R
` where ` � k. In our approach we

are not seeking to use this `-dimensional subspace, but rather we take a consensus
ranked set of positions from the values of points on the ` axes. For this, we use
a set of ` random projections, each onto a one-dimensional subspace. Therefore
we consider ` random axes. The theory underpinning this, relative to conventional
(Kaski 1998) random projection, is provided in Murtagh and Contreras (2015).

To deal with variability of outcomes in random projections used for clustering,
Fern and Brodley (2003) project to a random subspace, apply a Gaussian mixture
model, using expectation maximization, then an ensemble-based data aggregation
matrix collects interrelationship information, which is submitted to an agglomera-
tive hierarchical clustering. In Boutsidis et al. (2010), a random projection subspace
is Shown to provide bounds on k-means clustering properties. The objective in Kaski
(1998) is to determine the subspace of best metric fit to the original space.

For Urruty et al. (2007): “We begin by clustering the points of each of the selected
uni-dimensional projections.” And: “in the second phase we refine the clustering
by using two processes: bimodulation and cluster expansion.” (The former term
introduced by those authors is for cluster specification using multiple random
projections; and the latter term used by those authors uses hyper-rectangles to find
the largest density cluster.) In this article, we develop in particular the early phase of
clustering on uni-dimensional projections, and we relate such clustering to the Baire
hierarchical clustering. Our objective is to develop a fast multiresolution hashing
approach to clustering, rather than the optimal fit of proximity relations in R

`,
relative to proximity relations in R

k.
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4 Baire Clustering of a Random Spanning Path

4.1 Random Spanning Paths

Consider a random projection into a one-dimensional subspace, i.e. onto a random
axis, of our set of documents. Such a random projection defines a permutation
of the object set. It thereby defines a random spanning path. Spanning paths are
useful and beneficial for data analysis. An optimal (i.e. minimum summed weight)
spanning path has been used as an alternative to a minimal spanning tree (Murtagh
1985, ch. 4). The spanning path is the solution of the travelling salesman problem
(Murtagh 1985, ch. 1). Braunstein et al. (2007) consider bounds for random path
lengths relative to the optimal path length in the case of Erdős–Rényi and scale-free
networks.

4.2 Inducing a Hierarchy through Endowing the Data
with the Baire Metric

Our algorithm is as follows. Determine a random projection of our data. Induce
a Baire hierarchy, using a regular 10-way tree. At level 1, the clusters will be
labelled by 0, 1, 2, . . . 9. At level 2, the labelling is 00, 01, . . . 99. Full details of
the Baire metric, and ultrametric, that endows the data with a hierarchy, is described
in Contreras and Murtagh (2012). Our data values are univariate. Without loss of
generality, take our values as being bounded by 0 and 1. An immediate consequence
of the Baire metric is that, at level 1, all values that start with 0.3 will be in the same
cluster; as will all values that start with 0.4; and so on for the 10 clusters at level 1.
The Baire metric is a longest common prefix metric.

A random projection onto a one-dimensional axis provides a view of the
relationships in the data, and hence a view of the clustering properties. See Contreras
and Murtagh (2012). The random projected values are found to be quite similar in
their interrelationships for different random vectors. We demonstrate this below.
We determine the consensus or majority set of neighbourhood relationships from a
sufficiently large set of random projections.

Now consider a given random projection. We determine a partition into clusters
of the observables, following projection onto the random vector. A set of partitions
can be sought, with their clusters ordered by inclusion.

Traditional approaches to clustering use pairwise dissimilarities, between adja-
cent clusters of points. (In partitioning, k-means takes a set of cluster centres and
stepwise refines this set of cluster centres, together with their cluster assignments.
Hierarchical clustering determines, stepwise, the smallest set of dissimilarities and
agglomerates the associated pair of clusters.)

A direct reading of a partition is the alternative pursued here. Let the distance
defined between adjacent clusters be a p-adic or m-adic distance (where typically
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p refers to a prime number, and m refers to a non-prime integer). We define a cluster
by an m-adic ball: Ur.a/ D fx W jx�ajm � rg. A Baire distance is associated with an
ultrametric (a distance defined on a tree, rather than the real number line). Balls are
either disjoint or are ordered by inclusion. It follows that for given r a partition is
defined. For a set of values of r the set of associated partitions have clusters that are
hierarchically structured, i.e. the associated set of clusters is a partially ordered set.

To address variability in results furnished by different random projections, we
adopt the following approach: first, determine a stable, mean random projection.
Then use it as the basis for a Baire clustering.

Parenthetically, let us address a comment sometimes made in regard to the m-adic
distance used by us here. (We use m D 10; p-adic distances, where p is a prime, lead
to an alternative to the real number system.) Consider two real measurements with
values 2:99999 : : : and 3:0000 : : : . These would be mapped onto different clusters
in our approach. The following remark is however an appropriate one here: “two
points on a complex protein may be close in Euclidean space but distant in terms
of chemical reaction propensity” (Manton et al. 2008, pp. 81–82). In other words, if
our digits have some form of inherent meaning, then it may well be fully appropriate
to consider very similar real values to be quite separate and distinct.

4.3 Stability of Random Spanning Path

In Fig. 2 we assess the convergence, based on the first random projection, and
the successive means of 2, 3, 4, : : : , 98 random projections. The squared error is
between the mean of these random projections, each normalized by its maximum
value, and the mean of the 99 random projections, also normalized. We note the
fast and stable (although not uniform) convergence. (The R code carrying out this
processing is available on the web site containing our ancillary material.)

Fig. 2 Squared error of the mean of 1, 2, 3, : : : , 98 random projections, relative to the mean of 99
random projections
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4.4 Random Spanning Paths are Highly Correlated

In the case of random projection sets (mean of 99 realizations, sorted), for
reproducibility we set the initialization seeds. For seeds 1471 and 3189, we had
a correlation coefficient of 0.9999919.

Another random projection set (mean of 99 realizations, sorted) was generated
with seed 7448. The correlations with the first two random projections were
0.9999937 and 0.9999905.

A further random projection was generated (seed 8914), and correlations with
the first three sets were: 0.9999933, 0.9999898, 0.9999933. We conclude that using
a given random projection set, in our work here resulting from 99 realizations, this
is a fully sufficient basis for further cluster analysis.

In Murtagh and Contreras (2015) we consider theoretical properties of one-
dimensional random projection in very high dimensional spaces.

5 Applying the Baire Distance to Obtain the Hierarchical
Clustering

5.1 The Baire Metric and Ultrametric

As we have noted, the Baire distance is a longest common prefix distance which is
also an ultrametric, or distance defined on a tree. In a given random projection, we
can read off clusters using their Baire distance properties. Consider four adjacent,
in rank order, projected values: 3.493297, 3.493731, 3.499185, 3.499410. The
maximum value found for this particular random vector was 35.21912. We fix, in
this instance, the projected values to be 8 digit values (viz., 2 digits in the integer
part, and 6 digits in the fractional part, with zero padding if necessary). We define
the Baire distance, with base 10, as 10 to the negative power of the last common,
shared, digit.

The first two of our projected values above have Baire distance equal to 10�4

(because they share these digits: 3.493). The second two of our projected values
above have Baire distance equal to 10�4. The Baire distance between the second
and third of our projected values above is 10�3. The first and the fourth of our
projected values have this same Baire distance, 10�3.

Having defined the Baire distance between projected values, we next consider
the Baire distance between clusters of projected values. Consistent with our
consideration of adjacency of projected values, a cluster is a segment or succession
of adjacent values. A singleton cluster is a single projected value. By considering the
agglomeration of adjacent values 3.493297, 3.493731 at Baire distance 10�4, and
furthermore the adjacent values 3.499185, 3.499410 also at Baire distance 10�4, we
have the agglomeration of these two clusters, or segments, at Baire distance 10�3,
since the digits 3.49 are shared.
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Computational analysis is as follows. For a random projection, we have the
product of a (sparse) k � ` matrix and a vector. Before taking sparsity into account,
this gives O.k`/ time. The mean of a fixed number of random projections requires
O.k/ time. The potentially linear Baire distance clustering comes from reading the
mean random projection values, with assignment of each in turn to cluster nodes
in the Baire hierarchy. In this way, a linked list of cluster (or node in the Baire
hierarchy) members is built up.

5.2 A Theorem Ensuing from the Baire Ultrametric

The agglomeration of clusters takes a cluster or segment of ordered values
.xlo : : : xhi/ to be agglomerated with a cluster of ordered values .ylo : : : yhi/. Based
on adjacency in the clustering of random projections, and our definition of Baire
distance between clusters, we have the following, where dB is the Baire distance:
dB.xlo; yhi/ D dB.xhi; ylo/.

If the two adjacent clusters are labelled cx and cy, then maxfdB.i; j/ j i 2 cx; j 2
cyg D dB.xlo; yhi/. Call this Baire distance dmax.cx; cy/. Similarly, minfdB.i; j/ j i 2
cx; j 2 cyg D dB.xhi; ylo/. Call this Baire distance dmin.cx; cy/. What we availed
of here was: xlo < xhi < ylo < yhi. From the foregoing description, the following
theorem holds.

Theorem for Baire distance, d: dmin.cx; cy/ D dmax.cx; cy/ for all contiguous
clusters, cx; cy.

To show this, we start with singleton clusters, and the definition of the Baire
distance, d. Following cluster formation, the cardinalities of the clusters will grow.
By induction this theorem is extended to clusters cx; cy of any cardinality. A simple
example ensues from the 4 points, together with their projected values, that were
discussed above in Sect. 5.1. Given the terms “single link” and “complete link”, as
used in traditional hierarchical clustering, this theorem establishes that single and
complete link agglomerative criteria are identical. This finding is consistent with
having endowed our data not just with a metric, but with an ultrametric.

It has been noted how a random projection on a one-dimensional subspace is a
random spanning path. This also establishes a contiguity or adjacency relationship
between all points that we are analysing. So our hierarchical clustering can also be
considered as a contiguity-constrained hierarchical clustering.

In Murtagh (1985) two contiguity-constrained hierarchical clustering algorithms
were discussed. Proofs were provided that both would guarantee that no inversions
could arise in the hierarchy, that is, there could be no non-monotonic change in
cluster criterion value. One algorithm, also developed by other authors, Ferligoj
and Batagelj (1982) and Legendre and Legendre (2012), was contiguity constrained
complete link clustering: the pairwise most distant set of (by requirement, con-
tiguous) cluster members determines the inter-cluster dissimilarity: dmax.cx; xy/.
The other contiguity-constrained hierarchical clustering was single link, where
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inter-cluster dissimilarity is defined as the pairwise closest set of cluster members
(minfdijji 2 c1; j 2 c2g), subject to the contiguity constraint.

By virtue of the theorem above, for all adjacent and agglomerable clusters cx; cy,
dmin.cx; cy/ D dmax.cx; cy/, we also have that the above described contiguity-
constrained complete link and the contiguity-constrained single link hierarchical
clustering methods are identical. This holds because of the Baire distance.

These perspectives add to the importance, in practice and in its theoretical
foundations, of the theorem for the Baire distance.

5.3 Visualization of Baire Hierarchy

Using a regular 10-way tree, Fig. 3 shows a Baire hierarchy with nodes colour-
coded (rainbow colour lookup table used), and with the root (a single colour, were
it shown), comprising all clusters, to the bottom. The terminals of the 8-level tree
are at the top. Ancillary material for this article, as noted in the “Introduction”, is
available. The R code used for Fig. 3 is listed there, and the code for the subsequent
analysis of clusters extracted from the hierarchy.

The first Baire layer of clusters, displayed as the bottom level in Fig. 3, was
found to have 10 clusters. (8 are very evident, visually.) The next Baire layer has 87

Fig. 3 Means of 99 random projections. Abscissa: the 10,118 (non-empty) documents are sorted
(by random projection value). Ordinate: each of 8 digits comprising random projection values
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clusters, and the third Baire layer has 671 clusters. See our ancillary material for a
study of the clusters at layers 1 and 2.

6 Conclusions

In Contreras and Murtagh (2012), there is reporting on analysis of clusters found
using the methodology developed here (in application domains that include astron-
omy and chemistry) and there is comparison with other, alternative processing
approaches.

We can state that our work is oriented towards inter-cluster analysis, rather than
intra-cluster analysis. That is to say, we want candidate observation classes, and
furthermore we seek to be selective about what we derive from the data, in order
to carry on to further use of the selected, derived clusters. Such overall processing
is very suitable for big data analytics. The theorem stated in Sect. 5.2 points to the
major importance of the Baire viewpoint. Further theoretical results are presented
in Murtagh and Contreras (2015).

Acknowledgements We are grateful to Paul Morris for initial discussions related to this work.
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Standard and Novel Model Selection Criteria
in the Pairwise Likelihood Estimation
of a Mixture Model for Ordinal Data

Monia Ranalli and Roberto Rocci

Abstract The model selection in a mixture setting was extensively studied in
literature in order to assess the number of components. There exist different classes
of criteria; we focus on those penalizing the log-likelihood with a penalty term,
that accounts for model complexity. However, a full likelihood is not always
computationally feasible. To overcome this issue, the likelihood is replaced with
a surrogate objective function. Thus, a question arises naturally: how the use of
a surrogate objective function affects the definition of model selection criteria?
The model selection and the model estimation are distinct issues. Even if it is
not possible to establish a cause and effect relationship between them, they are
linked to each other by the likelihood. In both cases, we need to approximate the
likelihood; to this purpose, it is computationally efficient to use the same surrogate
function. The aim of this paper is not to provide an exhaustive survey of model
selection, but to show the main used criteria in a standard mixture setting and how
they can be adapted to a non-standard context. In the last decade two criteria based
on the observed composite likelihood were introduced. Here, we propose some new
extensions of the standard criteria based on the expected complete log-likelihood to
the non-standard context of a pairwise likelihood approach. The main advantage is a
less demanding and more stable estimation. Finally, a simulation study is conducted
to test and compare the performances of the proposed criteria with those existing in
literature. As discussed in detail in Sect. 7, the novel criteria work very well in all
scenarios considered.
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1 Introduction

The aim of statistical model selection is to pick the model which represents the best
approximation of reality shown in the observed data. Model selection procedures
are needed almost everywhere: for example, in a linear regression context, the focus
is on variable selection; in cluster analysis, it is on the number of clusters and so
on. An extensive literature exists about assessing the number of components for
a finite mixture model. Different approaches were proposed, such as the bootstrap
technique, the directional score functions, the nonparametric methods and the penal-
ized likelihoods. In the sequel we focus on the last approach that balances accuracy,
represented by the log-likelihood, with parsimony, represented by the penalty term
whose function is to account for model complexity. One of the requirements is to
adopt a full likelihood approach to obtain the maximized likelihood value. However,
there exist situations in which the likelihood is cumbersome (for example, it involves
multidimensional integrals) and thus the maximum likelihood estimation is not
computationally feasible; for example, it happens in the mixture model for ordinal
data proposed by Ranalli and Rocci (2014). They suggested to adopt a pairwise
likelihood approach to estimate the model. Even if it is not possible to establish a
cause and effect relationship between model estimation and model selection, they
are definitely linked to each other by the likelihood. In other words, in both cases, we
need to approximate the likelihood; to this purpose, it is computationally efficient
to use the same surrogate function, i.e. the pairwise likelihood. It follows that the
chosen surrogate function has some consequences on the definition of the model
selection criteria. In fact, each sub-likelihood (a likelihood composed of a pair
of variables) is a true likelihood, but overall the pairwise likelihood (the product
of all sub-likelihoods) is not. Thus, the penalized criteria developed within a full
likelihood approach should be adapted to this framework. In Sect. 2 we summarize
the main features of the mixture model for ordinal data. In Sect. 3 we show the
main used criteria in a standard mixture setting, distinguishing two classes of
criteria: those based on the observed log-likelihood (Sect. 4) and those based on
the complete log-likelihood (Sect. 5). Some extensions to a non-standard mixture
setting are presented in Sect. 6: there we present both the existing and the novel
criteria. In Sect. 7, a simulation study is conducted aimed at testing and comparing
the performances of the criteria in a pairwise likelihood context. Finally some
concluding remarks are pointed out in the last section.

2 Mixture Model for Ordinal Data

In this section we describe briefly the model proposed by Ranalli and Rocci
(2014). Let x1; x2; : : : ; xP be ordinal variables and ci D 1; : : : ; Ci the associated
categories for i D 1; 2; : : : ; P. There are R D QP

iD1 Ci possible response patterns
xr D .x1 D c1; x2 D c2; : : : ; xP D cP/, with r D 1; : : : ; R. The ordinal variables are
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assumed to be generated by thresholding y D PG
g pg�.�g;˙ g/ that is a multivariate

continuous random variable distributed as a finite mixture of Gaussians (FMG). The
link between x and y is expressed by a threshold model defined as

xi D ci , �
.i/
ci�1 � yi < �.i/

ci
: (1)

Let  D fp1; : : : ; pG;�1; : : : ;�G;˙ 1; : : : ;˙G;�g be the set of model parameters.
The probability of response pattern xr is given by

Pr.xrI / D
GX

gD1

pg

Z �
.1/
c1

�
.1/
c1�1

� � �
Z �

.P/
cP

�
.P/
cP�1

�.yI�g;˙ g/dy D
GX

gD1

pg�r.�g;˙ g;�/ (2)

where �r.�g;˙ g;�/ is the probability of response pattern xr in cluster g. Thus, for
a random i.i.d. sample of size N, X, the log-likelihood is

`. I X/ D
RX

rD1

nr log

2

4
GX

gD1

pg�r
�
�g;˙ g;�

�
3

5 ; (3)

where nr is the observed sample frequency of response pattern xr and
PR

rD1 nr D
N. In the sequel we only mention the relevant literature; we point the reader to
the introduction of Ranalli and Rocci (2014) for a wider picture on the existing
literature; some applications to real data can be found in Everitt and Merette (1990)
and Ranalli and Rocci (2014).

A similar model is proposed by Everitt (1988) who introduces a mixture model
for mixed data (see also Everitt and Merette 1990). The joint distribution of the
variables is a homoscedastic FMG where some variables are observed as ordinal.
In particular, the ordinal variables are seen as generated by thresholding some
marginals of the joint FMG with different thresholds in each component. The
same framework is used by Lubke and Neale (2008). Their model is specified for
ordinal variables that are generated by thresholding an heteroschedastic mixture
of Gaussians, whose covariance matrices are reparametrized using a simplified
dependence structure (as it occurs in a factor analysis model). In all models
estimation is carried out by full maximum likelihood. Nevertheless there is always a
multidimensional integral, whose dimension depends on the number of observed
variables. Its numerical computation is time consuming and becomes infeasible
when more than 4 or 5 variables are involved. For this reason, in Ranalli and
Rocci (2014), the authors propose to estimate the model within the EM framework
maximizing the pairwise log-likelihood, i.e. a composite log-likelihood given by
the sum of all possible log-likelihoods based on the bivariate marginals. In general,
the pairwise maximum likelihood estimators have been proven to be consistent,
asymptotically unbiased and normally distributed. They are usually less efficient
than the full maximum likelihood estimators, but in many cases the loss in efficiency
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is very small or almost null (Lindsay 1988; Varin et al. 2011). In formulas the
pairwise log-likelihood is of the form

p`. I X/ D
P�1X

iD1

PX

jDiC1

`. I .xi; xj//

D
P�1X

iD1

PX

jDiC1

CiX

ciD1

CjX

cjD1

n.ij/
cicj

log

2

4
GX

gD1

pg�
.ij/
cicj

.�g;˙ g;�/

3

5 ; (4)

where n.ij/
cicj is the observed joint frequency in category ci and cj for variables

xi and xj, respectively, while �.ij/
cicj.�g;˙ g;�/ is the corresponding probability

obtained by integrating the bivariate marginal .yi; yj/ of the normal distribution with
parameters

�
�g;˙ g

�
between their threshold parameters. It is clear that the pairwise

approach is feasible as it requires only the evaluation of integrals on bivariate
normal distributions, regardless of the number of observed or latent variables y.
Nevertheless the estimation of all parameters is carried out simultaneously. As
regards the classification, in Ranalli and Rocci (2014) it has been suggested to use an
iterative proportional fitting algorithm based on the pairwise posterior probabilities
obtained as output of the pairwise EM algorithm in order to approximate the
joint posterior probabilities. For identification reasons, a component is fixed as a
reference group; thus, its mean vector is set to 0 and its variances to 1. On one hand,
the model proposed in Ranalli and Rocci (2014) can be seen as a particular case
of Everitt’s proposal (Everitt 1988). In fact here only categorical ordinal variables
are considered and the identifiability constraint is reformulated such that means
and covariance matrices can be computed. On the other hand, it is more flexible,
since each component has its own mean vector and covariance matrix and it is
computationally more efficient to be estimated, since a pairwise likelihood approach
is suggested. Indeed in Everitt, the means and the variances of the latent variables
are fixed to zero and one, respectively; the correlations are invariant and only the
thresholds are free to change over the components. In comparison with the proposal
of Lubke and Neale (2008), it is computationally feasible regardless of the number
of variables involved. Moreover, it is able to cover the true partition and the true
parameters (even if the accuracy depends on the sample size). For more details see
Ranalli and Rocci (2014).

3 Model Selection in a Mixture Setting

In order to estimate the mixture model, the selection of the number of components
G is needed. In some applications, it is specified a priori through the available
information; while in most of them, G has to be inferred from the data. A way of
dealing with this problem may be to use the likelihood ratio statistic test. However,
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in a mixture model context, the asymptotic distribution of the Wilks statistics
�2 log � does not have the usual distribution of chi-squared with degrees of freedom
equal to the number of independent constraints that are imposed to obtain the null
hypothesis, since the regularity conditions do not hold. In literature several results
about the asymptotic distribution of the likelihood ratio statistic, or some modified
versions, have been provided. Unfortunately they hold only in particular cases.
In general the problem is sorted out by using the bootstrap technique (Mclachlan
1987), even if, in practice, this approach could become infeasible due to the heavy
computation complexity required. Beside this, we found other approaches: the
proposal of Lindsay (1983) according to which the number of components is chosen
based on the values assumed by the directional score functions; the nonparametric
methods or the criteria based on method of moments. Furthermore, there exists
the wide class of information criteria based on log-likelihood function with simple
penalties accounting for model complexity. In the sequel, we focus on the penalized
likelihoods distinguishing two classes of criteria: those based on the observed log-
likelihood and those based on the expected complete log-likelihood.

4 Model Selection Criteria Based on the Observed
Log-Likelihood

In this section we briefly review the more known information criteria based on the
observed log-likelihood. These were developed by different theories and goals, but,
algebraically, all of them share the same principle: choosing the model with the best
penalized log-likelihood. Specific definitions of the penalty term lead to different
criteria. Historically the first information criteria (AIC) was introduced by Akaike
(1973). The best fitted model is chosen by minimizing

AIC D �2`. O / C 2d; (5)

where `. O / represents the observed log-likelihood, while d is the number of
independent parameters. It is based on the concept of minimizing the expected
Kullback–Leibler divergence between the likelihood under the fitted model and
the unknown true likelihood that generated data (see, e.g., Sawa 1978; Sugiura
1978). Furthermore, it was proved to be asymptotically efficient (Shibata 1980),
but not consistent. In addition, especially when the sample size is small, AIC
leads to overfitting. To overcome the inconsistency of AIC, two further criteria,
developed from a Bayesian point of view, have been proposed by Akaike (1978)
and Schwarz (1978), called BIC and SIC, Bayesian Information Criterion and
Schwarz Information Criterion, respectively. Even if they are called differently,
they were introduced about the same time and they are equivalent. The idea is to
select the model with the highest posterior probability: the posterior probability
can be approximated by a Taylor expansion, whose the first two terms represent
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the likelihood for the model considered and the model complexity, respectively.
According to BIC, the model is chosen by minimizing

BIC D �2`. O / C d log.N/; (6)

where N is the sample size. Comparing 2d with d log.N/, we note the BIC penalizes
the model complexity more heavily than AIC. Thus, it corrects the tendency of AIC
to fit too many components; however, if the sample size is small, BIC may select too
few components. Finally, Leroux (1992) has shown that AIC and BIC consistently
do not underestimate the true number of components G, while Keribin (2000) has
shown that BIC is a consistent criterion to estimate G.

4.1 Some Variants

Several variants of these model selection criteria have been proposed; these aim at
penalizing heavily the model complexity. Here we mention some of them:

AIC3 D �2`. O / C 3d

introduced by Bozdogan (1983). He shows that the so-called magic number 2 in the
original definition of AIC is not adequate for the mixture model. We refer the reader
to Bozdogan (1993) and references therein for more details. Liang et al. (1992)
proposed

BIC2 D �2`. O / C 2d log.N/

and

BIC5 D �2`. O / C 5d log.N/;

where the penalty terms have been specified on the basis of their experimental
results.

5 Model Selection Criteria Based on the Expected Complete
Log-Likelihood

In this section we survey some criteria developed specifically in a mixture model
context. They have been derived from the expected complete log-likelihood that is
usually considered to build the EM algorithm. As noted by Hathaway (1986), the
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log-likelihood of a mixture model can be written as

`. I x/ D `c. I x; z/ �
NX

nD1

GX

gD1

png log
pg f .xnI g/

PG
hD1 ph f .xnI h/

D `c. I x; z/ �
NX

nD1

GX

gD1

png log. png/I (7)

where `c is the conditional expectation of the complete log-likelihood given the
observed data, png is the posterior probability of gth component, given the nth
observation, while the second term is known as entropy of the fuzzy classification
obtained in the E-step of the EM algorithm, EN.p/. Biernacki and Govaert (1997)
introduced the Classification Likelihood Criterion (CLC), which selects as the best
model that one minimizing

CLC D �2`c. O / D �2`. O / C 2EN. Op/; (8)

where O.�/ indicates that we have replaced the unknown parameters with the corre-
sponding maximum likelihood estimates. On the other hand, Banfield and Raftery
(1993) suggested a modified version of BIC. This criterion is called approximate
weight of evidence (AWE) and it is given by

AWE D �2`c. O /C2d.0:5Clog N/ D �2`. O /C2EN. Op/C2d.0:5Clog N/: (9)

When the mixture components are well separated, then `c. O / � `. O / and thus
AWE is expected to be similar to BIC. Furthermore, an analogous criterium to BIC,
namely the integrated classification likelihood (ICL), was introduced by Biernacki
et al. (2000),

ICL D �2`c. O / C d log N D �2`. O / C 2EN. Op/ C d log N: (10)

BIC and ICL have the same structure, but they differ in the objective penalized log-
likelihood. The former considers the observed log-likelihood, while the latter the
expected complete log-likelihood.

The second equality in Eqs. (8)–(10) clarifies the role of EN: if we express
CLC, AWE or ICL in terms of the observed likelihood, EN works as penalty term
accounting for the fuzziness of the classification. How severely EN penalizes the
log-likelihood depends on how well separated the fitted components are: if the
components are well separated it takes values close to 0 (the minimum value),
otherwise it will take larger values. Finally, Celeux and Soromenho (1996) proposed
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to use the normalized estimated entropy EN. Op/ (NEC) as a criterion in its own right
for selecting the number of components G,

NEC D `. O / � `c. O /

`. O / � `1. O /
D EN. Op/

`. O / � `1. O /
; (11)

where `1. O / denotes the likelihood for a unicomponent mixture model. In this
regard, Biernacki et al. (1999) introduced a procedure to choose the number of
components: if g D 1, NEC takes value 1; to chose g > 1 rather than g D 1,
NEC should take values less than 1.

6 Extensions of the Standard Criteria

As said in the Introduction, it is not always possible to estimate a model through a
full maximum likelihood approach. In Sect. 2 we gave an illustrative example where
a pairwise likelihood approach was adopted. In the last decade, criteria based on the
observed composite likelihood were developed. However, analogous criteria to the
expected complete log-likelihood do not exist. In the sequel, these are introduced
for an experimental purpose.

6.1 Existing Criteria Based on the Observed Composite
Log-Likelihood

The criteria based on the observed composite likelihood have a penalty term that
was already known in model selection literature. This was introduced in a mis-
specified model framework. These criteria are based on the following intuition: if
the fitted model is different from that one generated data (in other words the fitted
model is mis-specified), then, they need a correction for the bias introduced. A
generalized version of AIC was introduced by Takeuchi (1976) with the criterion
called Takeuchi Information Criterion (TIC), according to which the model is
chosen minimizing

TIC D �2`. O / C 2tr
n OH�1

. O / OV. O /
o

; (12)

where

OH. O / D � 1

N

NX

iD1

r2 log f .xiI O /
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and

OV. O / D 1

N

NX

iD1

�
r log f .xiI O /

� �
r log f .xiI O /

�0
:

It has the same form as AIC if the model is true; in this case OH. O /�1 tends to
be equal to OV. O / and the trace reduces to the number of estimated parameters
(i.e. d). The two criteria based on composite likelihood share the same underlying
assumption as TIC, since each term of the composite likelihood is a true likelihood,
but overall it is not. Furthermore, the sub-likelihoods are correlated and thus
OH. O /�1 ¤ OV. O /. These criteria are the Composite AIC (C-AIC) and Composite
BIC (C-BIC) introduced by Varin and Vidoni (2005) and Gao and Song (2010),
respectively. They combine the goodness-of-fit for a given model (minus twice the
composite log-likelihood — here, we consider the pairwise log-likelihood) and the
penalty term for the model complexity,

C-AIC D �2p`. O / C 2tr
� OH�1 OV

�
; (13)

C-BIC D �2p`. O / C log Ntr
� OH�1 OV

�
; (14)

where H is the sensitivity matrix, H D E.�r2p`. I x// while V is the variability
matrix (the covariance matrix of the score vector), V D Var.rp`. I x//. They have
the same structure of AIC and BIC; the only difference is the way used to count
the number of parameters; the identity H D V does not hold, since the likelihood
components are not independent (in contrast to the full likelihood theory). Referring
to the model presented in Sect. 2, sample estimates of H and V are

OH D � 1

N

RX

rD1

nrr2p`. O I xr/

and

OV D 1

N

RX

rD1

nr.rp`. O I xr//.rp`. O I xr//
0:

The main drawback of C-AIC and C-BIC is the computation of the matrices OH and
OV. In the following simulation study, in order to obtain the empirical estimates of
the sensitivity and variability matrices, we have used a numerical approximation
technique. More precisely, the derivatives are estimated by finite differences. As
regards the variability matrix, a covariance matrix of the score function has been
estimated for each response pattern. Referring to the model presented in the second
section, computationally speaking the variability matrix has been obtained by
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multiplying a matrix including the score functions for each response pattern times
a diagonal matrix with the frequencies nr on the main diagonal times the first
matrix transposed. As regards the sensitivity matrix, we know from the theoretical
results of the pairwise that each sub-likelihood (i.e. each component of the pairwise
likelihood) is a true likelihood; this means that the second Bartlett’s identity holds.
This allows us to estimate the sensitivity matrix in the same fashion as before.
However in this case the diagonal matrix has the frequencies nxixj on the main
diagonal and the score functions refer to each response pattern for each pair of
variables. Finally, the trace is obtained by summing the generalized eigenvalues of
the two matrices, i.e. by solving the equation OVx D � OHx. This allows to avoid
inverting the sensitivity matrix, that may be imprecise and unstable.

6.2 Novel Criteria Based on the Expected Complete Composite
Log-Likelihood

The computational complexity of the existing criteria based on composite log-
likelihood, gave us motivation to investigate the behaviour of criteria based on
the expected complete composite log-likelihood. We focus on the pairwise log-
likelihood, but all the following extensions can be easily generalized to any other
composite likelihood. The key point is to show that the principle of the fuzzy log-
likelihood is also true for a pairwise log-likelihood, that is reported in the Appendix.
This justifies the extension of all criteria based on the complete log-likelihood
to the complete pairwise log-likelihood without violating any assumption about
the specification of the model, in principle. Furthermore, they have the appealing
feature to be estimable completely from the output of the pairwise EM algorithm. In
the following simulation study, we explore more in depth the empirical behaviour
of CLC, AWE, ICL and NEC by replacing the expected complete log-likelihood
in (8)–(11) with the expected complete pairwise log-likelihood. We indicate these
novel criteria with p-CLC, p-AWE, p-ICL and p-NEC, respectively. However, to
be more precise, the principle of the fuzzy pairwise log-likelihood justifies only
partially some of these extensions. In fact, as regards AWE and ICL, they require the
specification of d; in the simulation study it was set equal to the sum of the number
of estimated parameters in each term of the pairwise log-likelihood. However, this
choice was made from a practical point of view and a honed choice should be
considered in future.

7 Simulation Study

Here, we consider the model presented in Sect. 2 to conduct a simulation study
aimed at comparing the performances of the model selection criteria presented
previously. Eleven criteria, namely AIC, AIC3, BIC, BIC2, BIC5, C-AIC, C-BIC,
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p-CLC, p-AWE, p-ICL and p-NEC were included in the study. We did not include
CLC, AWE, ICL, NEC and TIC since the main aim was to see if the novel criteria,
that are easier to estimate, have competitive performances to C-AIC and C-BIC.
Nevertheless, a naive extension of the standard criteria, AIC, BIC and their variants
have been included as benchmarks.

They were computed using the maximum pairwise log-likelihood instead of the
full maximum likelihood. As regards the number of parameters d, it was specified
as the sum of the number of parameters in each sub-likelihood. We simulated 250
samples from a latent mixture of Gaussians in eight different scenarios considering
three different experimental factors: the sample size (N D 500; 2500), the thresholds
(equidistant or non-equidistant) and the separation between clusters (well separated
or non well separated). In the last case, the separation between clusters is given by
distance between mixture component means. In each scenario, we simulated three
ordinal variables with six categories by thresholding a two-component mixture with
p1 D 0:3, �1 D Œ0; 0; 0	 and

˙ 1 D
2

4
1 �0:5 �0:6

�0:5 1 �0:3

�0:6 �0:3 1

3

5 ; ˙ 2 D
2

4
2:9 1:9 2:8

1:9 1:3 2:0

2:8 2:0 4:2

3

5 :

The remaining parameters vary with the scenario, as shown in Table 1. For each of
the 2000 simulated datasets, we have fitted different number of components, G D
1; 2; 3. A criterion based on the Aitken acceleration has been used as a convergence
criteria (Böhning et al. 1994) for the EM algorithm. It was stopped when the increase
in the asymptotic estimate log-likelihood between two consecutive steps was less
than 
 D 10�2, i.e. when j `1iC1 � `1i j< 
, where

`1iC1 D `i C `iC1 � `i

1 � ci
and ci D `iC1 � `i

`i � `i�1

:

To carry out this simulation study, we wrote our own Matlab code. The results in
Table 2 suggest that the naive AIC, BIC and their variants are not reliable at all.
As expected, their performances are worse than those shown by any other criteria
considered, since they are not taking into account the dependencies between the
pairwise components. Moreover, it is surprising to know that sometimes when the

Table 1 True values of the mixture mean vectors and thresholds under different scenarios

Groups well separated and equidistant thresholds and non-equidistant thresholds

�2 D Œ3; 2;�4	

� D Œ�1:2;�0:6; 0; 0:6; 1:2	 � D Œ�1:5;�0:5; 0:25; 0:75; 1	

Groups non well separated and equidistant thresholds and non-equidistant thresholds

�2 D Œ1:5; 1;�1:5	

� D Œ�1:2;�0:6; 0; 0:6; 1:2	 � D Œ�1:5;�0:5; 0:25; 0:75; 1	
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groups are not well-separated AIC and BIC work better compared to the cases in
which the groups are well separated. However, a kind of consistency is presented,
since their performances improve as the sample size increases. As regards C-AIC
and C-BIC, the percentage of selecting the true number of components increases
with the sample size. There is no significant difference between the scenarios
with equidistant/non-equidistant thresholds and well-/non well-separated groups.
However, C-BIC seems to work slightly better. Finally, all the criteria based on
the expected complete pairwise log-likelihood show very competitive results; in
some cases they behave even better than C-AIC. Once again, as the sample size
increases they improve their performances, while the other two experimental factors
(equidistant/non-equidistant thresholds and well/non well separated) do not affect
them.

It is worth making some further observations. Firstly, compared to C-AIC and C-
BIC they can be estimated more easily: their estimation is less demanding and more
stable. Indeed they can be obtained completely from the output of the pairwise EM
algorithm without requiring any derivative estimations. Secondly, even if, so far,
there is no theoretical justification to equal d to the sum of the number of estimated
parameters in each sub-likelihood, its weight as penalty does not seem to affect the
performances of the criteria (differently from AIC, BIC and their variants).

8 Conclusions

In this paper we have briefly surveyed the more known model selection criteria
used within a mixture framework, focusing on the model proposed by Ranalli and
Rocci (2014) as motivating example. The estimation method used belongs to the
composite likelihood; this has some consequences on the construction of the model
selection criteria. We have outlined three different groups of criteria discussing
their strengths and weaknesses: those based on the observed log-likelihood, those
based on the expected complete log-likelihood and the extensions developed for
a composite likelihood setting. In the latter case, we have introduced some novel
extensions of the standard criteria (p-CLC, p-AWE, p-ICL and p-NEC). Then
the differences in performances have been illustrated through a simulation study.
It gave an interesting result: the novel criteria based on the expected complete
pairwise log-likelihood work very well in all scenarios considered; they sometimes
behave even better than C-AIC and C-BIC, i.e. the two main criteria developed
within a composite likelihood framework. Thus, it seems reasonable to use these
criteria; moreover, they are more stable numerically, since they do not require
any derivative estimations and they can be easily obtained from the output of the
EM-like algorithm. Although there still remains some undone work, for example,
justifying the choice of equalling d to the sum of the number of estimated parameters
in each sub-likelihood, the results seem to be very promising.
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Appendix

Maximizing the observed pairwise log-likelihood is equivalent to maximize the
fuzzy classification pairwise log-likelihood. This partially justifies the behaviour
of the criteria based on the expected complete pairwise log-likelihood. In this
appendix we derive the pairwise EN term. This is useful to two things: if we
define the pairwise EN, the criteria based on the expected complete pairwise log-
likelihood can be seen as the observed pairwise likelihood penalized by the pairwise
EN term. Moreover, it gives us an idea about the separation between the mixture
components.
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Textual Information Localization and Retrieval
in Document Images Based on Quadtree
Decomposition

Cynthia Pitou and Jean Diatta

Abstract Textual information extraction is a challenging issue in Information
Retrieval. Two main approaches are commonly distinguished: texture-based and
region-based. In this paper, we propose a method guided by the quadtree decomposi-
tion. The principle of the method is to recursively decompose regions of a document
image is four equal regions, starting from the image of the whole document. At
each step of the decomposition process an OCR engine is used for retrieving a given
textual information from the obtained regions. Experiments on real invoice data
provide promising results.

1 Introduction

Document dematerialization consists in the conversion of documents into digital
contents, using optical character recognition (OCR), automatic document recog-
nition, or automatic document reading tools. These tools have some limitations
including:

• dependence to the nature of the documents: invoices, recipes, novels, forms, etc.;
• low capacity to recognize handwritten documents;
• low capacity to circumscribe given information.

Much research efforts have been performed in Information Extraction (IE) for
Information Retrieval (IR) (Jacobs 2014). The task of Information Extraction is to
identify a predefined set of concepts in a specific domain, ignoring other irrelevant
information, where a domain consists of a corpus of texts together with a clearly
specified information need (Piskorski and Yangarber 2013). According to Sumathi
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et al. (2012a) Text Information Extraction (TIE) in images as a sub-part of IE is
concerned with extracting the relevant text data from a collection of images. Sumathi
et al. (2012b) identified five stages in TIE process:

• Text detection: determine presence of text in images;
• Text localization: determine the location of text in images and generate boxes

around text;
• Text tracking: reduce the processing time for text localization;
• Text extraction: separate text from the background of images;
• Text enhancement: improve the quality (resolution, noise,. . . ) of extracted text.

A 6th stage can be added to the previous stages:

• Text recognition: transform extracted text images into plain text.

Different types of images can be distinguished in the literature: document image,
scene text image, caption text image. Document image is a single-page produced
from a scanner, a fax machine, or by converting an electronic document into an
image format (JPEG or TIFF). Scene text image is natural scene which contains
text. Caption text image is image with artificial embedded text. In this paper we are
exclusively concerned with document images. In TIE system two main approaches
are considered in the literature:

• the region-based approach (Ying et al. 2008): this approach is based on color or
gray scale features of text regions in images.

• the texture-based approach (Wei et al. 2009; Ying et al. 2006): this approach is
based on textural features (direction, intensity, regularity, alignment,. . . ) of text
regions in images.

Text localization as a part of TIE is a challenging domain mainly due to the
font non-uniformity, styles, and quality variability for a given type of document
(Emmanouilidis et al. 2009). Emmanouilidis et al. (2009) proposed a text local-
ization approach for binarized printed document images. In the area of TIE, their
approach is a mix of text detection and text localization according to the definition
of text localization given above. Indeed, they try to detect text regions and include
them in rectangular bounding boxes. Moreover, they work on document images such
as pages of scientific journals which contain text and scenes.

Another issue in text localization is the location variability of the text sought,
even if the corresponding textual information is inherent to the document type under
consideration. For example, invoices must include the company identifier, but, the
location of this information may vary depending on the company. This is most likely
due to the lack of a standard in invoices’ layout. The present paper is concerned
with both of the localization and the retrieval of inherent textual information from
document images. More precisely, we focus on how to define a rectangular box
around a given textual information. To achieve that, we propose an approach
based on the quadtree decomposition. The principle of the method is to recursively
decompose regions of a document image in four equal regions, starting from the
image of the whole document. At each step of the decomposition process an OCR
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engine is used for recognizing and extracting a given textual information from
the obtained regions. Section 2 describes the quadtree decomposition. Section 3
presents the proposed textual information localization algorithm. Experiments on
real invoices data are described in Sect. 4 followed by a conclusion.

2 Quadtree Decomposition

The quadtree decomposition, developed by Finkel and Bentley (1974), is a method
of hierarchical cell decomposition of an environment that can be represented as a
two dimensional map. A quadtree is a tree data structure in which each internal node
has exactly four children. A quadtree is shown in Fig. 1. The decomposition starts
by dividing a two dimensional space into four equal regions. Then, each region may
be recursively divided into four equal regions. One or more criteria may be set in
order to decide whether or not a region should be divided.

The quadtree decomposition is widely used in the literature for image processing
and image retrieval. To mention a few: in Dagher and Taleb (2014) the quadtree
decomposition is applied to an image in association with a wavelet transform for
image denoizing. Ramanathan et al. (2011) proposed an image retrieval technique
which takes into account the spatial occurrence of a visual word in an image
along with the co-occurrence of other visual words in a predefined region of the
image obtained by a quadtree decomposition of the image. Other applications of
the quadtree decomposition or quadtree structure usage such as image segmentation
(Minaee et al. 2014), video coding (Yuan et al. 2012), document analysis (Gatos
2014) can be found in the literature.

In the present paper, we used quadtree decomposition to localize and retrieve
textual information from document images. Document images are divided into
regions in which we try to extract given textual information. We mentioned in the
introduction that OCR tools have limitations such as the difficulty to recognize
efficiently different types of documents depending on the complexity of their
layout in particular. We observed a better efficiency of the used OCR engine
on sub-regions of images than on the full images. Indeed, we observed that the
decomposition of images leads a reduction of noise in the images. The main interest
of the decomposition is that it allows the OCR engine to benefit from a zoom

Fig. 1 A quadtree
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effect (applied to increasingly small regions) which enhances character recognition
efficiency.

The following section describes the proposed algorithm for textual information
extraction. To the best of our knowledge the quadtree decomposition has never been
used for this purpose.

3 The Textual Information Localization Algorithm

We have mentioned earlier weaknesses of OCR tools which recognize only partially
or incorrectly textual information contained in document images. Moreover these
tools do not allow extraction of reusable (by a computer program) information.
Indeed, OCR engines are designed to extract the whole mass of textual information
without distinguishing the relevant ones from the others. We observed that when
OCR is applied on full images the result is a block of plain text corresponding to all
of textual information contained in the images. But a part of this retrieved textual
information is often noise, compared to the desired information. The aim of the
presented algorithm is to localize and extract these information without noise.

Let I be a document image from which we want to locate and extract a given
textual information T. The image I may be obtained from a device for acquiring
digital images such as a scanner. To locate and extract a given textual information
from I we use a regular expression E describing T. For example, the regular
expression to find the net amount of an invoice can be written “(nnbTOTALnnb)
?nnd+[,]nnd+[e]?.” Regular expressions are useful to find specific strings within
a text. To extract all kinds of textual information we use Tesseract OCR, an open
source OCR engine. Tesseract OCR engine was originally developed by HP Labs
between 1985 and 1995. It is now owned by Google. Tesseract is released under the
Apache License 2.0 and is available on SourceForge.net.

The quadtree decomposition that we adopt is to recursively subdivide I into
four equal rectangular regions. An OCR is performed on each region to extract the
contained text. We have two stopping criteria:

1. A text element which matches with a regular expression is discovered in a region.
2. A fixed maximum number of decompositions, say e, is reached.

The algorithm we propose has two main steps applied each in a breadth-first
way:

1. Region decomposition: divide the current region into four equal regions.
2. Textual information retrieval: run OCR and retrieve any string that matches with

the regular expression E associated with the sought textual information T.

The algorithm starts by applying step 1 to the whole document image. Step 1 is
applied to a subsequently obtained region only if no string matching with E is found
in that region and the maximum number e of division is not reached. Step 2 is
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applied to all the regions obtained from the decomposition of a given region while
a string matching with E is not found.

Each region containing a sought textual information is described by a vector
which is composed of dimensions (w,h) of the region, its location (x,y coordinates
of the upper left corner point) and a list l containing the extracted string S. The
content of the vector is stored in an XML file. This vector is used as a descriptor
of the region. To deal with possible division of I into regions that would separate
textual content and disperse them into several parts in different regions, we add a
positive constant s to the height and the width of each region (Fig. 2). The constant
s we used in our experiment are fixed empirically.

The algorithm can easily be generalized to extract a list L D .T1; T2; : : : Tn/ of
information and a list M D .E1; E2; : : : En/ of regular expressions. In this case, the
algorithm consists in run OCR and try to extract each element of L successively
in a region. The algorithm is stopped if all elements of L are extracted or if the
maximum number of decomposition is reached. A region containing at least one
extracted string is not decomposed further.

Fig. 2 Example of division
into four regions
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4 Experimentation

We experimented our method on a corpus of 65 scanned invoices. These invoices
are issued by 10 service providers. These service providers are divided into
four categories: towing companies, auto repair, taxi, and car rental, thus have
heterogeneous layouts. Table 1 shows the original distribution of the invoices.

For this experiment, we have developed a JAVA program implementing the
proposed algorithm. The program takes as input a directory containing all the files of
the corpus and output XML files (one file per document). Each XML files contains
a list of region’s descriptor. An example of XML file obtained is given in Fig. 3.

Line 2 to line 17: description of the set of regions which were considered containing
sought textual information by the algorithm.
Line 3 to line 10: description of region 1 obtained by dividing the whole image into
four regions. Line 6 to line 9: the details of textual information extracted in region 1.
Line 7: string extracted from region 1. This string corresponds to the sought
information: “invoice date.”
Line 8: a second string extracted from region 1 corresponding to the sought
information: “article reference.”

Table 1 Original distribution
of the corpus of invoices

nb of service providers nb of invoices

Towing 3 23

Auto repair 2 12

Car rental 3 18

Taxi 2 12

Total 10 65

1<invoice f-234>
2 <regions>
3 <region1>
4 <origine x=0,y=0/>
5 <dimension width=1024.0,height=1368.0/>
6 <information>
7 <invoiceDate> 13-04-11 </invoiceDate>
8 <articleReference> R 1104 0753 X04 </articleReference>
9 </information>
10 </region1>
11 <region4>
12 <origine x=0,y=0/>
13 <information>
14 <subtotal> 107.00 </subtotal>
15 </information>
16 </region4>
17 </regions>
18</invoice f-234>

Fig. 3 Invoice XML file example
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The experiment is to try to extract a list L of 5 information from invoice images:
subtotal, article reference, company identifier, invoice date, invoice identifier. We
have performed two types of extraction:

1. extraction from whole images,
2. extraction by applying our algorithm implementing the quadtree decomposition.

The same OCR engine and the same regular expressions are used for both
extractions. Also, the list of items recognize are stored in XML files. We considered
two measures of evaluation:

• The rate of information correctly extracted.
• The rate of information correctly recognized.

The evaluation of the rate of information correctly extracted is based on the
counting of how many elements of L have been extracted. An information is
considered extracted if there is a stored string which matches with the corresponding
regular expression. In another side, an information is considered correctly recognize
if the stored string corresponds exactly to the visual information contained in the
image. For example, let “net amount” be a sought information and assume that the
net amount is 107 ein the original invoice. The regular expression of the net amount
can be written “(nnbTOTALnnb) ?nnd+[,]nnd+[e]?.” During the processing of the
algorithm, the string “101 e” may be extracted by the OCR engine. Such a string
is considered correctly extracted because it matches with the regular expression.
Indeed, it corresponds to a string which is a sequence of digits separated by a
comma, preceded by the string TOTAL or not and followed by the euro symbol or
not. However, the extracted string can’t be considered correctly recognized because
in the original invoice the textual information “107 e” appears instead of the
extracted information “101 e.” This can happen due to the weaknesses of the OCR
engine.

We obtained a similar number of extracted information for the two types of
extraction. However we have obtained a higher recognition rate for extraction from
images divided by our algorithm. Indeed, the recognition rate of the selected OCR
engine is of 83 % for whole invoices images, and of 97 % for decomposed invoice
images. The results are presented in Table 2.

Table 2 Results Extraction rate (%) Recognition rate (%)

Whole images 4.5 83

Decomposed images 4.7 97
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5 Conclusion

In this paper, we presented a method to localize and retrieve textual information such
as invoice’s net amount or invoice’s company ID. Experimental results show that
the proposed decomposition approach has good potential to significantly improve
the correctness of the retrieved textual information.
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Selection Stability as a Means of Biomarker
Discovery in Classification

Lyn-Rouven Schirra, Ludwig Lausser, and Hans A. Kestler

Abstract Diagnostic models for gene expression profiles need to operate on sparse
collections of high-dimensional samples. In this context, highly accurate and low-
dimensional decision rules with interpretable signatures are of great importance.
Feature selection processes are essential for fulfilling these design criteria. They
select small subsets of highly informative features that can be starting points for
new biological hypotheses and experiments. In this work we present an empirical
study on purely data-driven selection algorithms. These “standalone” selectors do
not incorporate information about the utilized classification model into their criteria.
We examine these methods regarding their selection stability. These classifier
independent measures are used to distinguish subgroups of algorithms and to
identify valuable filter/classifier combinations for the application on microarray
datasets.

1 Introduction

A standard problem in the classification of biological data is the interpretation
of high-dimensional gene expression profiles originating from high-throughput
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technologies such as microarrays or deep sequencing. Designed for screening, these
profiles measure thousands of gene expression levels reflecting a wide range of
biological processes. Combined with a small sample size, gene expression profiles
are a typical example for high-dimensional datasets of low cardinality (n 	 m).

For such data, feature selection methods are often incorporated in the training
of a classification model. These procedures reduce the high-dimensional profiles
to low-dimensional signatures that can be used for prediction (Armstrong et al.
2001; Golub et al. 1999). Feature selection can improve both the accuracy and
the interpretability of a classification model. While removing noisy or unrelated
gene expression levels can eliminate distracting influences, the selection of highly
informative genes, so-called key players, can focus the researchers’ attention on
biologically relevant processes. Another, more technical, reason might be the switch
to a new experimental platform. In this case, the high-dimensional profile of a
screening platform is replaced by a smaller signature of genes that are measured
in a more accurate way. Here, the signature is constrained to a fixed number of
measurements.

In this work we analyze the influence of different feature selection strategies
on the task of classifying gene expression profiles from microarray experiments.
We try to identify valuable feature selection /classifier combinations that lead to
an improved classification performance in contrast to a standalone classification
algorithm. We especially focus on a selection stability as a classifier independent
measurement for the quality of a feature selection algorithm. In this empirical study,
we compare 23 � 13 feature selection and classifier combinations on 9 microarray
datasets in 10 � 10 cross-validation experiments.

2 Methods

The task of a classifier is to categorize objects into semantically meaningful classes,
y 2 Y . This process is based on vectors of measurements, x D .x.1/; : : : ; x.n//T 2
X 
 R

n. It can be modeled as a function c W X ! Y . The performance
of a classifier can be evaluated on a test set of samples, T D f.xj; yj/gm

jD1, by
determining its accuracy in predicting the test set’s labels.

A.c/ D 1

jT j
X

.x;y/2T
IŒc.x/Dy	 (1)

The classifier is typically unknown a priori. In that case, the classification model has
to be trained according to a training set of labeled samples, L D f.xj; yj/gm0

jD1;L \
T D ;,

C � L
train��! cL 2 C : (2)

Here C denotes a function or concept class that describes structural properties that
should be fulfilled by the classifier.
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2.1 Feature Selection

The training process of a classifier can include a feature selection step in which
the set of measurements is reduced to a small subset. Only these measurements will
influence the predictions of the trained classification model. This process can give
hints on the importance of the single measurements. Formally, feature selection can
be seen as a function that maps from a training set L and a concept class C to an
ordered and repetition-free index vector,

f W C � L
select���! i 2 I D fi 2 N

On�njik < ik�1; 1 � ik � ng: (3)

The derived index vector i D .i1; : : : ; iOn/T will be utilized to map input patterns x
to a lower-dimensional representation x.i/ D .x.i1/; : : : ; x.i

On//T . We will additionally
use Oi to denote the set of selected indices Oi D fikgOnkD1 for a fixed selection size On.

Feature selection methods can be separated into model-based and purely
data-driven algorithms (Saeys et al. 2007). Model-based algorithms incorporate
knowledge about the utilized concept class C into the selection process. They can
be further subdivided into wrapper methods and embedded methods. A wrapper
algorithm constructs a feature set in an internal evaluation loop in which possible
candidate gene sets are tested and modified in experiments with the chosen type of
classifier (Kohavi and John 1997). An embedded algorithm is originally designed
as a learning algorithm for a sparse classification model, which derives its decision
according to a small number of feature evaluations (Blum and Langley 1997). These
measurements afterwards can be extracted and utilized as a feature set for other
classification algorithms.

In this paper we will mainly focus on purely data-driven feature selection
methods which do not take into account any information about the concept class
C of a classifier. These methods are often called filters in the literature (Guyon
and Elisseeff 2003). They can be applied as an independent preprocessing step
before adapting the final classification model. Most filters are univariate feature
selectors, which validate the single measurements separately. They can further be
distinguished in supervised filters (Liu and Motoda 2007), which utilize knowledge
about the training labels (e.g., association measures) and unsupervised filters
(Varshavsky et al. 2006), which only rely on characteristics of the feature values
(e.g., dispersion measures).

2.2 Evaluation of Classification Models

For a dataset of low cardinality, a classification algorithm is typically evaluated
in resampling experiments such as the K � L cross-validation (Bishop 2006). The
dataset S is split into L folds of roughly equal size. Each fold serves once as a test
set T , while the other L � 1 folds are used to train the classifier (training set L ).
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This procedure is repeated in K runs on independent permutations of the samples.
The accuracy of a classifier can then be estimated by

Acv D 1

KjS j
KX

kD1

LX

lD1

X

.x;y/2Tkl

IŒcLkl .x/Dy	: (4)

In our evaluations, the cross-validation experiment will be the basic setting for
characterizing filters and filter/classifier combinations.

2.2.1 Stability

An important characteristic of a feature selection method is its selection stability in
a resampling experiment. Informative features should be selected in almost all single
experiments while uninformative feature should only be detected in rare cases. If
this is the case, a feature selection procedure is called stable and unstable otherwise.
Lausser et al. (2013) introduced a stability score Sstab for measuring the stability in
resampling experiments with fixed feature set sizes On,

Sstab D On�1

.KL/2

KLX

iD1

i2a.i/
On ; with a.j/

On D
nX

iD1

I
Œs

.i/
On Dj	

; and s.i/
On D

KX

kD1

LX

lD1

IŒi2Oikl 	
: (5)

Here, a.j/
On denotes the number of features that are selected j times and s.i/

On is the
selection frequency of the ith feature. In our experiments, we will address the
question how exactly the stability of a feature selection method is related to the
changes in accuracy of a subsequent classifier.

2.2.2 Gain in Accuracy and Variability

The influence of a feature selection method on a classification model can be
analyzed by the resulting gain in accuracy. In our experiments, we have chosen
to compare the accuracy of a classifier that is trained on all available features to a
classifier that incorporates a feature selection process in its training,

Gainacc D Acv � Af ;On
cv : (6)

Here f denotes the chosen feature selection algorithm and On denotes the selection
size. In a similar way, the differences in the variability of the achieved accuracies can
be analyzed. As a measure the standard deviations of the accuracies over the runs
of one cross-validation experiment are compared. The corresponding score will be
denoted by Gainsd.
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3 Experimental Setup

We conducted series of 10 � 10 cross-validation experiments on 9 microarray
datasets (Table 1). We applied 23 feature selection methods (Table 2) as pre-
processing steps to 13 classifiers (Table 3). For each selector, experiments with

Table 1 Description of the utilized microarray datasets

Nr. Dataset Identifier Features (n) Samples (m) Pathology

d1: Armstrong et al. (2001) ARM 12;582 72 (48/24) Leukemia

d2: Bittner et al. (2000) BIT 8067 38 (19/19) Melanoma

d3: Golub et al. (1999) GOL 7129 72 (25/47) Leukemia

d4: Gordon et al. (2002) GOR 12;533 181 (150/31) Lung cancer

d5: Notterman et al. (2001) NOT 7457 36 (18/18) Colorectal cancer

d6: Pomeroy et al. (2002) POM 7129 34 (25/9) Medulloblastoma

d7: SHIPP et al. (2002) SHI 7129 77 (58/19) B-cell lymphoma

d8: Singh (2002) SIN 12;600 102 (50/52) Prostate cancer

d9: West et al. (2001) WES 7129 62 (25/37) Breast cancer

Table 2 List of utilized feature selection methods

Nr. Feature selection criterion Id.

Unsupervised filters (univariate)

f1�3: Variance VAR, VAR�, VAR��

f4�6: Interquartile range IQR, IQR�,IQR��

f7�9: Median absolute deviation MAD, MAD�, MAD��

f10: Range RAN

Supervised filters (univariate)

f11: Pearson correlation CORP

f12: Spearman correlation CORS

f13�15: Support vector weight SVF, SVF�, SVF��

f16: Misclassification index IMPM

f17: Gini index IMPG

f18: Entropy index IMPE

f19: Threshold number of misclassification TNOM

f20: Signal-to-noise ratio SNR

f21: Nearest shrunken centroid NSC

f22: Area under ROC curve ROC

Supervised filter (multivariate)

f23: Relief algorithm REL

* Rescaling I Px.i/
j D x

.i/
j �x

.i/
min

x
.i/
max�x

.i/
min

** Rescaling II Rx.i/
j D x

.i/
j �NX.i/

sd.X.i/ /
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varying selection sizes On 2 f5; 10; : : : ; 200g were conducted. All cross-validation
experiments on one dataset utilized the same list of folds. They were performed
with the TunePareto software (Müssel et al. 2012).

Our experiments comprise filters based on unsupervised dispersion measures
(VAR, IQR, MAD, RAN) (Upton and Cook 2002) as well as supervised measures
based on the class labels of the samples (Table 2). Among the supervised criteria
we utilize filters based on correlation (CORP, CORS) (Upton and Cook 2002),
signal-to-noise ratio (SNR) (Guyon 2006), and impurity measures (IMPM, IMPG,
IMPE) (Breiman et al. 1984). Furthermore measures based on the evaluation of
basic classification algorithms (SVF, TNOM, ROC) were used (Vapnik 1998,
Ben-Dor et al. (2000), Fawcett (2006)). Also we utilize more complex criteria such
as the multivariate Relief algorithm (REL) by Kira and Rendell (1992) or the
Nearest Shrunken Centroid algorithm (NSC) by Tibshirani et al. (2002).

For classification, we utilized three groups of algorithms (Table 3), prototype-
based classifiers (kNN, NCC, RPS, PAM), linear classifiers (PER, SVMr;l, STC,
FCC), and hierarchical classifiers (RF). The accuracies of standalone classifiers
(without feature selection) are given in Table 4.

Table 3 List of utilized classification algorithms

Nr. Classification algorithm Id. Parameter

c1:3: k Nearest neighbors (Fix and Hodges 1951) kNN k 2 f1; 3; 5g
c4: Representative prototypes set (Lausser et al. 2012) RPS

c5: Nearest centroid NCC

c6: Prediction analysis for microarrays PAM steps = 30

(Tibshirani et al. 2002)

c7: Single threshold classifier (Kestler et al. 2011) STC

c8: Fold change classifier (Lausser and Kestler 2014) FCC

c9�11: Linear support vector machine (Vapnik 1998) SVMr;l C D 1

(r-reg., l-loss, see Abe 2010) .r; l/ 2 f.1; 2/;

.2; 1/; .2; 2/g
c12: Perceptron (Rosenblatt 1958) PER iter. = 1000

c13: Random forest (Breiman 2001) RF trees = 100

Table 4 Accuracies of standalone classifiers (without feature selection)

kNN RPS NCC PAM STC FCC SVMr;l PER RF

1 3 5 1,2 2,1 2,2

Median 87.8 86.6 89.1 93:2 78:8 92:9 86:5 88:5 94:0 96:6 96:6 92:5 95:8

IQR 14.7 18.4 14.1 14:4 29:4 4:2 6:1 10:7 10:3 9:7 9:9 10:7 8:5

The median accuracy (%) and the interquartile range over all datasets are reported
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4 Results

Figure 1a shows the median gain in accuracy (Gainacc) of a classifier and feature
selection combination (over all datasets and selection sizes). It can be observed that
the accuracy of prototype-based classifiers can be improved by supervised filtering
methods. The highest Gainacc is achieved by the NCC but also prototype-based
classifiers with a higher standalone accuracy such as the RPS have improved. An
exception is the PAM classifier that additionally utilizes its own embedded feature
selection.
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Fig. 1 Evaluation of filter/classifier combinations. Panel (a) shows the median gain in accuracy
in comparison to a standalone classifier (over all datasets and selection sizes). Positive values
(improved accuracies) are marked in black. Panel (b) shows the median gain in standard deviation.
Here, negative values (reduced standard deviations) are highlighted
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Two major patterns can be seen for the linear classifiers. No positive Gainacc

is achieved for the large margin classifiers SVM2;1 and SVM2;2. As an exception,
SVM1;2, which intrinsically uses feature selection, has been improved by VAR. The
other linear classifiers can all be improved by supervised filters. This set especially
includes the STC and FCC classifiers. These algorithms are designed for operating
on one or two single features. The Gainacc of RF is also improved by supervised
filters.

The median gain in standard deviation (Gainsd) is given in Fig. 1b. From the filters
that operate on rescaled features (�,��), only SVF� and SVF�� achieve a negative
Gainsd. Gainsd is positive for all feature selection algorithms for the classifiers
1NN, SVM2;1, and SVM2;2. For NCC the Gainsd is negative for NSC, SNR, IMPE.
The other prototype-based classifiers investigated show a negative Gainsd for all
supervised filters despite REL and SVF. For the linear classifiers SVM1;2, FCC, and
STC, a negative Gainsd can be achieved by unsupervised filters.

The feature selection algorithms were characterized by their median stability
score (Sstab) over all datasets and selection sizes (Fig. 2). A complete-linkage
clustering was used to group the algorithms. The four top-level clusters (from
most stable to most unstable) were structured as follows. The most stable subgroup
consists of the unsupervised filter that does not operate on rescaled features (VAR,
RAN, MAD, IQR). The second cluster comprises the univariate supervised filters.
The third cluster mainly consists of the unsupervised filters that operate on rescaled
features (VAR�, VAR��, MAD�, MAD��, IQR�, IQR��). The third cluster also
includes the multivariate supervised REL. The most unstable cluster consists of only
one member (VAR��). Comparing the median Sstab of a filter/classifier combination
to its median Gainacc and median Gainsd, a positive correlation (Pearson) of 0.513
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Fig. 2 Relation of stability and accuracy. The median Gainacc (Panel a) and median Gainsd (Panel
b) over all datasets and selection sizes are shown. The gains achieved for one filter (over all
classifiers) are summarized in one box plot. The box plots are sorted according to their stability
scores Sstab (row labels). The different shades of gray indicate the four major clusters of a complete-
linkage clustering of the stability scores
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(to Gainacc, p < 2:2 � 10�16) and a negative correlation of �0.777 (to Gainsd,
p < 2:2 � 10�16) were observed.

5 Discussion and Conclusion

Our study does not claim to be exhaustive. We focused on purely data-driven feature
selectors, “standalone” techniques, which rely neither on domain knowledge nor
on specific classification models. These algorithms may be seen as basic building
blocks for a wide range of algorithms.

In our experiments a median gain in accuracy was mainly observed for super-
vised selection methods. Only the nearest centroid classifier could be improved by
several unsupervised criteria. This may be due to the chosen selection sizes of less
than 200 features. While unsupervised methods are mainly applied for removing
a bulk of uninformative features, supervised methods are utilized for constructing
relatively small signatures of informative features.

The selection frequency is an important indicator for the biological relevance of
a feature. The results suggest that it has a positive influence on the gain in accuracy
and reduces the classifiers standard deviation. Nevertheless, a high selection stability
is no guarantee for a good classification result. This can be observed for the
unsupervised dispersion measures which lead to a more stable feature selection than
the supervised criteria. Being susceptible to the scaling of a feature these measures
probably incorporate unrelated information into a feature selection. Feature-wise
rescaling leads to a decreased selection stability for all analyzed unsupervised and
supervised criteria but in many cases also decreased the gain in accuracy.

From the analyzed classifiers, prototype-based algorithms were more easily
improved by an unspecific choice of a (supervised) selection strategy. Their median
gain in accuracy was also larger than for other classifiers. An exception is the
NSC classifier which additionally utilizes its own embedded feature selection
strategy. It could only be improved in rare cases. A similar behavior could be
observed for the L1-regularized support vector machine, while the random forest
could be slightly improved by supervised selection criteria. Those classifiers which
intrinsically operate on one or two selected features could also be improved by a
supervised preselection. It is especially interesting to see that the single threshold
classifier can be improved by the multivariate criterion of the REL. The median
accuracies of the large margin classifiers were not improved.

In conclusion our experiments indicate that feature selection can improve the
accuracy of classifiers that were developed for low-dimensional data, such as
most prototype-based methods, to the level of algorithms that are more directly
designed for operating in high-dimensional spaces. Thus feature selection methods
can increase the repertoire of classification models suitable for gene expression
profiles. Showing a comparable accuracy, such filter/classifier combinations might
be preferable due to their higher interpretability.
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Active Multi-Instance Multi-Label Learning

Robert Retz and Friedhelm Schwenker

Abstract Multi-instance multi-label learning (MIML) introduced by Zhou and
Zhang is a comparatively new framework in machine learning with two special
characteristics: Firstly, each instance is represented by a set of feature vectors (a
bag of instances), and secondly, bags of instances may belong to many classes (a
Multi-Label). Thus, an MIML classifier receives a bag of instances and produces a
Multi-Label. For classifier training, the training set is also of this MIML structure.
Labeling a data set is always cost-intensive, especially in an MIMIL framework. In
order to reduce the labeling costs it is important to restructure the annotation process
in such a way that the most informative examples are labeled in the beginning, and
less or non-informative data more to the end of the annotation phase. Active learning
is a possible approach to tackle this kind of problems in this work we focus on the
MIMLSVM algorithm in combination with the k-Medoids clustering algorithm to
transform the Multi-Instance to a Single-Instance representation. For the clustering
distance measure we consider variants of the Hausdorff distance, namely Median-
and Average-Based Hausdorff distance. Finally, active learning strategies derived
from the single-instance scenario have been investigated in the MIML setting and
evaluated on a benchmark data set.

1 Multi-Instance Multi-Label Learning

In the standard case of supervised learning a classifier c has to learn a mapping
function between objects, represented as feature vectors xi, and their related labels
yi. Therefore the classifier gets a set of training examples L. This contains examples
which consist of xi and its label yi, L D f.x1; y1/; : : : ; .xn; yn/g. After the training
the classifier has to identify the labels of given objects, c.xu/ D yu. This standard
supervised learning case can be described as single-instance single-label learning,
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short SISL. In this framework every object is represented by a single feature vector
called instance and is related to a single label.

Dietterich et al. (1997) introduced a multiple-instance representation to extend
SISL. They designed multi-instance single-label learning (MISL) to solve a drug
activity prediction problem. The goal in this scenario is to predict the degree of
binding of a drug molecule with a larger target molecule. Every drug molecule has
multiple shapes which are crucial for its binding ability. A drug molecule has a
good binding, if at least one of its shapes has a good binding to the target molecule.
In MISL an object is represented by a set of instances Xi D fxi1; : : : ; ximig, a so-
called bag. A bag is related to a label if at least one of its containing instances
has this label, it is not known which or how many of the instances have the
label. Every bag can only have one label. The training set in MISL is given as:
L D f.X1; y1/; : : : ; .Xn; yn/g. The advantage of MISL is that learning tasks can be
modelled in their “natural” design. In addition a more precise identification of the
crucial parts of an object, respectively its instances, is possible compared with a
single-instance representation.

Another expansion of SISL was introduced by Mccallum (1999) called single-
instance multi-label learning (SIML), to solve a text classification task. In this
framework every object is represented by a single instance xi, but can have more
than one correct label, Yi D fyi1; : : : ; yilig. In this case the training set is defined
as: L D f.x1; Y1/; : : : ; .xn; Yn/g. There are two intuitive ways to transform Multi-
Label data into a Single-Label representation. The first possibility is to train a
separate classifier for every occurring label. This method is used by the MLSVM
algorithm from Boutell et al. (2004). The problem of this approach is that possible
correlations between the labels are not considered. The second transformation
approach is to create a new label for each occurring label combination. The problem
is that for certain label combinations only a few training examples exist. SIML
makes it possible to deal with multiple correct labels, which occur in many learning
tasks.

The learning framework used in this paper is multi-instance multi-label learn-
ing (MIML). MIML was introduced by Zhou and Zhang (2007) and combines
MISL and SIML. More precise, this framework uses the bag representation of
objects, Xi D fxi1; : : : ; ximig, here each bag can have more than one label, Yi D
fyi1; : : : ; yilig. According to that the training set is: L D f.X1; Y1/; : : : ; .Xn; Yn/g.
The combination of both learning frameworks inherits not only the advantages
but also the disadvantages. As in MISL the mapping between the instances of
a bag and its related label is not known, additionally every bag and instance
can have more than one label as in SIML. However it is possible to use ideas
and algorithms of the predecessor learning frameworks to design approaches on
MIML.
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2 Distances in Multi- to Single-Instance Transformation

The core of an active learning approach is, besides the selection strategy, the used
base classifier. Therefore the performance and results are heavily dependent on
the chosen classifier. This section discusses the improvement of the MIMLSVM
algorithm of Zhou and Zhang (2007), which is used in the active learning algorithm
discussed in this paper in Sect. 3.

An approach to solve complex problems is to transform them into simpler
problems. This general approach is used by the MIMLSVM and MIMLBoost
algorithms of Zhou and Zhang (2007) where the MIML problem is transformed into
an SIML and MISL problem, respectively. In this paper the transformation used by
MIMLSVM is examined. The idea is to map the Multi-Instance data into a Single-
Instance representation, which in turn is given to an SIML algorithm. In the standard
version of MIMLSVM the MLSVM algorithm is used. The transformation process
itself is divided into two parts. The first one calculates the k most representative data
points M1; : : : ; Mk, so-called medoids, from the training data L with a k-Medoids
algorithm using a cluster distance. Afterwards the cluster distance between bag
Xi 2 L and every medoid mj 2 M is computed and x0i D .d.Xi; M1/; : : : ; d.Xi; Mk//

is used as new instance representation. The Multi-Label representation of the data is
preserved. After the transformation the training set is: L D ˚

.x01; Y1/; : : : ; .x0n; Yn/
�
.

The resulting data highly depends on the used cluster distance. Furthermore the
classification performance of MIMLSVM is influenced by the selected distance.
The origin MIMLSVM algorithm uses the Hausdorff distance dh, defined in Eq. (1).

dh.A; B/ D max

	
max
a2A

min
b2B

d.a; b/; max
b2B

min
a2A

d.a; b/



(1)

here d is the Euclidean distance. Variations of the Hausdorff distance are used in
the MISL algorithms. Bayesian-kNN and Citation-kNN were proposed by Wang
and Zucker (2000) and Zhang and Zhou (2009) proposed an averaged Hausdorff
distance for their multiple-instance clustering algorithm BAMIC.

2.1 Average-Based Hausdorff Distances

Based on the averaged Hausdorff distance by Zhang and Zhou (2009), defined in
Eq. (2), extensions of the Hausdorff distance are introduced in this paper. Here the
key idea is to incorporate more geometric information in the distance measure that
is supposed to be preserved during the transformation process and to improve the
classification.
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On the basis of the averaged Hausdorff distance other so-called Average-Based
Hausdorff distances are introduced. There are many ways to include the average
function to the Hausdorff distance. The following four are used in this paper:
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In order to select the most promising approach of the introduced distances, they
are empirically compared on two data sets in two experiments. The experiment
settings are described in Sect. 2.3.

2.2 Median-Based Hausdorff Distances

In addition to the averaged Hausdorff distances in Sect. 2.1 three Median-Based
Hausdorff distances are examined:

dmedHA.A; B/ D max

	
med
a2A

	
min
b2B

d.a; b/



; med

b2B

	
min
a2A

d.a; b/




(7)

dmedHB.A; B/ D1

2
�
�

med
a2A

	
min
b2B

d.a; b/



C med

b2B

	
min
a2A

d.a; b/


�
(8)

dmedHC .A; B/ D min

	
med
a2A

	
min
b2B

d.a; b/



; med

b2B

	
min
a2A

d.a; b/




(9)

The different Median-Based Hausdorff distances were empirically compared to
select the most promising one. The detailed experiment settings are described in
Sect. 2.3.

2.3 Experiment

The empirical comparison of Average-Based, Median-Based, and original Haus-
dorff distances measures has been done on two different MIML data sets. As kernel
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function of the SVM in the MIMLSVM algorithm the Gaussian radial basis function

K.x; x0/ D exp
�
� jjx�x0jj22

2��2

�
has been applied.

The two used data sets are MIMLText, a text classification task also called
MIML-Reuters from Zhou and Zhang (2007), and MIMLImage, the data set on
which MIML was originally introduced. Both consist of 2000 examples with seven
and five possible labels. MIMLText has an average bag size of 3:56 and a Multi-
Label amount of 15 % whereas MIMLImage has an average bag size of 9 with 22 %
of Multi-Label examples.

In the first experiment the size of the training set L is varied between
.200 W 200 W 1800/ examples. Thereby every classifier gets the same splits. The
second experiment varies the amount of multiple labels in the data from 5 %
to 75 % in steps of 5 %. Therefore the data set is split into single and multiple
label examples, thereafter they are randomly mixed until the Multi-Label amount
reaches 75 %. Afterwards the Multi-Label examples are replaced randomly by
unused Single-Label examples to achieve the other label amounts. On each amount
step a Leave-one-out cross-validation on a tenfold is processed. Both experiments
are repeated 50 times on random splits. Before the experiments are executed a
grid search was performed to optimize the parameter of every MIMLSVM and
distance combination on the data sets. The k value, the number of medoids, is
set to 20 %. The results of the experiments with varying training set size are
shown in Fig. 1 (top). Here the best cluster distances of each type as defined in
Sect. 2 have been selected. Both plots show that the Median- and Average-Based
approaches are able to achieve better results than the original Hausdorff distance.
In both experiments dmedHB performed very well. The Average-Based Hausdorff
distances showed a good performance too, davgHB

on MIMLImage and davgHD
on

MIMLText. But depending on the data set, different variants were selected as the
best one in the previous experiments. The experiment with different multiple label
amounts have lead to the results shown in Fig. 1 (bottom). Like before the median-
based variant B [see Eq. (8)] achieved good and stable results in the experiments
on both data sets. The average-based in turn showed similar results, but as in
the other experiment setting none of them could achieve good results on both
data sets. On MIMLImage, davgHB

and davgHC
were selected and both of them

performed similar to dmedHB . Equally davgHB
performed well on the MIMLText data

set and is comparable with dmedHB . Experiments show that the introduced distances
are able to improve the performance of the MIMLSVM algorithm. Especially
Median-Based Hausdorff distances, particularly dmedHB , performed well in the
evaluation. In addition it can be said that the median approaches perform more
stable.
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Fig. 1 Boxplot of the Hamming loss values (down arrow) achieved in the varying multi-label
amount experiment (top) and the varying training set experiment (bottom) on MIMLImage (left)
and MIMLText (right). Three specific points are given to display the progress along the increasing
training set sizes and the number of examples with multiple labels

3 Active Multi-Instance Multi-Label Learning

Active learning is an example of a partially supervised learning algorithm, see
Schwenker and Trentin (2014), and is applied in learning scenarios with expensive
labeling costs, to reduce the amount of training data needed to achieve a good
classification performance. The most common type of active learning is Pool-Based
Selective Sampling, see Settles (2009). In this scenario two pools of data are given.
One containing of already labeled data, another one containing unlabeled examples.
Because of the complex structure of MIML, especially the multiple label part, the
generation of labeled data is expensive. That is why the combination of active
learning and MIML is a promising field of research. Active learning is already used
in SIML, first by Li et al. (2004), and MISL, first by Settles et al. (2008).

There are two options to design the Multi-Instance part of MIML in active
learning. Both variants can be found in active learning approaches made on MISL.
The question is if instances or complete bags are queried. If instance level querying
is used a very accurate information is given to the active learning agent. This
approach is used by Settles et al. (2008). In the base design of MISL the classifier
has to identify the relation between instances in a bag and the given label. A precise
knowledge of the instance to label mapping would lead to a strong information
gain for the classifier. If additionally the Multi-Label design of data in MIML is
considered another problem arises. It is only possible to add a bag into the labeled
example pool if all of its labels are known. This is only possible if every containing
instance and their related labels are known or if every possible label is given through
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a known subset of the instances. The other, and mostly used, possibility is to query
on the bag level, like Fu and Yin (2011). The difficulty using bag level active
learning is to score the bags from the unlabeled pool. More precise, the question
is how to combine the, for example Uncertainty Sampling (Settles 2009), scores
of the different instances to a meaningful bag score. This problem gets even more
difficult if the Multi-Label design is additionally used like in MIML. In this case the
score of a bag or instance has to represent not only its score related to a single
label but rather has to combine the scores of all labels. Another decision to be
made is if after querying an instance or bag all related labels are revealed or only
a single one. The resulting problems are similar to the one of instance versus bag
level querying. An advantage of instance querying and single label revelation is that
the labeling costs are reduced. Because usually it is simpler to find the labels of
only one instance than of a complete bag and it is simpler to find only one label
of a given example than to find all of them, respectively. Additionally the handling
of the incomplete labeled examples has to be solved. In this paper active learning
with complete label revelation on the bag level is used. This makes it possible to
use Pool-Based Selective Sampling. The problem of the bag score is solved through
the use of MIMLSVM as the base classifier. As mentioned before this algorithm
transforms the Multi-Instance into a Single-Instance representation with the result
that the instances of a bag are already combined into a single vector, and only the
score of this vector has to be calculated.

3.1 Active Single-Instance Multi-Label Learning on MIML
Data

The use of MIMLSVM makes it possible to use SIML active learning strategies on
MIML data sets. The question is whether the transformation process of MIMLSVM
conserves enough vital information. Therefore different active learning strategies
are executed on an active learning experiment and later compared with the active
learning approach, proposed in Sect. 3.2, for the experiment settings see Sect. 3.3.

The first and simplest active learning strategy which is used in this paper is
BinMin (BM), see Brinker (2005). It simply sets the score of an instance to the
minimum uncertainty value of all possible values. After the scores of all possible
query candidates are computed, the one with the lowest score is selected. The score
is calculated with: score.x/ D min

iD1;:::;l

�j f i.x/j�, whereas f i.x/ is the classifier value

of the instance x for the label li. The next two approaches are called mean max
loss (MML) and max loss (ML), see Li et al. (2004). The key idea behind both
strategies is to select the instance which leads to the highest decrease of expected
loss. The fourth strategy is called maximum loss reduction with maximal confidence
(MMC), see Yang et al. (2009). In MMC a Logistic Regression approach is used to
predict the number of labels m of an unlabeled instance. Afterwards the so-called
most confident vector Y 0 D �

y01; : : : y0l
�

is generated, where l is the number of all
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possible labels. Therefore the values at the positions of the m labels with the highest
classification probability are set to 1. The other positions are set to 0. In other
words Y 0 specifies the most probable labels of an unlabeled instance. The score

is calculated with the following equation: score.x/ D
lP

jD1

1�y0

j �f j.x/

2
. The instance to

query is the one with the highest score. These four active learning strategies are
executed in an experiment to test if they can perform effective on an MIML data set
using MIMLSVM as their base classifier.

3.2 MidSelect

The active learning strategy introduced in this paper is called MidSelect (MS),
which uses MIMLSVM as its base classifier. The idea of this strategy is to consider
all label scores of an instance in its overall query score calculation. Therefore the
score is represented by the median value of all label scores of an instance. The
selection strategy itself is an SIML active learning approach, which only has to
handle the combination of the single label based scores. These label scores are based
on uncertainty sampling. The idea of Uncertainty Sampling is that an example about
whose label membership the classifier is most uncertain, is the most informative
example and therefore it has to be queried. Another requirement on MidSelect is
that it has to be simple like for example BinMin. A problem of BinMin is that only
one label score is taken into account. As a result possible valuable query candidates
are not selected because their minimum label score is slightly higher than the one
of the chosen one. To overcome this problem an adapted median function is used
in MidSelect to combine the single label scores. This adapted median, medianmin,
chooses the minimum absolute value of the lower and upper median if an even
count of labels is given. This is necessary because as label score the classifier
output values are used. Among these output values a value near zeros means a high
uncertainty, a high positive or low negative value means a high certainty that the
candidate has the label or not. The adaptation helps to overcome what would occur
if the average of the lower and upper median were used. Otherwise it could be
possible that a candidate with very similar but high valued lower and upper medians
would be selected instead of a candidate with different but low valued lower and
upper medians. The selection function of MidSelect is defined in Eq. (10). There
f .X/ D �

f .1/.X/; : : : ; f .n/.X/
�

defines the output values of MIMLSVM given the
bag X with n as the number of labels.

MidSelect.U/ D arg min
X2U

j medianmin. f .X//j (10)

Another extended approach of MidSelect is given in Eq. (11). This extended
MidSelect (EMS) tries to measure the label score values of the two sets divided by
the median value, to get a more precise measurement of the label score distribution.
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This is done by the function dHS.x/ D j med .xlow/ � med
�
xhigh

� j, where xlow D
.x1; : : : ; x nC1

2 �1
/ and xlow D .x nC1

2 C1
; : : : ; xn/ are the two half spaces in the case that

n is odd. Otherwise if n is even xlow D .x1; : : : ; xb nC1
2 c/ and xlow D .xd nC1

2 e; : : : ; xn/.

ExtMidSelect.U/ D arg min
X2U

j medianmin. f .X//j � dHS.c.X// (11)

3.3 Experiment

The experiment of SIML active learning strategies on an MIML data set and the
experiment to compare the MidSelect approaches with different SIML approaches
use the same setting. In both experiments MIMLSVM is used as the base classifier.
The basic active learning algorithm used in combination with the different selection
strategies in the experiments of this paper is outlined in Fig. 2. The used cluster
distance is dmedHB from Eq. (8), because it showed the best results in Sect. 2. As
the experiment data set MIMLImage is used, introduced in Sect. 2.3, which seems
to be more difficult compared with MIMLText. For each experiment run, the data
is split randomly into the labeled Pool L and the unlabeled Pool U. Thereby L
contains 200 examples at the beginning of each run. Each query strategy starts with
the same L, U and the same MIMLSVM classifier trained with L. In every active
learning iteration each query strategy chooses two bags from U to query. These
bags are labeled and added to L and removed from U. Afterwards the classifier
is trained with L and its classification performance is evaluated on U. Overall 50

experiment runs are executed. The parameter of MIMLSVM are the same used in
Sect. 2.3.

The results of the experiments are shown as boxplots in Fig. 3. The left plot
shows the results of the different SIML active learning strategies on MIMLImage.

Algorithm

1: Train MIMLSVM with L
2: Classify each bag Xu ofU with trained MIMLSVM to achieve f (Xu)
3: Calculate score(Xu) with f (Xu)
4: Select most valuable bag Xv of U according to a ML selection strategy
5: Request all labels Yv of Xv
6: Remove Xv from U , add (Xv,Yv) to L
7: goto 1: until iteration limit is reached

Fig. 2 The pseudo code of the generic active learning algorithm used in the experiments to com-
pare the different multi-label selection strategies. As base classifier MIMLSVM in combination
with the cluster distance dmedHB is used. It is possible to select more than one bag to be queried
at each iteration step. The algorithm has simply to select the corresponding count of bags at the
selection of the most valuable ones at step 4
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Fig. 3 The Hamming loss values (down arrow) of different multi-label active learning strategies
achieved on MIMLImage (left) and the comparison of the MidSelect approaches (right) with the
best performing multi-label active learning strategies on the data set MIMLImage

The random bag selection strategy (Rand) is used as a reference. Expect MML all
strategies achieve better classification results than the random selection. Especially
the ML strategy can break away from all other approaches, followed by MMC
and BinMin. The experiment shows that the SIML strategies are able to perform
well on an MIML data set in combination with MIMLSVM. Furthermore it
shows that every other SIML active learning strategy can be useful executed on
MIML data with the help of MIMLSVM. The right plot shows the performance
of the MidSelect approaches compared with BinMin, ML, and MMC. Here it
can be observed that ML and either ML MidSelect strategies can improve their
classification performance during the active learning procedure. In addition the
extended version of MidSelect seems to achieve more stable results than the base
version. The experiment showed that the simple MidSelect strategies are able to
perform well compared to the other three strategies. Only the ML strategy showed
slightly better results than the two new strategies.
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4 Conclusion

In this paper we investigated MIML and active MIMIL learning utilizing the
MIMLSVM approach. We propose and investigate several variants of the Hausdorff
distance measure and found that the median-based distance measure outperforms
(in terms of Hamming loss) average-based and traditional Hausdorff distance on
two MIML benchmark data. Furthermore, we introduce active learning for the
MIML scenario. To the best of our knowledge it is the first time that active learning
has been applied to MIML here we introduced two selection criteria to select the
most informative data from the unlabeled data set. In addition we showed that
SIML active learning strategies can achieve good results on an MIML scenario if
MIMLSVM is used as their base classifier. Our two selection criteria were able to
achieve a performance comparable with the best one of the applied SIML strategies.
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Using Annotated Suffix Tree Similarity Measure
for Text Summarisation

Maxim Yakovlev and Ekaterina Chernyak

Abstract The paper describes an attempt to improve the TextRank algorithm.
TextRank is an algorithm for unsupervised text summarisation. It has two main
stages: first stage is representing a text as a weighted directed graph, where
nodes stand for single sentences, and edges are weighted with sentence similarity
and connect consequent sentences. The second stage is applying the PageRank
algorithm as is to the graph. The nodes that get the highest ranks form the summary
of the text. We focus on the first stage, especially on measuring the sentence
similarity. Mihalcea and Tarau suggest to employ the common scheme: use the
vector space model (VSM), so that every text is a vector in space of words or stems,
and compute cosine similarity between these vectors. Our idea is to replace this
scheme by using the annotated suffix trees (AST) model for sentence representation.
The AST overcomes several limitations of the VSM model, such as being dependent
on the size of vocabulary, the length of sentences and demanding stemming or
lemmatisation. This is achieved by taking all fuzzy matches between sentences
into account and computing probabilities of matched concurrencies. For testing the
method on Russian texts we made our own collection based on newspapers articles
with some sentences highlighted as being more important. Using the AST similarity
measure on this collection allows to achieve a slight improvement in comparison
with using the cosine similarity measure.

1 Introduction

Automatic text summarisation is one of the key tasks in natural language processing.
There are two main approaches to text summarisation, called abstractive and
extractive approaches (Hahn and Mani 2000).

According to the abstractive approach, the summary of a text is another text, but
much shorter, generated automatically to make the semantic representation of the
text. This approach requires semantic analysis and usage of external vocabularies,
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what may be sometimes rather complicated. According to extractive approach, the
summary of a text is nothing else, but some important parts of the given text. If
we compare both approaches to human activities, the abstractive approach is a sort
of retelling, and the extractive approach is highlighting main words or sentences in
the text. Obviously, the extractive approach is more simple and effective than the
abstractive one, since it does not require any additional sources and basically may
be reduced key phrase or key sentence extraction. We are going to focus on the
extractive approach and follow the common simplification that the summary of a
text is the set of important sentences.

The extractive summarisation problem can be formulated in the following way.
Given a text T that is a consequence of sentences S that consists of words V , select
a subset of the sentences S� that are important in T. Therefore we need to define:

• what importance of a sentence is;
• how to measure importance of the sentence; Hence we need to introduce a

function, importance.s/, which measures the importance of a sentence. The
higher importance is, the better. Next step is to build the summary. Let us rank
all the sentences according to the values of importance. Suppose we look for
the summary that consists of five sentences. Hence we take the five sentences
with the highest values of importance and call them top-5 sentences according to
importance. Generally, the summary of the text are the top-N sentences according
to importance and N is set manually.

Surprisingly the best results for this statement of the problem are achieved
in the paper by Mihalcea and Tarau (2004), where importance.s/ is introduced
as PageRank type function (Brin and Page 1998) without any kind of additional
grammar, syntax or semantic information. The main idea of the suggested TextRank
algorithm is to represent a text as a directed graph, where nodes stand for sentences
and edges connect consequent sentences. The edges are weighted with sentence
similarity. When PageRank is applied to this graph, every node receives its rank
that is to be interpreted as the importance of the sentence, so that importance.s/ D
PageRank.snode/, where snode is the node corresponding to sentence s.

Following Mihalcea and Tarau (2004) PageRank is “a way of deciding the
importance of a node within a graph, based on global information recursively
drawn from the entire graph”. They see PageRank as a model of “voting” or
“recommendation”. When node A is connected by a directed edge to node B, it
can be seen as node A voting for node B. Moreover, the importance of the node
A itself is also taking into account. Hence, the resulting importance of the mode is
defined by the votes for it and by the importance of the nodes that vote for it. When
applied to the text graph, PageRank allows to rank the nodes (i.e. the sentences)
according to the same principle.

To measure similarity of the sentences the authors of TextRank algorithm
suggest to use the basic vector space model (VSM) scheme. First every sentence is
represented as a vector in space of words or stems. Next cosine similarity between
those vectors is computed.
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There are several attempts to improve the TextRank algorithm. We can distin-
guish between three directions for TextRank improvement.

• Extension to the supervised learning paradigm (Cruz et al. 2006).
• Using cluster of sentences instead of single sentences as nodes. Usually, such

clusters are referred as topics (Garg et al. 2009; Bougouin et al. 2013). After the
topics are ranked according to the PageRank algorithm, the summary sentences
are extracted from the top-ranked topics.

• Using different edge weighting scheme. In Erkan and Radev (2004) the LexRank
weighting scheme is introduced. This scheme is based on computing eigenvectors
of sentence connectivity matrix.

In this paper we also deal with a weighting scheme. Our main concern is that
using any kind of VSM text representation requires using stemming procedure to
map words to the stems. But because of the complexity of the Russian language
and Russian derivation stemming procedures like Porter stemmer (Porter 1980)
sometimes fail to map cognates to the same stem. For this reason we try to
use annotated suffix tree (AST) similarity measure to estimate similarity between
sentences (Pampapathi et al. 2008). This measure takes all fuzzy matches between
sentences into account. It seems to be more adequate for the Russian language.
Russian is an agglutinative language and the words are formed by stringing affixes
(prefixes and suffixes). Porter stemmer does not cope with prefixes at all. It removes
some of Russian suffixes from a complex word, but not all of them. However if we
use fuzzy matching technique, we can easily get rid of all affixes and match two
similar words.

The remainder is organised as follows. Section 2 briefly presents the TextRank
algorithm and motivates the usage of the AST sentence similarity that is formally
introduced in Sect. 3. Section 4 presents the experimental setup. The results are
presented in Sect. 5. Section 6 concludes.

The article was prepared within the framework of the Academic Fund Program at
the National Research University Higher School of Economics (HSE) in 2014-2015
(grant No 15-05-0041) and supported within the framework of a subsidy granted to
the HSE by the Government of the Russian Federation for the implementation of
the Global Competitiveness Program.

2 TextRank

To enable the application of PageRank to a text (Mihalcea and Tarau 2004) suggest
the idea of a text graph. The text graph is a weighted directed graph G D .V; E/

with the set of nodes V and the set of edges E that is a subset of V � V . Every node
v 2 V stands for a single sentence from the given text. Two nodes are connected if
they stand for consequent sentences. The node of preceding sentence links to node
of succeeding sentence. The edge is weighted by the sentence similarity value. The
sentence similarity can be computed in many different ways, but the most common
one is to use the VSM for sentence representation and the cosine similarity measure.
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According to VSM, every sentence is represented as a vector of word frequencies in
the space of words. Given two sentences S1 and S2 and two corresponding vectors

A and B, the cosine between them is
Pn

iD1 Ai�BiPn
iD1 A2

i �
Pn

iD1 B2
i
, where n is the total number of

words. The VSM and the cosine similarity measure have two strong disadvantages.
First, the similarity value is affected by the length of the sentence, since long
sentences get poor representation. Second, the cosine similarity measure takes only
exact matches between words or stems (if stemming procedure is exploited).

The so-called AST similarity measure overcomes both of this disadvantages.
It does not depend on the size of the sentence and can cope with fuzzy matches
between two sentences. We suggest to use the AST sentence similarity measure to
put weights on the edges of the text graph. This measure exploits ASTs (see Fig. 1
for an example). This data structure stores not only all fragments off the strings,
but also their frequencies. To find similarity between two sentences we have to
construct an AS for every sentence, find the common subtree and score it. The
scoring procedure is described later in detail. Its general idea is to estimate the
average frequency of the common fragments of the sentences.

With this little exception we follow the TextRank algorithm. After the text graph
is constructed, we can apply the PageRank algorithm introduced by Brin and Page
(1998) to it. For every given node vi 2 V we define In.vi/ as a set of nodes, which
link to it, and Out.vi/ as a set of nodes vi links to. Then the score of vi is

s.Vi/ D .1 � d/ C d �
X

j2In.vi/

1

Out.vj/
s.Vj/; (1)

where d is damping factor and is usually set at 0.85. Starting from random values of
s.vi/ the computation iterates until it converges.

Fig. 1 An AST for string
“mining”
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3 AST Similarity

3.1 Definition

According to the AST model introduced by Pampapathi et al. (2008), a text
document is not a set of words or terms, but a set of the so-called fragments, the
sequences of characters arranged in the same order as they occur in the text. Each
fragment is characterised by a float number that shows the conditional probability of
the fragment to occur in the text. The greater the number is, the more important the
fragment is for the text. An AST (see Fig. 1) is a data structure used for computing
and storing all fragments of the text and their frequencies. It is a rooted tree in
which:

• Every node corresponds to one character.
• Every node is labeled by the frequency of the text fragment encoded by the path

from the root to the node.

3.2 AST Construction

To construct an AST we use a naive algorithm following Gusfield (1997). First of
all we need to split the whole article in sentences. After this splitting is done, we
can construct an AST for every single sentence. To do this, we split every sentence
into three-grams. A three-gram is the contiguous sequence of three words from a
given sequence. Given the sentence “The rain in Spain stays mainly in the plain” we
would generate the following three-grams: “The rain in”, “rain in Spain”, “in Spain
stays”, “Spain stays mainly” and so on.

These three-grams are used for the AST construction. We find all suffixes of the
first three-gram and start with the first suffix. Here the i-th suffix of the string s is
the substring, starting from the i-th position to the end of the string sŒi W	, but not the
grammatical suffix. For example, the fourth suffix of the string “rain in Spain” is the
string “n in Spain”. In the same fashion we define the i-th prefix of the string as the
substring that starts from the first symbol and ends at the i-th symbol of the string.

So the first suffix forms the chain of nodes with frequencies equal to unity in
the AST. Next we add the second suffix. We search for a match that is a path from
the root of the tree that coincides with the prefix of the second suffix. If there is
no match, we add the second suffix as the chain of nodes with frequencies equal to
unity to the AST. If there is a match, we increase the frequencies of matched nodes
by one, and add the unmatched symbols to the last node of the match. The same
iterative process is repeated with all the left suffixes and three-grams.

To compute similarity between two sentences we:

• Find a common subtree for two ASTs
• Annotate it with average frequencies
• Score the whole subtree.
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Fig. 2 An AST for string
“dinner”

3.3 Constructing Common Subtree

To estimate the similarity between two sentences we find the common subtree of
the corresponding ASTs. We do the depth-first search for the common chains of
nodes that start from the root of the both ASTs. After the common subtree is
constructed we need to annotate and score it. We annotate every node of the common
subtree with the averaged frequency of the corresponding nodes in initial ASTs.
Consider, for example, two ASTs for strings “mining” and “dinner” (see Figs. 1 and
2, correspondingly). There are two common chains: “I N” and “N”, the first one
consists of two nodes, the second one consists of a single node. Both this chains
form the common subtree. Let us annotate it. The frequency of the node “I” is equal
to 2 in the first AST and to 1 in the second. Hence, the frequency of this node in the
common subtree equals to 2C1

2
D 1:5. In the same way we annotate the node “N”

that follows after the node “I” with 2C1
2

D 1:5 and the node “N” on the first level
with 2C2

2
D 2. The root is annotated with the sum of the frequencies of the first level

nodes that is 1:5 C 2 D 3:5.

3.4 Scoring Common Subtree

The score of the subtree is the sum of scores of every chain of nodes. According
to Pampapathi et al. (2008), the score of the path is the averaged sum of the
conditional probabilities of the nodes, where conditional probability of the node
is the frequency of the node divided by the frequency of its parent. For example,
the conditional probability of the node “G:1” on the third level of the AST on
Fig. 1 is 1=2. Let us continue with the example of “mining” and “dinner”. There
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Fig. 3 Common subtree of
ASTs for strings “mining”
and “dinner”

are two chains in their common subtree: “I N” and “N”. The score of “I N” chain
is .1:5=1:5 C 1:5=3:5/=2 D 0:71, since there are two nodes in the chain. The
score of one node chain “N” is 1:5=3:5 D 0:42. The score of the whole subtree
is .0:71 C 0:42/ D 1:13 or .0:71 C 0:42/=2 D 0:56, if averaged by the number of
chains in the tree. Let us denote the first scoring technique as AST and the second as
AST:averaged. Note that the AST:averaged scoring technique results in values in
Œ0; 1	, thus having properties of similarity measure. The similarity of two sentences
is scored in the same way, but for the sake of space we would not provide examples
of the AST for the whole sentence (Fig. 3).

4 Experimental Setup

The collection for experiments is made of 400 articles from Russian news portal
called Gazeta.ru. The articles are marked up in a special way, so that some of
sentences are highlighted because of being more important. This highlighting is
done either by the author of the article or by the editor on the basis of their own ideas.
In our experiments we considered those sentences as the summary of the article. We
tried to reproduce these summaries using TextRank with cosine and AST sentence
similarity measures. In total there were three similarity measures: cosine, AST,
AST:averaged. According to different similarity measures we get different ranking
of the sentences for every article. However the TextRank importance measure is
always the same. We take 10 sentences with the highest values of importance and
consider them as the summary of every article. To compare the similarity measures
we used two widely used characteristics: recall at 10 (recall@10) averaged and
precision at 10 (precision@10) averaged. Both of these measures are based on
the same idea: we check how many highlighted sentences appear among the 10
sentences with the highest values of importance for every article. Let us denote by
na the total number of sentences highlighted in the paper a and n10

a be the number
of highlighted sentences among the top 10 sentences. To find precision@10 we
divide n10

a by 10 and to recall@10 we divide n10
a by na. Since both precision@10
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Table 1 Results of using
three similarity measures in
TextRank algorithms

Similarity measure recall@10 precision@10

All sentences

Cosine 0:3646 0:1607

AST 0:4902 0:2166

AST.averaged 0:4374 0:1928

50 % edges

Cosine 0:3663 0:1610

AST 0:3979 0:1763

AST.averaged 0:4060 0:1807

and recall@10 are calculated for a single article, the final output is precision@10

averaged over all 400 articles and recall@10 averaged over all 400 articles.
We also experimented with some parameters while constructing the graph

(Table 1):

• All sentences: we kept all nodes in the graph so that they had at least one edge.
• 50 % edges: we removed 50 % of all edges of lower weight from the graph, so

that only those of higher weight remained.

5 Results

The highest recall and precision at 10 values are achieved by the AST similarity
measure and All sentences graph construction technique. We should notice that
no matter what parameters were used the AST similarity measure outperforms the
cosine similarity measure. The low values of recall and precision are disappointing,
but it may happen when unsupervised methods are applied to natural text processing
tasks. They may be also a consequence of the random construction of the collection
that we did not expect manually.

6 Conclusion

In this paper we presented an attempt to improve the TextRank algorithm for text
summarisation, we focused on developing a new sentence similarity measure. These
sentences were to be used as nodes in a graph. The nodes were connected with
weighted edges, where the weights corresponded to sentence similarity.

We used the AST method to measure sentence similarity. More specifically
we developed an algorithm for common subtree construction and annotation. The
common subtrees were used to score the similarity between two sentences. Using
this algorithm allows us to achieve some improvements according to cosine baseline
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on our own collection of Russian newspaper texts. The AST measure gained around
0.05 points of precision more than the cosine measure. This is a great figure for
natural language processing task, taking into account how low the baseline precision
of the cosine measure is. The fact that the precision is so low can be explained by
some lack of consistency in the constructed collection: the authors of the articles
use different strategies to highlight the important sentences. The text collection
is heterogeneous: in some articles there are ten or more sentences highlighted, in
some only the first one. Unfortunately, there is no other test collection for text
summarisation in Russian. For further experiments we might need to exclude some
articles, so that the size of summary would be more stable. Another issue of our
test collection is the selection of sentences that form summaries. When the test
collections are constructed manually, summaries are chosen to common principles.
But we cannot be sure that the sentences are not highlighted randomly.

Although the AST technique is rather slow, it is not a big issue for the text
summarisation problem. The summarisation problem is not that kind of problems
where on-line algorithms are required. Hence the precision plays more significant
part than time characteristics.

There are several directions of future work. First of all, we have to conduct
experiments on the standard document understanding conference (DUC 2014)
collections in English. Second, we are going to develop different methods for
construction and scoring of common subtrees and compare it to each other. Finally,
we may use some external and more efficient implementation of the AST method,
such as EAST Python library by Mikhail Dubov, which uses annotated suffix arrays
(EAST 2016).
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Big Data Classification: Aspects on Many
Features and Many Observations

Claus Weihs, Daniel Horn, and Bernd Bischl

Abstract In this paper we discuss the performance of classical classification meth-
ods on Big Data. We distinguish the cases many features and many observations. For
the many features case we look at projection methods, distance-based methods, and
feature selection. For the many observations case we mainly consider subsampling.
The examples in this paper show that standard classification methods should not be
blindly applied to Big Data.

1 Introduction

This paper is on Big Data Analytics (BDA). But what is Big Data? Unfortunately,
the answer depends on whom you have asked when. In machine learning (ML)
benchmarks in the 1990s (e.g., in the UCI repository) maximum 100s to 1000s of
data points were available. In modern benchmarks we often have more than 106 data
points. When you ask, e.g., Google, the answer might be “Big Data means that
data are much too big for your computer storage, only streaming is possible from a
cloud, only distributed analytics, . . . .” Another possibility is to define a “Big Data
problem” by the impossibility to exactly solve the learning problem by computer
time reasons.1 Therefore, information in the data is not optimally utilizable. This
definition is used in the very last example of this paper, where the question is: Which
information brings us as fast as possible as near as possible to the solution and what

1Thanks to T. Glasmachers for suggesting this definition.
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is a “perfect” approximation algorithm?2 Note that those who think that the data in
our paper is not big enough for being Big Data might also call our topic of interest
“Large Scale Data Analysis.”

In this paper we will discuss typical classification methods in the context of BDA.
The message of this paper is that for BDA not all classical methods are adequate in
all Big Data situations and that Big Data might even long for special methods. In
order to demonstrate the extremes, we will particularly discuss the cases of many
features (and small no. of observations) in Sect. 2, and the case of many observations
(and small no. of features) in Sect. 3.

2 Many Features

With the advent of high throughput biotechnology data acquisition platforms such
as micro arrays, SNP chips, and mass spectrometers, data sets with many more
variables than observations are now routinely being collected (see, e.g., Kiiveri
2008). Most often, however, only a small part of these p features or a small number
of directions in p-space are important for classification. Therefore, one might be
tempted to thoughtlessly apply standard methods which are known to be only
adequate for p < n (not too big), but problematic in high dimensions (curse of
dimensionality) and for very large n. In this paper, we will discuss some of the
many available classification methods in this context. Let us start with projection-
based methods.

2.1 Projection-Based Methods

One of the best known and most used projection-based classification methods in
statistics is Fisher discrimination. The performance of this method in the case of
more features than observations is discussed by Bickel and Levina (2004) showing
the following property:

Consider two classes with Gauss distributions: N .�1; ˙/; N .�2; ˙/. Let the
corresponding a priori probabilities be equal, i.e., 1 D 2 D 0:5. Then, for Fisher
discrimination the classification function has the form ıF.x/ D .x � �/T ˙�1.�1 �
�2/ with � D .�1 C �2/=2. Let the corresponding samples be observed with equal
sample sizes, i.e., n1 D n2. Then, the sample version of the classification rule is:
Assign class 1 iff OıF.x/ D .x � Nx/TS�1.Nx1 � Nx2/ > log.2=1/ D 0. If p > n,
then the inverse of the estimated pooled covariance matrix S does not exist and the
Moore–Penrose generalized inverse is used instead. For this situation, the following
result is true under some regularity conditions which particularly state that the norm

2This part of the paper was supported by the Mercator Research Center Ruhr, grant Pr-2013-0015,
see http://www.largescalesvm.de/.

http://www.largescalesvm.de/
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of the mean vector should be limited. If p ! 1; n ! 1; and p=n ! 1, then
error ! 0:5, i.e., the class assignment is no better than random guessing.

This result states a strong warning concerning the application of Fisher discrimi-
nation in the case of many more features than observations. As have been motivated
by Bickel and Levina (2004), the bad performance of Fisher discriminant analysis
is due to the fact that the condition number of the estimated covariance matrix goes
to infinity as dimensionality diverges even though the true covariance matrix is not
ill-conditioned.

The regularity conditions mentioned above mainly state that the true covariance
matrix should not be ill-conditioned and that the mean vectors of the classes should
stay in a compact set. In the following simulations we thus consider two distinct
cases, one where the mean vectors drift away from each other the higher the
dimension p is, and one where the distance of the mean vectors of the classes
stay the same for different p. Obviously, if the class distance is increasing with
increasing p by taking the distances in the individual coordinates the same, the
classification problem gets simpler. On the other hand, one can show that if the
class distance stays the same for different p by means of shrinking the distance
in the individual coordinates by md=

p
p, then the Bayes error stays the same if

the covariance matrix is diagonal, i.e., ˙ D d � I. Indeed, in the second case the
Bayes error is 1�˚..md=2/=d0:5/. This means that the difficulty of the classification
problems stays mainly the same in the different dimensions p.

Noise accumulation can also be reduced by ignoring the covariance structure,
i.e., by using a diagonal matrix as an estimate of the covariance matrix. In this
context, Bickel and Levina (2004) derived the following asymptotic result for the so-
called independence rule (ir), i.e., linear discriminant analysis (lda) with diagonal
covariance matrix:

Let � be a “regular” space of possible means and covariance matrices of the
two classes, ˙ the full covariance matrix in the two classes, ˙0 the corresponding
correlation matrix, �.˙0/ an eigenvalue of ˙0, and ˚ the distribution function of
the standard normal. Then, the following result is true:

If log.p/=n ! 0, then lim supn!1.maximal error in � / D 1�˚.
p

K0

1CK0
c/, where

K0 D max� .
�max.˙0/

�min.˙0/
/ and c2 D min� ..�2 � �1/

T˙�1.�2 � �1//.
Therefore, if p is going slower to infinity than en, then for Big Data sets there is

a bound for the maximal error in the space of possible data situations. In practice,
this property may lead to a superiority of ir over the full lda.

Here, shrinking the distance in the individual coordinates by md=
p

p and taking
˙ D d � I leads to K0 D 1 and to a limit for the maximal error of 1 � ˚.c=2/ D
1 � ˚..md=d0:5/=2/, which again is the Bayes error above.

Finally note that for normal distributions the independence rule is equivalent to
the Naive Bayes method. In practice, however, the Naive Bayes method (NB) is
typically implemented in a non-parametric way and not by assuming a certain type
of distribution like the normal distribution. This generally leads to implementations
different from the independence rule. For normal distributions as in our examples,
NB is thus expected to be inferior to ir. Additionally, the linear support vector
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machine (svm), also looking for linear separations, will be discussed as an alternative
to lda which can be adapted to the actual data by tuning the cost parameter.

Generic Data Generation (GDG). Let us demonstrate the above theoretical
results by means of data examples. Let us start with a GDG step. We will always
consider the ideal situation for the lda, i.e., two classes where the influential features
are multivariate normally distributed with different mean vectors and the same
covariance matrix. In the case where pr features influence class separation we
choose the class means m1.i/ D �md=2; m2.i/ D md=2, where md D difference
between the two class means, i D 1; : : : ; pr. The covariance matrices are built so
that ˙ D ˙R C d � I, where ˙R is built of independent uniform random numbers
between 0:1 and 1 and the multiple d of the identity is added in order to generate
positive definiteness. Note that if d is large, then ˙ is nearly diagonal, making
our above discussion on Bayes errors for diagonal covariance matrices relevant.
By choosing different distances md between the mean vectors or different d the
Bayes error, interpreted as the difficulty of the classification problem, can be varied.
Sometimes we add noise by means of features which do not have any influence on
class separation by adding .p � pr/ normally distributed features with mean 0 and
variance d. Overall, we assume that we have p features. Note that possibly p D pr.
We typically use n D 2 � nel << p observations, nel observations for each class.
Thus, p tends to be much bigger than n, the case we discuss in this section. The
generation of n data points from the above normal distributions in p dimensions is
repeated rp D 200 times using different random covariance matrices ˙ . For the
estimation of error rates, corresponding test samples with nelt D 1000 observations
per class are generated from training distributions.

Example 1. Let us first assume that all involved features in fact influence the class
choice, i.e., p D pr D 12; : : : ; 2040, and let d D 25; nel D 6; md 2 f2:5; 20=

p
prg

representing the above first and second case of class distance choice. By means of
this variation of p with constant n D 2 � 6 D 12 we vary the ratio p=n from 1 to
170. For md D 2:5 the classification problem tends to become easier for increasing
p than the problem with md D 20=

p
pr. On the accordingly generated data (see

GDG) different classification methods are compared. Let us start the discussion of
the mean error rates in Table 1a with Bayes rules and approximate Bayes rules
like (Fisher’s) lda, the independence rule (ir), the naive Bayes method (NB), and
the 1 nearest neighbor rule (1NN), as well as another standard linear separator,
the linear svm.3 Obviously, all methods benefit from higher dimensions in the case
md D 2:5 as expected. In the case md D 20=

p
pr all methods are suffering from

higher dimensions. This was expected for lda, but appears also be true for the other
methods. Notice that svm needs by far the most training time and is not distinctly
better than the other methods (cp. column sec). Therefore, the choice of svm cannot
be justified for the studied problems. Also note that runtime is near zero for 1NN
because the training data set only consists of n D 12 observations.

3This simulation was carried out using the R-packages BatchJobs (Bischl et al. 2015) and mlr on
the SLURM cluster of the Statistics Department of TU Dortmund University.
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Table 1 Comparison of mean error rates (%): (a) all, (b) only p=6 features influence

p 12 120 240 360 480 600 1080 2040 12 120 240 360 480 600 1080 2040 sec

(a) All md D 2:5 md D 20=
p

p

lda 41 23 16 14 12 11 8 7 24 32 34 37 38 38 42 44 1.0

ir 32 14 10 9 8 8 7 6 8 25 31 34 37 39 41 45 0.1

NB 38 24 19 16 14 13 10 8 12 34 39 41 42 43 45 47 1.5

1NN 38 23 18 16 15 14 12 11 11 34 39 41 43 44 46 47 0.0

svm 35 15 11 9 8 8 7 6 9 26 32 35 37 39 42 44 160

(b) p=6 md D 2:5 md D 20=
p

p=6

lda 48 45 45 44 42 41 38 32 22 37 42 43 44 44 45 46 1.0

lda+fs/6 43 39 36 34 31 31 25 18 5 25 30 33 34 37 38 40 10

ir 46 39 34 31 29 27 22 17 6 21 27 30 32 34 38 41 0.05

NB 48 44 42 40 39 38 35 32 13 32 38 40 41 42 44 46 1.5

1NN 48 42 40 38 36 35 31 27 9 28 34 37 39 40 43 45 0.0

svm 46 39 34 31 29 27 22 16 15 23 27 30 33 34 38 41 150

p no. of dimensions,
sec mean training time over both md in seconds for pD 2040,
md mean difference of classes in each dimension,
lda linear discriminant analysis (lda, package MASS, software R (R CORE TEAM 2014)),
fs/6 feature selection (best p/6 features, mutual information (symmetrical.uncertainty) criterion,
package FSelector in R),
ir independence rule = lda with diagonal covariance matrix (sda, package sda in R, no shrinkage,
diagonal = TRUE),
NB naive Bayes rule (naiveBayes, package e1071 in R),
1NN 1 nearest neighbor rule (knn, package class in R),
svm linear support vector machine (svm in R, package e1071, cost parameter tuned on grid
2�4; : : : ; 24 by leave-one-out)

Let us now compare this behavior with the case where only pr D p=6 features
influence the classes. Looking at the results in Table 1b, the benefit for higher
dimensions is much slower in case md D 2:5 because there is a much smaller class
distance increase. Notice however that the methods ir and svm distinctly benefit
the most, ir with much less training time than svm. In the case md D 20=

p
pr the

behavior is similar as for pr D p.

2.2 Distance Dependence

In the previous chapter we saw a distance dependency of classification quality. Let
us now consider this dependency more exactly for a general class of distance-based
classifiers.

For a plausible distance-based classifier g we only assume the following two
properties: (a) g assigns X to class 1 if it is closer to each of the Xis in class 1 than it
is to any of the Xjs in class 2. (b) If g assigns X to class 1, then X is closer to at least
one of the Xis in class 1 than to the most distant Xj in class 2.
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Table 2 Mean error rates (%) of 1NN (left) and mean class distances MD (right)

ip j p 12 120 240 360 480 600 1080 2040 12 120 240 360 480 600 1080 2040

1 45 0 0 0 0 0 0 0 1:5 4:7 6:7 8:2 9:5 10:6 14:2 19:6

2 45 33 28 24 20 17 10 4 1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5

4 45 44 45 44 44 44 44 44 1:5 0:84 0:71 0:64 0:60 0:56 0:49 0:42

For such a method the following property is true (Fan et al. 2011):
Consider the model Xij D �kj C 
ij, i 2 Gk, k D 1; 2, where Xij is the jth component
of Xi; �kj the j-th component of mean vector �k, and the 
ij are independent
identically distributed with mean 0 and finite fourth moment. Then, the probability
that a distance-based classifier of the above kind classifies a new observation
correctly converges to 1 iff p D o.jj�2 � �1jj4/ for p ! 1.

This property shows that with distance-based classifiers perfect class prediction
is possible, but only if the distance of class means grows with the number of
influential features so that p1=4=jj�2 � �1jj ! 0, i.e., that MD D jj�2 � �1jj grows
faster than p1=4. Note that this result is independent of sample size n. Let us now
illustrate this property in more detail by means of an example.

Example 2. Consider the kNN method with k D 1 based on the Euclidean distance.
Let the mean distance MD between the two classes increase with dimension p so that
MD D p1=ip�0:5 �1:5=121=ip�0:5 guaranteeing a start distance of 1:5, ip D 1; 2; 4. Note
that the mean distance automatically increases with p0:5 if the distances between
the classes are identical in all dimensions. In GDG we additionally choose nel D
6; nelt D 1000; rp D 200 and ˙R D 0 � I; d D 25, meaning that we sample from
independent normal distributions with mean distance MD and standard deviation
5 in each dimension (cp. the above theoretical property). Table 2(left) shows that
the start distance of 1:5 leads to a high mean test error rate of 45 %. However, the
error rate benefits from more features if ip < 4, confirming the theoretical result.
Also note that the distances in individual dimensions are shrunken for ip > 2 [see
Table 2(right)] because of automatic increase of p-dimensional class distances by
p0:5.

2.3 Feature Selection

Let us now have a look on feature selection methods in high dimensions. Simple
filters are the fastest feature selection methods. In filter methods, numerical scores
si are constructed for the characterization of the influence of feature i on the
dependent class variable. Filters are generally independent of classification models.
Easy example filters are the �2-statistic for the evaluation of independence between
(discretized) feature i and the class variable, the p-value of a t-test indicating
whether the mean of feature i is different for the two classes, the correlation between
feature i and the class variable, and the mutual information in feature i and the class
variable.



Big Data Classification: Aspects on Many Features and Many Observations 119

Filters can be easily combined with a classification method. First calculate filter
values (scores). Then sort features according to scores and choose the best k features.
Finally, train the classification method on these k features. Let us demonstrate the
possible effect of a filter by reconsidering Example 1.

Example 1 (cont). When only p=6 features influence the classes, the correct num-
ber of features is selected by feature selection (lda+fs/6). The corresponding error
rates are then much lower than without feature selection but at the price of higher
computation times (see column “sec”) caused by the usage of a mutual information
criterion for feature selection (see Table 1b).

The most important problem with feature selection is the adequate choice of
k. Another idea is to apply dimension reduction, e.g., by principal components
analysis (pca), before application of classification methods (see, e.g., Bair et al.
2006) since there is hope that projection dimensions put much more weight on
features having large classification power. Unfortunately, the above result for lda
can be generalized to the application of lda to any general projection on linear
combinations. This is because such projection directions are constructed with
probability 1 using essentially all features, so that the misclassification error tends
to be big because of noise accumulation when not all features are relevant for class
separation (Fan et al. 2011). This affects, e.g., lda applied to principal components,
but also combinations with other projection methods like partial least squares (as
proposed, e.g., by Boulesteix 2004).

Let us discuss whether a, at least nearly, correct finding of the real number of
influential dimensions is helpful for lda and look at an example combining the two
ideas, feature selection and pca.

Example 3. 4Consider two classes in p D 1000 dimensions, where only pr D 100

dimensions really influence class membership. The idea is, first, to identify those
m features with the highest effect on class separation, m 2 f2; : : : ; pg, by means
of feature selection on training data. Here, we use the linear correlation criterion,
which is much faster than mutual information but only approximate for binary
outputs (again from FSelector in R). In the above GDG we use nel D 50; md 2
f0:5; 1:5; 2:5g; d D 10; rp D 200; nelt D 1000. Second, class separation is tried
by means of lda on the first two principal components (pcs). Note that pcs are only
determined up to sign. The sign might even differ for training and test sets resulting
in an interchange of class labels in the test data. Therefore, min.mcr; 1 � mcr/,
mcr D estimated misclassification error, is used as the error rate. Table 3 shows
mean lda error rates on the first two principal components of the same m dimensions
of the test data identified on the training data. Obviously, choosing m near the correct
pr D 100 is only acceptable for the easier problems (md D 1:5; 2:5). For the hardest
problem with md D 0:5, higher m gave more acceptable results. This may be caused
by a nearly inevitable imperfect feature selection. In any case, higher m, in our
example near half the number of involved features (i.e., m D 500), appear to be on
the save side in all cases.

4This example is inspired by Fan et al. (2011).
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Table 3 Mean error rates (%) of lda on the first 2 principal components based on the best m
features

md j m 2 10 50 90 100 110 200 500 800 900 1000

0.5 48 49 49 49 49 49 47 41 42 42 43

1.5 39 34 21 20 19 19 19 18 19 20 22

2.5 30 16 8 6 6 6 6 6 6 6 6

3 Many Observations

Let us also briefly look at cases with many more observations than features. In
such cases, the standard idea is to split the data into smaller blocks, analyze these
blocks, and recombine the results to an overall result. Let us concentrate here on
the case where we actively split a too Big Data set and analyze the corresponding
blocks. This idea is obviously adapted from cross validation and bagging. Then, we
try to find a recombination method that gives a reasonable, as optimal as possible,
approximation to that result which we would have seen if we would have looked at
all observations at the same time. This leads us back to the definition of Big Data
based on approximations in the introduction. Please note that we skip the streaming
case here because of space restrictions. In such a case, the data is arriving already in
blocks with the possibility of structural breaks in new blocks.

One example for splitting the data actively into subsamples and try to estimate
the overall error rate from estimated error rates in the subsamples is the so-called
cascade-svm (Graf et al. 2005), a version of which was realized in Meyer et al.
(2013) in the following way:

1. Partition the data into k subsets of possibly the same size.
2. Parallelly train svm independently on each subset.
3. Generate new data sets by combination of the support vectors (svs) of pairs (or

triplets,. . . ) of such analyses.
4. Repeat steps 2 and 3 for some time.
5. Train an svm on all svs in step 4 leading to an svm model.

Here, the main idea for the estimation of the overall error rate is that for svm already
the svs contain all information necessary for model building. For other classification
methods, analogues might be constructed by identifying the important observations
by means of the distance to the decision border.

Meyer et al. (2013) tested the method on examples with 67,000–581,000
observations comparing the full linear svm, pure bagging with majority voting, and
different versions of the cascade-svm. The latter sometimes resulted in much better
results than pure bagging and was much faster with only a little worse results than
full svm.
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For this paper we took a closer look on the approximation of the result of the full
kernel svm by means of subsampling in the following way:

1. Optimize the cost parameter, the kernel-width, and the duality gap of the kernel
svm method as well as the subsampling rate k with respect to two targets, namely
the misclassification error and required training time, by means of sequential
model-based multi-criteria optimization.

2. Randomly split the subsample once into 50 % training, 25 % test, and 25 %
validation samples. For this, the order of the observations was permuted.

3. During the optimization, generate a training subsample by using the first 100 � k
percent of the training data. This way, the training sample for k D 0:1 is a subset
of the sample for k D 0:2.

4. Train the kernel svm5 on the training sample, calculate the training time, and
estimate the misclassification rate on the validation sample.

5. Analyze the trade-off between the two targets by means of the Pareto-front.

With this method, we received very promising results for several large data sets6

in that the subsample results built very promising alternatives to the full data result
with only slightly higher errors produced in much less training time. In Fig. 1 on
the left we see an expected Pareto-front. Using 93 % of the data, a small speed up
is possible without a significant error loss, whereas using only 21 % we observe
a speed up by factor 10, but twice the validation error. On the right we see a very
promising result where we were able to reduce the training time by factor 100 nearly
without any loss in accuracy.
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Fig. 1 Pareto-front for LibSVM with and without subsampling on binary versions of the data
sets mnist (left, 70,000 samples, 780 features) and vehicle (right, 98,528 samples, 100 features).
Selected subsampling rates are explicitly noted on the right of the mark

5We used the R-library libSVM, see http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
6Data sets taken from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


122 C. Weihs et al.

4 Summary and Conclusion

In this paper we discussed the performance of standard classification methods on
Big Data. We distinguished the cases many features and many observations. For
the many features case we looked at projection methods, distance-based methods,
and feature selection. If the class distance increases for higher dimensions, then
error rates are decreasing, whereas for constant Bayes error the estimated errors
are increasing up to nearly 0:5 for higher dimensions. Also, feature selection might
help with finding better models in high dimensions. ir and svm performed best in
high dimensions, ir in much less time than svm. For the many observations case,
subsampling generated promising alternatives to the full data result by producing
only slightly higher errors in much less training time.
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Clustering



Bottom-Up Variable Selection in Cluster
Analysis Using Bootstrapping: A Proposal

Hans-Joachim Mucha and Hans-Georg Bartel

Abstract Variable selection is a problem of increasing interest in many areas
of multivariate statistics such as classification, clustering and regression. In con-
tradiction to supervised classification, variable selection in cluster analysis is a
much more difficult problem because usually nothing is known about the true class
structure. In addition, in clustering, variable selection is highly related to the main
problem of the determination of the number of clusters K to be inherent in the
data. Here we present a very general bottom-up approach to variable selection in
clustering starting with univariate investigations of stability. The hope is that the
structure of interest may be contained in only a small subset of variables. Very
general means, we make only use of non-parametric resampling techniques for
purposes of validation, where we are looking for clusters that can be reproduced to
a high degree under resampling schemes. So, our proposed technique can be applied
to almost any cluster analysis method.

1 Introduction and Motivation

Cluster analysis aims at finding sub-populations (clusters). Usually, it considers
several variables simultaneously. In this context, the observations within a cluster
should be similar to each other, whereas objects from different clusters should be
as dissimilar as possible to each other. However, taking all variables into account
means that the discovery of clusters in the data is often impossible because of
several masking and noisy variables. There are many papers on variable selection in
clustering, mainly based on special cluster separation measures such as the Davies
and Bouldin (1979) criterion: ratio of within-cluster dispersions and between-cluster
separation. Meinshausen and Bühlmann (2010) introduced a much more general
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“Stability selection”, i.e., variable selection for high-dimensional problems, based
also on subsampling (a special resampling technique) in combination with selection
algorithms with a wide range of applicability.

In practical view of the occurrence of several masking and noisy variables, we
propose a bottom-up variable selection starting with univariate cluster analysis, and
going on to multivariate cluster analysis via bivariate clustering. The hope is that
the structure of interest may be contained in only a small subset of variables. To our
knowledge, the first (special) forward variable selection in clustering was proposed
by Fowlkes et al. (1988). Gnanadesikan et al. (1995) showed that weighting and
selection of variables can dramatically facilitate cluster recovery. Carmone et al.
(1999) proposed a variable selection procedure based only on the J univariate
clustering results. In our extremely general proposal, the assessment of stability
of cluster analysis results plays a key role. It is based on resampling techniques
such as bootstrapping and stability measures such as the adjusted Rand’s measure
(Hubert and Arabie 1985). Here we prefer bootstrapping as the favourite resampling
technique because of its good performance in finding the number of clusters K
(Mucha and Bartel 2014).

Let us start with a motivating real data application to archaeometry. Figure 1
displays both the original data values at the abscissa and the corresponding result of
Ward’s univariate hierarchical clustering based on the squared euclidean distances,
for statistical details see below in Sect. 3. Univariate clustering simply means that
the set of objects is reordered based on a single variable followed by dividing the
total order of objects into homogeneous regions. Here archaeological objects (tiles)
are clustered based on iron oxide. Iron oxide is one out of a set of 19 variables. The
tiles were produced by two different Roman military units in the former Roman
province Germania Superior. Obviously, the two archaeological groups can be
reproduced only to a moderate degree by univariate clustering.

Fig. 1 From univariate data to dendrograms via squared euclidean distances: Ward’s hierarchical
cluster analysis based on measurements of the content of iron oxide (in mass-%). The ordinate
reflects the increment � of the sum of within-cluster variances when merging two clusters
(logarithmic scale)
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Fig. 2 Plot-dendrogram: the binary tree is projected on the plane of the two variables iron oxide
and zirconium (Zr, in ppm). The dendrogram represents the result of Ward’s bivariate hierarchical
cluster analysis based on the squared euclidean distances of the standardized variables (Z-scores)

When taking into account an additional chemical element, here for instance
Zr, Ward’s cluster analysis finds the two archaeological groups perfectly. Figure 2
shows both the corresponding dendrogram and the two groups of tiles that are
distinguished by the stamp of their military unit (marked by different symbols of
the terminal nodes of the tree). Here in addition, each observation is marked by
its identification number (for details on this dataset, see Mucha and Ritter 2009).
These two groups of tiles cannot be uncovered by Ward’s method (or by K-means
clustering) when using all 19 variables of the dataset (Mucha et al. 2015). To be
more precisely, at least one observation (i.e., “H272”) is clearly misclassified.

2 Bottom-Up Variable Selection: A Proposal

In the case of high-dimensional data, it seems very realistic that class structures may
be contained in a smaller set of variables. Looking for clusters in almost arbitrary
subspaces is definitely intractable due to the computational complexity. Therefore
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here we propose a practicable idea. The basic bottom-up variable selection looks as
follows:

1. The starting point is an assessment of the evidence of univariate clustering results
based on bootstrapping. Concretely, we are looking for the most stable univariate
clustering (i.e., the best variable) with respect to measures of the correspondence
between two partitions such as the adjusted Rand’s index (ARI) RK or Jaccard’s
measure of correspondence between pairs of clusters (Hennig 2007).

2. Subsequently, we are looking for the best partner of the variable found in step 1.
The hope is to find the most stable bivariate clustering in that way.

3. We are going ahead to find a third partner of the two variables found in step 2.
Furthermore, we proceed the search for next variables as long as an “essential”
improvement of the stability of the clustering can be realized.

In clustering, usually nothing is known about the true class structure, especially
about the number of clusters K. Therefore, the performance or the stability of
clustering cannot be assessed by counting the rate of misclassifications based on
a confusion matrix. However, with the help of the non-parametric bootstrapping we
are able to operate also on a confusion matrix. It comes from crossing two partitions:
the original one and one coming from clustering a “bootstrap” sample. Then the ARI
or other measures of stability can operate on such an “artificial” confusion matrix.
Usually, hundreds of bootstrap samples are needed, see for details Mucha and Bartel
(2014). Here we work with B D 250 bootstrap samples and we take the average (or
median) of 250 ARI values to come to a final RK; K D 2; 3; : : :. The maximum RK

gives us an idea about the number of clusters K we are looking for.
To quantify what “essential” means, a stop criterion of increment of stability �RK

such as �RK D 0:01 can be used. The computational complexity decreases with
the number of steps: J univariate (original) clustering results have to be assessed,
J � 1 bivariate ones, J � 2 trivariate ones, and so on. Hierarchical clustering looks
most fit and proper for our resampling proposal because of the (usual) unique and
parallel clustering of the I observations into partitions of K D 2, K D 3; : : : clusters.
Therefore, without loss of generality, here the hierarchical Ward’s method is used.
In addition, pairwise distances such as (3) (see next section), the usual starting
point of hierarchical cluster analysis, are not changed by bootstrapping/subsampling
techniques.

In contradiction, the results of partitional (iterative) clustering methods such as
the K-means method are dependent on the initial partition into a fixed number of
clusters K. Usually, 50 different initial partitions are used to get up to 50 different
locally optimal solutions. The best solution is taken for the investigation of stability.
Moreover, one has to do this for different K .K D 2; K D 3; K D 4; : : : ; K D Kmax/.
Finally, one has to do all things outlined above also for each bootstrap sample (or
subsample). That means step 1 of our proposal needs altogether 50�Kmax�.BC1/�J
univariate partitional cluster analyses.
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The proposed general variable selection procedure can be modified in several
ways by

• switching to a top-down step to drop some variables in between the bottom-up
selection direction,

• starting with J � .J � 1/=2 bivariate cluster analyses as a special variant, i.e.,
starting with step 2 of the general proposal. For instance, this makes sense in the
case of rank data.

3 Application: Clustering of Swiss Bank Notes

The dataset contains six measurements made on 100 genuine and 100 forged
counterfeit old-Swiss 1000-franc bank notes (Flury and Riedwyl 1988) with the
following variables:

• Length: Length of bill (mm),
• Left: Width of left edge (mm),
• Right: Width of right edge (mm),
• Bottom: Bottom margin width (mm),
• Top: Top margin width (mm), and
• Diagonal: Length of diagonal (mm).

Without loss of generality we consider here the simplest model-based Gaussian
clustering method. It seems to be an appropriate model for clustering this dataset.
Let X D .xij/ be a data matrix consisting of I rows (observations) and J
columns (variables). In particular, C D fx1; : : : ; xi; : : : ; xIg denotes the finite set of
observations. Further, let P D fC1; : : : ;CKg of C be the partition we are looking
for. The simplest Gaussian clustering model means the minimization of the sum of
squares (SS) criterion

VK.P/ D
KX

kD1

Wk; (1)

which is equivalent to the minimization of
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where

dih D d.xi; xh/ D .xi � xh/
T.xi � xh/ D kxi � xhk2 (3)
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is the squared euclidean distance between two observations xi and xh, and Wk is the
usual estimate of the within-cluster covariance matrix˙ k of cluster Ck. For details,
see Mucha (2009).

Furthermore, also without loss of generality, we consider here the hierarchical
Ward’s method that minimizes the criterion (1) [or (2)]. Figure 3 summarizes the
investigation of stability of the univariate Ward’s clustering based on the ARI RK

coming from comparisons with cluster analyses of 250 bootstrap samples. The
results of clustering based on variable “Diagonal” are most stable for K D 2, and
also stable for K D 3. By the way, two errors are counted only by this two-cluster
solution. Now we are looking for the best partner of “Diagonal”. Figure 4 shows the
results of the investigation of stability of the bivariate Ward’s clustering in a similar
manner as presented in Fig. 3. Obviously, the result of clustering based on the two
variables “Diagonal” and “Top” is most stable for K D 2 with a significant decrease
when splitting one of these clusters (K D 3). One error is counted here only. This is
exactly the same result of Ward’s method when using all six variables of the dataset.

Fig. 3 The ARI RK versus number of clusters in univariate hierarchical clustering of Swiss bank
notes. The stability looks quite different for the six variables

Fig. 4 The ARI RK versus number of clusters in bivariate clustering. The stability of the clustering
based on Diagonal C Top is extremely high for two clusters
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Fig. 5 The ARI RK versus number of clusters in trivariate hierarchical clustering

Usually, the bottom-up procedure stops in the case of �RK D 0:01 because
the ARI is very close to its maximum value 1. But, let us go on to trivariate
clustering to see what happens. Figure 5 summarizes the investigation of stability of
trivariate Ward’s clustering. Now the four trivariate clustering vote for K D 2, but
only three of them show a significant decrease when splitting one of these clusters
(K D 3). The result of clustering based on the three variables “Diagonal”, “Top”
and “Bottom” is also stable for K D 3. That’s interesting because, in fact, the class
of forged bank notes is much more heterogeneous than the class of genuine bank
notes (Mucha 1996). Maybe, the reason for this is that the forged banknotes stem
from several different workshops.

4 Example: Variable Selection in Clustering of Synthetic
Data

Figure 6 shows the bivariate density surface of the first two variables “V1” and “V2”
of a randomly generated four-dimensional three class data. The other two variables
“R1” and “R2” are masking variables without any class structure. Concretely, they
are uniformly distributed in (–5, 5). The three Gaussian sub-populations were
generated with the following different parameters: cardinalities 80, 130, and 90;
mean values (–3, 3), (0, 0), and (3, 3), and standard deviations (1, 1), (0.7, 0.7), and
(1.2, 1.2).

Figure 7 summarizes the investigation of stability of the univariate Ward’s
clustering based on the ARI RK coming from comparisons with cluster analyses
of 250 bootstrap samples. Clearly, the clustering based on variable “V1” is most
stable for K D 3 clusters with an additional most steep rise from K D 2 to K D 3.
Here 32 errors were counted.
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Fig. 6 Non-parametric density estimation of the first two variables of the synthetic three class
dataset which carry the class structure

Fig. 7 Statistics of the ARI RK versus number of clusters in univariate hierarchical clustering. The
stability looks quite different for each of the four variables
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However, the appropriate criterion for this data ought be the logarithmic sum-of-
squares criterion (Mucha 2009)
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But, the most simple model (2) applied here did also a very good job in finding
the true three classes.

Figure 8 shows the results of the investigation of stability of the bivariate Ward’s
clustering in a similar manner as Fig. 7. Obviously, the result of clustering based
on the two variables “V1” and “V2” is most stable for K D 3 with a significant
decrease in stability when merging two of these clusters (K D 2). Four errors were
counted here only.

Figure 9 summarizes the investigation of stability of trivariate Ward’s clustering.
Now the stability of the two trivariate clustering are very low compared to bivariate
clustering based on “V1” and “V2”. Moreover, the stability of results of clustering
based on all four variables obtain the lowest values. Here, obviously, the masking
variables “R1” and “R2” make the discovery of the given class structure impossible.

Fig. 8 The ARI RK versus number of clusters in bivariate hierarchical clustering. The stability of
the “V1C V2” clustering is extremely high for K D 3 clusters
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Fig. 9 The ARI RK versus number of clusters in trivariate hierarchical clustering. In addition, the
stability of clustering based on all variables is drawn

5 Conclusion

Our quite simple proposal of variable selection in clustering works without using
special clustering criteria such as within-cluster or between-cluster variances. It is
based on assessment of stability by non-parametric resampling, and it figures out
criteria of stability such as the ARI RK using confusion tables. As a stop criterion,
a threshold for the increment of stability �RK was used. Here further investigations
are necessary. The proposed very general variable selection procedure can be
modified in several ways such as by starting with J � .J � 1/=2 bivariate cluster
analyses. Moreover, the statistical results of the investigations of stability of all J
univariate (and/or J �1 bivariate) cluster analyses can be useful for the development
of other variable selection procedures (see, for example, Carmone et al. 1999).
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A Comparison Study for Spectral, Ensemble
and Spectral-Mean Shift Clustering Approaches
for Interval-Valued Symbolic Data

Marcin Pełka

Abstract Interval-valued data arise in practical situations such as recording
monthly interval temperatures at meteorological stations, daily interval stock prices,
etc. This paper presents a comparison study for clustering efficiency (according to
adjusted Rand index) for spectral, ensemble, and spectral-mean shifted clustering
methods for symbolic data. Evaluation studies with application of artificial data with
known cluster structure (obtained from mlbench and clusterSim packages of
R) show the usefulness and stable results of the ensemble clustering compared to
spectral and spectral-mean shift method.

1 Introduction

Ensemble techniques based on aggregating information (results) from different
(diverse) models have been applied with a success in context of supervised learning
(discrimination and regression). The ensemble techniques are applied in order to
improve the accuracy and stability of classification algorithms (Breiman 1996).
In general ensemble clustering means combining (aggregating) results of N base
clustering results (models) P1; : : : ; Pn into one final clustering (model) P� with
k� clusters (Fred and Jain 2005). Many papers show the usefulness of ensemble
learning in context of classical data (e.g., Ghaemi et al. 2009; Fred and Jain 2005;
Stehl and Gosh 2002). However the idea of ensemble approach, that is combining
(aggregating) the results of many base models, can be applied for cluster analysis of
symbolic data.

The paper presents and compares the results obtained by applying two ensemble
clustering approaches—co-association (co-occurrence) matrix (Fred and Jain 2005)
and Leisch’s adaptation of bagging (Leisch 1999) with the clustering results
obtained by applying spectral clustering and spectral-mean shift clustering for
symbolic data.
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2 Symbolic Data

Each symbolic object can be described by following variables (Table 1 presents
some examples of symbolic variables) (Bock and Diday 2000, p. 2–4; Billard and
Diday 2006):

1. Quantitative (numerical) variables:

• numerical single-valued variables,
• numerical multi-valued variables,
• interval variables,
• histogram variables.

2. Qualitative (categorical) variables:

• categorical single-valued variables,
• categorical multi-valued variables,
• categorical modal variables.

Regardless of their type symbolic variables also can be (Bock and Diday
2000) taxonomic variables with hierarchically structured categories, hierarchically
dependent—rules which decide if a variable is applicable or not have been defined,
logically dependent—logical or functional rules that affect variable’s values have
been defined.

Table 1 Examples of symbolic variables

Symbolic variable Realizations Variable type

Price of a car (27,000, 42,000); (35,000, 50,000) Interval-valued

(in PLN) (20,000, 30,000); (25,000, 37,000) (non-disjoint)

Engine’s capacity (1000, 1200); (1300, 1400) Interval-valued

(in ccm) (1500, 1800); (1900, 2200) (disjoint)

Chosen color {red, black, blue, green} Categorical

{orange, white, gray, magenta} multi-valued

Preferred car {Toyota (0.3); Volvo (0.7)} Categorical

{Audi (0.6), Skoda(0.35), VW (0.05)} modal

{BMW (1.0)}

Distance <10, 20> (0.65); <21, 30> (0.35) Histogram

traveled <10, 20> (0.25); <21, 30> (0.75)
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3 Ensemble, Spectral, and Spectral-Mean Shift Clustering
for Symbolic Data

3.1 Spectral Clustering for Symbolic Data

Spectral approach, is not in fact a new clustering algorithm, but it is rather a new
way of the data set preparation for some clustering algorithm (like k-means, pam,
ward, etc.) (Ng et al. 2002; Von Luxburg 2006). Finite-sample properties of spectral
clustering have been studied from a theoretical point of view by many scientists (Ng
et al. 2002; Von Luxburg 2006; Shi and Malik 2000). Spectral clustering has the
advantage of performing well in the presence of the non-Gaussian clusters. What
is more, it also does not present the drawback of presence of the local minima.
Furthermore, the convergence of the normalized spectral clustering is less difficult
to handle than the unnormalized case. The results obtained by spectral clustering
very often outperform the traditional approaches (see, for example, Von Luxburg

2006). The source of such success is that spectral clustering is based on the fact
that it makes no assumptions on the form of the clusters—it can solve very general
clustering problems (Von Luxburg 2006, p. 22).

The spectral clustering has some disadvantages. The choice of a good similarity
graph is not trivial (usually the fully connected graph is applied). The spectral
clustering can be quite unstable under different choices of the parameters for the
neighborhood graphs. Many different kernels can be used, each can lead to different
results (usually the Gaussian kernel is used at most cases)—Karatzoglou (2006)
presents applications of different kernels in spectral clustering. Another important
task is to choose a good � parameter, that should minimize the inter-cluster distances
for a given number of clusters. Karatzoglou (2006) has proposed a quite efficient
way to estimate an appropriate � parameter.

Spectral decomposition algorithm can be started in the following way:

1. Let V be a symbolic data table with n rows and m columns. Let u be the number
of desired clusters.

2. Let A D ŒAik	 be an affinity matrix of objects from V. A matrix can be calculated
in many different ways. Most often its elements are defined as follows:

Aik D exp.�� � dik/ for i ¤ k; (1)

where: �—scaling parameter that should minimize the sum of inter-cluster
distances for a given number of clusters u; dik—distance measure between ith
and kth object.

3. Calculation of the Laplacian L D D
1
2 AD

1
2 (D—a diagonal weight matrix with

sums of each row from A matrix on the diagonal).
4. Calculation of eigenvectors and eigenvalues of L. First u eigenvectors create

a E matrix. Each eigenvector is treated as a column of the E (thus E has got
dimensions n � u).
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5. Normalization of the E according to yij D eij=
qPu

jD1 e2
ij.

6. The Y matrix is clustered with one of well-known clustering algorithms (i.e.,
k-means, pam).

The main difference between spectral approach for classical and symbolic data is
the distance measure applied in the Eq. (1). For details concerning distance measures
for symbolic data, their properties, advantages, and disadvantages, e.g. Bock and
Diday (2000), Billard and Diday (2006).

3.2 Spectral-Mean Shift Clustering for Symbolic Data

The mean-shift algorithm is a non-parametric clustering technique which does not
require any prior knowledge of the number of clusters, and it does not constrain the
shape of the clusters. This method was first proposed by Fukunaga and Hostetler
(1975), later adapted by Cheng (1995) for image analysis purposes. Later on
this method was extended by Comaniciu et al. (2001, 2003) to low-level vision
problems, including segmentation and tracking.

The mean shift vector is defined (in general form) as (Cheng 1995; Comaniciu
et al. 2003):

msh.y/ D
Pn

iD1 �yik0y
�� y�yi

h

�2�

Pn
iD1 �k0y

�� y�yi
h

�2� � y; (2)

where: k0 is a derivate of a kernel (Gaussian, Bessel, Epanechnikov, etc.) function.
This method iteratively calculates mean shift vector and translates coordinates of

points until convergence is archived. The mean shift vector always points towards
the direction of the maximum increase in the density. The spectral-mean shift
algorithm can be described as follows:

1. Construct the symbolic data matrix V.
2. Calculate the affinity matrix A.
3. Calculate the elements of the Laplacian matrix L.
4. Calculate eigenvectors and eigenvalues of L. Calculate the elements of the E

matrix.
5. Calculate the elements of the Y matrix.
6. Iteratively move points of the Y matrix towards the direction pointed by the mean

shift until stationary points are reached.
7. Clustering: if the distance of an object from a prototype is lower than critical

value (prior set) it is a member of the cluster; if not—this object is a new cluster
prototype.
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3.3 Ensemble Learning for Symbolic Data

Ensemble methods train multiple learners to solve the same problem. Ensemble
learning is also known as committee-based learning, learning multiple classifier
(model) systems (Zhi-Hua 2012, p. 15). The main idea of ensemble clustering
is to aggregate (combine, join) results obtained from different models. There are
several reasons of using ensembles, in case of supervised and unsupervised learning
(Zhi-Hua 2012, pp. 16–17, 67–68; Polikar 2006, 2007):

1. There is a formal mathematical proof showing that in case of ensemble learning
in supervised tasks, error reached by ensemble is lower than any of error of base
models that form the ensemble.

2. Another important issue is the model selection. As in many cases many different
methods can be applied (and each of them has some pros and cons). In such case
ensemble learning allows to use different methods (“different points of view”)
and combine their results to obtain one final solution. However it is important
to notice that there is no guarantee that the combination of multiple models will
always perform better than the best single (individual) classifier (model). But
even in such case ensemble reduces the overall risk of making a particularly poor
selection.

3. Ensemble learning can be also useful when dealing the problem of too much or
too little data. In case of big data sets ensemble learning allows to subsets of a
data set. If we deal the problem of too little data then bootstrapping technique
can be used to train different classifiers.

4. Sometimes we deal with data sets that are too complex, too difficult, to solve
with a single classifier (model). In such case ensemble learning allows to “cut”
a data set into smaller, easier to learn partitions. Such approach is sometimes
called “divide and conquer” technique. Each model (classifier) learns only one
of simpler partitions. The underlying complex decision boundary can then be
approximated by an appropriate combination of different classifiers.

5. Also in many automated decision making problems, it is not unusual to receive
data obtained from different sources that provide complementary information.
Such approach is known as data (information) fusion. This kind of approach is
usually applied in medicine.

In case of symbolic data there are three possible paths of ensemble learning:

1. Clustering algorithm for multiple relational matrices proposed by De Carvalho
et al. (2012). This approach is based on different distance matrices. Those
distance matrices can be obtained by applying different distance measures, or
subsets of variables or subsets of objects. Distance matrices are used to calculate
relevance weight vectors. Relevance weight vectors and distance matrices are
then applied to cluster a set of objects into final clusters.

2. Applying well-known boosting algorithm for clustering ensembles. Boosting,
like in supervised learning, in clustering means producing subsets from initial
data set. Then each subset is clustered with some clustering method. Finally
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results of clustering of each subset are combined. There are three proposals how
to combine results of subsets clustering:

• Proposal made by Leisch (1999). In general the main idea of this approach is
to cluster centers of clusters obtained from each of the subsets.

• Adaptation proposed by Dudoit and Fridlyand (2003)—the main idea is to
permute cluster labels to get best agreement with clustering results for initial
data set.

• Hornik’s (2005) proposal—the main idea is to minimize the distance between
the set of all possible consensus clusterings and the elements of the ensemble
clustering.

3. Apply well-known consensus functions in clustering ensembles. There are five
main types of consensus functions each with different assumptions (Ghaemi et al.
2009; Fred and Jain 2005; Pełka 2012):

• Hypergraph partitioning assumes that clusters can be represented as hyper-
edges on a graph. Their vertices correspond to the objects to be clusters.
Each hyperedge describes a set of objects belonging to the same cluster. The
problem of consensus clustering is reduced to finding the minimum-cut of a
hypergraph.

• Voting approach. In this approach we permute cluster labels in such way
that best agreement between the labels of two partitions is obtained. All the
partitions from the cluster ensemble must be relabeled according to a fixed
reference partition

• Mutual information assumes that the objective function of a clustering
ensemble can be formulated as the mutual information between the empirical
probability distribution of labels in the consensus partition and the labels
in the ensemble. In this approach usually a generalized definition of mutual
information is applied.

• Co-association based functions. The main assumption is that the objects
belonging to the same cluster (“natural cluster”) are more likely to be co-
located in the same clusters in different data partitions. The elements of
co-association (co-occurrence) matrix are defined as follows:

C.i; j/ D nij

N
(3)

where: i, j—objects (pattern) numbers, nij—number of times patterns .i; j/
are assigned to the same clusters among N partitions, N—total number of
partitions.

So the algorithm of building ensemble with application of co-association
matrix is as follows (Fred and Jain 2005, p. 848). First we have to obtain
different partitions (for example, by using different clustering methods, by
using the same algorithm but with different parameters, etc.). Then upon
of each of the partitions elements of co-occurrence matrix are calculated
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according to the Eq. (3). Finally the co-association matrix is used as the initial
data set for some clustering algorithm to find final partition for a data set.

• Finite mixture models. The main assumption is that the output labels are
modeled as random variables drawn from probability distribution described
as a mixture of multinomial component densities. The objective of consensus
clustering is formulated as a maximum likehood estimation.

4 Simulation Studies

In the empirical part of the paper spectral and spectral-mean shift clustering will
be compared with clustering ensembles were Leisch’s adaptation of bagging and
co-association matrix are applied. In order to compare these different clustering
approaches five different artificial data sets with known cluster structure were pre-
pared with application of cluster.Gen function from clusterSim (Walesiak
and Dudek 2014) package of R software:

1. Model I. Three elongated clusters in two dimensions. The observations are
independently drawn from bivariate normal distribution with means (0, 0), (1.5,
7), (3, 14) and covariance matrix

P
.�jj D 1; �jl D �0:9/.

2. Model II. Five clusters in two dimensions. The observations are independently
drawn from bivariate normal distribution with means (0, 0), (0, 10), (5, 5), (10,
0), (10, 10) and identity covariance matrix

P
.�jj D 1; �jl D 0/.

3. Model III. Five clusters in three dimensions. The observations are independently
drawn from multivariate normal distribution with means (–4, 5, –4), (5, 14, 5),
(14, 5, 14), (5, –4, 5) and identity covariance matrix

P
, where �jj D 1 .1 � j �

3/ and �jl D 0 .1 � j ¤ l � 3/.
4. Model IV. Four clusters in three dimensions. The observations are independently

drawn from multivariate normal distribution with means (–4, 5, –4), (5, 14,

5), (14, 5, 14). (5, –4, 5) and covariance matrices
P

1 D
2

4
1 0 0

0 1 0

0 0 1

3

5,
P

2 D
2

4
1 �0:9 �0:9

�0:9 1 0:9

�0:9 0:9 1

3

5,
P

3 D
2

4
1 0:9 0:9

0:9 1 0:9

0:9 0:9 1

3

5,
P

4 D
2

4
3 2 2

2 3 2

2 2 3

3

5.

5. Model V. Two elongated clusters in two dimensions. The observations in each of
two clusters are independent bivariate normal random variables with means (0,

0), (1, 5), and covariance matrices
P

1 D
�

1 �0:9

�0:9 1

�
,
P

2 D
�

1 0:5

0:5 1

�
.

To obtain symbolic interval data the data were generated for each model twice
into sets A and B and minimal (maximal) value of fxA

ij; xB
ijg is treated as the beginning

(the end) of an interval.
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For each model and each clustering technique to be compared three different
runs were made. First one for the data set without any noisy variables, second one
for the data set with one noisy variable and third one for the data set with two
noisy variables. The noisy variables are simulated independently from the uniform
distribution. In clusterSim package of R it is required that the variations of
noisy variables in the generated data are similar to non-noisy variables (Milligan
and Cooper 1985; Qiu and Joe 2006, p. 322).

To compare different clustering techniques and models values of adjusted Rand
index were calculated for each model and run, and at the end the average values of
adjusted Rand index were compared (see Table 2). The bolded values in the Table 2
show the highest adjusted R and values for each model and method.

In case of ensemble clustering in each model 30 different results were merged. In
case of Leisch’s adaptation of bagging 2

3
of a data set were drawn with replacement

for each subset.
Besides artificial models, also three real data sets were used—Ichino’s oil data,

car data set, and Chinese meteorological stations data. These data sets are often
applied to validate non-supervised and supervised methods, e.g. Bock and Diday
(2000), Billard and Diday (2006). The same approach as in case of artificial data
sets were used. For each of them all compared methods were used and average
adjusted Rand index was calculated. As in the case of artificial data sets, Leisch’s
adaptation reached usually the best results.

Table 2 Results of simulation studies—values of adjusted Rand index

Model no. Noisy variables SMS Spectral Leisch Co-association matrix

I 0 0.9560 0.9532 0.9648 0.9633

1 0.3484 0.3482 0.3701 0.3712
2 0.3425 0.3427 0.3598 0.3609

II 0 0.8528 0.8511 0.8601 0.8537

1 0.2363 0.2370 0.2531 0.2467

2 0.2356 0.2342 0.2477 0.2381

III 0 0.8710 0.8693 0.8801 0.8812
1 0.2323 0.2311 0.4215 0.4321
2 0.2328 0.2332 0.4247 0.4243

IV 0 0.8632 0.8649 0.8788 0.8691

1 0.2360 0.2371 0.2520 0.2511

2 0.2378 0.2377 0.2528 0.2530
V 0 0.8602 0.8792 0.8908 0.8868

1 0.2345 0.2333 0.2550 0.2446

2 0.2374 0.2381 0.2559 0.2451

ave. 0 0.8806 0.8792 0.8908 0.8868

1 0.2575 0.2573 0.3103 0.3073

2 0.2372 0.2572 0.3082 0.3043

Where: ave. average value of adjusted Rand index
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5 Final Remarks

All presented clustering methods—spectral clustering, spectral clustering combined
with mean-shift clustering (SMS), ensemble clustering that uses co-association
matrix, and finally ensemble clustering based on Leisch’s adaptation of bagging
can be applied when dealing any kind of symbolic data. But a suitable distance
measure for symbolic data is required.

The main advantage of SMS clustering is the kernel decomposition of a data
matrix, via distance matrix, (spectral approach) combined with the movement
towards the direction pointed by the mean shift (mean shift approach).

The main advantage of ensemble approach for symbolic data, compared to
spectral and SMS approaches, is the utility of different clustering results (“different
points of view”) and then combining the results to find one final partition. There are
many different ways of merging different clustering results into one final result that
can be used in case of symbolic data. In most of them the only thing we need is just
a suitable distance measure.

The simulation studies with five different data sets, and different number of noisy
variables, show that Leisch’s adaptation of bagging usually reaches the best results
(in terms of adjusted Rand index) when compared with other clustering techniques.
Co-association matrix is usually the second and the SMS is the third one.

An open issue is a comparison different ensemble clustering approaches for
symbolic data when dealing non-spherical (“non typical”) cluster shapes, noisy
variables, and outliers.
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Supervised Pre-processings Are Useful
for Supervised Clustering

Oumaima Alaoui Ismaili, Vincent Lemaire, and Antoine Cornuéjols

Abstract Over the last years, researchers have focused their attention on a new
approach, supervised clustering, that combines the main characteristics of both
traditional clustering and supervised classification tasks. Motivated by the impor-
tance of pre-processing approaches in the traditional clustering context, this paper
explores to what extent supervised pre-processing steps could help traditional
clustering to obtain better performance on supervised clustering tasks. This paper
reports experiments which show that indeed standard clustering algorithms are
competitive compared to existing supervised clustering algorithms when supervised
pre-processing steps are carried out.

1 Introduction

Over the last decade, the world has seen a real explosion of data due mainly to the
web, social networks, etc. To exploit these high-dimensional sets of data, clustering
and classification algorithms are efficient.

Clustering is an unsupervised learning approach that allows one to discover
global structures in the data (i.e., clusters). Given a dataset, it identifies different
data subsets which are hopefully meaningful (see Fig. 1a). The discovered clusters
are deemed interesting if they are heterogeneous (i.e., their inter-similarity is low)
while instances within each cluster share similar features (high intra-similarity).
This clustering problem has motivated a huge body of work and has resulted in
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Fig. 1 Classification processes. (a) Unsupervised clustering. (b) Supervised classification.
(c) Supervised clustering

a large number of algorithms (see, e.g., Jain et al. 1999). Clustering has thus been
used in numerous real-life application domains [e.g., marketing (Berry and Linoff
1997), CRM (Berson et al. 2000)].

In contrast, classification is a supervised learning approach that consists to learn
the link between a set of input variables and an output variable (target class). The
main goal of this approach is to construct a learning model which is able to predict
class membership for new instances (see Fig. 1b).

Recently, researchers have focused their attention on the combination of char-
acteristics of both clustering and classification tasks with the goal to discover the
internal structure of the target classes. This research domain is called Supervised
clustering (for instance, see Al-Harbi and Rayward-Smith 2006 and Eick et al.
2004). The main idea is to construct or modify clustering algorithms in order
to find clusters where instances are very likely to belong to the same class.
Formally, Supervised clustering seeks clusters where instances in each cluster share
characteristics (homogeneity) and class label. The generated clusters are labeled
with the majority class of their instances. Figure 1 illustrates the difference between
clustering, classification , and supervised clustering.

Generally, clustering tasks require an unsupervised pre-processing step [for
example, see Milligan and Cooper (1988) or Celebi et al. (2013) for the k-means
algorithm] in order to yield interesting clusters. For instance, this step might
be aimed at preventing features with large ranges from dominating the distance
calculations. Now, given the importance of pre-processing for the traditional
clustering algorithms, it is natural to ask: could supervised pre-processing help
standard clustering algorithms to reach good performance in a supervised clustering
context? In other words, does a combination of a supervised pre-processing step and
a standard clustering algorithm produce a good supervised clustering algorithm,
meaning exhibiting high prediction accuracy (supervised criterion) while at the
same time uncovering interesting clusters in the dataset.

The remainder of this paper is organized as follows. Section 2 briefly describes
related work about supervised clustering. Section 3 presents classical unsupervised
pre-processing methods and two supervised pre-processing approaches. Section 4
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first compares the performance, in terms of prediction accuracy, when using a
clustering technique combined with an unsupervised pre-processing step and a
clustering technique combined with a supervised pre-processing step. A comparison
between traditional clustering using a supervised pre-processing step with the
techniques of supervised clustering algorithms is then carried out. Finally, a
conclusion with future work is presented in the last section.

2 Related Work

In the last decade, many researchers focused their attention to build or modify
standard clustering algorithms to identify class-uniform clusters where instances
within each cluster are homogeneous. Several algorithms are developed to achieve
that objective (e.g., Aguilar-Ruiz et al. 2001; Sinkkonen et al. 2002; Qu and Xu
2004; Finley and Joachims 2005; Bungkomkhun 2012).

In this section, we present two methods proposed by Al-Harbi and Rayward-
Smith (2006) and Eick et al. (2004) which modify the K-means algorithm. The
experimental results of these algorithms will be compared in Sect. 4.2.2 to the results
obtained by using a standard K-means algorithm preceded by a supervised pre-
processing step.

Al-Harbi and Rayward-Smith (2006) developed a K-means algorithm in such a
way to use it as a classifier algorithm. First of all, they replaced the Euclidean metric
used in a standard K-means by a weighted Euclidean metric. This modification is
carried out in order to be able to estimate the distance between any two instances
that have the same class label. The vector of weights is chosen in such a way to
maximize the confidence of the partitions generated by the k-means algorithm. This
confidence is determined by calculating the percentage of correctly classified objects
with respect to the total number of objects in the dataset. To solve this problem of
optimization, they used simulated annealing (a generic probabilistic metaheuristic
for the global optimization problem). This iterative process is repeated until an
optimal confidence is obtained. In this algorithm, the number of clusters is an input.

Eick et al. (2004) introduced four representative-based algorithms for supervised
clustering: SRIDHCR, SPAM, TDS, and SCEC. In their experimentation, they
used the first one (i.e., SRIDHCR). The greedy algorithm SRIDHCR (or Single
Representative Insertion/Deletion Steepest Decent Hill Climbing with Randomized
Start) is mainly based on three phases. The first one is the initialization of a set of
representatives that is randomly selected from the dataset. The second is the primary
cluster creation phase, where instances are assigned to the cluster of their closest
representative. The third one is the iteration phase where the algorithm is run r times:
In each time “r,” the algorithm tries to improve the quality of clustering, for instance,
by adding a non-representative instance or by deleting a representative instance. To
measure this quality, they use a supervised criterion. It takes into account two points:
(1) The impurity of the clustering which defined as a percentage of misclassified
observations in the different clusters and (2) a penalty condition which used in a
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manner to keep a lowest number of clusters. In this greedy algorithm, the number of
clusters is an output.

3 Pre-processing

The following notation is used below:
Let D D f.Xi; Yi/gN

1 denote a training dataset of size N, where Xi D fXi1; : : : ; Xidg
is a vector of d features and Yi2f1;:::;Ng 2 fC1; : : : ; CJg is the target class of size J.
Let K denote the number of clusters.

3.1 Unsupervised Pre-processing

A pre-processing step is a common requirement for clustering tasks. Several
unsupervised pre-processing approaches have been developed depending on the
nature of features: continuous or categorical. In this paper, we have used the most
common unsupervised pre-processing approach, that is normalization (see, e.g.,
Milligan and Cooper 1988).

For continuous features, to the best of our knowledge, data normalization is the
most frequently used. It acts to weight the contribution of different features with the
aim of making the distance between instances unbiased. Formally, normalization
scales each continuous feature into a specific range such that one feature cannot
dominate the others. The common data normalization approaches are: Min–Max,
statistical, and rank normalization.

– Min–Max Normalization (NORM): If the minimum and maximum values are
given for each continuous feature, it can be then transformed to fit in the range
Œ0; 1	 using the following formula: X0iu D Xiu�miniD1;:::N Xiu

maxiD1;:::N Xiu�miniD1;:::N Xiu
. Where Xiu is

the original value of feature u. If minimum and maximum values are equal, then
X0iu is set to zero.

– Statistical Normalization (SN): This approach transforms data derived from any
normal distribution into a standard normal distribution N.0; 1/. The formula that
allows this transformation is: X0iu D Xiu��

�
where � is the mean of the feature u,

� is its standard deviation.
– Rank Normalization (RN): The purpose of rank normalization is to rank

continuous feature values and then scale the feature into Œ0; 1	. The different steps
of this approach are: (1) Rank feature values u from lowest to highest values and
and then divide the resulting vector into H intervals, where H is the number of
intervals. (2) Assign for each interval a label r 2 f1; : : : ; Hg in increasing order,
(3) If Xiu belong to the interval r, then X0iu D r

H .

For categorical features, among the existing approaches of unsupervised pre-
processing, we use in this study the Basical Grouping Approach (BGB). It aims
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at transforming feature values into a vector of Boolean values. The different steps
of this approach are: (1) group feature values into g groups with “at best” equal
frequencies, where g is a parameter given by the user, (2) assign for each group a
label r 2 f1; : : : ; gg, (3) use a full disjunctive coding.

3.2 Supervised Pre-processing

In this paper, we suggest that one way to help a standard algorithm to reach a
good performance in terms of prediction accuracy is to incorporate information
given by the target class in a pre-processing step. To prove this, we proposed two
supervised pre-processing approaches called Conditional Info and Binarization.
These approaches are based on two steps: (1) supervised representation and (2)
recoding. The first one is a common step for the two approaches. It aims at giving
information about variables distribution conditionally to a target class. There are
several methods that could achieve the above objective. In this study, we have used
the MODL (a Bayes optimal pre-processing method for continuous and categorical
features) approach. It seeks to estimate the univariate conditional density .P.XjC//.
To obtain this estimation a supervised discretization method is used for continuous
features (Boullé 2006) and a supervised grouping method is used for categorical
ones (Boullé 2005).

To exploit the information given by the first step, a recoding phase is then used
as second (common) step. In this paper, we present two ways of recoding (i.e., C.I
and BIN). The following methods are compared in Sect. 4.

• Conditional Info (C.I): Each feature from the instance Xi is recoded in a
qualitative attribute containing IJ recoding values. The resulting vector for this
instance is Xi D Xi11 ; : : : ; Xi1J ; : : : ; Xid1 ; : : : XidJ . Where Xid1 ; : : : XidJ represent
the recoding values for the feature d with respect to the number of a class label
(XidJ D log.P.XidjCJ//. As a result, the initial vector containing d features
(continuous and categorical) becomes a vector containing d �J real components:
log.P.XimjCj//; j 2 f1,. . . ,Jg, m 2 f1,. . . ,dg.

The most remarkable point in this pre-processing process is that if two
instances are close in term of distance, they are close also in term of their
class membership. A detailed description of this process exists in Lemaire et al.
(2012). Besides, the recoding step provides, for each feature, an amount of
information related to the target class. That is by calculating log.P.XimjCj//.
This recoding allows one to obtain a new feature space of apriori-fixed size
which corresponds to the total number of class labels in the dataset. The
similarity between instances is interpreted as a Bayesian distance: Dist.Xi; Xj/ DPd

mD1

PJ
lD1


log.P.Ximl jCl// � log.P.Xjml jCl//

�2
.

However, it does not allow keeping the notion of instances: two different
instances belonging to different intervals (or groups of modalities) can have equal
values of log.P.XimjCj//.
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• Binarization (BIN): In this process, each feature is described on t Boolean
features. Where t is a number of intervals or groups of modalities generated by
MODL or an other supervised approach. The synthetic feature takes 1 as a value
if the real value of the original feature belongs to the corresponding interval or
group of modalities and is zero otherwise.

The recoding step of this approach is based on the full disjunctive coding.
It transforms each feature into a vector of Boolean features. The size of the
vector depends on the number of intervals or groups of modalities associated
with each feature. Hence, the size of the new feature space mainly depends on
the number of intervals or groups of modalities for all features. Besides, the
similarity between instances is determined such that similar instances belong to
the same interval or group of modalities.

4 Experimentation

In this section, we present and compare first the average performance of both
supervised and unsupervised pre-processing approaches using the k-means algo-
rithm. Then, we compare and discuss the average performance of both supervised
pre-processing and other supervised clustering algorithms. These experiments are
intended to assess the ability of supervised pre-processing to provide better results
than unsupervised pre-processing and also to evaluate the competitiveness of a
traditional clustering algorithm (k-means) preceded by a supervised pre-processing
step compared to some supervised algorithms in a supervised clustering context.

4.1 Protocol

To test the validity of our assumption, we choose to use the standard K-means
algorithm (Macqueen 1967) which is traditionally viewed as the most popular
algorithm in unsupervised clustering. To reduce at best the problem that the K-
means algorithm does not guarantee to reach a global minimum: (1) the k-means++
algorithm (Arthur and Vassilvitskii 2007) is used to initialize centers, (2) the
algorithm is realized 100 times.

At this stage, it is important to define what the best partition is. To be consistent
with the definition of supervised clustering, we search a criterion that allows us
to choose the closest partition to the one given by the target class. In fact, the
main aim is to get a compromise between intra-similarity and prediction. The
intra-similarity criterion is guaranteed by the K-means algorithm (trade-off between
inertia inter- and intra-cluster) and the class membership of instances inside each
cluster is verified by the chosen criterion; knowing that a supervised/unsupervised
pre-processing step is used. For this, we use the Adjusted Rand Index (ARI) (Hubert
and Arabie 1985) criterion to select the best partition. It is computed by comparing
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Table 1 The used pre-processing approaches

Unsupervised pre-processing Supervised pre-processing

Name Num features Cat features Name Num features Cat features

RN-BGB RN BGB BIN-BIN BIN BIN

CR-BGB CR BGB C.I-C.I C.I C.I

NORM-BGB NORM BGB

Table 2 Datasets from UCI used in experiment (Var Variable, Cat Categorical, and
Num Numerical)

Dataset N # Var # Cat # Num Dataset N # Var # Cat # Num

Auto-import 205 26 11 15 Heart-stat-log 270 13 3 10

Breast cancer 699 9 0 9 Iris 150 4 0 4

Contraceptive 1473 9 7 2 Pima 768 8 0 8

Glass 214 10 0 10 Vehicle 846 18 0 18

the partition of the target class labels with the partition of the k-means algorithm.
For pre-processing approaches, we use those presented above in Sect. 3. Table 1
presents a list of these approaches.

To evaluate and compare the behavior of different pre-processing approaches in
term of their capacity to help traditional clustering in a supervised context, some
tests are performed on different databases of the UCI repository (Lichman 2013).
Table 2 presents the databases used in this study.

In order to compare the obtained results with some supervised clustering
algorithms, we do: (1) 10�5 fold cross classification (like in Al-Harbi and Rayward-
Smith (2006) experiment) for Auto-import, Breast cancer, Contraceptive, and Pima
datasets. These datasets are also modified in the same way as in Al-Harbi and
Rayward-Smith (2006), (2) 5 � 10 fold cross classification (like in Eick et al. (2004)
experiment) for Glass, Heart-stat-log, Vehicle, and Iris datasets.

4.2 Results

4.2.1 Part 1: Comparing Supervised and Unsupervised Pre-processing

Table 3 presents the average performance of the K-means algorithm in term
of predictions [Accuracy (ACC) criterion], using each pre-processing approach
(Sect. 3.2) for six datasets. In this case, the number of clusters is selected following
the next procedure. First, the value of K is varied from 1 to 64. Then, for each value
of K, a x-fold (see Sect. 4.1) cross validation is performed and the mean value of the
ARI is calculated. Finally, the optimal value of K corresponds to the closest partition
to the one given by the target class (higher value of ARI versus the value of K in train
dataset). Based on this value of K, the ACC is calculated from the corresponding
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Table 3 Average performance of k-means algorithm in term of predictions using several pre-
processing approaches

ARI ACC ARI ACC

K train test K train test

H RN-BGB 2 0.422 0.815˙ 0.071 I RN-BGB 3 0.675 0:851˙ 0:087

SN-BGB 2 0.365 0:796˙ 0:074 SN-BGB 3 0.641 0:833˙ 0:099

NORM-BGB 3 0.241 0:754˙ 0:077 NORM-BGB 3 0.726 0:879˙ 0:080

BIN-BIN 2 0.452 0:813˙ 0:069 BIN-BIN 3 0.872 0.929˙ 0.069
C.I-C.I 2 0.451 0:807˙ 0:079 C.I-C.I 3 0.836 0:899˙ 0:092

C RN-BGB 2 0.069 0:627˙ 0:025 V RN-BGB 7 0.196 0:546˙ 0:036

SN-BGB 2 0.052 0:604˙ 0:025 SN-BGB 8 0.157 0:507˙ 0:049

NORM-BGB 3 0.067 0:616˙ 0:030 NORM-BGB 8 0.159 0:510˙ 0:044

BIN-BIN 3 0.093 0.630˙ 0.027 BIN-BIN 5 0.256 0:558˙ 0:039

C.I-C.I 3 0.075 0:621˙ 0:026 C.I-C.I 5 0.283 0.589˙ 0.033
P RN-BGB 2 0.132 0:671˙ 0:038 B RN-BGB 2 0.898 0:973˙ 0:012

SN-BGB 2 0.177 0:705˙ 0:034 SN-BGB 2 0.850 0:959˙ 0:016

NORM-BGB 5 0.135 0:673˙ 0:041 NORM-BGB 2 0.854 0:962˙ 0:015

BIN-BIN 3 0.148 0:694˙ 0:039 BIN-BIN 2 0.904 0.974˙ 0.011
C.I-C.I 2 0.244 0.736˙ 0.034 C.I-C.I 2 0.870 0:961˙ 0:036

H Heart, C Contraceptive, P Pima, I Iris, V Vehicle, B Breast
Bold values show highest accuracy among methods for the particular data set

Fig. 2 Auto-import: average
performance of k-means (k is
an output) using supervised
pre-processing (the two first
boxplots) and unsupervised
pre-processing (the three last
boxplots)

partition in a test dataset. The results in this table show that: (1) supervised pre-
processing approaches have most of the time a better performance than unsupervised
pre-processing approaches, (2) Binarization (BIN) and Conditional Info (C.I) are
close with a small preference for BIN.

In the case where K is given (K is equal to the cardinality of the target class), we
obtain also the same result. For example, Figs. 2 and 3 present respectively the case
where K is an output and where K is an input for Auto-import and the Glass dataset.
This result shows clearly the influence of supervised pre-processing steps (the two
first boxplots) on the K-means performance [using the accuracy (ACC) criterion].
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Fig. 3 Glass: average
performance of the k-means
(k is an input) using
supervised pre-processing
(the two first boxplots) and
unsupervised pre-processing
(the three last boxplots)

Table 4 Comparing with Eick and Al-Harbi algorithms

Comparing with Eick algorithm: (K is an output)

Glass dataset Heart dataset Iris dataset

K ACC test K ACC test K ACC test

Eick algorithm 34 0.636 2 0.745 3 0.973

K-means with BIN 6 0:664˙ 0:070 2 0:813˙ 0:069 3 0:929˙ 0:068

K-means with C.I 5 0:627˙ 0:080 2 0:808˙ 0:079 3 0:898˙ 0:091

Comparing with Al-Harbi algorithm: (K is an input)

Auto-import dataset Breast dataset Pima dataset

K ACC test K ACC test K ACC test

Al-Harbi algorithm 2 0.925 2 0.976 2 0.746

K-means with BIN 2 0:830˙ 0:051 2 0:974˙ 0:012 2 0:672˙ 0:041

K-means with C.I 2 0:809˙ 0:102 2 0:961˙ 0:035 2 0:735˙ 0:033

4.2.2 Part 2: Comparing Supervised Pre-processing to Other Supervised
Clustering Algorithms

We compare the obtained results using the standard k-means algorithm preceded by
a supervised pre-processing step (BIN or C.I) to a supervised k-means algorithm
proposed by Eick or Al-Harbi. The results for the later algorithms are available in
Eick et al. (2004) and Al-Harbi and Rayward-Smith (2006), respectively. Table 4
presents a summary of the average performance of the used methods in term of
predictions in the case where K is estimated (Eick) and where K is given (Al-Harbi).
The results obtained in the experiments using a standard k-means preceded by a
supervised pre-processing are competitive with the mean results of Eick or Al-Harbi
(who performed a single x-fold cross validation). We also observe that a standard
k-means with a supervised pre-processing step tends to conserve a lower number of
clusters (in Glass dataset, k D 34; 7, and 6 for respectively Eick, Binarization and
Conditional Info approaches).
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5 Conclusion

This paper has presented the influence of a supervised pre-processing step on the
performance of a traditional clustering (especially K-means) in term of predictions.
The experimental results showed the competitiveness of a traditional clustering
using a supervised pre-processing step comparing to unsupervised pre-processing
approaches and other methods of supervised clustering from the literature (espe-
cially Eick and Al-Harbi algorithms). Future works will be done (1) to compare
supervised pre-processing approaches to others supervised clustering algorithms
from the state of the art, (2) to combine supervised pre-processing presented in this
paper with supervised K-means and (3) to define a better supervised pre-processing
approach to combine the advantages of BIN and C.I without their drawbacks.
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Similarity Measures on Concept Lattices

Florent Domenach and George Portides

Abstract This paper falls within the framework of Formal Concept Analysis which
provides classes (the extents) of objects sharing similar characters (the intents), a
description by attributes being associated to each class. In a recent paper by the
first author, a new similarity measure between two concepts in a concept lattice was
introduced, allowing for a normalization depending on the size of the lattice.

In this paper, we compare this similarity measure with existing measures, either
based on cardinality of sets or originating from ontology design and based on the
graph structure of the lattice. A statistical comparison with existing methods is
carried out, and the output of the measure is tested for consistency.

1 Introduction

Measures of similarities have been widely used, particularly in biomedical domain
(Nguyen and Al-Mubaid 2006) or in semantic web for natural language processing
with the use of WordNet (Seco et al. 2004). However most of these applications
are relying on an ontology tree-like structure to quantify the degree to which two
concepts are similar. The purpose of this paper is to extend such similarity measures
to a more general framework provided by lattices and Formal Concept Analysis,
and to statistically evaluate and compare the new measure introduced in (Domenach
2015).

This paper is organized as follows: after recalling the main definitions of Formal
Concept Analysis framework in Sect. 2, we describe briefly in Sect. 3 the new
similarity measure as well as existing similarities. We also explain the theoretical
rational for the need of this new measure. In Sect. 4, we describe an experimental
simulation that was carried out in order to validate the efficacy of the new measure,
followed by a discussion and perspectives in Sect. 5.
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2 Background Definitions

2.1 Formal Concept Analysis

We recall here the standard Formal Concept Analysis (FCA) notations and we refer
readers to Ganter and Wille (1999) for details and proofs. A formal context .G; M; I/
is defined as a set G of objects, a set M of attributes, and a binary relation I 
 G�M.
.g; m/ 2 I means that “the object g is related with the attribute m through the relation
I”. Two derivation operators can be defined on sets of objects and sets of attributes
as follows, 8A 
 G; B 
 M:

A0 D fm 2 M W 8g 2 A; .g; m/ 2 Ig
B0 D fg 2 G W 8m 2 B; .g; m/ 2 Ig

The two operators .�/0 define a Galois connection between the power set of
objects P.G/ and the power set of attributes P.M/. A pair .A; B/; A 
 G; B 
 M,
is a formal concept iff A0 D B and B0 D A. A is called the extent and B the intent of
the concept.

The set of all formal concepts, ordered by inclusion of extents (or dually by
inclusion of intents), i.e., .A1; B1/ � .A2; B2/ iff A1 
 A2 (or dually B2 
 B1/,
forms a complete lattice (Barbut and Monjardet 1970), called concept lattice. A
Hasse diagram can be associated to the concept lattice as the graph of the cover
relation (.A1; B1/ � .A2; B2/ when there is no concept .A3; B3/ such that .A1; B1/ <

.A3; B3/ < .A2; B2/) where each concept of the lattice is represented as a vertex in
the plane and edges that goes upward from .A1; B1/ to .A2; B2/ whenever .A1; B1/ �
.A2; B2/. The concept lattice associated with our toy example is shown in Fig. 1,

(a)

A B C D E F G
1 X X X X X
2 X X X

3,4 X
5,6,7 X

8,9,10,11 X
12,13 X X
14,15 X X

16,17,18 X

(b)

Fig. 1 Toy data set and its Galois lattice. (a) Toy data set. (b) Galois lattice associated with
table (a)
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omitting the objects label and displaying only the object count associated with each
concept.

2.2 Overhanging Relation

An interesting aspect of concept lattices is the many existing equivalent cryptomor-
phisms (for a survey see Caspard and Monjardet 2003, for a thorough introduction
Caspard et al. 2012). One of them, called overhanging relation (Domenach and
Leclerc 2004), is defined on the power set of the set of objects as follows:

A binary relation O on P.M/ is an overhanging relation if it satisfies, for any
X; Y; Z 
 M:

• .X; Y/ 2 O implies X 
 Y
• X  Y  Z imply .X; Z/ 2 O ” ..X; Y/ 2 O or .Y; Z/ 2 O/

• .X; X [ Y/ 2 O implies .X \ Y; Y/ 2 O

An alternative definition which links overhanging relation and concept lattice is the
following: the overhanging relation associated with the concept lattice is a binary
relation O on P.M/ such that:

.X; Y/ 2 O ” X  Y and X00  Y 00

In other words, two sets are overhanged if one is a subset of the other and they
have a different closure. This binary relation finds its roots in consensus theory,
where it appeared under the term of nesting in Adams (1986). Applying this for our
example of table (a) in Fig. 1, we have .fDg; fC; Dg/ 2 O .

3 Existing Similarity Measures Between Concepts

Although, to the best of the authors’ knowledge, there is no literature where
similarity measures are defined on lattices, although many existing similarity
measures can be adapted to concept lattices. They can be roughly divided in three
main categories: the first one, based on Tversky (1977) model, only considers
concepts as sets, here of attributes, in order to calculate the similarity between
two concepts. The second one, taking its origin in studies of ontologies, uses the
Hasse diagram associated with the concept lattice to evaluate distances between
concepts. Lastly, the third category is concerned with semantic similarity measures
using information content.
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3.1 Set-Based Similarities

Set-based similarity measures can be expressed using Tversky similarity model. It
is defined as follows: given two concepts C1 D .A1; B1/ and C2 D .A2; B2/, with
˛; ˇ � 0,

S.C1; C2/ D jA1 \ A2j
jA1 \ A2j C ˛jA1 � A2j C ˇjA2 � A2j

Depending on the values of ˛ and ˇ, the Tversky index can be seen as a
generalization of Jaccard index and Dice’s coefficient.

When taking ˛ D 1 and ˇ D 1, we have the Jaccard similarity:

Sjaccard.C1; C2/ D jA1 \ A2j
jA1 [ A2j

Using ˛ D ˇ D 1=2 in the Tversky similarity model, we obtain the Dice’s
coefficient:

Sdice.C1; C2/ D 2jA1 \ A2j
jA1j C jA2j

With ˛ D 0; ˇ D 1, we have the inclusion measure:

Sinclusion.C1; C2/ D jA1 \ A2j
jA1j

3.2 Ontology-Based Similarities

The following measures of similarities are inspired by the large corpus of work
existing for the studies of Description Logic (DL) ontologies, i.e., ontologies based
on a set of concepts, relations and individuals represented within a DL (Baader
et al. 2003). The EL DL allows for conjunction (^) and existential restriction in
definitions of concepts. We simply assume that the least common subsumer (lcs)
of two concepts in EL always exists, provided that there is no cycle in concept
definitions (Baader et al. 1999).

The ordered structure of the lattice is used to calculate the similarity between
two concepts C1 and C2, by considering only the taxonomic links of the ontology
and the lattice L as a generalization of a tree. In order to define those similarities
in this framework, we need to define the least common subsumer as lcs D
lcs.C1; C2/ D C1 ^ C2, the length length.C1; C2/ as topological distance in the
covering graph of the lattice between C1 and C2, and depth.C1/ D length.C1; 0L/ as
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Table 1 Ontology-based similarities

Rada et al. (1989) Srada D 1
length.C1;C2/C1

Wu and Palmer (1994) Swup D 2�depth.lcs/

depth.C1/Cdepth.C2/

Leacock and Chodorow (1998) Slc D � log .
length.C1;C2/C1

2�depth.L/
/

Pekar and Staab (2002) Sps D depth.lcs/

length.C1;lcs/Clength.C2;lcs/Cdepth.lcs/

Zhong et al. (2002) SZho D 1� . 1

2depth.C1/C1 C 1

2depth.C2/C1 � 1
2depth.lcs/ /

Nguyen and Al-Mubaid (2006) SNguAl D log.2 C .length.C1; C2/ � 1/ � .depth.L/ � depth.lcs///

Table 2 IC functions

Resnik (1995) ICres D jO1j

jOj

Seco et al. (2004) ICseco D 1� log.hypo.C//

log.jLj�1/

Zhou et al. (2008) ICzhou D k � .1� log.hypo.C//

log.jLj�1/
/C .1� k/� log.depth.C/C1/

log.depth.L/C1/

Sanchez et al. (2011) ICsan D � log.
leaves.C/
hypo.C/ C1

number of leavesC1
/

the depth of concept C1, i.e. distance between C1 and bottom concept of L. The depth
of the lattice is depth.L/ D maxx2L.depth.x//. The ontology-based similarities
implemented can be found in Table 1.

3.3 Information Content-Based Similarities

Another approach, particularly used in the study of semantic similarity between
words in WordNet, improves on previous measures by augmenting concepts with
Information Content (IC) derived from sense-tagged corpora or from raw unanno-
tated corpora (Resnik 1995). We can apply it in our concept lattice framework by
first defining the notion of IC in FCA in the following way: the IC of a concept
provides an estimation of its degree of generality/concreteness, and is an increasing
function: i.e., a is hypernym of b ) IC.a/ < IC.b/. IC is a measure of specificity
for a concept. Higher values are associated with more specific concepts, while those
with lower values are more general.

The different IC functions in Table 2 capture different aspects of information
content. For Resnik (1995), it is the probability of appearance of concept in corpora,
i.e. infrequent terms are more informative. For Seco et al. (2004), it is based on the
number of concept hyponyms, where hypo.C/ D number of concepts above C.
Zhou et al. (2008) complement hyponym-based IC computation with the relative
depth of the concept, and Sanchez et al. (2011) is based on the number of leaf
hyponyms, i.e. the number of co-atoms above the concept. Each similarity of Table 3
was implemented using each of the IC functions of Table 2.
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Table 3 IC-based
similarities

Resnik (1995) Sres D IC.lcs/

Jiang and Conrath (1997) SJC D 1
IC.C1/CIC.C2/�2�IC.lcs/

Lin (1998) Slin D 2�IC.lcs/

IC.C1/CIC.C2/

3.4 Overhanging-Based Similarity

Let C be a concept of the concept lattice L and define o.C/ as the set of attributes
that C is overhanged with:

o.C/ D fk 2 M W .C; C [ fkg/ 2 Og

o.C/ is the set of attributes that when added to C, generates a concept different
than concept C. Continuing with our recurring example, we have o.fD; Gg/ D
fA; B; C; E; Fg.

From this mapping we can define a similarity measure based on the previous
definition as follows: for any concepts C1 and C2 of L,

So.C1; C2/ D jo.C1 ^ C2/j
jo.C1/ [ o.C2/j

The idea behind this measure is to take into account the width of the lattice. Two
concepts will be more similar if they are close in the lattice and are not sharing
attributes with other concepts. In other words, it indicates the similarity of two
concepts in relation to all the other concepts.

As shown in Domenach (2015), we have the following properties for So, for any
C1; C2 2 L:

• So is normalized, i.e. takes its values in Œ0; 1	;
• So.C1; C2/ D 0 if and only if C1 ^ C2 D 0L;
• So.C1; C2/ D 1 if and only if C1 D C2 ;
• if C1 � C2, So.C1; C2/ D jo.C2/j

jo.C1/j .

Consider, in order to illustrate the interest of this similarity measure, the lattice
of Fig. 1. We have So.fFg; fE; Gg/ D 4

7
and So.fAg; fBg/ D 2

7
. In this example, we

have the Tversky similarities between fFg and fE; Gg on the one hand, and fAg
and fBg on the other hand, all equal to zero as the concepts don’t share elements.
Similarly none of those existing similarity measures allows us to discriminate
between these two concepts—and one can argue that fFg and fE; Gg are closer
together, since they describe all the information of fE; F; Gg, than fAg and fBg,
containing only partial information of their parent concept fA; B; C; D; Gg.



Similarity Measures on Concept Lattices 165

4 Experimental Evaluation

4.1 Experiment on Similarity Methods

The proposed measure has been investigated through a simulation implemented1 in
C] and ran on a computer with Intel Core 2 Duo 3.16 GHz with 2 GB of memory.
More precisely, we have randomly generated three 20�20 Boolean tables. We were
limited on the size of the table due to the exponential time needed to calculate
concept lattices and similarity values. For each table the entries had a density of
20, 30 and 40 %, respectively. Furthermore, for each Boolean table we generated the
associated concept lattice using the CbO algorithm. It is well known that the number
of concepts in the lattice increases with the density. Indicatively, for the table with
a 20 % density there are approximately 65 concepts, with a 30 % density there are
approximately 130 concepts and with a 40 % density there are approximately 260
concepts. We expect that an increase in the size of the lattice will lead to similarity
values that are more spread.

For the simulation, we randomly selected two different concepts and calculated
22 similarities between them. The similarities used were: the set-based similarities
(Jaccard, Dice, Inclusion), the ontology-based ones (Rada, Leacock, Wu-Palmer,
Pekar-Staab, Ngueyn, Zhong) and the combination of IC-based similarities (Resnik,
Lin, Jiang-Conrath) versus the IC functions (Resnik, Seco, Zhou, Sanchez). We
also included a random number taken between 0 and 1 to use as a baseline. This
simulation was repeated 1000 times for each Boolean table.

4.2 Results and Discussion

The simulation data were statistically investigated. The data obtained are presented
in the histogram of Fig. 2 (left). It is evident that the histogram depicts two
populations of data. In the first population, we have the results that produce the
value of zero, i.e. indicating that there is no similarity between concepts, their least
common ancestor being the bottom element of the lattice. Due to the large number
of zeros in the Boolean tables such results are to be expected as concept lattices
are more structurally simple and less dense. More precisely, the results produced
715, 580, and 489 zeros out of 1000 concepts for the Boolean tables of 20 %, 30 %
and 40 %, respectively. The second population concerns the non-zero results, see
Fig. 2 (right). These data depict a symmetric-like distribution for which the normal
probability distribution perhaps fits adequately.

1Source code available on demand.
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Fig. 2 Frequency distribution of overhanging similarity, including 0 (left) or excluding 0 (right)

Table 4 Descriptive of overhanging similarity

20 % 30 % 40 % 20 % 30 % 40 %

N-valid 1000 1000 1000 N-excluding 0 285 420 511

Mean 0:217 0:289 0:311 Mean 0:763 0:688 0:608

Std. err. of mean 0:0103 0:0112 0:0110 Std. err. of mean 0:0061 0:0071 0:0070

Median 0:000 0:000 0:308 Median 0:750 0:684 0:600

Minimum 0:0 0:0 0:0 Minimum 0:5 0:3 0:2

Maximum 0:9 0:9 0:9 Maximum 0:9 0:9 0:9

This population classification leads to a separate statistical analysis according to
prior information:

• Case A: No information, i.e. there is no information as to whether there are
similarities within concepts (Table 4, left). Here we observe that the estimated
mean obtained has an increasing trend against the density of the Boolean tables.
The large number of zeros obtained, as mentioned above, is evident from the
values of the median being equal to zero. The standard error of the mean remains
at a similar level for all Boolean tables.

• Case B: Similarity exists, i.e. there is information that similarity exists between
concepts (Table 4, right). In effect, here we ignore zeros obtained. It is interesting
to observe that the estimated mean and median, now have a decreasing trend
against the density of the Boolean tables. The standard error of the mean remains
at a similar level for all Boolean tables as well.

A clustering with average linkage was ran on Pearson’s correlations between
all similarities (dendrogram in Fig. 3). There are two obvious clusters depicted, but
no clear characteristics stand out. However, similarities are to an extent clustered
together following the classification of Sect. 3, see, for example, the set-based
similarities.

The Pearson’s correlation of the overhanging similarity measure with the mea-
sures used in the simulation, with its significance, is presented in Table 5. There
is clear evidence that the measure is significantly different to the baseline. The
remaining correlation estimates should, however, be taken with caution as the
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Fig. 3 Average linkage of correlation matrix of all similarities

Table 5 Pearson’s correlation and significance of the overhanging similarity measure with the 22
other measures

Jac Dice Inc LeCh PeSt Rada WuPa LinRes ResRes JCRes LinSec

0:444 0:422 0:389 0:588 0:917 0:575 0:950 0:934 0:893 0:258 0:982

0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

ResSec JCSec LinZho ResZho JCZho NgAl Zho LinSan ResSan JCSan Rand

0:967 0:613 0:988 0:976 0:680 0:680 0:949 0:242 0:707 0:296 0:014

0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:650

linearity between the aforementioned measures is still to be investigated. Albeit, one
can see that there are several very strong correlations, both positive and negative, in
particular with the Lin and Resnik IC-based similarities. This may be interpreted
as capturing similar information as those functions using only the structure of the
lattice.

5 Conclusion and Perspectives

The simulation and the resulting analysis have allowed for a comparison of the
overhanging similarity with other similarity measures. Further analysis will be
carried out on the computational complexities of the different measures and on
possible relationships, either linear or nonlinear, between these measures. In turn,
heteroscedasticity and homoscedasticity will need to be investigated. Lastly, robust
statistics, in order to minimize/eliminate, the effect of influential values, may be
needed to be employed. We are also planning to do such a comparison on real data
sets selected from UCI machine learning repository.
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Multivariate Functional Regression Analysis
with Application to Classification Problems

Tomasz Górecki, Mirosław Krzyśko, and Waldemar Wołyński

Abstract Multivariate functional data analysis is an effective approach to dealing
with multivariate and complex data. These data are treated as realizations of mul-
tivariate random processes; the objects are represented by functions. In this paper
we discuss different types of regression model: linear and logistic. Various methods
of representing functional data are also examined. The approaches discussed are
illustrated with an application to two real data sets.

1 Introduction

Much attention has been paid in recent years to methods for representing data
as functions or curves. Such data are known in the literature as functional data
(Ramsay and Silverman 2005). Applications of functional data can be found in
various fields, including medicine, economics, meteorology and many others. In
many applications there is a need to use statistical methods for objects characterized
by multiple features observed at many time points (doubly multivariate data). Such
data are called multivariate functional data. The pioneering theoretical work was
that of Besse (1979), in which random variables take values in a general Hilbert
space. Saporta (1981) presents an analysis of multivariate functional data from the
point of view of factorial methods (principal components and canonical analysis). In
this paper we focus on the problem of classification via regression for multivariate
functional data. Functional regression models have been extensively studied; see,
for example, James (2002), Müller and Stadmüller (2005), Reiss and Ogden (2007),
Matsui et al. (2008) and Li et al. (2010). Various basic classification methods have
also been adapted to functional data, such as linear discriminant analysis (Hastie
et al. 1995), logistic regression (Rossi et al. 2002), penalized optimal scoring (Ando
2009), knn (Ferraty and Vieu 2003), SVM (Rossi and Villa 2006), and neural
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networks (Rossi et al. 2005). Moreover, the combining of classifiers has been
extended to functional data (Ferraty and Vieu 2009).

In the present work we adapt multivariate regression models to the classification
of multivariate functional data. Apart from well-known classical regression models
like the linear and logistic models, we also use models based on functional principal
components. We focus on the binary classification problem. There exist several
techniques for extending the binary problem to multi-class classification problems.
A brief overview can be found in Krzyśko and Wołyński (2009). The accuracy of the
proposed methods is demonstrated using biometrical examples. Promising results
were obtained for future research.

The remainder of the paper is organized as follows. In Sect. 2 we describe
the classification model for multivariate functional data. In Sect. 3 we introduce
a multivariate regression model with scalar response and functional predictors.
Section 4 contains examples and brief discussion of the results. Concluding remarks
and topics of future research are presented in Sect. 5.

2 Classification via Regression

The classical classification problem involves determining a procedure by which a
given object can be assigned to one of K populations based on observation of p
features of that object.

The object being classified can be described by a random pair .XXX; Y/, where
XXX D .X1; X2; : : : ; Xp/0 2 Rp and Y 2 f0; 1; : : : ; K � 1g.

The optimum Bayesian classifier then takes the form (Anderson 1984):

d.xxx/ D arg max
k2f0;1;:::;K�1g

P.Y D kjXXX D xxx/:

We shall further consider only the case K D 2. Here

d.xxx/ D
	

1; P.Y D 1jXXX D xxx/ � P.Y D 0jXXX D xxx/;
0; P.Y D 1jXXX D xxx/ < P.Y D 0jXXX D xxx/.

We note that

P.Y D 1jXXX D xxx/ D E.YjXXX D xxx/ D r.xxx/;

where r.xxx/ is the regression function of the random variable Y with respect to the
random vector XXX.

Hence

d.xxx/ D
	

1; r.xxx/ � 1=2;
0; r.xxx/ < 1=2.
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We now assume that the object being classified is described by a p-dimensional
random process XXX.t/ D .X1.t/; X2.t/; : : : ; Xp.t//0, with continuous parameter t 2 I
and that XXX.t/ 2 Lp

2.I/, where Lp
2.I/ is the Hilbert space of p-dimensional square-

integrable functions.
Typically data are recorded at discrete moments in time. The process of

transformation of discrete data to functional data is performed for each variable
separately.

Let xkj denote an observed value of the feature Xk, k D 1; 2; : : : p at the jth time
point tj, where j D 1; 2; : : : ; J. Then our data consist of the pJ pairs .tj; xkj/. These
discrete data can be smoothed by continuous functions xk.t/, where t 2 I (Ramsay
and Silverman 2005). Here I is a compact set such that tj 2 I, for j D 1; : : : ; J. Let
us assume that the function xk.t/ has the following representation:

xk.t/ D
BkX

bD0

ckb'b.t/; t 2 I; k D 1; : : : ; p; (1)

where f'bg are orthonormal basis functions, and ck0; ck1; : : : ; ckBk are the coeffi-
cients.

Let xxxk D .xk1; xk2; : : : ; xkJ/
0, ccck D .ck0; ck1; : : : ; ckBk/

0 and ˚̊̊ k be a matrix of
dimension J�.BkC1/ containing the values 'b.tj/, b D 0; 1; : : : ; Bk, j D 1; 2; : : : ; J,
k D 1; : : : ; p. The coefficient ccck in (1) is estimated by the least squares method:

Occck D �
˚̊̊ 0k˚̊̊ k

��1
˚̊̊ 0kxxxk; k D 1; : : : ; p:

The degree of smoothness of the function xk.t/ depends on the value Bk (a small
value of Bk causes more smoothing of the curves). The optimum value for Bk may
be selected using the Bayesian information criterion (BIC) (Shmueli 2010).

Let

Occc D .Occc01; : : : ; Occc0p/0; (2)

˚̊̊ .t/ D

2
664

''' 01.t/ 000 : : : 000

000 '''02.t/ : : : 000

: : : : : : : : : : : :

000 000 : : : ''' 0p.t/

3
775 ; (3)

where '''k.t/ D .'0.t/; : : : ; 'Bk .t//
0, k D 1; : : : ; p.

Then xxx.t/ can be represented as

xxx.t/ D ˚̊̊ .t/Occc: (4)
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3 Multivariate Functional Regression Analysis

We now consider the problem of the estimation of the regression function r.xxx/, or
more precisely the regression function r.xxx.t//.

Let us assume that we have an n-element training sample

Ln D f.xxx1.t/; y1/; .xxx2.t/; y2/; : : : ; .xxxn.t/; yn/g;

where xxxi.t/ 2 Lp
2.I/ and yi 2 f0; 1g.

Analogously as in Sect. 2, we assume that the functions xxxi.t/ are obtained as the
result of a process of smoothing n independent discrete data pairs .tj; xkij/, k D
1; : : : ; p, j D 1; : : : ; J, i D 1; : : : ; n.

Thus the functions xxxi.t/ have the following representations:

xxxi.t/ D ˚̊̊ .t/ Occci; i D 1; 2; : : : ; n: (5)

3.1 Multivariate Linear Regression

We take the following model for the regression function:

r.xxx/ D ˇ0 C
Z

I
ˇ̌̌ 0.t/xxx.t/dt: (6)

We seek the unknown parameters in the regression function by minimizing the
sum of squares

S.ˇ0; ˇ̌̌/ D
nX

iD1

�
yi � ˇ0 �

Z

I
ˇ̌̌ 0.t/xxxi.t/dt

�2

: (7)

We assume that the functions xxxi.t/, i D 1; 2; : : : ; n have the representation (5). We
adopt an analogous representation for the p-dimensional weighting function ˇ̌̌.t/,
namely

ˇ̌̌.t/ D ˚̊̊ .t/ddd; (8)

where ˇ̌̌.t/ D .ˇ1.t/; : : : ; ˇp.t//0, ddd D .ddd01; : : : ;ddd0k/0 and dddk D .dk0; dk1; : : : ; dkBk/
0.

Then
Z

I
ˇ̌̌ 0.t/xxxi.t/dt D

Z

I
ddd0˚̊̊ 0.t/˚̊̊ .t/Occcidt D ddd0 Occci; i D 1; 2; : : : ; n:
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Hence

S.ˇ0; ˇ̌̌/ D S.ˇ0;ddd/ D
nX

iD1

.yi � ˇ0 � ddd0 Occci/
2:

We define yyy D .y1; y2; : : : ; yn/0 and

ZZZ D

2
6664

1 Occc01
1 Occc02
:::

:::

1 Occc0n

3
7775 ; ��� D

�
ˇ0

ddd

�
:

Then

S.ˇ0; ˇ̌̌/ D S.���/ D .yyy � ZZZ���/0 .yyy � ZZZ���/ :

Minimizing the above sum of squares leads to the choice of a vector ��� satisfying

ZZZ0ZZZ��� D ZZZ0yyy: (9)

Provided the matrix ZZZ0ZZZ is non-singular, Eq. (9) has the unique solution

O��� D .ZZZ0ZZZ/�1ZZZ0yyy: (10)

We obtain the following form for the estimator of the regression function for the
multivariate functional data:

Or.xxx/ D Ǒ
0 C Oddd0 Occc;

where O��� D . Ǒ
0; Oddd/0 is given by the formula (10) and Occc by the formula (2).

In the case of functional data we can also use the smoothed least squares method
discussed by Ramsay and Silverman (2005).

3.2 Regression Model Based on MFPCA

An alternative strategy for fitting the model (6) is to carry out a preliminary
multivariate functional principal components Analysis (MFPCA) of the covariate
functions, and effectively reduce the dimensionality of the covariate space (Ferraty
and Vieu 2006; Górecki and Krzyśko 2012; Jacques and Preda 2014). For the
random process X.t/, the lth multivariate functional principal component (MFPC)
has the form

Ul D< ul.t/; X.t/ >
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and satisfy the conditions

Var.< uuul.t/;XXX.t/ >/ D sup
uuu.t/2L

p
2.I/

Var.< uuu.t/;XXX.t/ >/;

< uuu�1.t/;uuu�2.t/ >D ı�1�2; �1; �2 D 1; : : : ; l:

It may be assumed that the vectors of the weighting function uuul.t/ and realizations
of the process XXX.t/ are in the same space, i.e. the functions uuul.t/ and XXX.t/ can be
written in the form:

uuul.t/ D ˚̊̊ .t/uuul; XXX.t/ D ˚̊̊ .t/CCC;

where uuul;CCC D .CCC1;CCC2; : : : ;CCCp/0 2 RBCp, B D B1 C B2 C � � � C Bp. Then

< uuul.t/;XXX.t/ >D< ˚̊̊ .t/uuul; ˚̊̊ .t/CCC >D uuu0l < ˚̊̊ .t/; ˚̊̊ .t/ > CCC D uuu0lCCC

and Var.< uuul.t/;XXX.t/ >/ D uuu0l Var.CCC/uuul D uuu0l˙̇̇uuul:

The unknown matrix ˙̇̇ is estimated using the training sample Ln. We have

xxxi.t/ D ˚̊̊ .t/Occci; i D 1; 2; : : : ; n:

Let

QCCC D .Qccc1; Qccc2; : : : ; Qcccn/; Qccci D Occci � 1

n

nX

jD1

Occcj:

Then

Ȯ̇̇ D 1

n � 1
QCCC QCCC0:

Let O�1 � O�2 � : : : � O�s be non-zero eigenvalues of matrix Ȯ̇̇ , and Ouuu1; Ouuu2; : : : ; Ouuus

the corresponding eigenvectors, where s Drank. Ȯ̇̇ /.
Then for the ith realization xxxi.t/ of the process XXX.t/, we have

xxxi.t/ D
sX

lD1

Ouil Ouuul.t/ (11)

where

Ouuul.t/ D ˚̊̊ .t/Ouuul; l D 1; : : : ; s

and

Ouil D< Ouuul.t/;xxxi.t/ >D< ˚̊̊ .t/Ouuul; ˚̊̊ .t/Occci >D Ouuu0l < ˚̊̊ .t/; ˚̊̊ .t/ > Occci D Ouuu0l Occci;

for i D 1; 2; : : : ; n, l D 1; 2; : : : ; s.
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Let us now consider again the regression model given by (6). To solve the
problem of minimizing the sum of squares (7), we use the representation of the
function xxxi.t/ in the form (11). Moreover, we assume that

ˇ̌̌.t/ D
sX

lD1

bl Ouuul.t/: (12)

Then
Z

I
ˇ̌̌ 0.t/xxxi.t/dt D bbb0 Ouuui;

where bbb D .b1; b2; : : : ; bs/
0 and Ouuui D .Oui1; Oui2; : : : ; Ouis/

0.
Therefore

S.ˇ0; ˇ̌̌/ D S.ˇ0;bbb/ D
nX

iD1

.yi � ˇ0 � bbb0 Ouuui/
2:

Following transformations analogous to those in Sect. 3.1, we obtain an estimate
of the vector ııı D .ˇ0;bbb0/0 in the form

Oııı D . QZZZ0 QZZZ/�1 QZZZ0yyy; where QZZZ D

2

6664

1 Ouuu01
1 Ouuu02
:::

:::

1 Ouuu0n

3

7775 :

Therefore

Or.xxx/ D Ǒ
0 C Obbb0 Ouuu;

where Ouuu D .Ou1; : : : ; Ous/
0 and Oul D< Ouuul.t/;xxx.t/ >D Ouuu0l Occc.

3.3 Multivariate Functional Logistic Regression

We adopt the following logistic regression model for functional data:

r.xxx/ D exp.ˇ0 C R
I ˇ̌̌ 0.t/xxx.t/dt/

1 C exp.ˇ0 C R
I ˇ̌̌ 0.t/xxx.t/dt/

: (13)
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Using the representation of the function xxx.t/ given by (4) and the weighting function
ˇ̌̌.t/ given by (8) we reduce (13) to a standard logistic regression model in the form

r.xxx/ D exp.ˇ0 C ddd0 Occc/

1 C exp.ˇ0 C ddd0 Occc/
: (14)

To estimate the unknown parameters of the model, we use the training sample Ln

and the analogous representation for the functions xxxi.t/, i D 1; 2; : : : ; n given by (5).
The functional logistic regression model (13) can be reduced to a standard model

by taking representations of the function xxx.t/ in the basis defined by the multivariate
functional principal components (MFPCA).

Assuming that

xxx.t/ D
sX

lD1

Oul Ouuul.t/

and that the representation of the weighting function ˇ̌̌.t/ is given by (12), we obtain

r.xxx/ D exp.ˇ0 C bbb0 Ouuu/

1 C exp.ˇ0 C bbb0 Ouuu/
: (15)

To estimate the unknown parameters of the model, we again use the training
sample Ln and the representations of the functions xxxi.t/, i D 1; 2; : : : ; n given by
(11).

From now on we shall use the following notation for classifiers: MFLM for the
multivariate functional linear model, MFPCR for the multivariate functional linear
model based on MFPCA, MFLG for the multivariate functional logistic model, and
MFLGR for the multivariate functional logistic model based on MFPCA.

4 Examples

Experiments were carried out on two data sets, these being labelled data sets whose
labels are given. The data sets originate from Olszewski (2001).

The ECG data set uses two electrodes (Fig. 1) to collect data during one heartbeat.
Each heartbeat is described by a multivariate time series (MTS) sample with two
variables and an assigned classification of normal or abnormal. Abnormal heartbeats
are representative of a cardiac pathology known as supraventricular premature beat.
The ECG data set contains 200 MTS samples, of which 133 are normal and 67 are
abnormal. The length of an MTS sample is between 39 and 152.

The Wafer data set uses six vacuum-chamber sensors (Fig. 2) to collect data while
monitoring an operational semiconductor fabrication plant. Each wafer is described
by an MTS sample with six variables and an assigned classification of normal or
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Fig. 1 Extended ECG data set (red—normal, black—abnormal)

Time

0 50 100 150 200

0
50

0
10

00
15

00
20

00

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

−
10

0
−

50
0

50

0
10

0
20

0
30

0
40

0
50

0
60

0

0
50

0
10

00
15

00

0
50

0
10

00
15

00
20

00
25

00

Time

0 50 100 150 200

Time

0 50 100 150 200

Time

0 50 100 150 200

Time

0 50 100 150 200

Time

0 50 100 150 200

Fig. 2 Extended Wafer data set (red—normal, black—abnormal)

abnormal. The data set used here contains 327 MTS samples, of which 200 are
normal and 127 are abnormal. The length of an MTS sample is between 104 and
198.

The multivariate samples in the data sets are of different lengths. For each data
set, the multivariate samples are extended to the length of the longest multivariate
sample in the set (Rodriguez et al. 2005). We extend all variables to the same length.
For a short univariate instance x with length J, we extend it to a long instance xex
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with length Jmax by setting

xex.tj/ D x.ti/; for i D
�

j � 1

Jmax � 1
.J � 1/ C 0:5

�
.j D 1; 2; : : : ; Jmax/:

Some of the values in a data sample are duplicated in order to extend the sample.
For instance, if we wanted to extend a data sample of length 75 to a length of 100,
one out of every three values would be duplicated. In this way, all of the values in
the original data sample are contained in the extended data sample.

For the classification process, we used the classifiers described above. For each
data set we calculated the classification error rate using the leave-one-out cross-
validation method (LOO CV). We obtained error rates (in percent): 11.50, 11.50,
20.00 and 22.50 for the data set ECG, respectively, for the methods MFLM, MFLG,
MFPCR and MFLGR. Analogously for the Wafer data set we obtained the error
rates (in percent): 0.59, 0.17, 2.01 and 0.92. As we can see, moving to the space
of principal components appears not to improve the results, and in fact makes them
significantly worse. In this situation the best classification method would appear to
be MFLG.

5 Conclusion

This paper develops and analyzes methods for constructing and using regression
methods of classification for multivariate functional data. These methods were
applied to two biometrical multivariate time series. In the case of these examples
it was shown that the use of multivariate functional regression methods for
classification gives good results. Of course, the performance of the algorithm needs
to be further evaluated on additional real and artificial data sets. In a similar way,
we can extend other regression methods, such as partial least squares regression—
PLS, least absolute shrinkage and selection operator—LASSO, or least-angle
regression—LARS, to the multivariate functional case. This will be the direction
of our future research.

References

Anderson, T. W. (1984). An introduction to multivariate statistical analysis. New York: Wiley.
Ando, T. (2009). Penalized optimal scoring for the classification of multi-dimensional functional

data. Statistcal Methodology, 6, 565–576.
Besse, P. (1979). Etude descriptive d’un processus. Ph.D. thesis, Universit’e Paul Sabatier.
Ferraty, F., & Vieu, P. (2003). Curve discrimination. A nonparametric functional approach.

Computational Statistics & Data Analysis, 44, 161–173.
Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis: Theory and practice.

New York: Springer.



Multivariate Functional Regression for Classification 183

Ferraty, F., & Vieu, P. (2009). Additive prediction and boosting for functional data. Computational
Statistics & Data Analysis, 53(4), 1400–1413.
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Incremental Generalized Canonical
Correlation Analysis

Angelos Markos and Alfonso Iodice D’Enza

Abstract Generalized canonical correlation analysis (GCANO) is a versatile tech-
nique that allows the joint analysis of several sets of data matrices through
data reduction. The method embraces a number of representative techniques of
multivariate data analysis as special cases. The GCANO solution can be obtained
noniteratively through an eigenequation and distributional assumptions are not
required. The high computational and memory requirements of ordinary eigen-
decomposition makes its application impractical on massive or sequential data
sets. The aim of the present contribution is twofold: (a) to extend the family of
GCANO techniques to a split-apply-combine framework, that leads to an exact
implementation; (b) to allow for incremental updates of existing solutions, which
lead to approximate yet highly accurate solutions. For this purpose, an incremental
SVD approach with desirable properties is revised and embedded in the context
of GCANO, and extends its applicability to modern big data problems and data
streams.

1 Introduction

Numerous procedures for relating multiple sets of variables have been described in
the literature (Van der Burg 1988; Gifi 1990; Kroonenberg 2008). In this paper,
we consider a generalized version of canonical correlation analysis (GCANO)
developed by Carroll (1968). The central problem of GCANO is to construct a
series of components, or canonical variates, aiming to maximize the association
or homogeneity among the multiple variable sets. This version is most attractive
because the solution can be obtained through an eigenequation, strict distributional
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assumptions are not required and, most importantly, the method subsumes a number
of representative techniques of multivariate data analysis as special cases (Takane
et al. 2008; Van de Velden and Takane 2012). In the case of two data sets with
continuous variables, GCANO reduces to canonical correlation analysis. When one
of the two sets of variables consists of indicator variables, the method specializes
into canonical discriminant analysis and into correspondence analysis when both
sets consist of indicator variables. In the case of more than two data sets with
indicator variables, GCANO specializes into multiple correspondence analysis, and
into principal component analysis when each of the data sets consists of a single
continuous variable. Therefore, a useful modification of the GCANO algorithm has
far reaching implications beyond what is normally referred to as GCANO (Takane
et al. 2008).

GCANO has been profitably applied as a tool for integrating data obtained from
different sources (e.g., subjects, stimuli, locations), in fields ranging from marketing
(Bijmolt and Van de Velden 2012) to neuroimaging (Correa et al. 2010). In the last
few years, new application frameworks emerged that usually involve large/massive
amounts of data. Some of the examples that can be given in this context are the
continuous monitoring of consumer preferences plotted on perceptual maps, fusing
data concurrently acquired from different imaging modalities, and monitoring of
word associations that are present in data pulled on-the-fly from social networking
sites. In all these examples there is a high rate of data accumulation coupled with
constant changes in data characteristics. Such type of data is often referred to as data
streams or data flows and require fast response time and efficient memory use.

In fact, the capability of GCANO is challenged by such data and requires a
different approach. The problem is that finding the (generalized) canonical correla-
tions requires a computationally expensive eigendecomposition. More specifically,
the application of ordinary eigenvalue decomposition (EVD) or singular value
decomposition (SVD) to large and high-dimensional data becomes infeasible
because of high computational and memory requirements. This subsequently makes
the application of GCANO impractical on massive or sequential data, i.e., when
new data arrive, one needs to re-run the method with the original data augmented
by the new data and the whole data structures being decomposed have to be kept in
memory.

Literature offers several proposals aiming to overcome the EVD and SVD-related
limitations via efficient eigensolvers (e.g., Baglama and Reichel 2007) or via the
update (or downdate) of existing EVD/SVD solutions according to new data (see
Baker et al. 2012 for an overview). Another strategy for tackling large data problems
is the so-called split-apply-combine (Wickam 2011): the full data set is split into
blocks, each block is analyzed separately and the results are combined to obtain the
global solution. In that case, the solution corresponding to the decomposition of the
starting data block has to be incrementally updated each time new data comes in.

The aim of the present contribution is twofold: (a) to extend the family of
GCANO techniques to a split-apply-combine framework, that leads to an exact
solution, i.e. to the exact calculation of canonical correlations; (b) to allow for
incremental updates of existing solutions, which lead to approximate yet highly
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accurate solutions. For this purpose, an incremental SVD approach with desirable
properties is revised and embedded in the context of GCANO, and extends its
applicability to modern big data problems and data streams.

The paper is organized as follows: Sect. 2 presents GCANO as a matrix decompo-
sition technique. Section 3 focuses on an incremental SVD approach with desirable
properties in the context of GCANO. Based on this approach, two algorithmic
modifications for incrementally computing the GCANO solution are proposed in
Sect. 4. In Sect. 5 we illustrate a real-world application on data gathered from a
social networking site. The paper concludes in Sect. 6.

2 Generalized Canonical Correlation Analysis

Let Zk denote an n by pk matrix of variables of the kth data set (k D 1; � � � K), where
n is the number of cases. We assume that Zk is column-wise standardized. Let Z
denote an n by p D .˙kpk/ row block matrix, Z D ŒZ1; : : : ; ZK 	. Let Wk denote a
pk by d matrix of weights assigned to each variable in Zk, where d is the number of
dimensions. Let F denote an n by d matrix of low dimensional data representations,
known as object scores, which characterize the association or homogeneity among
all Zk’s. The aim of GCANO is to obtain W which maximizes

�.W/ D tr.WTZTZW/ (1)

subject to the restriction that WTDW D It, where D is a p by p block diagonal
matrix formed from Dk D ZT

k Z as the kth diagonal block.
The solution can be achieved through different algorithmic approaches (see

Takane et al. 2008), but the most relevant one to our purpose is via the generalized
singular value decomposition (GSVD) of matrix ZD� with column metric D, where
D� is a generalized inverse of D. In other words, GCANO can be performed as a
principal component analysis applied to the global table Z, with metric correspond-
ing to the block diagonal matrix composed of the inverses of the variance-covariance
matrices internal to every group Zk. This is equivalent to obtaining the ordinary SVD
of:

ZD�1=2 D U˙VT: (2)

Then canonical weights are given by W D D�1=2V and canonical variates by
F D ZW˙ 1=2 (Takane et al. 2008).

A convenient choice of D�1=2 is D�D1=2, where D� is an arbitrary g-inverse and
D1=2 is the symmetric square root factor of D. Different choices of D�1=2 lead to the
different methods which lie under the GCANO framework. For instance, in the case
of correspondence analysis D�1=2 is replaced by .DC/1=2, where DC is the Moore–
Penrose inverse of D and each Zk is a set of column-centered indicator matrices. In
the case of principal component analysis, the solution is simply given by the SVD
of Z; thus D�1=2 D I.
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3 Enhancing the SVD Computation

A downside of SVD and related EVD is their high computational cost. The SVD
has a computational complexity of O.n2p/, assuming n � p (Golub and Van Loan
1996). Therefore, both methods become computationally infeasible for large data
sets. In the literature, we find two broad classes of methods which lead to efficient
eigendecompositions.

The first class, known as batch methods, requires that all the data is available in
advance to perform the decomposition. This class includes methods such as iterative
EVD (Golub and Van Loan 1996) and bilinear diagonalization Lanczos (Baglama
and Reichel 2007). Although these methods enable very efficient computations,
their application is not possible in cases where the data size is too large to fit in
memory, or if the full data set is not available in advance, as in the case of data
streams. In the latter case, it may be advantageous to perform the computations as
the data become available.

The so-called incremental methods can operate on streaming data and aim to
update (or downdate) an existing SVD or EVD solution when new data is processed.
This class of methods includes some expectation-maximization (e.g., Tipping and
Bishop 1999), stochastic approximation (e.g., Herbster and Warmuth 2001), and
sequential decomposition approaches (see Baker et al. 2012; Iodice D’ Enza and
Markos 2015, for an overview). These methods have an advantage over batch
methods as they can be applied to sequential data blocks without the need to store
past data in memory.

In this paper, we utilize the desirable properties of a sequential decomposition
algorithm, (herein referred to as Incremental SVD) described by Ross et al. (2008),
which is based on a series of efficient block updates instead of a full and expensive
SVD. The procedure allows to keep track of the data mean, so as to simultaneously
update the center of the low dimensional space of the solution. This property
is important when the data sets consist of indicator variables, as in the case of
correspondence analysis (Iodice D’ Enza and Markos 2015). Second, the method
offers a computational advantage over alternatives in that the decomposition can
be computed in constant time regardless of data size. This property makes it more
appealing for an incremental GCANO implementation in the case of data streams.

3.1 Incremental SVD

In this section, we present an algorithm which exploits the fact that a low-rank
update to the eigenbasis is decomposable into efficient block operations. In the
original description of the method (Ross et al. 2008), the data is updated column-
wise, but here we derive a row-wise update formulation of the method. This is
subsequently utilized in the following section to provide an incremental GCANO
approach, suitable for analyzing data streams.
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Before describing the core of the method, we introduce some necessary defini-
tions. An eigenspace is a collection of the quantities needed to define the result of a
matrix eigendecomposition as it involves eigenvalues (singular values), eigenvectors
(singular vectors), data mean, and size. In particular, with respect to the SVD, for a
n.x/ � p matrix X and a n.y/ � p matrix Y, we define two eigenspaces as

˝.x/ D
�

n.x/; �.x/; U.x/;˙ .x/; V.x/
�

and ˝.y/ D
�

n.y/; �.y/; U.y/;˙ .y/; V.y/
�
:

The aim of incremental decomposition is to obtain an eigenspace ˝.xy/ for the

matrix

�
X
Y

�
, using uniquely the information in ˝.x/ and ˝.y/.

The total number of statistical units and the global data mean are easily updated:

n.xy/ D n.x/ C n.y/ and �.xy/ D n.x/�.x/Cn.y/�.y/

n.xy/ . Adding the eigenspaces acts to
rotate the eigenvectors (or singular vectors) and to scale the eigenvalues (or singular
values) relating to data spread; furthermore, the new eigenvectors must be a linear
combination of the old.

Let QX and QY be the centered versions of X and Y, respectively. In order to take

into account the varying mean, the row vector
q

n.x/n.y/

n.x/Cn.y/

�
�.y/ � �.x/

�
is added to

the QY matrix. Given the SVD of QX D U.x/˙ .x/
�
V.x/

�T
, the projection L of QY onto

the orthogonal basis
�
V.x/

�T
is described by:

L D QY �V.x/
�T

:

Let H be the component of QY orthogonal to the subspace spanned by
�
V.x/

�T
:

H D QY
�

I � �
V.x/

�T
V.x/

�
D QY � LV.x/:

H is decomposed such that an orthogonal matrix V.h/ is obtained, as follows:

V.h/ D orth
� QY � LV.x/

�
:

Then,

� QX
QY
�

is given by

� QX
QY
�

D
��

U.x/ 0
0 I

�
U.r/

�
˙ .r/

�
V.r/

�
V.x/

V.h/

��
; (3)

where U.r/˙ .r/
�
V.r/

�T
is the SVD of R D

"
˙ .x/ 0

L H
�
V.h/

�T

#
.
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Finally, U.xy/ D
�

U.x/ 0
0 I

�
U.r/, ˙ .xy/ D ˙ .r/ and V.xy/ D V.r/

�
V.x/

V.h/

�
.

It should be noted that in many practical situations, it suffices to obtain only V.xy/,
the basis for the right singular subspace.

4 Dynamic Modifications of GCANO Solutions

This Section describes two dynamic modifications of the GCANO algorithm,
referred to as “Exact” and “Live.” The Exact approach is an incremental GCANO
which leads to the same exact solution as the one obtained using ordinary GCANO.
This approach requires all the data to be available from the start. On the other hand,
the Live approach is suitable for analyzing data blocks incrementally as they arrive,
but leads to an approximate GCANO solution. The main difference between the
two approaches lies in the calculation of the block diagonal matrix D. With regard
to the Exact approach, its calculation is based on the “global” variance-covariance
matrices internal to every data block, that is, the matrices which correspond to
the whole data matrix, which is available in advance. For the Live approach, the
whole matrix is unknown and the variance-covariance matrices internal to every
data block are approximated by the “local” matrices, that is, the average variance-
covariance matrices of the data analyzed insofar. A detailed description of the
two implementations follows and the corresponding pseudo-code is provided in
Algorithms 1 and 2.

4.1 Exact GCANO

Algorithm 1 summarizes the Exact approach. The procedure is iterated k times,
where k is the total number of incoming blocks leading to k updates. The superscript
“.x/” indicates a quantity referred to the current block, whereas the superscript
“.y/” refers to the incoming block. The updated quantities are then indicated by the
superscript “.xy/”. The merging of eigenspaces is achieved using the SVD-based
method described in Sect. 3.1.

In terms of time complexity, the Exact GCANO algorithm is data dependent
and is expected to yield much lower space complexity than ordinary GCANO.
More specifically, computing an eigenspace model of size n � p using the
SVD, usually incurs a computational cost of O.n2p/. Therefore, using the batch
approach, the merging of two consecutive eigenspaces requires approximately
O..n.x/ C n.y//2p/ operations. Now we focus on the parts which dominate the
computational complexity of the Exact algorithm. The starting and the incoming
eigenspaces (Steps 4 and 8) need a total of O...n.x//2 C .n.y//2/p/ operations
and eigenspace merging (Step 11) requires at most O..d C n.y/ C 1/2p/. Note
that d is the number of the largest singular values retained in each step.
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Algorithm 1: Exact GCANO
Require: Z D ŒZ1; � � � ; ZK 	 {n� p, K sets}

1: DŒk; k	 D ZT
k Zk {form block-diagonal D}

2: XD ZD�1=2 D ŒX1IX2I � � � IXs	 {calculate X and split into s blocks}
3: X.x/ D X1

4: ˝ .x/ D .n.x/; �.x/; U.x/;˙ .x/; V.x/) {starting eigenspace}

5: while (incoming data block) do
6: X.y/ D XmC1 {incoming block}

7: �.y/ D �
n.y/

�
�1 �

X.y/
�T

1n.y/ {mean vector}

8: ˝ .y/ D .n.y/; �.y/; U.y/;˙ .y/; V.y/) {new eigenspace}

9: n.xy/ D n.x/ C n.y/ {data size update}

10: �.xy/ D 
�.x/n.x/ C �.y/n.y/

� �
n.x/

�
�1

{mean vector update}

11: ˝ .xy/ D ˝ .x/ ˚˝ .y/ D .n.xy/; �.xy/; U.xy/;˙ .xy/; V.xy// {eigenspace update}

12: W.xy/ D D�1=2V.xy/ {canonical weights}

13: FD ZW.xy/
�
˙ .xy/

�
�1=2

{canonical variates}

14: n.x/ D n.xy/; �.x/ D �.xy/; U.x/ D U.xy/;˙ .x/ D ˙ .xy/; V.x/ D V.xy/ {update}

15: end while

4.2 Live GCANO

This section introduces the Live GCANO algorithm and discusses some of its basic
properties, in comparison with the Exact case of the previous section. The pseudo-
code for the Live case is presented in Algorithm 2. Since the data is not available
from the beginning, k, the total number of blocks being analyzed, is not defined
in advance. The most crucial difference between the Exact and Live approach lies
in the computation of the block diagonal matrix D of the incoming block. In fact,
an additional step (Step 7) is required within the loop of Algorithm 2, where the
average of the “local” variance-covariance matrices is obtained.

The complexity of the Live algorithm can be summarized in a similar way to that
of the Exact case. Each update (Step 13) requires approximately O..d Cn.y/ C1/2p/

flops, versus O..n.x/ C n.y//2p/ with the naive approach. Another important feature
is that the decomposition can be computed in constant time by constraining the
update block size (see Iodice D’ Enza and Markos 2015 for details). The storage
required for the n.y/ new rows reduces significantly the space complexity to
approximately O..d C n.y/ C 1/p/, down from O..n.x/ C n.y//2p/ required for the
naive SVD.
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Algorithm 2: Live GCANO
Require: Z D ŒZ1IZ2I � � �	 {incoming data stream}

1: Z.x/ D Z1

2: D.x/Œk; k	 D
�

Z.x/
k

�T
Z.x/

k {form block-diagonal Dx}

3: X.x/ D Z.x/
�
D.x/

�
�1=2

{calculate X.x/}

4: ˝ .x/ D .n.x/; �.x/; U.x/;˙ .x/; V.x/) {starting eigenspace}

5: while (incoming data block) do
6: Z.y/ D ZmC1 {incoming block}

7: D.xy/Œk; k	 D
��

Z.x/
�T

Z.x/ C �Z.y/
�T

Z.y/
�

=n.x/ {update block-diagonal D}

8: X.y/ D Z.y/
�
D.xy/

�
�1=2

{calculate X.y/}

9: �.y/ D �
n.y/

�
�1 �

X.y/
�T

1n.y/ {mean vector}

10: ˝ .y/ D .n.y/; �.y/; U.y/;˙ .y/; V.y/) {new eigenspace}

11: n.xy/ D n.x/ C n.y/ {data size update}

12: �.xy/ D 
�.x/n.x/ C �.y/n.y/

� �
n.x/

�
�1

{mean vector update}

13: ˝ .xy/ D ˝ .x/ ˚˝ .y/ D .n.xy/; �.xy/; U.xy/;˙ .xy/; V.xy// {eigenspace update}

14: W.xy/ D �
D.xy/

�
�1=2

V.xy/ {canonical weights}

15: F.xy/ D Z.xy/W.xy/
�
˙ .xy/

�
�1=2

{canonical variates}
16: n.x/

D n.xy/ ; �.x/
D �.xy/ ; U.x/ D U.xy/ ;˙ .x/

D ˙ .xy/ ; V.x/
D V.xy/ ; Z.x/

D Z.y/ {update}

17: end while

5 Application

The two proposed approaches were applied to a real-world data set. For conve-
nience, we consider only sets of categorical variables, thus GCANO results coincide
with those of multiple correspondence analysis (MCA). A detailed description of
Algorithms 1 and 2 in the case of MCA can be found in Iodice D’ Enza and Markos
(2015). The data refers to a small corpus of messages or tweets mentioning seven
major hotel brands. It was gathered by continuously querying and archiving the
Twitter Streaming API service, which provides a proportion of the most recent
publicly available tweets, along with information about the user. The data was
collected using the twitteR package in R (Gentry 2011). A total of about 10,000
tweets in English were extracted within a time period of 6 consecutive days.

Apart from brand name, two additional variables were considered. A sentiment
score was assigned to each tweet by first counting the number of occurrences
of “positive” and “negative” words according to a sentiment dictionary and then
subtracting the number of occurrences of negative words from the number of posi-
tive. Larger negative scores correspond to more negative expressions of sentiment,
neutral (or balanced) tweets net to zero, and very positive tweets score larger,
positive numbers. A sentiment polarity variable of either “positive +”, “neutral
C=�” or “negative �” sentiment was finally obtained by simply taking the sign
of the sentiment score. Another variable, user visibility or popularity, as measured
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Fig. 1 Exact and Live MCA map of attributes and tweets. (a) Attributes. (b) Tweets

by the number of followers each user had, was also included in the data set. The
variable was categorized into three groups, “low,” “medium,” and “high.”

The potential of the proposed methodology lies in monitoring the competitive
position of each brand relative to rival brands over time, as new data blocks are
processed, according to standard MCA interpretation. The first block consisted of
500 rows (tweets), and five equally sized blocks were consequently added to update
the original solution. In Fig. 1, we plot the final solutions of both approaches (Exact
and Live) on the same map for the attributes and tweets, respectively. The similarity
between the two configurations was measured by the R index, that equals

p
1 � m2,

where m2 is the symmetric orthogonal Procrustes statistic. The index ranges from
0 to 1 and can be interpreted as a correlation coefficient. The similarity was found
very high (R D 0:997 for both tweets and attributes), which indicates that the “Live”
approach in this case is highly accurate. An implementation in the R language
available on http://www.amarkos.gr/research/dynMCA/ allows the reader to directly
experiment with the proposed methods.

6 Conclusions

The applicability of GCANO and related SVD-based methods has been extended
to big data settings and data streams. The so-called Exact implementation leads to
an exact solution and follows the split-apply-combine paradigm; this is a desirable
feature for the incremental processing of previously available data or for parallel
execution. The “Live” implementation extends the applicability of GCANO in cases
when the whole data set is not available from the beginning, as in the case of
data streams. The discrepancy between Live and ordinary approaches, as well as
the accuracy of the Live approach are thoroughly discussed in Iodice D’ Enza and
Markos (2015), albeit only in the case of indicator variables. These properties are
left to be studied in the case of continuous variables. Since the proposed incremental

http://www.amarkos.gr/research/dynMCA/


194 A. Markos and A.I. D’Enza

approach was based on sequential decomposition, an interesting perspective would
be to investigate its relationship with a probabilistic approach, i.e. based on stochas-
tic approximation. We defer consideration of these possibilities to future work.

References

Baglama, J., & Reichel, L. (2007). Augmented implicitly restarted Lanczos bidiagonalization
methods. SIAM Journal on Scientific Computing, 27, 19–42.

Baker, C., Gallivan, K., & Van Dooren, P. (2012). Low-rank incremental methods for computing
dominant singular subspaces. Linear Algebra and its Applications 436(8), 2866–2888.

Bijmolt, T. H., & Van de Velden, M. (2012). Multiattribute perceptual mapping with idiosyncratic
brand and attribute sets. Marketing Letters, 23(3), 585–601.

Carroll, J. D. (1968). A generalization of canonical correlation analysis to three or more sets
of variables. In Proceedings of the 76th Annual Convention of the American Psychological
Association (pp. 227–228).

Correa, N. M., Eichele, T., Adali, T., Li, Y., & Calhoun, V. D. (2010). Multi-set canonical
correlation analysis for the fusion of concurrent single trial ERP and functional MRI.
Neuroimage, 50, 1438–1445.

Gentry, J. (2011). twitteR: R based twitter client, http://cran.r-project.org/web/packages/twitteR/
Gifi, A. (1990). Nonlinear multivariate analysis. New York: Wiley.
Golub, G., & Van Loan, A. (1996). Matrix computations. Baltimore: John Hopkins University

Press.
Herbster, M., & Warmuth, M. K. (2001). Tracking the best linear predictor. Journal of Machine

Learning Research, 1, 281–309.
Iodice D’ enza, A., & Markos, A. (2015). Low-dimensional tracking of association structures in

categorical data. Statistics and Computing, 25(5), 1009–1022.
Kroonenberg, P. M. (2008). Applied multiway data analysis. New York: Wiley.
Ross, D., Lim, J., Lin, R. S., & Yang, M. H. (2008). Incremental learning for robust visual tracking.

International Journal of Computer Vision, 77, 125–141.
Takane, Y., Hwang, H., & Abdi, H. (2008). Regularized multiple-set canonical correlation analysis.

Psychometrika, 73(4), 753–775.
Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.
Van de Velden, M., & Takane, Y. (2012). Generalized canonical correlation analysis with missing

values. Computational Statistics, 27(3), 551–571.
Van der Burg, E. (1988). Nonlinear canonical correlation and some related techniques. Leiden:

DSWO Press.
Wickam, H. (2011). A split-apply-combine strategy for data analysis. Journal of Statistical

Software 11(1), 1–29.

http://cran.r-project.org/web/packages/twitteR/


Evaluating the Necessity of a Triadic Distance
Model

Atsuho Nakayama

Abstract Various studies have examined multi-way proximity generalizations of
multidimensional scaling (MDS). Some of these have proposed one-mode three-
way proximity data analyses to investigate triadic relationships among three objects.
However, the results of a triadic distance model are generally similar to those of
a one-mode two-way MDS. Moreover, no technique for judging whether a triadic
distance model or one-mode two-way MDS is more appropriate has been developed.
Thus, it would be valuable to establish a technique for examining the need for
a one-mode three-way MDS analysis. Here, we propose a technique to evaluate
the need for a triadic distance model using a log-linear model. When the analysis
of the log-linear model shows that three objects, i, j, and k, are not independent,
the one-mode three-way proximity data should be analyzed with a triadic distance
model. However, one-mode three-way proximity data should not be analyzed with
a triadic distance model when the analysis of the log-linear model shows that the
three objects i, j, and k are independent.

1 Introduction

Multidimensional scaling (MDS) can be classified according to the number of
directions and modes used (Carroll and Arabie 1980). A single-symmetric proximity
matrix has I rows and I columns, where I indexes the same ordered set of I objects
for both rows and columns. Carroll and Arabie (1980) referred to this kind of
single matrix as two-way, because it has both rows and columns; this corresponds
to an MDS involving only one input matrix as a two-way analysis. Because both
directions correspond to the same set of objects, the model only includes one
mode. However, the two modes have two different directions, such as objects and
sources. Thus, proximity matrices for objects i and i, according to the k-th source,
are considered two-mode three-way matrices. One-mode three-way proximity data
consist of numerical values assigned to triplets of objects. Researchers have often
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used one-mode two-way MDS (Kruskal 1964a,b). One configuration, X of n points
xi D .xi1; : : : ; xip/, is assumed, for i D 1; : : : ; n, in p-dimensional Euclidean space,
where the xi-coordinate corresponds to the point for object i. Dyadic distances dij

between two points, representing objects i and j in the configuration, are given by

dij D
 

pX

tD1

�
xit � xjt

�2
!1=2

: (1)

The dyadic distances dij are determined by finding the Odij that satisfies the following
conditions:

ıij < ırs ) Odij > Odrs for all i < j; r < s; (2)

where ıij represents the one-mode two-way proximity data. The badness-of-fit
measure of dij to ıij is called the stress S and is based on the stress formula, defined
below (Kruskal and Carroll 1969):

S D
vuut

nX

i<j

.dij � Odij/2

. nX

i<j

.dij � Ndij/2: (3)

However, a model capable of analyzing proximities data that differ from one-
mode two-way proximities data is needed. A new model is required to explain
high-level phenomena among objects. For example, one-mode three-way proximity
data among three objects are used in various areas of sociology. Applications include
joint purchases of items, friendships among persons, and trade among countries.
We can reveal hidden aspects of such data by fitting certain models to the data.
Various models have been proposed for analyzing one-mode three-way proximity
data among three-objects, including the triadic distance model (e.g., Cox et al.
1991; De Rooij 2002; De Rooij and Gower 2003; Gower and De Rooij 2003;
Joly and Le Calvé 1995; Heiser and BennaniI 1997). De Rooij and Gower (2003)
used symmetric functions of triadic distances, including the perimeter distance,
generalized Euclidean distance, generalized dominance distance, variance function,
area of the triangle, and the product model. The triadic distance among points
i, j, and k is denoted by dijk. As is the case in one-mode two-way MDS, one
configuration, X of n points xi D .xi1; : : : ; xip/, is assumed for i D 1; : : : ; n, in
p-dimensional Euclidean space, where an xi-coordinate corresponds to the point for
object i. For example, the generalized Euclidean distance model is given by

dijk D .d2
ij C d2

jk C d2
ik/

1=2; (4)
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where dij is the Euclidean dyadic distance between the points i and j. A monotonic
regression can be used to find the Odijk that satisfies

ıijk < ırst ) Odijk � Odrst for all i < j < k; r < s < t; (5)

where ıijk represents one-mode three-way proximity data. The badness-of-fit mea-
sure of dijk to ıijk is called the stress S and is obtained from the stress formula,
defined below (Kruskal and Carroll 1969):

S D
vuut

nX

i<j

.dij � Odij/2

. nX

i<j

.dij � Ndij/2: (6)

The triadic distance dijk satisfies the following five properties:

dijk � 0; (7)

dijk D dikj D � � � D d.every permutation of i;j;k/; (8)

dijk D 0 only if i D j D k; (9)

diji D dijj; and (10)

2dijk � dikl C djkl C dijl: (11)

Thus, the three-way distances djjk must first satisfy non-negativity and three-way
symmetry for all i, j, and k. The third condition requires that three-way self-
dissimilarities should not differ from zero, and the fourth specifies that, when one
object is identical to one of the others, the lack of resemblance between the two non-
identical objects should remain invariant regardless of which two are identical. By
symmetry, this condition must also be satisfied for diij D djji, diji D djij, dijj D djji,
and so on. The last condition plays a role similar to that of the triangle inequality
in the context of two-way distances. The details were formulated by Heiser and
BennaniI (1997). In summary, Eq. (4) will be called a three-way distance if and
only if Eq. (4) satisfies (7)–(11).

Triadic distance models extend one-mode two-way non-metric MDS and allow
visualization of relationships among objects as a way to better understand them.
However, Gower and De Rooij (2003) stated that the results obtained from triadic
distance models were likely to resemble those obtained from a one-mode two-way
MDS. If the results of the triadic distance model are almost consistent with those
of one-mode two-way MDS, the reasonable choice for the analysis would be the
one-mode two-way MDS because it has simpler restrictions than a triadic distance
model. However, no technique for judging whether triadic distance model analysis
or one-mode two-way MDS analysis is more appropriate has been available. Here,
we propose a technique that examines the appropriateness of these analyses using a
log-linear model.
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2 The Technique

We discuss the relationships between the triadic distances and a three-way contin-
gency table. A three-way contingency table is a cross-classification of observations
by the levels of three categorical variables. Thus, one-mode three-way proximity
data are a special case in which the three categorical variables are the same
in a three-way contingency table. A two-way contingency table is also a cross-
classification of observations by the levels of two categorical variables, and
one-mode two-way proximity data are a special case in which the two categorical
variables in a two-way contingency table are the same. One-mode three-way
proximity data represent the frequencies of co-occurrences of three objects of
the first, second, and third ways when the one-mode three-way proximity data
are calculated from objects � sources binary data that display co-occurrences
among triadic objects, where the value “1” indicates the presence, and the value
“0” indicates the absence of an object. If the one-mode two-way proximity data
are calculated from the same binary data, the one-mode two-way proximity data
represents the frequencies of co-occurrences between two objects of the first and
second ways without objects of the third way. In this context, we regard the one-
mode two-way proximity data as the marginal data collapsed by the objects of the
third way in the one-mode three-way proximity data.

A three-way I � J � K cross-classification of response variables F, S, T has
several potential types of interdependence. The interdependence of the variables
can be estimated by analyzing the differences given by

ijk D �˛F
i ˛S

j ˛T
k �FS

ij �ST
jk �FT

ki �FST
ijk (12)

in a log-linear model. Here, ijk represents the elements of the three-way contin-
gency tables, � is a general constant, ˛ denotes the main effects of the variables, and
� is the association between variables. Additionally, the log relationship is given by:

log.ijk/ D � C �F
i C �S

j C �T
k C �FS

ij C �ST
jk C �FT

ik C �FST
ijk ; (13)

where log.�/ D �, log.˛F
i / D �F

i , . . . . If no restrictions are imposed on the
parameters, Eq. (13) specifies a saturated model. A three-way association model
(the saturated model) has a three-factor association and is denoted by (FST). De
Rooij (2002) rewrote Eq. (13) as

log.ijk/ D �I
ijk C �II

ijk; (14)

where �I
ijk D � C �F

i C �S
j C �T

k are the terms that will not be transformed to
distances but will be kept in the model, and �II

ijk represents the two-way and three-
way association terms that will be transformed to distances. This can be modeled
by a monotonic decreasing function of the multiplicative association parameters.
The parameters for both the log-linear model and the multiplicative model are not
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always easily interpretable. Thus, transformation of the parameters into a distance
model may enhance interpretability. De Rooij (2002) used a monotone decreasing
function of the multiplicative association parameters. A family of transformations
is given by the exponential �p similarity function as follows:

� D exp.�dp/: (15)

For p � 1, d is a distance satisfying the metric axioms. A small distance corresponds
to a large association, and thus to a large number than can be expected based on
the marginal parameters (i.e., the set �I

ijk). A large distance corresponds to a low
association, and thus to a smaller number than can be expected from the marginal
parameters. We do not use subscripts here because we will apply this transformation
to both two-and three-way association parameters. Taking the natural logarithm
on both sides, the transformation can be written as � D dp. De Rooij (2002)
generalized that observation by including the exponential �p similarity function
and other Minkowski metrics as

� �II
ijk D dp

ijk D dp
ij C dp

jk C dp
ik: (16)

De Rooij (2002) transformed all of the two-way and three-way association terms of
the model shown in Eq. (13) to a triadic distance model, where �II

ijk D �FS
ij C �ST

jk C
�TF

ki C �FST
ijk . The model then becomes

log.ijk/ D �I
ijk � dp

ijk D �I
ijk � dp

ij C dp
jk C dp

ik: (17)

De Rooij (2002) explained the three two-way associations as triadic distances. They
were not modeling any three-way association with the triadic distance models, but
only two-way marginal association. Triadic distance models are useful, but they do
not model three-way associations. Triadic distance models represent a homogeneous
association model.

However, Gower and De Rooij (2003) stated that the results obtained from triadic
distance models were likely to resemble those obtained from a one-mode two-way
MDS. De Rooij (2002) explained the three two-way associations as triadic distances
and assumed a homogeneous association. If the results of the triadic distance
model are almost consistent with those of one-mode two-way MDS, it would not
be appropriate to represent three two-way associations as triadic distances, and
the assumption of a homogeneous association is not appropriate in the three-way
contingency table. We should examine other association models that exclude one
or more two-way associations or set some associations equal to specified values.
The independence and association patterns of the three-way contingency table
are equivalent to that of a log-linear model. Here, we use a log-linear model to
examine the appropriateness of triadic distance model analysis. The result is that
the relationships among the objects may or may not be interdependent. We decide
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whether the three-way contingency table should or should not be analyzed by a
triadic distance model based on the result.

If no restrictions are imposed on the parameters, Eq. (13) specifies a saturated
model. The models of interest are constructed to restrict sets of parameters.
Accordingly, we compare the saturated model with the restricted models. The
restrictions are generally designed to (a) exclude three-way associations and one or
more two-way associations and (b) set some associations equal to specified values.
A complete independence model, a joint independence model, and a conditional
independence model have three, two, and one pair of conditionally independent
variables, respectively. In the latter two models, the doubly subscripted terms (such
as �FS

ij ) pertain to conditionally dependent variables. A homogeneous association
model permits all three pairs to be conditionally dependent. If a homogeneous
association is appropriate, then one-mode three-way proximity data should be
analyzed by a triadic distance model. Effects may change after collapsing over any
variable when the model contains all two-factor effects (Agresti 2002). The triadic
distance model is preferable to the one-mode two-way MDS. If a homogeneous
association is not appropriate, we need a careful examination of the collapsibility
of the one-mode three-way proximity data. According to the selected association
model, we have to examine which dyadic distances should be excluded in Eq. (17).

3 An Application

We applied the proposed technique to Japanese beer brand-image survey data. A
brand-image survey of college students who had taken a course was conducted to
assess consumer impressions of various brands on the Japanese beer market. The
students were asked to select similar brands from a list of ten brands of beer sold
in Japan (Table 1) after watching TV commercials for each of the beers. Ten brands
from four companies were used (Table 1). Brands 1, 2, 3, and 4 are “ordinary”

Table 1 The ten beer brands from the four companies

Taste Malt Price History

Brand 1 (company A) Mild Not-all malt Middle price Traditional brand

Brand 2 (company A) Rich All malt Middle price New brand

Brand 3 (company B) Mild Not-all malt Middle price New brand

Brand 4 (company C) Mild Not-all malt Middle price Traditional brand

Brand 5 (company D) Rich All and pure malt Premium price New brands

Brand 6 (company C) Rich All and pure malt Premium price New brands (resale)

Brand 7 (company A) Mild Other than malt Low price New brand

Brand 8 (company B) Mild Other than malt Low price New brand

Brand 9 (company D) Mild Other than malt Low price New brand

Brand 10 (company C) Mild Other than malt Low price New brand
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malt beers brewed in Japan. Brands 5 and 6 are “premium” beers made from rich,
pure malt, using carefully selected ingredients and original brewing methods. The
premium beers are more expensive than the others because of their higher-quality
ingredients. Brands 7, 8, 9, and 10 constitute a third beer category. The third-
category beer is a new kind of alcoholic beverage. It tastes like beer, but is actually
brewed from ingredients other than malt. The third-category beer uses ingredients
such as corn, soybeans, and peas instead of malt to reduce the cost. Overall, 79
questionnaires were returned and were used as the sample. Based on these results,
we selected binary data that displayed the co-occurrence of triplets of beer brands
chosen from the ten brands because of similar brand images. One-mode three-and
two-way similarity data were calculated from these binary data. The 10 � 10 � 10

one-mode three-way symmetric similarity data indicated the frequencies with which
each triplet of brands was chosen based on perceived similarity. The 10 � 10 one-
mode two-way symmetric similarity data indicated the frequencies with which each
pair of brands was chosen based on perceived similarity and was not dependent on
third objects, so they were considered the collapsed marginal data of the 10�10�10

one-mode three-way symmetric similarity data.
The one-mode three-way proximity data were analyzed via the log-linear model.

We start with the saturated model. The models of interest are constructed to restrict
sets of parameters. The restrictions are designed to exclude three-way associations
and one or more two-way associations and to set some associations equal to
specified values. We compared the saturated model with these restricted models.
The results obtained from the log-linear model (Table 2) show that the three objects
i, j, and k were not independent. (In Table 2, F denotes the first way, S denotes
the second way, and T denotes the third way.) Thus, the triadic distance model is
preferable to the one-mode two-way MDS.

To check the validity of the proposed technique, the results obtained from triadic
distance model and one-mode two-way MDS were compared. First, the one-mode
three-way similarity data were analyzed via a triadic distance model, based on a
generalized Euclidian distance model (De Rooij and Gower 2003). Next, the one-
mode two-way similarity data were analyzed via one-mode two-way MDS (Kruskal

Table 2 Results of the log-linear model

Likelihood ratio Degrees of freedom P-value AIC

Complete independence (F, S, T) 4463:6 972 0:000 4519:6

Joint independence (T, FS) 2862:1 891 0:000 3080:1

Joint independence (F, ST) 2862:1 891 0:000 3080:1

Joint independence (S, FT) 2862:1 891 0:000 3080:1

Conditional independence (FS, ST) 1260:5 810 0:000 1640:5

Conditional independence (FS, FT) 1260:5 810 0:000 1640:5

Conditional independence (ST, FT) 1260:5 810 0:000 1640:5

Homogeneous association (FS, ST, FT) 696:1 729 0:805 1238:1

Three-way association (FST) 0:0 1 1:000 2000:0
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1964a,b). These analyses were performed using maximum dimensionalities of eight
through four and a minimum dimensionality of one. The resulting minimized stress
values for the one-mode three-way similarity data in five- to one-dimensional spaces
were 0.303, 0.303, 0.325, 0.354, and 0.467, respectively, and the corresponding
values for the one-mode two-way similarity data in five- to one-dimensional spaces
were 0.000, 0.000, 0.031, 0.144, and 0.280, respectively. We were not able to make
a simple comparison between the stress values obtained from the triadic distance
model and the one-mode two-way MDS. Thus, the stress values of the one-mode
two-way model were calculated using Eq. (6). The converted stress values in five-
through one-dimensional spaces from the one-mode two-way MDS were 0.352,
0.355, 0.358, 0.438, and 0.498, respectively. The triadic distance model provided a
better fit for the relationships among objects than did the one-mode two-way MDS.

Next, we checked the differences visually between the results of triadic distance
model and one-mode two-way MDS. As an example, we compared the results for
two dimensions and three dimensions. We were unable to make a simple comparison
between the results of the triadic distance model and the one-mode two-way MDS.
To compare the results of the triadic distance model MDS with those of the one-
mode two-way analysis, the configuration of the one-mode two-way analysis was
matched to the configuration of the triadic distance model using Procrustes analysis.
Figure 1 shows the two-dimensional configuration of the results for two dimensions
and jointly represents the configurations obtained from the triadic distance model
and the one-mode two-way MDS. This configuration represents the similarities
among the ten brands. The configuration of the triadic distance model reveals
the triadic relationships among members of each set of three brands that shared
similar impressions. The configuration of the one-mode two-way MDS reveals
the dyadic relationships between members of each set of two brands that shared
similar impressions. The triadic distance model configuration had almost the same
tendencies as the one-mode two-way MDS.

The three-dimensional configuration of the results for three dimensions is
presented separately. It is divided into configurations for dimensions 1 and 2
and dimensions 1 and 3. Figure 2a shows a two-dimensional configuration for
dimensions 1 and 2 from the results for three dimensions. As in the two-dimensional
configuration of the results for two dimensions, there is little difference between
the triadic distance model and one-mode two-way MDS configurations. The two
configurations show almost the same tendencies in terms of the similarities among
the ten brands. Figure 2b shows the two-dimensional configuration for dimensions
1 and 3 from the results for three dimensions. There are some differences between
the configurations of the triadic distance model and the one-mode two-way MDS
in the analysis of three dimensions. In vertical dimension 3 of the configuration of
the triadic distance model, brands generating an impression of high quality, such
as Brands 3, 4, 6, 7, and 8, have a negative value, whereas those generating an
impression of good taste (Brands 1, 2, 5, 9, and 10) have a positive value. Vertical
dimension 3 of the configuration of the triadic distance model represents brands
considered to be of high quality versus brands considered to taste good. However,
the tendency of vertical dimension 3 for one-mode two-way MDS is less clear than
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that for the triadic distance model. The positive and negative coordinate values of
Brands 1 and 6 are reversed in vertical dimension 3 (see Fig. 2b). The configuration
of the one-mode three-way MDS contains information that cannot be expressed
by one-mode two-way MDS. For two dimensions (low dimensionality), the triadic
relationships found using the triadic distance model were almost consistent with
the dyadic relationships obtained from the results of the one-mode two-way MDS.
However, the triadic relationships differed from the dyadic relationships for three
dimensions (higher dimensionality). Triadic relationships in one-mode three-way
similarity data cannot be explained in terms of dyadic relationships based on one-
mode two-way MDS. They can only be represented by a triadic distance model.
The visual comparisons of the results obtained from the triadic distance model
and the one-mode two-way MDS are consistent with the results of the log-linear
model.
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Fig. 1 Two-dimensional configuration obtained from the two-dimensional solution and joint
representation of the configuration obtained from triadic distance model and one-mode two-way
MDS
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Fig. 2 Two-dimensional view of the three-dimensional configuration. The left-hand figure (a)
defines a plane using dimensions 1 and 2 and presents a joint representation of the configurations
obtained from triadic distance model and one-mode two-way MDS. The right-hand figure (b)
defines a plane using dimensions 1 and 3 and presents a joint representation of the configurations
obtained from triadic distance model and one-mode two-way MDS

4 Conclusions

We propose a technique for examining the appropriateness of a triadic distance
model using a log-linear model. The proposed technique seems to have provided
accurate results in the present analysis and can be used successfully to evaluate the
need for a triadic distance model. For future study, we are interested in establishing
the validity of the proposed technique for various data and would like to consider
the possibility of combining the log-linear and distance models in a single model.
Application of the log-linear model would be influenced by sample size. However,
we have not discussed the relationship between the need for a triadic distance model
and the influence of the sample size in the present study. In future research, we
would like to investigate the influence of sample size in more detail.
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Assessing the Reliability of a Multi-Class
Classifier

Luca Frigau, Claudio Conversano, and Francesco Mola

Abstract Multi-class learning requires a classifier to discriminate among a large set
of L classes in order to define a classification rule able to identify the correct class
for new observations. The resulting classification rule could not always be robust,
particularly when imbalanced classes are observed or the data size is not large.

In this paper a new approach is presented aimed at evaluating the reliability of
a classification rule. It uses a standard classifier but it evaluates the reliability of
the obtained classification rule by re-training the classifier on resampled versions of
the original data. User-defined misclassification costs are assigned to the obtained
confusion matrices and then used as inputs in a Beta regression model which
provides a cost-sensitive weighted classification index. The latter is used jointly
with another index measuring dissimilarity in distribution between observed classes
and predicted ones. Both indices are defined in Œ0; 1	 so that their values can be
graphically represented in a Œ0; 1	2 space. The visual inspection of the points for
each classifier allows us to evaluate its reliability on the basis of the relationship
between the values of both indices obtained on the original data and on resampled
versions of it.

1 Introduction

In a classification problem it is common practice testing a wide variety of learning
algorithms by varying threshold values and by using different tuning parameters.
In that way different classifiers are obtained which can be compared in order
to evaluate their predictive ability, which is usually evaluated starting from the
confusion matrix. This is a contingency table in which each column represents the
observations in a predicted class, while each row represents those in an actual class.
Notationally, given a classification problem on L classes observed on n cases, let
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Q be a confusion matrix resulting from a classifier k. In this framework rows of Q
refer to the true classes, and columns of Q to the predicted ones. By checking rows,
the elements q`j indicate how many cases have been classified in each predicted
class Ò

j (j D 1; : : : ; L). By checking columns, the elements qi` indicate how many
cases of each predicted class have been classified as `i (i D 1; : : : ; L). Starting
from the confusion matrix Q several measures and approaches have been proposed
to evaluate classifier performance (accuracy, sensitivity, specificity, etc.). Likewise,
the confusion entropy index (Wei et al. 2010), the global performance index (Freitas
et al. 2007), the entropy of a confusion matrix (Van Son 1995), the transmitted
information of the classifier (Abramson 1963), and the relative classifier information
(Sindhwani et al. 2001) are all measures that have been defined in order to compare
classifiers performance on the basis of the misclassification cells obtained from
confusion matrices. Among all these measures, accuracy is the most known. It refers
to the proportion of true results (both true positives and true negatives) among the
total number of cases examined. This measure is very plain, overlooking a lot of
information about the costs of different elements of misclassification (Hand and
Till 2001).

The goal of this paper is to propose a new approach that enables us to compare
performances of several classifiers in the framework of multi-class learning (i.e.,
when a new observation has to be classified into one, and only one, of L non-
overlapping classes). The output is a bivariate classifier performance index obtained
from two different measures. The first one refers to a cost-sensitive weighted
classification accuracy index. The second one refers to an index measuring the
similarity in distribution between the n observations which have been classified
in one of the L classes by a classifier and the original distribution of the n cases
among the L classes. Both indices are defined in Œ0; 1	 2 R, so that a comparison of
different classifier performance can be represented in a Œ0; 1	2 space. Additionally,
introducing a measure which is not one-dimensional allows us to study the reliability
of each classifier by re-training the classifier on resampled versions of the original
data and computing the convex hull of the area obtained in the 2 dimensions in
which values of the bivariate classifier performance index are projected.

The rest of the paper is organized as follows. Section 2 presents the main features
of the proposed bivariate classifier performance index and describes the three steps
characterizing it, while Sect. 3 concentrates on reliability. Section 4 presents the
results of the performance of the proposed approach on real data and Sect. 5 ends
the paper with some concluding remarks.

2 The Bivariate Classifier Performance Index

The bivariate classifier performance index derives from a three steps procedure to
be carried out for each candidate classifier. They can be briefly identified with: (1)
the model-based measurement of classification accuracy; (2) the measurement of
the similarity in distribution between observed classes and predicted ones; (3) the
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visualization of the results of the previous steps in order to assess global classifier
performance.

2.1 Model-Based Measurement of Classification Accuracy

In this section, we present a model-based and cost-sensitive index for measuring
accuracy of a multi-class classifier. The basic idea is to use the cells of the observed
confusion matrix, i.e., the confusion matrix obtained from training a classifier on
the original data, within a regression model in order to derive the estimated cost-
sensitive classification accuracy. The regression model is firstly estimated using
data obtained from simulated confusion matrices which present the same marginal
frequencies of the observed confusion matrix but they refer to situations in which a
perfect or random classification is observed. Next, cells of the observed confusion
matrix are used together with the estimated regression parameters to derive the
value of the index. Let  2 Œ0; 1	 be a misclassification level, so that 1 �  is
the classification accuracy level. If K different classifiers are considered, K values
of  can be observed and those values, defined in Œ0; 1	, can be modeled on the basis
of other information related to each classifier. The model specified for  allows us to
assess classifier performance through a model-based classification accuracy index.

In a regression modeling framework characterized by a continuous response
variable Y defined in Œ0; 1	, data are usually transformed in order to map the
domain of Y in the real line and then a standard linear regression analysis
is applied. This approach has some shortcomings (see Cribari-Neto and Zeileis
2010), such as heteroskedasticity and difficulties in the interpretation of estimated
parameters, which are expressed in terms of the transformed variable instead of
the original one. Ferrari and Cribari-Neto (2004) proposed a regression model for
continuous variables that assumes values in Œ0; 1	, called Beta Regression Model.
The assumption of this model is that the response variable is beta-distributed,
Y � Beta.a; b/ with a; b > 0. The authors proposed a particular parameterization of
the beta density in order to obtain a regression structure for the mean of the response
along with a precision parameter. They showed that, through setting � D a=.a C b/

and � D a C b, it is possible to express expectation and variance of Y as E.Y/ D �

and VAR.Y/ D �.1 � �/=.1 C �/, respectively. The parameter � conveys a rate of
precision because for larger � VAR.Y/ decreases.

The Beta regression model introduced in Ferrari and Cribari-Neto (2004) is
applied in the framework of the present study in order to estimate  and, indirectly,
1 �  . Specifically, the goal is to estimate a Beta regression model using a large
number of simulated confusion matrices weighted by some proximity measures
and misclassification costs, in order to obtain estimated regression parameters and
associated  values. Weighting is very important in this framework, because it
conveys essential information to the model about the different importance attributed
to possible different misclassification levels. Once the model is estimated, it is
applied to the confusion matrix resulting from each classifier in order to estimate
a cost-sensitive (model-based) weighted classification index. For a classifier k (k D
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1; : : : ; K) and assuming k � Beta.�k; �/, the Beta regression model is defined as

g.�k/ D
LX

iD1

LX

jD1

ˇijq
k
ijd.`i; `j/ D �k (1)

where d.`i; `j/ is a cost-weighted proximity measure as defined in Eq. (2), qk
ij is

the frequency of the cell of the i-th row and j-th column of the confusion matrix
resulting from the classifier k, and ˇij is the model coefficient that expresses the
contribution of qk

ij to global misclassification of classifier k. Finally, g.�/ is a link
function. In Eq. (1) the probit distribution is chosen for specifying the link function
g.�/, so that the expectation of k can be defined as �k D g�1.�k/ D ˚.�k/, where
˚.�/ is the cumulative distribution function of a standard normal distribution. As
already mentioned, for estimating the ˇij in Eq. (1) a large number B of confusion
matrices are simulated. A proportion ˛ with  D 0 and non-zero elements in the
diagonal only, and the other proportion 1�˛ with random assigned elements in order
to simulate random classifications, so that  D 1. A random classified confusion
matrix is quite simple to obtain. All confusion matrices stemmed by classifiers have
the same marginal row frequencies. In fact, since they come from the same dataset
the number of true classes is fixed for all matrices. Hence, it is sufficient to simulate
matrices with uniformly distributed rows by setting their marginal row frequencies
equal to those of the confusion matrices resulting from the classifiers. Next step
consists in excluding diagonal cells from simulated matrices, leaving just cells
that convey misclassification information. Additionally, the cells of the simulated
confusion matrices are weighted by some proximity measures, which are defined,
for all entries qij (with i ¤ j) corresponding to off-diagonal elements of confusion
matrix, as

d.`i; `j/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

`L � `1

j`i � `jjwij if x is numerical

L � 1

ji � jjwij if x is ordinal (2)

wij if x is nominal

where wij is a weight, fixed by the researcher, that specifies the importance in terms
of misclassification cost attributed to the proximity level between `i and `j. As
such, weighting is motivated by the idea of adding information deriving from expert
knowledge. Once the simulated matrices are weighted, the model could be fitted
through them in order to derive the estimated value O�k of k for the k-th classifier as

O�k D ˚

0

@
LX

iD1

LX

jD1

Ǒ
ijq

k
ijd
�
`i; `j

�
1

A (3)

O�k is the model-based classification accuracy index used in the rest of the paper.
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2.2 Similarity in Distribution Index

One of the main problem in the framework of classifier performance measurement
is the choice of the best classifier once that two (or more) classifiers present
the same value of the classification accuracy 1 �  but the latter derives from
different confusion matrices. To define a classifier performance measure that also
considers information about the difference in distribution among classifier confusion
matrices, a normalized similarity in distribution index is considered. It derives from
a dissimilarity index introduced by Gini and used, among others, in Rachev (1985).
In general, for a L-class classification problem D, the Gini index of dissimilarity in
distribution, is defined as

D D
vuut 1

L2 � 1

L2�1X

hD1

jFv1

h � Fv2

h j2 (4)

where Fv1

h and Fv2

h are the cumulative frequencies in h of the vectors v1 and v2,
whereas

p
L2 � 1 is equal to the maximum value of this index, and it is used to

normalize it. D is defined in Œ0; 1	 and is susceptible to change in values as long as
one or more observations are assigned to the class j instead of the true class i (i ¤ j
and i; j 2 f1; : : : ; Lg).

In the framework of the bivariate classifier performance index described so far,
the dissimilarity in distribution index introduced in Eq. (4) is reformulated in terms
of a similarity in distribution index. To this aim, let us consider two confusion
matrices, Qk1 and Qk2 , corresponding to classifiers k1 and k2, respectively. They
refer to a situation in which the value of classification accuracy is the same for
both classifiers, even if the two confusion matrices are clearly different. Measuring
similarity between Qk1 and Qk2 requires the comparison of each element of the
two matrices with those of a common reference matrix Qmax. The latter is the
matrix which refers to the situation of maximum accuracy so that all predicted
values correspond to observed ones. To make such a comparison, the matrices Qmax,
Qk1 and Qk2 are transformed into vectors vmax, vk1 , and vk2 by writing the matrix
elements in row-major order. To compute the similarity in distribution for Qk1 and
Qk2 , it is necessary to compare the distribution of vk1 and vk2 with that of vmax.
Considering the difference 1 � D, where D has been defined in Eq. (4), we define a
similarity in distribution index for Qk1 and Qk2 whose values are in Œ0; 1	 as

SQki
D 1 �

sPL2�1
hD1 jFvki

h � Fvmax
h j2

L2 � 1
; 8i D 1; 2 (5)
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2.3 Visualization

Once both values of the cost-sensitive (model-based) weighted classification index
introduced in Sect. 2.1 and the normalized similarity in distribution index introduced
in Sect. 2.2 are available for each classifier, their values can be projected in a
Œ0; 1	2 space in order to evaluate their performance from the perspective of both
classification accuracy and similarity in distribution. The possibility of analyzing
classifier performance in a two-dimensional space is very useful since it facilitates
the comparison among different classifiers and allows the user to understand which
of the two considered items (weighted classification and similarity in distribution)
mostly influences classifier performance. Of course, the two-dimensional represen-
tation is particularly helpful when the number of considered classifiers is very large.

3 Assessing Reliability

Besides measuring the performance of a classifier on the basis of classification
accuracy and similarity in distribution, it is very important to define its reliability.
The cost-sensitive (model-based) weighted classification index can be used to
accomplish this goal also. In fact, the measurement of the performance of a classifier
can be used as a tool in order to define a measure of its reliability. To this purpose,
the basic idea is that applying the same classifier to slightly modified versions of the
original data, we expect that its results are rather similar, so that the closer they are
to each other the more reliable the classifier can be considered. Thus, the proximity
of the results obtained from the same classifier by resampling and measured by
the bivariate classifier performance index of Sect. 2 is considered as a measure
of classifier performance reliability. Formally, if we have p different measures of
classification accuracy of a classifier k (including O�k and SQki

) we can measure such
a proximity as the convex hull of a set of points P in p dimensions. The convex hull
is computed by measuring the intersection of all convex sets containing P . For N
points p1; : : : ; pN , the convex hull C is then given by:

C D
8
<

:

NX

jD1

�jpj W �j � 0 8j and
NX

jD1

�j D 1

9
=

; (6)

In the case of a bivariate index, like the one introduced in Sects. 2.1 and 2.2,
this proximity is measured by the convex hull of a set of points defined in the
Euclidean space obtained with respect to the two dimensions of the bivariate
classifier performance index. In order to obtain this measure of reliability three steps
are necessary:

1. Re-train the classifier B times on resampled versions of the original data;
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2. Use the resulting B confusion matrices as inputs for the two indices measuring
cost-weighted accuracy and similarity in distribution;

3. Measure the classifier reliability as the area of the convex hull C of the set of
points P defined by the values of two indices obtained over the B runs.

In our computations, the area of C is measured with the function convhulln
implemented in the R package geometry (Habel et al. 2014).

4 Real Data Example: Classification of Botany Seeds

During the last decades, one of the most important target for botanists is to call a
halt to the loss of plant diversity. To achieve that, two strategies are possible: In situ
and ex situ plant conservation. In situ conservation consists in protecting threatened
plant species in their natural habitat, whereas ex situ conservation consists in
protecting them outside their natural habitat. Although the in situ conservation
strategy is considered the best one for preserving plant diversity, its measures
are more expensive than ex situ ones. For this reason, in the last two decades,
the latter conservation approach has been used more often. Among all ex situ
methods, the most effective is storage of plant seeds in seed banks. It allows us
to save large amounts of genetic material in a small space and with minimum
risk of genetic damage. Therefore, several seed banks and other structures have
been established. Due to the increasing number of seeds gathered, more attention
has been focused on classification of accessions in entry. Manual classification
of seeds is still a common practice. It is labor-intensive, subjective, and suffers
from inconsistencies and errors. It is also a time-consuming task even for highly
specialized botanists, and the increasing number of seeds to classify is making the
time spent for classification unbearable. For those reasons, application of statistical
classifiers for seeds classification is ever more useful and common. Hence botanists
require a tool that helps them to evaluate performance and reliability of classifiers,
in order to be able to choose among them.

In this study a dataset containing seven variables and n D 5712 cases is
considered. The response variable is plant family and has five classes (Cyperaceae,
Dipsacaceae, Fabaceae, Iridaceae, Lamiaceae). The other six variables are used
as predictors and consist in measurements of colorimetric characteristics of seeds.
These are the mean of hue, the saturation, the luminance as well as the red channel,
green channel, and blue channel intensity.

To measure classification accuracy and reliability the original data were ran-
domly split into two subsets: a proportion of 0:5 � n defines the training set and
the remaining observations the test set. The experiment involves three different
classifiers: CART-like recursive partitioning (CART), Random Forests (RF), and
Support Vector Machines (SVM). The choice of these classifiers is based on the
consideration that CART is notably known as unstable in terms of reliability of
the classification outcome whereas the other two methods are presumably more



214 L. Frigau et al.

reliable and able to provide more accurate classification. The bivariate classification
accuracy index and the classifier reliability measured and visualized through the
convex hull are used to verify that the approach presented in Sects. 2 and 3 provides
new insights for the analyzed dataset.

4.1 Results

When classifying botany seeds the goal was to measure the performance and
reliability of three classifiers using the approach discussed above. It is worth to
remember that the cost-sensitive (model-based) weighted classification index is
made up of two measures: (1) the model-based measurement of classification
accuracy and (2) the measurement of the similarity in distribution between observed
classes and predicted ones.

To obtain the cost-sensitive weighted classification accuracy index as defined
in Eq. (3) it is necessary to define a proximity measure between each pair of
classes of the response variable. To this purpose, observations of the training
set are standardized and the proximity is measured as the normalized Euclidean
distance between the centroids related to pairs of response classes. Furthermore,
for estimating the coefficients of the Beta regression model introduced in Eq. (1),
B D 1000 confusion matrices were simulated, with a proportion ˛ D 0:5 of cases
of perfect classification . D 0/ and the same proportion of cases of random
classification . D 1/. The classifier (CART, SVM , or RF) was trained on the
training set observations and predicted classes for the test set observations were
used to obtain the confusion matrices, which are the input of the Beta regression

model estimated according to the specification introduced in Eq. (1). As for
the measurement of the similarity in distribution between observed classes and
predicted ones, the Eq. (4) was applied to the three confusion matrices obtained by
predicting the response classes of the test set observations for the classifiers CART,
RF, and SVM , respectively.

Results are summarized in Table 1, where the two above-mentioned measures are
compared with other measures which are frequently used to evaluate the accuracy
of a classifier, namely: the proportion of data points in the main diagonal of the
confusion matrix; the Rand index and the confusion entropy index (Wei et al. 2010).
In order to assess reliability of the three classifiers we used the approach explained
in Sect. 3. Firstly, we re-trained each classifier on 100 resampled versions of the
training set. Next, we used the 100 confusion matrices obtained from each sample
as inputs for the two considered accuracy indexes. Finally, we computed the convex
hull C of the area defined by the values of two indexes obtained over the 100 runs
as a measure of reliability.
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Table 1 Accuracy and reliability results for the Random Forest (RF), Support Vector Machine
(SVM), and CART-like recursive partitioning classifiers

Classifier Diag Rand Cen .1� Ok/ OSQ C

RF 0:687 0:697 0:403 0:833 0:952 0.193

.0:667/ .0:686/ .0:423/ .0:778/ .0:950/

SVM 0:677 0:654 0:346 0:810 0:948 0.155

.0:674/ .0:653/ .0:350/ .0:802/ .0:947/

CART 0:623 0:618 0:408 0:602 0:943 0.409

.0:616/ .0:618/ .0:411/ .0:588/ .0:940/

Notes: diag is the proportion of data points in the main diagonal of the confusion matrix; rand is
the Rand index; cen is the confusion entropy index; .1 � Ok/ is the accuracy measure defined in
Eq. (3); OSQ is the similarity in distribution as defined in Eq. (4); C is the reliability of a classifier as
defined in Eq. (6). Each cell reports the value of the index obtained for test set observations and,
in parentheses, the same value obtained as an average from 100 resampled versions of the original
data
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Fig. 1 Accuracy and reliability of the Random Forests, Support Vector Machines, and CART-
like recursive partitioning classifiers. The triangles correspond to the cost-sensitive (model-based)
weighted classification index and the similarity in distribution index obtained from the original
data, whereas the stars are values of the same indices obtained on resampled versions of the original
data. Reliability is measured through the convex hull of the area defined by each set of points

As it is possible to note from both Table 1 and Fig. 1, Random Forest is the best
classifier in this example with respect to accuracy. In fact, it has both the highest
classification accuracy (0.833) and the highest similarity in distribution (0.952). In
contrast, the most reliable classifier is SVM as it provides the smallest convex hull
area (C D 0:155). As expected, CART has to be considered as the worst one for
both accuracy and reliability.
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5 Concluding Remarks

Cost-sensitive classification is one of the mainstream research topics in data mining
and machine learning that induces models from data with an unbalanced class
distribution and impacts by quantifying and tackling the unbalance. In this paper
a bivariate index based on a model-based accuracy measure and a similarity
in distribution measure has been introduced. In addition, classifier performance
reliability is also considered by computing the convex hull of the set of points in
the two-dimensional space defined by the values of the above-mentioned bivariate
index computed on resampled versions of the original data. Results obtained for
a real data classification problem involving botanic seeds provide evidence about
the effectiveness of the proposed approach, since they confirm the expectation
that less accurate and less reliable classifiers (CART-like recursive partitioning)
do not outperform more robust and accurate ones (SVM and Random Forest).
Future research efforts will be directed to the identification and computation of
other possible dimensions of accuracy and reliability (like those mentioned in
Sect. 1). In addition, following the approach proposed in Müssell et al. (2012), the
proposed measures will be framed within the context of Pareto dominance through
the visualization of the relative Pareto fronts. Next, our method for measuring cost-
sensitive classification accuracy and reliability will be tested on several datasets,
with particular attention to multi-class learning problems characterized by an
unbalanced distribution of the response classes and/or a reduced data size.
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Reviewing Graphical Modelling of Multivariate
Temporal Processes

Matthias Eckardt

Abstract Graphical models provide a suitable approach of dealing with uncertainty
and complexity by using conditional independence statements and factorizations of
joint densities. Static undirected as well as directed graphical models have been
applied frequently to pattern analysis, decision modelling, machine learning or
image filtering. Several temporal extensions have been published including dynamic
Bayesian networks or temporal Markov random fields. Although, graphical models
are most commonly used within computer science there has been a growing interest
in adjacent disciplines. Recently, a few temporal extensions have been applied to
multivariate time series data and event histories.

1 Introduction

Statistical models for the analysis of highly complex data and processes have gained
strong attraction within the last decade. Graphical models have been proven to be a
sufficient approach of dealing with high dimensionality and uncertainty. A reduction
of complexity is achieved by using factorizations of joint densities. Plotting the
graph offers a simple and intuitive visualization of the underlying dependence
structure. Besides, several statistical models can be seen as special cases of a general
graphical model formalism (e.g. mixture models, factor analysis).

Most research on graphical models have focussed on cross-sectional data,
henceforth referred to as static graphical models. As most prominent cases, this class
includes directed acyclic graphs (also known as Bayesian networks) introduced by
Pearl (1988) as well as undirected graphical models, which are also labelled as
conditional independence graphs or Markov random fields (cf. Lauritzen 1996).
Applications of static models can be found in different scientific fields including
machine learning, decision modelling, artificial intelligence or image analysis.
Markov random fields have played a prominent role in spatial econometrics and
spatial statistics with regard to lattice data. Currently, a strong increase of interest
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in resp. usage of (social) network analysis emerged in economics as well as risk
assessment or natural sciences. A profound treatment of static graphical models
is presented in Lauritzen (1996), Cowell et al. (1999), Edwards (2000), Cox and
Wermuth (1996), Pearl (1988), Spirtes (2000), Whittacker (2008) and Koller and
Friedman (2010).

Recently, several extensions have been introduced aiming to model temporal
dynamics and changing dependence structures including time series data as well
as event histories. The objective of this paper is to review these extensions.

2 Graph Theoretic Preliminaries

Let G D .V ;E / denote a graph with V D fv1; : : : ; vkg as finite set of vertices
and E 
 V � V as set of edges—joining the vertices where E .G / \ V .G / D ;.
Two vertices vi; vj are called adjacent if and only if .vi; vj/ 2 E .G /. Otherwise,
vi; vj are non-adjacent. If an edge ei consists of a pair of identical nodes .vi; vi/ we
refer to ei as a loop of G . Furthermore, if a distinct pair .vi; vj/ is joined by more
than one edge, we label this multiple edges or parallel edges. In order to emphasize
graphs containing multiple edges we term any such graph multigraph. Similarly, a
graph is simple if it is not a multigraph. An undirected or unoriented edge exists if
the pairs .vi; vj/ and .vj; vi/ are both in the edge set E .G / given vi ¤ vj. We use
vj � vi to indicate undirected edges. To specify adjacency in case of undirected
edges we define the neighbourhood as ne

�
vj
� D fvi W vj � vig. If all edges in E .G /

are undirected G is an undirected graph. In contrast, an edge is called directed or
oriented if the ordered pair .vi; vj/ 2 E .G /; vi ¤ vj. Thus, only .vi; vj/ 2 E .G /

while .vj; vi/ … E .G /. Directed edges are also referred to as arcs and we write
vi �! vj if there is a directed edge from vi to vj. Formally, for vi ¤ vj we define
pa.vj/ D fvi W vi �! vjg as the parents. In addition, if vi �! vj we call fvjg
children of vi and define ch.vi/ D fvj W vi �! vjg (see Kolaczyk 2009; Bondy
and Murty 2008). Additionally, let co-pa.vi/ D fvj W ch.vj/ \ ch.vi/ ¤ ;g be the
co-parents of vi. Hence, if co-pa.vi/ D vj it follows that vi and vj share a common
child whereas vi and vj have not necessarily to be joined by an edge. Consequently, a
directed graph or digraph is a graph exclusively build on directed edges. A detailed
discussion on digraphs is given in Bang-Jensen (2001). In addition, a multiple
digraph is a multiple graph exclusively build on directed edges. Following Kolaczyk
(2009), mutual edges are directed parallel edges with diametrically direction (e. g.
if vi �! vj and vj �! vi are in E .G /) whereas multi-arcs are multiple edges with
identical orientation.

Let .v0; e1; v1; e2; : : : ; vk�1; ek; vk/ be a sequence of vertices and edges of G with
endpoints v0 and vk such that 8 ei; 1 � i � k the pair vi�1 and vi is joined by ei.
We call this sequence wik of potentially repeating pairs of vertices a walk of length
k in G . If a walk passes through every node of a sequence exactly once we label this
as a path. A path with identical endpoints is a cycle and a cycle of length one is a
loop. Thus, a directed acyclic graph is a digraph without any directed cycles which
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is linked to undirected graphs by an operation termed moralization. In a first step an
undirected edge is inserted joining every co-parents in G . Hereafter, every directed
edge in G is substituted by an undirected edge.

A graph build on directed as well as undirected edges is called a mixed graph. As
a special case hereof, a chain graph is a simple mixed graph without any partially
directed cycle where V .G / is partitioned into k blocks Bk such that V .G / D B1 [
B2 [ : : : [ Bk�1 [ Bk and

1. vi �! vj if and only if vi 2 Bi and vj 2 Bj; i < j
2. vi � vj if and only if vi 2 Bi and vj 2 Bi.

Hence, undirected and directed acyclic graphs are special cases of chain graphs.

3 Causality in Graphical Models

Graphical models relate conditional independence statements among random vari-
ables of a multivariate probability distribution to graphs such that the nodes
represent random variables and edges encode the dependence structure. Recently,
these models have been extended to the time domain based on different definitions of
causality. Eichler (2013), Didelez (2011) as well as Eichler and Didelez (2010) have
discussed alternative formulations including Granger causality, Sims causality,
local dependence and causality in terms of interventions. Hereof, Granger causality
and local dependence have been most prominent with regard to graphical models. As
shown in Florens and Fougere (1996) local dependence can be seen as a continuous
time version of Granger causality.

Definition 1 (Granger Causality). Let fX.t/g and fY.t/g be stochastic processes
on .˝;F ;�/ where t 2 T  �. Given f˝.t/g as all information in the universe
fX.t/g  f˝.t/g is causal with respect to fY.t/g if the prediction is less precise
based on f˝.t/gnfX.t/g (ct. Granger 1969; Lütkepohl 2005).

Different levels of Granger causal relations have been discussed in Florens and
Fougere (1996). Obviously, conditional on all information in the universe seems
impracticable and might be replaced by all available information with regard to a
vector valued process.

Local dependence has been introduced by Schweder (1970) who focussed on
transition intensities in discrete state-space Markov processes. As an extension
hereof, Aalen (1987) considered non-causality in continuous time restricted to
processes satisfying the Doob–Meyer decomposition.

Definition 2 (Local Independence). Let Ft denote the information which is
available at time t 2 T  �C D Œ0; 1/. Then, fY.t/g is locally independent of
fX.t/g given fZ.t/g if the compensator �Y.t/ of fY.t/g remains unchanged whether
conditional on F XYZ

t� or conditional on F YZ
t� (ct. Schweder 1970; Aalen 1987;

Florens and Fougere 1996).
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4 Graphical Modelling of Temporal Processes

Several graphical models have been developed to approach temporal stochastic
processes either in the time as well as in the frequency domain. Misleadingly,
different models have been named identical. Generally, two different classes can
be differentiated with regard to the underlying definition of the nodes. Firstly, the
vertex set can encode random variables at different times. Secondly, the components
of a vector valued process can be represented by individual nodes which lead to a
coarser modelling of the graphical structure.

4.1 Time Series Data

Most of the research regarding graphical modelling of time series data focussed
on vector valued stationary processes in discrete time. Different approaches of
graphical modelling towards autoregressive processes are summarized in Songsiri
et al. (2010).

Static graphical models have been applied to time series data manifold. Chain
graph models in which time slices are represented by blocks have been discussed
in Lynggarrd and Walther (1993) and Dahlhaus and Eichler (2003). Furthermore,
Queen and Smith (1992) and Anacleto and Queen (2013) introduced a dynamic
chain graph model based on multivariate Bayesian dynamic models.

Extensions of directed acyclic graphs (so-called dynamic Bayesian networks)
have extensively been treated by Murphy (2002). Defined as a sequence of directed
acyclic graphs such that time is displayed in form of stacked time slices these models
include hidden Markov models and Kalman filters besides other latent state-space
models as special cases. An overview of different models belonging to this class of
graphs is given in Barber and Cemgil (2010). Anacleto et al. (2013a,b) extended the
multiregression dynamic model as introduced in Queen and Smith (1993) and used
directed acyclic graphs to analyse multivariate time series from traffic flows. These
graphs have been called Bayesian dynamic graphical models.

Several papers have focussed on structural vector autoregressive processes and
discussed the sufficiency of learning structural constraints from static graphical
models. Moneta (2008) proposed the usage of a structural learning algorithm with
regard to directed acyclic graphs in order to obtain the contemporaneous dependence
structure. Alternatively, Oxley et al. (2008), Meurk et al. (2007) as well as Penny
and Reale (2004) presented a two-step estimation procedure based on a novel graph
linkage called demoralization. Thereby, the optimal directed acyclic graph is chosen
from a list of suitable graphs obtained from an undirected graphical model by the
inverse moralization operation.

Additionally, sequences of undirected Gaussian graphical models arranged in
independent and identically distributed blocks have been used by Talih and Hen-
gartner (2005), Talih (2003) and Cai and Li (2012) to capture changing dependence
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structures of multivariate time series. Thus, a new block only emerges if a new edge
is included or excluded into E .G / such that consecutive blocks contain different
graphs. Xuan and Murphy (2007) presented a similar approach. Gao and Tian (2010)
proposed a mixed graphical model called latent ancestral graph to model latent
variables in case of structural vector autoregressive processes.

A first approach focussing on graphical models related to components of vector
valued stationary time series in discrete time has been presented by Brillinger (1996)
in frequency domain. Dahlhaus (2000) introduced a refined version hereof called
partial correlation graph based on partial spectral coherence between components
of a multivariate time series. The resulting graph is a simple undirected graph in
which the nodes correspond to the components of a vector valued process. Partial
spectral coherence measures the dependence of two components after removing
linear time invariant effect of the remaining series (cf. Brillinger 1981). Thus, two
components are conditional orthogonal if the partial error processes are uncorrelated
after filtration. This is equivalent to conditional independence only in cases of
Gaussian time series. Efficiently, instead of computing the correlation between
partial error processes conditional orthogonality can equivalently be achieved from
the partial spectra coherence and similarly been read of zero entries of the inverse
spectral matrix. Partial correlation graphs have been applied in various fields by
Gather et al. (2002), Fried et al. (2004), Feiler et al. (2005) and Allali et al. (2008).
Avventi et al. (2013) discussed the usage of these graphs in case of autoregressive
moving average processes. Additionally, structural learning has been treated in Bach
and Jordan (2004).

Eichler (1999, 2012) has introduced a mixed graph called Granger causality
graph since it encodes Granger causal as well as contemporaneous relationships
between time series components. This graph has also been called dynamic chain
graph by Murphy (2002). Corander and Villani (2003, 2006) discussed Granger
causal graphs from a Bayesian perspective. Additionally, Marttinen and Corander
(2009) dealt with the task of Bayesian learning of such graphs. Application of
Granger causal graphs are presented in Wild et al. (2010), Allali et al. (2011) and
Arnold et al. (2007). Focussing on latent variables Eichler (2010) recently intro-
duced extended Granger causality graphs related to autoregressive moving average
processes which he called dynamic maximal anchestral graphs. In difference to
Granger causality graphs these graphs consist of one additional edge type.

4.2 Event History Data

Based on the concept of local dependence as described in Sect. 3 Didelez (2000)
introduced extensions of directed acyclic graphs with regard to counting processes
which she termed local dependence graphs. These models are defined in case
of marked point processes (Didelez 2008) as well as composable finite Markov
processes (Didelez 2007). Similarly, Gottard (2007) presented so-called graphical
duration models as extensions of chain graph models displaying marked point
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processes. Dreassi and Gottard (2007) dealt with Bayesian estimation of this
duration models. This graphs might also allow to model frailty terms besides the
hierarchical structures discussed in Gottard and Rampichini (2007). Additionally,
Fosen et al. (2006) derived dynamic path analysis models based upon Aalens
additive hazard model. A further discussion of these models is given in Aalen
et al. (2008), whereas the large sample properties are derived in Martinussen (2010).
Alternatively, dynamic Bayesian networks build on two time slices have been used
to model duration data. Confusingly, Donat et al. (2008, 2010) named these models
also graphical duration models.

Graphical modelling of counting processes in the frequency domain has been
described in Dahlhaus et al. (1997) and Eichler et al. (2003). In both papers partial
correlation graphs are used to model intensity functions.

4.3 Beyond Discrete Time

Besides discrete time a limited number of papers have been published with regard
to stochastic processes that evolve in continuous time. Shelton et al. (2010) and
Nodelman et al. (2002, 2003) introduced continuous time Bayesian networks
(CTBN). Alternatively, El-Hay et al. (2006) presented an extended version of
undirected graphical models which they called continuous time Markov network
(CTMN).

5 Discussion

This review has shown the state of the art and the great variety of graphical models in
the temporal domain. Mostly, they are closely related to classical graphical models
and satisfy the traditional Markov properties. The main difference between the
approaches arises with regard to the inherent definition of the nodes. Relating the
vertices to the components of a multivariate process leads to a coarser modelling of
the dependence structure. Oppositely, the dimension of the graphical model strongly
increases in case of temporally separated nodes as dim.G / D N � T. This might
negatively impact the costs of estimation and computational efficiency, especially
in case of high dimensional data structures evolving in time. Contrary, parameter
as well as structural estimation can be built on already existing algorithms when
applying static models to time series data.

Additionally, Granger causality graphs are strongly effected by the choice of
the correct time intervals taking into account. Hence, larger intervals correspond to
marginalization over time and create additional correlation. Nonetheless, the graphs
are suitable models for structural learning in high dimensional time series and might
easily be extended to more complex dimensions. Furthermore, extensions to non-
linear relationships can be achieved conditioning on �-algebras.
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The Weight of Penalty Optimization for Ridge
Regression

Sri Utami Zuliana and Aris Perperoglou

Abstract A method of weight optimization is introduced when fitting penalized
ridge regression models. A penalty term added to a likelihood may be viewed in
the light of a hierarchical likelihood. Under this context a method to estimate the
variance of a random effect in a mixed model can be employed to obtain an estimate
of the penalization weight. We review the theory of ridge penalties from a Bayesian
point of view and show how an algorithm for estimating the variance of a random
effect can be combined with hierarchical likelihood. The method is compared with
other commonly used methods to obtain a penalty weight, such as leave-one-out
cross validation, generalized cross validation, penalized quasi-likelihood methods
and principal components estimation. Simulation studies are performed to compare
the different approaches. For each of the methods we use packages already publicly
available in the statistical software R.

1 Introduction

Ridge regression (Hoerl and Kennard 1970; Hoerl et al. 1975) is used in many
applications to shrink estimates of coefficients towards zero. It was introduced orig-
inally within the family of linear models but also implemented in generalized linear
models (Le Cessie and Van Houwelingen 1992), survival analysis (Perperoglou
2014) as well as within the context of high-dimensional data and machine learning.

On all these approaches, a penalty term is added to the likelihood, controlled by
a weight �. It is up to the researcher to decide what should the penalty weight be.
A common method used to optimize the penalty is to select a series of different
lambdas, fit the model for each of the weights and choose a model that would
maximize a criterion such as Akaike’s Information Criterion (Akaike 1974), the
corrected version (AICc) (Hurvich and Tsai 1989) or Bayesian Information criterion
(BIC) (Schwarz 1978). In other cases generalized cross validation (GCV) may
be used (Golub et al. 1979). Examples of the latter approach can be found in
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Le Cessie and Van Houwelingen (1992) for logistic regression, or in simple linear
regression one may use function lm.ridge available in package MASS (Venables
and Ripley 2002) within R (R Core Team 2014) software. More recently, Goeman
(2010) suggested leave-one-out cross validation which was implemented in package
penalized (Goeman 2012).

All of these approaches can be computationally expensive. In more complicated
models where estimation time may be an issue, penalty optimization through a
grid search of weights is counter-productive. Xue et al. (2007) suggested simple
remedies to address the problem, within the framework of survival analysis, which
were shown however to be inferior in simulation studies (Perperoglou 2014).
Recently, within the field of econometrics Kibria (2003) investigated penalty
weights that are obtained by dividing the residual mean square estimate with the
maximum, mean, median, etc of the coefficients and came up with suggestions in
their follow up paper (Muniz and Kibria 2009). More recently Mansson and Shukur
(2011) investigated the performance of these estimators for Poisson regression. Cule
and De Iorio (2013) introduced a four-step algorithm to fit penalized models based
on principal components of the eigenvectors of the regressors. This approach is
implemented in package ridge (Cule 2014), for linear and logistic regression.

Here we present an approach that is based on mixed models methodology. We
view the penalty as a random effect added to the model and then we employ mixed
model machinery to estimate optimal weight. Under that umbrella � becomes a
parameter to be estimated from the model with a repeating algorithm. Our approach
is similar to the one suggested by Rigby and Stasinopoulos (2014) for optimizing the
penalty weights of smoothing parameters when fitting generalized additive models
for scale shape and location. They have implemented their method in package
gamlss (Rigby and Stasinopoulos 2005).

The paper is organized as follows: In Sect. 2, we present the background theory
on penalized regression methods in generalized linear models. We present the
general framework and show how to optimize the penalty weight using a mixed
models approach. The emphasis is on a special case of a GLM, a simple linear
model. We use this simple case to illustrate the Bayesian viewpoint of our suggested
algorithm and present simulation studies that evaluate the performance of the
suggested algorithm and also compare it with other methods. The paper closes with
a discussion.

2 Ridge Regression in Generalized Linear Models

Consider the form of any generalized linear model as:

g.y/ D � D Xˇ

where y is a response variable coming from any of the exponential distributions, g()
is the link function and � D Xˇ is the linear part of the model for X, an n � p matrix
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of p covariates on n observations and ˇ is the vector of unknown coefficients. Let
l.ˇ/ denote the likelihood function of that general model and define the penalized
likelihood function as:

l� .ˇ/ D l.ˇ/ � 1

2
�

pX

iD1

ˇ2
i

To estimate the model an iterative weighted least squares (IWLS) algorithm can
be used which takes the form:

Ǒ D .X0WX C �I/�1X0Wz

where W is a matrix of appropriate weights, z is the intermediate variable given by
z D W�1.y � O�/ C Xˇ and I is a p � p identity matrix.

The choice of penalty weight is crucial. In cases where � tends to infinity
coefficients become zero, while when � approaches zero coefficients are allowed
to vary freely.

2.1 Ridge Regression from Bayesian Perspective

Any penalized model may be seen as a mixed model. Let pˇ.x; y/ be the joint density
function of observed data x and unobserved data y when parameter ˇ is known. We
can then define the likelihood for ˇ and y as:

L.ˇ; y/ D pˇ.xjy/pˇ.y/: (1)

Lee and Nelder (1996) defined Eq. (1) as an h-likelihood while Green and Silverman
(1993) as penalized likelihood. h-likelihood can also be seen mathematically as a
Bayesian posterior distribution. The first part of the (1) corresponds to the likelihood
of the simple model multiplied by the likelihood that corresponds random part,
in this case, the ridge penalty. Hierarchical likelihood has many similarities to
Bayesian methods.

Consider a simple linear model

y D Xˇ C 
 (2)

with X an n�p matrix of covariates and ˇ a p�1 vector of coefficients. For simplicity
we assume that no constant term ˇ0 exists in the model. Then where y � N.Xˇ; �2I/
and let ˇ � N.0; �2I/.

Then the likelihood can be written as:

L.ˇjy/ / exp

�
� 1

2�2
.y � Xˇ/0 .y � Xˇ/

�
exp

�
� 1

2�2
Ǒ0 Ǒ
�

(3)
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Taking the logarithm of (3) leads to:

�logL.ˇjy/ D 1

2�2
.y � Xˇ/0 .y � Xˇ/ C 1

2�2
Ǒ0 Ǒ

D 1

2�2

�
.y � Xˇ/0 .y � Xˇ/ C � Ǒ0 Ǒ�

with � D �2

�2 .
Looking at model (2) from a mixed model perspective one needs to estimate,

along with the coefficients, the variance of the random effects as well. Schall (1991)
defined a two-step algorithm for fitting mixed models and estimating the variance of
the random effect. In the first step, given estimates of O�2 the least square estimates
of Ǒ can be obtained. In the second step, given estimates of the coefficients, variance
estimators are obtained from:

�2 D .y � Xˇ/0 .y � Xˇ/

n � ED

and

�2 D
Ǒ0 Ǒ
ED

where ED stands for effective dimensions and is the trace of the hat matrix of the
mode (Hoaglin and Welsch 1978). An estimate of the penalty weight can be then
given by:

� D ED
Ǒ0 Ǒ

.
The algorithm can be initialized with any value for � and usually converges

within a small number of steps. For further applications see Perperoglou (2014)
and Perperoglou and Eilers (2010). An implementation of the method is also part of
the coxRidge package in R (Perperoglou 2013).

3 Simulation

A simulation study was designed to investigate the performance of different
approaches to maximize penalty weight. The sample size of the full data was
n D 500. The response variable y was simulated from

y D ˇz C 0:2
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where z comes from a standard normal distribution (z � N.0; 1/), and the true value
of the coefficient is 1 (ˇ D 1). Some noise is added in the form of a random vector

 � N.0; 1/ which is independent of z.

In a second step, the simulated values of z were used to create a set of correlated
regressors, given as:

x1 D z C 
1

x2 D z C 
2

x3 D x1 C x2 C 0:05
3

where the errors 
1; 
2; 
3 are once again random numbers generated from a normal
distribution and assumed to be independent from z. The data set was then split into
a training (labelled d1) and testing data set (labelled d2), of size n1 D 400 and
n2 D 100, respectively, and a linear model of the form y D ˇ1x1 C ˇ2x2 C ˇ3x3 was
fitted on the training set. A simple linear regression model was fitted to the training
data along with five more penalized approaches based on different methods of
penalty weight optimization. These approaches were: leave-one-out cross validation
using packagepenalized, penalized quasi-likelihood optimization using package
gamlss, optimization by principal components using package ridge, generalized
cross validation using package MASS and optimization via random effects models
suggested here using Schall’s algorithm.

Once a model has been fitted, the prediction error on the testing data set was
obtained based on the estimates of each approach as

p:error D
X

i2d2

.yi2d2 � ǑXi2d2 /
2:

The whole process was repeated 1000 times.
Figure 1 illustrates the distribution of lambdas as they were obtained by the

different methods. As it should be expected, the mixed models approach suggested
here is almost identical to the penalized quasi-likelihood optimization. On the other
hand, leave-one-out-cross validation produces a wider range of � values and a higher
median value than all other approaches. On the other extreme of the spectrum,
principal components optimization leads to very small weights and almost no
penalization. Generalized cross validation also selects small penalty weights when
compared with mixed models and leave-one-out cross validation.

Including a penalty term not only shrinks estimates towards zero, but in cases
where collinearity is present, it reduces mean squared prediction error and corrects
coefficient signs. Table 1 illustrates the average prediction error of all approaches.
As expected the simple linear model has the largest prediction error. Although the
differences amongst the models are small, using our proposed algorithm produces
the smallest prediction error (the value is printed in italic). When no penalization is
applied, estimates obtained from the ordinary least squares model have an opposite
sign from the real one. Table 1 presents in the third column the percentage of
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Fig. 1 Distribution of lambdas based on different methods of optimization

Table 1 MSE from
correlated count data in
different correlation
coefficients and different
sample sizes

Method Prediction error % of Ǒ3 < 0

OLS 37:64 49.7

penalized 37:57 20.4

gamlss 37:55 0

ridge 37:58 0

MASS 37:58 18.2

Schall 37.53 0

cases where Ǒ
3 coefficient was mistakenly estimated as negative. Three out of five

methods estimate a correct sign for the coefficient.
A second simulation study was also applied to investigate the performance of

the methods. This time, the regressors had the same distributional assumptions,
however, correlation amongst them was 0. The data were simulated this way to
investigate how each method performs when in fact penalization is not necessary.
Figure 2 illustrates the distribution of estimated lambdas. The graph reveals that both
methods based on extended likelihoods (labelled as Schall and gamlss) overestimate
the importance of the penalty. The median lambda weight was 4.8 in both while in
the one obtained by cross validation, either leave-one-out or generalized, was 0.2.
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Fig. 2 Distribution of estimated lambdas based on different methods of optimization

4 Discussion

We have introduced a method for optimizing a penalty weight in ridge-type
regression problems. The method is based on mixed models algorithms although
in practice one does not need to regard the penalization as a random effect. We have
shown the theory and illustrated application in two small simulation studies.

The suggested method can work in any type of regression model, regardless of
the distribution assumption of the response or the link function. In this work we have
shown the advantages of our approach within the context of linear regression. The
second author has showed in other texts how the method can be used in survival
analysis (Perperoglou 2014). In future work we aim to show how the method
performs when fitting Poisson or binary data.

We presented two simulation studies. As discussed earlier, some caution is
needed when applying penalized methods in data that do not require that complexity
from the model. Cross validation methods were able to perform quite well in the
absence of collinearity and showed that lambda has to be near zero, i.e. they ended
up with no shrinkage of the coefficients. When mixed models methods were applied,
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some shrinkage was always present in the model. In any case, preliminary analysis
of the data should reveal whether a penalty is needed or not.

It should be noted that using a mixed models approach as the one discussed
here is similar to the approach within gamlss models. Both methods use a restricted
maximum likelihood(REML) approach to estimate the variance of a random effect,
and use that variance to obtain the penalty weight. The only difference is that Rigby
and Stasinopoulos (2014) used their approach to optimize a roughness penalty when
fitting regression splines for smoothing. An extension of these methods would be
very useful in smoothing via a roughness penalty, or when modelling in more
than one dimensions. A similar idea has been explored in the PRIDE models
(Perperoglou and Eilers 2010).
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Monitoring a Dynamic Weighted Majority
Method Based on Datasets with Concept Drift

Dhouha Mejri, Mohamed Limam, and Claus Weihs

Abstract Monitoring changes during a learning process is an interesting area of
research in several online applications. The most important problem is how to detect
and explain these changes so that the performance of the learning model can be
controlled and maintained. Ensemble methods have perfectly coped with concept
drift. This paper presents an online classification ensemble method designed for
concept drift entitled dynamic weighted majority (DWM) algorithm. It adds and
removes experts based on their performance and adjusts learner’s weights taking
into account their age in the ensemble as well as their historical correct prediction.
The idea behind this paper is to monitor the classification error rates of DWM
based on a time adjusting control chart which adjusts the control limits each time an
adjustment condition is satisfied. Moreover, this paper handles datasets with concept
drift and analyzes the impact of the diversity of base classifiers, noises, permutations
and number of batches. Experiments tested with ANOVA and confirmed by Tukey’s
test have shown that monitoring classification errors with DWM algorithm has a
perfect reaction capacity to different types of concept drift.

1 Introduction

There is surely a lot of research in the classification domain. Most of the proposed
techniques in machine learning are based on learning concepts from static data
whereas in real life domain issues are changing over time and the target concept
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to be learned may change accordingly. Indeed, instead of training all the available
data from the beginning, data arrives online in instances or batches.

A robust online classification method has been recently proposed by Asensio
et al. (2014) based on a streaming ensemble algorithm (SEA) and hyperplane
datasets with concept drift. This method called supervised neural constructivist
system (SNCS) is analyzed with different characteristics of the dataset and it has
been proven that it can function with different real applications of concept drift.
Gama and Kosina (2014) proposed a new system monitoring the evolution of a
meta-learning algorithm in detecting recurrence of context which self adapts the
system according to the degradation process. Their method was evaluated on two
real datasets.

Kuncheva (2009) proposed the use of control charts to detect concept drift in
streaming data by examining the classification accuracy based on control charts.
Her approach is a window resizing technique which uses a variable size adjustment
of the window for more sensitivity on the changes. She applies her approach to the
Shewhart chart and the sequential probability ratio test (SPRT).

In this paper, we are interested in classification methods of online streaming data.
Our aim is to monitor classification error rates of an ensemble method and to detect
concept drift based on classifier’s performance during an online process. The best
solution we propose is to adapt the combination of classifiers in an ensemble with
each new batch arriving over time by removing some bad classifiers and adding
new ones. There is a need to detect a change without forgetting previous knowledge
about the age of the classifiers as well as the past correct prediction in the ensemble
and also a need to distinguish between concept drift and out of control situations
caused by the non-stationarity of the environment. This paper proposes to use
dynamic control charts to monitor misclassification error rates and to detect concept
drift when classifier’s performance decreases over time. We denote the dynamic
control chart time adjusting control limits (TACL) chart for monitoring the error
rates of DWM-WIN of Mejri et al. (2013) which is an improved version of Kolter
and Maloof (2007)’s algorithm. We discuss an application of detecting concept drifts
in SEA datasets with concept drift. We study the impact of the classifier diversity,
the noise level, the permutation of the sequences of concept drift, and the number of
batches on the DWM-WIN capacity to react to the concept drift.

The paper is outlined as follows: Sect. 2 explains the proposed two-step learning
model. Results and analyses on datasets with concept drift are detailed in Sect. 3.
Moreover, we analyze the impact of classifier diversity on the DWM-WIN perfor-
mance on SEA datasets. Section 4 contains our concluding remarks.

2 Two-Step Learning Model

In this section, we explain the main idea behind this paper. The proposed method
is based on a two-step learning model. The first step, Step 1, is a learning step,
where we learn the model based on an ensemble of classifiers in an incremental way.
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The second step, Step 2, is a control step based on a time adjusting control chart
which adapts the control limits (CLs) of the control chart after a drift detection.
The objective of this step is to control the dynamic learning process of an online
classification method in order to detect the concept drift in the data stream.

2.1 Dynamic Learning Process

The proposed method is based on a two-step model. First, the dataset is subdivided
into many batches in order to solve the original decision problem. For each incoming
example (�!x ; y), the current ensemble of classifiers makes a prediction of the class
label y. Each classifier has a weight equal to 1 at the beginning. Then, if the classifier
makes a correct prediction, the classifier’s weight increases based on a parameter
� > 1. If the classifier makes a wrong prediction, its weight is decreased using a
parameter ˇ < 1. This procedure is applied to all instances in each batch. After
many instances, if the weight of one classifier is under a threshold � , then the
classifier is removed from the ensemble. If the global prediction of the ensemble
of the classifiers is different from the class label, then a new classifier is installed.

This procedure is repeated for each new batch arriving over time, and each time
a concept drift exists in the dataset, until having the best combination of classifiers
which copes with the concept drifting data stream. This heuristic highlights the fact
that the presence of concept drift in Step 1 perturbed the classification decision of
the classifiers existing in the pool and in consequence it requires the assessment of
new classifiers and the removal of non-performant ones.

In Step 2, the class label of the model is either 1 if the model is in control due
to a correct classification of the data or 0 if the model is out of control due to a
misclassification of the data. Accordingly, a data point is (�!x ,1) meaning that the
ensemble of classifier made a correct prediction or (�!x , 0) meaning that in Step 1 the
ensemble of classifiers misclassified many instances in the batch and made wrong
predictions.

2.2 Time Adjusting Control Chart Limits (TACL)

In order to deal with a concept drifting data stream, we assume that the only
information available is the misclassification error rates. Our aim is to monitor
the error rate and to detect concept drift of the distribution through the behavior of
the ensemble of classifiers. For this, a TACL chart based on DWM-WIN error rates
is proposed to handle concept drifting data streams and improve phase I and II of
the monitoring process. The TACL method can be described as follows.
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2.2.1 First Step

We assume that z1, z2, z3, : : : zn are the misclassification error rates of each batch in
the data. For example z1 represents the misclassification error rate of the first batch
in the data. We compute the mean and the variance of zi for i D 1; : : : ; n as follows:

�n D zn; �2
n D 1

n

iDnX

iD1

.zi � zn/2: (1)

2.2.2 Second Step

Phase I: We consider z1, z2, : : :, zn as the observations of phase I. The CLs set in
Phase I are:

UCL D zn C L�n; LCL D zn � L�n (2)

where L is a constant equal to 3.
Phase II:

� Check on the condition adjustment
When a fixed number of instances denoted P is detected to be out of control based on
the pth percentile of the batches i D n C 1;. . . ; n C k, then the adjustment condition
is satisfied. For example, for a process with 800 batches, the fifth percentile is equal
to 40. So, the CL is adjusted only after 40 batches were detected out of control.

� If condition adjustment is satisfied, then adjust
Decide whether znC1, znC2, znC3, : : :, znCk�1 where k � 1 are in or out of control
based on the fact that if zi exceeds the CLs, then the instance is out of control. Then,
if the adjustment condition is satisfied, CLs are adjusted by:

x.nCk/ D UCLnCk C LCLnCk

2
; (3)

UCLnCkC1 D �xnCk C .1 � �/znCk C L�n; (4)

LCLnCkC1 D �xnCk C .1 � �/znCk � L�n: (5)

2.2.3 Third Step

For monitoring Phase II observations, a batch is declared of control if zt for
t D 1; : : : ; N, where N is the total number of batches of the monitored process,
exceeds a CL.
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3 Experimental Results

The proposed method is applied on different variants of SEA dataset of Street
and Kim (2001). We use the R package mlr of Bischl et al. (2014) for calling
the R classifiers rpart, kknn, and naiveBayes. We use only ensembles based on
decision trees (rpart), nearest neighbors models (kknn), and naive Bayes models
(naiveBayes), respectively. In the following, we study the impact of the batch size,
the noise level, permutations, and the capacity of DWM-WIN on detecting and
adapting to the concept drift. All results are summarized in Table 1. We analyze
the results by means of ANOVA using Friedman’s test (see Tables 2 and 3) and by
Tukey’s test (see Table 4).

3.1 SEA Concepts

The SEA dataset was first used by Street and Kim (2001) to evaluate the SEA. It
was then used by Kolter and Maloof (2005) to test the Add-Exp algorithms. It is
downloaded from Stream Data Mining repository (http://www.cse.fau.edu/xqzhu/
stream.html) of Zhu (2010).

SEA presents a binary classification problem with 60,000 observations. Features
are independent and identically distributed based on a Uniform distribution UŒ0; 10	.
The target concept to be learned is determined based on the function x1 + x2 � b,
where b 2 {7, 8, 9, 9.5}. Two classes are distinguished, one when this condition
is satisfied and one where it is not. First the data is divided into 20, 50, and 100
batches. Four different concepts occur in the data by adaptation of the class labels
in SEA dataset when changing the value of b. For the first 250 batches, the target
concept is b D 8, e.g., for the second concept b D 9, the third target b D 7, and the
fourth b D 9:5. We consider all permutations of the ordering of these four concepts.

3.2 Impact of the Permutation on the Concept Drift

Reaction to the Concept Drift Two types of drift are distinguished: the gradual
concept drift and the sudden concept drift. Gradual concept drift is represented by
the sequences (7, 8, 9, 9.5) and (9.5, 9, 8, 7). Whereas the other sequences are
considered as sudden drift since there is no special characteristic in the concept
sequences.

Statistical Tests According to one way ANOVA given in Table 2, there is a
significant difference in the error means between the different permutations. This
result is also confirmed by the two way ANOVA (see Table 3) where the interactions
between permutation and learner and permutation and noise are significant. To
understand the behavior of the permutations, we applied Tukey’s test. Results are

http://www.cse.fau.edu/ xqzhu/stream.html
http://www.cse.fau.edu/ xqzhu/stream.html
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Table 2 Friedman test for one way ANOVA

Measure Df Sum Sq Mean Sq F value Pr (>F)

p 23 0.323 0.0014 9:1656 2 e�16***

Learner 2 0.02859 0.01429 93:2841 2 e�16***

Noise 1 0.63480 0.63480 4143:0868 2 e�16***

N.batches (20, 50) 1 0.00002 0.00002 0:1389 0.7097

N.batches(20, 50, 100) 2 0.00025 0.00012 1:0534 0.3503

Residuals 254 0.03892 0.00015
� 0.05
�� 0.01
��� 0.001

Table 3 Friedman test for two way ANOVA

Measure Df Sum Sq Mean Sq F value Pr (>F)

p vs. learner 46 0.00492 0.00011 1:7223 0.007411**

p vs. noise 23 0.01491 0.00065 10:4332 2.2 e�16***

p vs. batch 23 0.00118 0.00005 0:8286 0.691683

Learner vs. noise 2 0.00778 0.00389 62:6127 2.2 e�16***

Learner vs. batch 2 0.00036 0.00018 2:91 0.057417

Noise vs. batch 1 0.000 0.000 0:0612 0.804962

Residuals 157 0.00975 0.00006
� 0.05
�� 0.01
��� 0.001

Table 4 Tukey’s test

Diff lwr upr padj

Learner

kknn vs. rpart �0.0117 �0.016 �0.007 0

naiveBayes vs. rpart �0.024 �0.028 �0.0203 0

kknn vs. naiveBayes �0.0128 �0.017 �0.0085 0

Noise

10 vs. 20 % 0.094 0.0915 0.0973 0

Batch

20�50 0.00054 �0.0023 0.0034 0.709

not detailed here because of lack of space. We only analyze the most important
cases.

According to Fig. 1, the error rates are relatively stable and the algorithm per-
fectly deals with the gradual drift by learning the drift and using stored information
to adapt the algorithm after each drift detection. Concerning some sudden drifts,
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Fig. 1 Reaction capacity of DWM-WIN error rates on gradual drift
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Fig. 2 Reaction capacity of DWM-WIN error rates on sudden drift

DWM-WIN shows a different behavior in the error rates. As shown in Fig. 2, DWM-
WIN performs better after the first concept change detection. In fact both figures
show that DWM-WIN error rates are stable after the first concept change. Thus,
differences between sudden and gradual drifts might be bigger than between gradual
changes themselves.

Conclusion DWM-WIN performs very well with concept drift for gradual as well
as sudden drift.

3.3 Impact of Varying the Batch Size on the Error Rate

Reaction to the Concept Drift The performance of the algorithm is not affected
by the number of batches. The DWM-WIN does not show a significant change in the
error rate levels. This is due to the good and quick reaction capacity of DWM-WIN
in detecting the concept drift and adapting the classifier’s ensemble to this change.

Statistical Tests Based on Friedman’s test on one way ANOVA, shown in Table 2,
we do not reject the hypothesis that the algorithms have the same performance on
average for different number of batches. For this test, we consider two situations.
First when testing the difference between three different batch sizes (20, 50, 100)
without considering kknn since it doesn’t work in all cases when N D 100. In
this case, we have an F value of 0.1399 and a p-value of 0.7079. In the second
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situation, we consider DWM-WIN based on rpart, kknn, and naiveBayes but we
test the difference only between number of batches of 20 and 50. Results are an F-
statistic of 1.053 and a p-value of 0.3505. This result is also confirmed by Tukey’s
test in Table 4 where lwr indicates the lower end point of the interval and upr
indicates the upper end point of the interval. Based on the two way ANOVA the
interactions of the number of batches with the other factors are not significant at the
5 % level. Respective p-values in Table 3 are 0.804, 0.69, and 0.0574.

Conclusion DWM-WIN has a noticeable robustness on concept drift for the
different batch values. Indeed, it is quite interesting that DWM-WIN quickly adapt
itself to the concept drift for small batches (10 instances per batch when the number
of batches is 100) as well as for large batches (50 instances per batch when the
number of batches is 20).

3.4 Impact of Varying the Noise Level to the Error Rate

Reaction to Concept Drift As expected, changing the level of the noise, shows
high impact on the error rate. Changing the noise level from 10 to 20 % impacts the
error which increases from 19 to 29 % during the first permutation (7, 8, 9, 9.5) for a
number of batches of 20 using an ensemble of rpart in DWM-WIN. For naiveBayes,
e.g., in the 19th permutation the rate increases by 14 % with number of batches of
50 (see Table 1).

Results of DWM-WIN based on naiveBayes are better than those of DWM-WIN
based on rpart and kknn for the small noise level=10 %. However, when increasing
the noise level, naiveBayes based DWM-WIN approximately achieves the same
level of error rates as the other methods.

Statistical Tests Friedman’s test rejected the null hypothesis that the algorithms
have similar performance when changing the noise level. In fact, given F statistic,
F D 4143:0868 and p-valueD 2�10�16, shown in Table 2, the algorithm performs
differently when the noise level differs.

These results were confirmed by the two way ANOVA in Table 3 where
the Friedman test rejected the null hypothesis that the algorithms have similar
performance on average when considering the two factors noise and permutation
or noise and type of the learner with a p-value D 2.2�10�16. This result is also
confirmed by Tukey’s test as shown in Table 4.

Conclusion We conclude that introducing more noise in the data impacts on the
general error level. Naive Bayes performs better than other classifiers when handling
problems of concept drift.
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4 Conclusion

In this paper mining online data streams where the data distribution may change over
time and the concepts may drift is discussed. The suitability of control charts with
online ensemble methods for detecting concept drifts in data streams is analyzed.
A two-step model was proposed where step 1 consists of applying the DWM-WIN
heuristic on datasets with concept drift and compute the error rates of the online
classification methods. Step 2 uses the TACL chart to monitor the output of step 1
in order to detect changes in data distribution through the decrease of classifiers
performance.

Based on the SEA dataset, we studied the impact of the performance capacity
reaction of DWM-WIN in detecting the concept drift and adapting the algorithm to
the drift. It has been shown that DWM-WIN has a robust capacity to adapt different
situations of concept drift with several variants of the data. It quickly adjusts itself
after a concept drift detection and maintains a high performance for different drift
situations with different noise levels. Further work can be carried out in studying the
learners stability in the ensemble and to introduce other situations of real concept
drift using generators under MOA of Albert et al. (2010b). Also, we would like to
investigate comparisons with other methods such as ADWIN algorithms of Albert
et al. (2010a).
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Specialization in Smart Growth Sectors
vs. Effects of Change of Workforce Numbers
in the European Union Regional Space

Elżbieta Sobczak and Marcin Pełka

Abstract The purpose of the study is to identify the relations between the level
of specialization in smart growth sectors and the effects of change of workforce
numbers in NUTS (The Nomenclature of Territorial Units for Statistics) 2 regions
of the European Union countries. Multivariate data analysis methods, structural-
geographic shift-share method and regional specialization indices were applied in
the study. The structure of workforce in economic sectors, separated based on
the intensity of research and development activities in NUTS 2 regions in the
period 2009–2012, constituted the subject matter of the analysis. The application
of shift-share analysis allowed for determining the effects of workforce structure,
competitiveness and number changes in smart growth sectors against the reference
area, i.e. the European Union regional area. Multivariate data analysis methods
facilitated the typology of the analyzed regions against the level of specialization
and the type of effects resulting from the change of workforce numbers in smart
growth sector, as well as determining the relations between them.

1 Introduction

The analysis of regional specialization can be performed having considered the
sector structure of economy. Currently the significance of economy sectors, based
on the implementation of knowledge and innovation, is constantly increasing.
In 2010 the European Union adopted Europe 2020 development strategy, which
defined the goals to facilitate member states in ensuring, among others, smart
growth consisting in the development of knowledge and innovation based economy
(Europe 2020 2010). The concept of smart growth refers to numerous previously
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presented theoretical concepts and models of regional growth, among which the
dominating role is played by the regional innovation systems (Cooke et al. 1997),
innovation environments—milieu innovateur (analyzed by GREMI research group),
learning regions (Florida 1995; Morgan 1997) and innovation clusters (Porter 1998).
Smart specialization of workforce structure constitutes one of the instruments and
components of smart development.

The study focuses on analyzing workforce structure in economy sectors sepa-
rated in accordance with the intensity of research and development activities, also
referred to as technological intensity and defined as the relation of expenditure
on R&D (research and development) against added value of manufacturing sector
(Hatzichronoglou 1996). The distribution of workforce in these sectors (called
smart growth ones) represents the basic determinant of regional smart growth. The
objective of the study is to:

• identify the intensity and diversification of regional specialization in the
European Union,

• classify the European NUTS 2 level regions with regard to the allocation effects
of structural, regional and the change of workforce numbers,

• identify the relations occurring between the level of regional specialization in
smart growth sectors and the effects of the change of workforce numbers in
NUTS 2 regions of the European Union countries.

2 The Information Basis and the Research Procedure Stages

The statistical information, indispensable for conducting empirical research, was
obtained based on Eurostat database. Workforce structure constitutes the reference
basis of performed analyses, in the cross-section of the following technological
intensity sectors, prepared by Eurostat and OECD: HMH—high and medium
high-technology manufacturing, LML—low and medium low-technology man-
ufacturing, KIS—knowledge-intensive services, LKIS—less knowledge-intensive
services, OTHER sectors (farming, hunting, forestry, fishing, mining, production
and supply of electricity, gas, water, construction).

The study included 237 European Union regions selected following NUTS 2
classification. Due to the unavailability of statistical data the analysis did not cover
35 NUTS 2 regions. The research time range covered the period of 2009–2012.
From 1 January 2008 the updated NACE classification (Statistical Classification
of Economic Activities in the European Community) (NACE Rev. 2) and the
definitions of high-tech manufacturing and knowledge-intensive services have
changed. Therefore data comparisons, before and after 2008, have to be approached
cautiously or the discussed changes have to be regarded as breaks in the continuity
of data. Moreover, in 2008, due to the unavailability of statistical data the analysis
could not include another 50 regions.
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The following research procedure was applied:

1. The identification of regional specialization level by means of applying Krugman
specialization index.

2. The quantification of structural, regional and allocation effects of the change of
workforce numbers applying both classical and dynamic shift-share analysis.

3. The assessment of relationships occurring between regional specialization and
structural and regional effects of the change of workforce numbers.

Shift-share analysis determines what portions of regional economic growth or
decline can be attributed to national, economic industry and regional factors.
The analysis helps identify industries where a regional economy has competitive
advantages over the larger economy. In the classical form the shift-share analysis
(also known as the comparative static model) examines changes in the economic
variable between 2 years. Changes are calculated for each industry in the analysis.
In the dynamic form shift components are determined annually for the entire study
period with the base year continuously changing. The annual components are
summed over the entire multiyear period.
Stage 1. The identification of regional specialization level by means of applying
Krugman specialization index.

The study presents the assessment of regional specialization by applying
Krugman’s specialization index (Krugman 1991) for NUTS 2 regions with regard to
reference area defined as the regional space of 28 European Union member states.
This index was defined as the sum of absolute differences between the sector shares
of workforce in a particular NUTS 2 region in the total workforce employed in this
region against the total sector workforce share in the overall workforce number in
the European Union. Krugman specialization index takes the following form:

K�r D
SX

iD1

jur
i � uij; (1)

ur
i D xri

xr:

; (2)

ui D x:i

x::

; (3)

where: r D 1; : : : ; R—region number; i D 1; : : : ; S—sector number; xri—
workforce number in r-th region and i-th sector; xr:—total workforce number in r-th
region, x:i—workforce number in i-th sector of the reference area (EU 28); x::—total
workforce number in the reference area (EU 28).
Stage 2. The quantification of structural, regional and allocation effects of
workforce structure changes by applying classical and dynamic shift-share
analysis.

Structural and geographic analysis of workforce was performed considering the
intensity of R&D (research and development) activities in the European NUTS 2
regions, having applied the classical Dunn shift-share analysis and the dynamic
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competitive model by Barff and Knight (1988). Structural and regional effects
of changes were defined as recurring for each couple of years in the analyzed
period, which was later aggregated in accordance with Barff–Knight concept. It is
a dynamic model shift-share analysis, where the shift components are determined
annually for the entire study period with the base year continuously changing.
The annual components are summed over the entire multiyear period. The shift-
share analysis of the change of workforce numbers in the EU regions allowed to:
identify key sectors responsible for regional development, specify structural and
regional effects of the change of workforce numbers in sectors distinguished based
on R&D intensity, classify EU regions by positive and negative change effects
values: structural and competitive ones, classify EU regions by the components of
allocation effects: specialization and competitiveness.

The net total effect (surplus of regional average of employment over the EU) is
decomposed into two effects: regional effect and structural effect. Structural effect
is equal to the weighted average deviation between the average growth in the sectors
and the growth rate of the EU (the average growth rate in the sector is the same in all
analyzed regions). Regional effect is equal to the weighted average deviations in the
various sectors and the EU average (it is the effect of internal changes in a particular
region).

The classical equation of shift-share analysis indicates that the interregional
diversification of the average of the change of workforce numbers rate can be rep-
resented as the consequence of two reasons: different regional workforce structures
(the structural effect of changes), as well as the diversification of the change of
workforce numbers dynamics in high-tech intensity sectors characteristic for these
regions (the regional effect of changes). A positive structural effect indicates that
the change of workforce numbers rate, in a given region, was more favourable
than in other regions regarding sector oriented employment structure characteristic
for this particular region. A positive regional effect informs that the change of
workforce numbers, in a given region, was higher than in other regions since the
sectors of this particular region were characterized by more favourable dynamics
of the change of workforce numbers than in case of other regions. The analysis
of allocation effects with reference to workforce structure results, among others,
in the identification of regions featuring smart specialization and the occurrence
of competition advantages (Suchecki 2010). A region is characterized by the
specialized smart workforce structure if the share of workforce in HMH or KIS in
this particular region is higher than in the respective EU sectors. If, in the analyzed
region, the rate of workforce number changes in HMH or KIS sector is higher than in
the respective EU sectors, then such a region is characterized by certain competitive
advantages.
Stage 3. The assessment of relationships between regional specialization and
structural and regional effects of the change of workforce numbers.

Regression analysis was applied at this stage of research procedure.
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3 The Empirical Analysis Results

Figure 1 presents the distribution of Krugman index values of regional specialization
in smart growth sectors in NUTS 2 regions in the period 2009–2012. The discussed
values did not change significantly in terms of the median value referring to the
studied period, however, they were characterized by large variations. The variation
coefficient amounted to about 50 %.

Figure 2 shows NUTS 2 regions characterized by the highest and the lowest
values of Krugman index. Seven out of eight Romanian regions, the Spanish

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,0

2009 2010 2011 2012

Median
25%-75%
Non-outlier ranges
Outliers
Extreme

–0,1

Fig. 1 Krugman index values of regional specialization in the sectors distinguished by R&D
intensity in NUTS 2 regions in the period 2009–2012. Source: Authors’ compilation using
STATISTICA program
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Table 1 Workforce structure in the regions featuring the highest level of regional specialization
in 2012

Workforce structure (%)

Regions HMH LML KIS LKIS OTHER

EU 28 5:7 10:0 39:1 30:7 14:5

RO41—South-West Oltenia 3:6 7:0 15:6 15:5 58:3

RO21—North-East 2:4 16:0 19:6 22:3 39:7

RO11—North-West 3:8 19:6 17:3 22:8 36:6

RO31—South-Mutentia 6:8 12:5 18:3 19:9 42:4

RO22—South-East 2:4 16:0 19:6 22:3 39:7

RO42—West 14:7 17:1 16:9 21:8 29:6

ES70—Canarias 0:4 3:1 30:2 57:7 8:7

UK11—Inner London 1:0 1:7 65:4 26:4 5:5

PL33—Swietokrzyskie 3:4 13:4 24:8 22:7 35:6

RO12—Centru 5:4 22:6 21:7 25:7 24:7

Source: Authors’ compilation based on Eurostat database

region of Canarias, British capital region of Inner London and Polish region of
Świȩtokrzyskie were characterized by the highest level of regional specialization.
Among ten regions featuring the lowest specialization (workforce structure most
similar to the EU structure) four French, two Italian, one Austrian and one Finnish
region were listed.

Table 1 presents NUTS 2 regions characterized by workforce sector structure
different, to the greatest extent, from workforce structure in the European Union
regional space.

Based on Fig. 2 and Table 1 the economy sectors, characterized by workforce
share definitely different from workforce share in the EU, can be identified. In
case of Romanian regions and the Polish region, regional specialization consists
in the significantly larger share of workforce in the so-called other sectors. In
the Romanian region of South-West Oltenia, featuring the highest specialization
indicator, the share of workforce in the so-called OTHER sectors is over 43 % points
higher than in the EU. As one can infer from Fig. 3, the Spanish region of Canarias
specializes in the sector of less knowledge-intensive services and the services related
to tourist traffic (workforce share in LKIS sector is higher than in the EU by 27 %
points). On the other hand, the British capital region of Inner London specializes in
knowledge-intensive services (workforce share in KIS sector is higher than in the
EU by 26 % points).

The next stage of research procedure consisted in quantifying structural, regional
and allocation effects of the change of workforce numbers applying both classical
and dynamic shift-share analysis. Table 2 presents the results of classical shift-share
analysis covering 2009 and 2012 in relation to the previous year and referring to
the overall results and structural effects of employment changes in the distinguished
sectors.
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Fig. 3 Workforce structure in the regions featuring the highest level of regional specialization in
2012. Source: Authors’ compilation based on Eurostat database

Table 2 The results of
classic shift-share analysis
with regard to the effects of
employment changes in the
sectors distinguished by R&D
intensity

Effects of employment changes in NUTS 2 (%) 2012/2009

Total effect (employment growth rate in EU) �0:87

Gross structural effect

HMH �1:30

LML �5:44

KIS 2:39

LKIS 0:22

OTHER �5:83

Net structural effect

HMH �0:43

LML �4:57

KIS 3:26

LKIS 1:09

OTHER �4:96

Source: Authors’ compilation based on Eurostat database

The general tendency of decline in employment in the European Union is
responsible for 0.87 % of workforce number drop rate in every region and economy
sector in 2012. Net structural effects were defined by the decreasing gross effects
against workforce growth rate in the EU. Changes in employment in the KIS sector
in 2012 resulted in higher workforce number in all NUTS 2 regions, on average
by 3.26 %. Employment growth rate in LKIS sector in 2012 also influenced the
slight growth of workforce number in the EU countries (1.09 %). It is unclear how
employment in the OTHER sector was related to the drop of employment. Table 3
presents the results of the studied regions’ classification by positive and negative
effects of the change of workforce numbers in the period 2009–2012.

Class I (see Table 3) includes the largest number of regions featuring positive
influence of both structural and regional effects on the employment changes. Class
III covers the smallest number of regions characterized by the positive impact
of the regional factor only. Forty-five percent of the analyzed NUTS 2 regions
are characterized by the positive influence of structural and regional factors on
the employment structure changes. In 1 % of the studied regions both structural
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Table 3 Classification of NUTS 2 regions by positive and negative effect values: structural and
regional (DSSA 2012/2009)

Number of
Group Division criterion Country (number of regions) regions

Effects: Belgium (11), Germany (25), France (12),

I Structural (+) Italy (6), Luxembourg (1), Netherland (5), 106

Regional (+) Austria (6), Finland (3), Sweden (8), UK (25)

Cyprus (1), Hungary (1), Malta (1), Romania (1)

Effects : Denmark (5), Germany (5), Ireland (2), Greece (1)

Structural (+) Spain (12), France (5), Italy (5), Netherland (6)

II Regional (–) Portugal (1), Finland (1), UK (8) 57

Bulgaria (1), Czech Rep. (1), Croatia (1), Poland (1),

Slovenia (1), Slovakia (1)

Effects: Germany (1), Italy (5), Austria (3)

III Structural (–) Czech Rep. (4), Estonia (1), Hungary (1), Poland (6) 30

Regional (+) Romania (4), Slovakia (1)

Effects: Greece (5), Spain (5), Italy (4), Portugal (3)

IV Structural (–) Bulgaria (5), Czech Rep. (3), Lithuania (1), Latvia (1) 44

Regional (–) Poland (9), Slovenia (1), Hungary (1), Croatia (1)

Romania (3), Slovakia (2)

Source: Authors’ compilation based on Eurostat database

Table 4 The effects of workforce number allocation

Smart specialization of a region Countries Number
and a competitive advantage (NUTS 2 regions) of regions

HMH sector Belgium (1), Czech Rep. (1), Germany (12) 55

Ireland(1), Spain (3), France (3), Italy (5)

(EU share of workforce 5.6 % Hungary (5), Netherland (1), Austria (4) EU15 36

the rate of workforce Poland (3), Romania (1), Slovakia (4) EU13 19

number change –1.3 %) Finland (1), United Kingdom (5)

KIS sector Belgium (11), Germany (10), France (11) 64

Luxembourg (10), Hungary (1), Malta (1)

(EU share of workforce 39.1 % Netherland (1), Austria (1) EU15 60

the rate of workforce Slovenia (1), Finland (3), Sweden (6) 13 4

number change 2.39 %) Romania (1), UK (16)

Source: Authors’ compilation based on Eurostat database

and regional factors exerted negative impacts on employment structure changes.
This class covered the largest number of the latest EU enlargement regions (27).
Table 4 presents the composition of classes distinguished by the allocation effects
of workforce structure changes. 55 NUTS 2 regions featuring smart specialization
of workforce structure in 2012, as well as competitive advantages in the period
2012/2009, were identified in high and medium high-technology manufacturing.
Smart specialization and competitive advantage in knowledge-intensive services
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Table 5 NUTS 2 specialized regions characterized by competitive advantages in HMH and KIS
sectors

Specialization Competitive advantage

Countries NUTS 2 regions HMH KIS HMH KIS K�

r

EU 28 5:6 39:1 �1:3 2:4 –

Belgium BE28—Prov. Oost-Vlaanderen 6:0 46:0 25:8 2:8 0:15

Germany DE71—Darmstadt 10:1 45:0 19:1 2:4 0:23

DE93—Lüneburg 8:7 39:4 33:3 19:0 0:11

France FR53—Poitou-Charentes 5:7 39:2 10:5 18:6 0:02

Finland FI19—Länsi-Suomi 7:0 40:0 0:0 7:36 0:10

United UKD6—Cheshire 5:8 48:0 0:0 7:0 0:18

Kingdom UKF1—Derbyshire and
Nottinghamshire

6:0 45:0 18:4 6:3 0:12

UKJ3—Hampshire and Isle of
Wight

5:8 51:0 15:2 6:4 0:24

Source: Authors’ compilation based on Eurostat database

were characteristic for the group covering 64 NUTS 2 regions which included only
four EU13 regions—regions of so-called new EU countries—Malta, Bucuresti–
Ilfov, Zahodna Slovenija and Közép-Magyarország.

The subsequent research procedure stage was focused on evaluating the relations
occurring between regional specialization and structural and regional effects of the
change of workforce numbers. Table 5 lists the regions characterized by two-sector
smart specialization and two-sector competitive advantages. Among 237 analyzed
regions as few as 8, representing five of the so-called old EU15 countries, met
the presented criteria. The discussed group covered 3 British regions, 2 German,
1 Belgian, 1 French and 1 Finnish region. However, in accordance with Krugman
specialization index the listed regions were characterized by the low level of regional
specialization.

Figure 4 presents the relations existing between the level of regional specializa-
tion in smart growth sectors in accordance with Krugman specialization index and
the structural and regional effects of the change of workforce numbers in the studied
NUTS 2 regions. The dependence occurs between structural effects of changes in the
number of working population and the values of Krugman regional specialization
index, however, no dependence was observed between regional effects of the change
of workforce numbers and the values of Krugman regional specialization index.

In order to identify sectors responsible for the EU NUTS 2 development, Pear-
son’s linear correlation coefficient of structural effects (distinguished in accordance
with the dynamic shift-share analysis) and the share of workforce in particular
economy sectors was calculated.

Definitely, the strongest positive relation was observed between structural effects
and the share of workforce in knowledge-intensive services sector (0.93). A positive
relation, however, statistically irrelevant for the accepted significance level ˛ D
0:05 was characteristic for structural effects and the share of workforce in less
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Fig. 4 The relations occurring between the level of regional specialization in smart growth sectors
and the effects of the change of workforce numbers. Source: Authors’ compilation based on
Eurostat database

knowledge-intensive services sector. The other sectors, as well as low and mid low-
tech sector, featured negative correlation on structural effects in the NUTS 2 regions.
The strongest negative correlation was registered with reference to structural effects
and the share of workforce in other sectors (�0:83).

4 Conclusions

In the period 2009–2012 the analyzed regions showed the significant diversification
of regional specialization in the sectors distinguished by R&D intensity. The
variability coefficient of regional specialization indices amounted to over 50 %.

Sector economic structures, and thus also workforce structures featuring R&D
intensity, are usually characterized by slow, evolutionary transformations over
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time and therefore the analyzed values of regional specialization indices presented
relative stability in the studied period. The Romanian region South-West Oltenia
showed the highest specialization indicator, the share of workforce in the other
sectors was over 43 % points higher than in the EU28.

Forty-five percent of the analyzed NUTS 2 regions were characterized by positive
effect of structural and regional factors on employment structure changes. In case
of 18 % studied regions both structural and regional factors had negative effect
on employment structure changes. Among 237 analyzed regions as few as 8,
representing five of the so-called old EU15 countries, were characterized by two-
sector smart specialization and two-sector competitive advantages (in HMH and
KIS sectors). The discussed regions were, however, characterized by the low level of
regional specialization measured by Krugman index. The dependence was observed
between structural effects of changes in the number of working population and the
values of Krugman regional specialization index. Such dependence was, however,
absent in case of regional effects.

Workforce share in KIS sector had strong positive impact on the structural effect
value, whereas workforce share in OTHER sectors exerted strong negative impact
on the structural effect value. Workforce share in HTM sector had no such impact.
In the regions characterized by high values of Krugman specialization index and
positive structural effects workforce share in KIS sector was higher than the EU
28 average. In the regions featuring high values of Krugman specialization index
and negative structural effects workforce share in the so-called OTHER sectors
was significantly higher than the EU 28 average. Shift-share analysis is used in
regional specialization research. The analysis results can constitute the basis for
determining the regional specialization specificity identified by means of Krugman
index application.
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Evaluation of the Individually Perceived Quality
from Head-Up Display Images Relating
to Distortions

Sonja Köppl, Markus Hellmann, Klaus Jostschulte, and Christian Wöhler

Abstract The head-up display (HUD) projects a virtual image in the driver’s field
of vision. Here, the image quality plays an important role. However, assembly
tolerances cause image distortions. The evaluation of these distortions is a current
issue, because procedures for the assessment of optical aberrations cannot be
applied. Therefore new features and methods are implemented, which evaluate
the subjective impression of distortions. The overall objective is to investigate the
correlation between subjective labels and objective features. A total of 13 features
are required to describe the image quality. Subsequently, the relationship between
the labels and the features is adapted to a regression equation. For it, representative
images are needed, which are selected by cluster analytical methods.

1 Introduction

The HUD system projects important information such as navigation instructions
and indications of different driver-assistance systems, see Fig. 1, directly in the
field of vision. The system housing is mounted behind the steering wheel in the
dashboard. The device consists of mirror optics, a full-coloured display module and
the windscreen. Due to the optical path, the virtual image seems to hover just above
the front end of the hood at nearly 2 m distance to the driver (Blume et al. 2013).
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Fig. 1 The virtual image
shows driver relevant
information. (Own illustration
adapted from Jordan 2014)

Fig. 2 SMIA TV-Distortion
(image taken from SMIA
2004)

The image quality is influenced by assembly tolerances. Observable distortions
are generated that affect the overall impression (Díaz 2005). Possible types of
distortions are rotation, trapezoid, aspect deviation, etc. (Eichhorn and Zink 2012).
This results in the demand for a method that is able to evaluate the individually
perceived quality from HUD images. Therefore, calculation rules are required to
assess distortions quantitatively. Additionally, it is evaluated which factors cause
distortions and how these defects are perceived by drivers.

2 Existing Methods to Handle Distortions

Perceived distortions can be corrected by complex image warping. Warping assumes
that an undistorted image is transformed to a distorted image by an optical system.
Conversely, a suitable pre-distorted image passed through the optical system is
converted into a straight undistorted image (Milic̆ić 2009).

There exist many standards that specify occurring distortions. The descriptions
are mainly based on the aberrations of optical systems. A practical and common
method to measure distortions is named TV-Distortion, defined in the SMIA
specification (SMIA 2004, Sect. 5.20). It is the difference in height of the image
corners and the image centre as shown in Eq. (1). The reported value is the average
distortion of the four corners of the image (SMIA 2004).

TV-Dist D A � B

B
� 100 % (SMIA 2004). (1)

The values A and B, needed to calculate the TV-Distortion rate, are schematically
shown in Fig. 2.

With respect to the HUD, occurring distortions are not limited to the aberrations
of optical systems. The distortions are rarely symmetrically, and they occur irregu-
larly on all four sides. For these reasons, a geometric description of the distortion is
more useful.
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Table 1 Distortion types
considered annoying

Answers from participants Evaluation features Feature-no.

Skewing 75 % Contour v6, v7, v8

Bending 59 % Contour v11, v12, v13

Discomposure 50 % Local deviations v4, v5

Tapered 17 % Contour v9, v10

Stretching 8 % Size difference v1, v2, v3

3 Objectification of Distortions

In order to make distortions visible, a test pattern is displayed as virtual image. The
used pattern consists of 9 � 21 dots with the central dot highlighted. From a driver’s
perspective a camera image of the virtual HUD image is made. This camera image
is analysed by existing image processing algorithms, which calculate the x–y centre
coordinates of the dots (Eichhorn and Zink 2012).

According to Eichhorn and Zink (2012) and Neumann (2012), the 9 � 21 x–y
coordinates of the dots are converted into 13 objective features. Each feature is
supplied with a unique number v1 : : : v13, which is referenced in the course of the
document. The features are based on the geometric characterisation and represent 13
distortion types numerically. The first three values describe the size differences and
the aspect deviation (v1; v2; v3). The following two features are used to determine
local magnifications (v4; v5) and the contour (rotation, trapezoid, misalignment,
smile: : :) of the image is captured with the remaining eight values (v6; : : : v13)
(Eichhorn and Zink 2012; Neumann 2012).

To become familiar with the evaluation features, a ranking by relevance is
created. Therefore, a volunteer study is carried out. During this enquiry, 39 images
are shown to 12 test persons. The images are produced artificially and show 3
different occurrences for each of the 13 distortion types. Therefore, each kind of
distortion type is considered separately. Subsequently, the participants are asked:
“Which distortion type interferes most strongly?”. The answers are listed in Table 1.
In order to determine a subjective ranking, the used evaluation features are assigned
to the statements of the test persons.

The analysis of the answers shows that skewing is mentioned first, followed by
bending, discomposure, a tapered shape and a stretched image.

The generated ranking of the features is needed for the determination of the
cluster condition, see Sect. 5.2.

4 Simulation of Assembly Tolerances

To check which kind of assembly tolerances cause image distortions, an existing
hardware arrangement is used. Starting from the ideal position, different tolerances
are simulated. From a driver’s view, a camera image of the virtual image, which
shows the test image, is generated. Subsequently, for each camera image the 13



268 S. Köppl et al.

Fig. 3 Distortions caused by
assembly tolerances of the
HUD housing (illustration
adapted from Jordan 2014,
distortion types according to
Eichhorn and Zink 2012 and
Neumann 2012)

objective feature values v1 : : : v13 are calculated and the subjective labels y are
determined for some representative images.

4.1 Effect of Different Assembly Tolerances

Since the virtual image is generated by the HUD housing and the windscreen,
assembly tolerances of these two components are simulated. The resulting virtual
images are considered subjectively. The housing can be installed shifted or rotated in
the dashboard. Several test series show that a displaced HUD does not cause visible
distortions. The same applies to assembly tolerances of the windscreen. It can be
positioned wrongly or with restraints, but no perceivable distortions are generated.
In contrast, a rotated HUD housing generates visible distortions see Fig. 3.

The resulting image quality is a combination of all 13 single distortion types.
Overall, rotational assembly tolerances of the housing change the optical perfor-
mance substantially.

4.2 Generation of the Database

To examine the effect of distortions caused by assembly tolerances, a database is
generated. Thereby, only impacts of a rotated HUD housing are examined. Unfor-
tunately, the irregularities can occur in a very large variety of combinations. The
investigation is thus limited on the main permutations. Overall, the measurement
consists of 23,965 combinations. The resulting virtual images are captured from
three different camera positions, for a small, tall and average driver. Altogether
71,895 camera images are generated and the objective evaluation features are
determined for each image.
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5 Determine the Subjective Impression

To examine the customer acceptance, the images of the database are evaluated sub-
jectively. Unfortunately, the rating of nearly 72,000 images is very time consuming
and cannot be obtained by asking test persons. Therefore the evaluation is limited
to some representative images, which are detected by cluster analytical methods.
During clustering, similar images are grouped together. The aim is that one group
contains only images with the same subjective evaluation. Additionally, the rating of
one single image should correspond to the evaluation of all other images in the same
group. Consequently, the expenditure of a customer questioning can be reduced,
because only one image from each group must be assessed.

5.1 Used Cluster Analytical Methods

K-means: According to Bortz and Schuster (2010), an initial predefined number
of cluster centres are chosen randomly. For all data points v, the (usually
Euclidean) distance to each cluster centre is computed, and the cluster mem-
bership of each data point is set according to the cluster centre with the smallest
distance. In the next step the cluster centres are refined by computing the mean
vectors of the data points assigned to them. This procedure is repeated until the
assignment of the data points to the cluster centres does not change any more. The
final clustering result depends on the initialisation (Bortz and Schuster 2010).
Ward: According to Bortz and Schuster (2010), each data point initially forms a
cluster of its own. From all possible pairs of cluster centres, the cluster centres Vi

and V 0i whose combination results in the minimal increase of the sum of squared
differences QSe of the corresponding elements (number of images in one cluster,
ni and n0i) are merged, see Eq. (2).

QSe D ni � ni0

ni C ni0
�

13X

jD1

.Vij � Vi0j/
2 for merging cluster centres Vi and Vi0: (2)

Merging of cluster pairs is stopped once a predefined threshold for the value of
QSe is exceeded (Bortz and Schuster 2010).
Combine Ward and K-means: It is often favourable to utilise the result of the
Ward algorithm as an initialisation to the K-means algorithm. This circumvents
the property of the Ward algorithm that the assignment of a specific data point
to a cluster remains unchanged, and the result of the K-means algorithm does
not depend on an arbitrary random initialisation any more (Bortz and Schuster
2010).
Mean-shift: According to Cheng (1995), for an initial position in feature space
a kernel based approximation to the gradient of the distribution of data points is
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computed in an iterative manner, and the cluster centre is moved in the direction
of this approximated gradient. This procedure is repeated until convergence.
Cluster centres thus correspond to local maxima of the distribution of the points
in feature space. For a distribution of data points with several local maxima,
the algorithm needs to be started from a (possibly large) number of different
initial points in order to determine all local maxima of the distribution, where the
number of detected local maxima may also depend on the form of the utilised
kernel function (Cheng 1995).

5.2 Numeric Determination of Cluster Condition

The minimal number of clusters should be found that exhibits no subjective
difference between the images in one group. The requirement of subjective equality
in a cluster is examined and numerically quantified in a preliminary investigation.
Therefore, the 71,895 images are analysed in different cluster solutions. Due to the
large amount of data and the temporal expenditure, the examination is executed
with only six test persons. For clustering the simple K-means algorithm is used,
where the number of clusters is known in advance. Successively, the images for
each cluster are shown on an external monitor. As soon as a difference between the
images in one cluster can be perceived, the questioning is aborted and restarted with
modified parameters. The resulting clusters depend on the selected features and the
chosen cluster number. Due to the different subjective relevance, see Table 1, not all
evaluation features are needed to describe the subjective difference. Until a suitable
arrangement of the images is found, either a further feature is taken for clustering
or the cluster number is increased. It must be ensured that the start allocation of
the K-means algorithm remains the same. The cluster condition is reached, if the
participants confirm that no subjective difference exist between the images in one
cluster. Then, the required cluster condition can be obtained based on the involved
features.

The study shows that only five evaluation features (v6, v7, v8, v11, v12) are needed
to describe the subjective perceptible difference. The images are properly sorted if
the maximum difference of the feature values 4rate inside the clusters is smaller
than 1 HUD pixel (0.58 � 0.58 mm), see Eq. (3). The distribution of the values of
the remaining eight features has no effect on the subjective perception. It is shown
that images with similar objective feature values (v6, v7, v8, v11, v12) cause the same
quality impression.

4rate < 1 HUD pixel

(
Contour - skewing: Feature-No. v6, v7, v8

Contour - bending: Feature-No. v11, v12

: (3)
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5.3 Clustering Results

After the objective of clustering is known, the 71,895 images are divided into
subjective groups. Therefore, all 13 features are used. The minimum number of
clusters is determined where no subjective difference between the images could be
perceived. The images in one cluster are all annotated with the same subjective label
and have objective values of features v6, v7, v8, v11 and v12 that vary by less than 1
HUD pixel, see Eq. (3). To obtain the best solution, the results of Ward, K-means,
combined Ward–K-means and Mean-shift clustering are compared. The used cluster
analytical methods are implemented in MATLAB.

The resulting cluster numbers are summarised in Table 2. Since the cluster
solution of the K-means algorithm depends on the randomly selected starting
condition, the results of 100 different initial conditions are considered.

The comparison between the solutions shows that the combination of Ward and
K-means yields, with 1007 groups, the smallest number of clusters. Thus, it can be
considered as the best solution. In contrast, the largest number of clusters is obtained
from the Mean-shift algorithm. The results of the Ward method and the K-means
algorithm are in between these values.

5.4 Subjective Evaluation

The previously found cluster solution is now used as basis for another customer
survey, where only 1007 representative images are assessed subjectively. A total
of 12 test persons are asked. The images that are next to the theoretical cluster
centre are shown on an external monitor. The images are evaluated on a scale from
1 (very annoying) to 5 (imperceptible), according to the ITU-R 500 directive, see
Table 3 (ITU-R 2002). This scale is initially used to assess the subjective perception

Table 2 Minimum numbers of clusters resulting from different cluster methods

Clustering method Number of clusters

Ward 1239

K-means (average of 100 starting positions) 1146

Ward and K-means 1007

Mean-Shift 4288

Table 3 Evaluation of
representative HUD images

Rating scale (ITU-R 2002) Number of images

5 Imperceptible 5

4 Perceptible, but not annoying 9

3 Slightly annoying 35

2 Annoying 551

1 Very annoying 407
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of television images and is adopted for this study to quantify the perceived quality
of HUD images.

It could be seen that only five clusters with the highest score exist. On the
contrary, there exist 407 clusters with the lowest score. Besides, the occurring
distortions are corrected by image warping before the vehicle is sold.

6 Correlation Objective: Subjective

To analyse the relationship between the feature values v and the subjective labels
y, the correlation coefficients (rvy) are determined. The correlation between each
single feature and the perceived quality of the whole image is calculated, see Eq. (4).
The correlation coefficient can take values between ˙1. A value of ˙1 indicates
a complete positive or negative linear correlation. In contrast, 0 shows that the
variables are linearly independent from each other (Kohn and Öztürk 2010).

rvy D
P806

jD1.vij � Nvi/ � .yj � Ny/
qP806

jD1.vij � Nvi/2 �P.yj � Ny/2

correlation between vi, y: (4)

The resulting correlation coefficients are shown in Table 4. As it can be seen, the
values are between �0:14 and 0.17. This indicates that there is almost no correlation
between a single feature and the perceived quality of the image. The subjective label
cannot be mapped to only one single feature.

The subjective labels correspond to a variety of combinatorics of all feature types.
Therefore, the relationship between the subjective labels and all objective features
is adapted to a regression equation .d.v//, which is determined by a full polynomial
approach. If all polynomial terms up to a certain degree (G) are used, the polynomial
length (M) is given by Eq. (5).

M D .q C G/Š

GŠ � qŠ
polynomial length with q factors (Schürmann 1996): (5)

According to Schürmann (1996), this general polynomial consists of one constant
term a0 followed by linear terms, quadratic terms, cubic terms and so on, up to an
arbitrary degree G:

d.v/ D a0 C a1v1 C � � � C aqvq C aqC1v
2
1 C aqC2v1v2 C � � � C aM�1vG

q :

Table 4 Correlation between the subjective labels and the single feature types

Feature-No. v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

r 0.07 0.06 0.12 0.17 �0:03 0.01 �0:14 0.03 �0:14 �0:11 �0:06 0.06 0.13
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Table 5 Success analysis of
the predicted ratings

Degree of the polynomial First Second

RMSE 1.34 1.38

The correlation between the subjective labels and the combination of all objective
features is mapped to the regression coefficients a0. . . aM�1 (Schürmann 1996). The
equation is thus able to estimate the subjective labels (a value between 1 and 5) from
given objective feature values. To develop meaningful results, the 1007 labelled
images are divided into two groups. The training set includes 806 images (80 % of
the labelled data) and is used to determine the regression coefficients. The remaining
201 images are used to test the detected equation. Because the original customer
labels (ygiven) are known the predicted labels (ymodel) can be checked. According to
Schürmann (1996), the root mean square error (RMSE) is determined, see Eq. (6).

RMSE D
vuut1

n
�

nX

iD1

.ymodeli � ygiveni
/2: (6)

The RMSE is a measure of difference between the labels. If all prognoses exactly
apply, the RMSE is 0. The larger the RMSE, the worse the quality of the prediction.

The regression analysis is performed two times, for a polynomial of the first
and the second order. For this purpose, a special MATLAB script is developed. The
resulting RMSE values are summarised in Table 5. The values show that the RMSE
is lowest for the first order equation. It can be concluded that the correlation between
the subjective labels and the combination of all objective features is best reproduced
by a regression equation of the first order. Thus, an RMSE of 1.34 could be obtained.

7 Summary

To evaluate possible distortions in the virtual HUD image, 13 features are deter-
mined, which are based on the geometric characterisation. These features represent
occurring distortions (rotation, trapezoid, aspect deviation, etc.; Eichhorn and Zink
2012) numerically. Because distortions are mainly caused by rotatory assembly
tolerances of the HUD housing, an existing hardware arrangement is used to
generate numerous distorted images. The result is a database of 71,895 images.
To analyse the customer acceptance, the images are labelled subjectively. To keep
the effort of the questioning low, the evaluation is limited to representative images,
which are selected by cluster analytical methods. Therefore the large database is
split into several subgroups. For each cluster, the image that is closest to the cluster
centre is considered to be representative. Besides, the number of clusters results
from the subjective impression. The best result, with 1007 groups, is achieved by the
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combination of the Ward and K-means clustering. It could be confirmed that images
with equal objective values cause a very similar quality impression. After executing
a volunteer study, the customer requirements and the achieved quality judgements
of virtual HUD images could be inferred. Subsequently, the relationship between
the subjective labels and the objective features is adapted to a regression equation,
which is determined by a full polynomial approach. To develop meaningful results,
the 1007 labelled images are divided into two groups. The training set includes
806 images and is used to determine the regression coefficients. The remaining
201 images are used to test the detected equation. The best result is achieved by
a regression equation of the first order. Thus, an RMSE of 1.34 is obtained.
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Minimizing Redundancy Among Genes Selected
Based on the Overlapping Analysis

Osama Mahmoud, Andrew Harrison, Asma Gul, Zardad Khan,
Metodi V. Metodiev, and Berthold Lausen

Abstract For many functional genomic experiments, identifying the most charac-
terizing genes is a main challenge. Both the prediction accuracy and interpretability
of a classifier could be enhanced by performing the classification based only on a
set of discriminative genes. Analyzing overlapping between gene expression of dif-
ferent classes is an effective criterion for identifying relevant genes. However, genes
selected according to maximizing a relevance score could have rich redundancy. We
propose a scheme for minimizing selection redundancy, in which the Proportional
Overlapping Score (POS) technique is extended by using a recursive approach to
assign a set of complementary discriminative genes. The proposed scheme exploits
the gene masks defined by POS to identify more integrated genes in terms of their
classification patterns. The approach is validated by comparing its classification
performance with other feature selection methods, Wilcoxon Rank Sum, mRMR,
MaskedPainter and POS, for several benchmark gene expression datasets using three
different classifiers: Random Forest; k Nearest Neighbour; Support Vector Machine.
The experimental results of classification error rates show that our proposal achieves
a better performance.
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1 Introduction

Microarray technology, as well as other high-throughput functional genomics
experiments, has become a fundamental tool for gene expression analysis in recent
years. A major challenge with microarray data is the problem of dimensionality;
tens of thousands of genes’ expressions are observed in a small number, tens to
few hundreds, of observations. For a particular classification task, microarray data
are inherently noisy since most genes are irrelevant and uninformative to the given
classes (phenotypes).

Performing a supervised classification based on expressions of discriminative
genes, identified by an effective gene selection technique, leads to improved predic-
tion accuracy, as well as interpretation of the biological relationship between genes
and the considered clinical outcomes. This procedure of pre-selection of informative
genes also helps in avoiding over-fitting problem and building a faster model by
providing only the features that contribute most to the considered classification
task. Identification of discriminative genes for their use in classification has been
investigated in many studies (e.g., Apiletti et al. 2012; Mahmoud et al. 2014a).
Various approaches have been proposed including Best Individual Genes (Su et al.
2003), Max-Relevance and Min-Redundancy based approaches (Peng et al. 2005),
Set Covering Machines (Kestler et al. 2006), MaskedPainter (Apiletti et al. 2012)
and Proportional Overlapping Score (POS) approach (Mahmoud et al. 2014a).
Different criteria have been used in order to detect the most informative genes
including: p-values of statistical tests, e.g. t-test or Wilcoxon Rank Sum test (Lausen
et al. 2004); ranking genes using statistical impurity measures, e.g. information gain,
Gini index and max minority (Su et al. 2003); selecting genes based on overlapping
analysis (Apiletti et al. 2012; Mahmoud et al. 2014a).

Analyzing the overlap between gene expression measures for different classes is
an effective criterion for identifying discriminative genes for a considered classifi-
cation task. Mahmoud et al. (2014a) developed a procedure specifically designed to
select genes based on their overlapping degree across different classes. This proce-
dure, named Proportional Overlapping Score (POS), calculates a relevance score for
each gene. For binary class situations, this score estimates the overlapping degree
between the expression intervals of both classes taking into account three factors
that form the characteristics of classes’ overlapping. It has been defined to provide
higher scores for genes with lower discriminative power. Genes are then ranked in
ascending order according to their scores. POS method characterizes each gene by
means of a gene mask that represents the capability of a gene to unambiguously
assign training observations to their correct classes. Characterization of genes using
training observation masks with their overlapping scores allows the detection of a
minimum subset of genes that provides the best classification coverage on a training
set of observations. A final gene set is then provided by combining the minimum
gene subset with the top ranked genes according to the estimated scores. Feature
selection produced by POS is robust against outliers, since gene masks are defined
based on the interquartile range of gene’s expressions. However, the top ranked
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genes, given based on POS relevance score, may provide a classifier with redundant
information.

In this article, we propose an extended version of POS method, called POSr, that
can exploit detection of the minimum subset of genes in a recursive way in order to
mitigate redundancy in the final gene selection.

The article is organized as follows. Section 2 shows the main idea of POS and
explains the proposed method. The results of proposal are compared with some
other gene selection techniques in Sect. 3. Section 4 concludes the article.

2 Methods

2.1 Overlapping Analysis for Binary Class Problems

Microarray data are usually presented in the form of a gene expression matrix,
X D 

xij
�
, such that X 2 R

P�N and xij is the observed expression value of
gene i for observation (tissue sample) j where i D 1; : : : ; P and j D 1; : : : ; N.
Each observation is also characterized by a target class label, yj, representing the
phenotype of the observation being studied. Let Y 2 R

N be the vector of class
labels such that its jth element, yj, has a single value c which is either 1 or 2.

Analyzing the overlap between expression intervals of a gene for different classes
can provide a classifier with an important aspect of a gene’s characteristic. The
idea is that a certain gene i can assign observations to class c because their gene i
expression interval in that class is not overlapping with gene i interval of the other
class. In other words, gene i has the ability to correctly classify observations for
which their gene i expressions fall within the expression interval of a single class.

POS method, proposed by Mahmoud et al. (2014a), initially exploits the
interquartile range approach to robustly define gene masks that report the discrimi-
native power of genes avoiding outlier effects. Construction of these masks can be
described as follows.

2.1.1 Core Intervals and Gene Masks

For a certain gene i, two expression intervals, one for each class, can be defined for
that gene. The cth class core interval for gene i can be defined in the form:

Ii;c D Œai;c; bi;c	 ; i D 1; : : : ; P; c D 1; 2; (1)

such that:

ai;c D Q.i;c/
1 � 1:5 IQR.i;c/; bi;c D Q.i;c/

3 C 1:5 IQR.i;c/; (2)
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Fig. 1 Core intervals with gene mask. An example for core expression intervals of a gene with 18

and 14 observations belonging to class 1, in black colour, and class 2, in grey colour, respectively,
with its associated mask elements. Elements of the non-overlapped observations set are represented
by circles

where Q.i;c/
1 , Q.i;c/

3 and IQR.i;c/ denote the first, third empirical quartiles, and
the interquartile range of gene i expression values for class c, respectively. The
multiplier value of 1:5 is the default value that commonly used with the interquartile
range approach for detecting outliers (Tukey 1977).

For each gene, a mask is defined based on its observed expression values and
constructed core intervals. Gene i mask is represented by a vector of length equal
to the total number of observations. It reports the observations that gene i can
unambiguously assign to their correct target classes. Thus, gene masks can represent
the capability of genes to classify correctly each observation, i.e. it represents a
gene’s classification power. For a particular gene i, element j of its mask is set to 1 if
the corresponding expression value xij belongs only to core expression interval Ii;cj

of the single class cj, where cj is the target class of observation j. Otherwise, it is set
to zero.

Figure 1 shows the constructed core expression intervals Ii;1 and Ii;2 associated
with a particular gene i along-with its gene mask. The non-overlapped observations
are represented by circles. The gene mask is sorted corresponding to the observa-
tions ordered by increasing expression values.

A matrix of gene masks M D 
mij
�

can be produced such that the mask of gene i
is presented by Mi:(the ith row of M) and gene mask element mij is defined as:

mij D
	

1 if j 2 V
0
i

0 otherwise
; (3)

where V
0
i is the set that includes non-outliers observations whose observed expres-

sions fall into the non-overlapping region such that i D 1; : : : ; P and j D 1; : : : ; N.
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2.1.2 Proportional Overlapping Score

An overlapping measure, called Proportional Overlapping Score (POS), is devel-
oped to estimate the overlapping degree between different expression intervals
taking into account three factors: (1) length of the overlapping region; (2) number
of overlapped observations; (3) the proportion of classes’ contribution to the
overlapped observations (Mahmoud et al. 2014a). For each gene i, POSi is estimated
as follows:

POSi D 4

D
I.v/
i

E

hIii
�i

`i

 
2Y

cD1

�c

!
; (4)

where
D
I.v/
i

E
is the length of the overlapping region, and hIii is the length of the total

core interval which is given by the region between the global minimum and global
maximum boundaries of core intervals for both classes, see Fig. 1. Whereas �i and `i

represent number of observations whose observed expressions of gene i fall within
the overlapping region and number of non-outlier observations, respectively, while
�c is the proportion of class c observations among overlapped observations. Hence,
�c can be defined as:

�c D �i;c

�i
; (5)

where �i;c represents number of the overlapped observations belonging to class c.
The factor 4 is included in (4) in order to scale POS values within the interval
Œ0; 1	 (Mahmoud et al. 2014a). According to (4) and (5), the value of POS measure

for gene i shown in Fig. 1 is 4 : 15
29

:
�

6
15

: 9
15

�
:

D
I
.v/
i

E

hIii D 72
145

:

D
I
.v/
i

E

hIii .

2.2 Recursive Minimum Sets for Minimizing Redundancy
(POSr)

POS gives its final selection by combining a minimum gene subset produced using
gene masks, defined in (3), with the top ranked genes according to the estimated
POS scores, defined in (4). It is an effective feature selection method for identifying
discriminative genes for a considered classification task.

However, POS selections may provide a classifier with redundant information
since the set of top ranked genes is likely to have redundancy among its mem-
bers. Such a redundancy increases the model complexity since it increases the
dimensionality without adding further information. Moreover, redundancy may
affect classification prediction accuracy as well as interpretation of the underlying
biological relationship between the features and considered clinical outcomes.
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A gene mask reflects the capability of the gene to correctly classify each
observation to its target class. Genes with higher number of 1 bits in their masks
are more informative to the considered classification problem [see (3)]. When two
genes classify in the same way the same observations, then their masks should be
identical. Genes with complementary masks, on the other hand, can provide diverse
information to the classifier model.

In this article, we propose an extended version of POS, called POSr, in which
gene masks along-with POS measure are exploited to identify minimum subsets
of genes in a recursive way in order to mitigate the potential redundancy in the
final gene selection. The subset is designated to be the minimum one that correctly
classifies the maximum number of observations in a given training set, avoiding the
effects of expression outliers.

Let Gz be a set of remaining genes at the zth iteration given by excluding the
selected subset of genes at the .z � 1/th iteration, such that G1 is the full set of all
genes (i.e., jG1j D P). Also, let M .Gz/ be its aggregate mask which is defined as the
logical disjunction (logic OR) among all masks corresponding to genes that belong
to the set Gz. It can be expressed as follows:

M .Gz/ D _
i2Gz

Mi: (6)

At iteration z, our objective is to search the set, Gz, for the minimum subset,
denoted byG�z , for which M

�
G
�
z

�
equals to the aggregate mask of the corresponding

set of genes, M .Gz/. In other words, our minimum subset of genes should satisfy
the following statement:

arg min
G

�

z �Gz

 
ˇ̌
G
�
z

ˇ̌
ˇ̌
ˇ̌
ˇ

 
M
�
G
�
z

� D _
i2G�

z

Mi: D M .Gz/

!!
: (7)

This procedure is performed in a recursive way and ends when the required number
of genes, set by the user, is selected.

The pseudo code of our procedure, POSr, is reported in Algorithm 3. Its inputs
are: the matrix of gene masks, M; POS scores for all genes; number of genes to be
selected, r. It produces the sequence of selected genes, T�, as output.

At the initial step (z D 0), we let T D ; (line 2); where T is a set created to
contain the successively selected minimum subsets of genes. Then at each iteration,
z, the following steps are performed:

1. We let k D 0, G�z D ; and M
�
G
�
z

� D 0N (lines 5–7) to initialize individual
selection within the minimum subset G�z , where M

�
G
�
z

�
is the aggregate mask

of the set G�z , see (6). Then at each sub-iteration, k, the following sub-steps are
performed:

a. Among genes of the set Gz, the one(s) with the highest number of mask bits
assigned to 1 is (are) chosen to form the set Szk (line 10).
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Algorithm 3: POSr method: recursive minimum subsets
1 Inputs: M, POS scores and number of required genes (r).
2 Output: Sequence of the selected genes T�.

1: z D 0 {Initialization}
2: T D ;
3: while

ˇ̌
T

ˇ̌
< r do

4: z D zC 1

5: k D 0 {Initialization of individual
selection}

6: G
�

z D ;
7: M

�
G

�

z

� D 0N

8: while M
�
G

�

z

� ¤ M .Gz/ do
9: k D kC 1

10: Szk D argmax
i 2 Gz

 
NP

jD1

I
�

m.k/
ij D 1

�!

{Assign gene set whose masks have
max. bits of 1}

11: gzk D argmin
i 2 Szk

.POSi/ {Select the

candidate with the best score among
the assigned set}

12: G
�

z D G
�

z C gzk {Update the
target set by adding the selected
candidate}

13: for all i 2 Gz do
14: M

.kC1/
i: D M

.k/
i: ^ M

0
�
G

�

z

�

{update gene masks such that
the uncovered observations are
only considered}

15: end for
16: end while
17: T D TCG

�

z
18: GzC1 D Gz �G

�

z
19: end while
20: T

� is the sequence whose members are
the first r genes in T

21: return T
�

b. The gene with the lowest POS score among genes in Szk, if there are more
than one, is then selected (line 11). It is denoted by gzk.

c. The set G�z is updated by adding the selected gene, gzk (line 12).
d. All masks of genes in Gz are also updated by performing the logical

conjunction (logic AND) with negated aggregate mask of set G�z (line 14).

Note that M.k/
i: represents updated mask of gene i at the kth iteration such that

M.1/
i: is its original gene mask whose elements are computed according to (3).

e. This sub-procedure is successively iterated and ends when all masks of genes
in Gz have no one bits anymore, i.e. the selected genes cover the maximum
number of observations. This situation is accomplished iff M

�
G
�
z

� D M .Gz/.

2. The set T is updated by adding the detected minimum subset of genes, G�z
(line 17).

3. Genes within the selected minimum subset, G�z , are then removed from the set
of genes, Gz (line 18).

4. The procedure is successively iterated and ends when the size of the set T is
greater than or equal the number of required genes, r. Then, the target sequence
of selected genes,T�, is produced by selecting the first r genes in T (lines 20, 21).

Thus, this approach combines recursively the detected minimum subsets of genes
that provide the best classification coverage for a given training set. Selection of the
minimum subsets based on the updated gene masks allows to minimize redundancy
among the final selection list.
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Table 1 Description of used gene expression datasets

Dataset Genes Observations Class-sizes Est. error Source

Leukaemia 7129 72 47/25 0:049 Golub et al. (1999)

Breast 4948 78 34/44 0:369 Michiels et al. (2005)

Srbct 2308 54 29/25 0:0008 Statnikov et al. (2005)

Lung 12533 181 150/31 0:003 Gordon et al. (2002)

GSE24514 22215 49 34/15 0:0406 Alhopuro et al. (2012)

GSE4045 22215 37 29/8 0:2045 Laiho et al. (2007)

GSE14333 54675 229 138/91 0:4141 Jorissen et al. (2009)

3 Results and Discussion

For evaluating a feature selection method, one can assess the accuracy of a classifier
applied after the feature selection process. Such an assessment can verify the
efficiency of gene selections. In this article, our experiment is conducted using seven
publicly available gene expression datasets in which the POSr method is validated
by comparison with three well-known gene selection techniques along-with POS
method. The performance is evaluated by obtaining the classification error rates
from three different classifiers: Random Forest (RF), k Nearest Neighbour (kNN),
Support Vector Machine (SVM).

Table 1 summarizes the characteristics of the datasets. The estimated classifica-
tion error rate is based on the Random Forest classifier with the full set of features,
without pre-selection.

Fifty repetitions of tenfold cross validation analysis were performed for each
combination of dataset, feature selection algorithm, and a given number of selected
genes, up to 50, with the considered classifiers. For each experimental repetition,
the split seed was changed while the same folds and training datasets were
kept for all feature selection methods. To avoid bias, gene selection algorithms
have been performed only on the training sets. For each fold, the best subset
of genes has been selected according to the Wilcoxon Rank Sum (Wil-RS)
technique, Minimum Redundancy Maximum Relevance (mRMR) method (Peng
et al. 2005), MaskedPainter (MP) (Apiletti et al. 2012), POS (which is implemented
in propOverlap R package (MAHMOUD et al. 2014b), along-with our proposed
method. The expressions of the selected genes as well as the class labels of the
training observations have then been used to construct the considered classifiers. The
classification error rates on the test sets are separately reported for each classifier and
the average error rate over all the 50 repetitions is then computed.

To highlight the entire performances of the compared methods against our
proposed approach, a comparison between the minimum error rates achieved by
each method was conducted. Table 2 summarizes these results. Each row shows the
minimum error rate (along-with its corresponding set size, shown in brackets) for
a specific dataset, reported in the first column. In addition, the error rates of the
corresponding classifiers with the full set of features, without feature selection, are
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Table 2 Comparison between the minimum error rates yielded by the feature selection methods
using RF, kNN and SVM classifiers

Dataset Classifier Wil-RS mRMR MP POS POSr Full set

Leukaemia RF 0.030 (20) 0.118 (40) 0.015 (9) 0.0002 (40) 0.000 (9) 0:049

kNN 0.074 (6) 0.135 (50) 0.019 (1) 0.005 (1) 0.005 (1) 0:109

SVM 0.047 (8) 0.126 (50) 0.022 (1) 0.005 (1) 0.005 (1) 0:131

Lung RF 0.040 (30) 0.016 (48) 0.008 (46) 0.007 (48) 0.006 (48) 0:003

kNN 0.203 (12) 0.027 (49) 0.017 (17) 0.011 (12) 0.002 (40) 0:0005

SVM 0.066 (50) 0.026 (50) 0.021 (19) 0.010 (47) 0.008 (38) 0:024

Breast RF 0.371 (50) 0.407 (48) 0.354 (48) 0.308 (45) 0.317 (48) 0:369

kNN 0.405 (11) 0.404 (50) 0.346 (19) 0.332 (11) 0.328 (11) 0:405

SVM 0.401 (39) 0.407 (50) 0.359 (21) 0.313 (22) 0.303 (37) 0:438

Srbct RF 0.069 (24) 0.074 (46) 0.009 (32) 0.003 (48) 0.002 (44) 0:0008

kNN 0.157 (3) 0.098 (48) 0.005 (26) 0.005 (22) 0.008 (32) 0:034

SVM 0.131 (50) 0.124 (49) 0.010 (21) 0.003 (8) 0.004 (47) 0:079

GSE4045 RF 0.134 (24) 0.187 (37) 0.137 (21) 0.114 (27) 0.105 (33) 0:205

kNN 0.166 (43) 0.207 (38) 0.137 (50) 0.142 (3) 0.112 (6) 0:103

SVM 0.134 (24) 0.187 (37) 0.095 (47) 0.114 (29) 0.085 (47) 0:214

GSE14333 RF 0.421 (10) – 0.438 (31) 0.437 (34) 0.442 (44) 0:414

kNN 0.420 (8) – 0.455 (23) 0.450 (34) 0.448 (47) 0:438

SVM 0.427 (9) – 0.412 (1) 0.431 (1) 0.431 (1) 0:407

GSE24514 RF 0.054 (47) 0.063 (50) 0.036 (48) 0.032 (24) 0.034 (26) 0:041

kNN 0.032 (20) 0.041 (50) 0.036 (50) 0.039 (50) 0.038 (49) 0:041

SVM 0.041 (40) 0.059 (50) 0.037 (40) 0.034 (30) 0.036 (43) 0:070

Boldface numbers indicate the lowest classification error rates (highest accuracy among compared
methods) achieved using the corresponding classifier. The numbers in brackets represent the size
of the gene sets that corresponding to the minimum error rate

reported in the last column. Due to limitations of the R package “mRMRe” (De Jay
et al. 2013), mRMR selections could not be conducted for datasets having more
than “46340” features. Therefore, mRMR method is excluded from the analysis of
the “GSE14333” dataset.

Table 2 demonstrates that the proposed approach, POSr, provides the minimum
error rates (the highest accuracy) for all used classifier models with most of the
used datasets. In particular, for the “Leukaemia”, “Lung” and “GSE4045” datasets,
it outperforms the other methods using all different classifiers. For the “Breast” and
“Srbct” datasets, POSr provides the best performance using kNN and SVM, for the
“Breast” dataset, and RF, for the “Srbct” dataset. While for the “GSE14333” and
“GSE24514” datasets, Wil-RS and POS methods, respectively, outperformed the
other compared methods.

Figure 2 shows that our proposed approach provides less classification error rates
than other compared gene selection methods on the “Breast” and “Lung” datasets
at different selected gene set sizes. The stability index proposed by Lausser et al.
(2013) is used to measure the stability of the compared method at different set sizes



284 O. Mahmoud et al.

0 10 20 30 40 50

0.35

0.40

0.45

0.50

er
ro

r 
ra

te

RF

0 10 20 30 40 50

number of genes

KNN

0 10 20 30 40 50

SVM

0.01 0.02 0.05 0.10 0.20
0.0

0.2

0.4

0.6

0.8

error rate

st
ab

ili
ty

RF

0.005 0.020 0.050 0.200 0.500
0.0

0.2

0.4

0.6

0.8

error rate

st
ab

ili
ty

KNN

0.01 0.02 0.05 0.10
0.0

0.2

0.4

0.6

0.8

error rate

st
ab

ili
ty

SVM

Wil−RS mRMR  MP POS POSr

Breast

Lung

Fig. 2 Averages of classification error rates and stability-accuracy plots: (first row) averages of
classification error rates for the “Breast” dataset using RF, kNN and SVM classifiers, (second row)
stability-accuracy plots for the “Lung” dataset

of features. The relation between the accuracy and stability has been depicted for
the “Lung” dataset. Different dots for the same gene selection method correspond
to different set sizes of genes. For all classifiers, POSr achieves a good trade-off
between accuracy and stability for “Lung” data, see the second row panels of Fig. 2.

4 Conclusion

A gene selection method, POSr, is proposed as an extension of POS technique.
The proposed approach detects minimum subsets of genes in a successive way.
The final selection is then produced by combining these subsets in order to reduce
the redundancy among selected genes. It is designed for binary class situations.
The classification error rates achieved by Random Forest, k Nearest Neighbour and
SVM classifiers for POSr were compared with Wilcoxon Rank Sum, Maximum
Relevance Minimum Redundancy, MaskedPainter and POS on seven benchmarked
gene expression datasets. The relation between classification accuracy and selection
stability is also outlined. The proposed method performed better than compared
methods on most datasets for all classifiers. It is an effective approach in enhancing
the prediction classification performance of the considered classifier models using
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less number of features compared to the other studied gene selection methods.
Furthermore, POSr approach provides good stability scores at small as well as large
sets of selected genes.
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The Identification of Relations Between Smart
Specialization and Sensitivity to Crisis
in the European Union Regions

Beata Bal-Domańska

Abstract The purpose of the article is an attempt to measure and assess the
sensitivity to crisis of the European Union regional economies having considered
their sector structure. The research results presented in literature references indicate
that the differences in sector structure of particular economies were the main reason
of diverse crisis consequences. The study covered the NUTS-2 level regions in the
period 2005–2011. Econometric models for panel data with adequate estimation
techniques are used for the assessment of the EU regions’ sensitivity to the effects
of 2008 crisis. The application of panel data allows for including in the analysis also
the specific, non-measurable, individual effects for particular regions and time, what
seems a particularly useful tool for the description of regional economies growth in
the crisis.

1 Introduction

The effects of 2008 financial crisis, initiated at the American housing market,
were experienced by many European economies and manifested by the prosperity
downturn, which resulted in the decrease of production and reduced economic
growth rate.

The research results, presented in the subject literature Groot et al. (2011),
Gorzelak (2009), indicate that the differences in sector structure of particular
economies were the main reason for the occurred, diverse consequences of the crisis.
Special resistance to crisis is associated with “modern” sectors and also the ones
related to non-material services the development of which is based on knowledge
and innovation (Markowska 2013). According to Eurostat based study about high
and medium-high technology industries, authored by Jaegers et al. (2013), it was
confirmed that a manufacturing sector segment was the powerhouse of growth.
Since 2005 the industrial production index and other short-term statistical indicators
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were developing much more favourably for the EU-27 high-tech manufacturing than
for the entire industry. Despite the financial and economic crisis, high technology
manufacturing production increased by 26 % between the first quarter of 2005 and
the third quarter of 2012. Medium-high technology industries showed the growth
by 7 %, whereas medium-low technology and low-tech production recorded even a
decrease (�5 and �6 %). As opposed to the entire industry the level of production
in 2012 was almost the same as in 2005.

The need for smart growth is particularly emphasized in the long-term strategy
Europe 2020 European Commission (2010). It is to be achieved through the
development of knowledge-based economy and innovation. It can be assumed
that smart growth, representing the set of instruments (indicators) stimulating
growth, can be defined in terms of three pillars: creativity, innovation and smart
specialization. The presented analysis is based on one of the pillars Markowska and
Strahl (2013), i.e. smart specialization, which emphasizes the actual volume and
role of knowledge, as well as high and mid-tech sector in region’s economy.

The purpose of the article is an attempt to measure and assess the sensitivity
to crisis of the European Union regional economies having considered their sector
structure in terms of smart specialization in manufacturing and service sector.

2 Research Procedure and Data

The 2008 economic crisis was visible in many spheres and had impact on the dete-
riorating socio-economic situation of countries and regions. Several variables could
be used to characterize the crisis effects in economy, of which two were selected for
the final analysis: GDP—gross domestic product per capita by purchasing power
standard (PPS), EMPL—employment rate in % or�EMPL employment changes
value in % (in the group aged 25–64). In order to analyse the regions Eurostat
database was used. The data for employment come from the EU Labour Force
Survey (LFS). The conducted analysis was based on the panel covering 268 EU
regions (except French regions of Guadeloupe, Martinique, Guyane and Réunion)
at NUTS-2 level in the period 2005–2011.

The first part of the analysis refers to the assessment of economic crisis effects’
diversification in the space of EU regions and in the defined classes of regions
regarding the level of smart specialization in manufacturing and service sector. This
part applies the selected descriptive statistics and the underlying classifications.

Smart specialization emphasizes the actual volume and role of knowledge-based
sectors (manufacturing and services) in the employment structure of particular
countries. Two diagnostic indicators were defined for smart specialization: KIS—
employment in knowledge-intensive services as the share of total employment
(%)—the classification of knowledge-intensive services is based on the share of
tertiary education graduates at NACE 2-digit level, HMMS —employment in
high and medium-high technology manufacturing as the share of total employ-
ment (%)—high and medium-high technology manufacturing covers the subset
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of manufacturing industries in which expenditure on research and development is
higher than 8 % (high) or 2 % (medium) of revenues.

The following groups of regions, distinguished on the basis of median value
calculated as the percentage of employment in KIS/HMMS against the total employ-
ment in 2008 in the above-defined sectors, were defined: (1) ALL—reference group
consisting of all analysed regions, (2) low/(3) high KIS—each of them covers 134
regions which recorded the value of KIS indicator below/above median (median =
37.2), (4) low / (5) high HMMS —covers 134 regions which recorded the value of
HMMS indicator below/above median (median = 5.0).

The spatial distributions of regions featuring high KIS and high HMMS are not
equal—the differences are quite visible. KIS regions, in which the employment in
KIS sector is over 37.2 % of total employment, are located mainly in central (France,
The Netherlands, Denmark, some regions of Germany) and northern (Scandinavian
countries) Europe and also GB. The regions where HMMS are of big importance
(HMMS presents minimum 5.0 % of total employment) belong to Germany, northern
Italy, France, GB, western Poland, Czech Republic, Slovakia, Romania, Austria,
Denmark, southern regions of Sweden and Finland. The regions characterized by
low employment level in both knowledge sectors (services and manufacturing)
are represented by Portuguese, Spanish, Greek, Baltic countries’ regions (Latvia,
Lithuania, Estonia), north-eastern Poland and Romania.

The second part of the article analyses the impact of changes in employment level
and human capital quality on the level of regional development. The relationship
assessment was performed based on the model structure referring to an extended
neoclassical growth model according to Mankiw et al. (1992)—MRW. The analysed
model can be described in the following way:

ln GDPit D ˛i C ˇjlk ln TETRit C ˇjlk ln �EMPLit C "it (1)

where: ln GDPit—gross domestic product (GDP) per capita in PPS in i-th region
(i D 1; 2; : : : ; N) and t-th year (t D 1; 2; : : : T), ˇjlk—parameter defining the
impact of j-th (j D lnTETR, ln �EMPL) variable in l-th group of regions (l = KIS,
HMMS) in k-th period (the period 2005–2007 before the crisis; the period 2008–
2011 after the crisis); ˛i—specific for each region, fixed in time, individual effects;
"it—random term, TETR—employment among workers with tertiary education as
the percentage of total employment (aged 25–64). The analysis is focused on major
factors particularly sensitive to economic crisis, such as changes in employment
rate level. Moreover, a variable illustrating human capital resources was introduced
in the model. This variable does not show strong relationship with the effects of
crisis, its purpose was to introduce variability into the model resulting from different
levels of knowledge and innovation advancement in particular regions. Such model
specification allowed assessing to what extent the factors directly related to labour
market are capable of explaining GDP variability.

In order to estimate structural parameter values, adequate estimation techniques,
typical for panel data, were applied (Maddala 2006; Wooldridge 2002; Verbeek
2000; Greene 2003; Danska 2000). Two estimators: Least Squares with Dummy
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Variable (fixed effects, FE) and GLS (random effect, RE) model were applied in the
study. FE remove the effect of individual effects and hence the estimated coefficients
of models cannot be biased due to the omitted time-invariant characteristics and
therefore the net effect of the predictors on the depended variable can be assessed.
The random effects approach (GLS) is identified with zero correlation between
the unobservable effect ˛i and the values of observable explanatory variables xit.
However, if the fixed effects occur, it actually means allowing the possibility of indi-
vidual effects correlation ˛i with the explanatory variables xit. A critical approach
to the assumption about the absence of correlation between ˛i and xit Mundlak’s
effect (Mundlak 1961) can be found in subject literature since, in practice, it is
difficult to hold. The assumption about the independence of individual effects and
explanatory variables can be verified by Hausman’s test, which checks whether the
results obtained based on FE and GLS estimators are significantly different. The null
hypothesis is that the preferred model is random effects vs. the alternative the fixed
effects. In accordance with the idea of this test, having assumed that E.cixit/ D 0,
estimator GLS is more effective than FE estimator, the obtained assessments should
not be significantly different. Robust estimator HAC Arellano (2003) was applied
in order to avoid negative consequences of heteroscedasticity and autocorrelation
for model estimates. In order to assess whether model specification is correct and
the introduction of individual effects is founded F test for FE model and Breuch-
Pagan Lagrange Multiplier test for RE model were used (Greene 2003). F test allows
checking the joint significance of artificial variables regarding individual effects for
each object (regions) of the study. Zero hypothesis referring to constant intercepts
(individual effects) can be presented in the following way: H0 D ˛iD ˛ D const:,
where i D 1; 2; : : : ; N.

Breuch-Pagan tests whether there is no significant difference across units (i.e. no
panel effect). The null hypothesis in the BP test states that variances across objects
(regions) are zero. R2 determination coefficient (only for FE model—two version
FE with dummy variable or within) was used as the quality measure of model
adjustment to empirical data. It informs about the extent to which the variability
of an explained variable is presented by the model which ranges from 0 to 1 (the
closer the value to unity the more y variability was explained in the model).

3 The Selected Economy Phenomena Sensitivity to Crisis
in Groups of Region Distinguished by the Level of Smart
Specialization

The presentation of research results starts from two basic indicators, i.e.: the level of
GDP per capita (by PPS) and also employment rate in the period of 2005 and 2011.
Figure 1 presents the average values and the distribution of these macroeconomic
indicators in the two groups of regions, i.e. KIS and HMMS divided by the median,



Smart Specialisation and Sensitivity to Crisis 291

Fig. 1 The EU regions characterized by high and low employment level in KIS and HMMS
knowledge sectors in 2008. Source: author’s compilation

to regions featuring low, below 37.3 % employment rate in knowledge-intensive
services (left) and 5.2 % employment rate in HMMS sector (right).

The differences between the average level of GDP in the regions presenting low
and high level of KIS/HMMS are significant. High KIS region reached 40–50 %
higher GDP (average) than low KIS region. In HMMS regions the difference is
only 15–17 % in favour of high-tech regions. One more conclusion results from the
analysis of the above presented figures, i.e. the visible outliers refer to the regions
featuring an exceptionally high GDP level. These regions are characterized by the
highly developed service sector and rather poorly developed HMMS sector.

Figure 2 presents the same set of information for employment rate. In this case
the average level of the discussed phenomenon was also higher in “high” regions
and lower in the “low” ones. The differences between employment rates are smaller
in case of GDP level. In KIS regions they reached from 4 to 6 percentage points.
In HMMS regions these differences were insignificant in the first analysed period
and amounted to less than 1 pp in 2005. In the following years the distance between
high and low HMMS regions kept growing to reach 5 pp. in 2011 (regarding mean
value).

In the period of 2008 crisis and also in 2009 the significant drops in the level
of regional macroeconomic indicators (GDP see Fig. 2 and employment rate see
Fig. 3) were recorded. In accordance with GDP per capita, the regions (regarding
mean value) returned to the level preceding 2008. In terms of employment rate
only the highly developed regions (KIS and HMMS) returned to the level preceding
2008 (especially the regions featuring a well-developed industry sector). In case of
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Fig. 2 The average values and the distribution of GDP in KIS (left) and HMMS regions (right) in
the period of 2005–2011. Source: author’s compilation

Fig. 3 The average values and the distribution of employment rate in KIS (left) and HMMS (right)
regions in the period of 2005–2011. Source: author’s compilation

high-tech manufacturing the Eurostat study concludes that the “recovery was driven
by pharmaceuticals and air and spacecraft machinery. The decline in the production
of high-tech businesses between the second quarter of 2008 and the first quarter
of 2009 was mainly due to a fall in the production of computers, electronic and
optical products” (where the competition from developing countries is minimal)—
Jaegers et al. (2013). The regions characterized by the low level of knowledge
development (in services and manufacturing) recorded an ongoing decrease in
average employment rate until 2008 and in 2011 reached the lowest employment
rate in the entire studied period.

Human capital, apart from knowledge, represents one of the more important
growth factors. Figure 4 illustrates human capital changes measured by the share
of workers with tertiary education in the total number of workforce in the defined
groups of regions, i.e. low/high KIS/HMMS. In accordance with the presented data
human capital resources were growing year after year in both groups.
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Fig. 4 The average values and the distribution of TETR in KIS (left) and HMMS (right) regions
in the period of 2005–2011. Source: author’s compilation

It is worth noticing that the regions featuring high level of KIS sector present
higher human capital level against the ones classified in the low KIS group (which
results from the methodology for identifying which services are included in KIS
based on education level). In case of the group of regions characterized by a well-
developed high and mid-tech sector the regions covered by high HMMS group
present smaller resources of educated workers. Therefore, one can conclude that
the number of workers with tertiary education is not of key significance for the
development of high and medium-high technology sector.

4 Results of Econometric Analysis of Economic Growth
Models in Groups of Region Distinguished by the Level
of Smart Specialization in the Period Before and After
2008 Crisis

Table 1 and Figs. 5, 6, and 7 present the results of Solow model estimations. All
calculations were done in STATA 11 and GRETL program. The model estimates
the impact of two factors related to work: the growth of human resources �EMPL
and human capital TETR comparing to GDP per capita in the periods prior to (2005–
2007) and after the crisis (2008–2011). The analyses were conducted for five defined
groups of regions: ALL, low and high KIS, low and high HMMS. Summarizing the
estimation results (Table 1) the following observations can be presented: (1) in each
case the individual effects characteristic for each region turned out to be statistically
significant (as confirmed by F test for FE models and Breuch-Pagan test for RE
models), (2) factors included in the model explained the GDP per capita variability
to a small extent, the GDP variance is due to differences across panels (rho equals
over 95 % in each model), (3) in accordance with Hausman’s test results: in the
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Table 1 The results of growth models estimation for the EU regions in the period before and after
2008 crisis

Before crisis (2005–2007) After crisis (2008–2011)

Specification FE GLS (RE) FE GLS (RE)

ALL

R2 (FE/within) 0.987/0.097 – 0.990/0.095 –

F=B F D 110:8.0:000/ B D 740:0.0:000/ F D 218:9.0:000/ BD 1438:9.0:000/

Hausman (H) H D 10:0.0:007/ H D 86:2.0:000/

Low KIS

R2 (FE/within) 0.984/0.134 – 0.99/0.166 –

F=B F D 114:6.0:000/ B D 369:5.0:000/ F D 257:8.0:000/ BD 733:9.0:000/

Hausman (H) H D 2:6.0:273/ H D 17:1.0:000/

High KIS

R2 (FE/within) 0.979/0.074 – 0.983/0.054 –

F=B F D 76:6.0:000/ B D 361:2.0:000/ F D 146:5.0:000/ BD 727:8.0:000/

Hausman (H) H D 47:7.0:021/ H D 27:2.0:000/

Low HMMS

R2 (FE/within) 0.987/0.121 – 0.991/0.09 –

F=B F D 119:6.0:000/ B D 402:8.0:000/ F D 248:6.0:000/ BD 781:4.0:000/

Hausman (H) H D 5:22.0:073/ H D 54:3.0:000/

High HMMS

R2 (FE/within) 0.986/0.081 – 0.989/0.151 –

F=B F D 101:2.0:000/ B D 336:3.0:000/ F D 197:0.0:000/ BD 661:1.0:000/

Hausman (H) H D 4:8.0:091/ H D 33:9.0:000/

Source: author’s compilation
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Fig. 5 The results of growth models estimation for the EU regions in the period before and after
2008 crisis for common for all regions constant term (the beginning level of lnGDP). Source:
author’s compilation
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Fig. 6 The results of growth models estimation for the EU regions in the period before and after
2008 crisis for human resources (ln�EMPL). Source: author’s compilation

0,5

0,75

–0,25

0,25

0

FEGLS FEGLS

before after

all

FEGLS FEGLS

before after

low KIS high KIS low HMMS high HMMS
significant coeficient with 95% Conf. Interval

FEGLS FEGLS

before after

FEGLS FEGLS

before after

FEGLS FEGLS

before after

insignificant coeficient with 95% Conf. Interval

Fig. 7 The results of growth models estimation for the EU regions in the period before and after
2008 crisis for human capital (lnTETR). Source: author’s compilation

period before crisis GLS at 0.02 significance level was the more effective estimator
(except for ALL group); in the period after the crisis FE turned out to be the proper
estimator at any significance level.

In the period before the crisis human capital (described by lnTETR) only was
recognized as the statistically significant factor in lnGDP per capita creation,
whereas employment growth did not show any statistically significant relation. In
the groups of regions distinguished in terms of knowledge sectors development (low
and high HMMS) human capital significance for GDP per capita changes was at
similar level and amounted to 0.433 % in low HMMS regions and 0.499 in high
HMMS regions. Human capital presented a much higher flexibility level in the low
KIS group regions and amounted to 0.555 %, whereas in high KIS regions only
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0.237 %. It can be interpreted that in the regions featuring low development level
(Fig. 2.) the increase in human capital is significantly related to lnGDP growth,
while in the regions characterized by high development level and, at the same time,
high human capital saturation (Fig. 4.) further increase in its resources results in
smaller effects (one should look for develop indicators in others factors).

The situation changed in the period after the crisis. The increase in human
resources (ln�EMPL) in each of the analysed groups was recognized as the
significant factor enhancing regional growth. Human capital (lnTETR) represented
a statistically significant factor only in low KIS and high HMMS groups, i.e.
in the regions with the relatively low level of human capital. The values of
structural parameters indicate impact of human capital on lnGDP per capita changes
amounting to 0.187 % in high HMMS and 0.145 % in low KIS. In the groups of
regions where the statistically significant impact of human capital on lnGDP per
capita was recorded the much higher parameter values of workforce growth impact
on GDP per capita were also observed (0.577 % in high HMMS and 0.714 % in low
KIS against 0.376 % in low HMMS and 0.302 % in high KIS).

5 Conclusions

The most important conclusions resulting from the presented analysis are as follows:
The level of KIS and HMMS sectors development influences the level of regional
development manifested by higher GDP value and higher level of employment
rate in the regions featuring better developed KIS and high and mid-tech industry
sectors (HMMS), however, the differences in development level are significantly
higher in the regions with the well-developed service sector. The regions were
reacting differently to crisis in terms of production (GDP) and employment rate.
After the crisis the employment rate in the regions presenting low KIS and low
HMMS groups was decreasing. In case of GDP per capita after the crisis having
mainly considered the final analysed period 2010–2011 the highest growth rate was
recorded in high HMMS and low KIS regions (against the, respectively, low HMMS
and high KIS). The increase in human resources and human capital explain GDP per
capita level changes only to a small extent, especially in the post-crisis period and
for low KIS regions other regional factors, unobservable in the model structure,
were of significant importance for regional development. Human capital increase
represented the most important and the only growth factor in each of the groups
of regions before the crisis, however, in the regions characterized by the highest
development level, measured by GDP per capita (high KIS), its significance for
GDP per capita changes was lower. The increase in workforce number represented
the most important growth factor after the crisis along with the human capital in low
KIS and high HMMS regions, however, the changes recorded in human capital were
of smaller significance than in the period before the crisis.
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Part VII
Data Analysis in Marketing



Market Oriented Product Design and Pricing:
Effects of Intra-Individual Varying Partworths

Stephanie Löffler and Daniel Baier

Abstract Conjoint analysis is a widespread method for modeling and measuring
preferences for multi-attributed products in marketing: A sample of customers
are asked to evaluate (fictive) offers (attribute-level-combinations). From these
individual responses partworths are estimated and used to design and price offers
that maximize, e.g., market share, sales, or profit. However, it can be theoretically
and empirically argued that partworths not only vary across individuals but also
within them. In this paper, we discuss an approach that respects these variations.
Partworths are situation-specific modeled at the individual level. The empirical
partworth distributions are estimated using Bayesian procedures. The approach is
applied to waterpark design and pricing using simulated and real data. It is shown
that taking these variations into account influences the maximization.

1 Introduction

Marketing managers use conjoint analysis since the 1970s to design and price
competing multi-attributed goods or services. Maybe the best known early appli-
cation was Marriot’s introduction of the new hotel chain “Courtyard by Marriot”
in 1982 (see Wind et al. 1989): To support the hotel chain design, 50 hotel chain
attributes and 167 levels were selected during workshops. A sample of business
and nonbusiness travelers were asked to evaluate (fictive) offers characterized by
these attributes and levels with respect to their willingness to stay overnight. The
responses were analyzed using regression-like procedures, the resulting partworths
then formed the basis for market share predictions and the development of design
and pricing recommendations. The approach was so successful that nowadays,
conjoint analysis is widespread in many application fields.

Selka and Baier (2014) describe 1899 commercial applications over the last 10
years alone in Germany. In most cases design (59 %) and pricing problems (88 %)
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were in the focus (multiple assignments allowed). Most of the applications used
choice-based conjoint analysis (94 %) and web interviewing (74 %). However,
Selka and Baier (2014) also found out that the average validity of these applications
has deteriorated over time. Selka et al. (2014) ascribe this deterioration partly to the
advancement of online data collection: Sampled customers perform their evaluation
tasks in changing environments with many distraction possibilities and therefore
are not able to give unambiguous answers. As one possible solution to this problem
often (e.g., Baier 2014; Baier and Polasek 2003) the usage of Bayesian procedures
has been proposed where the respondents’ partworths are modeled in a more flexible
(stochastic and multi-modal) manner. In this paper, we discuss this proposition in
more detail and apply it to simulated and real data in tourism.

2 Conjoint Analysis Based Market Simulation

2.1 Traditional Data Collection and Partworth Estimation

Conjoint analysis is a well-known and widespread method for measuring customers’
preferences with respect to multi-attributed goods and services with many method-
ological variants (see, e.g., Green et al. 2001; Selka et al. 2014). All of them have
in common, that sampled customers (in the following: respondents) are confronted
with (fictive) offers described conjointly by attribute-levels. From these evaluations
partworths for the attribute-levels are estimated and used to predict choice decisions.
The conjoint analysis variants differ with respect to the data collection formats
and estimation procedures. However, since many years, the choice-based conjoint
analysis variant (CBC, see Desarbo et al. 1995; Louviere and Woodworth 1983) is
the most popular one (see, e.g., Selka and Baier 2014).

CBC—another label is discrete choice analysis (see, e.g., Ben-Akiva and Lerman
1985)—received its popularity due to the widespread CBC software system (Saw-
tooth Software 2014a). CBC supports the data collection format that I respondents
(i D 1; : : : ; I) are subsequently confronted with Ji choice sets ( j D 1; : : : ; Ji) of Kij

offers (k D 1; : : : ; Kij). The respondents are asked to select a most preferred offer
in each set. In the following, qijk denotes the results of these selections: qijk D 1

if k was the preferred offer in set j for respondent i, qijk D 0 if not. The sets are
constructed in a balanced manner with respect to pre-defined attributes and levels.
Typical settings for CBC data collection are three to five competing offers within one
set (sometimes with an additional “no choice” attribute and a corresponding offer
in each set). The respondents are confronted with, e.g., 10 to 15 choice sets. The
offers itself are characterized using, e.g., four up to ten attributes that can take two
up to ten attribute-levels (see Sawtooth Software 2014a for examples). Typically, the
attributes are nominally scaled (e.g., “low” and “high” as levels for “good quality”),
but—for partworth estimation—are converted to intervally scaled attributes using a
dummy coding with respect to—say—M dummy-coded variables. Here, xjk denotes
the dummy coded description of offer k in choice set j.
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For partworth estimation, now, the observed selections in each choice set must be
predicted using the M-dimensional vectors of model parametersˇi (i D 1; : : : ; I) for
the (unknown) partworths of customer i. Following the multinomial logit approach
with an assumed independently, identically type I extreme distributed additional
error in the (overall) utilities, the observed selections are modeled using

pijk D exp.xjk
0ˇi/PKij

k0D1
exp.xjk0

0ˇi/
8i D 1; : : : ; I; j D 1; : : : ; Ji; k D 1; : : : ; Kij (1)

as the probability that customer i selects offer k in choice set j. The model parameters
are estimated by maximizing the data likelihood, but—due to a typical mismatch
between the number of observations per respondent (Ji) and the number of model
parameters (M)—CBC usually assumes identical partworths and error distributions
across all respondents. The data of all respondents are used to derive an M-
dimensional mean partworth vector ˇ.

2.2 Estimation of Inter- and Intra-Individual Varying
Partworths

Bayesian procedures for conjoint analysis now differ from the above described
modeling insofar that the model parameters ˇi (i D 1; : : : ; I) are not assumed to
be deterministic (with unknown values) but to be distributed. The usual assumption
(see, e.g., Sawtooth Software 2014b; Baier et al. 2015) is that they follow a
multivariate normal distribution with expected values � and covariance matrix H,
i.e.

ˇi � Normal.�; H/ 8i D 1; : : : ; I: (2)

In order to estimate the model parameters, a hierarchical modeling is used that
assumes two modeling layers:

• At the higher layer, respondents’ partworths ˇi are described by a normal
distribution according to formula (2).

• At the lower layer the respondents’ probabilities of selecting an offer are
governed by the multinomial logit model according to formula (1).

The parameters are estimated by an iterative process where in each of these steps
one set of parameters is reestimated conditionally, given current values of the other
sets. As a result we receive from each iteration a draw of all parameters. The draws
across all iterations form joint empirical distributions of the model parameters (see,
e.g., Sawtooth Software 2014b; Baier et al. 2015 for details). So, e.g., when L
iterations were used for estimation, we receive with ˇil.l D 1; : : : ; L/ the empirical
distribution of respondent i’s partworths.



304 S. Löffler and D. Baier

Here, in this paper, a more complex modeling is assumed: The respondents’
partworths ˇi (i D 1; : : : ; I) are described by a mixture of T multivariate normal
distributions with expected values �t and covariance matrix Ht for component t
(t D 1; : : : ; T) and mixing parameters �it (i D 1; : : : ; I, t D 1; : : : ; T), i.e.

ˇi �
TX

tD1

�itNormal.�t; Ht/ 8i D 1; : : : ; I: (3)

The underlying idea for this extension (T D 1 is the already discussed special case
as implemented, e.g., in Sawtooth Software 2014b) is that now the partworths of
the respondents are allowed to vary situation-specific over choices. So, e.g., when
asked to evaluate a choice set of waterpark offers, a respondent can have different
situations in mind, e.g., a short visit to go swimming alone or a day trip with the
family. Depending on the situation in mind, the partworths vary. So, e.g., in the first
situation the “low distance” has a higher and the “good quality” of the saunas and
fun pools has a lower importance. The components reflect these different situations,
the normal distribution allows to model ambiguous evaluations. The approach is
similar to a market segmentation assumption that extends the formulation by Baier
and Polasek (2003) and was also discussed by Otter et al. (2004), but here, the focus
is on the assumption that individuals are not allocated to market segments but have
situation-specific intra-individual varying partworths.

The details for deriving empirical distributions of the model parameters via
Bayesian estimation procedures (e.g., ˇil with l D 1; : : : ; L as an index for the
draws) are not discussed here, but it should be mentioned that Baier (2014) has
shown in a similar setting for Bayesian procedures in metric conjoint analysis that
the generalized version (with T > 1) can—in many cases—be approximated by
the more simple approach (with T D 1, implemented, e.g., in Sawtooth Software
2014b) without a major loss of validity. This is due to the flexibility of the Bayesian
estimation procedures.

2.3 Usage of the Empirical Partworth Distributions
for Predictions

The empirical distribution of the intra-individual varying partworths can now be
used to predict choice probabilities for the respondents in an assumed market
scenario with K� competing offers with descriptions x�k (k D 1; : : : ; K�). For this,

p�ik D 1

L

LX

1Dl

exp.x�k
0
ˇil/PK�

k0D1 exp.x�k0

0
ˇil/

8 D 1; : : : ; I; k D 1; : : : ; K� (4)
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(a similar formulation to 1) is used as the probability that respondent i selects
offer k in this scenario. Using some weighted average across the respondents (for
taking varying demand into account) these probabilities can be aggregated to predict
market shares and—with additional buying intensity and cost information—sales
and profit for the competing offers (statistical projection).

3 Application to Simulated Data

3.1 Generation of Empirical Partworth Distributions

The first application is used to demonstrate the usefulness of the new approach. The
simulated application domain is waterpark design and pricing. We assume that the
competing offers can be described by three dummy-coded attributes (“low distance,”
“good quality,” “low price”). So, e.g., the level “1” of the attribute “low price”
indicates that a waterpark has a pre-defined low entry fee (say, e.g., 1.5 money units)
whereas “0” has a pre-defined high entry fee (say, e.g., 5 money units). The level “1”
of the attribute “good quality” is associated with more service that causes additional
costs per visit (say, e.g., 1.5 money units) whereas the level “0” reflects standard
service without additional costs per visit (say, e.g., 0 money units).

Further, empirical partworth distributions for I D 20 respondents are generated
that assume that they come from four customer segments: Segment 1 represents
“sport enthusiasts” (who usually go swimming but sometimes like also to visit a
waterpark for relaxation), 2 “families with children,” 3 “working singles” (who like
to swim in the morning but visit a waterpark on weekends), and 4 “retired persons”
(with a small income who like to swim).

For each segment two usage situations are assumed, one with a focus on
“swim” and one with a focus on a longer “visit.” As discussed in the last section,
we assume that the partworths across segments and usage situations may differ,
so, the empirical distributions are generated by drawing values from mixtures of
multivariate normal distributions with M D 3 dimensions and T D 4 � 2 D
8 components. Further assumptions reflect the different sizes of the segments
(segment 1: 6 respondents, 2: 6 respondents, 3: 4 respondents, 4: 4 respondents),
the proportions of the components, and the component-specific mean partworths
and covariances. Table 1 describes these settings.

One can easily see that, e.g., all segments in the usage situation “swim” have
a stronger focus on the attribute-level “low distance” and that, e.g., the segment
2 (“family with children”) in the usage situation “visit” has a stronger focus on
“low price.” The weights reflect the proportions of the eight components across
the sample, e.g. the segments “sports enthusiasts” and “family with children” have
in both usage situations higher demands than “working singles.” As additional
distributional assumptions for the components a standard deviation of 1 was
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Table 1 Mean partworths and weights across segments and usage situations

Segment 1 2 3 4

Usage situation Swim Visit Swim Visit Swim Visit Swim Visit

Component 1 2 3 4 5 6 7 8

Low distance 0:714 0:091 0:714 0:111 0:143 0:143 0:455 0:455

Good quality 0:143 0:455 0:143 0:333 0:143 0:714 0:091 0:091

Low price 0:143 0:455 0:143 0:566 0:143 0:143 0:455 0:455

Weight 0:18 0:12 0:12 0:18 0:10 0:10 0:12 0:08
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Fig. 1 Left: Empirical partworth distributions in the application with simulated data (all draws);
right: derived indifference map (based on all draws) for predicted relative sales (100 reflects
the status quo) depending on the attributes “low price” and “good quality”; max(draws) gives
the maximum in this map; max(means) gives the maximum when using the averaged draws per
respondent for prediction

assumed. According to these settings, for each respondent an empirical distribution
with L D 250 draws was generated. The results are shown on the left side of Fig. 1.

3.2 Usage of Empirical Partworth Distributions to Design
and Price

The generated empirical partworth distributions are now used for market simulation
and to design and price a waterpark. We assume a scenario as described in Table 2.
The table contains the actual values x�k (k D 1; : : : ; K�) of four competing
waterparks, for one waterpark (offer 4) a new pricing is looked for. Basing on the
market prediction formula (3) sales predictions can be made for varying levels of the
attributes “low price” and “good quality” with respect to the sample of respondents
now.
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Table 2 Waterpark market
scenario with four competing
offers

Waterpark 1 2 3 4

Low distance 0:9 0:6 1:0 0:1

Good quality 0:1 0:6 0:5 0:8

Low price 0:9 0:1 0:3 0:3

The indifference map on the right side of Fig. 1 reflects these predictions in
percent of the status quo sales (with x�k values of the four competing waterparks
according to Table 2 where the values for our waterpark were 0.8 for “good quality”
and 0.3 for “low price”). The 100 % isoquantel line shows that the actual sales could
also be achieved, e.g., with values 0.9 for “good quality” and 0.0 for “low price,”
this means that a price uplift from actual 4 money units to 5 money units could be
compensated by a respective increase of services (Note that additional costs for the
increase of services are already modeled.). The indifference map also gives some
hints with respect to improve the sales: Values 1.2 for “good quality” and 0.11 for
“low price” [see the point “max(draws)”] allow to increase the sales to 160 % of the
actual sales. The management has to decide whether this change of strategy could
be an alternative. The map also gives the results when using the mean partworths
instead of the empirical distribution of the partworths with inter-individual variation
for sales prediction: Here, the sales could be maximized for values 1.2 for “good
quality” and 0.35 for “low price” [see the point “max(means)”]. However, as also
can be seen in the map, these values would lead to a suboptimal solution when
taking the empirical distribution into account with only an increase of the sales to
137 % of the actual sales.

4 Application to Real Data

4.1 Data Collection and Estimation of Partworth Distributions

For a regional waterpark in Eastern Germany the authors performed—in cooperation
with the waterpark management—a conjoint study to understand the customers’
preferences. The waterpark market in Germany is very competitive and so, the
management was very interested in revising the waterpark’s design and pricing,
what was successfully done on the basis of the results of the study. In the
following—for confidentiality reasons—the attribute and levels as well as the results
of the study are alienated, but nevertheless the main idea of the study and results with
respect to the modeling of intra-individual varying partworths are discussed.

The attributes and levels for a CBC web interviewing approach were selected
by applying focus group interviews with customers and waterpark managers.
Additionally, an internet-based analysis of all near-by waterparks and their offers as
well as a literature overview on relevant studies were performed. The respondents
were sampled using regional social networks and banners on websites where sports
activities were promoted. A quota controlling was performed according to the
waterpark management’s demands. So, e.g., the respondents were mainly sampled
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Table 3 Means and standard deviations (SD) of the partworth distributions (across all “draws”
and solely across the respondent-specific “means”)

Attribute Level Mean partworth SD (draws) SD (means)

Low distance 0: 31 vs. 1: 4 min 0:766 1:654 1:271

Low price 0: 26 vs. 1: 15 Euro 2:084 2:056 1:680

Fun pool 0: no vs. 1: yes �0:730 1:358 1:062

Outside bath area 0: no vs. 1: yes 0:754 1:718 1:183

Brine bath 0: no vs. 1: yes 0:836 1:890 1:426

Many saunas 0: 5 vs. 1: 14 saunas 1:065 2:030 1:708

Recommended 0: no vs. 1: yes 1:015 1:506 1:161

Calm 0: no vs. 1: yes 1:963 3:325 3:071

No choice 0: no vs. 1: yes �5:719 3:520 2:719

from residents of a near-by major town that forms the main customer reservoir for
the waterpark. To fulfill the quota with respect to elderly people, also personal
interviews were conducted. Each respondent had to deliver 16 choice tasks, each
with three competing and a “no choice” alternative. Also, the respondents’ usage
intensity of waterparks was collected to distinguish heavy from light users by
allocating weights. So, e.g., an adult who goes swimming one time a year got a
weight of 1 whereas a family with two adults and more than one child that go
swimming several times a weak received a weight of 300. The data collection took
the different usage situations of the respondents into account. All in all, a total of
201 interviews formed the basis for the analysis.

For partworth estimation, Sawtooth Software’s CBC/HB system was used that
allows to derive for each respondent an empirical partworth distribution (Note
that here—as already mentioned—the version with T D 1 is used to simulate
the estimation of the situation-specific modeling approach.). The data validity was
tested by using the averaged root likelihood (RLH) value. The collected data showed
an averaged RLH value of 0.613, which is clearly superior to 1/4—the value of
a naive model. Table 3 gives the resulting means and standard deviations of the
partworths (across all draws for taking the inter- and intra-individual variation into
account and across the respondents for taking only the inter-individual variation
into account). One can easily see the high importance of the attribute “low price”
but also—as in the simulated data application from above—the reduced information
when only taking the inter-individual variation into account.

4.2 Usage of Empirical Partworth Distributions to Design
and Price

Now, again as in the simulated application, we can predict market shares and sales in
an assumed market scenario of competing waterparks as defined in Table 4. Again,
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Table 4 Waterpark market
scenario with three competing
and a “no choice” alternative

Attribute/Waterpark 1 2 3 No choice

Low distance 0:0 1:0 0:161 0:0

Low price 0:237 1:0 0:0 0:0

Fun pool 0:7 0:6 0:0 0:0

Outside bath area 0:5 0:5 0:5 0:0

Brine bath 0:7 0:0 1:0 0:0

Many saunas 1:0 0:357 0:5 0:0

Recommended 0:1 0:0 1:0 0:0

Calm 1:0 0:0 1:0 0:0

No choice 0:0 0:0 0:0 1:0
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Fig. 2 Left: Empirical partworth distributions in the application with real data (averaged draws per
respondent); right: indifference map (based on all draws) of predicted relative sales (100 reflects
the status quo) depending on the (recoded) attributes “price (in Euro)” and “saunas”; max(draws)
gives the maximum in this map; max(means) gives the maximum when using the averaged draws
per respondent for prediction

the table contains the actual x�k (k D 1; : : : ; K�) values of four competing waterparks
in the region, again, for our waterpark (offer 1 in Table 4) a new pricing is looked for.
As can be seen from Table 4, our waterpark is far away from the target population
(’low distance’ has level 0), not very cheap (32 Euro) but provides some interesting
attribute-levels (e.g., w.r.t. “brine bath,” “many saunas,” and “calm”). Waterpark 2
is nearby the target population, relatively cheap (15 Euro) but has less interesting
attribute-levels. Waterpark 3 has advantages w.r.t. “brine bath” or “recommended”
but is even more expensive. Now, again, basing on the market prediction formula
(3) sales predictions can be made for varying levels of the attributes “low price” and
“many saunas” (as a proxy for quality improvement). Figure 2 gives the distribution
of the partworths (on the left) and the respective improvements in contrast to the
actual sales (right). Again, there are some improvement possibilities (up to 113 %)
and the results show that taking the means would lead to a suboptimal result
compared to the full draws.
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5 Conclusion and Outlook

The paper has presented a new approach to market oriented product design and
pricing taking inter- and intra-individual varying partworths into account. The
application to waterpark design using simulated and real data shows promising
results. But—of course—more analyses are necessary, applying, e.g., a Monte
Carlo setting to analyze when the modes of the empirical distributions (the mean
partworths per respondents) are especially inferior in prediction.
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The Use of Hybrid Predictive C&RT-Logit
Models in Analytical CRM

Mariusz Łapczyński

Abstract Predictive models in analytical CRM (customer relationship manage-
ment) are closely related to the customer’s life cycle. Prediction of binary dependent
variable refers to the most common areas such as customer acquisition, customer
development (cross-selling and up-selling), and customer retention (churn anal-
ysis). While building static predictive models one usually applies decision trees,
logistic regression, support vector machines or ensemble methods such as different
algorithms of boosted decision trees or random forest. Recently one can observe
increasing use of hybrid models in the analytical CRM, i.e. those that combine
several different analytical tools, e.g. cluster analysis with decision trees, genetic
algorithms with neural networks, or decision trees with logistic regression. The
purpose of this paper is to compare the results obtained by using hybrid predic-
tive CART-logit models with single decision tree models and logistic regression
models. All analyses have been conducted on the basis of data sets relating to
analytical CRM.

1 Introduction

Analytical customer relationship management (CRM) refers to all activities related
to the gathering and analysis of data and the construction of descriptive and
predictive models. The research areas of its domain include: customer acquisition,
customer development/retention and measurement of customer lifetime value. Three
research areas listed above made it possible to develop a model called ACURA
(Christopher et al. 2008), which is an acronym for acquisition, cross-selling, up-
selling, retain, and advocacy. This model is consistent with the popular concept
of “customer life cycle,” which consists in passing from one stage of the cycle to
another with changing relationships between parties.

For each of these phases predictive models are built that improve the managerial
decision-making process. As far as customer acquisition models are concerned, one
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can use various analytical tools such as: discriminant analysis, logistic regression,
decision trees, probit models, or diffusion models. With regard to cross-sell and up-
sell models analysts can additionally utilize association rules, collaborative filtering,
sequence analysis, Markov models, or neural networks. In the case of static churn
models, random forest, boosted trees, support vector machines were also used, and
in the case of dynamic ones—survival analysis.

A characteristic feature of all static models in analytical CRM is the frequent
occurrence of a binary dependent variable, whose categories can refer to response/no
response, buy/no buy, churn/no churn. In recent times some attempts of predicting
such variables by using hybrid approaches that combine various algorithms and
analytical tools have been appearing in the literature. Although this combination
results in an increased duration of computing, it is sometimes compensated by
a better performance of models, and may overcome the class imbalance problem
or enrich the interpretation of the model. The hybrid predictive CART-logit model
presented in this paper is suitable for such variables and sometimes delivers better
results than if these methods were utilized separately.

2 Hybrid Predictive C&RT-Logit Model

During the construction of predictive models for relationship marketing purposes
one focuses not only on prediction of phenomena but also on understanding of the
nature of relationships among analyzed variables. If a model serves both predictive
and descriptive purposes at the same time, it allows not only to choose the right
target group but also to create effective marketing campaigns. The combination of
decision trees with logistic regression meets both of these research objectives.

The hybrid C&RT-logit model used in this study combines C&RT (classification
and regression trees) algorithm with logistic regression. The STATISTICA software
was used for the data analysis and therefore the abbreviation CART (a registered
trademark of Salford Systems company) was replaced with the acronym C&RT.
CART (Breiman et al. 1984) is considered as one of the most advanced decision
tree algorithms. The features of that method that distinguish it from the logistic
regression model include: automatic selection of the best predictors, no need for the
transformation of variables, automatic detection of interaction effects, resistance to
outliers, utilizing surrogate variables while classifying cases with missing data, and
minimal supervision of the researcher while building the model.

The construction of logistic regression models, in turn, requires the supervision
of an experienced analyst and frequently takes much longer than the construction
of the decision tree. Logit models are sensitive to outliers and require imputation
of missing data (cases with missing data are removed from the analysis). The
big advantage of this approach is the ability to calculate the unique probability
of belonging to a class (category dependent variable) for each case. On the other
hand, decision trees provide as many probabilities as many leaves they have for
each terminal node and cases belonging to it.
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The combination of decision trees (CHAID algorithm) with logistic regression
carried out by Lindahl and Winship (1994) was probably the first attempt to build
this kind of a hybrid model. Hybridization was based on the sequential use of these
analytical tools. After the initial exploration of data set by using CHAID algorithm
cases were divided into terminal nodes. In the second step of the procedure a
separate logistic regression model was built for each leaf.

Another concept of hybridization was proposed a few years later (in Steinberg
and Cardell 1998). It combined decision trees (CART algorithm) with logit models.
This time it was also a two-step procedure, however, the set of independent variables
in the logit model was supplemented with an additional variable whose categories
informed about the terminal node to which the case was assigned. The new variable
was transformed into a set of dummy variables. CART model from the first stage
of the procedure was based on the same set of independent variables, and each
leaf took into account the interaction between the predictors. The authors pointed
out that such hybridization is more effective, because the partition of the data set
into subsets according to the first concept is connected with a reduction of sample
size (instances are divided into terminal nodes) and the loss of information (it can
happen that the sets of independent variables for each logit model will be slightly
different). Moreover, patterns discovered by logit models are local (limited to the
leaves) and the variability of the dependent variable and variance of predictors is
lower in terminal nodes than in the entire data set. The advantages of the CART-
logit approach include a higher predictive accuracy of the hybrid model, a faster
detection of interactions by the CART algorithm and, in general, no need to replace
missing data.

So far the hybrid CART-logit models have been utilized in the analysis of medical
data sets (in Su 2007) and in the analysis of the causes of the Asian currency crisis
(Ait-Saadi and Jusoh 2011). According to the author’s knowledge, no one else has
used the CART-logit approach in the analysis of data sets related to analytical CRM.
After 1998 several researchers attempted to combine decision trees with logistic
regression. They developed new hybrid approaches known as LOTUS (Logistic
Tree with Unbiased Selection) (Chan and Loh 2004), LMT (Logistic Model Tree)
(Landwehr et al. 2005), or PLUTO (Penalized, Logistic Regression, Unbiased
Splitting, Tree Operator) (in Zhang and Loh 2014).

3 Experiments

During the experiment three data sets were used. All were obtained from popular
repositories and related to the areas of analytical CRM. The first model and the
second model pertain to the churn analysis, while the third model refers to a direct
marketing campaign carried out by a Portuguese bank. Due to the problem of
imbalanced classes random under-sampling was utilized in all data sets used in this
experiment in order to modify the learning sample.
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3.1 The First Approach to Hybridization: Churn Model

The data set used in this experiment refers to churn analysis. It was obtained from
http://www.dataminingconsultant.com/DMMM.htm. The sample size and distribu-
tion of the target variable are shown in Table 1.

Prior to building the hybrid model, the size of decision tree was reduced to four
terminal nodes (Fig. 1). In leaf ID 3 there are customers for whom the daily number
of minutes of calls is higher than 246.6. The leaf ID 5 includes customers for whom
the “total day minutes” is fewer than or equal to 246.6 and the number of calls to
the call center exceeds 3. The leaf ID 6 consists of buyers having international plan
calls for whom the daily number of minutes is fewer than or equal to 246.6 and the
number of calls to the call center is fewer than or equal to 3. In the terminal node
ID 7 there are customers who do not have international plan, for whom the daily
number of minutes is fewer than or equal to 246.6 and the number of calls to the
customer service center is fewer than or equal to 3.

The hybrid model was supplemented with an additional variable “terminal node,”
which was transformed to dummies with the reference category “leaf ID 3”. Table 2
presents the results of the hybrid approach.

Table 1 Sample size and distribution of dependent variable (the first model)

Number and percentage of churners in
Data set Sample size dependent variable

Entire data set 5000 707 (14.40 %)

Learning sample (random under-
sampling)

1687 506 (29.99 %)

Test sample 1506 201 (13.35 %)

Fig. 1 Reduced decision tree
model
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Table 2 Results of hybrid C&RT-logit model (limited to independent variables that have positive
effects with respect to the response)

Variable Estimate Standard error p value Odds ratio

Intercept �3:786 0:732 0:000 0:02

International plan 1:205 0:418 0:004 3:34

Total day minutes 0:005 0:002 0:004 1:01

Total eve minutes 0:007 0:001 0:000 1:01

Total night minutes 0:006 0:001 0:000 1:01

Total intl charge 0:417 0:099 0:000 1:52

State NJ 0:830 0:402 0:039 2:29

State MT 1:293 0:482 0:007 3:64

State CA 1:664 0:693 0:016 5:28

Leaf ID 5 0:939 0:327 0:004 2:56

In the hybrid approach there are several predictors that significantly contributed
to the model and have high positive effects with respect to the response (increase
the probability of churn):

• “international plan”—the probability of churning among customers with the
international calling plan is almost 3.5 times higher than the probability among
customers without that plan, one can notice a decrease in the value of the odds
ratio in comparison with the basic logistic model;

• “total intl charge”—for every unit increase in “total intl charge” the odds of
churning increase by approximately 52 %;

• “state NJ”—clients living in the state of New Jersey have approximately 2 times
greater odds of churning than clients from the states not included in the model
(increase in the odds ratio from 2.17 in the basic model to 2.29 in the hybrid
model);

• “state MT”—customers from Montana have 3.64 times higher probability of
churning than customers from the states not included in the model (the odds
ratio value in the basic logistic model is equal to 3.65);

• “state CA”—customers living in California have about 5 times greater odds of
churning than customers from the states not included in the model (decrease in
the odds ratio from 6.09 to 5.28);

• leaf ID 5—the probability of churning among the clients from the terminal node
ID 5 (those for whom the daily number of minutes is lower than or equal to 246.6
and the number of calls to call center exceeds 3) is about 156 % higher than the
probability among customers who talk longer (reference category—leaf ID 3).

Terminal nodes that significantly contributed to the model adjusted other pre-
dictors from the basic logistic model. It turned out that the independent variable
“number customer service calls” did not contribute to the hybrid model. On the
other hand, it enriched the interpretation of the model by detecting interactions
of predictors. In the basic logistic model (the main effects model) the relationship
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Table 3 Performance of models (the first model)

Measure C&RT Logistic model Hybrid C&RT-logit

Accuracy 0:837� 0:523 0:689

Recall 0:806 0:915� 0:866

Precision 0:439� 0:208 0:282

TNR 0:841� 0:462 0:661

G-mean 0:823� 0:650 0:757

F measure 0:568� 0:339 0:426

Lift (decile 1/decile 2) 5.14�/4.04� 3.70/2.97 4.49/3.75

Table 4 Sample size and distribution of dependent variable (the second model)

Number and percentage of churners in
Data set Sample size dependent variable

Entire data set 50,000 3672 (7.34 %)

Learning sample (random under-
sampling)

14,666 2932 (20.00 %)

Test sample 10,087 740 (7.34 %)

between “total day minutes” and churning was almost unobservable (the odds ratio
was equal to 1.01).

To evaluate the models’ performance several popular measures such as accuracy,
recall, precision, true negative rate (TNR), G-mean, and F-measure were used (see
details in Table 3). The best results are marked with an asterisk (*). As one can easily
see, the C&RT model outperforms other methods (except for recall). In general, the
hybrid C&RT-logit model turned out to be better than the basic logistic model.

The lift measures in the first and in the second decile allow to draw additional
conclusions. One can see the higher predictive power of the decision tree model in
comparison with the hybrid approach and the basic logistic model. This means in
this case that hybridization allowed only to enrich the interpretation of the model and
to detect quickly the interaction between the variables. The researcher can interpret
the odds ratios which are not directly available in the C&RT model, however losing
the predictive properties of the model. It should be noted that in terms of the lift
measure, the difference between the models becomes smaller and smaller starting
from the third decile.

3.2 The Second Approach to Hybridization: Churn Model

The second set of observations also refers to churn modeling and was used during
the KDD Cup in 2009. The information about the sample size and distribution of
dependent variable is shown in Table 4.



The Use of Hybrid Predictive C&RT-Logit Models in Analytical CRM 317

Table 5 Performance of models (the second model)

Measure C&RT Logistic model Hybrid C&RT-logit

Accuracy 0:536� 0:106 0:143

Recall 0:584 0:989� 0:969

Precision 0:090� 0:075 0:077

TNR 0:532� 0:037 0:078

G-mean 0:557� 0:190 0:275

F measure 0:156� 0:140 0:142

Lift (decile 1/decile 2) 1.55/1.38 2.35�/1.82� 2.26/1.72

The procedure for building hybrid model is identical to that carried out previ-
ously. In the first step, decision tree was reduced to four terminal nodes. In the
second step, new dummy variables (leaves of the decision tree) were introduced to
the hybrid model. All terminal nodes significantly contributed to the model and
have positive effects with regard to the response. Table 5 presents the models’
performance evaluated by using measures that were used in the first hybridization.
The best results are marked with asterisk (*). Again, it was found that the
C&RT model outperforms other methods (except for recall). In general, the hybrid
approach turned out to be better than the main effects model. As far as lift measure
is concerned, the main effects model outperforms the other approaches, however, it
is only slightly better than the hybrid model.

3.3 The Third Approach to Hybridization: Acquisition Model

The third data set was related to the direct marketing campaign of a Portuguese
bank (Moro et al. 2011). The distribution of dependent variables and sample sizes
is presented in Table 6.

Prior to building the hybrid model, the size of decision tree was reduced to three
terminal nodes. In the next step of the procedure an additional variable “terminal
node” was introduced to the hybrid C&RT-logit model. It was transformed to
dummies with the reference category “leaf ID2”. Apart from independent variables
that were present in the basic logistic model, two terminal nodes from decision tree
significantly contributed to the hybrid model. Both have positive effects with respect
to the response.

It is worth noting that the terminal nodes of decision tree are categorized
continuous predictor “call duration,” which—in its original form—had a minimal
influence on the response. The odds ratio was equal to 1.003, which means that
for every increase of one second in the “call duration” the odds of acquiring a new
customer increase by approximately 0.003 (0.3 %). The odds ratios for the terminal
nodes are equal to 2.49 and 5.22. As far as other predictors that have positive effects
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Table 6 Sample size and distribution of dependent variable (the third model)

Number and percentage of churners in
Data set Sample size dependent variable

Entire data set 45,211 5289 (11.70 %)

Learning sample (random under-
sampling)

18,595 3719 (20.00 %)

Test sample 13,659 1570 (11.49 %))

Table 7 Performance of models (the third model)

Measure C&RT Logistic model Hybrid C&RT-logit

Accuracy 0:721� 0:696 0:710

Recall 0:807 0:905� 0:885

Precision 0:265 0:262 0:269�

TNR 0:710� 0:669 0:687

G-mean 0:757 0:778 0:780�

F measure 0:399 0:406 0:412�

Lift (decile 1/decile 2) 3.51/2.32 4.81�/3.61� 4.77/3.59

with respect to the response are concerned, their odds ratios are comparable with
the odds ratio from the basic (the main effects) model.

The six measures that are presented in Table 7 are based on misclassification
matrices. The best results are marked with asterisk (*). It turned out that decision
tree model delivered the highest accuracy and true negative rate. The basic logistic
model once again outperforms other methods with regard to recall, and hybrid
approach delivers the highest values of precision, G-mean and F measure. The lift
measures in the first and in the second decile allow to draw additional conclusions.
The basic logistic model performs much better than decision tree, however, only
slightly better than in the case of the hybrid approach.

3.4 The Comparison of Logistic Regression Model and
C&RT-Logit Model

Comparing the logistic regression model with the hybrid model it can be noticed
that (Table 8) the values of Cox and Snell’s R2 were higher for C&RT-logit
models than for the main effects models. These results were confirmed by other
measures, such as Nagelkerke’s R2, the Akaike information criterion (AIC), and
the Bayesian information criterion (BIC). Apart from recall and sometimes lift,
the hybrid approach outperforms the basic logistic model. In each C&RT-logit
model the terminal nodes from the decision tree appeared, which usually resulted
in removing from the model the variables that were included in the rules describing
these nodes. The odds ratios for these variables (tree leaves) were noticeably higher
than the odds ratios for other independent variables.
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Table 8 The comparison of logistic regression model and the hybrid approach

Data set Logistic model Hybrid C&RT-logit

Churn 1 Cox and Snell’s R2D 0.27 Cox and Snell’s R2D 0.38

AICD 1567, BICD 1643 AICD 1295, BICD 1398

Higher recall Higher accuracy, precision, TNR, G-mean

F-measure and lift

1 leaf as predictor with positive effect

(combines 3 predictors)

Churn 2 Cox and Snell’s R2D 0.04 Cox and Snell’s R2D 0.06

AICD 14,068, BICD 14,242 AICD 13,869, BICD 14,013

Higher recall and lift Higher accuracy, precision, TNR, G-mean

and F-measure

3 leaves as predictors with positive effects

(combine 3 predictors)

Acquisition Cox and Snell’s R2D 0.29 Cox and Snell’s R2D 0.30

AICD 12,246, BICD 12,411 AICD 12,017, BICD 12,197

Higher recall and lift Higher accuracy, precision, TNR, G-mean

and F-measure

2 leaves as predictors with positive effects

(categorized continuous predictor “duration”)

4 Conclusions

Prior to the building of the hybrid C&RT-logit model one counted on benefits from
combining advantages of both analytical tools. To summarize the three models
presented in this paper it can be noted that the performance measures for hybrid
model have never been the worst. The C&RT-logit approach outperformed at least
one basic model (logistic or decision trees) and in some cases even both. The
drawback of the proposed approach is certainly a more time-consuming procedure.
On the other hand, it is compensated by the automatic detection of interaction effects
and enriched interpretation of the studied domain. While comparing the hybrid
approach to the decision tree one can observe an unquestionable advantage, which
is assigning unique probabilities for cases from the test sample. The experiment
certainly should be extended to other data sets with binary dependent variable
relating to analytical CRM. It would also be interesting to make a comparison of
the CART-logit approach with other hybrid models mentioned earlier, i.e. LOTUS,
LMT and PLUTO. Twenty years of attempts to hybridize decision trees with logistic
regression models indicate an attractiveness of this approach and still unexplored
areas for researchers.
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Excess Takeover Premiums and Bidder Contests
in Merger & Acquisitions: New Methods
for Determining Abnormal Offer Prices

Wolfgang Bessler and Colin Schneck

Abstract We investigate for mergers and acquisitions in Europe and the USA
whether the size of the takeover premium offered by the first bidder prevents a
second bidder from making a competing offer. Previous studies find only mixed
evidence for the relationship between the size of a takeover premium and the
occurrence of a takeover contest. Because the size of the premium varies over time
and between merger waves and usually differs between countries and industries,
it is essential to use the excess premium instead of the standard premium. We
introduce and compare different methods for calculating the excess premium and
test for the 1990–2012 period whether or not bidders can prevent a takeover contest
when the initial offer includes an excess takeover premium. We calculate the excess
premium as the percentage (a) above the pre-offer market value of the target, (b)
over the industry mean, or (c) over the country mean. We then analyze whether
these different methods provide results more consistent with the expected effect of
excess premiums on the occurrence of takeover contests. The results suggest that
the method used to calculate the excess premium significantly affects the size of
the excess premium in takeover contests. We provide empirical evidence that when
using the industry excess premiums, offering an above average premium reduces
the probability of a takeover contest, especially in cash deals, whereas the standard
method does not correctly discriminate between average and excess premiums.
Consequently, only excess premiums are adequate for properly testing the effects
of the premium size on the occurrence of takeover contests.

1 Introduction

The objective of our study is to provide empirical evidence for the factors that affect
the occurrence or prevention of takeover contests. In most mergers and acquisitions
(M&As), only one single bidder submits an offer for a target firm and if successful,
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both parties sign the deal within a certain period. However, subsequent to the initial
offer a rival bidder competes in some cases by making another bid for the same
target, resulting in a takeover contest. One important factor explaining why takeover
contests occur is the size of the initially offered takeover premium. However, the
literature so far presents only mixed results regarding the relationship between the
size of the premium and the occurrence of takeover contests (Officer 2003; Jeon and
Lion 2011). Thus, it is important to investigate whether the method employed for
calculating takeover premiums has any effect on the empirical evidence regarding
the occurrence of takeover contests.

Because takeover premiums differ between industries, countries and vary over
time (Madura et al. 2012) it is inadequate to compare premiums across industries,
countries as well as over time without controlling for these effects. Figure 1 shows
the mean final premium for the manufacturing industry and the healthcare industry
adjusted by the mean final premium over all industries. It reveals that premiums
differ between industries and are time-varying, especially in recent years. We find a
similar pattern for countries and the method of payment. The literature suggests that
preemptive bidding, i.e., offering a high premium often containing a substantial cash
part, could deter the occurrence of contests (Fishman 1988; Officer 2003). Thus, the
initial bidder has a first-mover advantage in choosing the conditions of the initial
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bid to avoid attracting other bidders (Jennings and Mazzeo 1993). Consequently,
with respect to the initial premium, we hypothesize that only a premium above the
expected premium deters rival bidders and consequently prevent takeover contests
from occurring.

Two main research questions result from this discussion. First, how to correctly
calculate excess premiums, and second do excess premiums reduce the probability
that a takeover contest occurs. Therefore, the objective of this study is to analyze
and compare different methods for calculating excess takeover premiums and then
to test whether there is any interaction between these measures and the occurrence
of takeover contests.

2 Literature Review

We provide a brief review of the factors that determine the size of the premium
and explain how this premium relates to other variables before introducing our
excess premium measures in the next section. Several factors determine the size
of the takeover premium, which differ with respect to bid characteristics as well
as industry and macroeconomic factors. First, the premium size depends on the
bid characteristics. The takeover premium reflects expected benefits from the deal,
which suggests that expected synergies and growth opportunities should positively
correlate with the premium and depend on the bidders valuation of the target firm.
Furthermore, the method of payment is another important factor as stock deals
are typically associated with higher premiums than cash deals. Initial premiums
are higher in stock deals compared to cash deals because often bidder firms are
believed to pay with stock to exploit the overvaluation of its own shares (Eckbo
2009). Another important factor is the aggressiveness of the takeover bid, i.e.,
premiums for hostile takeovers are higher than in friendly mergers (Schwert 2000).
Moreover, cross-border deals are also associated with higher premiums compared
to domestic takeovers (Eckbo 2009). Second, industry effects, i.e., premiums paid
for recent deals within an industry, also affect the premium for the most recent deal
(Madura et al. 2012). We use the premiums paid in the last deals in an industry as a
benchmark for evaluating the recent offer or for comparing them with the expected
synergies. In addition, premiums are usually higher if the target provides important
assets or access to resources that offers the bidder a competitive edge in its industry
(Akdoğu 2009). Furthermore, industry shocks may intensify the competition for
targets resulting in higher premiums as well. Third, macroeconomic shocks, i.e.,
high capital liquidity and GDP increases, lead to higher premiums (Madura et al.
2012).
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3 Methodology

This section presents the methodology to calculate excess takeover premiums.
Before developing our own excess premium measures, we discuss the important
interactions of takeover premiums with several factors. Premiums are clustered over
industries, time, and merger waves and depend on the premiums recently paid in the
USA, especially for global takeovers (Madura et al. 2011; Madura and Ngo 2008).
Furthermore, the size of the premium of a new offer correlates with the size of the
premiums recently paid for deals within the same industry, method of payment, and
takeover form (merger or tender offer). These links with previous premiums exist
over a short time period of 3 months rather than over longer periods of 6 or 12
months. Differences in premiums over time relate more to previous premiums in the
same industry than to target or bidder characteristics (Madura and Ngo 2008). By
not including these differences, but using only the size of the premium, a comparison
may be ambiguous. Therefore, we introduce excess takeover premium measures
where we adjust the expected premium on different dimensions.

The previous literature suggests calculating takeover premiums (P) as the target
offer price (OP) relative to the market value (Value) at the time prior to the
announcement of a firm i (Madura and Ngo 2008). Often the shortest period of one
day prior to the announcement is used, but employing a longer period of 4 weeks
prior to the announcement seems appropriate as well, for example, to include the
usual run-up and information leakage (Schwert 2000). To capture all value changes
from the beginning to the end of the takeover process, an alternative approach
calculates the premium as the target value at the completion date relative to the target
value 4 weeks prior to the announcement. Nevertheless, none of these premium
measures adjusts for the expected premium derived from similar takeovers. Hence,
we extend the literature by introducing a new method for analyzing the effect of
excess takeover premiums.

P.i/ D OP.i/ � Value.i/

Value.i/
(1)

Often managers and shareholders of bidder and target firms use premiums paid
in prior comparable deals as a benchmark when determining the initial premium for
a new deal. We follow this approach but define the excess takeover premium (EP) as
the initial premium (IP) offered in a takeover adjusted for the mean premium paid in
comparable previous deals. We call this value our adjustment benchmark (AB), and
we use different methods to determine this adjustment benchmark. Starting with the
recent deal i, we include all takeovers j that took place within a fixed period of 3,
6, or 12 months prior to the announcement of the most recent deal and calculate as
expected premium the mean final premium (FP) in these deals. Alternatively, we use
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a fixed number of takeovers such as the last 10, 20, or 30 deals that occurred prior
to the announcement of the recent deal for determining the benchmark.

EP.i/ D IP.i/ � AB.j/ with AB.j/ D 1

N

nX

jD1

FP.j/ (2)

Because M&A activity varies over time, both the fixed period and the fixed
size excess takeover premium approaches have some inherent problems. Since the
fixed period excess premiums are calculated over a fixed period before the recent
deal is announced, the number of deals within the benchmark can differ due to a
changing M&A frequency. In contrast, fixed size period excess premiums determine
the adjustment benchmark using the last fixed number of deals before the recent
deal announcement. Thus, the estimation period differs. All these problems result in
changing variances in the adjustment benchmark portfolios. To address these issues
we first combine fixed period and fixed size excess premiums, and second we use
standardized excess premiums as a robustness check. Combining fixed period and
fixed size approaches results in calculating the adjustment benchmark over a period
that guarantees the minimal benchmark size. The combination solves the problem
of increasing variance in the adjustment benchmark due to insufficient comparable
deals in the fixed period. The advantage of using standardized premiums is that they
are easily comparable but their interpretation is challenging. In our analysis, we
calculate standardized excess takeover premium (SEP) as follows:

SEP.i/ D
IP.i/ �

h
1
N

Pn
jD1 FP.j/

i

Sd
�

1
N

Pn
jD1 FP.j/

� (3)

For all approaches, we calculate the benchmark over deals within the same
industry (Fama-French 12 industry portfolios), the same country or region, and for
the same method of payment. In line with the literature, we define a bid as cash
deal (stock deal) if the bidder offers at least 80 % cash (stock). Finally, we perform
regression on premium size with the following independent variables: method of
payment, industries, countries, years, hostility, cross border, toehold, and target
size. Thus, we control for several factors simultaneously and calculate the expected
premium with the coefficients of these variables. We use all deals in our sample and
rerun the regression using only deals that took place before the recent deal (rolling).

In the second step, we test the relevance of our excess premium measures for
explaining the occurrence of takeover contests by estimating several probit models.
In the probit model (4), the dummy variable (Y) takes the value of one if a takeover
contest occurs and zero otherwise. The function ˚(.) denotes the standard normal
distribution function. The estimated probability y is interpreted as the likelihood that
a takeover contest occurs.

Pob.Y D 1jx/ D
Z x0ˇ

�1
�.t/dt D ˚.x0ˇ/ (4)
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4 Data

For our empirical analysis and the calculation of excess premium measures, we use
all M&As available in the Thomson One Global Mergers and Acquisitions Database
that meet the following criteria: all acquisition announcements occur between 1990
and 2012. The target firm is located in Europe or the USA. The bidder firm owns
less than 50 % of the target shares at the announcement and seeks to own at least
50 % of the target shares after the transaction. All deals are completed. This results
in a final sample of 6604 takeovers. For each takeover, we determine whether any
other bidder made a public takeover offer for the same target within a period of
6 months. Deals with more than one bidder for the target we denote as takeover
contest. All other deals are denoted as single bidder M&As without contest. Thus,
our focus is on empirically investigating the occurrence of takeover contests with
respect to excess takeover premium measures.

5 Empirical Results

In this section we present our empirical results. We first focus on the excess premium
measures (Sect. 5.1) and then analyze the effects on takeover contests (Sect. 5.2).

5.1 Excess Premium Measures

Figure 2 displays the cumulative density functions of the standard premium and the
excess premium measures. The various methods for calculating excess premiums

Fig. 2 Cumulative density function of standard premium and excess takeover premium measures
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Table 1 Selected excess takeover premium measures (EP) in takeover contests and takeovers
without competition for countries, industries, and method of payment (MOP)

No contest (1) Contest (2) Diff. (1)–(2)

Premium N Mean Median N Mean Median Mean Median

Initial premium 5915 44:50 35:14 350 46:46 39:10 �1:97 �3:97

EP country 6 months 5913 �1:45 �9:30 350 �5:75 �8:42 4:30� �0:87�

EP industry 6 months 5871 �1:38 �8:42 347 �6:35 �10:17 4:97�� 1:75

EP MOP 6 months 5844 �1:33 �9:32 349 �6:89 �10:73 5:56�� 1:41

EP country 20 deals 5882 �1:37 �8:70 345 �5:98 �8:58 4:61�� �0:12

EP industry 20 deals 5726 �1:53 �8:62 333 �7:04 �9:46 5:51�� 0:84

EP MOP 20 deals 5796 �1:30 �8:72 342 �6:42 �11:06 5:12�� 2:35

EP country 6M, 20D 5882 �1:43 �9:31 346 �5:73 �8:42 4:30� �0:89

EP industry 6M, 20D 5704 �1:58 �8:81 333 �6:64 �9:42 5:06�� 0:61

EP MOP 6M, 20D 5796 �1:53 �9:38 342 �6:70 �11:29 5:34�� 1:91

EP regr. all 5915 �1:71 �8:88 350 �6:53 �10:10 4:82�� 1:22

EP regr. rolling 5908 �1:62 �7:78 348 �7:55 �10:01 5:93��� 2:23�

***, **, and * denote significance at the 1, 5, and 10 % level, respectively.

result in different distributions compared to the standard calculation measure. For
example, a premium of 10 % in the standard calculation measure indicates a low
premium, but this relatively low premium can result in a positive excess premium if
we adjust for the expected premium in comparable deals. Table 1 illustrates the
results of excess premium calculations differentiated by bidders in contests and
bidders without contests. The standard initial premium in the first row suggests
that there is no significant difference between the size of the initial premiums in
contests and takeovers without contests. Because we are interested in explaining
the occurrence of contests, we expect that a low initial premium could increase the
risk of a takeover contest. The next rows in Table 1 show the descriptive results of
several excess premium measures. We use fixed period and fixed size approaches
to determine the excess premiums and a combination of both approaches to address
the problem of changing variances in the adjustment benchmark in times of lower
M&A activity. In addition, we use a regression approach that controls for several
factors simultaneously. As expected, we find that fixed period, fixed size excess
premiums, and the combination of both are significantly lower in contests compared
to takeovers without competition. Our results for regression-based premiums are
strongest. Overall, excess takeover premiums are negative for offers in contests,
which indicate that the mean initial offer is lower than the expected premium.
In takeovers without contests, the excess premium differs only slightly from the
expected premium whereas in contests the initial offer differs significantly from
the expected premium. Therefore, we expect that the excess premium measures are
superior in explaining the occurrence of takeover contests compared to the standard
method.



330 W. Bessler and C. Schneck

5.2 Occurrence of Takeover Contests

The descriptive results of the excess premium measures indicate that these premi-
ums are significant lower for bidders in contests compared to bidders in takeovers
without competition. Therefore, we now test whether the excess premium measures
are significantly in explaining the occurrence of takeover contests in contrast to the
standard method. To test the impact of the excess premium measures we estimate
probit models to determine the probability that a takeover contest occurs. We use a
dummy variable as the dependent variable that takes a value of one if a rival bidder
makes an offer for the same target after the initial offer, and zero if there is no
competing offer. Furthermore, we use a set of variables to control for deal and target
characteristics. We also include year dummies to control for year fixed effects and
cluster standard errors by the 12 Fama-French industries.

Table 2 presents the results of our probit models. Model 1 includes the standard
premium measure (initial premium) where we find an insignificantly negative effect
on the occurrence of takeover contests. The further Models include the fixed
period excess premium (Models 7–9), the fixed size excess premium (Models 10–
12) estimated over industries, countries, and the method of payment. Models 2–4
include a combination of fixed period and fixed size excess premium. Models
5 and 6 contain the regression based excess premium. The results suggest that
our measures are significant in explaining the occurrence of takeover contests
in contrast to the standard method. However, our findings are limited to cash
deals. In stock deals, the size of the premium varies due to the bidders stock
price movements and therefore affects the offered premium during the takeover
process. In more detail, fixed period excess premiums reduce the probability of
a takeover contest if calculated over comparable deals within a country or the
same method of payment. Offering a high excess premium, i.e., a premium above
the mean for the country or the method of payment reduces the probability of a
takeover contest. Moreover, we find that the fixed period premiums are widely
robust to standardization (not tabulated). Country and method of payment fixed
period excess premiums significantly reduces the probability of contests. Fixed size
excess premiums are with some exceptions significant if they are determined within
the same industry or country. The results further indicate that the number of deals
in the adjustment benchmark is crucial and should contain at least 20 deals. The
combination of fixed period and fixed size approach improves the results for the
industry excess premium measure. We find the strongest effect on the occurrence of
contests in the rolling regression based excess premiums. This indicates that several
factors affect the premium size and should be included in calculating the expected
and the excess premium. Overall, these results suggest that our excess premium
measures are valuable in explaining the occurrence of takeover contests in contrast
to the standard method.

In sum, our empirical analysis of takeover contests offers the following results.
The multivariate analysis suggests that, at least for cash deals, fixed period and
fixed size excess premiums significantly reduce the probability of a takeover contest.
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Because the size of the premium in stock deals varies, the stock price of the bidder
influences the premium during the takeover process. Industry adjusted premiums are
important if they are calculated over a longer time period or over a larger number
of deals, indicating that the number of deals in the adjustment benchmark should be
sufficiently large. Furthermore, we find that fixed period measures are widely robust
to standardization. Overall, the suggested measures are significant in explaining the
occurrence of contests in contrast to the standard method. Offering a positive excess
premium significantly reduces the probability that a contest occurs.

6 Conclusion

This study analyzes various approaches to calculate excess takeover premiums
and tests empirically whether these measures are significant in explaining the
occurrence or prevention of takeover contests. The literature so far provides only
mixed evidence for the influence of premiums on takeover contests. Probably,
the initial bidder has a first-mover advantage in choosing the conditions of his
initial bid (Jennings and Mazzeo 1993) and therefore has the means to reduce the
probability that a contest occurs. Therefore, we argue that only a premium above
the expected premium is useful in deterring rival bidders and in preventing takeover
contests in contrast to the standard calculation of premiums. Hence, we introduce
different methods to calculate excess takeover premiums, given that premiums differ
across industries, countries, methods of payment, and over time. We determine
excess premiums by using different adjustment benchmarks (industry, country, and
method of payment). Our results reveal significant differences in excess premiums
between contest bidders and bidders without contests. Furthermore, our findings
suggest that bidders in takeovers without a subsequent contest offer an initial
premium that is only slightly below the expected premium. In contrast, initial
takeover offers resulting in bidder contests use initial premiums that are significantly
below the expected premium. Thus, we observe a negative correlation between the
excess premium measures and the occurrence of takeover contests. These empirical
findings suggest that our measures are valuable in explaining the occurrence of
takeover contests.
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Firm-Specific Determinants on Dividend
Changes: Insights from Data Mining

Karsten Luebke and Joachim Rojahn

Abstract This paper aims at investigating the performance of state-of-the-art Data
Mining techniques in identifying important firm-specific determinants of dividend
changes. Since announcements of dividend changes are said to be informative
and likely to affect stock prices, an accurate prediction of dividend changes is of
vital interest. Therefore, we compare Data Mining techniques like Classification
Trees, Random Forests or Support Vector Machines with classical methods like
Multinomial Logit or Linear Discriminant Analysis. This comparison is done
on data of the dividend payout of German Prime Standard Issuers during the
years 2007–2010, as in this phase of financial turmoil many dividend changes can
be observed. To our best knowledge this is the first application of Data Mining
techniques in this research field concerning the German Stock Market.

1 Introduction

There is a growing body of literature dealing with the application of machine
learning techniques for financial market predictions. This paper deals with the
application of machine learning techniques in the problem of predicting dividend
changes. As announcements of dividend changes are said to have significant effects
on stock prices (see, e.g., Docking and Koch 2005), a deeper analysis of the firm-
specific determinants of dividend changes is of some importance, e.g., for investors
but also for researchers in the field of management decision processes. Though,
most papers dealing with this research question focus on single classification
techniques, see, e.g., Payne (2011) analysing the firm-specific determinants of
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dividend initiations by using a multiple discriminant analysis or Li and Lie (2006)
running a multinominal logistic regression.

However, diverse classification methods may lead to different predictions of
a class and varying performance in terms of misclassification error rates (e.g.
Dietterich 1998). Additionally, depending on the method different variables may
be important for the classification (see, e.g., Bolón-Canedo et al. 2013 for a recent
review on variable selection methods).

Whereas classical multivariate methods used in econometrics like the Multino-
mial Logit or Linear Discriminant Analysis (LDA) use all variables in estimation
and prediction simultaneously, the hierarchical Classification Tree approach not
only includes an intrinsic variable selection but also may allow deeper insights in
the management decision process. Random Forests (an ensemble of trees) are quite
successful in terms of prediction and it is also possible to assess the importance of
a variable in the prediction (see, e.g., Varian 2014). The classification performance
of Support Vector Machines (SVM) is also usually quite good and may outperform
the classical methods, see, e.g., Bennett and Campbell (2000). So these methods
are compared in the fields of interpretation, prediction performance and variable
importance in the application of announcements of dividend changes.

We analyse the payout policy of German issuers, as it is declared to be more
flexible than in the USA or UK (Goergen et al. 2005). We focus on the period
2007–2010, as in this phase of financial turmoil many dividend changes can be
observed. To reach for a high level of transparency in the decision making of
dividend changes, as many explanatory variables as available are investigated and
the effect and importance of each is assessed by means of the different classification
methods mentioned above.

The paper is organized as follows: in the next section the classification methods
are shortly discussed. In Sect. 3 the different variable importance measures are
given. The data set and the analysed explanatory variables are introduced in
Sect. 4 followed by the results of the different classification methods and variable
importance measures in Sect. 5. Finally our findings are summarized and a short
outlook is given.

2 Classification Methods

In this section we give a short introduction on the methods used to model and
predict the changing behaviour of dividend payout. This dependent variable Y is
on an ordinal scale: decrease, unchanged, increase of the dividend payout. So with
K being the number of groups or classes in the application K D 3. We focus on
the assumption on the independent variables random vector X with realizations
x D .x1; x2; : : : ; xd/, where d is the number of variables used, as well as the
consequences in interpreting the model. More mathematical details are given in
textbooks on Data-Mining, Machine-Learning or Multivariate-Analysis like Hastie
et al. (2009).
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2.1 Multinomial Logit

The Multinomial Logit (MN) is an extension for a multinomial (instead of a
binomial) dependent variable of the well-known Logistic Regression. It is derived
by modelling the log odds of each class against a reference class (unchanged in our
application):

log
P.Y D ijX D x/

P.Y D kjX D x/
D ˇi0 C ˇT

i x

There are no distributional assumptions on x, especially using nominal explanatory
variables is via dummy coding no problem. The sign of ˇij indicates whether an
increase of xj will raise the probability of class i—compared to the reference class
k. Statistical testing procedures for the hypotheses H0 W ˇij D 0, i.e. the variable Xj

has no effect on the probability of class i, are available. Allocation is done according
to an arg max rule, i.e. assign an observation to the class with the highest probability.
The decision boundaries are linear in the explanatory variables.

2.2 Linear Discriminant Analysis

The LDA is similar to the Multinomial Logit Model, but uses the assumption of a
multivariate normal distribution of X with a common covariance matrix ˙ within
the classes. With �j D E.XjK D j/ and prior probabilities j allocation via

arg max
i

�
xT˙�1�i � 1

2
�T

i ˙�1�i C log i

�
:

So the differences in the classes are analysed by the differences in the mean vector
of each class—weighted by the inverted covariance matrix. If the assumptions are
met, the LDA is optimal in terms of the misclassification rate. Like the Multinomial
Logit Model the decision boundaries are linear.

2.3 Classification Tree

In a Classification Tree (Tree) analysis the space of the explanatory variables is
partitioned into a set of rectangles and the same class y is assigned to each rectangle.
To build up the rectangles feasible variables are split at suitable points. It is a
hierarchic process from the root of the tree to the final nodes, where the building
and pruning process of the tree depends on the split criteria which is based on
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a appropriate impurity measure (e.g. Gini index) of the nodes—and some further
parameters like minimum number of observations in the terminal nodes.

The main advantage of a Classification Tree—as long as it is not too complex—
is the easy interpretation of the classification rules which may reassemble in some
ways the management decision process. It has no assumption on the distribution of
the explanatory variables, but unfortunately Classification Trees have a high vari-
ance and are therefore unstable. Also the performance in terms of misclassification
rate may be high compared to other methods.

2.4 Random Forests

In order to overcome the instability of a single Classification Tree many of such trees
can be built and the generated forest of trees can be used for a bagged classifier: a
Random Forest (RF) is generated by a bootstrapped sample for which a full tree is
build where a random sub-sample of the d explanatory variables are the candidates
for each split. Allocation of an observation is then done by a majority vote of all,
e.g. 500 Classification Trees.

The algorithm is quite easy to understand and applied, and the performance in
terms of misclassification rate is generally quite good. However, as classification is
based on a large number of trees and rules, results are hard to interpret.

2.5 Support Vector Machines

SVM aim at construction large margin separating hyperplanes in a high dimensional
feature-space. By using a so-called kernel trick the original variables can be
transformed into some high dimensional space where the classes may be separated
linearly by hyperplanes—even though the classes cannot be separated (linearly) in
the space of the original variables.

SVM have some very nice mathematical properties and (depending on the choice
of the parameters, especially the kernel) can perform quite well in terms of the
misclassification rate, but interpretation is not straightforward. Nevertheless they
return the Support Vectors, i.e. those observations that are either close to the decision
boundary and therefore needed to construct the hyperplane or are misclassified.

3 Variable Importance Measures

Which firm-specific financial characteristics do affect the decision to increase
or decrease the dividend payout? And which variables are most important for
classification? To indicate the importance of a variable for the classification rule a
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wide range of methods is available. In this study mostly method-intrinsic measures
are used to identify these key factors, i.e. variables:

For the Multinomial Logit Model the mean absolute value of the t-test statistic
of H0 W ˇij D 0 for i D 1; : : : ; K � 1 is used. As the LDA can be linked to
Multivariate Analysis of Variance (see, e.g., Mardia et al. 1979), we employ the
forward selection based on the P-value of Wilk’s lambda to asses the variable
importance for classification there.

For the importance of a variable in a Classification Tree simply the number of
observations split by the variable can be counted. Therefore variables that split on
top of the tree get more weight than variables that are only needed for terminal
nodes with much less observations. In Random Forest the data xj is permuted and
the decrease in the prediction performance after permutation averaged over all trees
is measured for each explanatory variable (Strobl et al. 2007).

The variable importance within the Support Vector Classifier is measured by the
mean of the area under the ROC. The area under curve is averaged over each binary
classification problem and averaged for all variables xj; j D 1; : : : ; d, see Hand
and Till (2001).

4 Data Set

The initial sample consists of all companies listed at the German Prime Standard at
least once during the sample period from 2007 to 2010.

Since our investigation approach requires dividend data in at least two subsequent
years, we have to eliminate observations because of missing data in the previous
period due to IPOs or upgrades from other German stock market segments or
missing data in the subsequent period because of de-listings. Additionally, we
drop REITs and financials according to the GICS classification as dividend policy
is subject to regulatory constraints. Finally, we exclude issuers following a zero-
dividend policy, so that the final sample consists of n D 609 observations.

The following independent variables are used to model and predict the dependent
variable dividend payout (increase, unchanged, decrease):

• Standardized net income: net income scaled by book equity
• Loss-Dummy: net income negative D 1, 0 otherwise
• Standardized FCF: free cash flow scaled by turnover
• LN(Size): natural logarithm of total assets
• Debt Ratio: total debt to total assets
• Cash to total assets
• Free float: fraction of shares which is frequently traded
• Price to book ratio: proxy for perceived undervaluation and/or growth opportu-

nities
• Turnover growth rate
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• Index: dummy for index membership in DAX, MDAX, TecDAX and SDAX, D 1

index member, 0 otherwise
• Year: 2007–2010. The period of financial turmoil with many dividend changes.

Additionally, the German tax system experienced a major change as a flat tax
system became effective in 2009, so that capital gains get less attractive for
investors

For scaled variables, i.e. net income, free cash flow, debt ratio, cash to total asset,
free float and price to book ratio, we also include the differences from period t � 1

to period t (denoted by “Delta”). Also included are the relative changes in lN(size),
denoted by “Percentage Change”. The data is collected from Bloomberg.

5 Results

The results of the Multinomial Logit are shown in Table 1. Those factors which
are significant at 0.05 level are marked by a (*). It can be seen that firms are more
likely to increase their dividend payments, if they are profitable, have high turnover
growth rates, are index members and if their debt ratio is low. The probability that
firms cut their dividends is rising when losses occur, net income is shrinking and the

Table 1 Estimated t-values
for dividend change in
multinomial logit model

Variable Reduction Increase

(Intercept) 1:00 0:36

Standardized net income 2.36 (*) 3.20 (*)

Loss dummy 3.07 (*) �0:51

Standardized FCF �1:12 0:12

LN(Size) �2.30 (*) 0:22

Debt ratio �0:42 �2.12 (*)

Cash to total assets �1:11 �0:86

Free float �0:02 �0:61

Price to book ratio �2.65 (*) �1:13

Turnover growth rate 0:15 3.75 (*)

Index 1:88 3.12 (*)

Year 2008 �0:53 �0:38

Year 2009 1:36 �3.22 (*)

Year 2010 0:96 �2.39 (*)

Delta scaled net income �3.62 (*) �0:70

Delta scaled FCF 1:29 �0:46

Percentage change in total assets �0:88 1:74

Delta scaled debt ratio 1:24 �1:79

Delta scaled cash reserves �1:56 1:51

Delta free float �0:63 �0:35

Delta price to book ratio 1:47 1:24
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Table 2 Estimated class means in the linear discriminant analysis for dividend change

Variable Reduction Unchanged Increase

Standardized net income 0:00 0:12 0:21

Loss dummy 0:30 0:04 0:01

Standardized FCF 0:02 0:05 0:06

LN(Size) 6:44 6:47 7:00

Debt ratio 0:22 0:20 0:18

Cash to total assets 0:11 0:14 0:13

Free float 0:62 0:61 0:65

Price to book ratio 1:57 1:96 2:65

Turnover growth rate �0:01 0:03 0:13

Index 0:56 0:49 0:70

Year 2008 0:12 0:23 0:34

Year 2009 0:41 0:29 0:18

Year 2010 0:39 0:29 0:16

Delta scaled net income �0:17 �0:01 0:02

Delta scaled FCF �0:00 0:00 0:00

Percentage change in total assets 0:02 0:06 0:15

Delta scaled debt ratio 0:03 0:01 �0:00

Delta scaled cash reserves �0:01 �0:00 0:00

Delta free float �0:03 �0:02 �0:02

Delta price to book ratio �0:18 �0:22 �0:28

price to book ratio is low. These results are in line with the findings of Li and Lie
(2006), which referred the negative impact of price to book ratio on the probability
to cut dividends to poor performance. Furthermore the results reveal the impact of
the financial market crisis on payout behaviour in the periods 2009 and 2010.

These findings are coherent with the results of the LDA, displayed in Table 2.
The ordering of the class wise means is also in line to the theory as well as to the
order of the dependent variable.

For the result of the Classification Tree (see Fig. 1) it is interesting to note that
the first node is the yearly change of the scaled net income. If this is below �0:043,
the observations are classified as Reduction, especially if the net income is low or
the debt ratio is high. If the yearly change of the scaled net income is above �0:043,
the dividend payout is classified mainly as Increase, only if also the price to book
ratio is <1.48 and the turnover growth rate is <0.83 the dividend payout is classified
as unchanged.

As the result, i.e. classification of a Random Forest is more like a black-box
only the classification performance is reported (see below). The same is true for a
Support Vector Machine (here with a Radial Basis Kernel) but note that out of the
609 observations in the data set 455 are support vectors.

Without any fine tuning of parameters—all calculations are done with help of
the statistical computing software R and the applicable packages out of the box—
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Delta.Scaled.Net.Income< −0.04304

Standardized.Net.Income>=0.0226

Year=2007,2009,2010

Debt.Ratio< 0.1028

Price.to.Book.Ratio< 1.48

Turnover.Growth.Rate< 0.08314

unchanged reduction

increase 

reduction

unchanged increase 

increase 

Fig. 1 Classification Tree for dividend change

Table 3 Apparent
misclassification rate for
dividend change

Method MN LDA Tree RF SVM

Error rate 0.35 0.36 0.32 0.34 0.25

Table 4 Ex-Post-Ante Error
Rate for dividend change

Year MN LDA Tree RF SVM

2008 0.35 0.30 0.42 0.37 0.36

2009 0.53 0.53 0.52 0.51 0.57

2010 0.46 0.53 0.60 0.45 0.54

Mean 0.45 0.45 0.51 0.46 0.51

the apparent error rate, i.e. estimation/learning and evaluation are performed on the
same data, are given in Table 3. One can see that about 30 % of the observations
are misclassified, with the Support Vector Machine slightly outperforming the other
methods.

Investors are mainly interested in the prediction performance of the methods, i.e.
if the method is estimated on previous data, how well will it perform on new data.
Therefore we also calculated the Ex-Post-Ante Error: e.g. use data 2007–2008 for
estimation/learning, use data 2009 for prediction and testing (Weihs and Luebke
2009). Concerning this prediction oriented error rate on average (see Table 4)
the Multinomial Logit Model, LDA and Random Forest perform similar, with
the Classification Tree and SVM slightly worse. Please note the increase in the
misclassification rate with the manifestation of the financial turmoil in 2009.
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Table 5 Variable importance ranking for dividend change

MN LDA Tree RF SVM

Top 1 Standardized
net income

Loss dummy Delta scaled
net income

Delta scaled
net income

Delta scaled
net income

Top 2 Index Turnover
growth rate

Price to book
ratio

Price to book
ratio

Standardized
net income

Top 3 Year 2009 Year 2009 Standardized
net income

Standardized
net income

Turnover
growth rate

Top 4 Delta scaled
net income

Year 2010 Turnover
growth rate

Turnover
growth rate

Price to book
ratio

Top 5 Turnover
growth rate

Index Year Year Year

The five most important variables measured as described in Sect. 3 are given in
Table 5. The turnover growth rate is ranked highly by all methods. Instead of the net
income—which is ranked highly by all other methods—LDA selects the binary loss
dummy. Delta scaled net income is the most important variable for the Data Mining
methods (Tree, RF, SVM) and top 4 for the Multinomial Logit Model but not by
LDA. The Data Mining methods also select the price to book ratio, which is also
important, i.e. significant in the Multinomial Logit (see Table 1 for a decrease of
the dividend payout but not for an increase.

6 Conclusion and Outlook

Despite the differences over the classification methods our analysis reveals four
predominant financial characteristics affecting the decision to change dividends of
German Prime Standard issuers in the years 2007–2010: the yearly change of the
net income, the net income itself, the turnover growth rate and the price to book
ratio. Interestingly, firms are more likely to increase dividends, if turnover growth
rates are high. No trade-off between growth and dividend increases can be detected
so there seem to be no dividend puzzle.

Nevertheless there are high error rates despite a quite large number of explanatory
variables which may be due to missing variables or because of some kind of
randomness within the process. Also it is possible that the reasons and actions may
vary over time as this is suggested by the variation of the Ex-Post-Ante Error Rate
as well as by the importance of the variable Year.

Data Mining techniques (especially without any fine-tuning of parameters)
are not per-se outperforming established econometric methods at least for this
data, but the conditional structure of the Classification Tree can enhance business
understanding.
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In a future work other potential variables should be investigated as well as a
longer time period. Under the aspect of meta learning it will be interesting to
understand why the classification performance varies and which data characteristics
influence this.
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Selection of Balanced Structure Samples
in Corporate Bankruptcy Prediction

Mateusz Baryła, Barbara Pawełek, and Józef Pociecha

Abstract Selecting samples is one of the methodological issues in the case of
corporate failure prediction. In practice, when constructing a sample of balanced
structure (50 % of failed and 50 % of non-failed firms), the most popular approach
is based on subjective pairings of available bankrupt companies with non-bankrupt
ones. This method is sometimes called pair-matched sampling. However, samples
obtained in this way are not independent random ones. For this reason, other
techniques should be taken into consideration. The simplest solution seems to
be the employment of random sampling with replacement. The paper presents a
comparative study of prognostic capabilities of four types of bankruptcy prediction
models obtained as a result of applying two sampling techniques (pair-matched
sampling and random sampling with replacement). The conducted analysis is based
on financial data of Polish manufacturing companies.

1 Introduction

In corporate bankruptcy modelling, one looks for models which will be able to
predict, most effectively, whether a company collapses or not. Although various
types of models have been proposed so far, it cannot be definitely determined which
of them are characterized by the best prognostic capabilities. Some researchers
prefer data mining techniques (e.g. neural networks, classification trees), whereas
others claim that statistical methods, such as linear discriminant analysis or logistic
regression, could give better results. Since it is difficult to choose the most
appropriate type of model, the question about possible sources of errors committed
during the process of bankruptcy prediction arises. Pawełek and Pociecha (2012)
indicate that one such error may be a method for selecting samples. The application
of a sampling technique results in obtaining either a balanced or non-balanced
sample. In the paper, special attention is given to pair-matched sampling which leads
to the creation of a sample of balanced structure.
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In the classical approach of, e.g., discriminant analysis, frequently used in this
kind of research, samples are randomized. Additionally, taking into consideration
the fact that the populations of bankrupt and non-bankrupt companies are not
usually very large (especially the population of firms that collapsed), the selection
would require random sampling with replacement. However, in practice, samples
are not drawn randomly. Information on insolvent companies is based on all the
failures filed by court registers in a given period of time, so the entire population of
bankrupt companies is considered, not a sample. Additionally, bankrupt companies
are matched with well-performing ones with similar parameters, such as size or
industry. Although pair-matched sampling is commonly used (Altman 1968; Boritz
et al. 2007; Charitou et al. 2004; Wu et al. 2007; Zhang et al. 1999), it causes two
main difficulties. Not only is it a non-random technique, but also it does not provide
samples in their primary meaning.

The main aim of the paper is to compare two methods of sampling, that is
pair-matched sampling and random sampling with replacement. In addition to
this, an attempt to find the answer to the following question is made: does the
method of selecting samples from the population of bankrupt and non-bankrupt
companies have an impact on the prognostic capabilities of models? In order to
answer the question, the case of balanced samples was taken into account. Operating
on samples of the same type for both considered sampling techniques involved
the necessity of making a reliable comparative analysis of prognostic abilities of
models.

2 Characterization of Database and Variants of Study

To carry out the intended analysis, the authors used a database containing 7329
records that included financial information about 1852 manufacturing companies
operating in Poland (133 of them were bankrupts). The data came from the period
between 2005 and 2009 from the Legal Gazette of the Polish Government Part B and
EMIS base (Emerging Markets Information Service). Each company was described
by 33 financial indicators grouped into: liquidity ratios (4 variables), liability ratios
(10 variables), profitability ratios (8 variables), productivity ratios (11 variables),
and zero-one variable that equals “1” if a company was bankrupt between 2007 and
2010, and “0” if a company was non-bankrupt from 2005 to 2010. Financial ratios
included in the database are listed in Table 1.

Assuming that financial data regarding the same company in various years is
treated as information on different firms, the records of the database can be identified
with various companies. Therefore, the data set contained the financial data of 7329
companies (182 of them went bankrupt, whereas the others did not fail).

Considering the most efficient use of the database, three variants of the analysis
were regarded. The first variant (variant V1) focused on bankruptcy prediction
taking into account financial information from 2006 to 2009 and 1-year horizon
of forecasting. In this case, the population of bankrupt companies consisted of 59
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firms, while the population of non-bankrupt companies amounted to 5943 firms. The
second variant (variant V2) was based on data from 2005 to 2008 and concerned a 2-
year-ahead failure prediction. The populations of bankrupts and non-bankrupts were
composed of 123 and 5922 firms, respectively. The last variant of study (variant V3)
referred to data from 2007 and involved a 2-year forecasting horizon. In the case of
this variant, 63 firms constituted the population of bankrupts, and 1644 firms formed
the population of well-performing companies.

3 Research Procedure Description

To construct a sample of balanced structure for each variant of the study, two
techniques of sampling were employed, that is pair-matched sampling and random
sampling with replacement. Using the first mentioned method, all companies that
failed in a given period of time constituted a sample of bankrupts. This period
of time was directly connected with the applied variant of the analysis. Next, the
bankrupt companies were paired up with non-bankrupt ones, taking into account
the same industry code and similar value of assets. For variants V1 and V2, when
matching companies in pairs, financial data came from the same year within every
pair of firms. It meant that if a company went bankrupt, e.g. in 2008, it was paired
with a firm which in the year did not fail. Thus, three balanced samples were created.
They comprised: 118 companies (variant V1), 246 companies (variant V2) and 126
companies (variant V3).

Three subsequent balanced samples were constructed with the use of another
sampling technique, i.e. random sampling with replacement. So as to create them,
the specific numbers of firms were drawn independently from the populations of
bankrupts and non-bankrupts. The sizes of three samples which were obtained by
means of random sampling with replacement remained in accordance with the sizes
of three samples chosen by applying pair-matched sampling. The same number of
companies constituting samples was necessary to guarantee a reliable comparative
analysis between the two described methods of sampling. When companies were
drawn independently from the populations, criteria for matching firms in pairs (e.g.
similar size of companies) were not taken into consideration.

Before constructing bankruptcy prediction models for Polish manufacturing
companies and comparison of their prognostic capabilities, some additional assump-
tions were made. They regarded: the type of applied models, the division of a sample
into training data and testing data, as well as the technique used in the selection of
variables. Many various types of bankruptcy prediction models have been proposed
so far. Their detailed classification is presented, e.g. by McKee (2000). In the
research, four commonly used methods of building such models were used, i.e.:
linear discriminant analysis, logistic regression, neural networks (only multi-layer
perceptrons) and classification trees (based on the CART algorithm). It is worth
stressing that the first two mentioned methods belong to the group of statistical
techniques, whereas the last two are data mining methods.
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Table 2 Sample division
into training set and test set

Split type Variant Training set Test set Total

7:3 V1 82 36 118

V2 172 74 246

V3 88 38 126

6:4 V1 70 48 118

V2 148 98 246

V3 76 50 126

In bankruptcy modelling, a sample is usually divided into two subsamples.
The first one, called a training set, is used to estimate a model, while the second
subsample, known as a test set, is used to check the prognostic abilities of a built
model. In the study, two splits were taken into account. According to one of them,
70 % of companies formed training data and 30 %—testing data. The other split
was connected with dividing data into a training group and testing group in a ratio
of 6:4. In each case, in a training set and test set, the number of bankrupt companies
equalled the number of non-bankrupt ones. The exact amount of firms in a training
group and testing group on account of the applied data split and variant of the
analysis is presented in Table 2.

Selecting variables is another crucial issue while constructing models. For
statistical models, two techniques were used; that is forward stepwise analysis
and backward stepwise analysis within linear discriminant analysis and logistic
regression. In order to create classification trees, the CART algorithm was used,
which simultaneously triggers variables reduction. Variables obtained as a result of
the previously mentioned techniques were also used to construct neural networks. In
Polish and foreign literature on bankruptcy prediction, authors often obtain models
with no more than six predictors. For this reason, models with a number of variables
greater than six were not considered.

In the study, the following procedure was applied. For a particular variant of the
analysis, particular sampling technique and particular data split, a sample had been
divided randomly into training group and testing group until ten models of a given
type were obtained. These models had to meet some conditions. Firstly, they were
models with the maximum number of predictors equalling six. Secondly, values of
type I error (percentage of bankrupt companies that were incorrectly classified as
non-bankrupt ones) and type II error (percentage of non-bankrupt companies that
were incorrectly classified as bankrupt ones) for both a training set and test set
were less than 50 %. Thirdly, all parameters of statistical models were significant at
the 0.05 level. Next, from every group of ten such models, the best model with the
highest predictive power was chosen according to the following criterion. In the first
place, the lowest value of type I error for testing data was considered. If it occurred
that some models had the same value of type I error, the one with the minimum
value of type II error for testing data was selected as the best model.
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It should be emphasized that the choice of type I error as the first criterion of
models selection was legitimate. In the literature on bankruptcy modelling, it is
generally agreed that type I error is more important than type II error (Bellovary
et al. 2007). From the perspective of financial institutions, such as banks, greater
significance has an error being a consequence of granting a loan for a company that
will go bankrupt (type I error) than an error resulting from not giving a loan to a firm
that will be able to repay it (type II error). In the first case, a bank suffers a financial
loss, whereas the second situation is connected with an alternative cost which is
equal to the profit that a bank would gain if it granted a loan.

All the calculations were made by the use of STATISTICA 10. In the case
of neural networks, three-layer perceptrons (an input and an output layer with
one hidden layer) were considered. The BFGS algorithm was used for training
neural networks. To transform the activation level of a neuron into an output
signal, the following functions were taken into account: identity function, logistic
function, hyperbolic tangent function, exponential function and softmax function.
Classification trees were constructed by means of the CART algorithm. The Gini
Index was employed as the impurity measure so as to assess the quality of the
obtained splits of objects (companies) in the nodes. The tree pruning was based
on the cost-complexity criterion which is characteristic of the CART method.
More details regarding the implemented algorithms in STATISTICA (also for linear
discriminant analysis and logistic regression which were used in the study) can
be found in Statsoft (2013). In the case of the logit model, the classification of
companies was based on the predicted probabilities, assuming the cut-off point at
the level of 0.5. If the probability was greater than or equal to 0.5, a company was
classified as a bankrupt one; otherwise a company was classified as a non-bankrupt
one.

4 Empirical Results

The implementation of the previously described procedure led to the selection of 48
models with the highest prognostic capabilities. Half of them were formulated by
the use of the non-random sampling method, and the rest—by the random sampling
technique.

Table 3 shows a ranking of the best bankruptcy prediction models when
pair-matched sampling was applied. The last three columns of the table contain
information about the values of type I error, type II error, as well as total
error (percentage of bankrupts and non-bankrupts that were incorrectly classified)
calculated for companies which formed testing groups. Places in the presented
rankings were allotted to models according to their predictive power (in the first
place, a value of type I error was considered and after that, if it was necessary, a
value of type II error).
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Table 3 Rankings of the best models in the case of applying pair-matched sampling

Split Place in Model Type I Type II Total
Variant type ranking type error error error

V1 6:4 1 NN1 4:17 16:67 10:42

2 D1 4:17 25:00 14:58

3 CT1 4:17 29:17 16:67

4 L1 8:33 25:00 16:67

7:3 1 NN2 5:56 27:78 16:67

2 L2 11:11 16:67 13:89

3 D2 11:11 22:22 16:67

4 CT2 11:11 33:33 22:22

V2 6:4 1 NN3 16:33 30:61 23:47

2 CT3 16:33 36:73 26:53

3 L3 22:45 30:61 26:53

4 D3 32:65 28:57 30:61

7:3 1 NN4 18:92 18:92 18:92

2 CT4 18:92 24:32 21:62

3 L4 27:03 27:03 27:03

4 D4 29:73 45:95 37:84

V3 6:4 1 NN5 20:00 36:00 28:00

2 D5 20:00 40:00 30:00

3 L5 24:00 40:00 32:00

4 CT5 24:00 48:00 36:00

7:3 1 NN6 5:26 36:84 21:05

2 L6 15:79 42:11 28:95

3 D6 15:79 47:37 31:58

4 CT6 36:84 31:58 34:21

Note: D denotes discriminant model, L logit model, NN neural network, CT classification tree,
numbers from 1 to 6 are used in the subscript to distinguish between the same type of models

Similar rankings of the best models (on account of their predictive power) for
three variants of the study and two considered types of data split are presented in
Table 4. In this case, the models were built and their prognostic capabilities tested
on the basis of samples created with the use of random sampling with replacement.

To check whether the applied method of sampling has an influence on the
classification of companies from a testing group or not, a comparison of pairs of
models was made. When comparing models, the same kind of model was considered
as well as the same type of sample division and the same variant of study, but
different technique of samples selection. A better model from every group of two
compared models turned out to be the one with the lowest value of type I error for a
test set. If both models had the same value of the error, then values of type II error
for testing data were taken into consideration. The obtained results are shown in
Table 5.
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Table 4 Rankings of the best models in the case of applying random sampling with replacement

Split Place in Model Type I Type II Total
Variant type ranking type error error error

V1 6:4 1 NN7 0:00 8:33 4:17

2 CT7 0:00 20:83 10:42

3 D7 8:33 0:00 4:17

4 L7 12:50 33:33 22:92

7:3 1 NN8 0:00 16:67 8:33

2 D8 0:00 27:78 13:89

3 CT8 5:56 11:11 8:33

4 L8 5:56 16:67 11:11

V2 6:4 1 CT9 10:20 38:78 24:49

2 NN9 12:24 32:65 22:45

3 L9 18:37 38:78 28:57

4 D9 26:53 24:49 25:51

7:3 1 NN10 10:81 35:14 22:97

2 CT10 16:22 32:43 24:32

3 D10 18:92 37:84 28:38

4 L10 24:32 27:03 25:68

V3 6:4 1 NN11 12:00 24:00 18:00

2 D11 16:00 32:00 24:00

3 CT11 24:00 28:00 26:00

4 L11 32:00 24:00 28:00

7:3 1 NN12 0:00 21:05 10:53

2 L12 15:79 26:32 21:05

3 CT12 21:05 10:53 15:79

3 D12 21:05 10:53 15:79

Note: in the fourth column, numbers from 7 to 12 are used in the subscript to distinguish between
the same type of models

Comparing 24 pairs of bankruptcy prediction models, it can be stated that random
sampling with replacement provides better forecasts in as many as twenty cases.
With reference to variant V2, independently of the applied sample split, the random
technique of sampling always led to the creation of models with higher predictive
power. For both types of data split within variant V3, in three cases out of four,
random sampling with replacement ensured better prognostic capabilities of models.
It occurred that the random method of sample selection also provided better results
for all cases of variant V1, when a sample was split into training data and testing
data in a ratio of 7:3. Only in one situation (variant: V1, type of data split: 6:4), pair-
matched sampling equaled random sampling with replacement on account of the
obtained forecasts in the group of four considered kinds of bankruptcy prediction
models.
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Table 5 Outcomes of models comparisons on account of applied sampling method

Split Number of winning Result of Winning models
Variant type comparisons comparison

V1 6:4 2 In favour of rswr NN7, CT7

2 In favour of p-ms D1, L1

7:3 4 In favour of rswr NN8, D8, CT8, L8

0 In favour of p-ms –

V2 6:4 4 In favour of rswr CT9, NN9, L9, D9

0 In favour of p-ms –

7:3 4 In favour of rswr NN10, CT10, D10, L10

0 In favour of p-ms –

V3 6:4 3 In favour of rswr NN11, D11, CT11

1 In favour of p-ms L5

7:3 3 In favour of rswr NN12, L12, CT12

1 In favour of p-ms D6

Note: rswr random sampling with replacement, p-ms pair-matched sampling

It is worth noting that whenever pair-matched sampling contributed to the
creation of models with higher predictive power, it referred only to some statistical
models, namely: D1, L1, L5, D6. In the case of models in the form of neural networks
and classification trees, the outcomes always argued for random sampling with
replacement.

5 Conclusions

Empirical results of the conducted analysis led to the conclusion that the type
of applied technique of sample selection has an influence on model prognostic
abilities in the group of four considered types of models. As far as statistical models
are concerned (linear discriminant models and logit models), the use of random
sampling with replacement provided better forecasts in most cases. In eight out of
twelve compared pairs of statistical models, a more accurate classification of firms
from the testing groups was observed for models which were tested on random
samples drawn independently from the populations of bankrupts and non-bankrupts.
It also turned out that in the case of neural networks and classification trees, the
implementation of random sampling with replacement always guaranteed models
with higher predictive power. The outcomes showed that random sampling with
replacement can be perceived as an alternative to pair-matched sampling.

Undoubtedly, assumptions which were made in the research had an impact on
the results. It is worth recalling some of them. Firstly, the procedure of generating
new models of the same type was repeated until the building of ten models which
complied with the defined rules. Of course, creating new models could last to the
moment of getting more than ten such models. Secondly, the choice of a model
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with the highest predictive power from groups of ten estimated models was made
in accordance with a certain criterion. The minimum value of type I error was
considered in the first place, and then the minimum value of type II error. The same
rule found its implementation when rankings were created and comparison of pairs
of models was made. Despite the fact that other criteria could be taken into account,
it does not change the fact that for credit institutions, more important is type I error
than type II error. Thirdly, the conducted analysis could be extended by including
other types of bankruptcy prediction models, different kinds of sample division into
training and testing sample, or alternative techniques of variables selection.

It should also be emphasized that the prognostic abilities of the created models
were checked on the basis of test sets which were subsamples of selected samples.
This raises the question: how accurate will the classification of companies be if they
are from other samples than the tested one; for example, chosen from the population
of firms that belong to the same sector of industry and the same period of time?
Additionally, the problem of checking the predictions for their stability remains:
how would the outcomes change when a new sample was drawn? Due to many
assumptions which were made when doing the research, the issue of influence of
employed sampling technique leading to the creation of balanced structure samples
on predictive power of models still stays open.
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Facilitating Household Financial Plan
Optimization by Adjusting Time Range
of Analysis to Life-Length Risk Aversion

Radoslaw Pietrzyk and Pawel Rokita

Abstract The article presents a concept of two-person household model with an
original approach to expressing life-length risk aversion, allowing, at the same time,
to simplify financial plan optimization. The technique uses (with improvements and
corrections) concepts introduced in some earlier works by the authors, but it has
not been presented so far as the main subject nor discussed in details. Moreover,
financial plans for two persons treated as a household are compared here with a sum
of two single individuals. This enriches the presentation of the model by an analysis
of advantages of the joint (household) approach.

1 Introduction

The aim of this research is to propose a household financial planning framework that
simplifies optimization of two-person household financial plan, but may be easily
augmented, still preserving the same concept. Secondary aims are: demonstrating
how the model works for stylized data and indicating the significance of household
effect by comparing the results obtained for a household and for a sum of two
separate individuals.

This piece of research expands and specifies more precisely some elements of
the concept presented by Feldman et al. (2014a).

Classical approaches, on the pattern of Yaari (1965) model, allow to optimize
consumption for a single person rather than a household. This was not earlier than
the last two decades of the twentieth century when research by Kotlikoff and Spivak
(1981) pointed out the significance of the fact that a vast part of life-long financial
decision makers are married couples. Hurd (1999) gave an analytical solution of
optimal consumption problem for a couple. Brown and Poterba (2000) continued the
current of research initiated by Kotlikoff and Spivak. They investigated life annuities
designed for married couples, providing examples showing advantages of joint
annuities. Albeit this article does not discuss joint annuities, the aforementioned
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advantages may serve as an argument for analyzing joint properties of household
finance.

The model discussed in this article is designed to facilitate building easily
applicable decision supporting tools. It is shown in its basic version, which in the
phase of concept presentation is rather a merit than shortfall.

This is a discrete time, two-person household model. More persons are allowed,
but treated just as part of financial situation of the main two. The approach is
general in this sense that it does not impose any particular consumption model,
utility function, nor underlying survival model. Despite the fact that some strong
simplifying assumptions (comp. Sects. 2.1 and 4) are used, relaxing them would
not entail changes of the very concept. Depending on the intended application and
research objectives, the model may be modified and augmented, like, for instance,
its variants used by Feldman et al. (2014b) or Pietrzyk and Rokita (2014). The model
allows also to analyze advantages of household (joint) approach. In order to perform
this analysis, a so-called disjoint variant is introduced for comparison.

There are two main contributions of this article. The first is combining reduction
of the number of survival scenarios with an original and, at the same time, intuitive
way of expressing risk aversion (range of concern). The scenario reduction, even
though it is a simplification, makes the model rather more than less realistic,
cutting off scenarios that are hardly plausible from psychological point of view
(see Sect. 2.3). The second contribution is facilitating decision making thanks to
a straightforward graphical interpretation of the financial planning results (expected
cumulated surplus trajectories—comp. Sect. 2.1). Each financial plan has a cor-
responding shape of expected cumulated surplus. The model also allows to take
advantage of internal risk sharing effect within the household (comp. Sects. 3 and 4),
and, as it has already been mentioned, is highly elastic and easily extendible.

The article is composed as follows: Sect. 2 presents assumptions and general
concept of the model, Sect. 3 introduces the so-called disjoint variant which is
designed to be comparable with household approach in order to identify advantages
of a joint treatment of household finance, and in Sect. 4 a numerical example is
presented. By the example also some differences between a household and disjoint
variant are shown. Section 5 concludes.

2 The Model

This is a cash-flow based, discrete time, life-long financial plan model for two-
person household with pre-declared consumption needs.
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2.1 General Concept and Assumptions

The model assumes, so far, two financial goals: retirement and bequest. The second
is not set as a typical financial goal (defined in terms of time and magnitude) but it
is taken into account by utility of residual wealth.

Household financial characteristics at the start of the plan include:

1. Income of Person 1 and Person 2.
2. Consumption of the household.
3. Retirement dates of Person 1 and Person 2.
4. Expected retirement gap of Person 1 and Person 2.
5. Growth rates of income and consumption, expressed in real terms.
6. Expected rates of return on investments (risky and risk free) in real terms.
7. Some other parameters, like expected inflation.
8. Mortality model for the two persons, or data from life expectancy tables.

All the components listed above, but survival, are represented by their expected
values. Consistently, only life-length risk is explicitly present. To help adjust the
plan to changes of other variables, regular revisions are performed.

Household consumption is composed of three elements: (a) common
consumption—fixed and not attributed to any particular person, (b) consumption of
Person 1, and (c) consumption of Person 2.

Household members pay contributions to private pension programs on regular
basis. This is the only form of investment (but investing ongoing surplus at the risk
free rate). The programs are separated, but if a person dies before retirement age,
the amassed capital is transferred to that other one.

Investments of the household are divided into:

1. Systematic investment program assigned to Person 1.
2. Systematic investment program assigned to Person 2.
3. “Uninvested” and unconsumed surplus (invested at some low rate).

It is assumed that the surplus is invested at a rate not higher than the risk free
one, though in fact it might be. It is just the matter of cautiousness (all the more
so because cumulated surplus plays also the role of an immediately accessible
liquid reserve). Simplifying the discussion somewhat, the cumulated surplus may be
treated as risk free investment, and what is here referred to as systematic investment
program assigned to Person 1 or 2—as risky investment.

Retirement and bequest preferences are strictly contradictive in the model ˛ D
1 � ˇ, where ˛, ˇ—consumption and bequest preference, respectively).

Consumption preference influences also the amount of capital required to fulfill
the retirement goal. It is postulated here that consumption increases in real terms,
both in pre-retirement and retirement phase. As a special case, consumption may be
constant in real terms (inflation indexed).
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The value function is constructed so that two subtypes of life-length risk are taken
into account: premature death risk and longevity risk.

To the key parameters of the household belong the so-called critical dates. There
are four such dates distinguished—comp. Feldman et al. (2014a): R1—retirement of
Person 1, R2—retirement of Person 2, E.D1/—expected date of death of Person 1,
E.D2/—expected date of death of Person 2.

The only two random factors of the model are dates of death: D1—date of death
of Person 1, D2—date of death of Person 2.

A pair Sc D .D1; D2/ is a survival scenario. Some survival scenarios give
very similar final financial outputs and some differ a lot. The differences consist
in location of D1 and D2 amongst critical dates.

2.2 The Task

The choice of an optimal financial plan consists in maximization of the value
function with respect to the following two decision variables:

1. Consumption-investment proportion,
2. Division of investments into the part assigned to Person 1 and Person 2.

At the moment 0 there is no surplus generated. All household income is spent
either on consumption or investment. Thus, initial consumption rate (c0) determines
consumption-investment proportion at start. Then, income and consumption change
deterministically (growth rates). In all subsequent periods the difference between
income and consumption growth rates may be a source of surplus. The initial level
of consumption determines not only consumption-investment proportion, but also
investment-surplus proportion in the next periods. Investment-surplus proportion
may be here also interpreted as proportion between risky and risk-free investments
(comp. Sect. 2.1). Of course, the proportions are fixed only at the start of the plan.

Division of household investment into parts assigned to Person 1 and Person 2
determines what part of household investment contributions goes to programs
maturing on the retirement date of Person 1 (�) and Person 2 (1 � �). It is assumed
that capital accumulated in the investment may be used to buy an individual annuity
(joint annuities are not taken into account).

The optimization task consists in maximization of a goal function described
in Sect. 2.4 (value function of the household), with the aforementioned decision
variables. The constraints are: the budget constraint (no unrecoverable shortfall
allowed) and minimum acceptable level of consumption. Each pair of values of
decision variables .c0; �/ stands for a particular financial plan.
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2.3 Range of Concern

In order to simplify application, it is proposed that the risk aversion parameters
should be expressed in terms of periods before and after E.Di/, in years, delimiting
what will be further referred to as the range of concern. Household members
define the scope of survival scenarios that they find worth their concern. As regards
premature death, they define some number of years before unconditional expected
date of death (parameter ��). With respect to longevity risk, they define a number
of years after expected date of death (parameter ı�). The range of concern is thus
defined as [Eq. (1)]:

.D�1 ; D�2 / 2 E.D1/ � ��I E.D1/ C ı�
� � E.D2/ � ��I E.D2/ C ı�

�
: (1)

The range of concern should not be confused with domain of optimization. It is
not a range of decision variable values, but a set of scenarios to be used.

This procedure differs significantly from the most commonly used ones. In
classical approaches consumption is optimized across the whole life cycle or the
whole retirement period (if the model is designed to optimize decumulation)—
comp. Yaari (1965), Kotlikoff and Spivak (1981), Hurd (1999), Brown and Poterba
(2000), Huang et al. (2012), Blake et al. (2013), etc.

Taking into account all possible scenarios might result in excess saving and
amassing too much retirement capital. The household would have to decrease its
consumption in early years, in order to fulfill optimization constraints for each
combination of individual survival scenarios. Moreover, some of these scenarios,
even though mathematically probable (small but nonzero probability), may be
hardly plausible in real life. For example, let us consider the following survival
scenario: a men dies at the age of 25 and his wife lives on to 95. Treating her further
life just as continuation of the original plan does not seem reasonable. Thirdly,
attempting to find optimal solution for all survival scenarios is computationally
tough, because their number increases proportionally to square of the number of
years taken into account.

2.4 Value Function

The goal function [Eq. (2)] is an expansion of that proposed by Feldman et al.
(2014a). And it is a corrected version of that presented by Feldman et al. (2014b). Its
components are expected discounted utilities of (a) consumption in pre-retirement
phase, (b) consumption in retirement, and (c) bequest. Consumption and bequest
are calculated for bivariate survival scenarios. Probabilities of survival scenarios
may be derived from virtually any survival model. It may be a combination of two
independent survival models like univariate (Gompertz 1825), or a joint bivariate
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model (direct implementation of stochastic force of mortality, like proposed by
Huang et al. 2012 may be, however, problematic).

Utility of consumption is calculated for whole paths of the survival process,
beginning at the start of the financial plan (t D 0), up to the moment when the last
household member dies under the scenario (t D maxfD�1 ; D�2 g). Utility of bequest
is taken for each scenario only once, namely at the moment when the survival
trajectory ends under this scenario (t D maxfD�1 ; D�2 g).

In a household model with more than one person, financial categories assigned
to the persons are interconnected even if the underlying survival processes are
assumed to be independent. There are also more survival states than just “alive” and
“not alive,” and in each state of the type “Person i is alive and Person j is not alive”
it is important when exactly Person j died. Critical dates are of special significance,
particularly dates of retirement. Moreover, some of important financial categories,
like cumulated investment and cumulated surplus follow path-dependent processes,
due to their cumulative nature. All these properties make hardly applicable for
households the traditional models, in which the underlying survival process is
expressed by means of conditional probability of survival. That inconvenience is
overcome by taking whole scenarios (process trajectories) with their unconditional
probabilities.

The value function of a household is given by the formula (2):

V.c0; �/

D
E.D2/Cı�X
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where: c0—consumption rate at the moment 0; �—proportion of Person 1
investment in joint one-period contribution of the household (� �
�1; �1 D 1 � �2); ı�—longevity risk aversion parameter; ��—premature-
death risk aversion parameter; rC , rB—discount rates for consumption
and bequest, respectively; p.D�

1 ;D�

2 /—(unconditional) probability of such

scenario that
�
D1 D D�1 ; D2 D D�2

�
; ˛—consumption preference; ˇ—

bequest preference; maxfD�1 ; D�2 g—time of household end, under a sce-
nario of

�
D1 D D�1 ; D2 D D�2

�
; C.tI D�1 ; D�2 /—consumption at time t for�

D1 D D�1 ; D2 D D�2
�

scenario; B.tI D�1 ; D�2 /—cumulated surplus at time t for�
D1 D D�1 ; D2 D D�2

�
scenario (available bequest if t D maxfD�1 ; D�2 g).

In the double summation loop of the formula (2) there are taken only such
survival scenarios (pairs of dates of death) that belong to the range of concern. When
calculating discounted utility of consumption, the whole trajectory of consumption
is taken for each such scenario (till the end, that is—maxfD�1 ; D�2 g). The argument of
the consumption function, C.tI D�1 ; D�2 /, is time (t). Scenario information .D�1 ; D�2 /

is treated as parameters. The arguments and parameters taken by the bequest
function, B.tI D�1 ; D�2 /, are the same, with the difference that the time argument is for
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each scenario just the end of this scenario (t D maxfD�1 ; D�2 g). Because whole paths
of consumption (and cumulated surplus) are used, it is always easy to determine
when exactly they end. Scenarios are then weighted with their unconditional
probabilities.

Functions ı.t/ and �.t/ play the role of multipliers, distinguishing between
utility of consumption before and after expected date of household end (E.D/ D
maxfE.D1/; E.D2/g). They additionally modify utility, introducing a time-
dependent risk aversion factor, which is not household-specific. Whereas �� and
ı� are risk aversion parameters, �.t/ and ı.t/ may be thought of as risk aversion
measures. They express severity of a potential instance of death. The more distant
the period from expected time of death, the higher severity (in financial sense).
For t D E.D/ the multipliers are of the value 1 (neutral as utility modifiers).
Before E.D/ the �.t/ function is decreasing and convex, it falls to unity at E.D/,
and is zero after E.D/. The ı.t/ function is of value zero before E.D/, starts with
the value one at E.D/ and then is convex and increasing. The slope of ı.t/ is
higher than of �.t/—the intuition is that longevity has more severe consequences
than premature death, due to less possibilities of financial recovery in an old age.
Formula (3) is just a proposition of how the ı.t/ and �.t/ functions might be defined:

�.t/ D
8
<

:

�
1

1C��

�
�

t�E.D/
E.D/

�

t � E.D/

0 t > E.D/

ı.t/ D
8
<

:
.1C ı�/

�
t�E.D/

ı�

�

t > E.D/

0 t � E.D/

: (3)

Proposed shape of
risk aversion
measures �.t/ and
ı.t/ as functions of
time.

3 Joint vs. Disjoint Treatment

To show the difference in financial plans prepared for a two-person household and
two separate individuals, a disjoint model was created. For comparativeness, all
cash flows from financial plans of the two separate individuals are summed up and
presented also jointly. Moreover, household common costs, that are not assigned
individually (common consumption), are just divided into two equal parts. The main
difference between joint and disjoint variant of the plan is that in the disjoint variant
the persons may invest only in their own retirement capital and then buy life annuity
for themselves individually. Also no part of income of one person may be spent
on consumption of that other one. Comparison of the joint and disjoint variant is
presented in Table 1.
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Table 1 Household (joint) vs. disjoint variant

Household Disjoint variant

Common costs
(not-assigned
consumption)

Joint Divided into two equal parts

Individual costs Individually assigned, covered
jointly

Individually assigned and
covered

Income Individually assigned but spent
jointly

Individually assigned

Investment The difference between joint
income and joint consumption
of the household

The difference between
individual income and
individual consumption

Private pension plan Individually assigned but the
accumulated capital may be
used for purchasing life annuity
for any person

Individually assigned and the
accumulated capital is used to
purchase life annuity for this
particular person

Private retirement Individually assigned but spent
jointly

Individually assigned

4 Numerical Example

It is assumed that the household has common and fixed utility function of
p

X
(where X stands for consumption or bequest).

The stylized example of this section is constructed to illustrates the idea of the
model and the risk-sharing mechanism by internal transfer of capital. The household
model might be also more complicated (children, elderly parents of the main
household members, other models of consumption, and labor income evolution,
etc.), but this would not make the example more comprehensive.

Let the household be composed of two persons: a 34-year-old man, earning
annually 31,000 monetary units, with life expectancy (at t0) of 74 years, and a
woman, 32 year old, earning 19,000, with life expectancy (at t0) of 82 years. Other
parameters (e.g., growth rates) are set so that they resembles the reality.

The effect of financial plan optimization is presented using plots of cumulated
net cash flow for three financial plans. The plans are further referred to as Plan 0,
Plan 1, and Plan 2. They differ only by the range of concern. Plan 0 assumes that
�� D 0, ı� D 0, which means no risk aversion, and optimization for the expected
scenario .D1 D E.D1/; D2 D E.D2// only. Plan 1 is built for parameters: �� D 5,
ı� D 5. Plan 2 assumes even wider range of concern, with: �� D 7, ı� D 9. All
results are presented for already optimized plans (each optimized given its range of
concern).

Cumulated surplus of these plans is analyzed under three scenarios (the expected
one and two other than expected). Let Scenario (0,0) denote the expected scenario,
(0,0) meaning that there is no deviation from expectations. Scenario (�5,5) denotes
a scenario under which Person 1 dies 5 years before and Person 2 dies 5 years after
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her or his expected date of death. And in the Scenario (�7,9) it is 7 years before
and 9 years after, respectively.

In Figs. 1, 2, and 3 there are shown cumulated surplus time structures of the plans
under different scenarios. The bar plots present the result for the household (joint)
variant and the linear plots—for the disjoint variant.

In Fig. 1 there is shown a result of Plan 0 optimization. This plan is optimized
only for one, expected scenario. In the subplot 1(a) cumulated surplus for the
expected Scenario (0,0) is presented. This plan is very sensitive to any deviation
from expectations. Subplot 1(b) presents cumulated surplus trajectory for Scenario
(�5,5). The plan suffers under this scenario a serious shortfall. There is also
observed no advantage of household approach over disjoint variant for this plan
(compare the bar plot and the solid line).

Fig. 1 Plan 0. Realized scenarios: (a) Scenario (0,0), (b) Scenario (�5,5)

Fig. 2 Plan 1. Realized scenarios: (a) Scenario (0,0), (b) Scenario (�5,5)

Fig. 3 Subplot (a) Plan 1, Scenario (�7,9). Subplot (b) Plan 2, Scenario (�7,9)
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In Fig. 2 behavior of a more conservative Plan 1 is shown. The subplot 2(a)
presents cumulated surplus trajectory for the expected Scenario (0,0). Under this
scenario both the household and disjoint variant give stable financial liquidity. The
advantage of the household approach becomes apparent under the more adverse
Scenario (�5,5), shown in the subplot 2(b). For the household (joint) variant there
is a stable financial situation also for this scenario, whereas in the disjoint variant a
deep unrecoverable shortfall occurs.

The effect of even more adverse Scenario (�7,9) is shown in Fig. 3. Subplot 3(a)
presents performance of the Plan 1. Since the scenario falls beyond the range of
concern of this plan, the shortfall at the end is not a surprise. If the household wanted
to be protected against such scenarios, it should optimize its financial plan for a
broader range of concern.

Let us assume that the household has declared: �� D 7, ı� D 9. This gives
Plan 2. The subplot 3(b) presents Plan 2. outcome under the Scenario (�7,9). The
plan guarantees stable financial liquidity also for this adverse scenario. The last
refers only to the household (joint) variant.

5 Conclusions

The article presents a simplified, yet general, household financial planning frame-
work that allows to overcome some modeling problems. Narrowing the bunch of
survival scenarios (the range of concern) is here the basic concept. This is strictly
connected with an easily applicable interpretation of risk aversion (the idea already
used by Feldman et al. 2014b and Pietrzyk and Rokita 2014, but then yet without
the comparison how the concept works for a household and disjoint variant).

Further research in this field might concentrate on a more detailed insight in the
difference between the joint (household) and disjoint variant, the conditions under
which the joint variant outperforms disjoint one, and the potential of reducing costs
of private pension investment in the joint variant.

Another direction is taking into account other types of risk, other financial goals,
introducing also ways of financing specific to particular types of goals.
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Dynamic Aspects of Bankruptcy Prediction
Logit Model for Manufacturing Firms in Poland

Barbara Pawełek, Józef Pociecha, and Mateusz Baryła

Abstract Many types of bankruptcy prediction models have been formulated
by business theory and practice. Among them, a wide group is composed of
classification models, which can divide firms’ population into two groups: bankrupts
and non-bankrupts. The current bankruptcy prediction models for firms in Poland
are usually based on the company’s internal financial factors which mainly have
a static character. The aim of the paper is to present the possibility of introducing
into the bankruptcy prediction logit model a time factor which represents dynamic
changes in external economic environment. The proposal of time factor inclusion
in this type of model was tested on data concerning manufacturing companies in
Poland from 2005 to 2008.

1 Introduction

In corporate bankruptcy prediction, one uses models (including logit model) which
are built on the basis of data drawn from financial statements of bankrupt and
non-bankrupt companies. Financial information is often taken from several years.
Connecting data from various periods is the consequence of the impossibility of
collecting a large enough data set which would contain information from only 1 year
(e.g. García et al. 2014).

In literature, the discussion of some issues arising while building models for
a binary dependent variable (also for logit model), taking into account data from
diverse periods can be found (e.g. Beck et al. 1998). The proposal of replacing static
models (e.g. single-period logit model) with models including changes of observed
values over time (e.g. multi-period logit model) appears in scientific papers (e.g.
Shumway 2001).
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The goal of corporate bankruptcy prediction is, among other things, to build a
model which is characterized by good predictive power. Using data which reflects
the financial condition of companies in various years, and a different economic
situation in a certain country (e.g. Trabelsi et al. 2014), the following question arises:
can a model with parameters which were estimated without including changes
in companies’ economic environment be a reliable tool for failure prediction?
The answer to this question is not simple. One of the potential sources of errors
being committed during bankruptcy forecasting can be the unstable nature of the
investigated population (e.g. Pawełek and Pociecha 2012).

Models presented in literature are constructed on the basis of data usually
taken from several years, and their usefulness for collapse prediction is assessed
according to a certain criterion assumed by authors. Some models find their practical
implementation for the several subsequent years after the time-frame analysed in the
case of research sample. So, does not a bankruptcy risk depend on the nationwide
economic situation? Can a model which was estimated for financial data from the
period of economic boom retain its predictive ability at the time of the economic
crisis?

When analysing models appearing in literature, which were created taking into
consideration data from various periods, one can notice their diversity on account
of employed financial ratios as well as estimated values of parameters for individual
variables (financial ratios) in different models. The observed diversity may be a
consequence of a different economic situation at the time from which the data was
taken. It can be expected that a model created on the basis of financial information
from the period of boom (slump) in the economy keeps its ability to predict
bankruptcy in the period of boom (slump) in the economy. However, it is hard to
assume that such a model will be able to predict correctly if a company fails at the
time of economic situation reverse to the one which was observed during sample
selection.

The aim of this paper is to discuss the possibility of introducing a time factor
into failure prediction models, which can represent changes in firms’ economic
environment. In addition to this, the article also presents obtained empirical
outcomes resulting from the implementation of proposed modifications of the logit
model.

During global financial crisis, the following research question gains in impor-
tance: how can a time factor, which shows changes in the economy of a certain
country, be included in a bankruptcy prediction model? Introducing this factor,
which represents alterations in the companies’ economic environment, into the
bankruptcy prediction logit model is an attempt to make the model dynamic.
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2 Data

Two balanced samples were used in order to verify the usefulness of the logit
model which was expanded by dummy variables for bankruptcy prediction of
manufacturing companies in Poland. Each sample consisted of 246 firms.

The first one (sample S1) was created as a consequence of matching non-bankrupt
companies with bankrupt ones taking into account the same industry code and
similar value of assets. The second sample (sample S2) was drawn independently
from the populations of failed and non-failed firms so that the number of bankrupts
can equal the number of non-bankrupts. Data was taken from the period between
2005 and 2008. Bankrupt companies were described by the values of financial ratios
from the 2 years preceding the firms’ failure. In the study, 33 variables (financial
ratios), which are presented in Table 1, were considered.

Both samples of companies were divided into a training group and testing group
[variant I: 60 % of firms and 40 % of firms (S11 and S21) or variant II: 70 % of firms
and 30 % of firms (S12 and S22)]. In the case of symbol Ssd .s D 1; 2I d D 1; 2/ ,
subscript s indicates the method of sample selection (1—pair-matched sampling,
2—random sampling with replacement), and subscript d denotes the variant of sam-
ple splitting into training data and testing data (1—6:4 division, 2—7:3 division).

3 Proposals of Logit Model Extension

The logit model was used to make an attempt to include dynamic changes in the
economy so as to predict the failure of manufacturing companies in Poland. The
logit model can be written as follows:

P .yi D bankruptj xi/ D exp .xiˇ/

1 C exp .xiˇ/
; (1)

where: xi—vector of values of independent variables for the ith object, ˇ—vector
of parameters.

It was assumed that the economic situation in a given country has an influence on
the financial standing of companies. Financial ratios are used to assess this standing
and, therefore, they are the base for building bankruptcy prediction models. Changes
of financial ratios values are partially caused by changes in companies’ economic
environment. It was also assumed that the significance of financial ratios depends on
the overall economic situation. Thus, information about the year which the financial
statement comes from is a link between financial ratios and the state of economy.

The main goal of the presented methodological proposal, which consists in using
interactions between qualitative variables (binary variables which identify years
which financial data are from) and quantitative variables (financial ratios) for failure
forecasting of companies in Poland, is to overcome some difficulties which arise
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when traditional methods are used for corporate bankruptcy modelling. Similar
attempts to make bankruptcy prediction models dynamic can be found in literature.
The models created for the Italian economy using data from the years between 1995
and 1998 (De Leonardis and Rocci 2008), as well as 1999 and 2005 (De Leonardis
and Rocci 2014) can be quoted as an example.

Searching for the possibilities for the time factor implementation into the logit
model, it has been assumed that the most important criterion for the evaluation
of usefulness of a given methodological proposal will be, above all, sensitivity
(percentage of bankrupt companies which were correctly classified as bankrupt
ones) calculated for the model on the basis of a test set. The classification of
companies was based on probabilities given by Eq. (1), assuming the cut-off point at
the level of 0.5. Objects for which the probability equalled at least 0.5 were classified
as bankrupts.

Three following solutions were considered:

– variant I: the creation of models for each year separately,
– variant II: the introduction of binary variables in the form of:

Yt D
	

1

0

if
if

year D t
year ¤ t

.t D 2006; 2007; 2008/ ; (2)

identifying the year which a financial statement is taken from,
– variant III: the introduction of both binary variables identifying the year of

a particular financial statement as well as qualitative-quantitative ones in the
form of:

Rt
i D

	
Ri

0

if
if

year D t
year ¤ t

.i D 01; : : : ; 33I t D 2006; 2007; 2008/ ;

(3)

which reflect fluctuating significance of financial ratios for corporate bankruptcy
prediction over time.

Binary variables Yt as well as qualitative-quantitative variables Rt
i are referred to

as dummy variables (Maddala 2001).
The aforementioned variants are associated with certain practical problems. In

the case of variant I, the problem with a small number of bankrupts to be considered
in separate years was encountered. Whereas the application of variant II implied
that it was possible to observe the influence of time factor only on the intercept
of a model. Ultimately, it was decided to utilize the third solution which allows to
influence not only the intercept, but also the coefficients of the logistic regression
model. Further in the article, the results of empirical studies based on variant III are
shown.
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4 Empirical Verification of Usefulness of Logit Model
with Dummy Variables

The best model among traditional logit models (that is, models based only on
financial ratios—Lj, where: j denotes the model number), L1.R11; R12/ constructed

on sample S11 [where: L D logit .p/ D ln
�

p
1�p

�
and p is the probability of success],

was characterized by the following results for testing data: sensitivity D 77.55 %
(that is 38 out of 49 bankrupts were correctly classified as bankrupt companies),
specificity D 69.39 % (that is 34 out of 49 non-bankrupts were correctly classified
as non-bankrupt companies), and correctly classified D 73.47 % (that is 72 out of
all 98 companies were correctly classified). The aim of the conducted research was
to verify whether the inclusion of dummy variables in the logit model may lead to
the prognostic quality improvement of a model, measured mainly by sensitivity for
a test set. The logit models were built with the use of backward stepwise analysis
within logistic regression.

The search for a prognostic model initially based on ratios from all four groups
as well as binary and qualitative-quantitative variables led to the creation of LM

1

model which contained variables R12 and R2008
20 belonging to the group of liability

and profitability ratios ( p-values are given below estimates of the parameters):

LM
i;1 D logit .pi/ D ln

�
pi

1 � pi

�
D 0:7408

.0:0020/
� 0:6703

.0:0003/
Ri;12 � 0:1132

.0:0437/
R2008

i;20 ; (4)

where: pi D OP .yi D bankruptj xi/.
The estimated model LM

1 informs that the increase in the value of liability ratio
R12 in a given year reduced the probability of bankruptcy in 2 years’ time, ceteris
paribus. Additionally, the increase in the value of profitability ratio R20 in 2008
caused the decrease in the probability of failure in 2010, ceteris paribus.

The prognostic capability of this model measured by sensitivity (85.71 %) was
the highest from among other considered models. However, its specificity (59.18 %)
and being correctly classified (72.45 %) were lower than in the case of other
analysed models.

The ROC (receiver operating characteristic) curve was used to illustrate the
classification accuracy of modified logit models (that is, models which also contain
dummy variables—LM

j , where j denotes the model number) (e.g. Birdsall 1973;
Stein 2005; Verikas et al. 2010). The curve is shown in a square of the surface
area that equals one. Values calculated as 1 minus specificity are presented on the
horizontal axis. The vertical axis shows in turn sensitivity of a model. Therefore,
points on the ROC curve have coordinates 1-specificity and sensitivity for different
cut-off values.

In the analysis of the ROC curve, a very important role is played by the area
under the curve (AUC), which is used as a measure of classification accuracy of a
model. The value of AUC at the level of 0.5 signifies that the classification accuracy
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Fig. 1 ROC curve for testing data in the case of model LM
1

of a considered model corresponds to the random allocation of objects to groups. In
turn, AUC D 1 indicates excellent classification accuracy of an analysed model.

The classification accuracy of logit model LM
1 for the test set was at a satisfactory

level (AUC D 0.758, Fig. 1—created using Stata/IC 12.0), slightly higher than for
the training set (AUC D 0.755). The value of AUC for model L1, calculated on the
basis of the test set, equalled 0.806. Therefore, the classification accuracy of the
logit model with dummy variables (measured by AUC) was lower than the accuracy
of the traditional model.

In the variant based on sample S21 which consists of companies selected
by means of random sampling with replacement, the traditional logit model
L2.R02; R11; R13; R16/ was obtained. Relying on financial ratios included in model
L2 and dummy variables, a modified logit model LM

2 .R11; R13; R2006
02 / was created

with the use of backward stepwise analysis:

LM
i;2 D 0:9747

.0:0003/
� 6:7781

.0:0001/
Ri;11 C 2:0917

.0:0333/
Ri;13 � 1:3769

.0:0013/
R2006

i;02 : (5)

The model LM
2 informs that the increase in the value of liability ratio R11 in a

given year influenced the reduction in the probability of bankruptcy in 2 years’
time, ceteris paribus. However, the growth of the value of liability ratio R13 in a
given year caused the increase in the probability of failure in 2 years’ time, ceteris
paribus. Additionally, the increase in the value of liquidity ratio R02 in 2006 affected
the decrease in the probability of bankruptcy in 2008, ceteris paribus.

The prognostic abilities of the logit model LM
2 were higher than the abilities

of traditional logit model L2 and they can be presented as follows: sensitivity D
89.80 %, specificity D 69.39 %, correctly classified D 79.59 %.
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Fig. 2 ROC curve for testing data in the case of model LM
2

The classification accuracy of logit model LM
2 for the test set was at a good level

(AUC D 0.846, Fig. 2—created using Stata/IC 12.0), higher than for the training
set (AUC D 0.806). The value of AUC for model L2.R02; R11; R13; R16/, calculated
on the basis of the test set, equalled 0.776. Modified logit model LM

2 had, therefore,
higher classification accuracy (measured by AUC) than its corresponding traditional
model L2.

A similar analysis was conducted for samples S12 and S22. The following
modified logit models were obtained:

LM
i;3 D 1:2721

.0:0001/
� 1:8485

.0:0002/
Ri;02 � 2:5527

.0:0001/
Ri;11 C 1:0971

.0:0184/
R2007

i;02 ; (6)

LM
i;4 D 0:9051

.0:0004/
� 12:9975

.0:00001/
Ri;11 C 4:3793

.0:0038/
Ri;13 C 9:5844

.0:0024/
R2007

i;11 � 4:6146
.0:0377/

R2007
i;13 :

(7)

Taking into account the parameters estimates for model LM
3 , it can be stated that

the increase in the value of liability ratio R11 in a given year had an impact on the
decrease in the probability of bankruptcy in 2 years’ time, ceteris paribus. Moreover,
the growth in the value of liquidity ratio R02 in a given year affected the reduction in
the probability of failure in 2 years’ time, ceteris paribus. However, the influence
of the increase in the value of ratio R02 in 2007 on the decline in the probability of
bankruptcy in 2009 was lower than in the other analysed years, ceteris paribus.

The estimated model LM
4 shows that the increase in the value of liability ratio R11

in a given year caused the decrease in the probability of failure in 2 years’ time,
ceteris paribus. However, in 2007 this impact on the decline in the probability of
bankruptcy in 2009 was lower than in the other considered years, ceteris paribus.
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Fig. 3 ROC curve for testing data in the case of model LM
3

Additionally, the growth in the value of liability ratio R13 in 2005, 2006 and 2008
had an effect on the rise in the probability of failure in 2 years’ time, ceteris paribus.
The year 2007 was an exception. In this year, the influence of this ratio on the
bankruptcy probability in 2009 was reverse, ceteris paribus.

The prognostic capability of the model LM
3 measured by sensitivity (75.68 %)

and being correctly classified (74.32 %) was higher than in the case of model
L3.R02; R11/. Specificity (72.97 %) in turn was at the same level as for model L3. The
classification accuracy of logit model LM

3 for the testing data was at a satisfactory
level (AUC D 0.776, Fig. 3—created using Stata/IC 12.0), but lower than for model
L3 (AUC D 0.804).

The model LM
4 was characterized by a higher sensitivity (81.08 %) than the

traditional model L4, however, it had a lower value of specificity (67.57 %). The
percentage of correctly classified companies for the model LM

4 was the same as in
the case of the model L4 (74.32 %). The classification accuracy of the logit model
LM

4 for the test set was at a good level (AUC D 0.811, Fig. 4—created using Stata/IC
12.0), higher than for model L4 (AUC D 0.784).

Recapitulating the results of the conducted empirical research, it can be stated
that the inclusion of dummy variables in the logit model, which is used to predict
the failure of manufacturing companies in Poland, may lead to the improvement
of prognostic capability of a model, measured by sensitivity for a test set. Models
estimated using financial data from the period between 2005 and 2008, which
includes the beginning of the worldwide financial crisis, point at the changing
significance of financial ratios groups employed in bankruptcy prediction of manu-
facturing companies in Poland. While forecasting failures 2 years in advance for
2008, special attention was paid to liquidity ratios from 2006, that is from the
period of an overall good economic situation. In the bankruptcy prediction for
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2009, an important role was played by liquidity and liability ratios from 2007,
that is from the beginning of financial crisis in Poland. In the case of making
predictions for 2010, profitability ratios from 2008 gained in importance. The year
2008 was characterized by a worsening economic situation in Poland. The economic
environment of manufacturing companies in Poland was then unstable. The degree
of bankruptcy threat depended on various factors connected with different fields
of business activity. It appears that conclusions drawn on the basis of estimated
logit models with dummy variables are in accordance with the knowledge of how
companies function during the economic boom and a slump in the economy.

5 Simulation Verification of Usefulness of Logit Model
with Dummy Variables

Because of the small size of the test sets, the bootstrap technique (Efron 1979)
was used in order to verify empirical values of sensitivity, specificity and AUC of
the discussed models. For each pair of models Lj and LM

j .j D 1; 2; 3; 4/, 10,000
bootstrap test samples were generated on the basis of the test samples (considered
in Sect. 4) resulting from two types of data division (6:4 or 7:3). The generated
bootstrap test samples consisted of 98 or 74 observations.

The outcomes shown in Table 2 confirm the conclusions presented in the previous
section. The values of sensitivity for the modified logit models are higher than in the
case of the traditional models. The values of specificity and AUC for the modified
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Table 2 Bootstrapping
estimates of sensitivity,
specificity and AUC

Sample Sensitivity Specificity AUC

S11 L1 LM
1 L1 LM

1 L1 LM
1

Mean 0.7764 0.8581 0.6940 0.5921 0.8062 0.7580

St.dev. 0.0594 0.0499 0.0664 0.0711 0.0439 0.0485

S21 L2 LM
2 L2 LM

2 L2 LM
2

Mean 0.8165 0.8980 0.6120 0.6937 0.7758 0.8452

St.dev. 0.0552 0.0432 0.0683 0.0656 0.0454 0.0395

S12 L3 LM
3 L3 LM

3 L3 LM
3

Mean 0.7287 0.7562 0.7300 0.7295 0.8032 0.7757

St.dev. 0.0735 0.0708 0.0725 0.0732 0.0515 0.0550

S22 L4 LM
4 L4 LM

4 L4 LM
4

Mean 0.7567 0.8112 0.7288 0.6752 0.7832 0.8103

St.dev. 0.0700 0.0647 0.0732 0.0776 0.0561 0.0540

Source: own calculations by means of R packages “base”,
“stats”, “verification” (R Core Team 2013; NCAR 2014)

models can be perceived as higher or similar in two out of four instances (one for
each of two splittings—6:4 and 7:3).

The bootstrapping estimates of standard deviation are worth considering. The
obtained results indicate the smaller diversity of the sensitivity, specificity and AUC
values which are characterized by higher mean value.

6 Summary

The problem with the way of utilizing logit models with dummy variables,
connected with the period between 2006 and 2008, in the case of possessing
financial data from years after 2008, stays open.

Dummy variables included in the logit model can be viewed as variables reflect-
ing the meaning of some financial ratios for bankruptcy prediction of manufacturing
companies in Poland at the time of the economic boom or recession. The year 2005
may be regarded as a boom in the Polish economy and models without dummy
variables correspond to this period. The year 2007 is considered to be the beginning
of worldwide financial crisis. 2008 is the year of a slowdown in the Polish economy
and in the case of such an economic situation, model terms which allow taking into
consideration the economic environment of companies should be used.

One of the solutions to the problem consists in the application of several logit
models both traditional and modified. This approach assumes our lack of knowledge
whether the year of financial data is characterized by an economic boom or slump.
Also, the obtained results need to be juxtaposed, and e.g., the voting method might
be employed.

The second solution recommends preceding the corporate bankruptcy prediction
by the analysis of similarities between the Polish economic situation in the years
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between 2005 and 2008, and the economic situation in the period which the financial
data comes from. The analysis of similarities between the economic situation in the
chosen years can be conducted on the basis of GDP changes. Financial data used
as a basis for estimation of the presented models came from financial statements
for years of both a boom and slowdown in the Polish economy. Thus, there is
the possibility of selecting appropriate logit models for bankruptcy prediction of
manufacturing companies in Poland 2 years in advance depending on the assessment
of the Polish economic situation.

In the literature on corporate bankruptcy prediction, one can also find proposals
that consist in the implementation of chosen market or macroeconomic ratios in the
traditional models (e.g. Chava and Jarrow 2004; Shumway 2001). In the discussion,
especially ratios whose values reflect the changes in the economic situation of a
given country are taken into account. On the basis of the research results in which an
attempt was made to apply macroeconomic ratios to bankruptcy prediction models,
it can be presumed that the usefulness of this approach depends, among other things,
on the length of the time-frame which the data was taken from (e.g. De Leonardis
and Rocci 2008, 2014).

The determined direction of further research, regardless of all the problems
arising while collecting data (among other things changes in the principles of
making and publishing financial statements in Poland), which is aimed at being the
basis for modelling and bankruptcy prediction of companies in Poland, is interesting
and deserves special attention. In the future, the authors plan to extend their research
to include also non-balanced samples.

Acknowledgements The authors would like to express their appreciation for the support provided
by the National Science Centre (NCN, grant No. N N111 540 140).

References

Beck, N., Katz, J. N., & Tucker, R. (1998). Taking time seriously: Time-series–cross-section
analysis with a binary dependent variable. American Journal of Political Science, 42(4), 1260–
1288.

Birdsall, T. G. (1973). The theory of signal detectability: ROC curves and their character.
Technical Report, No. 177, Cooley Electronics Laboratory, Department of Electrical and
Computer Engineering, The University of Michigan, Ann Arbor, MI.

Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. http://dx.doi.org/
10.2139/ssrn.287474.

De Leonardis, D., & Rocci, R. (2008). Assessing the default risk by means of a discrete-time
survival analysis approach. Applied Stochastic Models in Business and Industry, 24, 291–306.
interscience.wiley.com. doi:10.1002/asmb.705.

De Leonardis, D., & Rocci, R. (2014). Default risk analysis via a discrete-time cure rate model.
Applied Stochastic Models in Business and Industry, 30(5), 529–543.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1),
1–26.

http://dx.doi.org/10.2139/ssrn.287474
http://dx.doi.org/10.2139/ssrn.287474
interscience.wiley.com


382 B. Pawełek et al.

García, V., Marqués, A. I., & Sánchez, J. S. (2014, September). An insight into the experimental
design for credit risk and corporate bankruptcy prediction systems. Journal of Intelligent
Information Systems. doi:10.1007/s10844-014-0333-4.

Maddala, G. S. (2001). Introduction to econometrics, 3rd edn. West Sussex: Wiley.
NCAR - Research Applications Laboratory. (2014). Verification: Weather forecast verification

utilities. R package version 1.37. http://CRAN.R-project.org/package=verification. Accessed
20 Dec 2014.

Pawełek, B., & Pociecha, J. (2012). General SEM model in researching corporate bankruptcy and
business cycles. In J. Pociecha & R. Decker (Eds.), Data analysis methods and its applications
(pp. 215–231). Warsaw: C.H. Beck.

R Core Team. (2013). R: A language and environment for statistical computing. Vienna: R Foun-
dation for Statistical Computing. http://www.R-project.org/. ISBN:3-900051-07-0. Accessed
20 Dec 2014.

Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal
of Business, 74(1), 101–124.

Stein, R. M. (2005). The relationship between default prediction and lending profits: Integrating
ROC analysis and loan pricing. Journal of Banking and Finance, 29, 1213–1236.

Trabelsi, S., He, R., He, L., & Kusy, M. (2014, January). A comparison of Bayesian, haz-
ard, and mixed logit model of bankruptcy prediction. Computational Management Science.
doi:10.1007/s10287-013-0200-8.

Verikas, A., Kalsyte, Z., Bacauskiene, M., & Gelzinis, A. (2010). Hybrid and ensemble-based soft
computing techniques in bankruptcy prediction: A survey. Soft Computing, 14(9), 995–1010.

http://CRAN.R-project.org/package=verification
http://www.R-project.org/


Part IX
Data Analysis in Medicine and Life

Sciences



Estimating Age- and Height-Specific Percentile
Curves for Children Using GAMLSS
in the IDEFICS Study

Timm Intemann, Hermann Pohlabeln, Diana Herrmann, Wolfgang Ahrens,
and Iris Pigeot, on behalf of the IDEFICS consortium

Abstract In medical diagnostics age-specific reference values are needed for
assessing the health status of children. However, for many clinical parameters
such as blood cholesterol or insulin reference curves are still missing for children.
To fill this gap, the IDEFICS study provides an excellent data base with 18,745
children aged 2.0–10.9 years. The generalised additive model for location, scale
and shape (GAMLSS) was used to derive such reference curves while controlling
for the influence of various covariates on the parameters of interest. GAMLSS, an
extension of the LMS method, is able to model the influence of more than one
covariate. It is also able to model the kurtosis using different distributions. The
Bayesian information criterion (BIC), Q-Q plots and wormplots were applied to
assess the goodness of fit of alternative models. GAMLSS has proven to be a
useful tool to model the influence of more than one covariate when deriving age-
and sex-specific percentile curves for clinical parameters in children. This will be
demonstrated exemplarily for the bone stiffness index (SI) where age- and height-
specific percentile curves were calculated for boys and girls based on the model
which showed the best goodness of fit.

1 Introduction

Most medical tests used in diagnostics are based on clinical parameters with
established thresholds. Preferably, such thresholds should be related to the risk of
subsequent diseases. For adults, for instance, cut-off values are defined to diagnose
hypertension: A systolic blood pressure of at least 140 mm Hg and/or a diastolic
blood pressure of at least 90 mm Hg are considered as indicators of hypertension
which in turn may cause heart attack or stroke. Another well-known example is the
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classification of obesity in adults where according to the World Health Organization
definition a body mass index (BMI) greater than or equal 25 (30) classifies a person
as overweight (obese).

Such single cut-off values are, however, not useful in children since the distri-
butions of clinical parameters in children are heavily age-dependent due to their
physical development during growth. Thus, paediatricians need reference curves
in their daily practice. Such curves exist for the assessment of childhood obesity
(see e.g. Cole and Lobstein 2013 for BMI) but are still missing for most clinical
parameters. Because measurements obtained in clinical studies typically do not
represent a healthy population a large population-based sample is required to derive
reference curves. The IDEFICS study (Identification and prevention of Dietary-
and lifestyle-induced health EFfects In Children and infantS; Ahrens et al. 2011)
provides such a sample of healthy European children. Its aim is to enhance the
knowledge of health effects of a changing diet and altered social environment and
lifestyle of children in Europe.

Based on the rich data base of the IDEFICS study age- and sex-specific
reference values for several clinical parameters have been derived and published
in a supplement volume of the International Journal of Obesity (Ahrens et al. 2014).
One of these parameters is the bone stiffness index (SI) as an indicator for bone
health. It is measured by quantitative ultrasound (QUS) of the calcaneus which
has been shown to predict the risk of bone fractures in adults (Krieg et al. 2006;
Maggi et al. 2006). However, QUS has been poorly investigated in children and
adolescents, especially with regard to the prediction of health endpoints such as bone
fracture or osteopenia (Jaworski et al. 1995; Herrmann et al. 2014). SI reference
curves may help to assess skeletal development in early life and to detect deviations
from a normal growth already at an early stage. They may also guide therapeutic
decisions in children treated with medications affecting bone density, e.g. during
cancer treatment.

The generalised additive model for location, scale and shape (GAMLSS) is used
to derive such reference curves. In the literature, various approaches to calculate
percentile curves can be found. The probably most often used method has been
the so-called LMS method introduced by Cole and Green (1992). The basic idea
of LMS is to estimate the distribution of the response variable by estimating the
mean �, the coefficient of variance � and the Box–Cox transformation parameter
� which accounts for skewness by smooth curves depending on one covariate. The
LMS method is a special case of the more recent GAMLSS proposed by Rigby and
Stasinopoulos (2005). Nowadays, GAMLSS has gained importance in percentile
curve estimation because of its ability to not only account for the mean, variation and
skewness of a response variable but also for the kurtosis if necessary. Additionally,
GAMLSS is not restricted to one covariate and was used, for example, to derive
age- and height-specific reference ranges for spirometry (Cole et al. 2009). Finally,
GAMLSS fulfills the primary criteria defined in Borghi et al. (2006) to derive growth
curves: GAMLSS has the ability to estimate outer percentiles precisely, to estimate
percentiles simultaneously, avoiding percentiles to cross, to estimate z-scores and
percentiles using direct formulae, to apply continuous age smoothing and to account
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for skewness and kurtosis. This method will be described in detail here, using SI in
children as an example.

The GAMLSS method, the study population and details of model selection are
described in Sect. 2, followed by a graphical presentation of the results in Sect. 3
and a conclusion in Sect. 4.

2 Methods

2.1 Generalised Additive Model for Location, Scale and Shape

A semiparametric GAMLSS is a regression model assuming Yn; n D 1; : : : ; N, to
be independent random variables following a distribution D�n with K distribution
parameters .�n1; : : : ; �nK/ D �n and a probability density function f .ynj�n/. For
k D 1; : : : ; K the link function gk links the parameter �k D .�1k; : : : ; �Nk/

T to
covariates by

gk.�k/ D Xkˇk C
JkX

jkD1

hjkk.xjkk/; (1)

where Xk is a known design matrix, containing the covariate information, ˇk

is a parameter vector and the function hjkk W RN ! R
N , jk D 1; : : : ; Jk, is an

unknown function of covariates which can be estimated, e.g., by splines. GAMLSS
allows to consider a wide range of different distributions D�n . In contrast to the
generalised additive model the assumption of an underlying exponential family is
relaxed to a more general class of distributions including highly skewed and kurtotic
distributions.

The only requirements regarding the distribution to be fitted originates from the
implementation in the statistical software R: the probability density function and its
first, second and cross derivatives with respect to each of the parameters have to be
computable.

Two important examples of distributions that may be fitted within the framework
of GAMLSS are the Box–Cox Cole and Green distribution (BCCG) and the Box–
Cox power exponential (BCPE) distribution. Both distributions result from the Box–
Cox transformation

Z D
8
<

:

1
��

h�
Y
�

�� � 1
i

, � ¤ 0

1
�

log
�

Y
�

�
, � D 0

:

The random variable Y follows a BCCG(�; �; �) distribution if the random variable
Z follows a normal distribution. If Z follows a standard power exponential (PE) dis-
tribution then Y follows a BCPE(�; �; �; �) distribution. The parameter � originates
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from the PE distribution and accounts for the kurtosis which was the main reason
for introducing the BCPE distribution by Rigby and Stasinopoulos (2004). Within
the GAMLSS framework models including natural cubic splines are estimated by
maximising the penalised likelihood function

lp D l � 1

2

KX

kD1

JkX

jkD1

�jkkhT
jkkKjkkhjkk;

where for k D 1; : : : ; K and jk D 1; : : : ; Jk, l denotes the log likelihood, �jkk is
the smoothing parameter, hjkk is a vector which evaluates hjkk at xjkk and Kjkk is a
known penalty matrix depending on xjkk. Two algorithms are available for fitting a
GAMLSS: the CG algorithm based on an algorithm from Cole and Green (1992)
and the RS algorithm from Rigby and Stasinopoulos (2005).

2.2 An Application of GAMLSS

2.2.1 Study Population

The IDEFICS survey includes 18,745 2.0–10.9 year old children (recruited from
2007 to 2010) in eight European countries. The study population is described in
detail in Ahrens et al. (2014). The SI was measured in a subsample. The analysis
group that was used to derive reference curves for the SI included 5,412 boys
and 5,379 girls. A more specific description of the analysis group can be found
in Herrmann et al. (2014).

2.2.2 Modelling

The following analysis will be exemplarily conducted for boys. The analysis for
girls proceeded analogously. We used the GAMLSS package (version 4.2–6) of the
statistical software R (version 3.0.1; R Core Team 2013). For the application of the
semiparametric GAMLSS all components of Model (1) for the response variable
must be determined, these include:

• the distribution of the response variable, here the SI,
• link functions gk of the distribution parameters,
• terms depending on covariates for modelling the distribution parameters and
• appropriate covariates.

Descriptive analysis of the distribution of the SI showed an effect of both age and
height on the SI (Fig. 1). Therefore, age and height were considered as covariates.
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Fig. 1 Histograms of the SI
for boys aged 5.0–5.9 years:
(a) below median height and
(b) above median height;
aged 10.0–10.9 years:
(c) below median height and
(d) above median height. The
black bar displays the
respective mean
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We used cubic splines (cs), linear functions (both depending on age and height)
and constant terms to model the distribution parameters.

For the link functions we only used the default link functions depending on the
distribution and distribution parameters since, on the one hand, the link functions
had no influence on the Bayesian information criterion (BIC) and, on the other hand,
the default approach ensured that the requirements on the distribution parameters are
fulfilled, e.g. the log link for � of the BCPE distribution ensured that � > 0.

We fitted several distributions, ranging from symmetric (normal and logistic
distribution) and skewed (gamma and inverse Gaussian distribution) two parameter
distributions to distributions with three parameters which account for kurtosis
(power exponential and t-family distribution) or skewness (BCCG) to four param-
eter distributions which account for skewness and kurtosis (BCPE and Box–Cox t
distribution).

We used a stepwise model selection for each distribution mentioned above.
Models were fitted for both sexes separately. The particular distribution parameters
were modelled in terms of age and height. The BIC was used to assess different
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models. The model selection included a forward approach (step 1–4) and a
backward elimination (step 5–7) to minimise the BIC. In step 1 a model only for
� was built. Given the model selected in this step a model was built for � in step 2.
Given the model selected in step 2 a model was built for � in step 3 and given the
model selected in step 3 a model for � was built in step 4. Given the model selected
in step 4 it was checked if the terms for � were needed (step 5). Given the model
selected in step 5 it was checked if the terms for � were needed in step 6 and finally
given the model selected in step 6 it was checked if the terms for � were needed
(step 7).

The results of this procedure are summarised in Table 1: For example, for the
BCPE distribution � was modelled as a linear function of age and a cubic spline
of height, log.�/ and � as a cubic spline of height and log.�/ was modelled as a
constant. Models based on the BCPE and BCCG distribution resulted in the smallest
BIC values. The residuals of these models provided further details regarding the
goodness of fit. Table 2 summarises the quantile residuals which indicated that both
models fitted the data well since the residual distributions were very close to a
standard normal distribution. This was also confirmed by the Q-Q plots and the
density estimations of the residuals which are depicted in Fig. 2.

Additionally we inspected wormplots (van Buuren and Fredriks 2001) to decide
between the two models (Fig. 3). Wormplots are useful to check if the first four
moments are well captured by the model. The wormplots indicated that in both
models there was no need to account for kurtosis because the wormplots exhibited
no S-shape. Thus we considered the BCCG model as sufficient and we discarded

Table 1 Results of the stepwise model selection in boys for the BCCG, BCPE and normal
distribution

Distribution Parameters � log(� ) � log(� ) BIC

BCCG AgeCcs(height) Cs(height) Cs(height) – 42,652

BCPE AgeCcs(height) Cs(height) Cs(height) 1 42,661

Normal AgeCcs(height) Cs(height) – – 43,154

Table 2 Summary of quantile residuals

Model BCCG BCPE

Mean �2:56 � 10�5 4:64 � 10�5

Variance 1:00019 1:00018

Coefficient of skewness �0:00319 �0:00193

Coefficient of kurtosis 3:01162 2:96746
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Fig. 2 Q-Q plots of the BCCG (a) and the BCPE model (b); density estimate of BCCG (c) and
the BCPE model (d). Figure (a) from Herrmann et al. (2014)
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Fig. 3 Wormplots of the BCCG (a) and BCPE model (b)
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the more complex four-parametric BCPE distribution. Percentile curves based on
the BCCG model were derived for boys. Our model selection procedure for girls
also led to a BCCG model.

3 Results

As already mentioned, the reference curves for the SI depend on age and height.
Thus, three-dimensional curves stratified by sex are required to adequately represent
the functional relationship. One straightforward approach to present this relationship
is a wireframe plot using the covariates age and height as y- and x-coordinates
and one percentile of the SI as z-coordinate in a three-dimensional Euclidean space
(Fig. 4a). Using all dimensions a contour plot could be an alternative (Fig. 4b). For
the sake of clarity, improbable combinations of age and height should be omitted.
For this we used the age-specific 3rd and 97th height percentiles as cut-offs. In
Herrmann et al. (2014), we decided to provide easy-to-read tables and figures which
can be useful in daily practice, see, e.g., Fig. 5. Here, two-dimensional plots are
presented where percentile curves for only three height percentiles of major clinical
relevance are plotted. In younger children, the 1st and 50th percentile of the SI
showed a negative association with age and height. In older children, a positive
association was observed for all percentiles and their height had a smaller effect.
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Fig. 4 The 99th percentile of the SI in a wireframe plot (a) and in a contour plot (b)
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Fig. 5 The 99th, 50th, 1st percentile curve of the SI in boys depending on age and three different
height percentiles (P97, P50 and P3) from Herrmann et al. (2014)

4 Conclusion

We demonstrated the application of GAMLSS to derive age- and height-specific
percentile curves for children. We also showed how to find appropriate models
performing a model selection based on BIC and how to compare different models
by means of model diagnostic tools. Especially wormplots seem to be an adequate
tool in this context because they permit to assess the need to account for mean,
variance, skewness and particularly kurtosis. Finally, we presented some examples
how to display the resulting percentile curves.

Although a model assuming a BCCG distribution was chosen, which corresponds
to the LMS method, two advantages of GAMLSS became apparent. First, it is
possible to derive percentile curves that account for more than one covariate which
is useful for clinical parameters not only depending on age but also on height.
Second, it is possible to consider different models and to compare them to decide
whether to account for skewness and kurtosis. Thus, the chosen model and the
derived percentile curves result from a more comprehensive evaluation of various
models which justifies the additional effort for model selection related to GAMLSS
compared to the LMS method.

Taking SI as an example, GAMLSS has proven to be useful to generate reference
curves for children. For many clinical parameters, including SI, reference curves
were derived to guide clinical practice (Ahrens et al. 2014). These and further
applications of GAMLSS to clinical parameters, where reference values are missing,
will help to fill the gap in medical diagnostics that currently exists for children.
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Abstract Machine learning methods can be used for estimating the class mem-
bership probability of an observation. We propose an ensemble of optimal trees in
terms of their predictive performance. This ensemble is formed by selecting the
best trees from a large initial set of trees grown by random forest. A proportion
of trees is selected on the basis of their individual predictive performance on out-
of-bag observations. The selected trees are further assessed for their collective
performance on an independent training data set. This is done by adding the trees
one by one starting from the highest predictive tree. A tree is selected for the final
ensemble if it increases the predictive performance of the previously combined
trees. The proposed method is compared with probability estimation tree, random
forest and node harvest on a number of bench mark problems using Brier score as a
performance measure. In addition to reducing the number of trees in the ensemble,
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our method gives better results in most of the cases. The results are supported by a
simulation study.

1 Introduction

The usual task of pattern recognition or discrimination is to make a simple statement
about the group membership of an individual. For example, this simple statement
about a tumour patient could be that he/she is having a malignant or a benign
tumour. This might also be of interest to know the class membership probability of
the individual which is an important biomedical application. It is usually required
by surgeons, oncologists, pathologists, professionals involved in internal medicine
and human genetics and paediatricians (Malley et al. 2012). For instance, carrier
probabilities are calculated in genetic counseling and treatment response probability
is estimated in personalized medicine of every patient (Kruppa et al. 2012, 2014b).

The logistic regression model is the standard and classical approach for estimat-
ing individual probabilities (Kruppa et al. 2012, 2014a). A major problem with the
logistic regression is the requirement of correct and full specification of the model.
Misspecified model will give biased and inconsistent results.

Machine learning methods, on the other hand, can be used as non-parametric
alternatives to the classical logistic regression models to avoid the assumptions
involved and to overcome the problem of misspecification. These methods have
been utilized in various biomedical applications (Kruppa et al. 2012, 2014a; Malley
et al. 2012). Most of these methods are based on the idea of combining multiple
models to build a strong model (Ali and Pazzani 1996; Hothorn and Lausen 2003).
Studies have shown that the generalization error can be reduced by combining the
outputs of multiple models (Maclin and Opitz 2011). In this paper, the possibility of
creating an ensemble of optimal trees for class membership probability estimation
is considered that is motivated by Breiman’s (2001) upper bound for the overall
prediction error of a random forest ensemble which is given by

PE� � N� PEj; (1)

where j D 1; 2; 3; : : : ; T. T is the total number of trees in the forest, PE� is the
overall prediction error of a random forest, N� is the weighted correlation between
residuals from two independent trees and PEj is the prediction error of tree j in
the forest. This relation indicates that individually accurate and diverse trees could
make an efficient forest. Based on this intuition, trees are selected from a total of T
trees grown on bootstrap samples drawn from a given learning data set. A similar
approach is proposed in Gul et al. (2015) where the idea of random feature set
selection and bagging is used with k-nearest neighbours classifiers for the issue
of non-informative features in the data. We compare the method with k-nearest
neighbours, tree, random forest (RF), node harvest (NH) (Meinshausen 2010) and
support vector machines (SVMs) for probability estimation. The rest of the paper
is arranged as follows: Sect. 2 discusses the methods mentioned before; Sect. 3
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describes the Brier score; Sect. 4 introduces our method; Sect. 5 gives experiments
and results and conclusion is given in Sect. 6.

2 Probability Machines

Machine learning techniques that are used to give estimates of probability for the
group membership in binary class problems are named probability machines by
Malley et al. (2012). Here we briefly explain how kNN, tree, RF, NH and SVM
could be used for estimating class membership probabilities before introducing our
method, the optimal trees ensemble (OTE).

2.1 Probability Estimation Trees

To find the conditional probability, P.YjX/, of an individual belonging to a particular
class, the steps are

1. On a bootstrap sample from the training data L D .X; Y/, grow a classification
or regression tree.

2. Filter a test observation through the tree until it reaches to a leaf node Q0.
3. The proportion pi; i D 1; 2 of an observations of a particular class in Q0 is

determined which is the required probability, where

pi D # of ith class observations in Q0

# of observations in Q0
:

2.2 Random Forest as Probability Machine

The Breiman (2001) random forest can effectively be used for estimating the
conditional probability function P.YjX/ (Liaw and Wiener 2002). To find the group
membership probability P.YjX/, take the following steps:

1. Draw T bootstrap samples from the given training data L D .X; Y/ and grow T
probability estimation trees (PETs).

2. A test observation is filtered through each tree until it reaches a leaf node.
3. The estimate of class probability is the average proportion of a class observations

in the leaf nodes of all the trees where the test observation resides.

2.3 Node Harvest as Probability Machine

Node harvest, proposed by Meinshausen (2010), is a tree-based algorithm that takes
a large set of nodes as an initial ensemble and selects the most useful nodes for
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the final decision. Class membership probability of an observation is estimated as
follows:

1. Take a sufficiently large number of nodes from an initial tree ensemble.
2. Allow non-negative weights that take on values in the continuous interval [0,1]

and select those nodes that are assigned the highest weights.
3. Remove nodes that are identical.
4. The estimate of class probability is the average proportion of a class observations

in the selected nodes where the test observation resides.

2.4 k-Nearest Neighbours as Probability Machine

To estimate class membership probability of a test observation via kNN, the steps
are as follows:

1. Compute the distance of a test observation from all the training instances.
2. Find k nearest instances to the test point according to the distance.
3. The estimate of the probability is the proportion of instances of a class in the k

nearest neighbours.

2.5 SVMs for Probability Estimation

Given a training data set L D .X; Y/, SVMs can be used to produce estimates
of class membership probability instead of class labels. This is done by the
implementation of Platt’s posteriori probabilities (Platt 2000) in several R packages,
where the following sigmoid function is used.

p.yjX/ D 1

1 C exp.Af .X/ C B/
; where f .X/ is a decision function. (2)

A and B are the parameters to be estimated. For further information on this, see Platt
(2000).

Before introducing the proposed ensemble, we explain the performance measure
used in the algorithm and its comparison to other methods.

3 Assessment of the Probability Machines

We use the Brier score as performance measure which is generally used when
the true probabilities are not available (Malley et al. 2012). Gneiting and Raftery
(2007) argued that the Brier score is a proper score and its minimum value can
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only be obtained if the estimated probabilities are taken exactly equal to the true
unknown probabilities. It means that any probability machine having the smallest
Brier score is estimating class probabilities in the best possible way. The Brier score
is represented by the following equation:

BS D � .Y � P.YjX//
2

; (3)

where Y is the state of the response variable in the 0,1 form for the two classes and
P.YjX/ is the true unknown probability for the binary response given the features.
An estimator for the above score is

OBS D
P# of test cases

iD1

�
yi � OP.yijX/

�2

total # of test cases
; (4)

where yi is the state of the response for observation i in the 0,1 form and OP.yijX/ is
the estimate of probability for the binary response given the features.

4 The Ensemble of Optimal Trees

For obtaining the ensemble of best (accurate and diverse) trees, divide the given
training data L D .X; Y/ randomly into two non overlapping parts, LB D
.XB; YB/ and LV D .XV; YV/. Grow T trees on T bootstrap samples from
LB D .XB; YB/. Accurate and diverse trees are selected as follows:

1. Estimate the error of each tree (growing by random forest without pruning) by
using the out-of-bag (OOB) observations (observations left out from a bootstrap
sample) as the validation data.

2. Arrange the trees in ascending order with respect to the prediction errors and take
the first M trees.

3. To find diverse trees, the second best tree out of the M trees is combined with
the best tree to get an ensemble of size two and see how they perform on LV D
.XV; YV/. Then the third best tree is added and the performance is measured and
so on until the final Mth tree is added.

4. Tree OLk; k D 1; 2; 3; : : : ; M is selected if its addition to the ensemble without the
kth tree fulfils the following criterion.

• Let BShk�1i be the Brier score of the ensemble without the kth tree and BShki
be the Brier score of the ensemble including the kth tree, then tree OLk is
selected if

BShki < BShk�1i: (5)
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Fig. 1 A flow chart of the steps of OTE for probability estimation

To estimate class probability of an observation, apply steps 2 and 3 of random forest
on the M selected trees.

A simple illustrative flow chart of the steps is given in Fig. 1.

5 Experiments and Results

5.1 Simulation

We simulate data consisting of various structures to make the recognition problem
slightly difficult for simple classifiers, kNN and PET for example. We aimed our
method to perform better than the simple classifier and compete with the complex
and powerful classifiers, SVM, random forest and node harvest in our study, in
finding the structures. To this end we generate four models with a different number
of tree components where all the components are partitioning the data set on a subset
of the feature space. For each model we consider four different cases/complexity
levels by altering the weights �ijk of the tree nodes to move from highly non-
uniform distributions (low entropy) to distributions with high entropy. Thus we get
four different values of the Bayes error where the lowest Bayes error means a data
set with meaningful patterns and the highest Bayes error indicates a data set with
no patterns. Table 1 lists the various values of �ijk used in models 1, 2, 3 and 4.
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Node weights for getting the four complexity levels are given in four columns of
the table for k D 1; 2; 3; 4, for each model. All the four models are derived from
the following equation for producing class probabilities of the Bernoulli response
Y D Bernoulli(p) given the n � 3T dimensional vector X of n iid observations from
Uniform.0; 1/, T being the total number of trees.

p.yjX/ D
exp

�
b �

�
�m
T � a

��

1 C exp
�

b �
�

�m
T � a

�� ; where �m D
TX

tD1

�t: (6)

a; b 2 R are any arbitrary constants, m D 1; 2; 3; 4 is the model number and �m’s
are n � 1 vector of probabilities. T is the total number of trees in a model and �t’s
are probabilities for a particular class in the response Y generated by different tree
structures as follows:

�1 D �11k � �.x1 � 0:5 & x3 � 0:5/ C �12k � �.x1 � 0:5 & x3 > 0:5/

C�13k � �.x1 > 0:5 & x2 � 0:5/ C �14k � �.x1 > 0:5 & x2 > 0:5/;

�2 D �21k � �.x4 � 0:5 & x6 � 0:5/ C �22k � �.x4 � 0:5 & x6 > 0:5/

C�23k � �.x4 > 0:5 & x5 � 0:5/ C �24k � �.x4 > 0:5 & x5 > 0:5/;

�3 D �31k � �.x7 � 0:5 & x8 � 0:5/ C �32k � �.x7 � 0:5 & x8 > 0:5/

C�33k � �.x7 > 0:5 & x9 � 0:5/ C �34k � �.x7 > 0:5 & x9 > 0:5/;

�4 D �41k � �.x10 � 0:5 & x11 � 0:5/ C �42k � �.x10 � 0:5 & x11 > 0:5/

C�43k � �.x10 > 0:5 & x12 � 0:5/ C �44k � �.x10 > 0:5 & x12 > 0:5/;

�5 D �51k � �.x13 � 0:5 & x14 � 0:5/ C �52k � �.x13 � 0:5 & x14 > 0:5/

C�53k � �.x13 > 0:5 & x15 � 0:5/ C �54k � �.x13 > 0:5 & x15 > 0:5/;

�6 D �61k � �.x16 � 0:5 & x17 � 0:5/ C �62k � �.x16 � 0:5 & x17 > 0:5/

C�63k � �.x16 > 0:5 & x18 � 0:5/ C �64k � �.x16 > 0:5 & x18 > 0:5/;

where 0 < �ijk < 1 are weights given to the nodes of the trees, k D 1; 2; 3; 4. The
four models use the following specifications for using (6)

5.1.1 Model 1

This model consists of 3 tree components each based on 3 variables. Therefore,
T D 3, �1 D P3

tD1 �t and X becomes a n � 9 dimensional vector. A tree used in this
model is shown in Fig. 2.
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Fig. 2 A tree used in
simulation model 1

x1 > 0.5 YesNo

121 =
0.1

111 =
0.9

YesNo
x2 > 0.5

141 =
0.9

131 =
0.1

No Yes
x3 > 0.5

5.1.2 Model 2

For this model we take T D 4 trees where �2 D P4
tD1 �t and X becomes a n � 12

dimensional vector.

5.1.3 Model 3

This model is based on T D 5 trees such that �3 D P5
tD1 �t and X becomes a n �15

dimensional vector.

5.1.4 Model 4

This model consists of 6 tree components with T D 6, �4 D P6
tD1 �t and X becomes

a n � 18 dimensional vector.
We see in Table 2 that tree, kNN, NH and SVM gave consistently poor

performance as compared to RF and OTE. OTE gave comparable results with RF in
most of the cases. Comparable/better results can be seen in the first of the four cases
of all the remaining models. From these results, it follows that the proposed method
can produce comparable results to random forest with a significant reduction in the
ensemble size (given in the last column of Table 2) if there are some meaningful
patterns in the data.

5.2 Bench Mark Problems

We considered 20 bench mark problems taken from various open sources. Dystro-
phy and Glaucoma data sets are taken from “ipred” R package, Musk from “kernlab”
R package and Body data set is from “gclus” R package. Appendicitis and SAHeart
are from http://sci2s.ugr.es/keel/dataset.php?cod=183. Oil-Spill data is from http://
openml.org/d?from=180. All the rest of the data sets are from UCI machine learning
repository http://archive.ics.uci.edu/ml/. A brief description of these data is given in
the first four columns of Table 3 where n is sample size and d is the number of
features.

http://sci2s.ugr.es/keel/dataset.php?cod=183
http://openml.org/d?from=180
http://openml.org/d?from=180
http://archive.ics.uci.edu/ml/


An Ensemble of Optimal Trees for Class Membership Probability Estimation 405

T
ab

le
2

B
ri

er
sc

or
es

of
kN

N
,t

re
e,

R
F,

N
H

,S
V

M
an

d
O

T
E

on
si

m
ul

at
ed

da
ta

B
ay

es
SV

M
SV

M
SV

M
SV

M
R

ed
uc

ti
on

in
M

od
el

d
n

er
ro

r
kN

N
T

re
e

R
F

N
H

(R
ad

ia
l)

(L
in

ea
r)

(B
es

se
l)

(L
ap

la
ci

an
)

O
pt

T
re

es
E

ns
en

se
m

bl
e

si
ze

(%
)

M
od

el
1

9
10

00
0.

09
0.

16
0.

09
0.

10
0.

12
0.

13
0.

13
0.

14
0.

13
0.

08
90

.7

0.
14

0.
18

0.
12

0.
12

0.
14

0.
16

0.
16

0.
16

0.
16

0.
13

89
.5

0.
17

0.
22

0.
13

0.
12

0.
14

0.
19

0.
18

0.
19

0.
18

0.
12

89
.5

0.
33

0.
27

0.
23

0.
22

0.
22

0.
23

0.
23

0.
23

0.
22

0.
23

90
.8

M
od

el
2

12
10

00
0.

21
0.

19
0.

16
0.

13
0.

16
0.

16
0.

16
0.

19
0.

16
0.

13
89

.9

0.
24

0.
21

0.
18

0.
15

0.
17

0.
17

0.
17

0.
20

0.
17

0.
15

89
.7

0.
28

0.
24

0.
21

0.
18

0.
2

0.
20

0.
20

0.
22

0.
20

0.
19

89
.7

0.
3

0.
25

0.
22

0.
21

0.
21

0.
21

0.
21

0.
23

0.
21

0.
21

89
.2

M
od

el
3

15
10

00
0.

15
0.

21
0.

17
0.

14
0.

18
0.

16
0.

16
0.

25
0.

16
0.

14
90

.7

0.
18

0.
21

0.
18

0.
15

0.
18

0.
17

0.
17

0.
25

0.
17

0.
16

89
.1

0.
21

0.
22

0.
18

0.
16

0.
18

0.
18

0.
18

0.
25

0.
18

0.
16

91
.1

0.
24

0.
24

0.
2

0.
19

0.
2

0.
19

0.
19

0.
25

0.
19

0.
18

89
.9

M
od

el
4

18
10

00
0.

21
0.

22
0.

2
0.

16
0.

19
0.

17
0.

17
0.

19
0.

18
0.

16
89

.8

0.
22

0.
23

0.
2

0.
16

0.
19

0.
18

0.
18

0.
20

0.
19

0.
17

89
.3

0.
25

0.
25

0.
22

0.
18

0.
2

0.
20

0.
20

0.
21

0.
22

0.
18

90
.5

0.
26

0.
26

0.
22

0.
19

0.
2

0.
21

0.
21

0.
22

0.
24

0.
19

90
.2

T
he

la
st

co
lu

m
n

is
th

e
pe

rc
en

ta
ge

re
du

ct
io

n
in

en
se

m
bl

e
si

ze
of

O
T

E
co

m
pa

re
d

to
R

F



406 Z. Khan et al.

T
ab

le
3

D
at

a
se

ts
su

m
m

ar
y

(F
T

m
ea

ns
fe

at
ur

e
ty

pe
w

it
h

R
:r

ea
l,

I:
in

te
ge

r
an

d
N

:n
om

in
al

nu
m

be
r

of
fe

at
ur

es
)

an
d

B
ri

er
sc

or
es

of
kN

N
,t

re
e,

ra
nd

om
fo

re
st

,
no

de
ha

rv
es

t,
SV

M
an

d
O

T
E

FT
SV

M
SV

M
SV

M
SV

M
D

at
a

se
t

n
d

(R
/I

/N
)

kN
N

T
re

e
R

F
N

H
(R

ad
ia

l)
(L

in
ea

r)
(B

es
se

l)
(L

ap
la

ci
an

)
O

pt
T

re
es

E
ns

M
am

m
og

ra
ph

ic
83

0
5

(0
/5

/0
)

0.
14

12
0.

12
29

0.
12

88
0.

12
07

0.
13

40
0.

12
52

0.
13

13
0.

13
54

0.
13

66

D
ys

tr
op

hy
20

9
5

(2
/3

/0
)

0.
10

51
0.

13
44

0.
09

47
0.

11
61

0.
08

31
0.

08
72

0.
08

02
0.

07
92

0.
08

64

M
on

k3
12

2
6

(0
/6

/0
)

0.
08

86
0.

06
87

0.
06

57
0.

18
17

0.
06

95
0.

15
70

0.
06

63
0.

09
38

0.
06

10
A

pp
en

di
ci

ti
s

10
6

7
(6

/0
/0

)
0.

12
63

0.
13

54
0.

11
99

0.
11

65
0.

13
60

0.
12

57
0.

11
56

0.
11

78
0.

12
42

SA
H

ea
rt

46
2

9
(5

/3
/1

)
0.

20
92

0.
20

74
0.

18
95

0.
18

80
0.

18
50

0.
17

94
0.

19
66

0.
18

16
0.

20
06

T
ic

-t
ac

-t
oe

95
8

9
(0

/0
/9

)
0.

22
79

0.
14

67
0.

04
08

0.
19

97
0.

14
83

0.
21

88
0.

12
00

0.
19

72
0.

04
37

H
ea

rt
30

3
13

(1
/1

2/
0)

0.
22

26
0.

16
83

0.
12

31
0.

14
41

0.
14

42
0.

12
78

0.
12

35
0.

12
47

0.
12

86

H
ou

se
vo

te
23

2
16

(0
/0

/1
6)

0.
06

55
0.

03
23

0.
02

93
0.

06
56

0.
02

99
0.

03
45

0.
15

80
0.

03
86

0.
02

90
B

an
ds

36
5

19
(1

3/
6/

0)
0.

22
31

0.
25

49
0.

18
78

0.
22

40
0.

19
91

0.
20

28
0.

22
30

0.
21

07
0.

18
14

H
ep

at
it

is
80

20
(2

/1
8/

0)
0.

31
05

0.
13

78
0.

09
70

0.
09

50
0.

09
64

0.
10

42
0.

11
58

0.
08

94
0.

08
83

Pa
rk

in
so

n
19

5
22

(2
2/

0/
0)

0.
11

51
0.

11
38

0.
06

76
0.

09
30

0.
07

63
0.

11
95

0.
15

44
0.

09
31

0.
06

36
B

od
y

50
7

23
(2

2/
1/

0)
0.

01
90

0.
07

34
0.

03
11

0.
05

53
0.

01
24

0.
01

20
0.

23
77

0.
02

19
0.

02
95

T
hy

ro
id

91
72

27
(3

/2
/2

2)
0.

03
05

0.
01

04
0.

00
84

0.
01

61
0.

03
88

0.
03

21
0.

05
72

0.
03

82
0.

00
79

W
D

B
C

56
9

29
(2

9/
0/

0)
0.

05
41

0.
06

43
0.

03
11

0.
04

25
0.

02
66

0.
02

12
0.

20
34

0.
02

83
0.

03
08

W
PB

C
19

8
32

(3
0/

2/
0)

0.
18

25
0.

21
31

0.
16

79
0.

16
86

0.
16

03
0.

15
42

0.
18

06
0.

16
26

0.
16

53

O
il

-s
pi

ll
93

7
49

(4
0/

9/
0)

0.
03

95
0.

03
34

0.
02

82
0.

02
93

0.
03

26
0.

03
73

0.
03

31
0.

03
64

0.
02

74
Sp

am
ba

se
46

01
57

(5
5/

2/
0)

0.
17

44
0.

09
48

0.
03

83
0.

09
06

0.
07

30
0.

06
18

0.
24

07
0.

08
14

0.
03

74
G

la
uc

om
a

19
6

62
(6

2/
0/

0)
0.

13
65

0.
10

95
0.

08
90

0.
09

16
0.

09
41

0.
12

39
0.

21
93

0.
11

93
0.

09
04

N
ki

70
14

4
76

(7
1/

5/
0)

0.
14

58
0.

14
10

0.
14

65
0.

14
73

0.
16

75
0.

20
24

0.
23

49
0.

18
32

0.
13

29
M

us
k

47
6

16
6

(0
/1

66
/0

)
0.

14
20

0.
18

84
0.

09
63

0.
17

46
0.

09
56

0.
11

07
0.

24
70

0.
18

86
0.

08
71

T
he

be
st

re
su

lt
is

sh
ow

n
in

bo
ld



An Ensemble of Optimal Trees for Class Membership Probability Estimation 407

5.3 Experimental Setup and Results for Bench Mark Problems

The data sets are divided into two parts. The training part consisted of 90 % of
observations (of which 90 % is used for bootstrapping and 10 % for diversity check)
and the remaining part is taken as the testing part. A total of 1000 runs are performed
to calculate the average Brier score on all the data sets. The results are given in
Table 3 where the average Brier scores of kNN, tree, random forest, node harvest,
SVM and OTE are given against each data set. Four kernels; Radial, Linear, Bessel
and Laplacian, are considered for SVM with the rest of parameters on their default
values in the “kernlab” R package. Tenfold cross validation is used for tuning the
parameters of kNN, tree and RF. kNN is tuned for k D 1; : : : ; 10. For finding
the optimal number of splits and the minimal optimal depth of the trees, values
.5; 10; 15; 20; 25; 30/ are tried. For tuning the node size of RF, we tried values
.1; 5; 10; 15; 20; 25; 30/, for ntree, .500; 1000; 1500; 2000/ and for tuning mtry, we
tried .sqrt.d/; d=5; d=4; d=3; d=2/ where d is the total number of features. Number
of nodes in the initial set for NH is fixed at 1500. The result of the best performing
method is given in bold. R package, version 3.1.0 is used in all the experiments
(R Core Team 2014). It is clear from Table 3 that OTE outperforms all the other
methods on most of the data sets. The new method is giving the smallest Brier
scores on 10 out of 20 data sets. On 4 data sets random forest gave the smallest
Brier scores. On 1 data set, node harvest gave the best result while SVM gave
the best performance on 5 data sets. A large number of trees in the initial set can
be recommended under the available computational resources. For T > 1000 the
results of the proposed method are invariant and the method converges afterwards
for the data sets considered. This can be seen in Fig. 3a. As shown in Fig. 3b,
class membership probability estimations by using OTE is unaffected by varying
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Fig. 3 (a) The effect of the number of trees in the initial set on OTE. (b) The effect of the number
of features selected at random for splitting the nodes of the trees on OTE
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the number of features selected at random for splitting the nodes of the trees. This
means that growing trees for the initial set through random forest or simple bootstrap
technique might lead to very similar final ensembles.

6 Conclusion

We have proposed an ensemble of optimal trees, OTE, as a non-parametric
method for estimating class membership probabilities in binary class problems. We
compared PETs, random forest, node harvest and the proposed OTE on a number of
bench mark and simulated data sets. The proposed method outperformed kNN, tree,
random forest, node harvest and SVM on most of the data sets. We also used tree
style simulation models to generate data sets with several structures. The proposed
method is observed to use fewer accurate and diverse trees and hence could be very
helpful in reducing the number of trees in tree ensembles which might increase
interpretability. The method is observed to be unaffected by varying the number
of features selected at random for splitting the nodes of the trees and they could
simply be grown using the simple bagging technique. The method is implemented
in an R package OTE. The proposed method could better be used, in conjunction
with some feature selection method, (Mahmoud et al. 2014a,b, for example) in high
dimensional settings.
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Ensemble of Subset of k-Nearest Neighbours
Models for Class Membership Probability
Estimation

Asma Gul, Zardad Khan, Aris Perperoglou, Osama Mahmoud,
Miftahuddin Miftahuddin, Werner Adler, and Berthold Lausen

Abstract Combining multiple classifiers can give substantial improvement in
prediction performance of learning algorithms especially in the presence of non-
informative features in the data sets. This technique can also be used for estimating
class membership probabilities. We propose an ensemble of k-Nearest Neighbours
(kNN) classifiers for class membership probability estimation in the presence of
non-informative features in the data. This is done in two steps. Firstly, we select
classifiers based upon their individual performance from a set of base kNN models,
each generated on a bootstrap sample using a random feature set from the feature
space of training data. Secondly, a step wise selection is used on the selected
learners, and those models are added to the ensemble that maximize its predictive
performance. We use bench mark data sets with some added non-informative
features for the evaluation of our method. Experimental comparison of the proposed
method with usual kNN, bagged kNN, random kNN and random forest shows that
it leads to high predictive performance in terms of minimum Brier score on most of
the data sets. The results are also verified by simulation studies.
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1 Introduction

In numerous real-life applications, class membership probabilities of individuals are
required in addition to their class labels. For example, in safety-critical domains
such as surgery, oncology, internal medicine, pathology, paediatrics and human
genetics, these probabilities are needed. In all the aforementioned areas, probability
estimates are more useful than simple classification as they provide a measure
of reliability of the decision taken about an individual (Lee et al. 2010; Malley
et al. 2012; Kruppa et al. 2012, 2014a,b). Machine learning techniques used mainly
for classification can be used as non-parametric methods for class membership
probability estimation in order to avoid the assumptions imposed in parametric
models used for the estimation of these probabilities (Kruppa et al. 2012; Malley
et al. 2012).

In many real-life problems, one often encounters imprecise data such as data
with non-informative features. These features dramatically decrease the prediction
performance of the algorithms (Nettleton et al. 2010). Feature selection methods
that investigate the most discriminative features from the original features are
usually recommended to mitigate the effect of such non-informative features
(Mahmoud et al. 2014a,b). However, different feature selection methods result in
different feature subsets for the same data set thus varying feature relevancy. This
encourages combining the results of several best feature subsets.

It has been investigated in the last two decades that combining the outputs of
multiple models, known as ensemble techniques, results in improved prediction
performance (Breiman 1996; Hothorn and Lausen 2003; Kuncheva 2004) and are
more resilient to non-informative features in the data than using an individual model
(Melville et al. 2004). Recently, an ensemble of optimal trees has been suggested
for class membership probability estimation by Khan et al. (2015).

k-Nearest Neighbour (kNN) learning algorithm is one of the simplest and oldest
methods. It classifies an unknown observation to the class of majority among its
k-Nearest Neighbour points in the training data as measured by a distance metric
(Cover and Hart 1967). Despite its simplicity, kNN gives competitive results and
in some cases even outperforms other complex learning algorithms. However,
kNN is vulnerable to non-informative features in the data. Attempts have been
made by researchers to improve the performance of Nearest Neighbour algorithm
by ensemble techniques (Bay 1998; Li et al. 2011; Samworth 2012). In this
manuscript, we propose an ensemble of subset of kNN classifiers (ESkNN) for the
task of estimating class membership probability, particularly in the presence of non-
informative features in the data set and compare the results with those of simple
kNN, bagged kNN (BkNN), random kNN (RkNN) and random forest (RF).
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2 Proposed Ensemble of Subset of kNN Algorithm

To construct the ensemble of subset of kNN models (ESkNN), a two stage strategy
is implemented. Consider a training data set of n � .d C 1/ dimensions, consisting
of data points L D .x; y/, an instance is characterized by d features along with
the corresponding class label. The training data set L is randomly divided into two
sets, a learning set and validation set and the ensemble is developed in the following
steps.

1. Draw m random feature sets of size l from d input features, l < d and draw m
bootstrap samples on these feature sets from the learning set.

2. Build m kNN models and select h of the m models that give the highest accuracy
on the out-of-bag observations (observations that are left out from the bootstrap
sample).

3. In the next stage add the selected h models one by one starting from the best
model and assess its collective performance on the validation set. The process is
repeated until all the h models are evaluated in the ensemble.

4. A model is selected if it gives minimum Brier score (BS) on the validation set.
Let BShr�1i be the Brier score of the ensemble without the rth model and BShri is
the Brier score after adding the model, the rth model is selected if

BShri < BShr�1i: (1)

5. The group membership probability estimate of the test instance is the averaged
probability estimate over all t selected models.

A flow chart of the procedure of ESkNN is shown in Fig. 1.

3 Performance Measure of the Methods

As a performance measure, we use Brier score introduced by Brier (1950). It
provides a measure of accuracy of the predicted probabilities. It is the most common
and appropriate criterion for binary class outcome and can be used for the evaluation
of predicted probabilities by a machine learning algorithm, in situations where the
true probabilities are unknown (Malley et al. 2012). Gneiting and Raftery (2007)
stated that the Brier score is a proper measure and its minimum value can only occur
if the calculated probabilities are taken as the true probabilities which are unknown.
It follows that a machine learning technique that has the smallest value of the Brier
score will be performing best in estimating group membership probabilities. The
Brier score is given as:

BS D E.yi � p.yijx//2; (2)

where yi 2 f0; 1g and p.yijx/ is the true but unknown probability of the state of
the outcome for yi given the features. An estimator for the above score for t test
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Fig. 1 A flow chart of the steps of ESkNN for class membership probability estimation

observations is:

cBS D
Pt

iD1 .yi � Op.yijx//2

t
: (3)

4 Results and Discussion

4.1 Experiments and Discussion on Bench Mark Problems

The performance of the ESkNN in terms of the Brier score, is evaluated on a total
of 25 data sets taken from UCI, KEEL databases and from within R-Libraries,
mlbench, mboost, ipred, gclus and mmst. Summary of the data sets is given in
Table 1.
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Table 1 Summary of the data sets

Features (Continuous/Discrete/

Data Sets Sample size Feature type Catagorical)

Adenocarcinoma 76 9869 (9869/0/0)

Prostate 102 6033 (6033/0/0)

Breast2 77 4869 (4869/0/0)

Leukaemia 38 3052 (3052/0/0)

Colon 61 2000 (2000/0/0)

nki70 breast cancer 144 77 (72/1/4)

Glaucoma M 198 62 (62/0/0)

Wpbc 194(198) 33 (31/2/0)

Body 507 24 (24/0/0)

Biopsy 683(699) 9 (0/9/0)

SAheart 462 9 (5/3/1)

Diabetes 768 8 (8/0/0)

Appendicitis 106 7 (7/0/0)

Bupa 345 6 (1/5/0)

Dystrophy 194 5 (2/3/0)

Mammographic 830(961) 5 (0/5/0)

Transfusion 748 4 (2/2/0)

Hepatitis 80 19 (2/17/0)

Indian liver patients 583 10 (5/4/1)

Haberman 306 3 (0/3/0)

Phoneme 1000 5 (5/0/0)

Two norms 1000 20 (20/0/0)

German credit 1000 20 (0/7/13)

House voting 435 16 (0/0/16)

Bands 365 19 (13/6/0)

Sonar 208 60 (60/0/0)

The first five data sets are from microarray studies

The ESkNN is assessed in two scenarios. Firstly, all the methods are applied on
the data sets with their original features and secondly, the feature space of all the data
sets are extended by adding 500 randomly generated non-informative features. The
results for both the cases are given in Tables 2 and 3. Each of the data sets is divided
into test and training parts where the training part consists of 90 % of observations
and the remaining 10 % is reserved for testing. The methods are applied on each data
set in a total of 1000 runs and are evaluated on the testing data set in each run. The
final Brier score is the average of Brier scores of the 1000 runs. The experiments
are carried out using the R-Program. The values of the hyper parameters for the
methods are selected by using the “tune” function within the R-Package “e1071”.

The results from Table 2 reveal that ESkNN is giving the smallest Brier scores
on 23 data sets out of the total 25 data sets among all kNN-based methods, whereas
on Bands data set it gives better probability estimate than kNN and BkNN and
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Table 2 Brier scores on the data sets on five methods

Data Sets kNN BkNN RkNN ESkNN RF

Haberman 0.199 0.197 0.181 0.171 0.199

Dystrophy 0.105 0.102 0.098 0.097 0.096

Mammographic 0.141 0.140 0.127 0.115 0.129

Transfusion 0.168 0.167 0.164 0.160 0.172

Bupa 0.221 0.215 0.217 0.215 0.190
Appendicitis 0.126 0.119 0.109 0.105 0.119

Diabetes 0.177 0.172 0.173 0.168 0.156
Biopsy 0.024 0.024 0.025 0.021 0.025

SAheart 0.209 0.207 0.203 0.200 0.189
Bands 0.235 0.231 0.207 0.208 0.183
German credit 0.216 0.214 0.201 0.178 0.159
Body 0.019 0.019 0.036 0.012 0.031

Wpbc 0.182 0.182 0.176 0.172 0.168
Sonar 0.179 0.179 0.109 0.092 0.127

Glaucoma M 0.147 0.144 0.142 0.130 0.089
Indian liver 0.191 0.189 0.179 0.163 0.174

Phoneme 0.130 0.128 0.130 0.121 0.105
Two norms 0.067 0.068 0.084 0.029 0.062

Hepatitis 0.310 0.259 0.209 0.221 0.195
House voting 0.065 0.065 0.065 0.044 0.030
Colon 0.145 0.144 0.139 0.138 0.129
Leukaemia 0.030 0.030 0.062 0.027 0.054

Breast2 0.243 0.241 0.233 0.230 0.210
Prostate 0.138 0.137 0.145 0.100 0.084
Adenocarcinoma 0.126 0.119 0.119 0.114 0.125

Smallest Brier scores are indicated by bold numbers

comparable to RkNN. When comparing to random forest it gives low Brier scores
on 10 data sets.

In case of non-informative features in the data sets from Table 3, the ESkNN
outperforms kNN-based methods on most of the data sets. Comparing to random
forest it gives low Brier scores on 10 data sets. These results indicate that the ESkNN
is better than the kNN and kNN-based methods and comparable to random forest.

ESkNN is evaluated for various values of k, the number of nearest neighbours and
m, the number of models in the initial ensemble. Figure 2 reveals varied behaviour
of ESkNN on different data sets for the choice of k and m. It is recommended to
fine tune the value of k by cross validation, for example. Figure 2b shows that a very
small number of models are not reasonable and a very large number of models might
be computationally expensive hence a moderate number of models is recommended.
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Table 3 Brier scores of the methods for the data sets with added non-informative features

Data sets kNN BkNN RkNN ESkNN RF

Haberman 0.204 0.202 0.196 0.191 0.196

Dystrophy 0.158 0.172 0.220 0.149 0.118
Mammographic 0.153 0.160 0.231 0.139 0.123
Transfusion 0.187 0.186 0.180 0.160 0.166

Bupa 0.229 0.228 0.243 0.222 0.230

Appendicitis 0.143 0.142 0.145 0.139 0.132
Diabetes 0.240 0.236 0.225 0.216 0.173
Biopsy 0.053 0.052 0.067 0.048 0.029
SAheart 0.252 0.247 0.228 0.225 0.218
Bands 0.237 0.235 0.222 0.213 0.221

German credit 0.218 0.216 0.210 0.208 0.182
Body 0.082 0.082 0.107 0.078 0.065
Wpbc 0.196 0.190 0.180 0.179 0.181

Sonar 0.164 0.139 0.201 0.104 0.193

Glaucoma M 0.157 0.156 0.212 0.121 0.135

Indian liver 0.198 0.199 0.201 0.183 0.189

Phoneme 0.174 0.170 0.236 0.154 0.163

Two norms 0.126 0.084 0.203 0.082 0.124

Hepatitis 0.239 0.230 0.239 0.223 0.234

House voting 0.135 0.134 0.212 0.127 0.103

Smallest Brier scores are indicated by bold numbers
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Fig. 2 Performance of ESkNN in presence of non-informative features in the data for; (a):
different values of k, (b): different values of m
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4.2 Simulation Study

We evaluate the predictive performance of ESkNN by simulation study in addition to
the benchmark data sets. We used two examples in our simulation study. The models
proposed in our simulation study involve several variations to gain an understanding
of the behaviour of the methods under different situations.

4.2.1 Simulation Model 1

In the first model, Model 1, binary class data is generated on 20 features. The
features for class 1 are generated from N .2; w�/, while those of class 2 are
generated from N .1; 1/. The values considered for w in class 1 are 3, 5, 10, 15
and 20. The predictive performance of the algorithms are investigated by adding 50,
100, 200 and 500 non-informative features, generated from normal distribution, to
the data.

� D

0

BBB@

�1;1 %1;2 ; : : : ; %1;d

%2;1 �2;2 ; : : : ; %2;d
:::

:::
:::

:::

%d;1 %d;2 ; : : : ; �d;d

1

CCCA (4)

where %ij are the covariances between the features defined as:

%ij D .1=2/ji�jj; i; j D 1; : : : ; d; (5)

and �ij = 1 for i D j. The variables within class 1 are correlated among each other
and are exhibiting negligible/no correlation with the features of class 2.

4.2.2 Simulation Model 2

The second simulation model developed here is a four-dimensional model, derived
from the model proposed by Mease et al. (2007). The feature vector x is a random
vector uniformly distributed over Œ0; 100	. The class is determined by the distance
r, the distance of the feature vector x from the central point. The class probabilities
given the features are:

p.y D 1 j x/ D
8
<

:

1 r < 110;
150�r

140
110 � r � 140;

0 otherwise:
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The binary response variable y is generated from the above distribution using a
binomial random number generator. We extended the dimensions of the data by
adding 50,100, 200 and 500 randomly generated non-informative feature.

4.3 Simulation Results and Discussion

The results from Table 4 reveal that ESkNN consistently outperform the other
methods. In case of different values of w to the data in Model 1, as shown in Table 4,
random forest outperforms all the other methods. However, in kNN-based methods
the ESkNN consistently gives higher accuracy than kNN, BkNN and RkNN.

The Brier scores from Model 2 given in Table 5, show that ESkNN consistently
outperforms kNN, BkNN, RkNN and RF for the data with original four features and
added 50, 100, 200 and 500 features (Fig. 3).

Table 4 Brier score of the five methods with added non-informative features to the data set from
Model 1 and different values of w on 70 features (20 + 50 non-informative) shown in first column

Features kNN BkNN RkNN ESkNN RF

20 0.042 0.041 0.087 0.039 0.071

20+50 0.066 0.079 0.086 0.060 0.081

20+100 0.081 0.076 0.095 0.061 0.086

20+200 0.103 0.094 0.095 0.062 0.092

20+500 0.137 0.130 0.088 0.061 0.113

w kNN BkNN RkNN ESkNN RF

3 0.198 0.151 0.155 0.102 0.081
5 0.221 0.191 0.136 0.101 0.062
10 0.222 0.186 0.099 0.081 0.038
15 0.251 0.172 0.089 0.057 0.028
20 0.256 0.159 0.062 0.043 0.022

The best result is highlighted in bold

Table 5 Brier score of the methods on the data from Model 2 with the added non-informative
features

Features kNN BkNN RkNN ESkNN RF

4 0.101 0.101 0.145 0.090 0.112

4+50 0.158 0.157 0.185 0.146 0.176

4+100 0.165 0.164 0.190 0.152 0.186

4+200 0.179 0.178 0.196 0.162 0.177

4+500 0.188 0.182 0.209 0.151 0.180

Results of the best performing method is highlighted in bold
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Fig. 3 Brier score, of simulated data from Model 1 (a, b) and Model 2 (c, d) for the five classifiers
kNN, BkNN, RkNN, ESkNN and RF with added non-informative features to the data

5 Conclusion

We proposed an ensemble of subset of kNN models, ESkNN, for class membership
probability estimation. The ESkNN improves the predictive performance of kNN-
based methods. The ESkNN reveals better predictive performance than the kNN,
bagged kNN and random kNN in most of the cases (both in bench marking and
simulation) and gives comparable results to random forest. The performance of
ESkNN is also evaluated in order to deal with the issue of non-informative features
in the data. The results demonstrate that the ESkNN provides better estimates of

class membership probability than the other methods considered in the presence
of non-informative features in the data. Besides performance improvement, the
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ESkNN as using kNN classifier is simple in implementation and interpretation. The
ESkNN is implemented in an R-package, ESkNN.
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The Surprising Character of Music: A Search
for Sparsity in Music Evoked Body Movements

Denis Amelynck, Pieter-Jan Maes, Marc Leman, and Jean-Pierre Martens

Abstract The high dimensionality of music evoked movement data makes it
difficult to uncover the fundamental aspects of human music-movement asso-
ciations. However, modeling these data via Dirichlet process mixture (DPM)
Models facilitates this task considerably. In this paper we present DPM models to
investigate positional and directional aspects of music evoked bodily movement. In
an experimental study subjects were moving spontaneously on a musical piece that
was characterized by passages of extreme contrasts in physical acoustic energy. The
contrasts in acoustic energy caused surprise and triggered new gestural behavior.
We used sparsity as a key indicator for surprise and made it visible in two ways.
Firstly as the result of a positional analysis using a Dirichlet process gaussian
mixture model (DPGMM) and secondly as the result of a directional analysis using
a Dirichlet process multinomial mixture model (DPMMM). The results show that
gestural response follows the surprising or unpredictable character of the music.

1 Introduction

Several authors suggested that humans perceive something as aesthetically interest-
ing when there is a balanced mixture between recognition and surprise (Birbaumer
et al. 1996). In 1933, Birkhoff was one of the first to present a mathematical
theory for aesthetic measures, which he defined as the ratio of order(O) to
complexity(C) (Birkhoff 1933). The idea that surprise is related to aesthetic feeling
fully resonates with known theories of music processing and emotional arousal
(Meyer 1956; Berlyne 1971; Huron 2006).

Surprise is often intended and in music it has a strong power to arouse
listeners. Mayer-Kress et al. (1994) drew an analogy between musical structures
and recurrence structures in chaotic systems. He stated that: “Perceived order
and disorder, recurrence and complexity are common features observed in both
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chaos and music. These features can be perceived in music because the music has
been intentionally designed to reveal them.” An extreme example is the famous
Symphony No. 94 in G major (Hoboken 1/94) written by J. Haydn, also known
as the Surprise Symphony. Haydn was reputed for this type of surprises, and the
Surprise Symphony is exemplary in that it contains a sudden fortissimo chord at the
end of a piano opening theme in the variation-form second movement. The music
then returns to normal and subsequent movements do not repeat the surprise. And
this brings us to a key indicator of surprise and that is sparsity. Sparsity is a major
attribute of many descriptions of surprise (e.g., Huron 2006; Margulis 2007; Itti and
Baldi 2005; Keogh et al. 2002).

Based on the key insights that cognition is situated and embodied (Clark 1997;
Leman 2008) we assume that the surprising character of the music gets embodied
in the movement idiosyncrasies of subjects. A cognitive system, such as the human
mind, is always interacting with its environment via its sensors that perceive, and
effectors that produce actions. For listeners and dancers, surprises, or failures to
anticipate, afford new opportunities (named gestural affordances) to move along
with the music (Heylighen 2012; Godøy 2009).

The paper is organized as follows. In Sect. 2 we describe the experiment that is
at the basis of our research. Section 3 describes the methods of analysis. The results
are presented in Sect. 4. For a conclusion we refer to Sect. 5.

2 Experimental set-up

• Subjects and Task.
Thirty-six subjects were participated in a music evoked body movement

experiment [20 males and 16 females with a mean age of 24.2 year (SD=4.2)].
The experiment was set-up on a per individual basis. Before the actual execution
of the experiment, the participant received the task of moving spontaneously to
the music. This was formulated as: “Translate your experience of the music into
free full-body movement. Try to become absorbed by the music that is presented
and express your feelings into body movement. There is no good or wrong way
of doing it. Just perform what comes up in you.” The actual motor-attuning
experiment took place in a motion capture space: an octagonal space with a
diameter of 4 m enclosed by black curtains to separate the participant from the
experimenters.

• Stimuli.
The music was part of Johannes Brahms’ First Piano Concerto, Opus 15 in D

minor. This piece is characterized by passages articulating extreme contrasts in
physical acoustic energy, symbol for the surprising character of the music. Based
on this, we define two contrasting musical style categories which structure the
main outline of the composition, namely a Heroic and Lyric style category. In
the stimulus three Heroic passages were presented in alternation with three Lyric
passages.
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• Data recording.
Registration of movement data for the complete upper body was realized at a

sample rate of 100 Hz with an OPTITRACK infrared optical system. Participants
were asked to wear a special jacket and cap with 22 infrared reflecting markers
attached: four markers for hip, three markers each for head, chest, upper arms,
and hands.

3 Analysis Method

3.1 Pre-Processing of the Data

Although we collected data from multiple markers, the analysis focused on the
movement data from the hand as it is the body part with the highest degree of
freedom (DOF). To eliminate the influences from other body parts (like translations
and rotations of torso and/or shoulders) a new three dimensional axis system was
defined as in Fig. 1:

The data for the directional analysis are based upon the velocity signals,
calculated as derivatives from the positional data. To calculate these derivatives
a local (linear) derivation filter is applied to the positional data. The size of the
filter window is set at 0.175 s corresponding with a linear frequency response of the
derivation filter in the useful frequency band of 0–4 Hz. The 0–4 Hz range is in line
with the information from the spectrogram (Fig. 2).

3.2 Feature Space

The feature space for positional analysis consists of the positional coordinates
(Cartesian coordinates x–y–z). The feature space for directional analysis is cal-
culated from the velocity vectors. Velocity vectors are converted to spherical
coordinates (radius, elevation, and azimuth), used to categorize directional informa-
tion. Categorization is done with the help of two indicators. A first indicator comes
from the elevation (Œ�

2
; 

2
	) and divides the elevation range in four quadrants of


4

. A second indicator is derived from the azimuth (Œ�; 	) dividing its range in
eight octants of again 

4
. The combination of these two indicators results in total in

32 categories. In addition, we create one category labeled “lack of movement.” The
criterion for lack of movement is based on low speed as indicated by the radius of
the velocity vector. The decision border for low speed values was set per subject in
such a way that 5 % of the values would be categorized as lack of movement.

Because of the degree of randomness or should we say chaos (Sprott 2003)
in music evoked body movement, we do not look at directional categories at
distinct time stamps but at category mixtures over a limited time interval. The time
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Fig. 1 Relative axis system
used for hand representation

intervals are set at 3 s conforming to Pöppels’ theory of the 3 s window of temporal
integration (Pöppel 1989). To avoid artifacts we work with 50 % overlapping
windows.

3.3 Dirichlet Process Models

The analysis uses Dirichlet process mixture (DPM) models to cluster the data.
DPMs have an advantage that they learn the number of clusters from the data.
This is in contrast with algorithms like K-means clustering or gaussian mixture
models (GMMs) where the number of clusters has to be specified upfront or has
to be determined by additional validation steps. For the positional analysis we fit a
Dirichlet process gaussian mixture model (DPGMM). For the directional analysis
a Dirichlet process multinomial mixture model (DPMMM) is applied. For readers
not familiar with Dirichlet Process Models we refer to the existing literature (see,
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Fig. 2 Spectrogram of hand positional data

e.g., Teh 2010 and El-Arini 2008). The practical implementation was done in Matlab
with the help of the demo programs from Yee Whye Teh (http://www.stats.ox.ac.
uk/~teh/).

4 Results

The data from one subject were discarded due to technical problems during the
recording.

4.1 DPGMM for Positional Analysis

The musical excerpt of Brahms was split-up in six fragments, namely, three heroic
style fragments alternating with three lyric fragments. The DPGMM clustering
analysis was performed for every combination of subject and fragment. For example
Fig. 3 shows the data points collected for subject 2 fragment 2 (a lyric fragment). In
this particular case the movement in terms of position can be described by a three
cluster system.

http://www.stats.ox.ac.uk/~teh/
http://www.stats.ox.ac.uk/~teh/
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4.1.1 Analysis of Small Data Clusters

Small clusters stand for sparse movement and might link to surprising, salient events
in the music. We defined a small cluster as clusters of maximum 300 data points.
This corresponds to a three second time interval if all the data points are adjacent in
time. Our assumption is that because these points are close in space (belonging to the
same cluster) they are close in time, as human movement is continuous and smooth.
This means that most of these small clusters represent small abnormal moves.

An interesting question is whether subjects made these moves at the same time.
That would point to some effect in the music that triggers these sudden (surprising)
events. We noticed four moments in time where this happened for at least five
subjects. Timestamps were at 5.2 s–57.1 s–102.4 s–300.6 s. For 5.2 s (warm-up?)
and 57.1 s we find no obvious explanation in the music but intriguing is that we
notice a similar event at 102.4 s and 300.6 s. There we localize a change in the
harmonic structure of the music with a major cord (happy) changing into a minor
chord (sad).

4.1.2 Analysis of Large Data Clusters

To understand sparsity we must also understand what is common. Therefore it is
instructive to study the large clusters as well. We defined clusters as large clusters if
they contained at least 10 % of the data points of a particular fragment.

Visual inspection (Fig. 4) learns that the centers of these clusters are located
on the surface of an ellipsoid. Unfortunately these locations are concentrated on
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Fig. 4 The centers of the
large clusters are near the
surface of an ellipsoid

a limited area of the ellipsoid what makes it difficult for a fitting algorithm.
If movement happens on an ellipsoid then only two coordinates are required
for specification. According to the mathematical definition of dimension, this
movement is then two dimensional and not three dimensional. It is our hypothesis
that surprises in music can cause movement to suddenly enter a higher dimension
but more research is required to confirm this.

Investigation of the covariance matrices learns that one eigenvalue is consider-
ably smaller than the two others. Averaged per subject we see that this eigenvalue
explains only about 8 % of the variance (M D 8:10, SD=1.20). In other words the
movement of the hand is locally (centered at the cluster) rather two dimensional than
three dimensional. The orientation of this two dimensional plane can be visualized
by looking at the orientation of the eigenvector with the smallest eigenvalue as the
two dimensional plane is perpendicular to this eigenvector. Figure 5 shows that the
direction of these eigenvectors points to a central point near the shoulder. Variance
in that direction corresponds with punching movements (from the body away and
back). As this is the direction with the lowest variance (smallest eigenvalue) we can
say that this type of movement was almost absent in our experiment.



432 D. Amelynck et al.

−20

0

20
−10

0
10

20
30

−30

−20

−10

0

10

20

30

y

Eigenvectors for smallest eigenvalue
 Subject 2

x

z

Fig. 5 The direction of the eigenvectors corresponding with the smallest eigenvalues are pointing
to a central point close the shoulder (square marker)

50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

s

Directional Mixtures (3 s intervals) − Subject 15 has 8 Clusters

0

20

40

60

80

100

120

140

160

180

200

Count

Fig. 6 Cluster assignment for subject 15, visualized on top of the musical amplitude. Each cluster
stands for movement with the same directional mix



The Surprising Character of Music 433

4.2 DPMMM for Directional Analysis

The task of the DPMMM analysis is to cluster the directional categorical mixtures
as explained in Sect. 3.2. Figure 6 shows the clustering result for subject 15. As our
interest lays in the relationship with music, the cluster assignment is displayed with
the help of the musical amplitude.

For this subject, DPMMM assigned the time intervals to in total 8 different
clusters. This means that the subject’s movement style can be reduced to eight
different ways of moving (direction-wise). In particular, the first and second heroic
fragment show what we call sparse behavior. The clusters alternate there in a fast
sequence. The third heroic interval however does not show this behavior and gives
the impression that the subject is not anymore surprised by the music. These findings
are based upon the results from a single subject. Question is, if we can generalize
these results?

A way of consolidating is to bundle the results of all subjects in a single diagram,
in a what we call a directogram. A directogram is a visual representation of the
gestural affordances (direction-wise) in a musical excerpt. It represents a square
matrix calculated as follows: If for example interval 17 and interval 24 belong for
one subject to the same cluster we increase the value of element (17,24) of the square
matrix by one. We loop then over all subjects and display the resulting matrix in a
kind of a correlation plot (Fig. 7).

Lighter colors indicate that more subjects were moving their hand similarly
(intra-subject) at the timestamps given by the horizontal and vertical index. Lighter
colored areas appear in rectangles related to the musical structure of lyric and heroic
style intervals. Rectangles across the diagonal depict a phenomenon that we define
as persistency. It corresponds with continuous time intervals where for every subject
a particular cluster (a direction-mix) dominates. Persistency is mostly present in the
lyric style intervals. Next, we introduce the concept of consistency. Consistency
is visible as off-diagonal high density areas. These areas appear here only at time
intervals matching the lyric style intervals. This tells that all lyric time intervals are
not only dominated by one single cluster but also that this cluster is also identical
for all lyric intervals.

Consequently, darker colors stand for absence of movement structure and hence
are indicators for the amount of surprise.

5 Conclusion

In this experiment, we analyzed a group of subjects moving spontaneously and
individually to music. The idea was to search for sparsity, sparsity being a secondary
indicator of surprise in music. The method applied Dirichlet Process Mixture (DPM)
models and identified sparsity in positional and directional attributes of movement
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Fig. 7 Directogram: reveals “directional movement” characteristics of a musical excerpt. Persis-
tency, along the diagonal and shown by light colored areas with black borders, answers questions
like how long do we move similarly (in terms of direction). Consistency, off-diagonal light colored
areas, compares remote intervals

data. The time stamps of sparsity could be linked to moments of surprise in the
music.

The present experiment was executed with subjects moving on music of Brahms.
Future work could include other, even modern musical styles.

Our methods are not limited to music evoked body movement but can be
extended to other fields were sparsity (in movement) has to be measured. We think
for example of applications in sports analysis and rehabilitation.
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Comparing Audio Features and Playlist
Statistics for Music Classification

Igor Vatolkin, Geoffray Bonnin, and Dietmar Jannach

Abstract In recent years, a number of approaches have been developed for the
automatic recognition of music genres, but also more specific categories (styles,
moods, personal preferences, etc.). Among the different sources for building
classification models, features extracted from the audio signal play an important
role in the literature. Although such features can be extracted from any digitised
music piece independently of the availability of other information sources, their
extraction can require considerable computational costs and the audio alone does not
always contain enough information for the identification of the distinctive properties
of a musical category. In this work we consider playlists that are created and
shared by music listeners as another interesting source for feature extraction and
music categorisation. The main idea is that the tracks of a playlist are often from
the same artist or belong to the same category, e.g. they have the same genre or
style, which allows us to exploit their co-occurrences for classification tasks. In
the paper, we evaluate strategies for better genre and style classification based on
the analysis of larger collections of user-provided playlists and compare them to a
recent classification technique from the literature. Our first results indicate that an
already comparably simple playlist-based classifiers can in some cases outperform
an advanced audio-based classification technique.

1 Introduction

Many studies in the research field of music information retrieval (MIR) are aimed
at the automated classification or categorisation of digital musical tracks. Having
the available tracks automatically categorised allows us to build better applications
which, e.g. recommend music that matches the user’s favorite style, help users
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organise their music collection based on genres, or are even capable to automatically
extract semantic properties of individual musical pieces.

One of the most prominent classification scenarios is the recognition of genres
and many efforts were spent on the improvement of such systems: Sturm (2014),
for example, lists several hundred references. Other categorisation goals mentioned
in the literature include the identification of emotions (Yang and Chen 2011), the
recommendation of new music (Celma 2010), or the prediction of listener tags
(Bertin-Mehieux et al. 2008); a number of further applications are described in
Weihs et al. (2007).

1.1 The Music Classification Workflow

A typical algorithm chain for music categorisation comprises the following steps:
(1) feature extraction, (2) feature processing, and (3) building classification models
based on training examples.

Feature Extraction: As a first step, a set of typically numerical characteristics, or
features, has to be chosen to represent the music data. The typical sources for the
extraction of features for music data analysis are audio content, music score, music
context, and user context (Serra et al. 2013).

Feature Processing: In the second step, the extracted features are further
processed. These processing steps can serve different technically required purposes
like data normalisation or the imputation of missing values. In addition, feature
processing steps like feature selection or transforms to lower-dimensional spaces
can aim at the improvement of the classification quality or at the reduction of
computation costs.

Model Building: Finally, the resulting features can be used to build classification
models on some training data (labels indicating the classes of some observations).
Alternatively, unsupervised learning techniques can be applied to cluster the data
based on the estimated distances between data instances in the feature space.

1.2 Using Playlists for Categorisation

Building classification models from audio features is probably the most common
approach in the MIR literature. When using audio signals, the extractable character-
istics often describe properties of time, spectrum, cepstrum, autocorrelation, phase,
etc. Music classification with audio features was applied for example in Tzanetakis
and Cook (2002) or Mierswa and Morik (2005); for an overview of commonly used
features see, e.g., Theimer et al. (2008), or the regularly updated manual of the MIR
Toolbox (Lartillot and Toivainen 2007).

Such approaches have the advantage that the features needed for the categorisa-
tion can be extracted from a digital music piece independently of the availability of
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any additional (meta-)information about it. However, relying only on audio features
can have some disadvantages. First, the extraction of features from the musical

signal can be computationally costly (Blume et al. 2008). Even if these computations
have to be only done once and the task can be parallelised, the sheer size of today’s
music collections leaves this task still challenging. Furthermore, it is often still hard
to robustly extract meaningful and “interpretable” properties of the musical tracks as
sometimes music with similar audio characteristics is perceived as being different by
the listeners, e.g. because of their cultural background. Alternative data sources for
feature extraction mentioned in the literature include for example the musical score.
Such data may however be hard to obtain for all considered tracks, in particular in
the area of popular music.

The recent developments in the area of online music services and music- related
platforms, however, opened new opportunities for researchers, as vast amounts, e.g.
of user generated content annotations or listener preference information became
available to be used in classification or music recommendation tasks (Hariri et al.
2012). The work presented in this paper continues these lines of research of using
user-provided (Social Web) content. Specifically, we propose to use playlists that
were created and shared by users on music platforms as a data source for the
classification task and present a method that relies on artist co-occurrences in
the playlists to derive labelled training data. These data vectors can then be used
by various machine learning techniques to build models for music classification.
To the best of our knowledge, the usage of user-created playlists as input for
music classification has not been explored in the literature so far. To assess the
classification quality, we compare our results with those that were obtained with
a recent and optimised approach that relies on the audio signal for categorisation
(Vatolkin 2013).

The paper is organised as follows. In Sect. 2, we describe the rationale and the
technical details of our novel approach to use user-provided playlists as a source
for music classification. Section 3 presents the design of our comparative evaluation
and discusses the results that were observed for different musical genres and styles.
In the final section, we provide an outlook on opportunities for future research in
particular with respect to the combination of different data sources as was done, for
example, in Lidy et al. (2007) or Mckay (2010).

2 Using Playlist Statistics for Feature Extraction

Our approach is based on the assumption that homogeneity is a major quality
criterion for people creating playlists as discussed in Fields (2011) and that the
tracks of a playlist are correspondingly somehow similar to each other. With respect
to the classification problem, we therefore assume that the presence of a given music
piece in a given playlist implies a higher probability that the other songs in this list
belong to the same or a similar category.
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Fig. 1 Overview of algorithm steps for the extraction of playlist statistics

However, instead of relying on individual and possibly rare track co-occurrences,
we propose to rather look at artist (composer, interpret) co-occurrences in the
playlists. Given the artist of an unknown track, our goal is thus to use a machine
learning model that is trained based on the information about frequently co-
occurring artists for the categorisation of the track.

In the following, we describe a proposal of how to process a collection of user-
provided playlists in a way that arbitrary classification algorithms like Support
Vector Machines or Decision Trees can be applied. To achieve this goal, we have to
derive feature vectors from the playlist data, which together with labelled training
data points can be fed into supervised machine learning algorithms.

Figure 1 provides an overview of the steps required in our approach (top of the
figure) and gives an example for the category “classic” (bottom of the figure). Our
method has five steps: (1) Resolving spelling problems, (2) Identifying relevant
artist co-occurrences, (3) Removing duplicates, (4) Normalisation and (5) Training
of classification models.

2.1 Resolving Spelling Issues

A prerequisite to the computation of the co-occurrences of the tracks in the playlists
is to correctly identify the tracks. As user-provided playlists often contain spelling
mistakes, we applied a simple adaptation of the Smith–Waterman algorithm (Smith
and Waterman 1981) on the artist and track spellings. This algorithm was originally
designed for DNA sequence alignment and computes a distance between two
sequences. Applying this algorithm, we could for instance match the track name
“Fragile” of Sting to the following spellings: “How Fragile”, “Sting Fragile”, “How
Fragile We Are”, etc.
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2.2 Identifying Relevant Artist Co-Occurrences

The next step is to count the artist co-occurrences in the playlists in order to
determine a set of “informative” artists which co-occur with other artists frequently.
To do so, we iterate over each artist a of a given training set which contains
tracks belonging to a music category (positive examples) and not belonging to it
(negative ones)1 and count how often (tracks of) other artists co-occur with a in the
playlists. For each training track, these numbers are then sorted in decreasing order.
As shown in the example, pieces created by Ludwig van Beethoven appear most
often together with pieces by Frederic Chopin (3028 times using Last.fm statistics),
followed by Johann Sebastian Bach (2894 times), and so on. Given a negative
training example track for the category “classic”, pieces of the artist ATB (a DJ)
appear most frequently together with tracks of Miles Davis (2340 times). Since not
all co-occurrences are relevant and might introduce noise in our models, we store
only the ten most frequent co-occurrences for each artist in the training dataset.2

2.3 Removing Duplicate Entries

After the previous step and as shown in Fig. 1 we end up with a set of informative
artists, which co-occurred with the artists of the 20 tracks in the training dataset that
was used in Vatolkin (2013). As the same artists may appear in the top co-occurring
artists lists for several training tracks (in particular for positive examples which are
expected to be more similar to each other), duplicate entries in the list are removed.
For the concrete example of the recognition of the genre “classic”, the number of
artists and their co-occurring artists—which we will later on use as features in the
classification models—is reduced from 200 to 97 as shown in Fig. 1. We would for
example see that music pieces composed by Beethoven appear frequently not only
together with Chopin, but also with decreasing frequency together with pieces by
Mussorgsky, Ravel, Orff, Sibelius, etc.

2.4 Normalisation

We measure the relevance of each co-occurring artists using two standard
approaches based on association rules (Han and Kamber 2006). The first approach

1More details of the training data will be given in Sect. 3.1.
2In a preliminary study, increasing this number to 20 did not lead to measurable improvements.
Obviously, the optimal number depends on the category; this investigation is however beyond the
scope of this first study.
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is to use the support for normalisation:

support.fa; bg/ D count.fa; bg/
N

(1)

where count.fa; bg/ is the number of playlists that contain both artists a and b and
N is the overall number of playlists. Since the support values are highly dependent
on the general popularity of the musical pieces, we also use the confidence values
as an alternative:

confidence.a ! b/ D support.fa; bg/
support.fag/ (2)

2.5 Training of Classification Models

Based on the normalised co-occurrences with the artists from the training set (the
co-occurrences values serve as features) and the given category assignments, classi-
fication models can be finally built using different machine learning approaches. For
instance, Naive Bayes predicts classes based on feature distributions for positive and
negative instances. An example of the density of the feature distribution is provided
in the right hand side of Fig. 1. Tracks that do not belong to the “classic” genre
appear very seldom together with Beethoven, which is indicated by the high peak
of the density function for values close to zero. On the other hand, there are only a
few classic pieces which appear together with tracks of Miles Davis.

At the end, after the models have been trained, they can be applied for the
classification of unlabelled tracks for which the artist is known using the chosen
machine learning technique.

3 Experiments

3.1 Experimental Setup

To be able to compare our playlist-based approach with a typical audio signal based
one, we used the experimental setup from Vatolkin (2013), where the goal was to
categorise music tracks into six genres (Classic, Jazz, Pop, etc.) and eight styles (e.g.
ClubDance, HeavyMetal, Urban) using binary classifiers.
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3.1.1 Dataset

For each of the 14 categories, the dataset comprises ten positive examples and ten
negative ones. In addition, Vatolkin (2013) used an optimisation set of 120 tracks
to apply an evolutionary feature selection technique in order to determine the most
relevant audio features for learning. The models were then evaluated on a test set
which also comprised 120 tracks and which had the same genre distribution as the
optimisation set.

3.1.2 Audio Features

We use four sets of audio features after Vatolkin (2013). The first group describes
636 low-level audio signal characteristics. The second group consists of 566 high-
level “semantic” descriptors, which are better interpretable, e.g. the recognised
instruments, moods, harmonic properties, etc. The third group contains 13 Mel
Frequency Cepstral Coefficients (MFCCs) which were developed for speech recog-
nition but are commonly used in music classification (Meng et al. 2007). The fourth
group contains the optimised feature sets after the application of an evolutionary
feature selection strategy.

3.1.3 Playlist Features

For the four groups of playlist statistics, we used two datasets retrieved from public
sources3 and the two normalisation methods described in Eqs. (1) and (2).

3.1.4 Classification and Evaluation

As classification techniques, we used Decision Tree C4.5, Random Forest, Naive
Bayes, and Support Vector Machines. In the following section, we report the results
of the method that worked best for the specific classification task. Because the
distribution across genres and especially across styles is not balanced, classification
models are evaluated with the balanced relative classification error:

eBRE D 1

2

�
FN

TP C FN
C FP

TN C FP

�
; (3)

where TP denotes true positives, TN true negatives, FP false positives, and FN false
negatives.

3The samples included about one million playlists from Last.fm and about 600,000 playlists from
8tracks, see also Bonnin and Jannach (2014).
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Fig. 2 Balanced relative classification errors for 14 music categories (labels above the figure) and
eight feature sets. Audio features, signs with white background: Downward-pointing triangles:
low-level features; upward-pointing triangles: high-level features; diamonds: MFCCs, asterisks:
optimised feature sets. Playlist features, signs with shaded background: rectangles: 8tracks; circles:
Last.fm; larger signs: normalisation with confidence; smaller signs: normalisation with support

3.2 Results

3.2.1 General Results

The classification errors obtained in the experiments for the eight feature sets and the
14 categorisation tasks using the classification method leading to the best results4 are
shown in Fig. 2. When looking on the audio-based approaches (symbols with white
background), the feature optimisation method of Vatolkin (2013) not surprisingly
worked best except for the category “Jazz” (for this category, the validation set
contained more European Jazz and the optimisation set more American Jazz).

To some surprise, however, the comparably simple classification method based
on playlist statistics and artist co-occurrences performs equally well and in many
cases even better than the method based on optimised audio feature sets. The best
variant of the playlist-based methods outperforms the best audio-based approach
for 10 of 14 categories. This indicates that the computationally highly efficient
and rather simple aggregation of playlist statistics can be indeed a good alternative
for music classification. For some categories, however, audio features performed
better. The MFCC-based feature set was for example particularly successful for
the classification of Rap music. These results therefore suggest the use of hybrid
strategies that combine the different approaches.

4The best performing method depends on the category. Moreover, the removal of a weaker
classifier from ensemble of above mentioned methods led to a statistically significant reduction
of performance in a previous study (Vatolkin et al. 2014).
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3.2.2 Further Observations

The normalisation based on confidence generally performs better than when using
the support statistic for the 8tracks data in 13 of 14 cases, and for Last.fm in 12 of
14 cases. Furthermore, the mean performance on the Last.fm dataset is generally
higher than for 8tracks (in 10 of 14 cases). This can be simply explained by the
larger amount of data that is available in the used playlist collection of Last.fm.

Another outcome of the study is that the obtained classification quality varies
with the different classification methods. Playlist-based approaches seem to often
perform slightly better if the models are trained with a Naive Bayes approach
or Support Vector Machines. A systematic tuning of the hyperparameters of the
classification methods has not yet been done but may help to further increase a
classification performance. Another improvement could potentially be achieved if a
feature optimisation strategy would also be applied to the playlist-based approach.

4 Conclusions and Outlook

In this work, we investigated how well two methods for the aggregation of playlist
statistics are suited to build feature sets for genre and style classification. We
compared the classification quality of using playlist statistics with the quality that
can be achieved when using classification models based on optimised audio feature
sets. Our results showed that playlist-based models were favourable over audio-
based features sets for classification for more than half of the genres.

The choice of which features to use in real-world classification-based applica-
tions in our view strongly depends on the main guiding constraints in the goal of the
particular application setting. Consider the following example scenarios.

1. If the application’s goal is to derive interpretable harmonic and melodic proper-
ties, e.g. of user-defined personal categories, a music scientist would probably
prefer automatic classification based on high-level audio features as playlist-
based models do not operate on the basis of such features.

2. In case that the processing efficiency for the classification task is the main
requirement, e.g. because huge music collections have to be analysed, one might
prefer playlist-based models as they help to avoid the computationally costly
extraction of features from the audio signal.

3. If the quality of the classification is the most important application requirement, a
combination of audio features and features derived from playlist statistics might
be the best choice.

4. Finally, for researchers, using playlist information in our view represents a
comparably cheap way of developing classification approaches with competitive
performance, because the musical tracks themselves do not have to be purchased
or licensed for the analysis.
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As part of our future work, we plan to examine the performance of combined
feature sets where we also aim to apply feature selection techniques that simultane-
ously consider the feature sets of both sources. In addition, the validation of such an
approach is planned using other public datasets.

Another promising direction for further research in our view is the development
of further variants of our playlist-based classification methods and the evaluation of
various parametrisations of the techniques. Specifically, this could involve the inte-
gration of statistics from other web sources, the systematic variation of individual
parameters like the number of the stored top co-occurrences, the consideration of
track and album co-occurrences, or the fine-tuning of the underlying classification
methods.
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Duplicate Detection in Facsimile Scans of Early
Printed Music

Christophe Rhodes, Tim Crawford, and Mark d’Inverno

Abstract There is a growing number of collections of readily available scanned
musical documents, whether generated and managed by libraries, research projects,
or volunteer efforts. They are typically digital images; for computational musi-
cology we also need the musical data in machine-readable form. Optical Music
Recognition (OMR) can be used on printed music, but is prone to error, depending
on document condition and the quality of intermediate stages in the digitization
process such as archival photographs. This work addresses the detection of one such
error—duplication of images—and the discovery of other relationships between
images in the process.

1 Introduction

1.1 Digitization and Early Music Online

Librarians have kept irreplaceable artifacts in trust for centuries. Now, with modern
digital storage and networking technology, the opportunity has arisen to greatly
widen access to heritage, and libraries and archives are taking this opportunity as
and when resources permit. Normal digitization efforts involve taking pictures of
sources; this is adequate for the most part, although in some cases (e.g. Henry
Billingsley’s 1570 translation of Euclid’s Geometry, the first geometrical “pop-
up” book printed in sixteenth-century England; see Swetz and Katz 2011) essential
information is lost.

In Early Music Online (Rose 2011), a “Rapid Digitization” project funded by the
Joint Information Systems Committee (JISC), over 320 printed volumes (35,000
pages) of music from sixteenth-century sources held in the British Library were
digitized from microfilm, and made available to the community at large in the form
of images, licensed for non-commercial use.
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A photographic digitization process, as was carried out for Early Music Online,
does not cause an immediate loss of information. The fact that digitization of the
sources in Early Music Online was not from the originals but from microfilm has
consequences for the published set of images—but the digitization also offers an
extra opportunity: just as images of text could be further processed to make the text
on those pages available, so we might want to make available not just the images
of the musical source but also a representation of the musical content contained
within it, in order to facilitate further analysis (by the human scholar, by automated
processes, or most likely by a hybrid of the two).

However, we need to deal with the problem of images which, for one reason
or another, are rescans of the same pages, as they must not be treated as distinct
entities. These images are not precise digital duplicates of each other, and so must
be detected through some approximate means. As well as duplicate scans, there are
other forms of similarity present in the collection, such as musical relatedness and
movable type reuse.

We present our work on developing and combining image-based near-duplicate
detection, based on Scale-Invariant Feature Transform (SIFT) descriptors (Lowe
1999), with OMR-based musical content near-duplicate detection. We evaluate an
order-statistic-based method for finding duplicate scans of pages, and additionally
identify a number of distinct kinds of approximate similarity emergent from our
distance measures: substantial reuse of graphical material; musical quotation; and
title page detection.

1.2 Optical Music Recognition

Although Optical Music Recognition (OMR, by analogy with Optical Character
Recognition for text) has been a subject of research since the 1960s (Pruslin 1966
and Prerau 1970; see Kassler 1972), it remains in general a difficult, unsolved
problem (Rebelo et al. 2012). Partly this is because, unlike text, common musical
notation is made up of a number of intersecting graphical elements; partly because,
again unlike most text, the two-dimensional layout of the page is highly significant
to the interpretation of the glyphs.

In our particular context, there is the additional difficulty that we are dealing
with historical artifacts, from before the standardization of musical layouts—indeed,
the Early Music Online collection is at the very start of printed music, when each
printer would have had their own collection of movable type. Nevertheless, accuracy
rates of around 90 % are achievable (Pugin and Crawford 2013) on the majority of
the collection, with some sources allowing OMR to be performed with far greater
precision and recall than others.

In the long term, we aim to overcome these difficulties, to allow full-music search
and other algorithmic processing, just as OCR has allowed scholars to perform full-
text search over the contents of documents, not just their metadata. This paper deals
with one piece of the puzzle: namely, identifying portions of the source on which
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the results of OMR should not be included in any such automatic transcription, but
rather flagged for a human expert to investigate. In the next section, we describe
measures of similarity between images of musical notation; we then use these
measures to characterize particular relationships between pages from three of the
sources (475 pages) from Early Music Online.

2 Similarity Measurements

2.1 Image Similarity

As a basic measure of image similarity, we follow Lowe (1999) in computing SIFT
descriptors for each image, which are invariant to (uniform) scaling and rotation, and
robust against affine distortion and lighting changes. In order to compare the image
similarity between a source image and a target, we compute for each descriptor in
the source the two nearest (as measured by the Euclidean distance) descriptors in
the target, and count a “hit” if the distance to the nearest is less than two-thirds of
the distance to the second nearest. The overall similarity score for the pair of images
is the sum of the “hits” from image to source, without reference to relative position
or orientation. Note that this similarity is not necessarily symmetric, as the source
and target images are treated differently.

2.2 Musical Similarity

We use the Aruspix software (Pugin 2006; Pugin and Crawford 2013) in untrained
mode to extract musical data from images. Note that Aruspix will attempt to extract
musical information no matter what the source image: for images containing no
musical notation at all, this of course means that the output will be musically
nonsensical, resulting from chance agglomerations of glyphs and graphical material
which look “enough” like music to Aruspix’s recognizer. We convert the output of
Aruspix, a representation of the musical data identified to strings representing either
the diatonic melody or the diatonic intervals present on each staff, for example:

kind string
melodic SSQRSRPRQPNPONOPQRSTSSRTSRP
interval -bAAabBaabBaaAAAAAAa-aBaab

The melodic string encodes the diatonic pitch (similar to chromatic pitch, but with
seven notes per octave rather than 12, thus disregarding accidentals) as the ASCII
character with code point 48 + the diatonic pitch. The interval string encodes the
diatonic interval between successive diatonic pitches, with - indicating no change,
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capital letters representing movement upwards (A representing up one step, B up
two) and lower-case letters movements downwards (a representing down one step,
b down two, and so on)

We thus obtain one of these strings for each of the cases (melodic and interval)
per line of music. We compute the similarity score of a source image to a target
image by: first, taking the string for each line in the source image; second, finding
and scoring the closest match in the target image using the Wu-Manber algorithm
(Wu and Manber 1994, as implemented in agrep); and finally, summing those
scores over all lines in the source page.

2.3 Outlier Analysis

We identify various possible scenarios for a scan X or a pair of scans (X,Y), which
we encode as predicates:

music(X) the scan X is primarily of musical notation
duplicate(X,Y) the scans X and Y are near-duplicates of each other
musicsim(X,Y) the scans X and Y contain substantially similar musical material
graphicsim(X,Y) the scans X and Y contain substantially similar graphical

material

Some of these predicates imply other relations:

• duplicate(X,Y) ! graphicsim(X,Y)
• duplicate(X,Y) ! (music(X) ! musicsim(X,Y))
• duplicate(X,Y) ! duplicate(Y,X);

the asymmetry arising from the fact that all scans contain graphical material, but not
all scans contain musical material.

An ordered pair of scans (X,Y) will have two similarity scores associated with
it: a similarity score based on image similarity, and a second score based on the
musical similarity imputed from comparing the output of the OMR process. These
similarity scores tell us nothing a priori; in order to extract meaning from them, we
must compare them against thresholds. However, there is also no way of a priori
deriving thresholds of similarity for “interestingness”, so we use the distribution of
similarity scores between X and all other scans as a way of establishing a threshold.

Specifically, we fit a lognormal distribution to the central 80 % of similarity
scores, for each of the measures (image and music) separately; we then treat as
a threshold the 0.5 % level of improbability, accepting the default thresholds from
the implementation in the extremevalues R package (van der Loo 2010). This then
gives us three possible diagnostics for each similarity measure:

• (X,Y) are unusually similar to each other;
• (X,Y) are unusually dissimilar to each other;
• (X,Y) have a similarity score which is not particularly distinctive.
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These diagnostics, when the two similarity scores are combined, give a total of nine
possible outcomes for each pair of scans.

2.4 Hypothesis

Our hypothesis is that we can use the combination of our music and image similarity
measures to identify near-exact duplicates resulting from multiple images of the
same pages on the microfilm.

Specifically, we invert the relationships in Sect. 2.3, and attempt to infer higher-
level information from the low-level outlier information. If (X,Y) are unusually
similar according to the music similarity measurement, we assert the music-
sim(X,Y) relation; similarly with image similarity and graphicsim(X,Y); and we
further infer duplicate(X,Y) from graphicsim(X,Y) ^ musicsim(X,Y).

Other outlier cases (pairs where one similarity score is high but not the other,
and pairs where at least one similarity score is low) are also potentially of interest,
and we can attempt to characterize the relationships between pages that give rise to
those scores more qualitatively in the results below.

3 Results

Our test collection is 475 images resulting from scans of three sets of partbooks of
parody masses (mass settings based on a pre-existing piece of music) published in
1545–1546 by Tielman Susato in Antwerp. This is an interesting test set from the
point of view of our similarity measures. Firstly, the nature of parody masses is that
there will be significant reuse of musical content, within a single work (in the same
voice and different mass section, and in the multiple voices) and between distinct
works (for example, if there are multiple masses on the same original material,
though this does not in fact occur in this set of images). Secondly, since the books
were printed by the same printer there is the likelihood that graphical material might
be reused without any musical similarity between the material on the pages.

Given this test collection, there are 225,625 pairwise comparisons between
images, given that our definition of these comparisons is not symmetric, and
including the comparison of a scan with itself. We would expect the identity
comparison to show up as an outlier in both measures—indeed, this is useful as
a consistency check—and at least 180,160 (80 % of the rest) to be considered as
having uninteresting distances (since we are fitting the distribution to the central
80 %).

From Table 1, we can observe firstly that the lognormal fit is presumably working
reasonably well: the number of non-outlier pairs is comfortably above the 180,160
which would be the minimum. This view of the aggregate data does not of course
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Table 1 Counts of similarity judgments between all pairs of pages in our dataset, for both
similarity measures

Similarity Low (graphic) Medium (graphic) High (graphic)

Low (music) 1083 3215 7

Medium (music) 6091 213,122 1592

High (music) 0 18 497

Outliers according to the lognormal fit are labelled “low” and “high”, while “medium” indicates a
non-outlier

Fig. 1 Two pages with high image and musical similarity, from Susato (1545): these are most
likely successive photographic shots of the same physical page

preclude there being individual cases for which the lognormal fit was inappropriate;
however, on the dataset as a whole it appears to be justifiable.

Secondly, the number of high-melodic/high-image similarity pairs is 497, 22
above the 475 identity matches. From just this table it is not possible to say, but
one way that this can arise is if there are 11 duplicate image pairs, all of which
are detected in both directions. In fact, because of artifacts arising from the musical
similarity measure applied to pages with no musical content, it turns out that two
of the identity matches are misclassified, and there are in fact 12 duplicate image
pairs detected by this measure, which we publish on the semantic web (retriev-
able using curl -H ‘Accept: text/n3’ http://duplicate-pages.emo.data.
t-mus.org/). Figures 1 and 2 illustrate some of the duplicate image pairs found using
this method.

http://duplicate-pages.emo.data.t-mus.org/
http://duplicate-pages.emo.data.t-mus.org/
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Fig. 2 Two pages with high image and musical similarity, from Susato (1546b): not shots of the
same physical page, but most likely a misbound gathering

Thirdly, there are some interesting cases to investigate: in particular, the large
number of high-image/medium-melodic cases; the seven cases of high-image
similarity and low-melody similarity; and the low-image/low-melodic similarity
cases. Since these are not in fact exact duplicates, it is apparent that combining the
outlier judgments of the two similarity measurements was necessary for the basic
task; the cases with one or other measure (but not both) showing high similarity
reveal other relationships between the material on each page.

Figure 3 shows a pair of pages with high image similarity, but a melodic
similarity between the pages that is no higher than expected according to the fit.
Note the reuse of decorated initial capitals, a feature of the printing technology and
resources of an individual printer in the sixteenth century—an individual printer
(Tielman Susato, in this case) would not have a wide repertoire of type for decorated
capitals, and so would reuse one of the appropriate size each time there was a call
for one. Since we are here dealing with mass settings, there will be many examples
of initial “K”s and “C”s for Kyrie and Christe movements.

Figure 4 highlights another feature of this set of works: many of the mass settings
are “parody masses”: settings based on musical material of another work, which gets
reused throughout the mass setting. In this case, we have the ending of the Gloria
and the start of the Credo from Thomas Crequillon’s Missa Kein in der Welt so schn,
both using the material from the song for a substantial fraction of the page.

Finally, Fig. 5 illustrates that this consideration of outliers also catches non-
musical material: Aruspix will attempt to perform OMR on images that it is given,
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Fig. 3 A pair of pages with high image and medium melodic similarity, from Susato (1546a)

Fig. 4 A pair of pages with high melodic and medium image similarity, from Susato (1545)
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Fig. 5 A pair of pages with low melodic and low image similarity, from Susato (1545)

and there is no metadata accompanying the set of images to indicate which contain
musical material and which do not. However, the essentially random output from
OMR on title pages will be dissimilar to most of the detected content, as will the
image features compared with image features from pages which do contain musical
material; this also explains the seven cases with high image similarity and low
melodic similarity, in which one or both of the pages contain substantial amounts of
text.

4 Conclusions

We have shown that a combination of image and music similarity measures can
be used to identify duplicates and near-duplicate photos in digitized archives,
and also to identify pairs of pages of possible interest falling short of being
considered duplicates. Even though the similarity measures themselves are simple,
their combination is sufficient to identify all the duplicates with no false positives,
in this particular dataset. Analysis of other outlier cases shows potential to identify
reuse of musical material, reuse of type, and classification into music-containing
and non-musical pages.
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4.1 Further Work

The distance measures between items we have used in this investigation are very
simple; we have used SIFT image features without attempting to detect higher-level
objects, and musical features with no attempt to consider perceptual similarity or
even duration of individual notes. We could improve the image distance measure to
take into account the coherence of groups of matches, as is done in pose estimation,
though this would not address the most obvious false-positive of reuse of type
for decorated initials. We could also attempt to deal with this by considering
image features only on those regions which are detected as music by the Optical
Music Recognition program. We would also like to make our approach scale. At
present, the method is workable on datasets of this size, 475 pages, corresponding
to individual books or restricted sets of books, and in practice there are already
interesting duplicates present in sets of that size. In principle, we would like
to run our method on larger datasets as a whole to investigate whether there is
any contamination or other connections between sources; however, the pairwise
comparison leads to O.N2/ time complexity, and so building a feature index is a
necessary step to apply this to larger collections.

We have published our similarity judgments from this investigation as Linked
Data at http://duplicate-pages.emo.data.t-mus.org/,and we will expand this resource
as we generate more data. As well as publishing individual duplicate pairs, we aim
to publish higher-level judgments, such as the presumed cause of the duplication
from the photographic process as in Susato (1545) or the binding in Susato (1546b).
Finally, in the Transforming Musicology project, we aim to apply a similar method
to similarity judgments of more general musical artifacts, such as musical recordings
and editions of musical works.
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Fast Model Based Optimization of Tone Onset
Detection by Instance Sampling

Nadja Bauer, Klaus Friedrichs, Bernd Bischl, and Claus Weihs

Abstract There exist several algorithms for tone onset detection, but finding
the best one is a challenging task, as there are many categorical and numerical
parameters to optimize. The aim of this task is to detect as many true onsets as
possible while avoiding false detections. In recent years, model-based optimization
(MBO) has been introduced for solving similar problems. The main idea of MBO
is modeling the relationship between parameter settings and the response by a so-
called surrogate model. After evaluating the points of an initial design—each point
represents here one possible algorithm configuration—the main idea is a loop of two
steps: firstly, updating a surrogate model, and secondly, proposing a new promising
point for evaluation. While originally this technique has been developed mainly
for numerical parameters, here, it needs to be adapted for optimizing categorical
parameters as well. Unfortunately, optimization steps are very time-consuming,
since the evaluation of each new point has to be performed on a large data set of
music instances for getting realistic results. Nevertheless, many bad configurations
could be rejected much faster, since their expected performance might appear to be
very low after evaluating them on just a small partition of instances. Hence, the basic
idea is to evaluate each proposed point on a small sample and only evaluate on the
whole data set if the results seem to be promising.

N. Bauer (�) • K. Friedrichs • B. Bischl • C. Weihs
Chair of Computational Statistics, Faculty of Statistics, TU Dortmund, Dortmund, Germany
e-mail: bauer@statistik.tu-dortmund.de; friedrichs@statistik.tu-dortmund.de;
bischl@statistik.tu-dortmund.de; weihs@statistik.tu-dortmund.de

© Springer International Publishing Switzerland 2016
A.F.X. Wilhelm, H.A. Kestler (eds.), Analysis of Large and Complex Data, Studies
in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-319-25226-1_39

461

mailto:bauer@statistik.tu-dortmund.de
mailto:friedrichs@statistik.tu-dortmund.de
mailto:bischl@statistik.tu-dortmund.de
mailto:weihs@statistik.tu-dortmund.de


462 N. Bauer et al.

1 Introduction

A tone onset is the time point of the beginning of a musical note or other sound.
Onset detection is an important step for music transcription and other applications
frequently encountered in music processing. Although several approaches have been
developed for onset detection, neither of them works well under all circumstances—
instrumentation, tempo, or music genre. It is hence essential to find an optimal onset
detection algorithm for a desired music data set. This task has two main problems:
an optimization strategy which can handle with many categorical and numerical
parameters as well as computational resources for optimizing on large data sets.

To find an optimal onset detection algorithm we use the mlrMBO R-Package
as a comprehensive tool for MBO.1 We apply an instance based MBO by handling
each music piece as a problem instance and propose a fast variant (FMBO) where
a small subset of instances is used to predict the onset detection performance.
Section 2 introduces the onset detection algorithm and parameters we aim to
optimize. In Sect. 3 the main MBO procedure is presented while Sect. 4 describes
our proposed FMBO approach. The data set and the experimental settings are given
in Sect. 5. Section 6 presents the results in respect of the optimization strategy and
the best found algorithm parameter setting. Finally, Sect. 7 summarizes the work
and provides ideas for future research.

2 Onset Detection Algorithms

This section presents the classical onset detection procedure and introduces the
parameters for further optimization with corresponding regions of interest. Onset
detection is usually performed in three stages: pre-processing (filtering the ongoing
signal), computing the onset detection function (reduction), and localizing the tone
onsets (peak selection). A tutorial on basic onset detection approaches is given by
Bello et al. (2005). Here, we ignore the pre-processing. In general, reduction and
peak selection consist of six steps:

step 1: splitting the signal into small windows,
step 2: computing in each window an onset detection function (ODF),
step 3: applying a low-pass filter (optional),
step 4: normalizing the ODF,
step 5: thresholding the ODF,
step 6: localizing tone onsets.

At first, the ongoing signal is splitted into small windows with the window size of
N samples (step 1). In order to profit from the fast discrete Fourier transformation

1https://github.com/berndbischl/mlrMBO

https://github.com/berndbischl/mlrMBO
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(FFT), N should be assigned just powers of two. In the onset detection literature
the 46 ms window (2048 samples for a sampling rate of 44.1 kHz) is usual (Dixon
2006; Rosão et al. 2012). However, other settings also occur: Holzapfel et al.
(2010) use N D 4096 samples (100 ms). We consider, in contrast, a wide region of
interest for N: 512, 1024, 2048, 4096, and 8192 samples as small windows allow a
good time representation while large windows provide a high spectral resolution. A
further important parameter is the hop size h: distance in samples between windows’
starting points. The lower h the more windows are produced. In case of N D h there
is no overlap between the windows. There is no broad agreement in the literature
in regard of the hope size. Just to illustrate this, Dixon (2006) uses 10 ms (441
samples), Rosão et al. (2012) 23 ms (1024 samples), and Holzapfel et al. (2010)
5.6 ms (250 samples). We define the region of interest for h between 128 and N
samples where every value in this interval is allowed.

After splitting the signal, an ODF is computed in each window (step 2). Many
functions have been proposed in recent years. The 8 ODFs used here can be divided
into four groups: amplitude based (Amplitude Increase as defined by Bauer et al.
(2013)), spectral magnitude based (High Frequency Content and Spectral Flux), and
spectral magnitude and spectral phase based (Phase Deviation (PD), Weighted PD,
Normalized WPD, Complex Domain (CD), and Rectified CD). Detailed definitions
of the last seven functions can be found in Rosão et al. (2012) and Dixon (2006).
For illustration purposes we define here the Spectral Flux feature:

SF.n/ D
XN=2

jD1
H.jXŒn; j	j � jXŒn � 1; j	j/ with H.x/ D .x C jxj/=2:

XŒn; j	 is the jth frequency bin of the nth window and the filter H ensures that only the
rise of the spectral magnitude is considered (for avoiding the tone offset detection).
The main idea of steps 3 and 4 is bringing the vector of ODF-values to a more
common form. We denote this vector by odf D .odf 1; : : : ; odf m/T were m is number
of windows. In step 3 a low-pass filter can be applied to odf in order to get rid
of a possible winding structure (Holzapfel et al. 2010). This filter is equal to the
exponential smoothing operator with parameter ˛, which is fixed here to 0.8. The
categorical parameter filter has two possibilities: yes and no.

Rosão et al. (2012) mention two approaches for normalization of the odf
vector: subtracting mean(odf ) from odf and then dividing the result either by
standard.deviation(odf ) or by max(odf ). In the first case the normalized vector
n.odf has a mean of 0 and a standard deviation of 1. However, min.n.odf/ and
max.n.odf/ are unknown. The second method guarantees min.n.odf/ D �1 and
max.n.odf/ D 1. Depending on the denominator, the parameter norm can be set
either to sd or to max. One of the most essential issues is the thresholding of n.odf
(step 5):

Ti D ı C � � th:fun.jn:odf i�wT
j; : : : ; jn:odf iCwT

j/; i D 1; : : : ; m:
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Here ı and � are positive constants with the following regions of interests:
[0,0.8] and [0,3], respectively. wT represents the threshold window size: number of
windows left and right of the current window for computing the “moving function.”
We consider the possible range for wT between 0 and 20. The kind of the moving
function is recorded by the categorical parameter th:fun with settings mean and
median.

In the last step the tone onsets are localized according to T and n.odf :

Oi D
(

1; if n:odf i > Ti and n:odf i D max.n:odf i�wO
; : : : ; n:odf iCwO

/

0; otherwise:

wO is an additional parameter—local maximum window size—with the region of
interest between 0 and 12. wO D 0 means that just the threshold criterion is applied.
The starting time points of the windows with Oi D 1 compose a vector of onset
times which is then compared to the vector of the true onset times. An estimated
tone onset is assumed to be correctly detected, if it matches to one true onset with a
tolerance of ˙50 ms (Dixon 2006).

The goodness of the onset detection is usually measured by the F-value: F D
2c

2cCf CCf �
, F 2 Œ0; 1	; where c is the number of correctly detected onsets, fC is the

number of false detections, and f� represents the number of undetected onsets.

3 Model Based Optimization and Algorithm Configuration

The aim of MBO is minimization of a (possibly non-linear or multimodal) expensive
black-box function f W X  R

d ! R, f .x/ D y, x D .x1; : : : ; xd/T . Each xi is a
parameter with region of interest Œ`i; ui	, X D Œ`1; u1	�: : :�Œ`d; ud	 is the parameter
space of x, and y is the target value. MBO is a sequential procedure: after evaluating
an initial design of parameter settings D by f , a so-called meta-model or surrogate Of
is fitted on the data and used to propose a new point to evaluate x� in each iteration.
A detailed outline is presented in Algorithm 4. We refer the interesting readers,
exemplary, to Jones et al. (1998), Hutter et al. (2011), and Bischl et al. (2014).

Beside considering the appropriate size of D and the complete evaluation budget,
one of the most important issues is the choice of the surrogate model and the
infill criterion, which map points of X to numerical values and allow hence the
comparability between them. A popular combination is kriging as surrogate model
and expected improvement (EI) as infill criterion (Jones et al. (1998)).

Kriging models consist of two terms: a polynomial term (linear model) and an
error term, which is assumed to be a realization of a stationary stochastic Gaussian
process. This assumption allows the calculation of model uncertainty. Furthermore,
kriging needs the specification of the so-called spatial covariance function, or kernel,
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Algorithm 4: Sequential model-based optimization

1 Generate an initial design D 	 X ;
2 Compute y D f .D/;
3 while total evaluation budget is not exceeded do
4 Fit surrogate on D and obtain Of .x/ and Os.x/;
5 Get new design point x� by optimizing an infill criterion ;
6 Evaluate new point y� D f .x�/;
7 Update: D  .D; x�/ and y .y; y�/;

8 return ymin D min.y/ and the associated xmin.

for assessing the influence of already evaluated points on the new point to be
predicted. Defining such kernels is much easier for the numerical parameters than
for the categorical ones. EI.x/ combines model prediction Of .x/ and uncertainty Os.x/

for a point x in a certain way and is the higher the lower Of .x/ (exploitation of Of ) and
the higher Os.x/ (exploration of the response area).

There are two essential drawbacks of classical MBO: (1) kriging and EI optimizer
operate just with numerical parameters and (2) it has no concept of problem
instances and related noisy optimization. Hutter et al. (2011) introduced instance
based optimization for Sequential Model-based Algorithm Configuration (SMAC):
each parameter vector represents an algorithm configuration, whose performance
is measured on a set of problem instances I . Regarding the first drawback, they
proposed to use random forest as surrogate model, where Of .x/ and Os.x/ are mean
and variance of x predictions among the single trees. In SMAC, the EI is optimized
as follows: First, EI is computed for all already evaluated parameter settings and
after that the 10 best settings are chosen as starting points for a randomized one-
exchange neighborhood search. EI of the search output as well as of further 10,000
randomly chosen points are used to identify p most promising settings.

SMAC shows essential differences to Algorithm 4: Firstly, the initialization
step consists merely in evaluation of one parameter setting on a randomly chosen
instance. Secondly, not only one but p promising points (candidates) are proposed
by EI optimizer and, lastly, an additional intensify step is conducted. By the intensify
step the current best parameter setting xbest is evaluated on an additional randomly
chosen instance (for ensuring its performance) and each candidate point is iteratively
evaluated on a certain subset Iiter:nr 
 I of instances until its performance is proved
to be worse than that of xbest, otherwise the candidate is the new xbest. As each
parameter vector is evaluated on a subset of instances, the surrogate model should
consider the information about which vector is evaluated on which subset.

In this work we aim to compare kriging and random forest surrogates for our
application. When using kriging we naively handle the categorical parameters of
onset detection as numerical ones by assigning an integer number to each level
in order to study the behavior of this simple technique for comparison purposes.
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However, we use a different uncertainty estimator Os.x/ for the random forest which
is based on bootstrap mechanisms as introduced in Sexton and Laake (2009). A
novel infill criterion optimizer—focus search—is proposed in the mlrMBO R-
Package and used here. Focus search shrinks the interesting parameter region in
many iterations to a promising section, where different shrinking mechanisms are
applied depending on the parameter type. This procedure is replicated many times
and the overall best point is proposed as x�.

4 Fast Model Based Optimization by Instance Sampling

Our FMBO proposal is based on the observation that “bad” settings of the target
algorithm perform weakly (i.e., cause low F-measures) on the main part of problem
instances (music pieces of a data set). So we could detect such “bad” points x�
just by looking at a small subset of selected instances Isel 
 I . In such cases
we can avoid the expensive complete evaluation and just estimate f .x�/ (mean F-
measure over I ). The novelty of our approach lies, on the one hand, in the kind
of Isel selection and, on the other hand, in the performance estimation for “bad”
points. There exist many possibilities how to select ksel instances from I . Here we
implemented a simple approach: after evaluating all points of the initial design D on
all instances, the latter are clustered according to their F-measures in ksel clusters.
One representative of each cluster is then chosen randomly for Isel. In this manner we
aim to achieve high diversity within the selected instances and hope to get reliable
prediction of the selection model Msel: a linear model with mean F-measures of all
instances as response and individual F-measures of Isel instances as impact.

In the sequential steps, x� is first evaluated on Isel and then classified to be either a
“good” or a “bad” point. Also here several approaches are possible for the decision.
We implemented an Msel-based decision: If the upper confidence bound for model
prediction is greater than the best achieved F-measure, x� seems to be a promising
point which is afterwards evaluated on I . In this case, the selection model Msel is
updated after the evaluation in order to profit from the new information. Otherwise,
x� is expected to be a “bad” point and merely its estimated mean F-measure
(according to Msel) is used as response. In the following, we compare 95 and 99 %
confidence bounds. Obviously, the first one will cause more “bad” points as its value
is smaller than the value of the second one.

Algorithm 5 summarizes our FMBO procedure. Note, two models are applied
here: the surrogate model Msur as introduced in the previous section and the
above mentioned selection model Msel. In contrast to Algorithm 4, we consider a
maximization problem.



Fast Model Based Optimization of Tone Onset Detection by Instance Sampling 467

Algorithm 5: Fast model-based optimization (FMBO)

1 Generate an initial design D 	 X ;
2 Compute y D f .D/;
3 Cluster all instances according to its F-measures in ksel clusters (by kmeans);
4 Choose one instance from each cluster randomly for Isel � I ;
5 Fit Msel: mean F-measure (over I )
 individual F-measures of Isel;
6 while total evaluation budget is not exceeded do
7 Fit surrogate Msur on D and obtain Of .x/ and Os.x/ ;
8 Get new design point x� by optimizing the EI infill criterion;
9 Evaluate x� on Isel;

10 Predict mean F-measure for x� according to Msel: Oy� D Og.x�/;

11 Compute UCB: the upper X% confidence bound for by� prediction;
12 if UCB � max.y/ then
13 Evaluate x� on all instances I : y� D f .x�/;
14 Update: D  .D; x�/ and y .y; y�/;
15 Update: Msel;
16 else
17 Update: D  .D; x�/ and y .y; Oy�/;

18 return ymax D max.y/ and the associated xmax.

5 Data Set and Experimental Settings

As for our experiments a large data set is meaningful and the well-known data
sets of hand labeled real music pieces are unfortunately relatively small (e.g., 23
pieces by Bello et al. 2005 or 90 pieces by Holzapfel et al. 2010), we decided to
use MIDI data. Our data set consists of 200 freely available MIDI recordings which
first 60 s were converted to WAV files using the MIDI to WAVE Converter 6.1.
The pieces are heterogeneous both in regard of genre and of music instruments. A
special characteristic of the data is that the neighboring onsets are separated from
each other by at least 50 ms. This seems to be reasonable when considering the
˙50 ms tolerance interval for onset detection.

The main focus of our experiments is comparing MBO vs. FMBO. vs. random
search (with the same evaluation budget). Additionally, we studied the effect of the
surrogate model—kriging (km) vs. random forest (rf)—and of the upper confidence
bound UCB for Msel prediction—99 vs. 95 %. The initial design consists of 50
points, the evaluation budget is limited by 300 iterations and ksel D 10 (5 % of
the data). For each strategy 100 replications were carried out. Note that replications
are comparable along all strategies as the same set of 100 start designs were used.
We parallelize our experiments using the BatchJobs R-Package (Bischl et al. 2015).
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6 Results

6.1 Comparison of Strategies

Figure 1 presents the main results of this work. F-measures of 100 replications
for each optimization strategy are illustrated in the associated boxplots. The first
(well expected) conclusion is that all optimization strategies achieve better results
than random search. The second important point is the fact that kriging surrogates
perform better than random forest. In view of the naive handling of categorical
parameters as numeric ones, it is a very worthwhile finding. As, by the fixed number
of sequential steps, MBO strategies need much more function evaluations than
FMBO, they show fewer variation in the results and also better F-measures.

According to Fig. 3a FMBO strategies need, on average, at least 60 % less time
for 300 sequential iterations than MBO. Here, the time is measured by number of
instance evaluations. The more time is saved the more points were considered to be
“bad” and the worse are the results of a strategy according to Fig. 1. Random forest
surrogate model with UCB D 99 % leads, in contrast to kriging versions, to more
“bad” points. Hence, we abandoned the UCB D 95 % option for random forest.

Let us demonstrate the working flow of FMBO based on the kriging surrogate
with UCB D 99 %. Figure 2 shows the first 150 sequential steps. In order to verify
the goodness of the selection model, the “bad” predictions, which are marked here
as triangle points, were evaluated on all instances separately from the main FMBO
run. The true performance values for these points are signed with crosses. As can be
seen, in almost all cases, it was a correct decision, not to evaluate the “bad” points as

Fig. 1 Comparison of MBO
and FMBO strategies. km
means kriging model and rf
random forest. 99 and 95
correspond to UCB values of
selecting model
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Fig. 3 (a) Time saving by FMBO strategies. (b) Error of the selecting model Msel

their true mean F-measures are below the actual best value. We also see a continuing
increase of the target during the optimization.

Figure 3b shows differences between the true and the predicted mean F-measures
for both kriging and random forest based FMBO. As expected, the two distributions
seem to be equal (because of the same selecting model Msel). Furthermore, a slight
underestimation of the true F-measure can be observed. The absolute error of the
most points is less than 0.05 which can be seen as a positive result.

Lastly, we compared MBO and FMBO under the same budget conditions. For
this reason, in each replication we noticed the number of instance evaluations
conducted by the FMBO strategy and compared it to MBO with the equivalent
budget. Figure 4 compares both kriging based FMBO strategies with the comparable
MBO runs. Slightly better mean F-measures and considerable smaller variance can
be observed for the FMBO approaches.
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Fig. 4 Comparison of kriging based MBO and FMBO with equivalent budget for
(a) FMBO_km99 (average budget for seq. steps D 119) and (b) FMBO_km95 (average budget
for seq. stepsD 100) strategies

6.2 Best Parameter Setting

The best achieved F-measure is 0.870. We define arbitrarily 0.865 as a threshold
for a satisfying F-measure and conduct a one-factorial stability analysis around
the optimal parameter setting. The best found window size is N D 2048 samples
(46 ms) which is in accordance with the usual setting in the literature. Also the
hope size h D 602 samples (ca. 14 ms or overlap of 60 %) appears to match
with the values mentioned in Sect. 2. Spectral Flux detection function shows the
best performance for our data, similar to Dixon (2006) and Rosão et al. (2012).
Unfortunately, no reference values for ı and � are mentioned in other studies. Our
best settings are: ı D 0:038 and � D 1:18. For thresholding, moving median
smoothing seems to perform better than the mean one. Rosão et al. (2012) use
wT D 10 and wO D 3, while our optimal values are wT D 16 and wO D 6.
According to the stability analysis all other detection functions and window sizes
are much worse while the hop size could lie in [532, 662], ı in [0.026, 0.054], � in
[0.85, 1.4], wT in [7, 20], and wO in [5,6]. Low-pass filtering and moving median
by thresholding yield to better results. In contrast, the kind of normalization has no
impact regarding our stability analysis.

7 Conclusion and Further Research

In this paper we proposed a novel instance based FMBO approach whose main
idea is to detect “bad” parameter settings early and avoid nonessential function
evaluation. Kriging surrogate model based FMBO achieved a saving of more than
60 % of function evaluation in comparison with the classical MBO strategy. For the
random forest surrogate this saving amounted even to 80 %. As expected, the savings
are reflected in a worse performance. However, by considering the same evaluation
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budget FMBO strategies showed more reliable results as the corresponding classical
optimization. One of the interesting findings is the fact that kriging models can by
successfully applied to categorical parameters by handling them as integer ones.
The best found onset detection configuration was presented and compared to the
corresponding settings mentioned in the literature.

For the further research other point selection strategies should be proposed and
compared with SMAC and other state-of-the-art proposals. One possibility would
be a cascade of selection models with a small number of instances for initial
performance prediction. However, if the uncertainty of the target prediction is too
high, more instances should be evaluated. This procedure should be iteratively
repeated until the uncertainty becomes low. A further concept could be a screening
strategy: early identification of not significant algorithm parameters or parameter
spaces. In this way the region of interest could be restricted to an especially
interesting area during the optimization.
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Recognition of Leitmotives in Richard Wagner’s
Music: An Item Response Theory Approach

Daniel Müllensiefen, David Baker, Christophe Rhodes, Tim Crawford,
and Laurence Dreyfus

Abstract In this study we aim to understand listeners’ real-time processing
of musical leitmotives. We probe participants’ memory for different leitmotives
contained in a 10-min passage from the opera Siegfried by Richard Wagner, and use
item response theory to estimate parameters for item difficulty and for participants’
individual recognition ability, as well as to construct novel measurement instruments
from questionnaire-based tests. We investigate the relationship between model
parameters and objective factors, finding that prior Wagner expertise and musical
training were significant predictors of leitmotive recognition ability, while item
difficulty is explained by chroma distance and perceived emotional content of the
leitmotives.

1 Introduction

1.1 Psychology of Leitmotives

The leitmotives in Richard Wagner’s Der Ring des Nibelungen serve a range of
compositional and psychological functions, including the introduction of musical
structure and mnemonic devices for the listener. These leitmotives are short musical
ideas that are representative of concepts in the dramatic narrative, and differ greatly
in their construction, salient aspects (e.g. rhythmic, melodic, harmonic), and their
usage in particular scenes and contexts. While the topic of leitmotives in Richard
Wagner’s music has been discussed extensively in the traditional musicological
literature (Dalhaus 1979), little work has been done on the perception and psy-
chology of real-time processing of these musical ideas. In this study, we perform
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a psychological experiment to attempt to understand how individuals are able to
recall leitmotives, investigating both musical- and listener-based parameters. Using
an item response theory (IRT) approach, we estimate difficulty parameters of the
leitmotives (items) themselves, as well as parameters characterising participants’
individual recognition ability.

A small number of prior studies have empirically investigated the perception of
leitmotives. Initial research on the leitmotives used a learning paradigm to explore
how listeners with various musical backgrounds would encode and subsequently
recognise various leitmotives in real time. Using an excerpt from Das Rheingold,
(Deliège 1992) found that musicians were able to encode musical material much
more rapidly than non-musicians, and that each of the leitmotives presented different
levels of difficulty in their recognition. This research was expanded upon by
introducing additional visual stimuli, as well as considering listener parameters
beyond musical training, finding (Albrecht 2012) that visual stimuli did not help
leitmotive recognition, but that the non-musical parameter of Wagner expertise
did predict an individual’s recognition ability. This study explores the difficulty
of encoding the leitmotives and the contributions of extra-musical factors to an
individual’s recognition rate.

1.2 Experimental Design and Procedure

The experiment used a within-subjects design. Participants were asked to listen
actively to the same 10-min passage from Richard Wagner’s opera Siegfried used
by Albrecht (2012). This passage was chosen for its narrative qualities and high
leitmotive density. The participants were told in advance that they would perform
a memory recall task following the listening phase, in which they would have to
indicate explicitly whether or not they recall hearing musical material from the
passage, and to rate the subjectively perceived emotional qualities of the musical
material, such as the level of emotional arousal and valence expressed. After the
listening phase, participants were played a list of 20 excerpts, each containing
a leitmotive. Ten of these leitmotives had occurred in the passage that they had
heard before; the other ten were taken from a passage from the same performers’
recording of Richard Wagner’s Götterdämmerung. For each item participants had to
indicate: whether they had heard the leitmotive in the 10-min listening phase or not;
how confident they were in their decision; and also how emotionally arousing they
perceived the leitmotive together with an emotional judgement (happy–sad) both on
7-point scales.

After completing this memory recognition task, participants filled out ques-
tionnaires assessing factors that were believed to contribute to an individual’s
leitmotive recognition ability: musical training, measured using the Musical Train-
ing subscale of the Goldsmiths Music Sophistication Index self-report questionnaire
(Müllensiefen et al. 2014); affinity for the music of Richard Wagner and objective
Wagner knowledge, measured with two novel questionnaire instruments that were
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constructed via factor analysis and Rasch modelling (see Sects. 2.2 and 2.3 below);
and German speaking ability, on a 7-point agreement Likert scale.

1.3 Advantages of Item Response Approaches in Psychological
Research

IRT (Rasch 1960; Birnbaum 1968; Lord 1980) was developed to assess individuals
on attributes that are not directly observable (“latent” traits, such as aspects of
intelligence or personality) using data from the individuals’ performance on a
suitable test. Among the most commonly cited advantages of IRT and latent
trait models are: their foundation in well-established statistical theory (maximum-
likelihood modelling); and their ability to quantify uncertainty via confidence
intervals. In addition, Rasch models are a special class of IRT models which possess
the property that item and person scores can be considered independent from the
particular sample used.

Most concepts in cognitive psychology that are used to describe mental processes
(such as memory capacity or attention span) are unobservable, yet item response
approaches are still relatively rare within cognitive or experimental psychology.
Borsboom (2006) discusses a number of reasons for the slow uptake of IRT models
in most areas of psychology and also encourages its wider application. The current
study represents a suitable scenario for IRT, where experimental data is generated
by individuals taking a newly designed test, and where the two main research
questions investigate (a) person-based factors explaining the individual’s ability
to perform on the test and (b) per-item factors contributing to item difficulty. We
are asking what characterises listeners who perform better at encoding leitmotives
in a realistic listening situation, and what musical or acoustic factors contribute
to the recognisability of individual leitmotives. Compared to traditional analysis
approaches in cognitive psychology, the IRT approach enables us to estimate
participant ability and item difficulty within the same model and to quantify the
uncertainty about both kinds of parameters through confidence intervals.

2 Data Analysis

2.1 Variables Measuring Participant Background

As described in Sect. 1.2, we collected four person-specific pieces of information:
musical expertise, German speaking ability, Wagner affinity and Wagner knowledge.
The experiment used a convenience sample (N D 100), with additional recruiting
effort made to recruit participants with either familiarity or fondness of the music
of Richard Wagner from across the greater London area, though more (N D 14)
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individual’s data was used in a pilot experiment and their survey and quiz response
were retained for the final Rasch modelling (N D 114). The experimental (N D
100) sample was made up of 55 females (55 %) and 45 males (45 %) with a mean
age of 28.7 (s:d: D 11:82). It is worth noting that the following analyses proceed in a
step-wise fashion, where we first fit IRT and factor models to the data of the several
tests and questionnaire separately and aim to establish sound measurement models
for each of these novel tests. Only subsequently we combine data in a structural
equation model (SEM) and a regression model. This step-wise analysis procedure
allows us to check model assumptions at each stage and, where necessary, to apply
adjustments to individual models (e.g. by excluding items that violate assumptions).
However, the construction of the measurement models and the modelling of the
structural relations between the factors of interest were carried out independently to
avoid modelling bias.

2.2 Factor Analysis of Wagner Affinity Survey

To model individuals’ affinity for Wagner’s music we applied factor-analytic
techniques to the Likert-scale data of the survey. We conducted minimal residual
factor analysis on the 14 items of the affinity questionnaire using the R psych
package (Revelle 2014). Parallel analysis (Horn 1965) as well as Velicer’s Simple
Structure (Revelle and Rocklin 1979) and the Minimum Average Partial correlation
(Velicer 1976) criterion were employed to decide on the number of factors, giving
ambiguous results (suggesting either 1 or 2 factors). We inspected the items for
their respective factor loadings on a one-dimensional solution, finding that only one
had a factor loading of less than 0.6 (with a loading of 0.482). After the removal
of this item, “How often do you perform the music of Richard Wagner?”, we
reran the minimum residual factor analysis, and all the diagnostics suggested one-
dimensional factor solution. Cronbach’s ˛ for this solution was 0.97, indicating a
high internal reliability of this new Wagner affinity scale in terms of classical test
theory.

2.3 Rasch Modelling of the Wagner Quiz

We designed the Wagner knowledge quiz to measure a postulated latent trait of
“Wagnerism”, the extent to which an individual has developed knowledge of the
life and music of Richard Wagner both in terms of musicological knowledge as well
as a detailed understanding of the narrative and music of his operas. The quiz had 14
multiple choice items, each with four response options, and each item was scored
as either correct (1) or incorrect (0).

Because of the limited sample size (N D 114) we fit a Rasch model, a
comparatively simple member of the family of IRT models (de Ayala 2009),
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requiring relatively few parameters to be estimated. The initial Rasch model was
fitted using the conditional maximum likelihood criterion as implemented in eRm
package in R (Mair and Hatzinger 2007) which assumes equal item difficulty as
well as equal discrimination across the participant subgroups. However, Pononcy’s
non-parametric T10 (with median split sampling 1000 matrices) for subgroup
invariance as well as the Tpbis test for equal item discrimination both indicated
that the assumptions were not met. Applying a step-wise elimination procedure
based on individual item fit removed 6 items and resulted in a new Rasch model
containing 8 items. This resulting model passed both the T10 and Tpbis tests as
well a non-parametric version of the Martin-Loef (Glas and Verhelst 1995) test for
unidimensionality indicating that the main assumptions for Rasch models were met
for the final 8-item model. The item difficulty parameters of the final version of the
Wagner knowledge test showed a good range, from 1.04 for the item “When did
Wagner die?” to �1:28 for the item “What opera is considered to be among the
romantic operas that paved the way for Wagner’s music dramas?”.

2.4 Listening Response Analysis

The memory test contained 20 items, and participants responded with either a
“yes” or “no” depending on whether they recognised the leitmotive from the 10-
min listening passage or not. Each response was scored using a binary coding as
either correct (1) or incorrect (0). These binary responses were then analysed by
fitting using a Rasch Model for the same reasons as in Sect. 2.3. Applying the non-
parametric Tpbis test as implemented in the R package eRm (Mair and Hatzinger
2007) to the model indicated an equal item discrimination, but the T10 test suggested
that it was missing subgroup invariance. A graphical model check also indicated that
several items differed in difficulty across the high and low performing subgroups of
subjects. However, the result of the non-parametric Martin-Loef test suggested that
the memory test would meet the criterion of unidimensionality.

The failure of the Rasch model to meet the criterion of subgroup invariance
leaves several options. First, we explored fitting a two-parameter model with an
additional guessing parameter per item (but equal discrimination) to accommodate
for the possibility that participants were guessing on individual items, using the
marginal maximum likelihood approach provided by the R package ltm (Rizopoulos
2006). However, the two-parameter solution appeared to be degenerate with several
difficulty parameters outside the normal range. Second, we considered excluding
items from the test until model assumptions are met, as was done for the Wagner
knowledge test, or alternatively modelling items with a multi-dimensional IRT
model. But because the leitmotive items themselves are the objects of interest in
one of the subsequent analysis stages, excluding several items from the small initial
pool of only 20 would leave too few to generate interesting results in terms of
the memorability of different types of leitmotives. Therefore, we opted to accept
the existing model, acknowledging that one of the model assumptions is not met.
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This means that there is some uncertainty about the item difficulty parameters.
However, as Lord (1980, p. 190) points out, the use of a Rasch model might still
be justified when the sample size is small, even if assumptions do not hold. In this
case, estimators derived from the Rasch model might not be optimal, but might still
be more accurate than estimators derived from more flexible IRT models (e.g. the
3-parameter model).

2.5 Modelling Memory for Leitmotives with a Structural
Equation Model

We specified an SEM to determine the contributions of person-specific variables
to explain the memory performance in the leitmotive recognition test. The person
parameters from the Rasch model for the memory test (see Sect. 2.4) served as the
target variable. As predictor variables we specified the musical training and German
speaking scores, and a latent Wagner expertise variable, hypothesised to influence
Wagner knowledge and affinity scores (which we treated as observed variables in
the context of this SEM). We also specified covariances between Gold-MSI scores
and Wagner knowledge as well as Wagner affinity scores. This initial model was
entirely hypothesis driven and was fit using the R package lavaan using maximum
likelihood with robust standard errors (Yves 2012).

The initial model already showed an almost acceptable fit as suggested by
the fit indices derived from the robust estimator (Comparative Fit Index = 0.94;
Tucker–Lewis Index = 0.8, RMSEA = 0.16, SRMR = 0.07). We inspected the
model parameters and removed one non-significant regression path (from German
speaking ability to memory scores) and one non-significant covariance (between
musical training and Wagner knowledge). We refit the model, resulting in a model
with only significant path coefficients and showing almost perfect fit indices (CFI =
1; TLI = 1, RMSEA < 0.001, SRMR = 0.01). The model, depicted in Fig. 1, shows
that Wagner expertise and musical training both positively influence the participants
ability to recognise leitmotives in the listening test; Wagner expertise is about twice
as influential as musical training.

2.6 Modelling Leitmotive Difficulty

Previous evidence in the literature (Müllensiefen and Halpern 2014) suggests that
different musical features are responsible for the correct recognition of previously
heard melodies (“hits”) and the correct identification as novel of melodies that have
not been previously heard (“correct rejections”). Therefore, we split the set of 20
leitmotives into “old” motives (that had been heard previously in the experiment)
and “novel” motives (that did not occur in the passage), and ran two separate
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Fig. 1 Structural equation model for memory of leitmotives, incorporating Wagner knowledge
and affinity, their combination into Wagner expertise, and the effect of that and generic musical
training on score in the memory test. The dashed lines and boxes indicate non-significant relations
removed from the final model, which contains only significant influences

Table 1 Final regression model for “novel” motives

p-value t statistic Error Estimate

0.0356* 2:597 1:5628 4:0578 Intercept

0.0480* �2:392 1:5788 �3:7761 Chroma distance

0.0705 �2:132 0:2135 �0:4550 Valence

* denotes the significance level of p < 0:05

linear regression analyses with the item difficulty scores from the Rasch model
as dependent variables. In both models the predictor variables were the mean of
the participants’ arousal and valence ratings carried out at the recognition phase as
well as an acoustical distance measure based on chroma feature extraction (Mauch
and Dixon 2010) and a criterion for distance thresholding (Casey et al. 2008). In
addition, we used the number of occurrences of each leitmotive during the 10-min
listening passage as a predictor for the regression model for “old motives”.

Having only 10 observations per model, we found it necessary to reduce the
number of predictor variables using step-wise backward and forward model selec-
tion using the Bayesian Information Criterion (BIC) as the model fit index, rather
than using a threshold of statistical significance. The coefficients of final regression
model for the “novel” motives are given in Table 1. The model has an adjusted
R2 of 0.35 but fails to reach significance overall (F.2;7/ D 3:4, p D 0:09). The
model includes the chroma feature distance as a predictor, indicating that motives
with a large chroma distance (loosely, “sounding dissimilar”) to any segment within
the 10-min listening passage are easier to identify as novel than motives with a
small chroma distance (closer harmonically). In addition, the participants’ valence
ratings are selected as a predictor in the final model, albeit with a non-significant
coefficient estimate. Here, motives rated as rather sad were more difficult to identify
as novel motives. Neither the number of occurrences in the listening passage nor the
perceived emotional arousal of the leitmotive was predictor in the regression model.
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Table 2 Final regression
model for “old” motives

p-value t statistic Error Estimate

0.1005 1:856 1.4217 2:6390 Intercept

0.0924 �1:911 0.2750 �0:5256 Arousal

The final regression model for the “old” motives is given in Table 2. The model
has an adjusted R2 of 0.23 and also fails to reach significance overall (F.2;8/ D 3:7,
p D 0:09). The model includes the mean arousal ratings as the single predictor,
indicating that motives that are perceived as more arousing are also recognised
better as old motives. None of the other predictor variables (number of occurrences,
emotional valence, harmonic distance) featured in the final regression model for old
items.

3 Discussion

The decision to use an IRT approach was motivated by several factors which
might generalise to similar research scenarios in empirical musicology. Firstly, we
had to devise new measurement instruments for assessing very specific abilities
that have not been well investigated before (e.g. Wagner expertise), and the IRT
approach framework in general and Rasch modelling in particular provide a rigorous
framework for constructing new tests as well as measuring the latent ability to
perform on these tests. As a result the Wagner knowledge test and the Wagner
affinity survey are now finished tools that can be used in any subsequent Wagner
research; we have confirmed the specific objectivity of the Wagner knowledge test,
and it should therefore generalise well to a new sample. Secondly, the leitmotive
recognition experiment had the dual purpose of measuring the ability of participants
with different backgrounds to recognise leitmotives that they had been previously
exposed to in the 10-min listening passage, as well as measuring the difficulty of
individual leitmotives to be recognised or identified as novel. This dual aim “to
gather data simultaneously about participants as well as about items of a test” is not
very common in psychological research which tends to focus on the psychological
mechanisms of the participants. But this approach is well-suited to empirical music
research that uses ecologically valid stimuli. The IRT framework and the Rasch
model that we used provide a very elegant way of generating data characterising
participants and leitmotive items at the same time and within the same model. The
structural equation analysis using participants’ ability coefficients demonstrates how
important expertise and familiarity with a particular musical style are in order to
perform well on a listening test with stimuli from this style in fact, Wagner expertise
proved to be much more important than musical expertise in order to perform well
on the listening test. The SEM also showed that musical training did not (directly)
correlate with specific Wagner knowledge, and Wagner knowledge can be regarded
as an effective type of musical expertise that is not linked to instrumental practice.
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The fact that the Rasch model from the listening test did not exhibit subgroup
invariance suggests some caution in interpreting the results of the subsequent
regression analyses, and clearly both regression models suffer from the low item
count of N D 10, as the coefficients of some model predictors did not reach the
usual significance level. However, both regression models suggest that emotional
processing of the leitmotives is linked to performance on the cognitive memory
task, supporting the idea that cognitive and emotional processes during music
listening are not separate but can significantly influence each other. In a forthcoming
investigation, we aim to measure electrodermal activity and heart-rate data from
listeners attending performances of Gergiev’s production of the Ring and correlate
those data with leitmotive occurrence.

We also found that for novel leitmotives harmonic distance in the acoustical
signal was a predictor of their perceptual difficulty, indicating that harmonic
distance can partially model a memory process that leads to the illusion of the
familiar. However, this result should be replicated with a new set of leitmotive
stimuli taken from a different passage, where the findings from the present study
with regards to the influential predictor variables can serve as proper hypotheses. We
also note, given Wagner’s own theory of Gefühlverständnis, that it is unclear how
much Wagner himself intended the listener to recognise leitmotive, and whether the
greater difficulty we find associated with sadder motives is therefore more in line
with his artistic intentions.

While the IRT approach has proved very useful for the analysis of our data, we
note a few caveats. Firstly, IRT models require a substantial amount of data in order
to be fit and to produce coefficients with acceptable confidence intervals. This is
even more true for models with additional discrimination or guessing parameters. It
is worth noting that the sample size of the memory experiment (N D 100) is at the
lower bound of what is commonly recommended (de Ayala 2009), even for simple
Rasch models.

Secondly, not all psychological or empirical music research questions can be
implemented as tests where correct/incorrect answers can be scored objectively.
Much music psychological work investigates the appearance of musical stimuli and
can ask for subjective perceptions rather than objective ability to perform a test
(Kingdom and Prins 2009). In these scenarios, IRT approaches appear to be less
useful.

Finally, IRT models generally do not allow for a detailed analysis of the
types of individual participants’ biases. Here, techniques from signal detection
theory (Macmillan and Creelman 2005) that can distinguish between e.g. “false
alarms” and “misses” allow for a greater insight into the nature of the cognitive
processes behind the performance on a particular test and into potentially interesting
interactions between both person and item characteristics.

In sum, IRT is most useful when the main research questions target individual
differences between participants and data from a large sample with good variation
in test performance and related background variables can be obtained. Using an IRT
approach we have been able to show how individual differences in musical training
and Wagner expertise lead to differential performance on the leitmotive recognition
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task. Because recognising leitmotives in the constant auditory stream of Wagner’s
music affects a listener’s musical perception, the individual differences we have
identified may well influence the experience of Wagner’s music, both in cognitive
and emotional terms.
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Data Analysis in Interdisciplinary Domains



Optimization of a Simulation
for Inhomogeneous Mineral Subsoil Machining

Swetlana Herbrandt, Claus Weihs, Uwe Ligges, Manuel Ferreira,
Christian Rautert, Dirk Biermann, and Wolfgang Tillmann

Abstract For the new generation of concrete which enables more stable con-
structions, we require more efficient tools. Since the preferred tool for machining
concrete is a diamond impregnated drill with substantial initial investment costs, the
reduction of tool wear is of special interest. The stochastic character of the diamond
size, orientation, and position in sintered segments, as well as differences in the
machined material, justifies the development of a statistically motivated simulation.
In the simulations presented in the past, workpiece and tool are subdivided by
Delaunay tessellations into predefined fragments. The heterogeneous nature of the
ingredients of concrete is solved by Gaussian random fields. Before proceeding
with the simulation of the whole drill core bit, we have to adjust the simulation
parameters for the two main components of the drill, diamond and metal matrix, by
minimizing the discrepancy between simulation results and the conducted experi-
ments. Due to the fact that our simulation is an expensive black box function with
stochastic outcome, we use the advantages of model based optimization methods.

1 Introduction

In the building industry durable high-strength reinforced concrete is an essential
component which contributes to build stable constructions. Precisely because of
these characteristics, subsequent machining of reinforced concrete can be difficult
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even when using diamond impregnated tools. Due to substantial initial investment
costs for such tools, an increase of efficiency is of special interest.

To be able to control stochastic characteristics of the multiphase material like size
and position of concrete aggregate and of the multiphase tool (e.g., diamond orien-
tation) in simulated grinding experiments, different approaches for the preliminary
stage of such a simulation were derived. The actual version of the single diamond
simulation is described in Sect. 2 and has, in comparison to the previous versions,
the advantage of faster evaluation without loss of precision. Before proceeding with
the next simulation level, the simulation parameters should be adjusted. As reference
for this adjustment, data from single diamond experiments are used. In these trials,
forces affecting a diamond when scratching on basalt or cement are recorded
(Raabe et al. 2011; Weihs et al. 2014). Following a central composite design in
cutting speed vc and depth per revolution ae with two centers and three repetitions
results in 30 time series for each force direction and each material. The general
idea is a two steps procedure of parameter adjustment and parameter modeling. In
the first step the parameters are adjusted for each available .vc; ae/-combination.
Then, regression models for the simulation parameters are derived to have the
possibility of simulating processes with any .vc; ae/-combinations. This approach
involves some difficulties. Despite data preprocessing, there are still negative forces
in the time series of the conducted experiments, the simulation cannot deal with.
Additionally it was not possible to eliminate the workpiece tilting that dominates
the seasonal component, due to very small depths per revolution. To handle this
problem, the parameters of the sine waves were estimated and the depth per iteration
in the simulation was adopted, assuming that the total depth per revolution is given
by ae. The workpiece tilting in combination with noise unfortunately leads to the
problem of identifying the point of first diamond workpiece contact, which is the
beginning of the drilling process. Shifting of the simulated time series in time
direction should help manage this missing information when comparing observed
forces and simulation outcome.

2 Simulation Model

Since the optimization will be applied to the single diamond simulation, where the
diamond has the shape of a pyramid with a rounded tip and almost no wear, we
refrain from a detailed description of segment simulation.

2.1 Tool and Workpiece

The basic idea of diamond simulation is to build a lattice defining the diamond’s
shape and to apply a Delaunay tessellation which constructs three-dimensional
simplices of these grid-points in a way, that each simplex contains the vertices of an
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(a) (b) (c)

Fig. 1 (a) Basalt grains, (b) coarse grid for concrete with diameter 40 mm and 8 basalt grains
(dark gray), and (c) finer grid representing the workpiece surface

irregular tetrahedron. By the no wear assumption the number of points in the lattice
can and should be as small as possible. If diamond wear is allowed, the number of
points and thereby also the number of simplices should be greater because the wear
is simulated by removing simplices, which should not be too big. In this case we
also require points inside the diamond shape which, for example, can be arranged
as the diamond crystal structure (Raabe et al. 2011).

The segment simulation, as well as the concrete simulation, makes use of a
subprocedure that randomly fills a part of a predefined space (e.g., given by the
segment or workpiece shape) with objects (e.g., diamonds or basalt grains). For
simplicity basalt grains are assumed to have the form of spheres, whose diameters
follow a normal distribution with parameters estimated from grading curve of the
basalt used for the concrete in the real experiments. Due to the known expected
size and shape of the objects, the expected object volume and therefore the expected
number n of objects that are needed to fill a desired percentage of the available space
volume, can be estimated. For grains with diameters d1 � � � � � dn we sample in
decreasing diameter order positions in the workpiece, check which positions provide
enough space for a grain with this diameter and sample one of these points (see
Fig. 1a).

As in the previous workpiece simulations, two point grids, a coarse grid
containing information about the material heterogeneity and a finer grid which
represents the workpiece, are used. The points of the coarse grid with minimal
point distance ıcoarse fill the complete hollow cylinder. From the information about
positions and sizes of the basalt grains, the material for each point is determined.
Heterogeneity within the workpiece materials is simulated by sampling Gaussian
random fields for each basalt grain and all cement points (Raabe et al. 2012;
Schlather et al. 2014). Here material specific covariance functions with parameters
estimated from the force time series’ seasonality of single diamond experiments on
basalt and cement are used. The result is shown in Fig. 1b where the gray graduation
constitutes different heterogeneity values. To reduce simulation time, all points of
the finer grid with minimal point distance ıfine lie on the same level creating the
surface of the workpiece. Additionally, we refrain from subdividing the point set
into simplices, which is the major change to the previous workpiece simulations.
Instead, the surface lattice is adapted during the process simulation (see Sect. 2.2).
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In the last step the material is determined for each point of the finer grid and the
heterogeneity values are interpolated from the coarse grid by material separated
ordinary Kriging.

2.2 Iterative Process

After arranging the simulated diamond on the simulated workpiece surface, the
iterative process starts with a first movement of the diamond along the drilling path.
The next step is to determine all workpiece points inside the diamond. To simulate
the cutting process these points have to move to their new positions with respect to
the material m which they represent. Since cement wear leads to brittle fracture and
steel is dominated by abrasive wear, a flexible model is needed that satisfies both
types of wear. Consider the following point height Hm density for material m

P .Hm D h/ D 2�P
�
H�m D h

�
Ih�hD .h/ C 2 .1 � �/ P

�
HCm D h

�
Ih>hD .h/ ;

where H�m � N
�
hD; jhW � hDj s�m

�
, HCm � N

�
hD; jhW � hDj sCm

�
, h the new height,

hW is the actual point height, and hD is the height of the diamond’s edge below (see
Fig. 2).

Assuming that there is a probability � to sample a new height h below the
diamond’s edge hD, represented by the random variable H�m , and a small probability
1 � � for “diamond jumps,” represented by HCm , we can simulate different types
of wear by adjusting the parameters s�m and sCm . After sampling the new point
heights, the removed workpiece volume vi (i number of iteration) is calculated.
Since the chip volume would not explain higher forces on steel, in addition the
sum of heterogeneity values zi of these points is taken into consideration.
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Fig. 2 (a) Density of point height distribution for hW D 0:85 and hD D 0:75, (b) diamond convex
hull with points hW D 0:85 and hD D 0:75
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Fig. 3 (a) Scaled chip volume vi, (b) scaled sums of heterogeneity values zi

At the end of iteration I D N � rU , where rU is the sampling rate per revolution
and N the number of revolutions, the normal and radial forces are computed as a
weighted sum of v D .v1; : : : ; vI/

T and z D .z1; : : : ; zI/
T

Fnorm;sim D ghet;norm � z

max fz1; : : : ; zIg C gvol;norm � v

max fv1; : : : ; vIg

Frad;sim D ghet;rad � z

max fz1; : : : ; zIg C gvol;rad � v

max fv1; : : : ; vIg ;

where ghet;norm and gvol;norm are the weights for the normal force Fnorm;sim and ghet;rad

and gvol;rad are the weights for the radial force Frad;sim.
Figure 3 shows the resulting chip volume and sum of heterogeneity values for

a short simulation with I D 1400 iterations. While v mainly explains the trend
of the time series, z will dominate the seasonality. In the last two revolutions the
level of removed volume is constant because the contact area between diamond
and workpiece stops increasing. Since the diamond used for the simulations in the
optimization has the shape of a pyramid, this phenomenon will not be observed
there. Nevertheless it can be observed in time series of conducted experiments when
using diamonds in the form of a truncated octahedron, as used in segments, or even
in experiments with single segments.

3 Optimization

The simulation, presented above, has 11 parameters � 2 �  �
11 which have

to be adjusted to achieve realistic output. The parameters rU , ıcoarse, and ıfine have
to fit for both force directions and both materials (basalt and cement). While the
wear parameters s�m and sCm are material specific but do not depend on the two force
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directions, we have the opposite case for the weight parameters ghet;f and gvol;f with
f 2 fnorm; radg.

Due to different lengths I and J of the time series Fsim and the measured force
time series F, we require a similarity measure that can deal with this difficulty. The
aim is to minimize the expected deviation

O D E ŒdDTW .Fsim; F/	 C E ŒdR .Fsim; F/	

between measured and simulated forces where

dDTW .Fsim; F/ D cp? .Fsim; F/

I C J

is the normalized warping path distance of time series Fsim and F and

cp? D min

(
cp .Fsim; F/ D

LX

lD1

��Fsim; il � Fjl

�� j p .I; J/ � warping path

)

are the total path costs for the best path p? D �
i?1 ; j?1

�
; : : : ;

�
i?L; j?L

��
connecting the

i?l -th point of Fsim with the j?l -th point of F (l D 1; : : : ; L) (see, e.g., Müller 2007;
Ding et al. 2008 for dynamic time warping and Giorgino 2009 for the R package).
The second part of the criterion is considered because the DTW distance based
measure makes no distinction between, e.g., downward deviations and deviations
caused by phase displacement. In case of downward deviation the overall force
would be too small, leading to incorrect conclusions in further evaluations. To
avoid this situation, the criterion is extended by a revolution based extreme value
distance

dR .Fsim; F/ D 1

2

� kFsim;min � Fmink
kFsim;mink C kFmink C kFsim;max � Fmaxk

kFsim;maxk C kFmaxk
�

;

where xmin D �
min fx1; : : : ; xrg ; : : : ; min

˚
x.N�1/�rC1; : : : ; xN�r

��T
is the vector of

minima for the N revolutions with r observations each of a force vector x (xmax

analog).
For the model based optimization, calculated with the R package “mlrMBO”

(Bischl et al. 2013), the criterion O is estimated by

OO .�/ D 1

4K

KX

kD1

X

m2fb;cg

X

f2fnorm;radg
OOmin .�; m; f /
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with K repetitions of the two force directions f for each material m. Due to
the difficulty that the grinding starting point (first diamond workpiece contact)
cannot be examined for the measured reference forces, only the best fitting shifted
subsequence

OOmin .�; m; f / D min
u2U

1

L

LX

lD1

OOl;u .�; m; f /

with

OOl;u .�; m; f / D dDTW

�
Fm;u

sim;f .�/ ; Fm;u
f ;l

�
C dR

�
Fm;u

sim;f .�/ ; Fm;u
f ;l

�

is taken into account, where U is the set of turns. The realized force Fm
sim;f is

shifted against the l-th measured force Fm
f ;l in time direction for each u 2 U.

The K repetitions should minimize the uncertainty since the simulation output is
stochastic. In spite of every effort to accelerate the evaluation of the simulation,
the computation of the objective function OO is still very time consuming. Hence, the
objective function OO is approximated by a stochastic Kriging model with the Matérn
correlation function (Ankenman et al. 2010).

In the first step of the optimization, the objective function is evaluated for an
initial Latin hypercube design D0  � to estimate the Kriging parameters. To find
the next point for evaluation a focus search is performed. Let denote D1; : : : ; DS 
� random Latin hypercube designs, representing the global search, and �?

1 ; : : : ; �?
S

points evaluated with the surrogate function and fulfilling an infill criterion. These
points are determined by examining the best point in Ds (s D 1; : : : ; S) according to
the infill criterion, reducing the parameter space � around this point and sampling
a new design Ds1 from the reduced space �1 (local search). After repeating this
procedure T times, the best of the ST candidate points is evaluated with the objective
function. Then the Kriging parameters are updated and the focus search repeats from
the beginning.

Two different infill criteria are used. In the first optimization the lower confidence
bound infill criterion, based on the difference between Kriging predictor and its
standard error, is applied (Jones 2001). To manage the stochastic character of the
simulation outcome leading to a stochastic objective function, K D 25 repetitions
for each material are evaluated for each parameter vector � . The second criterion is
the augmented expected improvement which is more suitable for the optimization
with stochastic output (Picheny et al. 2013).

Figure 4 shows the optimization course, with the augmented expected improve-
ment infill criterion, of 108 objective function evaluations as boxplots of the
K D 10 single evaluations for basalt and cement. After the evaluation of the initial
design (first 50 points), the values of OO converge. Furthermore, better results can
be observed for evaluations on basalt, according to the choice of the objective
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Fig. 4 Optimization course using the augmented expected improvement as infill criterion and 50

points in the initial design

function. One reason for this result could be the presence of negative observations
in combination with notably strong workpiece tilting in the cement series. The
reason why the values of the objective function converge to this value is not least
because of the input data. Treating one of the observed time series for a .vc; ae/-
combination as simulated and the others with this .vc; ae/-combination as reference
for the two materials leads approximately to the same values of the objective
function to which the objective function converges for basalt and cement in Fig. 4.
Therefore, it is not possible to achieve better overall results. The single evaluations
OOl;u .�; m; f / for the l-th reference force in f direction on material m and the u turns
shifted corresponding simulated force, however, show a quite reasonable accordance
(see Fig. 5).

The optimization with more repetitions and the lower confidence bound infill
criterion leads to a similar but worse performance than the optimization with the
augmented expected improvement criterion. Although the two infill criteria lead
to almost the same best values of OO, the difference between the resulting optimal
parameters, relative to the parameter range used for the optimization designs, is still
quite large. Especially for the material specific parameters s�m and sCm , the relative
difference ranges between 15 % and almost 50 %. The parameter ıcoarse and the
weight parameters ghet;f and gvol;f with a relative difference of less than 4 % seem to
be quite similar.



Optimization of a Simulation 495

time ⎡⎣s⎤⎦

no
m

ra
l f

or
ce

0.0 0.2 0.4 0.6 0.8

0
5

10
15

20
(a)

time ⎡⎣s⎤⎦

sh
ift

ed
 n

om
ra

l f
or

ce

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
5

10
15

20

(b)

time ⎡⎣s⎤⎦

ra
di

al
 fo

rc
e

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8
10

(c)

time ⎡⎣s⎤⎦

sh
ift

ed
 ra

di
al

 fo
rc

e

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

(d)

Fig. 5 Normal and radial forces for one observed time series (black) and the simulated time
series (gray) for the point �? with the best fit on basalt before (a, c) and after shifting (b, d): (a)
OO1;0 .�?; basalt; norm/ D 0:429, (b) OO1;2 .�?; basalt; norm/ D 0:284, (c) OO1;0 .�?; basalt; rad/ D
0:585, (d) OO1;5 .�?; basalt; rad/ D 0:127

4 Conclusion and Outlook

The presented version of the simulation for the grinding process with one diamond
is much faster than the previous versions. An opportunity for a speed up for
the simulation with the complete drill core bit involving hundreds of diamonds
is still available if necessary. The performed model based optimization with the
augmented expected improvement infill criterion results in acceptable accordance
between simulated and measured forces. Before deriving the regression models for
the optimized simulation parameters for different process parameter combinations,
attempts to validate the optimization results for basalt and cement on concrete will
be done. There are two main difficulties that must be resolved. The one of not
knowing the basalt grain size and position can be solved by examining the angles
of entering and exiting the basalt grains in the workpiece following the drilling
path. This information can be used to create a simulated counterpart, but it would
not disclose information about the position of the first diamond contact. Shifting
the simulated time series in time direction for subsequent generation of different
starting positions, as used in the objective function of the parameter optimization,
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would be a time saving possibility to deal with this challenge. Since all intermediate
optimization results, as well as the simulation times needed for each evaluated
simulation, are available, it would be possible to compare simulations with several
parameter sets with similarly good results and perhaps find a solution with maybe
not the best parameters but with much faster calculation time. After the validation on
concrete, the next step will be to proceed with the segment simulation. In addition
to the information from the diamond simulation, follow-up requirements are the
breakout rules for diamonds in segments and the linked wear rate of the metal
matrix, surrounding the diamonds in the segment, for the diverse materials.
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Fast and Robust Isosurface Similarity Maps
Extraction Using Quasi-Monte Carlo Approach

Alexey Fofonov and Lars Linsen

Abstract Isosurface similarity maps are a technique to visualize structural infor-
mation about volumetric scalar fields based on sampling the field’s range by
a number of isovalues and comparing corresponding isosurfaces. The result is
displayed in the form of a 2D gray-scale map that visually conveys structural
components of the data field. In this paper, we present a novel way to establish
isosurface similarity maps by introducing a quasi-Monte Carlo approach for
computing isosurface similarities. We discuss our approach and implementation
details in comparison to the state of the art. We show that our method produces
significantly lower computational costs, yet it is simpler and more intuitive to use,
is more flexible in its applicability, and more robustly generates high-quality results.

1 Introduction

Volumetric scalar fields are generated in numerous areas of science, engineering,
and medicine. They stem from running simulations, e.g., of some physical phenom-
ena, or taking measurements, e.g., using medical imaging techniques. Isosurface
extraction has established itself as one of the key analysis tools for such data
fields. Looking at isosurfaces one can distinguish different structural components of
underlying data, which correspond to different ranges of the scalar values. Manual
inspection of all isosurfaces within the field’s range would be a tedious task.

In this paper, we build upon a strategy to support interactive volumetric scalar
field analysis known as isosurface similarity maps. The main idea of the approach
is to build a 2D gray-scale map, which visualizes pair-wise distances between all
isosurfaces from a sampling of the field’s range, where dark colors correspond to
small distances and bright colors to large distances. Looking at such similarity maps,
one can easily distinguish ranges of field values that correspond to similar structures.
Therefore, these maps help to choose proper volume visualization parameters such
as a good selection of isosurfaces or a suitable transfer function.
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The main contribution of our paper is a new approach for fast and robust
extraction of isosurface similarity maps. Our primary goal was to reduce the
high computational costs of existing approaches. We replace the concept of using
distance transforms as surface descriptors and mutual information estimates for
isosurface similarity computations by a quasi-Monte Carlo (qMC) approach for
comparing isosurfaces by looking at the enclosed volumes. We compare the two
approaches by discussing implementation details, the quality of the produced sim-
ilarity maps, and computation times. We can show that our method is significantly
faster, more reliably produces the desired results, and is more intuitive and more
flexible to apply.

2 Related Work

In addition to their property of being easily visualized and understood, isocontours
have proven to be a suitable descriptor for scalar fields (Bajaj et al. 1997; Bruckner
and Möller 2010; Carr et al. 2006; Duffy et al. 2013; Khoury and Wenger 2010;
Scheidegger et al. 2008; Tenginakai et al. 2001). The concept of isosurface similarity
maps was introduced by Bruckner and Möller (2010). They present structural

information of a volume data set by depicting similarities between individual
isosurfaces quantified by an information-theoretic measure. This concept can even
be successfully extended to multimodal volume data (Haidacher et al. 2011). One
obvious disadvantage of the approach is the considerably high costs of generating
the isosurface similarity map. The reported implementation can require several
hours of processing time for a single data frame.

Besides the basic purpose of data visualization, the concept has a wide area of
potential applications, such as volume quantization and compression, volume seg-
mentation, or multi-dimensional classification. However, for generating similarity
maps, some requirements have to be satisfied. First, a proper distance function has
to be defined to generate a similarity matrix. Second, since isocontours are defined
implicitly, it is important to describe all isocontours with the same accuracy for a
fair comparison. Third, the isocontours do not only differ by enclosing areas, but
have different shapes, which need to be taken into account.

3 Distance Computation

3.1 Mutual Information

Mutual information is a widely used measure of similarity between two random
variables. It has successfully been applied to a range of problems (Huang et al.
2006; Haidacher et al. 2008; Viola et al. 2006). A formal definition (Yao 2003) of
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the mutual information between two random variables X and Y is given by

I.X; Y/ D
X

x2X

X

y2Y

pX;Y.x; y/log

�
pX;Y.x; y/

pX.x/pY.y/

�
;

where pX;Y denotes the joint probability distribution function of X and Y, while
pX and pY denote the marginal probability distribution functions of X and Y,
respectively. Mutual information can also be expressed in terms of entropy by

I.X; Y/ D H.X/ C H.Y/ � H.X; Y/;

where H.X/ and H.Y/ denote the marginal entropies and H.X; Y/ the joint entropy
of X and Y. For our purposes, it is more convenient to work with normalized values
(Kvalseth 1987) given by

OI.X; Y/ D 2I.X; Y/

H.X/ C H.Y/
:

In order to apply the mutual information measure to isosurfaces, a proper surface
descriptor is needed. Bruckner and Möller (2010) propose to use for this purpose
the distance transform of the isosurfaces (Jones et al. 2006). Thus, the distances
from any point of the data volume to a pair of the to-be-compared isosurfaces can
be considered as random variables X and Y. The resulting value of the normalized
mutual information measure can be interpreted as a similarity measure between the
isosurfaces. Similar isosurfaces have a value closer to 1, while dissimilar isosurfaces
are expected to have a value closer to 0.

The nature of the distance transform (DT) makes it sensitive to changes in
the geometry of the isosurfaces’ shapes. Generally, isosurfaces exhibit an onion
peel-like structure, which means that one can expect smooth shape transitions for
close-by isovalues provided that the isovalues correspond to the same structural
component. Conversely, if DTs of a set of isosurfaces are very similar, we can
assume that they belong to the same component.

We propose to replace the isosurface similarity computation based on mutual
information with an approach that computes isosurface distances by comparing
which areas in the data volume are enclosed by them. Hence, we need to integrate
characteristic functions of the areas enclosed by isosurfaces. We propose to compute
the integrals using a qMC approach. The main benefits of such approach are that it is
faster than the mutual information extraction, it can be easily used for spaces of any
dimension, and it can be used for isosurfaces defined over any spatial data structure
ranging from structured grids over unstructured meshes to unstructured point-based
data.



500 A. Fofonov and L. Linsen

Fig. 1 Calculation of the
distance between isocontours.
Example of two isocontours
with distance 0:8

3.2 Quasi-Monte Carlo Approach

We compute random points that sample the spatial domain uniformly and evaluate
the scalar field at these random points. From the interpolated scalar function, we
can derive whether the random point lies inside (including boundary) or outside the
isosurface. This information is stored in a binary vector, where the dimensionality
of the vector is equal to the amount of random points. Hence, the binary vector
is a representative descriptor of the isocontour. Note that the descriptor does not
only allow for the estimation of the size of the area enclosed by the isocontour, but
also captures the location and shape of the enclosed area. Hence, when comparing
two isosurfaces with respect to this descriptor, one can estimate how closely the
isosurfaces’ location and shape match.

Based on the introduced vectors, we can introduce a distance function between
the respective isocontours. Let A and B be isocontours, MA^B the number of points
inside both isocontours (logical and), and MA_B the number of points inside of, at
least, one of the isocontours (logical or). Then, we define a distance d.A; B/ between
A and B by the Jaccard distance

d.A; B/ D 1 � MA^B

MA_B
:

The idea of the distance calculation is illustrated in Fig. 1. The example shows
two isocontours with MA^B D 3 and MA_B D 15, i.e., distance d.A; B/ D 0:8.
The accuracy or complexity of the calculations can be adjusted by increasing or
decreasing the amount of random points. Due to the randomness, the error of
the approach depends only on the amount of points and not on the shapes of
the isocontours. Obviously, the algorithm can be applied to scalar fields of any
dimension and of any spatial data structure.

3.3 Sensitivity of the Measures

Due to different nature of the isosurface descriptors (DT vs. binary vector encoding
inside–outside property of random points), the resulting similarity maps may differ
substantially. To illustrate the features of the measures, we generated five synthetic
2D data sets (shown as 2D images) and corresponding similarity maps using both
methods (see Fig. 2).
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Fig. 2 Examples of differences between the distance measures. In row (1) five different synthetic
data fields are shown. Row (2) depicts the corresponding similarity maps generated using mutual
information measure. Row (3) represents the corresponding similarity maps generated using quasi-
Monte Carlo approach

The first example is shown in column (a). The data field contains three objects
represented by different isovalue ranges. The left-bottom corner of the 2D field
contains a white circle, while the right-top corner contains dark-gray cross placed
inside a light-gray ring. Looking at the similarity map (3) generated by our qMC
approach, we can easily distinguish three detached dark squares on the diagonal of
the map, which correspond to the three different objects. However, in the similarity
map (2) generated by the mutual-information approach, one can only distinguish
two squares. The reason for that is that the DTs for lower isovalues look very similar
due to the close-by positions of the ring and cross.

The second example in column (b) of Fig. 2 shows the same data set, only that the
cross has moved to a different location outside the ring. Now, we can observe that the
mutual-information approach (2) recognizes all three objects, as the corresponding
DTs now differ substantially due to big distances between the objects. The qMC
approach (3), on the other hand, remains exactly the same as in column (a). Hence,
we can conclude that our qMC approach is less sensitive to the spatial distribution
of (non-overlapping) features and rather captures their shape differences.

The third example shown in column (c) of Fig. 2 represents three concentric
circles with increasing intensity, while the fourth example in column (d) represents
the same data set after adding noise. The resulting similarity map obtained by mutual
information (2) for the noise-free data set (c) allows us to weakly recognize three
square-like structures along the main diagonal, but there is an additional wave-like
artifact covering the whole map. This artifact is caused by repeating discrete circle
patterns during smooth isovalue transitions. For the noisy data (d), the similarity
map (2) even exhibits another artifact in the form of artificial horizontal and
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vertical stripes. Our qMC measure (3), instead, produces in both cases the expected
and desired result, i.e., exposing the three different objects. Hence, the second
conclusion is that our approach is less sensitive to small changes and, therefore,
is more robust against noise and extraneous artifacts.

Finally, in column (e) of Fig. 2, the data set also contains three concentric circles,
but intensity values are not increasing anymore plus the central circle is very small.
For our qMC approach (3), the difference between the big white ring with and
without the small circle is negligible, while in terms of the DT this difference totally
changes the picture. This confirms, again, the second conclusion from above.

4 Implementation

When using the mutual-information measure for isosurface similarity, there are
many implementation details that can affect the similarity map calculation, in partic-
ular, the computation time. Hence, it is worth discussing some of the implementation
parameters.

The first important parameter is the resolution of the DT. Due to high computa-
tion costs, Bruckner and Möller (2010) proposed to downsample the resolution, as
even at reduced resolutions the DT captures well the characteristics of an isosurface.
Since they provided computation times for all examples using a resolution of about
643, we decided to do the same for a fair comparison. Note that downsampling the
DT is different from downsampling the data field, as a downsampled version of the
original DT is used.

After DT calculation, it is possible to compute the mutual information or
distances between the isosurfaces. In order to calculate marginal and joint entropy,
we have to build a joint histogram. When doing so, we have to define a resolution
of the histogram and its range. Like Bruckner and Möller we use a fixed histogram
resolution of 1282 throughout this paper. There are many ways to define the range,
such as going from 0 to the maximum possible distance (e.g., main diagonal of data
volume) or defining a certain range for each pair of isosurfaces. Depending on the
data, we observed that different choices can lead to varying quality of the resulting
similarity maps. We calculate the minimum and maximum distances among all DTs
and use the resulting range for all pairs.

Unlike Bruckner and Möller we did not use a CUDA-based implementation of
the joint and marginal entropies by Shams and Barnes (2007). The reasoning is
that with a fixed number of used isovalues (256), a fixed joint histogram resolution
(1282), and using a downsampled DT resolution, the CPU implementation was
actually faster than the GPU implementation in the comparisons we conducted. This
is due to additional costs for memory transfer and due to the GPU initialization.
The calculated DTs need to be stored in system memory or, in case of very high
resolutions, on hard disk.

In contrast to the mutual information approach by Bruckner and Möller, our qMC
approach has only one parameter, which is the number of random points. Intuitively,
the more random points we use, the higher accuracy we achieve. In order to achieve
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a high performance, we propose to pass all the calculations to a GPU. There are two
main steps of our similarity map computation: calculating the descriptive binary
vectors for all the isosurfaces and comparing them to fill the map with distance
values. Both steps are well parallelizable and can be easily implemented with high
efficiency.

The amount of required memory and the time for performing the qMC approach
do not depend on the data resolution (obviously, except for data loading itself). For
example, there is the same amount of memory required for similarity map extraction
from data of resolution 323 or of resolution 5123, if the same number of random
points is used. Another advantage is that no explicit isosurface extraction is required,
as we only need to interpolate the values of the data field to make the inside–outside
decision for each random point. In this paper, we used 32;768 random points which
ensure enough accuracy for all the examples. All methods were implemented in
C++, while using CUDA for GPU-based functions.

5 Results and Discussion

5.1 Similarity Map Results

To test our approach on real data, we chose three datasets with different charac-
teristics and from different application domains. Figure 3 shows the results for the
Crossed Rods dataset. In column (a), two similarity maps corresponding to qMC
(1) and mutual information (2) measures are shown. Our similarity map (1) exhibits

Fig. 3 Results for Crossed Rods dataset: in column (a) similarity maps are shown, where (1) is the
result when using qMC and (2) when using mutual information measures. Columns (b–d) represent
isosurfaces corresponding to the selections in the qMC similarity map
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Fig. 4 Results for CT head scan: (a) and (b) show similarity maps generated using qMC and
mutual information, respectively. Isosurfaces (c, d) correspond to the selection in the similarity
map (a)

Fig. 5 Results for unstructured SPH dataset (White Dwarfs): (a) similarity map generated using
qMC. (b–d) Isosurfaces corresponding to selection in (a)

more structures than (2). For a detailed investigation we selected six isovalues
corresponding to the visible structures (marked by colored crosses) and rendered
corresponding isosurfaces using the Marching Cubes approach (Lorensen and Cline
1987) [see columns (b–d)]. We observe that each of them differs from the previous
one by losing a part of the construction. Hence, our similarity map (1) captured the
structure somewhat better.

For a medical imaging data analysis, we used a CT scan of a man’s head
(see Fig. 4). The structures captured by mutual information technique (b) are also
visible in our similarity map (a). Moreover, the right-top square area in (b) actually
contains some more complicated structure, which is only captured in our similarity
map (a). To validate our result, we picked respective isovalues and rendered the
corresponding isosurfaces (c, d). Due to relatively small size of the jaws when
compared to the whole head, the isosurfaces are judged to be similar when using
a DT, but they are judged to be different when considering enclosed volumes.

Since our method is applicable to data of any spatial configuration, we tested it
on astrophysical SPH simulation data of a two-stars system (see Fig. 5). The stars
have different masses and sizes. When investigating the internal energy field, we can
recognize them by occupied field ranges. The similarity map exhibits three regions
(a). Figure 5b–d shows the corresponding isosurfaces using splat-based rendering
(Linsen et al. 2007), which represent the expected result. The considered gridded
data sets are from The Volume Library, the SPH data were provided by Marius Dan
and Stephan Rosswog.
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Table 1 Comparing computation times for the mutual information approach to our qMC approach

Original DT Random Time

Data resolution resolution points qMC (GPU) (s) qMC (CPU) (s) Mut. inf. (s)

Figure 3 64� 64� 64 64� 64� 64 32,768 0.41 3.6 178

Figure 4 128� 256 � 256 32� 64� 64 32,768 0.48 4.8 641

Figure 5 39,718 particles – 32,768 0.64 – –

5.2 Computation Times

Our approach is significantly faster than the mutual information approach by
Bruckner and Möller (2010). For the presented examples, computation times are
listed in Table 1. We executed the algorithms on a laptop with Intel Core i7-
3630QM, NVIDIA GTX 660M, and 8 GB DDR3.

Using our approach, we achieved 430–1330 times faster similarity map compu-
tation for downsampled DT resolutions using GPU, and 50–130 times using only
CPU. With increasing resolution our approach keeps the performance, as it only
depends on the number of random points, while the mutual information approach
has super-linearly increasing computation times leading to even higher differences
between the two approaches. Note that the small difference between qMC times
for the first and second example is caused by the different numbers of succeeding
conditional statements and not by the different resolutions. In case of SPH data, the
more complicated field interpolation leads to higher computation times.

6 Conclusion

We presented a novel approach to similarity map computation based on a qMC
method. We compared our approach for calculating distances between isosurfaces
with the state of the art and discussed important features as well as implementation
details. For all examples, our similarity maps presented the structures in the data
fields better or, at least, equally good, while being hundreds of times faster and using
less system resources. Due to insignificant hardware requirements, our approach is
also suitable for most devices, even those with a single core architecture. Hence,
we could overcome the main drawbacks of similarity map computation based on
mutual information.
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Analysis of ChIP-seq Data Via Bayesian Finite
Mixture Models with a Non-parametric
Component

Baba B. Alhaji, Hongsheng Dai, Yoshiko Hayashi, Veronica Vinciotti,
Andrew Harrison, and Berthold Lausen

Abstract In large discrete data sets which requires classification into signal and
noise components, the distribution of the signal is often very bumpy and does not
follow a standard distribution. Therefore the signal distribution is further modelled
as a mixture of component distributions. However, when the signal component is
modelled as a mixture of distributions, we are faced with the challenges of justifying
the number of components and the label switching problem (caused by multi-
modality of the likelihood function). To circumvent these challenges, we propose
a non-parametric structure for the signal component. This new method is more
efficient in terms of precise estimates and better classifications. We demonstrated
the efficacy of the methodology using a ChIP-sequencing data set.

1 Introduction

The observations in a finite mixture model originate independently from a mixture
distribution with K components that can be written as

f .x/ D
KX

kD1

k fk.xI�k/I (1)

where k > 0 with
P

k k D 1 is the mixing weight of component k and
fk.xI�k/ belongs to a given parameterized family �k. This model has advantages
of relaxing distributional assumptions. It represents subpopulations where the
population membership is not known but is inferred from the data (McLachlan and
Peel 2004).
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The existing literature such as Diebolt and Robert (1994) and McLachlan and
Peel (2004) have demonstrated that finite mixture models can be inferred in a
simple and effective way in a Bayesian estimation framework. Attention has mostly
focused on parametric mixture models, when the component densities are all from
the same parametric family, having different parameter values for the components.
For example, all the distributions could be Poisson with different means, or all the
distributions could be Negative Binomial with different parameters (even though,
in practice, it is not necessary that all the densities will be of the same kind). This
situation causes a persistent challenge in the diagnostic of Markov Chain Monte
Carlo (MCMC) convergence due to two reasons.

The first reason is the label switching problem which results from the multi-
modality of the likelihood function. Many methods exist on how to tackle the label
switching problem, for example, imposing identifiability constraints (Diebolt and
Robert 1994; Richardson and Green 1997; McLachlan and Peel 2004) and other
methods based on relabelling algorithms (Stephens 2000b; Celeux et al. 2000;
Rodriguez and Walker 2014). For a review and comparison of these methods see, for
example, Jasra et al. (2005) and Sperrin et al. (2010). One limitation to the existing
methods for dealing with the label switching problem is that they focus on mixture
models where all components having the same type of distributions. Another
drawback common to these methods is that they require heavy computational
costs, which make them unsuitable for large data sets, and models with a large
number of components. In practice, mixture components with different types of
distributions are sometimes used, such as mixture of Poisson and Negative Binomial
distributions. In such situations, the likelihood function may still have multi-modes
which cause label switching problem. But the existing methods for dealing with this
problem may not be applicable in this case.

The other reason is the justification of the number of components, K.
Many authors have devised different strategies for estimating the number
of components in Bayesian finite mixture models, for example reversible
jump MCMC (Richardson and Green 1997) and Birth and Death MCMC
(Stephens 2000a; Nobile and Fearnside 2007). Another approach to deal with
the unknown number of components is to use a mixture of Dirichlet processes
(Antoniak 1974; Escobar and West 1995), which allows an infinite number of
components. This is also computationally non-trivial when a large data set with
several components is involved.

This motivates our study, which we discuss in detail in the following. In certain
application areas, interest may be in classifying the observations into two classes.
For example, in the analysis of ChIP-sequencing (ChIP-seq) data, we are interested
in whether a region of the genome is bound by the protein in question or not. For
such ChIP-seq (discrete) data, although there are only two possible classes, it is
inappropriate to use a mixture of two known parametric distributions (e.g. Poisson
or Negative Binomial distributions). This is because such data sets usually have long
tails and the tails may show multi-modal patterns.
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Fig. 1 Distribution of ChIP-seq data for one experiment (left), with zoom on the tail (right)

For illustration, we use ChIP-seq data generated by Ramos et al. (2010) for the
experiment on CREB binding protein (CBP) for identifying the genomic regions
bound by the histone acetyltransferases (see Bao et al. 2013 for a description of
ChIP-seq technology and this data set). For each region (1000bp) in the genome,
the data report the number of bound fragments that aligns to that region. A higher
value means that the corresponding region is most likely to be bound by the protein
in question. The number of regions in the data set is 33,916. The lowest count is zero
and the highest count is 214, which means that some regions are tagged but with no
protein of interest and a particular region is tagged with 214 counts. The mean and
the variance are 2.13 and 8.76, respectively. Figure 1 shows a histogram of the count
data. The left plot shows that the data set has a very long tail. If we zoom in the tail
of the distribution (right plot), we see possible multi-modal patterns, suggesting that
the distribution of the data is likely to consist of several component distributions.
This situation has been observed also for other ChIP-seq analysis, where a two-
component parametric mixture model appears to be too restrictive for the analysis
of these data. An alternative approach is to use K components, with K > 2. In
the context of ChIP-seq data analysis, this was considered by Kuan et al. (2011),
who allowed the signal distribution to be a mixture of two Negative Binomial
distributions (i.e. K D 3). However, it is very challenging to justify the true value of
K. Although the reversible jump MCMC method (Green 1995) is readily available,
the justification of reversible jump MCMC convergence is non-trivial and it requires
heavy computational costs. Another challenge of using K components is that it is
very difficult to determine exactly the component distributions. For instance, all
components may be chosen as Poisson distributions, or only some components are
chosen as Poisson distributions and the others are chosen as Negative Binomial
distributions. As such, using a mixture distribution with K components seems
unnecessary. This motivates us to consider a two-component mixture model for
discrete observations, with one parametric distribution and one non-parametric
distribution.

The non-parametric distribution has several advantages. It bypasses the chal-
lenges involved in the K-component mixture models, such as the label switching
problem and the determination of the unknown parameter K. It does not need to
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justify a particular parametric distribution for the signal. In the context of ChIP-seq
data, our method detects the enriched regions in the genome with higher accuracy
than the mixture of parametric distributions.

2 The Model and the Posterior Distribution

Suppose that discrete observations x1; : : : ; xn are sampled from a mixture of
distributions with two components, where one component is the noise distribution
and the other component is a signal distribution. We simply use the mixture density
in (1) to model the data, where f1 is the parametric distribution for the noise, f2 is
the signal distribution, and 1 and 2 are the corresponding mixture proportions,
respectively.

Associated to each observation xi is a latent variable zi, i.e. zi D k (k D 1; 2),
which represents the component from which the observation xi originates. The
complete likelihood function for .�1;�2/ given the full data is

l.�1;�2jx; z/ /
nY

iD1

n
Œ 1f1.xiI�1/	

IŒziD1	 Œ2f2.xiI�2/	
IŒziD2	

o
: (2)

The noise distribution f1 is usually simpler to determine. For example in ChIP-
seq studies (for 1000bp where the proportion of zeros is not very large), Poisson
distribution is a natural choice for the noise since a genomic region not bound by
the protein in question but tagged is a rare event. In contrast to this, the signal
distribution can present complicated patterns. We therefore consider using a non-
parametric model for the second component.

As the data are discrete, we can denote with x.1/; : : : ; x.L/ the L distinct values of
the observations x1; : : : ; xn. Define

f �2 .x.j// D pj;

LX

jD1

pj D 1 I (3)

where pjs (j D 1; : : : ; L) are the unknown parameters. pj can be interpreted as the
probability of x D x.j/ given that x is drawn from the signal component. This can be
viewed as a non-parametric distribution. Under this model, the distribution of x is
given by

f .x/ D 1f1.xI�1/ C 2

LX

jD1

f �2 .x/IŒx D x.j/	: (4)
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Based on the distribution (3), we have the following likelihood function given
.xi; zi/ (i D 1; : : : ; n),

l.�1; p;�jx; z/ /
nY

iD1

8
<̂

:̂
Œ1f1.xiI�1/	

IŒziD1	

2

42

LX

jD1

pjIŒxi D x.j/	

3

5
IŒziD2	

9
>=

>;

D 
n1

1 
n2

2

nY

iD1

Œf1.xiI�1/	
IŒziD1	 �

LY

jD1

p
Pn

iD1 IŒziD2;xiDx.j/	

j I

where nk D P
i IŒzi D k	, k D 1; 2.

If we choose uniform priors for � and p and denote the prior for �1 as g0.�1/, we
have that �, p and �1 are independent under the posterior distributions. In particular,
the posterior distribution of � is given by the Beta distribution.

Based on this, Gibbs sampler can be used to draw realizations from the posterior
distribution and carry out a Bayesian Monte Carlo analysis. This leads to the
following algorithm:

Algorithm 6: The proposed method

1 Initialization: select, z.0/;�.0/, p.0/ and �.0/
1 ;

2 Set m D 1 ;
3 repeat
4 for i D 1 to n do
5 Update zi with probability in

P.zi D 1/ / 1f1.xiI�1/ I

P.zi D 2/ / 2

LX

jD1

pjIŒxi D x.j/	 I

6 Update �1 from the posterior in

g.�1jx; z/ /
nY

iD1

Œf1.xiI�1/	
IŒziD1	 g0.�1/ I

Update � from the posterior in

g.�jx; z/ / 
n1

1 
n2

2 I
7 Update p from the posterior in

g.pjx; z/ /
LY

jD1

p
Pn

iD1 IŒziD2;xiDx.j/ 	

j I

m D mC 1
8 until Enough MCMC steps have been simulated;
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3 Simulation Study

In the simulation study, we consider a mixture distribution with five components,
where the noise component is a Poisson distribution and the signal components
are Negative Binomial distributions. We sample 500 observations. Our intention is
to compare our proposed method with fully parametric mixture model in terms of
estimation and classification. The true model for the simulation is given by

f .x/ D 1Poi.xI �/ C
5X

kD2

kNB.xI rk; vk/: (5)

We chose different values for the parameters �, rk and vk in order to compare our
method with existing methods under different settings.

In the first scenario, we choose the set of true parameters (Set 1) as � D 2,
1 D 0:6, 2 D � � � D 5 D 0:1, r D .15; 13; 10; 8/ and v D .0:9; 0:7; 0:6; 0:5/.
This choice of r and v for the NB components gives the corresponding component
means as .1:68; 5:57; 6:67; 8:00/. Such a choice implies that the means of Poisson
component and all the other NB components are not too far apart. From Table 1
we can see that our method has clear posterior estimates, which approximate the
true parameter value. The trace plot confirms that our method does not suffer from
the label switching problem (see Fig. 2). In fact, label switching does not occur in
our methodology. However, for the Poisson component and other NB components,
the above situation causes some identifiability problems when traditional Gibbs

Table 1 Parameter Set 1. (i) The new method; (ii) true mixture model of five components

True value Posterior mean Error rate

Model � 1 r1 r2 r3 r4 v1 v2 v3 v4 � 1 e

(i) 2 0.6 15 13 10 8 0.9 0.7 0.6 0.5 2.2514 0.6987 0.31

(1.8881,2.6680) (0.5680,0.7885)

(ii) 2 0.6 15 13 10 8 0.9 0.7 0.6 0.5 2.4371 0.2952 0.46

(1.0576,4.9958) (0.0249,0.7433)

Fig. 2 MCMC trace plots for �, 1 for our new model for the true parameters in Table 1



Analysis of ChIP-seq Data Via Bayesian Finite Mixture Models 513

Fig. 3 MCMC trace plots for �, 1 for a mixture of a Poisson and four NB distributions for the
true parameters in Table 1

Table 2 Parameter Set 2. (i) The new method; (ii) the true mixture model of five components

True value Posterior mean Error rate

Model � 1 r1 r2 r3 r4 v1 v2 v3 v4 � 1 e

(i) 7 0.6 15 20 40 30 0.4 0.3 0.3 0.2 6.8676 0.5787 0.06

(6.4998,7.2305) (0.5226,0.6292)

(ii) 7 0.6 15 20 40 30 0.4 0.3 0.3 0.2 6.9622 0.5349 0.10

(6.4599,7.4080) (0.2279,0.6329)

sampling method is used (see Fig. 3). The MCMC trace plots in Fig. 3 for 1 and �

clearly show the occurrence of the label switching problem.
This issue severely distorts the posterior estimates, see Table 1. For example, the

posterior mean for � is 2.4371 (the true value is 2) and the posterior mean for 1 is
0.2952 (the true value is 0:6). On the contrary, if we use the proposed method, the
estimates for � and 1 are 2:2514 and 0:6987, respectively, which are closer to the
true values. For simplicity, we did not provide the estimates for r and v since the
main aim here is classification and under the new model r and v are not involved.
Instead, we compared the misclassification rate (the ratio of the number of wrongly
classified observations over the total number of observations) for the two methods.
This can be easily obtained as the Bayesian approach provides the simulated z from
the full posterior. From the last column of Table 1 we can see that our method has
smaller misclassification rate than the parametric mixture model.

In the second set of the simulation, the choice of the true parameters are � D 7,
1 D 0:6, 2 D � � � D 5 D 0:1, r D .15; 20; 40; 30/ and v D .0:4; 0:3; 0:3; 0:2/.
This choice of r and v for the NB components gives the corresponding component
means as .22:5; 46:7; 93; 120/. This gives very different component means, with the
Poisson component having the smallest mean. This situation is similar to the real
ChIP-seq data, in terms of long tail, and the noise component has the smallest mean
value. From Table 2 we can see that our method gives posterior mean estimates
for � and 1 with smaller bias and shorter credible intervals than the parametric
mixture approach. This is because our method does not incur the label switching
problem. Contrarily, the larger bias and variation in the estimates in the existing
methods is due to the label switching problem, see Fig. 4. Still, the new method
performs better in terms of misclassification rate. For the results, we run the
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Fig. 4 MCMC trace plots for �, 1 for a mixture of a Poisson and four NB distributions for the
true parameters in Table 2

Gibbs sampler for 20,000 steps with 10,000 steps as burn-in iterations over 100
simulations. Furthermore, we use a Metropolis-within-Gibbs sampler to simulate
from the posterior distributions for the parametric mixtures, given the difficulty in
simulating the parameters r and v for NB distributions.

4 Data Analysis: ChIP-seq Data

We present the application of the new method to ChIP-seq data. We consider the
GBPT301.1000bp data set from the R package enRich. Our aim is to detect the
regions in the genome that are enriched, so it is a natural two-component mixture
model problem with a noise and a signal component. Several methods for the
analysis of ChIP-seq data assume a parametric signal distribution mixed with a
parametric noise distribution. For example, Kuan et al. (2011) propose a mixture
of Negative Binomial distributions; Qin et al. (2010) adopt a generalized Poisson
distribution for the signal and Bao et al. (2013) propose a Poisson distribution
for noise and a Poisson distribution for the signal, and also Negative Binomial
distribution for the noise and Negative Binomial distribution for the signal.

However, analysis of ChIP-seq data involving non-parametric approach focused
mainly on peak calling algorithms (see Nix et al. 2008 and Zhang et al. 2008).
Wang et al. (2010) employed Gibbs sampling strategy for mapping of ambiguous
sequence tags. Bound regions are piled up with reads, but due to the “noise” inherent
in the essay, calling “peaks” is not a straightforward task. Another demerit of non-
parametric peak calling approach is that they are strongly determined by thresholds
which are set heuristically in the peak calling step and the results of the analysis
are compounded by the differences in the background noise (Hower et al. 2011).
Therefore, we considered parametric distribution for the noise component and used
non-parametric distribution to model the signal component.

Based on the posterior distribution, the posterior classification probability can be
used to predict whether a region is enriched or not.

Di D P.zi D 1jx;�/ WD 1f1.xiI�1/

1f1.xiI�1/ C 2

PL
jD1 pjIŒxi D x.j/	

:
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Fig. 5 Number of enriched
regions identified by the
proposed model,
Poisson–Poisson mixture
model, NB–NB mixture
model on chromosome 21 at
the 0.2 % FDR

The region i will be classified as an enriched region if Di < c. The threshold
value c is determined by controlling the false discovery rate (FDR) at a predefined
level (Bao et al. 2013), say 0:002. The expected FDR corresponding to the threshold
value c is given by

bFDR WD
P

i2enriched region.Di/P
i IŒDi < c	

:

We present the result in Fig. 5, which shows a Venn diagram of the detected regions
as enriched for GBP experiment of ChIP-seq data for our proposed model, compared
with a mixture of two Poisson distributions and a mixture of two NB distributions,
at 0:2 % FDR. For the Poisson and NB mixtures we use the implementation in the
enRich R package. Our method detects more enriched regions than the existing
methods at the same FDR.

5 Conclusion

We developed mixture model with parametric and non-parametric components. We
achieved several advantages by using the non-parametric component. Firstly, we
neither need to specify the distributions for the signal component nor to consider
the number of components. Secondly, the method circumvents the label switching
problem. Results on simulated data verified the validity of the approach and showed
better performance in terms of estimation and classification. We illustrated the
proposed method on ChIP-seq data (GBPT301.1000bp) to detect the enriched
regions bound by proteins of interest.
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Relatively large window size (1000bp) in the ChIP-seq data motivates the use
of traditional mixture models that do not account for Markov dependencies. For
a smaller window size, say 200bp, we expect spatial dependencies between the
neighbouring windows. More elaborate models such as HMMs or Markov random
fields should be considered in this case such as the method developed in Bao et al.
(2014). The possible extension of this method to account for Markov dependencies
is currently under investigation.

The proposed method is only valid for discrete data sets, thus a possible extension
might be to develop methods able to deal with continuous data sets. In this case, a
continuous distribution would be chosen for the noise component f1.x/. However,
new methods would need to be developed for the non-parametric component, since
the posterior of zi in Algorithm 6 will not be valid anymore. This can be explored as
a future research work.
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Information Theoretic Measures for Ant Colony
Optimization

Gunnar Völkel, Markus Maucher, Christoph Müssel, Uwe Schöning,
and Hans A. Kestler

Abstract We survey existing measures to analyze the search behavior of Ant
Colony Optimization (ACO) algorithms and introduce a new uncertainty measure
for characterizing three ACO variants. Unlike previous measures, the group uncer-
tainty allows for quantifying the exploration of the search space with respect to the
group assignment. We use the group uncertainty to analyze the search behavior of
Group-Based Ant Colony Optimization.

1 Introduction

Combinatorial optimization problems arise in many scientific disciplines such as
operations research, computer science, engineering, and commerce. Being NP-
hard, many combinatorial optimizations have an exponentially growing worst-case
runtime in the size of their problem instances for the corresponding best known
algorithms. Hence, it is desirable to compute near optimal solutions using low
computational costs with approximate algorithms like Ant Colony Optimization
(ACO) algorithms. The first ACO algorithm called Ant System (Dorigo et al.
1996) was developed in the early nineties. The main idea of ACO was inspired
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by the foraging behavior of ants. Ants of many ant species (e.g., the Argentine ant)
deposit pheromone on the paths they move along when exploring the environment.
Other ants perceive the pheromone and tend to prefer paths with a larger amount
of pheromone. Pheromone trails emerge due to ants choosing the same path,
depositing pheromone and thus reinforcing that path. In this paper we discuss
measures to analyze the development of the search behavior of ACO algorithms.
The internal state of ACO algorithms determines the part of the search space that
is searched effectively by the algorithm. The �-branching factor has been used in
Dorigo and Stützle (2004) to analyze the behavior of ACO algorithms. The authors
suggest that the Shannon entropy can be used as a parameterless alternative to
the �-branching factor but do not demonstrate its application. The previous two
measures are based on the pheromone matrix used by the ACO algorithm. Here,
we investigate the development of the entropy values compared to the �-branching
factor. We introduce an uncertainty measure as the Shannon entropy of the empirical
probabilities calculated from the solutions constructed by the ACO algorithm. With
this uncertainty measure problem-specific heuristic values are taken into account.
In contrast to the existing measures the uncertainty measure is independent of the
internal state representation of the ACO algorithm. Furthermore we show that this
measure can be used to quantify the uncertainty of the group assignment decisions
of ACO algorithms. We use our measures to analyze ACO variants for the Vehicle
Routing Problem.

2 Ant Colony Optimization

This section outlines combinatorial optimization problems and the Vehicle Routing
Problem with Time Windows followed by the description of the ACO variants that
are studied later.

2.1 Combinatorial Optimization Problem

Generally, for a given set of decision variables Xi (i 2 f1; : : : ; ng) with finite domains
di D d.Xi/ and a set of constraints ! 2 ˝ , ! W D1 � � � � � Dn ! ftrue;falseg a
combinatorial optimization problem (without loss of generality minimization) with
respect to an objective function f W D1 � � � � � Dn ! R can be defined as follows:

f .X1; : : : ; Xn/ ! min
!.X1; : : : ; Xn/ D true; 8! 2 ˝

Xi 2 Di; i 2 f1; : : : ; ng:
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Then the goal is to find a feasible assignment .X1 D c1j1 ; : : : ; Xn D cnjn /

that minimizes f .X1; : : : ; Xn/. A feasible assignment is called a solution s of the
combinatorial optimization problem and denoted briefly as s D .c1j1 ; : : : ; cnjn/ with
the solution components cij. A partial assignment of only a subset fXi j i 2 Ig of
the decision variables is called a partial solution. A feasible partial solution s0 is a
partial solution where all constraints ! 2 ˝ hold for the partial assignment. The
set of feasible components C˝.s0/ for a given feasible partial solution s0 is the set
of solution components that can be added to s0 resulting in another feasible partial
solution.

An example for a combinatorial optimization problem is the Vehicle Routing
Problem with Time Windows (VRPTW, Bräysy and Gendreau 2005) which we study
as a benchmark problem in this paper. The VRPTW is a routing problem in which
the chosen routes are comprised of decisions to travel from customer vi to customer
vj. This can be represented by assignments Xi D j. The domains of the decision
variables are restricted such that all pairs Xi; Xj have distinct values. Two additional
constraints corresponding to vehicle capacity and customer time windows limit the
set of feasible solutions. More specifically, the VRPTW is a distribution problem
where a given set of customers vi (i 2 f1; : : : ; ng) demands a quantity qi 2 N

C of
a product that is available at a depot vnC1. Given a limited number (m) of vehicles
with limited capacity C the goal is to find a minimal number of tours and a minimal
total driving distance of these tours to distribute the product. Each customer vi must
get the delivery within a given time window Œbi; ei	. The delivery at customer vi has a
given service duration �si. Only the begin of the service associated with the delivery
must be within the time window. The pairwise distances dij and travel durations
�tij between the locations of customers and the depot are given. Each vehicle
starts at the depot vertex vnC1. The objective function f .s/ is two-dimensional and
consists of the used vehicle count (or tour count) v.s/ 2 N

C and the total driving
distance d.s/ 2 R

C. In the newer literature a lexicographic comparison between
solutions is used, where the vehicle count v.s/ is the primary objective and the
total distance d.s/ is the secondary objective. Two different approaches for applying
ACO to the Vehicle Routing Problem with Time Windows are detailed in the
following.

2.2 ACO with Linear Solution Encoding

The construction procedure of ACO algorithms is based on a construction graph
G D .V ;E /. For the VRPTW the construction graph has a vertex vi (i 2 f1; : : : ; ng
for each customer and a vertex vnCj (j 2 f1; : : : ; mg) at the depot location for each
vehicle. The graph contains a directed edge from vertex vi to vertex vj if it is possible
to travel from vertex vi to vertex vj and to arrive within the time window of vj. A
solution component cij is an edge .vi; vj/ in the construction graph and represents
the decision to travel from vertex vi to vertex vj. In the context of a partial solution
where the last vertex vi is fixed implicitly we will use the vertex vj to identify the
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solution component cij. The linear solution encoding represents a solution s to the
VRPTW as a path through the construction graph

s D �
vnCi1 ; vj1 ; vj2 ; : : : ; vjk1„ ƒ‚ …

DT1

; vnCi2 ; vjk1C1
; : : : ; vjk2„ ƒ‚ …

DT2

; vnCi3 ; : : : ; vnCikmC1„ ƒ‚ …
T3;:::;Tm

�
;

where each tour Tk starts with a depot vertex vnCik followed by the customers
that are visited in the tour in that order and ends with the depot vertex vnCikC1

of the next tour TkC1. This construction graph and the linear solution encoding
were first described in Gambardella et al. (1999). Let ClassicACO denote the
ACO algorithm using the linear solution encoding and a corresponding sequential
solution construction. ClassicACO builds a predefined number of solutions per
iteration and returns the best-so-far solution after a specified number of iterations.
The solutions are built incrementally by choosing the next vertex vj to add to
the current partial solution probabilistically. In construction step � for a given
partial solution s� D .vi0 ; vi1 ; : : : ; vi� / in linear encoding the sequential solution
construction chooses the next vertex vj with probability

P
�

vj j s�

� D

8
ˆ̂̂
<

ˆ̂̂
:

�j.s�/˛ � �
ˇ
i� ;jX

vk2C˝.s�/

�k.s�/˛ � �
ˇ
i� ;k

vj 2 C˝.s�/

0 vj … C˝.s�/;

(1)

where �i� ;j 2 R
C is the pheromone value and �j.s�/ 2 R

C the heuristic value
associated with the edge .vi� ; vj/ for the partial solution s� . ˛; ˇ > 0 are additional
weightings. The simple heuristic �j.vi� / D d�1

i� ;j is used in the experiments of this

paper. We call the product rij D �j.s�/˛ � �
ˇ
ij the rating rij of the solution component

cij (VRPTW: edge .vi; vj/). The pheromone matrix is initialized with �ij D �0 and
updated using

�ij.t C 1/ D .1 � �/ � �ij.t/ C
(

� � R.Os.n//; cij 2 Os.t/
0; otherwise

, (2)

where Os.t/ is the best solution found up to iteration t and R is a function calculating
the reward based on that best-so-far solution.

2.3 ACO with Group-Based Solution Encoding

The ACO algorithm variantGB-ACO (introduced in Völkel et al. 2013) uses a group-
based solution encoding and a corresponding parallel solution construction. The
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group-based solution encoding represents a solution s of the VRPTW as a set of
paths through the construction graph—one for each tour.

s D .g1; g2; : : : ; gm/„ ƒ‚ …
D.T1;T2;:::;Tm/

; ga D .vnCia ; vja;1 ; vja;2 ; : : : ; vja;ka
/ :

There is one group ga per vehicle representing the tour Ta of the vehicle (if any).
One group comprises the customers that are visited in the corresponding tour in
the given order. The probabilistic parallel solution construction of GB-ACO starts
with a solution of m empty groups which start at their respective depot node each.
Solution components are added incrementally to a chosen group. For a given partial
solution

s� D .g1;� ; : : : ; gm;�/; ga;� D .via;0 ; via;1 ; : : : ; via;� /

and the sets of feasible components C˝.s�; ga;�/ for all groups ga;� of s� the
probability to choose a group ga;� is defined as

P. ga;� j s� / D

X

vk2C˝.s�;ga;� /

�k.s�; ga;�/˛ � �
ˇ
ia;� ;k

mX

kD1

X

vl2C˝.s� ;gb;� /

�l.s�; gb;�/˛ � �
ˇ
ib;� ;l

; (3)

where the heuristic value �i.s�; gc;�/ is dependent on the group gc;� . For the chosen
group ga;� the probability of selecting the next vertex vj 2 C˝.s�; ga;�/ for addition
is defined as

P. vj j s�; ga;� / D �j.s�; ga;�/˛ � �
ˇ
ia;� ;jX

vk2C˝.s�;ga;� /

�k.s�; ga;�/˛ � �
ˇ
ia;� ;k

.

For the VRPTW an empty group punishment (EGP: linear or exponential) can
be applied in the group selection to support the minimization of the number of
tours (non-empty groups) as described in Völkel et al. (2013). Both EGP variants
reduce the rating sum of empty groups by dividing through a divisor which is
linearly increasing (linear EGP) or exponentially increasing (exponential EGP) in
the number of non-empty groups. The GB-ACO variant called UG-ACO uses a
random selection of the next group with a pseudo-uniform distribution based on
a uniform distribution modified by empty group punishment.
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3 Measures

The analysis of the ACO algorithm variants can be based on their internal state
per iteration t, the pheromone matrix �.t/ and the best-so-far solution Os.t/, and
the set of generated solutions S.t/. In Dorigo and Stützle (2004) the �-branching
factor is used to analyze different aspects of ACO algorithms (e.g., to detect early
stagnation) and it is suggested to use the entropy as a parameterless alternative of the
�-branching factor. At the end of this section we introduce the uncertainty measure
which is not directly based on the pheromone matrix but is calculated from empirical
probabilities.

3.1 �-Branching Factor

Following the definition in Dorigo and Stützle (2004) for a pheromone matrix
� the minimal and maximal pheromone values for the decision variable Xi are
defined as

�min
i D min

j2V �ij and �max
i D max

j2V �ij . (4)

The �-branching factor b�
�.i/ of vertex vi is defined as the number of vertices vj with

a pheromone value larger than a threshold depending on � and Œ�min
i ; �max

i 	, i.e.,

b�
�.i/ D ˇ̌fvj j �ij � �min

i C �.�max
i � �min

i /gˇ̌ . (5)

The average �-branching factor for a given pheromone matrix � is denoted as b�
�.

The average �-branching factor indicates how much of the search space can be
searched effectively. In Dorigo and Stützle (2004) � D 0:05 is used for the analysis.
Similarly to the branching factor b�

� for the pheromone values, we can define

the branching factor bR
� based on the rating values of the components (provided

that the heuristic values �ij depend only on the previous vertex). The idea is
that a �-branching factor based on the ratings rij captures the real possibilities to
explore the search space better than the one which is only based on the pheromone
values.

3.2 Entropy

As described above the construction in ACO algorithms is performed on the
construction graph G D .V ;E /. The decision at vertex vi to choose a successor
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vertex vj can be modeled as random variable Xi.s�/ 2 C˝.s�/. Let pi� ;j D
P
�

vj j s� D .vi0 ; : : : ; vi� /
�

be the probability from Eq. (1). Then the Shannon
entropy of Xi.s�/ is defined as

H.Xi.s�// D �
X

vj2C˝.s�/

pi� ;j � log2 pi� ;j . (6)

This entropy can be bounded from above by the analogously defined H.Xi/ with
Xi 2 V [vj 2 C˝.s�/ changes to vj 2 V in Eq. (6)]. The entropy H.Xi/ and
the corresponding average entropy H.X/ can only be calculated efficiently when
heuristic values �j .s� D .vi0 ; : : : ; vi� // D �j .vi� / that only depend on the previous
vertex vi� and not on the state calculated from the whole partial solution s� are
used. Even for heuristic values �j .vi� / the entropy H.Xi.s�// cannot be calculated
efficiently because the random variables Xi.s�/ are not independent from each other,
e.g., choosing Xi1 D vj1 limits the sample space of Xi2 to V n fvj1g. Thus, the
calculation H.Xi.s�// would require the calculation of the probability distribution
for each Xi1 ; : : : ; Xin for all possible orders .i1; : : : ; in/ 2 Sn.

For an efficient analysis of algorithm runs the following options remain: a
calculation of H.Xi/ and H.X/ based on probabilities proportional to �j.vi� /˛ ��ˇ

i� ;j or

a calculation of H� .Xi/ and H� .X/ with probabilities proportional to �i� ;j. The first
option captures the state of the algorithm better than the second option because it
incorporates the heuristic values as well.

3.3 Uncertainty

To overcome the limitations of the previously described entropy measures, we will
introduce an empirical entropy value called uncertainty that is intended to capture
the development of the internal state of the algorithm better. Assuming the ACO
algorithm runs for T iterations constructing A solutions s1.t/; s2.t/; : : : ; sA.t/ per
iteration t, then the sliding window Sw;t of the solutions from w iterations starting at
iteration t � w is defined as

Sw;t D
n
sa.k/ j k 2 f t � w C 1; t � w C 2; : : : ; t g; a 2 f 1; : : : ; A g

o
(7)

with w � 2 and t � w. Let Pw;t.Xi D vj/ be the empirical probability calculated
from the solutions of the sliding window Sw;t. The uncertainty Uw;t.Xi/ within the
sliding window Sw;t to choose a successor vertex from vi is defined as

Uw;t.Xi/ D �
X

vj2V
Pw;t.Xi D vj/ � log2 Pw;t.Xi D vj/ . (8)
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The mean uncertainty within the sliding window Sw;t is denoted as U w;t.X/.
The sliding windows are motivated from the fact that ACO algorithms usually
construct only a small number of solutions (e.g., A D 10) per iteration leading
to an insufficient estimation of the probability to select a successor vertex. For
problems with a group structure like the VRPTW the uncertainty of a vertex occurring
in a certain group can be defined similarly to the previous approach. Let Yi 2
fg1; : : : ; gmg be the random variable for vertex vi such that Yi D gj denotes the
event that vertex vi is contained in group gj. The group uncertainty Uw;t.Yi/ within
the sliding window Sw;t is defined analogously to the previous uncertainty Uw;t.Xi/.
The mean group uncertainty is denoted as U w;t.Y/.

4 Application

We performed an experiment with the three ACO variants ClassicACO, GB-ACO,
and UG-ACO on the Solomon instances (Solomon 1987). Each algorithm had 25
repetitions on each problem instance and each algorithm used the same set of seeds
for the pseudo-random number generator. The pheromone evaporation was specified
as � 2 f0:03; 0:06g, the number of constructed solutions per iteration was A D 10

and the three different empty group punishment strategies (none, linear, exponential)
were used for GB-ACO and UG-ACO. The values were chosen such that neither
early stagnation nor insufficient exploitation occurs. In the following we apply the
introduced measures to the data gathered in the experiments. The figures show
the data from instance c101 which is representative for the other instances of the
instance class c1. Figure 1 shows the development of all discussed measures and
the objective values over the iterations of the algorithms. While the �-branching
factor b�

� of the pheromone values distinguishes the three algorithm variants

well, the �-branching factor bR
� of the rating values cannot distinguish between

GB-ACO and UG-ACO. For the two entropy measures, the algorithm variants are
indistinguishable. This may be because all three algorithms use the same pheromone
update rule which is dominated by the exponential evaporation. For the edge
uncertainty and the group uncertainty the three algorithms show a distinct behavior.
It can be observed that GB-ACO shows intermediate levels for both uncertainty
measures. At the same time GB-ACO achieves the best scores for both objectives.
This could indicate that GB-ACO maintains a better balance of exploration and
exploitation than the other variants. Further analyses based on the uncertainty
measures (data not shown) suggest that the algorithm’s exploration benefits from the
exponential empty group punishment strategy, whereas the exploitation is supported
by the probabilistic group selection rule of GB-ACO. Based on the observations
made above we examine the effects of the empty group punishment strategies on
UG-ACO. For this purpose we have chosen the UG-ACO because its basic variant
does not employ any explicit mechanisms for minimizing the number of used
groups. Figure 2 shows a comparison of three empty group punishment (EGP)
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Fig. 1 Development of the discussed measures and the objective values for all three algorithms.
The measures �-branching factor (pheromone, rating), entropy (pheromone, rating), and uncer-
tainty (group, edge) are shown. The two objective values of the generated solutions per iteration,
number of used groups (tour count) and total distance, are included at the bottom. The shown values
are averaged over all 25 repetitions. � D 0:05 is used for the �-branching factors. The uncertainty
measures are calculated using a sliding window of size w D 10 iterations. All algorithms use
� D 0:03 and the exponential group punishment is used by GB-ACO and UG-ACO (instance
c101)

strategies (none, linear, and exponential) based on the uncertainty measures and the
corresponding objective values. All EGP variants show a comparatively high group
uncertainty. This is the expected behavior for UG-ACO, as the group selection is
based on a pseudo-uniform distribution. The exponential empty group punishment
generally yields the best scores for both objectives. The group uncertainty curve for
this strategy decreases quickly at the beginning, but remains on a higher value than
the other two strategies in the long run. The optimization progress of the algorithm
can be observed through the edge uncertainty which decreases continuously. This
probably means that the exponential punishment enforces a smaller number of used
groups early, but the uncertainty of assigning vertices to these few groups remains
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Fig. 2 Development of the mean objective values (used group count, total distance) and the mean
uncertainty measures (group uncertainty, edge uncertainty) of UG-ACO on instance c101. The
mean values averaged over all 25 repetitions are shown. A sliding window of size w D 10 is used
for the uncertainty measures. The evaporation rate � D 0:03 is used

high due to the uniform sampling. The linear strategy takes longer to reduce the
number of used groups, which can be seen in both the group uncertainty and the used
groups score. Without empty group punishmentUG-ACO is not able to minimize the
number of used groups.

5 Conclusion

This paper gives an overview of measures to analyze the search behavior of ACO
algorithms and introduces a new uncertainty measure. The previously proposed �-
branching factor only allows for an indirect observation of the exploration process: It
describes mostly the effect of the pheromone updates but not the number of possible
choices the algorithm has at a given iteration.

We introduce an uncertainty measure defined as the Shannon entropy based on
the empirical probabilities of group or vertex assignments. This measure can be
efficiently computed and captures the behavior of the algorithm more closely than
already proposed measures. For example, the two entropy measures, previously
suggested as a parameterless alternative for the �-branching factor, cannot be used
to distinguish the algorithm variants in our analysis.

Our uncertainty measure is applicable to the group assignment decisions of
components (customer to tour) which is not possible with previous measures. With
the group uncertainty we can observe that GB-ACO with exponential empty group
punishment seems to maintain a better balance of exploration and exploitation
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than the other discussed ACO variants. These relations are observed when using
problem-specific heuristics that do not support group minimization explicitly.

For the discussed measures the following relations can be observed (see
Appendix for details). The true entropy is bounded from above by the rating
entropy. The rating entropy will generally be smaller than the pheromone entropy.
The true uncertainty is bounded from above by the average cross-entropy between
the random variables which is equal to the sum of the average true entropy and the
average Kullback–Leibler divergence between the random variables.
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Appendix: Theoretical Relations

True Entropy Bounded by Rating Entropy Given random variable X 2
f1; : : : ; Ng and assuming that without loss of generality nodes N � k C 1; : : : ; N
have already been visited and let rj be the rating for choosing X D j, then it can be
shown that the true entropy H.X.s�// is bounded from above by the rating entropy
H.X/.

H.X/ � H.X.s�// D �
NX

jD1

 
rjPN
lD1 rl

log
rjPN

lD1 rl
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and x log x is monotonically increasing.

Rating Entropy Smaller Than Pheromone Entropy The pheromone entropy
H� .X/ will generally be larger than the rating entropy H.X/ since the heuristic
incorporated in H.X/ will increase the differences in probability by favoring some
events. The heuristic values permitted in this case can be calculated in advance and
are constant for the whole algorithm execution.

Uncertainty Relations Assume that true uncertainty Uw.Xi/ in the sliding window
of length w is calculated based on the true probabilities p.:0/

j of each iteration t
instead of the empirical estimations. Then the average probabilities Npj in the sliding
window w are known. It holds that U1.X/ D H.X.1/.s�// D H1.X.s�// and that the
true uncertainty can be bounded from above by the sum of the average entropy in
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the same sliding window and the average Kullback–Leibler divergence between the
corresponding random variables.

Uw.X/ D �
NX

jD1

Npj log Npj D �
NX

jD1

 
1

w
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tD1
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p.:0/
j

!
:

Applying Jensen’s inequality leads to the following:
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A Signature Based Method for Fraud Detection
on E-Commerce Scenarios

Orlando Belo, Gabriel Mota, and Joana Fernandes

Abstract Electronic transactions have revolutionized the way that consumers shop,
making the small and local retailers, which were being affected by the worldwide
crisis, accessible to the entire world. As e-commerce market expands, the number of
commercial transactions supported by credit cards—Card or Customer Not Present
also increases. This growing relationship, quite natural and expected, has clear
advantages, facilitating e-commerce transactions and attracting new possibilities
for trading. However, at the same time a big and serious problem emerges: the
occurrence of fraudulent situations in payments. In this work, we used a signature
based method to establish the characteristics of user behavior and detect potential
fraud cases. A signature is defined by a set of attributes that receive a diverse range
of variables—e.g., the average number of orders, time spent per order, number of
payment attempts, number of days since last visit, and many others—related to the
behavior of a user, referring to an e-commerce application scenario. Based on the
analysis of user behavior deviation, detected by comparing the user’s recent activity
with the user behavior data, which is expressed through the user signature, it is
possible to detect potential fraud situations (deviant behavior) in useful time, giving
a more robust and accurate decision support system to the fraud analysts on their
daily job.

1 Introduction

The electronic commerce industry is in quick expansion at a global level. Nowadays
a big majority of companies aim to get the biggest number of clients as possible,
using means for the disponibilization of their services and products online. In most
companies, independently of their size, it is frequent to found projects for the
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placement of their business online. The advantages are obvious. However with this
proliferation of the online business a big problem arose, which one way or another,
all merchants must deal with in their business area: the occurrence of fraudulent
situations in payments (Kou et al. 2004; Flegel et al. 2010).

Today the majority of online payments is done through the utilization of credit
cards. These transactions are considered Card or Customer Not Present (CNP).
The detection of fraud in such scenarios (Delamaire et al. 2009) is often costly,
either in terms of material or in human resources, with big challenges being
imposed on the correct and in time identification of fraudsters. There are several
traditional techniques and methods for fraud prevention (Richhariya and Singh
2012), such as identity proofing, guaranteed payments, operational management,
and data quality, that combined with data mining techniques can be very effective
in improving the detection rate of the prediction models. However, its efficiency is
closely related to the quality and quantity of the available data, the experience and
sensibility of the analyst working with the model and also even with the particular
characteristics of each company. The most common data mining applications
in fraud prevention/detection are based on techniques such as association rules,
classification , or segmentation (Phua et al. 2005; Sanchez et al. 2009; Bhattacharyya
et al. 2011).

Fraud analysts in the electronic commerce (E-Commerce) business are typically
interested in customer data, such as: name, job, location, type of payment chosen,
credit card information, shipping and billing country, etc. The customer behavior
prior to the placement of an order is normally not taken into consideration in this
analysis. For each order placed by a customer, a record is generated, containing all
the steps the client made before placing the order (pages visited, items viewed and/or
added to basket, time spent, number of clicks, number of payments attempted and/or
credit cards used, etc). All this data constitutes the clickstream of a customer, and
can pretty much describe an order completely. A clickstream record may not be by
itself enough to detect fraud, therefore studying the customer behavior, and not just
individual orders, is probably a better approach (Lee et al. 2001). Thus, based on
these clickstream records, some kind of profiling techniques can be applied in order
to reveal, with a certain accuracy, the customer behavior along time. Profile records
that include a large diversity of features such as number of orders, average time
spent per order, average number of cards used, etc., together with the customer data
considered by fraud analysts, can be used in the construction of customer profiles.
Three levels of data can therefore be considered: order, behavior, and customer. In
order to capture the characteristics of a user’s behavior, the concept of signature can
be applied. A signature corresponds to a set of information that captures the typical
behavior of a user (Cortes and Pregibon 2001; Cortes et al. 2002). For example, the
average number of orders, time spent per order, number of payment attempts, and so
on. In fraud and intrusion detection systems, signatures can be used in two distinct
ways:
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• Detection based in user profiles: the signature of the user is compared against a
database of cases of known legitimate use. This kind of method fits under the
class of supervised learning techniques.

• Detection based in anomalies: the signature of each customer is itself the baseline
for comparison. New traffic for a user is compared against their individual
signature to determine if the user’s behavior changed.

In this paper the usage of a signature based method for fraud detection that
implements both detection based in user profiles and in anomalies is proposed.
We start the next section by presenting and discussing how signatures can be
helpful on anomalous behavior detection. Then, an analysis of the data is presented
(Sect. 3), followed by the method and detection techniques that resulted in the model
implementation (Sect. 4). Section 5 contains the experimental setup and based on the
achieved results a comparison between this model and other data mining techniques
is also presented. Finally, in Sect. 6 an analysis of the obtained results is made. This
paper ends with a brief set of conclusions about what was done and the effectiveness
of the applied method (Sect. 7).

2 Fraud Detection Based on Signatures

Signature based methods are a fairly recent technique that has been introduced
(with some success) in the detection and prevention of fraud, particularly in the
telecommunications field (Cortes and Pregibon 2001; Ferreira et al. 2006; Lopes
et al. 2011). This method consists in the establishment of usage patterns in a specific
branch of activity, by selecting a group of features extracted from a data stream
source. By comparing those (normal usage) patterns with outliers, it is possible the
detection of fraud. Cortes and Pregibon (2001) described a transactional data stream
as a dynamic continuous flow of data consisting of a set of records about some
interaction processes that happened between a entities of interest. Clickstream data
from E-Commerce environments are a perfect example of this definition. Therefore
the usage of signature analysis for fraud detection seems very appropriate, due to
the nature of the E-Commerce problems, allowing for the characterization of users
almost in real-time. The features of a signature are obtained by performing statistical
calculus over relevant numeric fields of the data that can be useful in explaining
an user behavior. These fields in E-Commerce scenarios can be extracted from
clickstream, which is a generic term to describe visitors paths through a series of
web pages requested by an user in a single visit, also known as session. Clickstream
data is therefore a collection of information of sessions. These fields alone can
be rather uninformative, but when taken as a whole, they can be an excellent
representation of an user behavior, and thus a good source for the establishment
of usage profiles.



534 O. Belo et al.

2.1 The Signature Definition

The purpose of a signature is to be adjustable and adaptable by capturing the actual
user behavior and changing as it also changes, being personalized from user to
user. In statistical terms, a signature can be described as an estimate of the joint
probability distribution of a group of selected combined components (variables or
features). If these variables consist of a unique atomic value (e.g., numeric), then
they are called simple variables. Otherwise if they consist of two co-dependent
statistical values (e.g., mean and standard deviation), they are called complex (Cortes
and Pregibon 2001).

2.2 Signature Updating

There are two common ways for updating a signature. They are event-driven and
time-driven (Cortes and Pregibon 2001; Lopes et al. 2011). In the first case with the
entry of new records, the signature is updated. In the time-driven case records are
collected and only after a pre-determined time period is the signature updated. The
computational model for both methods is the same.

For a given temporal window w, a signature S is obtained from a function ˛,
where S D �.w/. Ferreira et al. (2006) define a time unit as a certain pre-defined
amount of time in which session records are accumulated and then processed, being
w directly proportional to the time unit, w D ˛:�t. Considering at a given period of
time t, a record or set of records R of a signature St, that should be processed with an
identical format as St, before the signature is updated, resulting on TR. At time t C 1

a new signature corresponding to the update of St based on TR is formed, according
to the formula:

StC1 D ˇ:St C .1 � ˇ/:TR (1)

in which ˇ determines the value of the new TR transactions in the new signature. If
a certain threshold ˝ , that is compared to the distance between the S and TR vectors
where dist.S; TR/ � ˝ , is met, then the signature is updated. Otherwise an alert is
generated for the case detected, so it can be later analyzed. After the shift of a time
unit, the signature S is updated to S’ with the new clickstream information, recorded
between the end of S and the updating of S’ (Fig. 1).

Fig. 1 Variation of a
signature—extracted from
Ferreira et al. (2006)
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2.3 Signature Features

Features or elements of a signature are statistical values that describe a certain
aspect of the behavior of a user. These are calculated through variables extracted
from the clickstream data. In this concrete context of application, an element can be
simple when it corresponds to an average value or complex, when it is associated
with an average and standard deviation of a certain data feature. Based on some
statistical analysis done over the data and on the knowledge of analysts, a group of
variables considered useful for the detection of fraud was chosen and transformed
into elements of the signature. The referred variables are presented in Table 1 and
organized according to their respective type.

The variables chosen to be complex were those with high variability, which can
be better expressed through both average and standard deviation. Simple variables,
on the other hand, have very low standard deviation values and so they can be
perfectly represented only by their calculated average.

Taking as an example the variable “Number of Days To Purchase,” which
indicates the number of days that passed since a new client registration and first
purchase, or the number of days since the last time an existing client made a
purchase. In Table 2 it can be observed that on average fraudsters buy products
in a much lower interval of days since registration or last purchase, than non-
fraudsters. Also, non-fraudulent users have a much higher standard deviation value
than fraudulent ones. This can be explained by the small time window fraudsters
have before being caught. Thus, this variable can be better expressed through both
it mean and standard deviation value.

Table 1 Elements of the
signature

Simple variables Complex variables

Time spent Value of order

Pages visited Order days

Time per page Order time

Duration inactive Number of unique actions

Number of items purchased Number of days to purchase

Number of new visits Number of days since last visit

Table 2 “Number of Days
To Purchase” statistical
analysis

Type Min Max Mean Std

Fraud 0 169 4:589 14:470

Non-fraud 0 188 19:172 34:305
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2.4 Anomalies Detection

Given a record or set of records of a user, a summary is calculated and compared
to its signature, to determine if there is a deviation from its typical behavior. This
comparison is done by first of all extracting from the clickstream data, the set of
features present in Table 1, resulting in the vector TR, that will be compared to the
user signature S, by calculating the Euclidean distance between them. If the distance
is considered normal, i.e. the deviation is insignificant, another comparison is made,
this time between S and a known fraudulent signature model. To perform this second
comparison, the Hellinger distance formula is used. Should the distances in any of
these comparisons be considered suspicious, i.e. superior to a pre-defined threshold,
an alarm is generated, so that the analyst can further analyze the case.

3 The Data

In this study we used a set of real data, gathered from an E-Commerce company data
warehouse. This data contained clickstream records of customers purchases ordered
on the company web site. Since the data was extracted from a data warehouse, it was
clean and tidy, ready for analysis, without necessity of being further treated. Each
line of the data, that corresponded to a purchase placed by a customer, was labeled as
fraudulent or non-fraudulent, based on previous analysis and treatment carried out
by the company’s analysts. Six months of data were gathered—July to December
2013—which resulted in 87,881 clickstream records. From these only 1632 were
labeled as fraudulent, and the remaining 86,249 labeled as non-fraudulent. From
this set of records, several smaller datasets were made in order to be used in the
implementation of the signature based method. For the purpose of this study, the
group of all the 87,881 records, was called DS0. From this first dataset, a subset
with all the fraudulent records was created (DSF), and then from these 1000 records
the subset DS1 was created, that served as the basis to define the fraudulent signature
model. For the definition of the desirable values for lim and lim2 thresholds used in
the anomaly detection (seen later on section IV), 2000 records were extracted from
DS0 and joined with the records of DS1, resulting in dataset DS2. For the creation of
the signature classes, 5000 records were extracted from DS0. These were not used
in any of the previous made datasets. The resulting dataset was called DS3. For
testing purposes, the remaining 632 fraudulent records from DSF were joined with
4368 unused non-fraudulent records from DS0, resulting in dataset DS4, with 5000
records. To sum up, several datasets were prepared with different characteristics
necessary for the implementation of the signature model. A summary of all these
datasets can be seen in Table 3.
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Table 3 Datasets summary

Dataset Records Description Purpose

DS0 87,881 All records

DSF 1632 All fraudulent records

DS1 1000 Only fraudulent records Signature model

DS2 3000 2000 non-fraudulent records + DS1 Anomaly detection

DS3 5000 Only non-fraudulent records Signature classes

DS4 5000 632 fraudulent+4368 non-fraudulent records Test

4 Model Implementation

4.1 Signature Processing

The signature processing starts by reading the data, which is then used to calculate
the summaries for each distinct user. Then the signatures procedure is executed. As
input this procedure receives a ˇ value used in signature updating, and two other
values, lim and lim2, used in the detection of anomalies. For each summary, it
is verified if a signature for the user already exists. If not, a new one is created
by comparing the summary with a group of pre-existent signature classes. The
signature class to which the user summary has more similarities is then used
established the new signature. In case the user already has a signature a comparison
between it and the calculated summary is done and the previously explained process
of anomalies detection, is executed.

4.2 Signature Classes

When a summary is processed it is compared to the respective user signature,
although if the user hasn’t a signature, a new one needs to be created. This new
signature should be more complex than just the summary of a single record or a set
of few records, and yet should also be a good representation of the user behavior. To
address this situation, a group of non-fraudulent signatures were created, to serve
as comparison for the user summary. Between these, the signature that is most
resemblant with the summary is saved as the new user signature.

The creation of the signature classes was done with the dataset DS3, that
contained 5000 non-fraudulent records. After calculating the summaries of those
records, a clustering technique was applied in order to divide the summaries in
groups with similar characteristics. The technique used was model based, assuming
a variety of data models and applying the maximum likelihood estimation and the
Bayes criteria to identify the most likely model and number of clusters. In particular
the technique we applied selected the optimal model according to Bayesian Informa-
tion Criterion (BIC) for Expectation Maximization (EM) initialized by hierarchical
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clustering for parameterized Gaussian mixture models, choosing the model and
number of clusters based on the largest BIC.

4.3 The Signature Fraud Model

As explained previously, after a first comparison, if an alarm is not generated,
then a second comparison, with a different signature is done. This signature has
the particularity of representing a typical case of fraudulent behavior. Should
the comparison between the summary and this signature be inferior to a certain
threshold (lim2), then it means that the summary is very similar to the fraudulent
signature and an alarm is generated.

The elaboration of the signature fraud model was done with dataset DS1,
containing 1000 known fraudulent records. The summaries of these records were
calculated and the mean value of each variable joined and stored resulting in a single
unique signature, as it was done in the case of the signature classes.

5 Experimental Setup

5.1 Signature Based Models Tests

In the first test 18 variables (12 mean values and six standard deviation values)
were used in the model signature. Then for the second test, the elements of the
signature were reduced to 12 simple variables and in the third test, only the six
strongest simple variables were considered, namely: Number of Days Since Last
Visit, Number of Days To Purchase, Value of Order, Number of Unique Actions,
Number of Items Purchased, Number of New Visits. The models performance was
analyzed based on Fraud Accuracy Detection, Non-Fraud Accuracy Detection, and
Overall Accuracy. Our focus in terms of performance went toward improving Fraud
Accuracy Detection over Overall Accuracy, since to a company it is less expensive
to manually analyze a non-fraudulent ordered, which was wrongly labeled, than to
miss a fraudulent one. The results of the three tests, as well as the lim and lim2
values, are present in Table 4. In all tests the ˇ value used was equal to 0.7. It
was chosen simply because we feel it express the right weight of new signatures’
summaries, in the process of signature updating. As can be seen the third test with
six simple variables, was the one that showed better results.
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Table 4 Signatures models performance

Tests % fraud acc. % non-fraud acc. % global acc. lim lim2

18 variables (complex) 53 46 48 0:3 0:3

12 variables (simple) 61 50 53 0:4 0:17

6 variables (simple) 70 47 53 0:29 0:14

Table 5 Techniques performance comparison

Technique % fraud acc. % non-fraud acc. % global acc.

Random Forests 14 76 68

SVM 15 84 75

Signatures 70 47 53

5.2 Random Forests and SVM Tests

In the application of the two mining techniques, SVM and Random Forests, the DS4
dataset was used as the testing set, which was the same one used in signature based
models. For the training set the DS3 and DS2 datasets were joined, resulting in a
new dataset (DS5), with 8000 records of which 1000 labeled as fraudulent. From
these datasets only the same six variables used previously in the signature model,
were considered. The implementation of these techniques like the signature based
models, was done using the R programming language.

In the case of the Random Forests and support vector machines, the libraries used
were the randomforest and the e1071, respectively. In both techniques, the method
chosen was classification. No fine tuning or modification of the default parameters
was conducted. The results can be seen next, in Table 5.

6 Results Analysis

Table 5 shows an high overall accuracy with the SVM and Random Forests
techniques, respectively, 75 and 68 %, and a lower value with the signature
based model, with just over 50 % accuracy. On the other hand, the percentage of
fraudulent cases is much higher in the signature method, than on the other two data
mining techniques. This can be explained with the data in analysis being so much
unbalanced. Since in the test data very few registries are labeled as fraudulent, the
very poor detection rate of fraud in both SVM and Random Forests almost has no
significance in the global accuracy. On the signature model, fraud detection is much
higher, at the cost of a trade-off with overall detection, that is a little lower than in
the other techniques.

Unbalanced data may not be the only reason why the classification of this dataset
is so hard. In fact we applied a singular value decomposition (SVD) technique to
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the DS4 dataset, and this confirmed this data to be of very difficult analysis, because
there aren’t many differences between the behaviors of fraudsters and normal users.
SVD is a well-known technique that consists in the mathematical decomposition
of a matrix that splits the original matrix into three new matrices (A = U x D x
V). These new decomposed matrices give insight into how much variance there
is in the original matrix, and how patterns are distributed, by way of combining
information from several (likely) correlated vectors, and forming basis vectors that
are guaranteed to be orthogonal in higher dimensional space. This knowledge can
be useful in the selection of the components that have the most variance and hence
the biggest impact on our data (Vozalis and Margaritis 2005).

A good way of visualizing the distribution of data, categorized by fraud, is by
plotting its left singular vectors (U matrix). In Fig. 2 the plot of two vectors from
the U matrix can be seen. The data is ordered by index, with registries labeled as
fraudulent appearing first. This was done to allow a proper visualization, otherwise
since there are so much less cases of fraud than non-fraud, the firsts would be
scattered and difficult to identify. The dark circles represent the cases labeled as
fraudulent, and the light triangles are the non-fraudulent cases.

A clear division in the y-axis between the two labels would be the desirable
ideally result, but as can be seen, apart from some outliers present both in fraud
and non-fraud, the distribution of data is very similar. A new plot was done, but
this time from the 12 variables present in the data, only the most significant ones
were chosen. Vector V can be used to identify these variables, as can be seen next in
Fig. 3. Variables numbered 2, 8, 9, and 12 are those showing highest impact based

Fig. 2 SVD left singular vectors
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Fig. 3 Variables impact

Fig. 4 SVD left singular vectors (most relevant variables)

on the application of the SVD technique. These variables correspond to Days Since
Last Visit, New Visit, Days To Purchase, and Order Value. Figure 4 shows the plot
of two vectors from the new SVD U matrix. Again, as can be seen there isn’t a
clear division of data in the y-axis. The characteristics of fraudulent cases that are
so similar to the ones labeled as non-fraudulent, plus the data being so unbalanced,
helps to explain the difficulty in classifying this dataset.
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7 Conclusions and Future Work

In the past signature based methods were mainly applied to the telecommunication
industry, and as far as we know this type of technique has never been applied in
the context of E-Commerce. This fact prevents a comparison of the results. Also
the scarcity of publicly available E-Commerce datasets precludes the testing of this
method on different datasets. The use of Random Forests and SVM showed the
high difficulty of correctly identify fraudulent cases. In that sense the signature
method proved to be much more successful, with a good and better accuracy in
fraud detection, traded-off by a lower value of overall accuracy. Real data is messy
and hard to analyze and so it was on this particular case. At short term, in next
experiments we intend to extend our datasets and the diversity of data elements and
refine the method by attributing weights to feature variables (tuning its influence).
We consider that the obtained results provide the basis to say that the followed
method is quite useful and can detect in a satisfactory way potential cases of fraud
in E-Commerce scenarios.
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Three-Way Clustering Problems in Regional
Science

Małgorzata Markowska, Andrzej Sokołowski, and Danuta Strahl

Abstract Three-way clustering problems have been considered since many years.
They are popular specially in psychology and chemistry, but some of the proposi-
tions and methods are of more general nature. In regional science three-way data
matrices consist of objects (regions), variables and time units (years). Asking

which variables, in which regions and when, follow homogeneous pattern is
meaningful. Three general approaches are proposed in the paper and different modes
of standardization are discussed. The example on Eurostat data is also presented.

1 Introduction

Data involving three dimensions has been studied in literature (Carroll and Arabie
1980; Basford and McLachlan 1985; Pociecha and Sokołowski 1990; Kiers 1991;
Smilde 1992; Vermunt 2007; Vichi et al. 2007), mainly for psychological applica-
tions. Useful information can be found on Three-Mode Company webpage.

The aim of this paper is to discuss the possibility of simultaneous classification
of objects, variables and time units in regional science applications. We will use the
following notation:

• Objects: Y D y1; y2; : : : ; ym,
• Variables: Z D z1; z2; : : : ; zk,
• Time units: T D t1; t2; : : : ; tn.

Clustering problems can be described in two-position system, as

ŒClassified itemsjClassification space	:
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In other words, we describe subjects for classification within some classification
space. The classical problem of clustering, the Iris data is therefore [Y|Zt], since
there is just one time unit in Fisher’s data. Typical regional data has all three
dimensions: geographical location, variables and time. Complex clustering problem
for such data cube can be written as [YZT|.]. Question which is being asked within
this problem sounds sensible—Which regions, for which variables and when are
similar, and can be placed in the same cluster? But the way to answer this question
is not so obvious.

In traditional numerical taxonomy (Sneath and Sokal 1963, 1973) there is a very
useful term Operational Taxonomic Unit (OTU) which is defined as “the thing(s)
being studied”. The definition is intentionally vague. In fact everything can serve as
“thing(s)” and it is possible not to stick to a word “object”. For clustering variables
([Z|Yt]) we have variables as OTUs and objects forming a classification space. For
dynamic clustering of regions [YT|Z], a region in a given year is an individual OTU,
and classification space is defined by set of variables characterizing regions.

We discuss the possibility of solving the complex clustering problem on an
example concerning the innovation of Polish economy on regional level. Poland
is divided into 16 NUTS 2 regions. The following nine variables are taken into
consideration:

• LLL—Participation of adults aged 25–64 in education and training by NUTS 2
regions—percentage,

• HRST—Human resources in science and technology—percentage of active
population,

• HIT—Employment in high and medium high-technology manufacturing by
NUTS 2 regions—percentage of total employment,

• KIS—Employment in knowledge-intensive services by NUTS 2 regions—
percentage of total employment,

• HIT2—Employment in high and medium high-technology manufacturing by
NUTS 2 regions—percentage of total employment in manufacturing,

• KIS 2—Employment in knowledge-intensive services by NUTS 2 regions—
percentage of total employment in services,

• EDUC III—Persons aged 25–64 with tertiary education attainment by sex and
NUTS 2 regions,

• YOUTH—Early leavers from education and training by NUTS 2 regions—
percentage,

• EPO—Number of patents registered in a given year in the European Patent Office
(EPO) per one million of workforce.

Data covers 2004–2012 period so the data cube consists of 16 � 9 � 9 D 1296

data points. There are three ways of performing standardization:

• Local standardization—object-wise—each variable is standardized separately for
each year on the object (province) set,

• Local standardization—time-wise—each variable is standardized over the set of
time units (years) separately for each object,
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• Global standardization—spatio-temporal—each variable is standardized on the
set of all objects in all time units.

There are three possible approaches in dealing with the complex problem.

2 Approach 1: Total

Set of OTUs (OTU is an individual value of a province in 1 year—each unit of data
cube) is subject for clustering. In our example we found six clusters. Part of Group
1 results, are presented in Fig. 1.

OTUs belonging to Group 1 are marked with 1. For the sake of clarity it would be
wise to ignore individual zeros in rows, surrounded by units, or units surrounded by
zeros. We name this operation smoothing. After smoothing, Group 1 (later identified
as “weak innovators”) is presented in Table 1.

Fig. 1 Part of Group 1 membership
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Table 1 Group 1

LLL HRST HIT KIS KIS2 HIT2 EDUC YOUTH EPO

PL11 07–12 04–10

PL12 11–12 10–12

PL21 04–12

PL22 08–12 07–08

PL31 04–12 04–06 04–05 04–05

PL32 04–12 04–05 04–05 04–10

PL33 04–11 06–12 04–12 04–12 04–11 04–12

PL34 04–12 05–12 04–12

PL41 08–12 08–12 06–08

PL42 10–12 10–11

PL43 04–12 06–12

PL51

PL52 04–06 04–05

09–12 09–12

PL61 05–12 04–12

PL62 04–07 04-12 04–12 04–08 04–12

10–12 11–12

PL63

Results are rather “fragmented”, but definitely we can answer the question—
Which provinces, for which variables and when could be considered as weak
innovators among Polish NUTS 2 regions?

3 Approach 2: Separate

This approach has three steps:

• Step 1—Separate clustering of objects (Y), variables (Z) and time units (T). As a
result we obtain so-called marginal groups.

• Step 2—Joint partition into k.Y/ � k.Z/ � k.T/ groups which gives us joint groups.
• Step 3—Clustering of joint groups to get final groups.

Performing Step 1 with Ward’s method we clustered Polish provinces into three
groups (all the others, Mazowieckie, SlaskieCDolnoslaskieCPomorskie), variables
into three groups (YOUTH, EPOCHIT2CHIT, the rest of variables), and time span
also into three periods: 2004–2006, 2007–2008, 2009–2012. The same number
of groups for each dimension is just a coincidence. Each number of groups was
determined on the basis of particular dendrogram (there is no place to present them
here). So we have 3 � 3 � 3 D 27 joint groups.
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Fig. 2 Dendrogram for Step 3 of separate approach

Joint groups are coded according to marginal groups, e.g. 123 means all the
others provinces characterized by EPO, HIT2 and HIT variables in 2009–2012. It is
rather obvious that on the basis of dendrogram (Fig. 2) there are three homogeneous
final groups.

4 Approach 3: Consecutive (Hierarchical)

We have three meta-dimensions of data cube: objects (Y), variables (Z) and time
units (T). We can cluster object first, then for each object cluster we can group
variables, and finally group time units for each object–variable cluster. There are six
different orders of such consecutive clustering: Y-Z-T, Y-T-Z, Z-Y-T, Z-T-Y, T-Y-Z,
T-Z-Y, everyone giving most probably different final result.

5 Conclusion

It can be easily noticed that there are some problems in all three approaches. In
Approach 1 the number of OTUs is very large, in Approach 2—marginal partitions
are preserved in the final one and there are too many versions within Approach 3.

After detailed analysis of the interpretability of results, the influence of different
methods of standardization and possibilities of clear presentation we can give the
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following recommendations how to solve the complex clustering problem [YZT,.],
with results that can be useful for regional analysis:

• Apply global spatio-temporal standardization.
• Use Approach 1 (each standardized data entry is a separate OTU).
• Smooth your results (ignoring single breaks in cluster membership).
• Present your results deciding the importance (so the order) of perspective (which?

why? when?).

Acknowledgements The paper was prepared within the project financed by the Polish National
Centre for Science, decision DEC-2013/09/B/HS4/0509.

References

Basford, K.E., & Mclachlan, G. J. (1985). The mixture method of clustering applied to three-way
data. Journal of Classification, 2, 109–125.

Carroll, J. D., & Arabie, P. (1980). Multidimensional Scaling. Annual Review of Psychology, 31,
607–649.

Kiers, H. A. L. (1991). Hierarchical relations among three-way methods. Psychometrica, 56(3),
449–470.

Pociecha, J., & Sokołowski, A. (1990). Three-way clustering problems. Control and Cybernetics,
19(1–2), 179–187.

Smilde, A. K. (1992). Three-way analyses. Problems and prospects. Chemometrics and Intelligent
Laboratory Systems, 15, 143–157.

Sneath, R. R., & Sokal, P. H. A. (1963). Principles of numerical taxonomy. San Francisco: W.H.
Freeman and Company.

Sneath, R. R., & Sokal, P. H. A. (1973). Numerical taxonomy. The principles and practice of
numerical taxonomy. San Francisco: W.H. Freeman and Company.

Vermunt, J. K. (2007). A hierarchical mixture model for clustering three-way data sets.
Computational Statistics & Data Analysis, 51, 5368–5376.

Vichi, M., Rocci, R., & Kiers, H. A. L. (2007). Simultaneous component and clustering models for
three-way data: within and between approaches. Journal of Classification, 24(1), 71–98.



Part XII
Data Analysis in Social, Behavioural

and Health Care Sciences



CFA-MTMM Model in Comparative Analysis
of 5-, 7-, 9-, and 11-point A/D Scales

Piotr Tarka

Abstract In this article author presents the results of comparative analysis in
reference to scales based on 5-, 7-, 9-, and 11-point response categories. An attempt
was made to find the optimum number of responses among these scales but in
this regard to the assumptions underlying the Confirmatory Factor Model and
MultiTrait-MultiMethod. For this purpose, the data was collected from a sample
of young consumers (n D 200) studying at the universities in Poland. The specific
aim of the research was focused on their attitudes, which measured different aspects
of the companies’ unethical behavior in the context of marketing activities. For
the comparison of scales, the author has applied four models derived from the
generalized CFA-MTMM model. This model allowed the recommendation of the
best scale, and also helped to evaluate the effects associated with the use of particular
type of scale on the CFA-MTMM alternative models and extracted, through their
agency, factors.

1 Introduction

In hereby article, the author compares the four scales, i.e. based on different number
of response categories, but with the same Agree/Disagree format of responses. A
problem which is discussed relates to some methodological issues in the context
of making the appropriate choices between 5-, 7-, 9-, and 11-point scale in the
phenomena measurement. Choosing the right scale, before the whole research
process begins, seems to play an important role, not only in the phase of data
collection and ensuring information quality derived from it, but also causes further,
inevitable effects in evaluation of the measurement models which take responsibility
for the extraction of respective factor traits.

In order to solve the methodological problem, focused on the effects of the
number of response categories in the scales, author decided to develop the four
CFA-MTMM models. Thus, comparing the 5-,7-,9-, and 11-point scale, we not only
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obtained, through their agency, the chance to verify the construct validity of interest,
but also we could analyze the level of information explained in these models due to
different level of measurement in the scales. Finally, treating these scales as if they
were different methods and comparing their results in CFA-MTMM models, we
were able to provide the empirical proof of their possible similarities or differences.

2 The Number of Points in Scales with A/D Format

In the literature we can find information that Likert (1932) was the first who
proposed 5-point scale with Agree/Disagree format. Much later, Dawes (2008)
claimed that comparable results can also be obtained from 7- to 10-point scales,
which may yield even more information than Likert’s proposition. This point of view
is confirmed by the information theory which states that if more response categories
are added to scale, more information about the variable of interest can be obtained.
For example, Alwin (1992) when considered a set of hypotheses related to the theory
of information and when he tested them with panel data, he found that except for
the 2-point scale, “the reliability is generally higher for measures involving more
response categories” (p. 107).

Some other yet researchers when they approached to issues of increasing the
number of categories, conducted comparisons of the quality of scales with different
lengths, where quality referred to the strength of the relationship between the
observed variable and the underlying construct of interest (Saris and Andrews 1991;
Alwin 2007). Recently, Revilla et al. (2014) compared 5-point Agree–Disagree scale
with 7- and 11-point option. In their study, they proved that quality of the measured
variables decreased as the number of categories has been increased, so that the best
scale, in their opinion, was a 5-point one. This contradicts the main statement of the
theory of information, which as mentioned, argues that more categories mean more
information about the variable of interest. However, their study had some limitations
too. For example, they did not examine the scales with other alternative numbers of
categories such as the 9-point scale which might confirm the tendency that using
more response categories would not improve the scores. Therefore, author decided
to include in his research one additional option, i.e. 9-point scale, however, in the
study, only the results derived from CFA-MTMM models were considered.

3 From Campbell–Fiske to CFA-MTMM Model

As we know, in Campbell and Fiske (1959) MTMM analysis, each of two or
more traits is measured with two or more methods. They suggested summarizing
the correlations between all the traits measured with all the methods into a
MTMM matrix, which could be directly examined for convergent and discriminant
validation.
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Because the MTMM approach (Campbell and Fiske 1959) faced many problems,
this analytical strategy was the target of much criticism (Schmitt and Stults 1986;
Marsh 1989). Even Campbell and Fiske (1959) were aware of the serious limitations
of MTMM, arguing that their guidelines in the application of MTMM matrix should
be carefully selected by researchers. They just wanted to (Marsh and Grayson 1995,
p. 180) “provide a systematic, formative evaluation of MTMM data at the level
of the individual trait-method unit, qualified by the recognized limitations of their
approach, not to provide a summative evaluation of global summaries of convergent
validity, discriminant validity and method effects.”

The problems with MTMM led to alternative analytic solutions, mostly within
the framework of covariance structure modeling which included General CFA
Model or Composite Direct Product Model (for their review, see e.g., Browne 1984;
Marsh 1989; Kenny and Kashy 1992; Marsh and Grayson 1995). Much attention
was then paid to Confirmatory Factor Analysis—CFA, which continues to be, the
best method of choice (Kenny and Kashy 1992).1

A generalized and complete version of CFA-MTMM model depends on the
function of three components: a trait component, a method component, and a unique
or error component. For each trait i, method j, person k, and measure m, where
m D i C .j � 1/I, and I equals the total number of traits, the observed score Xijk for
i trait measured using j method for k person equals:

Xijk D amiTik C bmjMjk C Eijk: (1)

Here ami is the factor loading for measure m on the trait factor Ti, bmj is the factor
loading for measure m on the method factor Mj, and Eijk is the uniqueness of the
observed score. Each variable serves as an indicator on both trait and method factor.

In the CFA model, MTMM matrices can be analyzed in the context of the factors,
defined by different measures of the same trait, which suggest trait effects. On the
other hand, factors, which are defined by measures assessed with the same method,
correspond to method effects. If the researcher wants to test the suitability of models,
namely, the extent to which they fit empirical data, he can use the taxonomy of
the nested models, proposed by Widaman (1985) and further developed by Marsh
(1989). This taxonomy seems to be the most appropriate for all CFA-MTMM
studies, because it provides a general framework in making decisions and inferences
based on the effects of trait and method factors.2

1In fact, the beginning of these models was due to works of Werts and Linn (1970) or Jöreskog
(1970), who proposed to treat the MTMM matrix as a CFA model. Much later, because there were
problems with estimation of the parameters in an ordinary CFA-MTMM model requiring at least
three measures for each construct, Saris et al. (2004) have developed the Split-Ballot MTMM (or
SB-MTMM) model where each respondent could answer all questions only twice.
2In practice, a hypothesized, e.g. CFA—Correlated Traits and Correlated Methods model is set as
baseline and compared with the nested more restrictive models in which specific parameters are
eliminated or are constrained to zero or 1.0.
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4 The Process of the Empirical Research

The subject of empirical study referred to consumers’ judgment about the unethical
behavior (represented by companies) in the area of marketing activities which
influence the consumers’ market consumption. Once the data was collected, the
author generated four factor traits which were given the following names: Poor
Quality Products (PQP); Unfair Advertising Practices (UAP); Bad Approach to
Client Service (BATCS) and Lack of Social Responsibility (LOSR). Each factor
trait was loaded with respectively observed variables as follows:

1. PQP: In recent years, the quality of products offered by the companies has
not improved; Companies do not take an effort to design products that meet
consumers’ real needs; Companies manufacture products that usually wear out,
thus they earn money on client servicing; Companies manufacture products that
are rich in their outer design, but are nonfunctional.

2. UAP: Most of the advertising contents are misleading and far away from the
truth; Advertisements prepared by companies cannot be treated as a plausible
source of information; Products which are often advertised, fail more frequently
than products which are advertised less often; Companies give false color to their
products.

3. BATCS: The quality of client service has been getting worse from year to year;
The guarantees given with products within the client service are unfavorable;
The way in which clients are encouraged by sellers to buy products is dishonest;
Companies that sell clients their products, do not care to keep a good contact
with them in the longer term.

4. LOSR: Companies do not pay much attention to the fact that the client is the most
important for their activity and business; Companies are interested in pursuing
their profits than in caring about their clients; Firms often make attempts to get
as much of their clients’ wallets as possible; Companies in pursuit of clients,
have changed their marketing practices for worse.

In sum, all factor traits reflected multidimensional construct that has been given the
joint name: Unethical Marketing Operations of Companies on Market.

In the study, each factor trait was measured four times, with four variants of
scales, by means of four separate questionnaires which were delivered to respon-
dents assuming two-week interval for each questionnaire. The statements included
in each questionnaire were repeated using different methods. In the description of
response categories to particular scales (5, 7, 9, and 11), only the end points were
labeled, as for the example of 5-point scale: 1—totally disagree, 5—totally agree.

The data was collected in 2014 year in the academic community of students
(aged between 19–21) from five distinct Poznan universities in Poland.3 The

3Adam Mickiewicz University, University of Technology, University of Economics, University of
Life Sciences and University of Medical Sciences.
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respondents were selected on the basis of simple random method of units selection.
All sampling frames with the complete list of units were prepared and delivered
by each university. During the study, the participants were asked to express their
attitude to the above mentioned statements. The analysis was conducted in AMOS
21 software.

5 Selected CFA-MTMM Models in Scales Comparison

The author studied possible differences or similarities between the scales, using
the four types of models. However, one of them (i.e., CFA-CT/CM model)
stood for a basis, a reference point for comparisons of all other three models:
CFA-PCT/CM—Perfectly Correlated Traits/Correlated Methods, CFA-CT/UM—
Correlated Traits/Uncorrelated Methods, CFA-NT/CM—No Traits/Correlated
Methods. So in general, the four CFA models were used: CT/CM; PCT/CM;
CT/UM; NT/CM, but they have all originated from the one general CFA-MTMM
model [see Eq. (1)].

The first, applied in the analysis of CFA-CT/CM model (see Fig. 1) was
developed according to structure, which measured each of the observed variable and

Fig. 1 The CFA-CT/CM model developed as the general CFA-MTMM model
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its loading both onto a trait and a method factor. In this model, the large trait factor
loadings indicated convergent validity whereas the large method factor loadings
indicated the presence of method effects. Yet, in the other part, the large trait
correlations, in particular, those approaching 1.0, indicated the lack of discriminant
validity. In its assumptions, CFA-CT/CM model decomposed the variance of each
observed variable into respective components (that were explained by traits) and
simultaneously, decomposed variance explained by methods. In consequence, the
researcher was able to assess the trait factor intercorrelations and the method
factor intercorrelations. Unfortunately, when testing the full model, the problems
of estimation may appear due to the unstable solutions of the model (Marsh 1989;
Kenny and Kashy 1992). So, despite the fact that CFA-CT/CM model appears to be
very attractive, in practice, even if the researcher wishes to apply it to data alone, it
is rather useless. This model must be therefore used as a preliminary option for the
nested models.

The next CFA-PCT/CM model, which was contrasted to CFA-CT/CM, assumed
some differences due to the specification of the parameters in the factor trait
correlations. In the study, they were assumed to be perfect, that is, they were
set to 1.0.

The third proposed alternative, namely CFA-CT/UM model, differed from the
CFA-CT/CM in the sense that it had no specified correlations between the methods.
Finally, the major distinction between the CFA-CT/CM and the CFA-NT/CM model
was the absence of trait factors.

The summary of fit indices related to these models is presented in Table 1 and
the results of model comparisons are summarized in Table 2.

Table 1 The summary of goodness-of-fit indices for the CFA-MTMM models

Models �2 df CFI RMSEA TLI GFI AGFI

CT/CM 74:61 64 0:97 0:02 0:97 0:95 0:91

NT/CM 360:32 86 0:72 0:12 0:65 0:79 0:68

PCT/CM 149:06 69 0:86 0:08 0:78 0:89 0:81

CT/UM 116:22 67 0:93 0:03 0:91 0:92 0:89

Table 2 The CFA-MTMM model comparisons

Models ��2 �df �CFI �AGFI

The test of convergent validity

Model CT/CM vs. NT/CM 285:71 22 0:25 0:23

The test of discriminant validity

Model CT/CM vs. PCT/CM 75:45 5 0:11 0:10

Model CT/CM vs. CT/UM 41:61 3 0:04 0:02
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5.1 The Goodness of Fit and Parameter Estimates

Having assumed the configuration between factor traits and methods and obtained,
on their basis, further results, we can notice that the model CFA-CT/CM (�2

.64/;
RMSEA = 0.02; CFI = 0.97; TLI = 0.97; GFI = 0.95; AGFI = 0.91) reached
the best overall fit in comparison to the three models. As it can be observed, the
models: CFA-NT/CM (�2

.86/; RMSEA = 0.12; CFI = 0.72; TLI = 0.65; GFI = 0.79;

AGFI = 0.68) and PCT/CM (�2
.69/; RMSEA = 0.08; CFI = 0.86; TLI = 0.78; GFI =

0.89; AGFI = 0.81) had a miserable fit (see, e.g., TLI indices which were of 0.65
and 0.78, respectively). On the other hand, the results proved that the CFA-CT/UM
model obtained a good fit as compared to CFA-CT/CM.

Comparing CFA-CT/CM with CFA-NT/CM, we were able to investigate a
convergent validity. From the scores observation it resulted that the models had
substantial and statistically significant values (�2

.22/ D 285; 71; p < 0:001), so the
evidence of the convergent validity was confirmed. This assessment can be also
supported by the large differences associated with ��2 value as well as sizeable
�CFI and �AGFI indices (0.25 and 0.23, respectively). The results proved, that
all four scales (5, 7, 9, 11) equally converged within the four extracted factor traits.
However, a more precise analysis of trait- and method-related variance as well as
the assessment of individual parameters estimates (see Table 3) revealed attenuation

Table 3 The CFA-CT/CM model—standardized estimates for the factor loadings

Traits and methods PQP UAP BATCS LOSC 5PS 7PS 9PS 11PS

5-Point Scale (5PS)

PQP 0:61 0:14

UAP 0:72 0:52

BATCS 0:53 0:24

LOSR 0:59 0:49

7-Point Scale (7PS)

POP 0:92 0:51

UAP 0:86 0:40

BATCS 0:77 0:68

LOSR 0:72 0:48

9-Point Scale (9PS)

POP 0:35 0:37

UAP 0:31 0:67

BATCS 0:32 0:55

LOSR 0:48 0:53

11-Point Scale (11PS)

POP 0:29 0:39

UAP 0:31 0:75

BATCS 0:26 0:64

LOSR 0:37 0:67
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of the extracted factor traits caused by specific method effects. This was discernible,
in particular, in the size of factor loadings calculated on the basis of 9- and 11-point
scale.

Information obtained at the parameters level, associated with the convergent
validity, may have additionally supported our findings if we had compared variance
proportions.4 For example, in the methods: 5- and 7-point scale (Table 3), the largest
difference appeared in 5-point scale which measured trait (PQP) at the level 0.61 of
variance and which was explained by this scale only at the level of 0.14. However,
a close inspection of Table 3 still reveals that, a stronger convergent validity was
sustained in 5- and 7-point scale as compared to weak convergence of 9- and 11-
point scale.

The next phase of investigation in terms of factor traits and methods (scales)
referred to the evidence of discriminant validity. As Byrne argued (2010, pp. 290–
291) “in testing for evidence of trait discriminant validity, one is interested in the
extent to which independent measures of different traits are correlated, so these
values should be negligible. When the independent measures represent different
methods, correlations bear on the discriminant validity of traits and when they
represent the same method, correlations bear on the presence of method effects,
another aspect of discriminant validity.”

Following the above assumptions, the CFA-CT/CM model was compared with
CFA-PCT/CM. This analysis allowed the assessment of discriminant validity of
the factor traits. Greater discrepancy and significant difference of ��2 as well as
sizeable �CFI and �AGFI indicate strong discriminant validity. In our case, the
compared models yielded ��2 value that was statistically significant (��2

.5/ D
75:45; p < 0:001), so the difference in �CFI was only at the level of 0.11 which
was a modest proof of the discriminant validity.

The discriminant validity was also estimated in reference to the method effects
by comparing the following models: CFA-CT/CM and CFA-CT/UM, in which
the small differences in the indices of ��2; �CFI and �AGFI would indicate
the discrimination between methods (scales). On the basis of the strength of
both statistical (��2

.3/ D 41:61) and nonstatistical (�CFI D 0:04; �AGFI D
0:02) criteria, we may conclude that the evidence of discriminant validity for the
considered scales was slightly stronger than it was for the factor traits. However,
this evidence was not sufficient. It was rather the initial proof that some scales
were somewhat correlated. More information can be found in Table 4 presenting
correlations calculated for the factor traits and methods. Their examination reveals
that 5- and 7-point scales had something in common (correlation 0.56). The same
situation is present, but to a lesser degree, in 9- and 11-point scales. One possible
explanation of this finding is that, the number of responses in both scales, i.e. 5 and
7, had the similar level of measurement. The same interpretation might apply to 9-
and 11-point scale, however in their case, the correlation was weaker (0.48). All the

4They are computed on factor loadings either for factor traits or methods.
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Table 4 The CFA-CT/CM model—correlations

Traits and methods PQP UAP BATCS LOSR 5PS 7PS 9PS 11PS

PQP 1:0

UAP 0:69 1:0

BATCS 0:18 0:23 1:0

LOSR 0:37 0:58 0:49 1.0

5PS 1:0

7PS 0:56 1:0

9PS 0:24 0:31 1:0

11PS 0:19 0:21 0:48 1.0

other correlations between scales, namely, 5 and 9 (0.24); 9 and 7 (0.31); 11 and 5
(0.19); 11 and 7 (0.21) indicated rather their dissimilarity.

6 Conclusions

Empirical results showed that different scales which use different number of
response categories provide inconsistent scores in terms of validity for the particular
factor traits. In general, scales with many categories (9 and 11) produced worse
results in CFA-MTMM models than their alternative options such as 5- and 7-point
scale. It appears therefore, that wider scales (as 9 and 11) bring less information
from the measurement. This may be due to the fact that more points are placed in
scale. Also the requirement for a personal in-depth interpretation of these points (by
the respondents), leads to more method effects and hence to the lower validity. In
this regard, a human ability to differentiate from different variants of the answers is
indeed very limited.

The study which was conducted had some limitations too. For example, it did
not test the impact of having only the end points labeled versus having all the points
labeled. However, the author decided to keep this problem open to other researchers
who would like to pursue the similar subject of research. In this work, one was
only interested in the effects of respective scales which affect the CFA-MTMM
models quality, explained through the agency of goodness-of-fit indices as well as
the obtained parameter estimates and the size of the standardized factor loadings.
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Biasing Effects of Non-Representative Samples
of Quasi-Orders in the Assessment of Recovery
Quality of IITA-Type Item Hierarchy Mining

Ali Ünlü and Martin Schrepp

Abstract Inductive Item Tree Analysis (IITA) comprises three data analytic algo-
rithms for deriving reflexive and transitive precedence relations (surmise relations
or quasi-orders) among binary items. With the help of simulation studies, the IITA
algorithms were already compared concerning their ability to detect the correct
precedence relations in observed data. These studies generate a set of surmise
relations on an item set, simulate a data set from each of the surmise relations
by applying some random response errors, and then try to recover the initial
surmise relations from those noisy data. We show that, in the currently published
studies however, the representativeness of sampled quasi-orders was not considered
or implemented unsatisfactorily. This led to non-representative samples of quasi-
orders, and hence to biased or wrong conclusions about the quality of the IITA
algorithms to reconstruct the underlying surmise relations. In our paper, results
of a new, truly representative simulation study are reported, which correct for the
problems. On the basis of this study, the three IITA algorithms can now be compared
reliably.

1 Introduction

Inductive Item Tree Analysis (IITA) is a data mining technique that tries to extract
logical implications between items from binary data (Schrepp 1999, 2003; Sargin
and Ünlü 2009).

An important application context of IITA algorithms is knowledge space theory
(Doignon and Falmagne 1985, 1999). The basic idea of this approach is that in
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many knowledge domains, for example mathematics, knowledge is organized in a
hierarchical structure. Some pieces of knowledge can only be learned successfully,
if other more basic pieces of knowledge are already mastered. In that sense, pieces
of knowledge, and hence the items or problems used to measure them, are organized
in a reflexive and transitive relation, a quasi-order, which is also called a surmise
relation in knowledge space theory.

An example with six elementary algebra problems helps to motivate the main
idea.

a. A car travels on the freeway at an average speed of 52 miles per hour. How many
miles does it travel in 5 h 30 min?

b. Using the pencil, mark the point at the coordinates .1; 3/.
c. Perform the multiplication 4x4y4 � 2x � 5y2 and simplify as much as possible.
d. Find the greatest common factor 14t6y and 4tu5y8. Simplify as much as possible.
e. Graph the line with slope �7 passing through .�3; �2/.
f. Write an equation for the line that passes through the point .�5; 3/ and is

perpendicular to the line 8x C 5y D 11.

A plausible surmise relation for these items. For instance, mastery of problem e implies mastery

of problem b.

A surmise relation can be used to design efficient adaptive, computer-based
knowledge assessment and training procedures. For example, the Assessment and
Learning in Knowledge Spaces (ALEKS) system is a fully automated math tutor on
the Internet (e.g., see Falmagne et al. 2013).

Another typical application field of IITA are questionnaires, which contain
statements that people can agree or disagree with (e.g., see Schrepp 2003). In this
case, j ! i (or equivalently, i � j) is interpreted as “Each person who agrees to
statement j also agrees to statement i.”

2 Inductive Item Tree Analysis

The general scheme of IITA consists of three steps. First, a set of candidate surmise
relations is generated. Second, for each of these candidate surmise relations, the
fit to the data set is calculated. Third, the surmise relation yielding the best fit is
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selected as the solution. Currently, there are three versions of IITA available, which
differ in the second step of this scheme, that is, in the measure used to calculate the
fit of a surmise relation to the data.

2.1 Construction of Candidate Surmise Relations

Let I be a set of dichotomous items. For a given binary data matrix D, a set of
candidate quasi-orders QO.D/ is generated by an inductive construction (for details,
see Schrepp 1999).

1. We start with the surmise relation �0 defined by: i �0 j W, bij D 0 for all i; j 2 I,
where bij is the number of response patterns R in the data matrix D with i 62 R
and j 2 R. That is, bij is the number of observed counterexamples (e.g., students
solving question j but failing to solve i) to an implication j ! i or relational
dependency i �0 j.

2. Assume the surmise relation �L for an L 2 f0; : : : ; ng, with n the sample size,
is already constructed. In step L C 1 of the process, all item pairs .i; j/ 62 �L,
which fulfill the condition bij � LC1 and mutually do not cause an intransitivity
together with all the dependencies contained in �L, are added to �L to construct
the surmise relation �LC1.

2.2 Fit Measure and Selection of Best Fitting Surmise Relation

The three variants of IITA differ in this step of the general scheme.
The probability �L for a relational dependency i �L j to be violated due to random

errors is estimated by

�L D
Pfbij=.pjn/ j i �L j ^ i 6D jg

.j�Lj � m/
;

where m is the number of items (and n the sample size). The probability �L is used
to estimate for each pair of items the expected number of violations, tij, under the
assumption that �L is the true surmise relation underlying the data.

The original IITA algorithm distinguishes two cases (see Schrepp 1999).

1. i 6�L j: In this case, we assume that the items i and j are independent. Thus, tij
equals the expected number of response patterns R with i 62 R and j 2 R, in the
sense that tij D .1�pi/pjn.1��L/. Note that under pure stochastic independence
we would have tij D .1 � pi/pjn. The original IITA algorithm applies the
correction factor .1 � �L/ for the influence of random errors even in this case,
which is disputable and changed in the improved versions of IITA (see below).

2. i �L j and i 6D j: In this case, violations of i �L j must result from random errors.
Thus, tij D �Lpjn.
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The fit of any �L in the selection set QO.D/ D f�LW L D 0; 1; : : : ; ng given the
data matrix D is measured by the diff coefficient,

diff.�L; D/ WD
P

i6Dj.bij � tij/2

m.m � 1/
:

The idea is to assess the discrepancy between the observed and expected numbers of
counterexamples. The smaller the diff value is, the better is the fit of the quasi-order
to the data.

As already mentioned, the corrected and minimized corrected versions of IITA,
which we describe next, differ from the above original IITA algorithm regarding the
definition of the diff coefficient.

The first improvement corrects a problem in the estimation of the tij’s. Original
IITA distinguishes only between the two cases i �L j and i 6�L j. This results in
methodologically inconsistent estimation of tij for some item pairs, and especially
when longer chains of items are present. In addition, the independence case is
estimated properly. For details, see Sargin and Ünlü (2009).

A correct choice for tij for i 6�L j depends on whether j 6�L i or j �L i. In
other words, a third distinction for the estimation of the tij’s is introduced. The
modification using these improved estimators is called the corrected IITA (see
Sargin and Ünlü 2009).

1. If i 6�L j and j 6�L i, then tij D .1 � pi/pjn. Independence is assumed, and the
additional factor .1 � �L/ is omitted.

2. If i 6�L j and j �L i, then tij D .pj � .pi � pi�L//n. This estimator is derived
as follows. The observed number of people who solve item i is pin. Hence, the
estimated number of people who solve item i and item j is pin�tji D .pi �pi�L/n.
Note that j �L i, and the estimator is tji D pi�Ln. Thus, tij D pjn � .pi � pi�L/n D
.pj � .pi � pi�L//n. This estimator is not only mathematically motivated, but also
interpretable.

A further improvement is the extension of the corrected IITA algorithm to
optimize the fit criterion specified by the diff coefficient, as a means to better
reconstruct the correct implications from the data. This approach yields what is
called the minimized corrected IITA.

More precisely, let the diff coefficient be based on the corrected estimators.
The diff coefficient can be viewed as a function of the error probability �L,
and we minimize that function with respect to �L. The fit measure then favors
quasi-orders that lead to smallest minimum discrepancies, or equivalently, largest
maximum matches, between the observed and expected summaries bij and tij. This
optimum error rate can be expressed in closed analytical form, for details see
Ünlü and Sargin (2010), and can now be used for an alternative IITA procedure,
the minimized corrected algorithm, in which a minimized diff value is computed
for every quasi-order (based on the estimators of the corrected algorithm and the
inductive procedure of the original algorithm).
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The quasi-order �IITA in QO.D/, which yields the smallest diff value, is selected
as the solution of the IITA analysis. In other words,

�IITAD arg minQO.D/ diff.�L; D/:

2.3 Software

There are two freely available software packages that implement the discussed
algorithms.

The program ITA 2.0 developed by Schrepp (2006) implements both the prede-
cessor classical ITA (van Leeuwe 1974) and the original IITA. It can be downloaded
under www.jstatsoft.org/v16/i10.

The R package DAKS developed by Sargin and Ünlü (2010) and Ünlü and
Sargin (2010) implements the original, corrected, and minimized corrected
IITA algorithms. It is available from the Comprehensive R Archive Network
CRAN.R-project.org/package=DAKS or from www.jstatsoft.org/v37/i02.

3 Simulation Design for IITA Comparison Studies

The IITA procedures were already investigated in a number of simulation studies
(see the afore mentioned references). The goal of those studies was to determine
whether the algorithms are able to detect the true surmise relations underlying noisy
data. The simulation studies all had the following structure.

1. A true surmise relation � is created on an item set I by a random process.
2. The knowledge structure

K D fK 
 I j 8i; j 2 I W ..i � j ^ j 2 K/ H) i 2 K/g

corresponding to � is constructed. A set of n response patterns is simulated
by drawing n elements from K randomly and, for each of these, by simulating
careless errors (an item is in the knowledge state K, but not in the response
pattern) and lucky guesses (an item is not in the knowledge state K, but in the
response pattern) with specified probabilities ˛ and ˇ, respectively.

3. The simulated data set is analyzed by IITA and the best fitting surmise relation
�IITA is computed.

4. The true surmise relation � and the data analytic solution �IITA are compared by
counting the item pairs in which they differ.

The first step is the essential and difficult part. The goal of designing sound
simulation studies essentially reduces to the problem of realizing samples of quasi-
orders that are representative for the population of all quasi-orders. The direct

www.jstatsoft.org/v16/i10
CRAN.R-project.org/package=DAKS
www.jstatsoft.org/v37/i02
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method to draw a representative sample of quasi-orders on a set of n items is by
computing all possible quasi-orders, storing them, and then sampling from these.
But this does only work for small n, since the number of quasi-orders increases very
rapidly with n (e.g., see Pfeiffer 2004). On a set of six items, for instance, we already
have 209,527 (labeled) surmise relations.

Previous studies tried to avoid this problem by implementing special procedures
to draw random quasi-orders. The simplest method is to create a random binary
relation on the n items and then to compute the transitive closure. More advanced
strategies tried to compensate for the fact that this simple strategy produces samples
of quasi-orders, which are far from being representative concerning quasi-order size
(number of implications).

For example, in Sargin and Ünlü (2009) the following procedure was used.

1. The process starts with a relation R that contains exactly the reflexive item pairs
.i; i/ for i D 1; : : : ; m.

2. All other pairs are added with a probability ı to R. The probability ı itself is
drawn randomly from a normal distribution with � D 0:16 and � D 0:06. Values
less than 0 or greater than 0:30 are set to 0 or 0:30, respectively.

3. The transitive closure of R is the resulting random quasi-order.

This random process is already an improvement of an older procedure that draws
ı based on a uniform distribution on the interval 0 to 0:40, or 0 to 1, which resulted
in non-representative samples consisting of overly large surmise relations. Yet, this
improved drawing process still produced non-representative samples, as can be seen
in Fig. 1.

4 Representative Simulation Study

Theoretically, the corrected and minimized corrected IITA algorithms should
perform better than the original IITA algorithm in general. However, in a simulation
study by Sargin and Ünlü (2009), the original IITA algorithm still worked better as
long as the error probabilities for careless errors and lucky guesses were small. This
was due to the non-representative, or biased, random procedure used to sample the
underlying quasi-orders.

A (near to) representative sampling process will produce the least biased results
when generalizing the findings obtained from IITA related simulation studies to the
population of all quasi-orders. Further considerations make clear as well that, if the
performances of the IITA algorithms are to be investigated and compared, we ought
to assure that they are tested with representative random quasi-orders.

Currently there exists no method to produce truly representative samples of
surmise relations on larger item sets. Therefore, we have decided to run our
comparison study for six items, the purpose of this paper is to exemplify the biases
or wrong conclusions that may be induced by non-representative samples of quasi-
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Fig. 1 In light gray, histogram densities of quasi-order size for 10;000 (left panel) and 1000

(right panel) ı sampled according to the absolute normal method (left panel) and averaged normal
method (right panel). In addition, kernel density estimate curves of the samples are plotted, to
assist visualization. In gray, the true distribution is shown, with the overlapping areas of “true” and
“sampled” printed in dark gray. Averaging is over 100 quasi-orders generated for each of the 1000

ı values

orders in comparative IITA analyses, since in this case it is possible to construct the
population of all surmise relations and to draw from it a true simple random sample.

4.1 Settings

In the simulation study the following settings are made.

1. Throughout the simulation study six items are used.
2. The original, corrected, and minimized corrected IITA procedures are compared

based on simple random samples of the set of all 209;527 surmise relations on
six items.

3. A single response error probability � is specified and takes the values 0:03, 0:05,
0:08, 0:10, 0:15, and 0:20.

4. Sample size n is varied as 50, 100, 200, 400, 800, 1600, and 6400.
5. For each of the 42 combinations of these settings, the four steps of the general

simulation design described in Sect. 3 are repeated 1000 times.



570 A. Ünlü and M. Schrepp

6. The three algorithms are compared and evaluated relative to each other using the
symmetric differences between the derived and true quasi-orders. The criterion
dist is used, the number of item pairs in which “derived” and “true” differ.

The important change we make in this simulation study is to base the investi-
gation on true random samples; compared to Sargin and Ünlü (2009), for instance,
where the biased absolute variant of the normal sampling was used. We will see
that the difference in representativeness of corresponding quasi-order samples had
a negative impact on the comparison of the IITA algorithms and biased the findings
reported in the published literature.

4.2 Results

Figures 2 and 3 summarize the main differences when basing comparison on true
random rather than biased absolute normal samples. The panels “rand” stand for

Fig. 2 Average dist values under the original (dashed-dotted), corrected (dashed), and minimized
corrected (solid) IITA algorithms, as a function of error probability conditioned on sample size.
Considered for true simple random and absolute normal sampling
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Fig. 3 Average dist values under the original (dashed-dotted), corrected (dashed), and minimized
corrected (solid) IITA algorithms, as a function of sample size conditioned on error probability.
Considered for true simple random and absolute normal sampling

six items and simple random sampling. The panels “norm” are for nine items and
absolute normal sampling (Sargin and Ünlü 2009).

The main finding is as follows. See the panels “rand” of Figs. 2 and 3, where
the three curves can be increasingly ordered from solid, dashed, to dashed-dotted,
invariantly along the entire �- and n-axis. In other words, overall, consistently
the same ranking of the IITA methods can be observed. The minimized corrected
version performs slightly better than the corrected, and the corrected version
significantly improves on the original.

In the published simulation study, based on biased samples of quasi-orders, the
original algorithm performed better than the other two algorithms for small error
probabilities. This can be seen from the “norm” panel for 5 % of Fig. 3, where the
dashed-dotted curve for the original algorithm lies entirely below the dashed and
solid curves for the corrected and minimized corrected algorithms, respectively.
Or, see the “norm” panels of Fig. 2, where the curves intersect. Moreover, albeit
differences between the corrected and minimized corrected methods are negligible,
ordering reversals or greater discrepancies between these two, such as in the “norm”
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panels for 5 % and 10 % of Fig. 3, are not observed for true random samples. See
also the “norm” panels for 1600 and 6400 of Fig. 2, where the corrected algorithm
yields lower dist values as compared to its minimized variant.

From a theoretical point of view, these ambiguous results are surprising, since the
corrected or optimized estimation procedures ought to improve. We see that those
biasing effects resulted from non-representative samples of quasi-orders. They are
resolved, if a representative mechanism is applied.

5 Conclusion

Representativeness of random quasi-orders drawn and postulated to underlie item
hierarchy mining related simulation has been seen to be an important requirement
for reliable and sound comparison of IITA-type data analyses. Biasing effects
of non-representative samples in previous study made authors conclude that it
depends on the size of the error probability which of the three IITA algorithms
performs best. However, we have been able to show that those conclusions were
biased or wrong. In particular, in all conditions for the error probability, the
corrected and minimized corrected algorithms outperform the original algorithm,
if a representative random process for generating surmise relations is applied.
Expected theoretically, however in previous study not observed unambiguously,
is the following ranking of the three IITA methods, which we have now clearly
obtained. The minimized corrected algorithm is slightly better than the corrected,
and the corrected algorithm considerably improves on the original IITA algorithm.
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Correlated Component Regression: Profiling
Student Performances by Means of Background
Characteristics

Bernhard Gschrey and Ali Ünlü

Abstract Multicollinearity is one of the main problems when using regression
analytic approaches to predict outcome variables. The application of traditional
regression analytic approaches often provides unstable and unreliable estimates of
the parameters when multicollinearity occurs. In this paper we apply a regression
analytic method called correlated component regression (CCR), developed by
Magidson (Correlated component regression: re-thinking regression in the presence
of near collinearity. In Abdi et al. (eds) New perspectives in partial least squares and
related methods, Springer, Heidelberg, pp 65–78, 2013), for characterizing student
performances in PIRLS/TIMSS 2011 (Martin and Mullis, Methods and procedures
in TIMSS and PIRLS 2011, TIMSS & PIRLS International Study Center, Chestnut
Hill, 2013) through selected background characteristics, such as cultural and socio-
economic characteristics. On the basis of various criteria, we compare the findings
of CCR with the results of OLS regression regarding the prediction of student
performance values. An implemented cross-validation procedure and step-down
algorithm are utilized to perform a special type of variable reduction. Thus, the
results of our study will provide more reliable sets of background variables for
characterizing large scale educational data in the domains of reading, mathematics,
and science.

1 Introduction

To analyze student performances obtained from large scale assessment studies such
as Trends in International Mathematics and Science Study (TIMSS), Progress in
International Reading Literacy Study (PIRLS), or Programme for International Stu-
dent Assessment (PISA), a plenty of background characteristics have been collected.
These comprise, inter alia, cultural and social background characteristics, as well as
subject-specific attitudes and self-concepts (Mullis et al. 2009a,b and OECD 2012).
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This extensive data pool offers a variety of possibilities for analyzing student
performances. For instance, Bos et al. (2012a,b) could show that in groups with
higher performances, the portion of students with high subject-specific attitudes
and self-concepts is also significant, higher. However, characterizations of student
performances by means of cultural and socio-economic background characteristics
are largely limited to descriptive analyses in the published reports.

We apply a recent regression analytic method—called correlated component
regression (CCR) and developed by Magidson (2013)—for characterizing student
performances by means of selected background characteristics in regards to the
domains of reading, mathematics, and science. A specific issue, which has to be
considered when using traditional regression analytic approaches, is occurrence
of multicollinearity, respectively, suppression effects (Lynn 2003). Pandey and
Elliott (2010) distinguish between four types of suppressor variables: the classic
suppressor, the negative suppressor, the reciprocal suppressor, and the absolute
and relative suppressor. Basically, multicollinearity/suppression effects arise when
two or more independent variables are moderately or highly correlated to each
other and have no direct effect on the outcome variable. By suppressing irrelevant
variance in each other, those variables cause the suppressed variables to obtain
a substantial regression weight. Hence, treatment of multicollinearity/suppression
effects becomes essential, since they can lead to unstable and non-significant esti-
mates of the regression coefficients, or to increasing variances and standard errors
of the estimated coefficients (Pandey and Elliott 2010 and Rawlings et al. 1998).

Especially, when applying multiple regression in the context of large scale
assessments such as PIRLS/TIMSS or PISA, where the correlations among the
predictors can be quite high, seemingly good predictive performance of a model
may be associated with overfitting. Magidson (2013) showed that—based on a
multicollinear structure of the data—the CCR approach provides more stable and
reliable estimates of the regression coefficients. In this paper, we analyze the
structure of our data and compare the outcomes of CCR with the results of
traditional OLS regression by means of various criteria. For applications of CCR,
the software CORExpress R� is used (Magidson 2011).

The basic idea of CCR is to reduce confounding effects due to high predictor
correlations, thus obtaining more reliable parameter estimates. CCR produces
C < P (P, number of predictors) correlated components to predict an outcome
variable Y, whereat each component Sc, c D 1; : : : ; C, is an exact linear combination
of the predictors X1; X2; : : : ; XP, and the weights are chosen to maximize the
components’ ability to predict Y. Those components can be viewed as composite
predictors used in an iteratively built “regularized” model.

The first component S1 is a weighted average of all P one-predictor models of
target variable Y on Xp, and a one-component CCR model is the regression of Y on

S1. That is, Y D ˛
.1/
p C�

.1/
p XpC


.1/
p , S1 D P

�
.1/
p Xp, and Y D a.1/Cb.1/

1 S1C
.1/. The
cth component Sc is a weighted average of all one-predictor models “in which the
previous components S1; : : : ; Sc�1 are controlled for,” that is, Sc D P

�
.c/
p Xp where

Y D ˛
.c/
p C�

.c/
1;pS1C� � �C�

.c/
c�1;pSc�1C�

.c/
p XpC


.c/
p , and a c-component CCR model is

the regression of Y on S1; : : : :Sc�1 and Sc, that is, Y D a.c/Cb.c/
1 S1C� � �Cb.c/

c ScC
.c/.
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In CCR, cross-validation and step-down procedures are used to choose the
optimal number of correlated components and predictors in the model. The selection
process is analogous to backward variable selection and driven entirely by cross-
validation sample performance. For particular values of C the process starts with
all variables included and then eliminates variables with the smallest standardized
coefficients one at a time, re-estimating the model at each step, with cross-validation
performance criterion values computed for the selections. In particular, variables
having direct effects on the outcome variable Y can be determined as those having
high loadings on the first component. Those variables are called prime predictors.
For details, see Magidson (2010) and Magidson and Bennett (2011). We want to
concentrate on application.

Student performances have rarely been characterized by regression analytic
approaches due to the multicollinear structure of the data. Furthermore, the appli-
cation of traditional regression analytic approaches should be treated with caution
when multicollinearity or suppressor variables occur, because in such cases esti-
mates of the parameters may become inaccurate. In this regard, the present paper
investigates whether CCR will outperform OLS regression when characterizing stu-
dent performances by means of a set of selected (generally correlated) background
characteristics.

2 Study Design

For characterizing student performances in the domains of reading, mathematics,
and science, we analyzed data from the national (German) PIRLS/TIMSS 2011
study (Mullis et al. 2009a,b). We used the national data set of 3928 students with
performance values in all three domains (Bos et al. 2012a,b). Pertinent background
variables for characterizing student performances have been selected from the
national background model, with regard to gender (one item), socio-economic
factors (six items), and cultural factors (four items). We also selected German
grade, mathematics grade, and science grade as additional relevant variables for
characterizing performances.

2.1 Detecting Multicollinearity

Since a multicollinear structure of the data may deteriorate accuracy and pre-
dictive power of a multiple linear regression model, we analyzed the presence
of multicollinearity with respect to the mentioned variables. Although regression
coefficients can be estimated when multicollinearity occurs, the estimates tend to
become inaccurate and misleadingly non-significant (variances and standard errors
of the estimated parameters become large). As can be seen in Fig. 1, the sum of the
overlaps 10 C 20, representing the parts of the variables that overlap the criterion,



578 B. Gschrey and A. Ünlü

Fig. 1 Visualization of an overlapping area of common variances through a non-zero correlation
among two predictors, 1 and 2. The sum of the overlaps with the criterion (circle area), 10 C 20,
would overestimate the actual covered amount, 10 C .20 � a/

would overestimate the total overlap due to a non-zero correlation between the
predictors. The actual amount of the criterion covered by the two predictors is
10 C .20 � a/.

Concerning this matter, we initially investigated pairwise correlations as well
as partial correlations (representing the correlation between a predictor and the
criterion after removing common variance with other predictors from both the
criterion and the observed predictor) and semipartial correlations (representing the
unique contribution of a predictor to the unaltered criterion after removing the
contributions of the remaining predictors from the predictor of interest) among the
variables and computed the overlapping area of common variances (Cohen et al.
2003 and Sheskin 2011).

However, the inspection of pairwise correlations is not sufficient, since mul-
ticollinearity can exist with pairwise correlations close to zero. Therefore, we
analyzed the occurrence of multicollinearity by appropriate diagnostic fits such as
tolerance and variance inflation factor (VIF), although Berk (1977) and O’Brien
(2007) pointed out that in some cases these fits provide less accurate benchmarks
for detecting multicollinearity. An additional and more extensive examination of
multicollinearity is performed on the basis of eigenvalues, condition indexes, and
decomposition of variance (Albers 2009 and Belsley et al. 2004).

2.2 Application of Correlated Component Regression

To consider the effects of multicollinearity, or respectively suppression, and to
provide stable parameter estimates, we performed linear CCR analyses, considering
student performances in the domains of reading, mathematics, and science as a
function of the aforementioned (14) predictors, and compared the outcomes to
the results of OLS regression. Additionally, we tested the assumptions of linear
regression by appropriate diagnostic plots and searched for uncommon cases,
respectively, outliers or influential points (Cook and Weisberg 1982 and Rawlings
et al. 1998). Finally, a special type of variable reduction of the most relevant
variables is conducted in order to maximize the predictive power of the particular
models and to remove irrelevant predictors.
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For capturing suppressor/confounding effects among the independent vari-
ables, we reduced the number of correlated components stepwise by k-fold cross-
validation and computed the corresponding goodness-of-fit statistics R2 and CV-R2

(cross-validated R2) for the particular models (for details, see Magidson and Bennett
2011 and Refaeilzadeh et al. 2008). Referring to the application of k-fold cross-
validation, we ran ten rounds by selecting k D 6 equal and random created folds
(n D 287 cases in each fold), since 6 is the smallest integer between 5 and
10 that divides evenly 1722 (1722 cases without missing values in each domain
are available). Thus, a matrix of fit statistics (R2 and CV-R2) for models ranging
from C D 14 to C D 1 correlated components for the particular domains is
obtained. Regarding the optimal number of correlated components C, the model
that maximizes CV-R2 has to be chosen.

A step-down algorithm that works in conjunction with k-fold cross-validation
is used to achieve a variable reduction of the most relevant variables (P� < P)
and to enhance predictive power of the particular models (for technical details, see
Magidson and Bennett 2011). We initially estimated models including all predictors
and evaluated the models using k-fold cross-validation. Removing stepwise a
variable with the lowest standardized coefficient and repeating the evaluation of
the new models yield a matrix of fit statistics (R2 and CV-R2) for models with one
to fourteen predictors.

To obtain the final CCR models with respect to the estimated models, we selected
the models with the highest CV-R2 values. Those models contain the optimal
number of correlated components as well as the most relevant predictors. The final
regularized CCR models capture suppressor/confounding effects and provide more
reliable parameter estimates.

3 Results

3.1 Multicollinearity Analysis

For the 14 predictors, moderate and partly high bivariate correlations (r > 0:600)
among the variables were obtained. Moreover, when comparing the partial correla-
tions and beta-coefficients to the corresponding pairwise correlations, the findings
indicated a large overlapping area of common variance.

Table 1 provides the total explained variance (R2) and the computed overlapping
area of common variance for the three domains. As can be seen, the common
variances are relatively high compared to the total explained variances. This
indicates that the predictors capture some of the same variability in the criterion
and do not enhance predictive power of the particular regression models. In this
case, the fit statistic R2 seems to be little meaningful.

Since the calculation of the diagnostic fits tolerance and VIF could not
explicitly identify critical variables, we additionally analyzed the occurrence of
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Table 1 Total explained variance (R2) and overlapping area of common variance

Reading Mathematics Science

R2 Common var R2 Common var R2 Common var

0:489 0:390 0:525 0:384 0:445 0:340

R2 coefficient of determination, Common var overlapping area of common variance

multicollinearity by examining eigenvalues, condition indexes, as well as the
corresponding proportion of variance (Table 2). The findings corroborate the
presence of multicollinearity. The computed eigenvalues point out that at least eight
dimensions are characterized by comparatively low values, respectively, values near
zero (� 0:05). These low values indicate collinearity among some of the predictor
variables. Hence, small changes in the data values can lead to large changes in
the estimates of the regression coefficients (Albers 2009 and Belsley et al. 2004).
Furthermore, regarding the calculation of the condition indexes and the respective
proportion of variance, four item pairs having a high condition index (>15) as well
as high loadings on the same dimensions could be determined.

3.2 Correlated Component Regression Analysis

Inspecting the standard diagnostic plots (Cook and Weisberg 1982 and Rawlings
et al. 1998) for the particular multiple regression models, we can affirm the
assumptions of linear regression. Thus, results of the particular models can be
expected to provide fairly robust estimates of the parameters disregarding the effects
of possible suppression and multicollinearity.

For determining the optimal number of correlated components (C) for the
particular domains, Table 3 provides the required fit statistics R2 and CV-R2, listed
by increasing number of correlated components. The model that maximizes CV-R2

has to be chosen.
The results show that the three domains can be described by three correlated

components. Although OLS regressions yield a higher R2 for the saturated models
(C D P) compared to the respective CCR models (0:4890 vs. 0:4887, 0:5253 vs.
0:5244, and 0:4445 vs. 0:4439), CCR models with C < P correlated components
yield a higher CV-R2 (0:4781 vs. 0:4793, 0:5162 vs. 0:5176, and 0:4327 vs. 0:4334),
suggesting that these CCR models will outperform OLS regressions when applied
to new data.

Fit statistics of the final regularized CCR models (C < P, P� < P) can be found
at the bottom of Table 3. The most predictive model for the domain of reading is
characterized by a three-component model with five predictors. Thus, the predictive
power of the model can be additionally improved by variable reduction (CV-R2

final D
0:4803). Similar results were identified for the domain of science. The predictive
power of the model can be slightly enhanced to CV-R2

final D 0:4357 by removing
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Table 3 R2 and CV-R2 for respective numbers of correlated components (C) and final CCR
models

Reading Mathematics Science

P C R2 CV-R2 P C R2 CV-R2 P C R2 CV-R2

14 1 0.4312 0.4277 14 1 0.4401 0.4371 14 1 0.3911 0.3875

14 2 0.4843 0.4787 14 2 0.5126 0.5075 14 2 0.4358 0.4288

14 3 0.4887 0.4793 14 3 0.5244 0.5176 14 3 0.4439 0.4334
14 4 0.4889 0.4789 14 4 0.5251 0.5170 14 4 0.4445 0.4328

14 5 0.4890 0.4783 14 5 0.5253 0.5164 14 5 0.4445 0.4329

14 6 0.4890 0.4781 14 6 0.5253 0.5163 14 6 0.4445 0.4327

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 14 0.4890 0.4781 14 14 0.5253 0.5162 14 14 0.4445 0.4327

5 3 0.4844 0.4803 14 3 0.5244 0.5176 10 3 0.4440 0.4357

P number of predictors, C number of correlated components, R2 coefficient of determination,
CV-R2 cross-validated coefficient of determination

four predictors. An exception here is the domain of mathematics, which shows no
further enhancement of predictive power when the number of predictors is reduced
stepwise (CV-R2

final D 0:5176).
Comparing the results of OLS regression and CCR, Table 4 provides the

estimated standardized regression coefficients for the three competence domains.
Standardized regression coefficients have been separately estimated for the saturated
OLS regression model, the cross-validated CCR model (C < P), and the final CCR
model (C < P, P� < P). As can be seen in Table 4, the estimated regression
parameters and the respective constants (intercepts) show noteworthy differences
related to the used regression analytic methods. These differences may become
crucial when assigning students based on their performances to the competence
levels, which are typically used in PIRLS, TIMSS, or PISA to characterize student
proficiency and to report assessment results (e.g., see Bos et al. 2012a,b).

4 Discussion

In addition to the student performances, PIRLS and TIMSS 2011 studies provide
a plenty of background information. However, current analyses for characterizing
student performances by means of background characteristics are largely limited
to descriptive analyses. A more extensive characterization by appropriate methods
is rarely presented in the published reports. In the present paper we have applied
traditional OLS regression and recent CCR for characterizing student performances
through selected background variables and compared the results of the two methods
on the basis of various criteria.

Since the occurrence of multicollinearity, respectively, suppressor variables, may
have a negative effect on the accuracy of parameter estimation, we have initially
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Ǒ�
Ǒ�

Ǒ�
Ǒ�
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analyzed the structure of the data. On the basis of several statistics we have been able
to confirm a multicollinear structure of the large scale assessment data, indicating
that estimates of the regression coefficients may become inaccurate when using
traditional OLS regression for characterizing student performances. Based on the
fit statistics R2 and CV-R2, we have compared OLS regression to CCR. As the
results of our study corroborate, CCR outperforms traditional OLS regression.
Especially when reducing the number of correlated components and removing
irrelevant predictors from the models, predictive power has been improved. We have
also seen noteworthy differences regarding the estimated regression parameters, and
future research can investigate the impact that may have on the classification of
students to competence levels in educational comparison studies.

The application of special regression analytic approaches to characterizing
student performances in the context of large scale educational assessments such
as PIRLS, TIMSS, or PISA, where the number of predictors can be high (more
than 400), is lacking in literature so far. Since the consideration of multicollinearity
and suppression effects is crucial for the application of regression analysis, OLS
regression seems not to be the appropriate method for this purpose. However, CCR
promises to be a very useful instrument to identify those background variables that
may have considerable influence on student performances.

In this regard, a large scale real application of CCR including many more
background predictor variables must be systematically performed. A further issue
that typically arises when applying regression analytic approaches in the context of
large scale educational assessments are the occurrences of high portions of missing
values. A detailed investigation of the effects of missing value structures in the data
and their imputations for CCR related analyses in large scale assessments is another
interesting direction for future research on this topic.
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Computational Models

Peter C.R. Lane, Peter D. Sozou, Fernand Gobet, and Mark Addis

Abstract We present a system to represent and discover computational models to
capture data in psychology. The system uses a Theory Representation Language
to define the space of possible models. This space is then searched using genetic
programming (GP), to discover models which best fit the experimental data. The
aim of our semi-automated system is to analyse psychological data and develop
explanations of underlying processes. Some of the challenges include: capturing
the psychological experiment and data in a way suitable for modelling, controlling
the kinds of models that the GP system may develop, and interpreting the final
results. We discuss our current approach to all three challenges, and provide
results from two different examples, including delayed-match-to-sample and visual
attention.
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1 Introduction

Psychology, as with other sciences, generates a large body of experimental data.
Using this information to foster scientific understanding requires techniques of data
analysis to find patterns, and then to produce understanding from the patterns.
A standard method for finding such patterns in psychology is to construct a
computational model, which is a process that generates the patterns in the data.
In this paper, we describe a technique for creating process-based models from
experimental data; these models represent patterns from the data, and provide a
base for future analysis and understanding.

There exist a number of different approaches to develop computer models in
psychology, including mathematical modelling, symbolic modelling, and connec-
tionism (see Gobet et al. 2011, for an overview). Developing models has been
notoriously difficult, as there has been no systematic methodology for doing so until
recently (but see, e.g., Lane and Gobet 2012).

The research presented in this paper addresses this problem by creating a
system to discover viable models in a semi-automated fashion. One way to solve
this kind of problem is to search over a defined space of potential functions or
programs (Langley et al. 1987). Recently, researchers have applied this foundation
in many domains including psychology (Frias-Martinez and Gobet 2007) and
mechanics (Schmidt and Lipson 2009).

Our proposed system also works by searching over a defined space. The first
component is a generic definition of a symbolic cognitive model, applicable to a
wide number of domains. The second component is the discovery process, which
searches over a large number of candidate models, seeking models with a good
fit to the results in the target domain. The third component is the domain-specific
information required, such as how the model interacts with the experiment, how
the experiment is conducted, and how the results are analysed; this information is
extracted from the published literature.

2 Representation of Computational Models

The computational models used in our experiments are composed from three main
components:

1. An input/output module, to interact with the experiment;
2. A short-term memory (STM), to store information; and
3. A control program, which determines the behaviour of the model. The control

program stores its last calculated value as the current value.

This structure is typical of symbolic models used in psychology. The design of
the following operators, settings and timing parameters are all taken from prior
work, such as Cowan (2001), Frias-Martinez and Gobet (2007) and Samsonovich
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(2010). The search space is intended to cover a large range of cognitively plausible
architectures.

The input/output module is responsible for accessing the experimental stimuli
and providing the response(s). For example, in the first case study below, the
input is a series of three images: these are represented as inputs 1, 2 and 3. The
output is the name of one of the images. In other experiments, the input may be
more complicated. The required inputs and outputs are created for each experiment
separately. We describe the specific input/output mechanisms for the two case
studies separately.

The STM is a fixed-capacity working memory (Cowan 2001), and is treated as a
simple buffer of three items. Items can be pushed onto the STM, with items at the
bottom being forgotten. The model can also retrieve items directly by position, and
compare items in two positions.

The control program defines the behaviour of the model. The program is written
in a lisp-like language, using a fixed set of operators; this language is the Theory
Representation Language. The operators are responsible for interaction with the
input/output module, interaction with the STM, and for general control flow (such
as sequential or conditional operators). The operators are shown in Table 1, and a
sample program in Fig. 1.

The sample program consists of six operators. A characteristic feature of lisp-like
languages is that the program structure is highlighted by the brackets: this feature
is useful for the search process, as will be seen in the next section. By matching
the brackets (and as shown by indentation), the seq operator uses two blocks: in
this example, the first is an if operator, itself using three blocks; the second is an
output operator, which uses no blocks.

This sample program first compares STM items 1 and 2 (compare-1-2). If
they are equal (if operator), then the first stm slot is retrieved (access-stm-1),

Table 1 Operators for the control program

Operator Time (ms) Description

access-stm-1 (2 or 3) 50 Put item in STM slot 1 (2 or 3) into current value

compare-1–2 (2–3 or 1–3) 200 Current value is true/false if STM item 1/2/3 =
item 2/3/1

if 200 Selects between two sub-programs based on a
condition

nil 50 Set current value to 0 (“false”)

putstm 50 Push given value on to STM

seq 50 Sequentially do two sub-programs

Fig. 1 A sample control
program
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otherwise the third stm slot is retrieved (access-stm-3). The retrieved value
is implicitly stored as the model’s current value. The program finally outputs
(output) the current value; this final operator is based on the domain-specific
input/output module for the experiment.

Each operator in Table 1 has an associated time, in milliseconds, reflecting the
physical processing time of the underlying cognitive process. In many psychological
experiments, the data include results on reaction times: the time that passes between
the input being shown and the output being generated. The times allocated to each
operator have been derived from earlier work in cognitive modelling, and enable
simulated reaction times to be computed for each model. For the sample program,
the running time will be 50 for the seq, 200 for the if, 200 for the compare-1-2,
50 for one of the access operators, and 200 (depending on domain) for the
output: a total of 700 ms.

A further aspect of the models provides an element of non-determinism. We
allow each operator to fail with a probability of 2 %. When an operator fails, the
control program simply moves to the next step in the program. For example, if the
if operator failed in the program above, the next operator is output, which would
output whatever the current value happened to be.

For our experiments, we keep the architecture of the computational models fixed.
In each case study, all the models have the same domain-specific input/output
module, the same STM, and the same set of operators within the control program.
A wide variety of behaviours can be achieved by changing the control program. The
next section describes an automated way of adapting the control program to attempt
to fit a target experiment.

3 Search Process: Genetic Programming

Genetic programming (GP) (Koza 1992; Poli et al. 2008) is one of the number
of techniques for searching large spaces of candidate solutions; other related tech-
niques include Monte Carlo techniques (Metropolis and Ulam 1949) and simulated
annealing (Kirkpatrick et al. 1983). The advantages of GP for our application
include its long history of previous successes, that it constructs a population of many
candidate solutions, and there is a simple method of controlling the search process,
through a domain-specific fitness function.

The fitness function is how the quality of a model is determined. For our case
studies, the fitness function is determined partly from the performance of the model
(how often the model’s output agrees with a human’s, for the same inputs), and
partly from its reaction times or the size of control program. The fitness function is
used to compare the models, guiding the search towards those models which have
better values of fitness.
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The GP algorithm (with parameters: the size of population, the number of elite
models to retain in each generation, and the target number of iterations):

1. Create an initial current population from a randomly generated set of candidate
models (of varying size, constructed recursively up to a restricted depth).

2. Rank the models using the fitness function.
3. Construct an empty next population.
4. Add the best N models to the next population, where N is the number of elite

models to retain.
5. Repeat until the next and current populations are the same size:

a. Select two models randomly from the current population, probabilistically
preferring those with better fitness values.

b. Use crossover and mutation (see below) to generate two new models.
c. Add the two new models to the next population.

6. Replace the current population with the next population.
7. Repeat from (2) until target number of iterations is complete.

The GP algorithm uses two processes to generate new models from current
ones: crossover and mutation. The processes are illustrated in Fig. 2, with the
original programs shown on the left of the figure. Crossover selects two blocks at
random, one from each program, and makes two new programs by replacing the

(if (compare−1−2)
   (seq
        (input−1)
        (output))
   (output))

(seq
   (input−1)

   (output))

   (output))
        (output))

   (if (compare−1−2)
   (seq

(if (compare−1−2)

Exchange a block from

each program with
the other

(seq
   (if (compare−1−2)
        (access−stm−1)
        (access−stm−2))
   (output))

        (access−stm−1)
        (access−stm−2))

(seq
   (access−stm−3)

   (output))
Replace block with a

random block

(seq
   (if (compare−1−2)
        (access−stm−1)
        (access−stm−2))
   (output))

Crossover

Mutation

Fig. 2 Illustration of crossover and mutation
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selected block in the first with the selected block in the second, and vice-versa.
Mutation replaces a randomly selected block with a new, randomly created block,
of arbitrary size.

4 Case Study 1: Delayed Match to Sample

The Delayed Match to Sample (DMTS) task explores a number of cognitive
processes, including object recognition, categorisation and STM. The experiment
consists of a number of trials. In each trial, a target image is initially presented. After
a delay, two images are presented, one of which is the target image; the participant
must identify the target image. Various studies have used this task, some looking at
brain activity whilst the experiment is conducted, including Chao et al. (1999) and
Habeck et al. (2003).

In this case study, we follow Frias-Martinez and Gobet (2007) and Lane et al.
(2014), and simulate one set of results from Chao et al. (1999): Table 2.

4.1 Domain-Specific Model Details

The models for the DMTS study use the general framework presented in Sect. 2,
adding processes to obtain the input stimuli and the output response. The stimuli
are presented as a set of three inputs, with each stimulus being a number from 1
to 6, each number representing a distinct image. The first stimulus is the target,
and is presented for 1.0 s. Then there is a gap of 0.5 s, before the left and right
paired inputs are shown for a further 2.0 s. The response is obtained by the model
outputting either left or right to indicate which of the two inputs is the same as
the original target; a random “guess” is made if no output is made. The theory
language is thus augmented with five further operators. These operators read the
input from the target, left or right position, or output the response “left” or “right”;
each operator takes 200 ms.

The models are tested on all 60 combinations of input values: for each of six
inputs, there are five possible distractors, and each pair can be presented with the
target on the left or the right.

Table 2 Accuracy and
reaction time obtained by
humans in DMTS task (Chao
et al. 1999)

Accuracy Time

Stimulus Mean Standard Mean Standard
error error

Tools 95 % ˙ 1.2 % 767 ms ˙ 27.5 ms
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4.2 Fitness Function and Search Parameters

The fitness function is determined by observing the accuracy of the model and its
reaction time, before comparing these figures with those in Table 2.

The performance is measured by recording each correct response obtained by the
model as a 1.0, and each incorrect response as a 0.0. The reaction time is measured
by recording the simulated time that the model takes to produce a response; this
time is measured from after the paired inputs are removed. The mean of the model’s
responses (its accuracy) and the mean of its reaction times are subtracted from the
values in Table 2, reporting the absolute values. The smaller these values are, the
“more fit” the model is.

The fitness function ranks the models and is computed from the mean perfor-
mance and the mean reaction time. In order to make the reaction time values
of approximately equal weight to the performance values, the mean difference is
divided by the target time of 767.0, and any difference greater than 1.0 is capped
at 1.0. In this way, the two numbers are each between 0 and 1.0, and can be
combined by averaging. The final fitness value will be a number between 0 and 1.0,
with 0 representing the best performing, fastest possible model, and 1.0 the worst
performing, slowest possible model. Note that any output made before the paired
inputs are removed is an error, and that trial’s reaction time does not appear in the
measurements of fitness.

For example, if the model produces a mean accuracy of 88 %, and a mean
reaction time of 600 ms, then the fitness value is computed as:

0:5 � j0:95 � 0:88j C 0:5 � j767 � 600j=767 D 0:144

For the GP algorithm, the population size is 10,000, with 20 elite individuals held
between each generation, and the search is run for 50 iterations.

4.3 Results

Table 3 gives mean figures for accuracy, reaction time, and program size. In brackets
is given the mean absolute deviation from the target values in Table 2. For space
reasons, we do not show an example of the models. The means were obtained by
running the GP algorithm 10 times, independently, and combining the results for the
best model from each run.

Table 3 Results for DMTS
case study, mean (deviation
from target) over ten runs

Accuracy (%) Reaction time (ms) Size

93.8 (1.5) 786.0 (28) 135.9



594 P.C.R. Lane et al.

The results demonstrate that the GP search algorithm is reliably locating high
quality models. The models are close to the target accuracy and mean reaction
time results obtained in humans. The models obtained are quite complex, and
differ in many ways, illustrating the potential diversity in explanations that may be
possible.

For a more detailed discussion of this case study, including a comparison of
different fitness functions, see Lane et al. (2014); the results reported here follow
the original protocol more closely, use a different fitness function, and show a
substantially better fit to the human data.

5 Case Study 2: Visual Attention

For the second case study, we apply our system to a visual-attention task, used
by Kornblum (1969). In this task, participants had to watch for one of four lights, and
then press one of four corresponding buttons. The experiment explored the impact
that repeated lights had on reaction times and error rates.

Each trial consisted of a light being lit, waiting for a button to be pressed, with
the response and reaction times recorded. Each set of trials was divided into eight
blocks of 150 trials. Each of the eight blocks used a different “probability of non-
repetition” (pnr), which is the probability that the next lit light will not be a repeat
of the previous lit light. Kornblum (1969) presents results for the mean error rate,
and reaction times separately for each of the eight blocks, and separate analysis for
when lights are repeated or not.

In this case study we look only at the error rate for the different pnr values: these
values have been estimated from Fig. 2 of Kornblum (1969): Table 4.

5.1 Domain-Specific Model Details

The models for the Kornblum study use the general framework presented in Sect. 2,
adding processes to obtain the input stimuli and the output response. The stimuli
are represented as a set of four inputs, corresponding to the four lights. The lit light
will be represented by an input of 1.0 on the corresponding input to that light, and
unlit lights by inputs of 0.0. The outputs are similar. Four outputs are provided,
which must be set to 1.0 by the model as appropriate; a random “guess” is made

Table 4 Human error rates on Kornblum attention task

PNR value 0:75 0:39 1:00 0:47 0:97 0:56 0:92 0:88

Error rate (%) 2:9 3:6 3:1 4:0 4:4 4:1 4:2 4:0
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if no output is made. The theory language is thus augmented with eight further
operators. Four operators query whether each light is lit, and are called input-1,
etc. Four operators are used to press one of the four buttons. Each operator takes
200 ms. The models are tested using a sequence of 1200 numbers: 150 for each pnr
value. The 150 numbers are generated randomly, using the pnr value to determine
repeats.

5.2 Fitness Function and Search Parameters

The fitness function is determined from the error rate of the model, compared with
the human accuracy, and also a measure of model complexity.

The performance is the absolute difference between the model’s error rate for
each pnr value compared with the target error rate, from Table 4. The smaller this
value is, the “more fit” the model is.

The complexity is the size of the control program. To make the complexity a
number between 0 and 1, the size of the control program is capped at 1000, and
then divided by 1000. Hence, 1 is the largest value for the complexity and 0 (for
an empty program) the smallest. The assumption is that smaller programs will be
better than larger ones, and is a widely used heuristic in GP systems (Poli et al.
2008). The overall fitness function is computed as the mean of the performance
and complexity measures. For the GP search algorithm, the population size is 500,
with 50 elite individuals held between each generation, and the search is run for 50
iterations.

5.3 Results

Table 5 gives mean figures for mean difference in performance, and total program
size. The standard deviation is shown in brackets for the performance values. The
means were obtained by running the search 10 times, independently, and combining
the results for the best model from each run.

The results demonstrate that the GP search algorithm is reliably locating high
quality models, based on the performance measure. The general findings from case
study 1 still apply: a range of viable models is discovered by the system, illustrating
the potential diversity in possible explanations.

Table 5 Results for
Kornblum case study, means
obtained over ten runs

Performance Size

0.004 (0.001 std dev) 15.9
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6 Conclusion

The case studies presented in this paper demonstrate how a generic definition of
a class of symbolic cognitive models can be used to create viable models in two
different areas of psychology: decision making and visual attention. The cognitive
models’ behaviour is determined by a control program. The genetic-programming
search algorithm is able to work through a small subset of the range of possible
models, and locate high quality candidate models. Analysis demonstrates that the
models are a good fit to the target data used here.

Future work will improve the quality of the modelling, by including more of the
target behaviours explained in the psychological literature. The fitness functions
used here combined different objectives into a single measure; we plan to use
multiple-objective techniques to improve the comparisons. Also, we will extend
the application of the models to more domains, such as categorisation and risk
assessment. Finally, the main aim of this research is to create models which improve
psychological theories in these domains; in future work, the generated models will
be analysed to produce this understanding.
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Use of Panel Data Analysis for V4 Households
Poverty Risk Prediction

Lukáš Sobíšek and Mária Stachová

Abstract One of the main approaches to tracking causality between income,
social inclusion and living conditions is based on regression models estimated
using various statistical methods. This approach takes into account quantitative
and qualitative information about individuals or households that is collected in
different periods of time (years in particular), thus allowing it to be transformed into
multidimensional data sets, called panel data. Regression models based on panel
data are able to describe the dynamics over time periods, so that the patterns can be
related to changes in other characteristics.

This paper utilises one of these approaches to panel data analysis RE-EM trees
which are used to predict the risk-of-poverty rate of households located in the four
“Visegrad” countries. The risk-of-poverty rate of individual households is computed
on the basis of cluster analysis results, and it takes into account household living
conditions as well as income. Subsequently, the risk-of-poverty rate is used as the
outcome for the prediction model above. Certain household characteristics were
chosen as predictors including: information about the “head” of the household (age,
education level, marital status, etc.) and information about the number of members
in the household.

The results show slight differences in poverty determinants among Visegrad
countries. The determinants with the highest impact on the risk-of-poverty rate
are: number of household members (Czech Republic, Hungary and Slovakia) and
education level (Poland).
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1 Introduction

The measurement of the risk of household poverty is an integral part of the living
condition monitoring. To understand the poverty means to consider different aspects
of living situation (Fusco et al. 2010; Ward et al. 2009). It can be looked upon from
different angles. Perry (2002) divides them into the following three groups.

The first and most widespread approach restricts the assessment indicators
measuring poverty to economic or financial ones (current income in particular).
Methods using this concept incorporate some means that connect income with
minimum acceptable living standards in a given society, thus determining where
to draw a line of the risk of poverty. The threshold is usually defined at 50–60 % of
the mean or median (Eurostat 2014).

Another way of assessing poverty—by direct measuring of current living
conditions—focuses on the outcome dimension and indicators of material depriva-
tion. It takes into account whether a particular entity (e.g. a household) owns some
possessions (e.g. a car) or is able to participate in certain activities (e.g. going on
vacation abroad). However, no attempts are made to find the reason why somebody
does not own or do something, be it financial straits or different preferences.

The third approach is based on feedback of respondents in a survey. It is rather
subjective because the result depends on respondents’ preferences and demands.

There are many studies available which consider the household poverty of
European countries from different points of view. Some only take into account
household income (Andriopoulou and Tsakloglou 2011), others include macro
factors (e.g. unemployment rate or GDP) of the region to which the household
belongs, (Reinstadler and Ray 2010) or use a principal components analysis to
include proxy variables for community and household social capital endowment,
and a set of variables describing household economic well-being (Santini and De
Pascale 2012).

We believe that a combination of all factors mentioned in Perry (2002) are to
be considered when studying poverty. This approach is supported by Nolan and
Whelan (2011), for instance, who give reasons why the measurement of income has
to be supplemented by that of material deprivation.

In this paper, we present a “mosaic” of all the three approaches to assessing
whether particular households belong to worse- or better-off ones. For this reason
we apply a cluster analysis, the households being divided into two within-group
homogeneous clusters. Those belonging to the same cluster are on a similar level of
poverty risk.

In the next step of our analysis we fit a prediction model based on the RE-EM tree
method, predicting the classification of the household into the respective poverty
risk cluster. The estimated model is based on the training data set that covers the
period between 2007 and 2009. The model is then used to make new prediction
entries in the database from 2010 onwards.

For further details on the data and methodology, see the following section below.
The results we achieved are shown in the penultimate section, a summary of the
research concluding the paper.
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2 Data and Methodology

Eurostat data, namely the EU statistics on income and living conditions (EU-SILC
survey) were employed in the analysis. Since the data were collected over a 4-year
period, they could be converted into a multidimensional panel format. The data
set contains information on European households, their members, social status and
housing conditions, covering the period from 2007 to 2010. In this paper, we only
deal with households located in the four Visegrad countries (the Visegrad Four, V4),
i.e. the Czech Republic (CZ), Hungary (HU), Poland (PL) and Slovakia (SK), due
to their economic and social proximity.

First of all, we carried out a latent class cluster analysis to define poor house-
holds, having used commercial software Latent GOLD (Vermunt and Magidson
2005). The clustering method implemented in the software allows searching for
K-latent classes that represent case segments, analysing variables of mixed scale
types (nominal, ordinal, continuous and counts) simultaneously and specifying
continuous and discrete covariates that predict class membership. The clustering
variables in this study are data on households, such as information affecting
social exclusion (e.g. household insolvency, indebtedness, enforced lack of basic
necessities), data on total income, type of dwelling, housing conditions, etc. They
were chosen taking into account special characteristics and living standards of each
V4 country. We obtained two clusters and values for each household that indicates
the probability of membership in the “poorer” cluster. This classification served as
a new response variable for the prediction.

In the second phase of the research, we split the data into a training set (covering
the period 2007–2009) and a test data set (from 2010). The former data set
was used for fitting the prediction model based on the RE-EM tree method, the
function REEMtree() from R package “REEMtree” (Sela and Simonoff 2011b)
having been applied. (The structure of mixed effects models for longitudinal data
is being combined with the flexibility of tree-based estimation methods; see Sela
and Simonoff 2011a). As predictors for this model we take information about the
“head” of the household (age, education level, marital status, etc.) and information
about the number of members in the household. Reinstadler and Ray’s (2010) study
employs a similar set of determinants when calculating a risk-of-poverty rate.

The latter data set was used for testing the prediction ability of the model.

3 Results

The above methodology was applied to the respective data sets. The first stage of
the analysis utilised latent class clustering, with the resulting percent of households
classified in the “poorer” cluster as shown in Table 1 which also shows the variables
used for the clustering. The resulting profile plots of clusters for each V4 country
are shown in Figs. 1, 2, 3, and 4.
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Table 1 Clustering summary for all V4 countries

Variables used for the clustering CZ HU PL SK

HS040—capacity to afford paying for one week annual holiday
away from home (nominal variable)

+ + + +

HS050—capacity to afford a meal with meat every second day
(nominal variable)

� + + +

HS060—capacity to face unexpected financial expenses (nominal
variable)

+ � + +

HS090—do you have a computer? (nominal variable) + + + +

HS100—do you have a washing machine? (nominal variable) � + � �
HS110—do you have a car? (nominal variable) + + + +

HS120—ability to make ends meet (ordinal variable) � � + �
HS140—financial burden of the total housing cost (ordinal
variable)

� � + +

HS130—lowest monthly income to make ends meet (continuous
variable in hundreds, local currency)

+ + + �

HY020—total disposable household income (continuous variable
in thousands, local currency)

+ + + +

Percent of households classified in the “poorer” cluster1 (%) 51.7 50.0 54.2 42.3

It displays variables used for clustering and the cluster1 (the “poorer”) membership in percentage

Fig. 1 Czech households clustering profile. The figure displays conditional probabilities that show
how the clusters are related to the nominal indicator variables. For continuous variables means are
displayed instead of probabilities

The following factors were chosen as the most appropriate variables for clus-
tering of Czech households: the capacity to afford paying for a one-week annual
holiday away from home, the ability to cope with unexpected financial expenses,
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Fig. 2 Hungarian households clustering profile. The figure displays conditional probabilities that
show how the clusters are related to the nominal indicator variables. For continuous variables
means are displayed instead of probabilities

Fig. 3 Polish households clustering profile. The figure displays conditional probabilities that show
how the clusters are related to the nominal (or ordinal) indicator variables. For continuous variables
means are displayed instead of probabilities



604 L. Sobíšek and M. Stachová

Fig. 4 Slovak households clustering profile. The figure displays conditional probabilities that
show how the clusters are related to the nominal (or ordinal) indicator variables. For continuous
variables means are displayed instead of probabilities

the ownership of a computer and/or a car, the lowest monthly income to make ends
meet and the total disposable household income; see Table 1 and Fig. 1. According
to the above criteria, 51.7 % of households belong to the segment (cluster) of the
“less well off” (i.e. poor ones).

The key variables chosen for clustering of Hungarian households are as follows:
the capacity to afford paying for a one-week annual holiday away from home, the
capacity to afford a meat dish every second day, the ownership of a computer, a
washing machine and/or car, the lowest monthly income to make ends meet and the
total disposable household income. It is apparent from Table 1 and Fig. 2 that half
of Hungarian households can be labelled as “poorer” ones.

The following variables for clustering of Polish households were employed: the
capacity to afford paying for a one-week annual holiday away from home, the
capacity to afford a meat dish every second day, the ability to cope with unexpected
financial expenses, the ownership of a computer and/or a car, the lowest monthly
income to make ends meet and the total disposable household income. Table 1 and
Fig. 3 indicates that 54.2 % of Polish households are classified in the cluster with a
higher risk of poverty.

The most appropriate variables for clustering of Slovak households are: the
capacity to afford paying for a one-week annual holiday away from home, the
capacity to afford a meat dish every second day, the capacity to cope with
unexpected financial expenses, the ownership of a computer and/or a car, the
lowest monthly income to make ends meet, total housing costs and total disposable
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Fig. 5 RE-EM tree estimated on Czech household data

Fig. 6 RE-EM tree estimated on Hungarian household data

household income. As shown in Table 1 and Fig. 4, 42.3 % of Slovak households
rank among the poorer ones.

In the second phase of the analysis we estimated the RE-EM tree model on
training data set. The outcome variable is the probability of belonging to the cluster
with higher risk of poverty. The same predictors were employed for each country,
particularly information on the person responsible for accommodation and the
number of the members of the household. We obtained four RE-EM tree models
as indicated in Figs. 5, 6, 7, and 8.

Figure 5 shows the RE-EM tree containing all households in the Czech Republic.
The root node is split according to the number of household members. If it is higher
than two, the respective households are placed in the right branches, all the others
being on the other side. The households on the lower nodes are divided according to
their members’ marital status, educational attainment, age, etc., until the splitting
stop condition is satisfied. The terminal node (leaf) is ended with mean of our
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Fig. 7 RE-EM tree estimated on Polish household data

Fig. 8 RE-EM tree estimated on Slovak household data

response (in our case it is the probability of membership into the “poorer” cluster)
for all observations assigned to this node.

The RE-EM tree in Fig. 6 illustrates the data from Hungary. The division of the
root node is based on the number of household members, the other key nodes being
split by education levels, age, years spent in employment, etc.

Figure 7 displays the RE-EM tree estimated on Polish household data set. The
splitting variable of the root node is the level of education in this case, the other
nodes branching out according to the number of household members, their marital
status, state of health, etc.

Figure 8 presents the RE-EM tree of Slovak households. Again, the predictor in
the root node is the number of members, the sub-nodes ramifying according to age,
education levels, gender, state of health, etc.
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Table 2 Predictive abilities of RE-EM tree models for all V4 countries

CZ HU PL SK

Error rate (%) 21.63 20.57 30.5 25.9

Number of object in training data 6792 5367 8440 3483

Number of object in test data 2264 1789 2819 1161

The predictive abilities of RE-EM tree models are evaluated on the test data set
and expressed by error rates in Table 2. The numbers of households in both the
training and test data sets for each V4 country are displayed in the table as well.

4 Conclusion

Predicting the risk of poverty for individuals and households is an aspect of
responsible social policy.

In the paper, we present the results of the analysis which is aimed at the factors
determining the risk of poverty. Another objective is to estimate a predictive model
that can be employed to find out if there is a risk of poverty or social exclusion for
particular households.

We performed a latent class cluster analysis to determine the level of poverty risk
of households in the fours Visegrad countries, using a combination of indicators that
had been shown in previous studies to be useful in defining vulnerability to poverty.
In addition to household income, the living conditions and material property of the
household were used to set the threshold of poverty risk. As the results show, these
factors combine differently in different countries. Probability indication of poverty
risk became the basis for the construction of the predictive model. It was built
with the use of the RE-EM tree method, which enables the avoidance of restrictive
parametric assumptions and provides the flexibility to use time-varying covariates.
A bimodal non-linear distribution of the outcome did not allow us to use other well-
established models, such as mixed effects ones (Baltagi 2012; Pinheiro and Bates
2009). It is apparent from the research results that, whereas in the Czech Republic,
Hungary and Slovakia the parent node in the RE-EM tree is split based on the
number of the members of the household, in Poland, the factor impacting the most
on the splitting variable is the level of education completed. These results should be
considered when designing anti-poverty policies. For example, in Poland, where the
low education level implies higher risk-of-poverty, the social policy promotes and
emphasises on education by, e.g., scholarships.

In the future research project, we plan to investigate whether resampling methods
enhance the estimation accuracy. Further, we will compare the RE-EM model with
an alternative approach. We intend to apply a classification method designed for
cross-sectional data to a data set that would include both the values from a given
year and auxiliary variables representing the dynamics in the data.
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Collaborative Literature Work in the Research
Publication Process: The Cogeneration
of Citation Networks as Example

Leon Otto Burkard and Andreas Geyer-Schulz

Abstract In educational and scientific publishing processes scientists and prospec-
tive scientists (students) in their different roles (author, editor, reviewer, production
editor, lector, reference librarians) invest a large amount of work into the proper
handling of scientific literature in the widest sense. In this contribution we introduce
the LitObject middleware and its combination with the popular open-source tool
Zotero. The LitObject middleware supports the exchange of sets of scientific objects
(literature objects) consisting of bibliographic references and documents (e.g.
PDF-documents) by scientists. In our contribution we emphasize several process
improvements with a special focus on the cogeneration of citation networks.

1 Introduction

In every publication literature is cited. To be able to cite literature the authors of a
publication have to search, find, possibly evaluate and read the cited publications,
file the fulltext document and, later, have to retrieve the publications filed. This
time-consuming process of literature work has to be done by every researcher. To
facilitate literature management scientists can use literature management software
such as EndNote, Mendeley or Zotero that are compared and described in more
detail by Hensley (2011). Based on the list of expectations from Gilmour and Cobus-
Kuo (2011), management of literature also includes, for example, the import of
references and fulltext documents from digital libraries, gathering metadata from
documents as well as the organization in a database and annotation of literature.
Additionally, properly formatted citations should be provided in various styles by
the software. Literature management tools support the work with literature objects
by providing functions to arrange them logically, for example, in a hierarchic folder
structure, linking literature objects and in most cases provide a fulltext search for all
organized literature objects and options to annotate them. In this paper the bundle
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of reference and fulltext documents will be called a literature object. Literature
objects are managed with the help of a PDF-manager as introduced by Mead and
Berryman (2010). A PDF-manager is a software application that manages not only
a reference but also mainly fulltext documents in PDF-format. Unfortunately, as
described by Hull et al. (2008), metadata support for retrieving correct references
into PDF-manager software is error-prone: There is no “universal method to retrieve
metadata. For any given publication, it is not possible for a machine or human to
retrieve metadata using a standard method” (Hull et al. 2008, p. 8). Also there are
various options how metadata can be represented. The PDF-format itself only offers
insufficient and limited metadata fields to embed metadata and as a consequence
this feature is used only rarely according to Howison and Goodrum (2004).

Apart from new ways of organizing and managing literature the way of publish-
ing changes: Glänzel and Schubert (2004) examined that in the 1980s about 25 %
of all publications had only one author. This percentage decreased to 11 % until
the year 2000. The average journal publication in 2011 had more than four authors.
In the field of computer science single author publications represented only about
15 %, the majority was written by three and more authors according to Solomon
(2009). However, the most common used literature management tools operate as
user desktop applications with proprietary and restricted sharing and collaboration
features. Even worse is the situation on the tool support side for extended use-cases
with requirements such as the circulation of literature within the scope of fair use.
One application for this requirement could be the temporary access to the authors’
cited literature by the lector, reviewer or editor of the publication within the review
process. Another use case is the support of collaborative literature work to facilitate
the activity of writing a multi-author publication.

In order to improve the part of collaborative literature work we developed
the LitObject middleware. The LitObject middleware serves as a foundation for
various extended services that require a structured access to literature objects. As
an example for an extended service we present the utilization of the LitObject
middleware as a cogenerated data basis for citation networks.

2 A Simplified Publication Process

For a better motivation and understanding of the necessity for a middleware for
literature objects we introduce a simplified publication process as depicted in Fig. 1.
A detailed conceptual description of the publication process with an emphasis on
the author’s and editor’s tasks can be found in University of Chicago Press (1982).
The high-level perspective process consists of four main subprocesses:

In the first subprocess Creation the article for the first submission is prepared.
This subprocess includes literature work, particularly retrieving literature objects
and using references in the written document. After submission of the article
the subprocess scientific quality management (SQM) starts. SQM includes several
subprocesses such as the whole review process including the prior selection of



Collaborative Literature Work in Publication Processes 613
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Fig. 1 A simplified publication process

appropriate reviewers as well as returning the submission to the author(s) for
improvement, correction and submission of a camera ready version, editorial
decisions about the orientation and corresponding selection of submissions and, last
but not least, all tasks of a production editor as key person for the timely completion
and coordination of the volume. The subprocess Distribution concentrates on the
technical publication steps starting with the final typesetting of the submission
for print and online publication followed by tasks for the correct classification,
indexing as well as DOI handling and generation, respectively, as well as provision
of reference metadata for usage in libraries, online catalogs, search engines and
literature management environments. Also traditional ordering and shipment pro-
cesses in combination with logistic, payment and accounting services are affected.
Tasks in the Distribution subprocess are commonly executed by personnel in
publishing companies, SQM usually by academic volunteers and writing articles
in the subprocess Creation by authors. Finally, in the Consumption subprocess the
corresponding publication is found, retrieved, (delivered and payed), read, filed and
cited. This subprocess also includes usage monitoring as feedback for authors and
the editorial board.

2.1 Challenges in the Publication Process with Regard to
Literature

Challenges in the Creation subprocess are: How can past literature searches be
rediscovered? How can literature objects be shared in multi-author publication
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scenarios and how, in general, can the result of literature searches executed
by scientists or students be stored permanently? How can process information
be gathered and used for process improvements through extended services (e.g.
cogeneration of citation graphs, machine-learning, etc.)?

Reviewing as well as editorial work in the SQM subprocess includes checking
and at least partially reading the author’s cited literature. This leads to a repetition
of work as authors, reviewers and editors have to search, find and retrieve the same
document for a proper citation check or further discussion about the content of the
publication. The subprocess SQM also implies, strictly speaking, the documentation
of scientific research (e.g. lab books, videos, recordings, printouts of measurement
instruments, software, data sets) and preservation of all work that the publication
refers to and is based upon. Because of different subscription contracts not all
scientists involved in the publication process have access to the same literature
bundle needed in the SQM process. Therefore, the option to submit a bundle of
written document and used literature in combination with a (time-limited) access
permission for all affected roles is attractive for the subprocess SQM.

The third subprocess Distribution deals with enhancements in the generation
and provision of the several types of metadata. To possess an increasing data basis
of submissions and corresponding literature that already might be classified can
support applications and research in the fields of automatic classification, indexing,
clustering and linking of related literature.

In the last subprocess Consumption questions arise how literature management
tools can be integrated in the cycle of retrieving literature and submitting it to the
LitObject middleware. Especially current approaches to import literature objects
in literature management tools such as Zotero or Mendeley are mostly based on
individual web-crawlers for each publication website system that have to be updated
after every minor update in the website structure of the publisher. The idea of
individual web-crawlers has already been pursued in the research project UniCats
(presented by Lockemann et al. 2000) where a “wrapper generator” supported the
development.

A more appealing approach would be to embed information directly into the
website such as DublinCore tags, ContextObjects in Spans (CoIns) or Highwire
Press Tags to name a few. However, in the current development state they either
have no support to link a reference to fulltext documents, are lacking proper
transformations to common reference data formats such as RIS or BibTeX, have
ambiguous fields or do not support the description of various documents on one
page such as the description of a website for a collection of papers. They are good
to promote information about the element in question on the homepage but, at the
moment, they should not serve as a solid metadata basis for usage in scientific
publications. The main problems in this process are the error-prone and often
irreversible transformations between the different metadata formats as stated by Hull
et al. (2008, p. 7).
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3 The LitObject Middleware

In response to the challenges of Sect. 2.1 we propose the LitObject middleware as
a system component which automates the transport and transformation of literature
objects as shown in Fig. 2. The key idea is that the LitObject middleware acts as a
central system with webservices between the various literature management tools
and digital libraries as well as a repository for the publishing process (Fig. 1).

The system as presented in Fig. 2 has three main system boundaries: The first
subsystem boundary is the local literature management software (illustrated by
two literature management software applications). The second subsystem is the
middleware, the third subsystem is an extended service. In this paper we describe
a system for the cogeneration of graphs in Sect. 4 as an example for an extended
service.

Our solution to the problems of Sect. 2.1 is to keep the organization of literature
on an individual level with local literature management software. The local literature
management is extended by a plugin that adds an export of literature objects to the
middleware (as presented in Fig. 3). The exported literature objects can be acted on
(e.g. display or edit) by a website that accesses the LitObject middleware. Through
the website literature objects can be imported and exchanged by local literature
management systems, digital libraries and extended services.

To avoid the creation of duplicates with every import from the website and to
provide not only an import, but also a notification mechanism that automatically
detects changes on the side of literature management tools as well as the server
side, the plugins could be extended by a synchronization mechanism as indicated
by the dotted line in Fig. 3.

uses
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DownloadSearch

Digital Library

Search
Store
Organize

Import

Import Export

Dataservice for
cogenerated Graph

Author 2Author 1

Display/Edit
Entries

Export

Import

Reference- and
Attachment Management

Literature Management

Ordering/OrganizingAnnotate

Local Literature Management 
Software 2

Extended ServiceLitObject MiddlewareLocal Literature Management Software 1

Fig. 2 System diagram of a middleware for literature objects



616 L.O. Burkard and A. Geyer-Schulz

Zotero
   A

ZoteroPlugin

Zotero
   B

ZoteroPlugin

Mendeley
   C

MendeleyPlugin

LitObject
Middleware

Website

Extended
Service 1

Extended
Service 2

Export

Import

Access
Data

Synchronization

Fig. 3 Component structure for the LitObject middleware

The LitObject middleware follows the design pattern of a resource oriented
architectural style as described by Fielding (2000). The main concepts of a resource
oriented architecture (RESTful architecture) are a client server model with a
separation between a client that requests data from a server utilizing the HTTP
protocol (Fielding and Reschke 2014b), statelessness that means not to handle any
session context on the server side, resource identification, a uniform interface, self
describing messages and hypermedia. According to Pautasso and Wilde (2011) a
resource is everything that is “relevant for an application (and its state)”. Resources
have an identifier resolved by a uniform resource identifier (URI) (Fielding and
Reschke 2014a). Resources have a representation for their data format. Usually the
Java Script object notation (JSON) or the extended markup language (XML) are
used for this purpose. A client interacts with a resource through its representation
by using the methods of the HTTP protocol: GET for retrieving, PUT for updating,
POST for creating and DELETE for deleting resource elements. The application
state is handled by using links within the representation that guide the usage of the
webservice.

The LitObject middleware follows the introduced constraints. We have identified
two main resources (see Fig. 4 for a detailed overview), the items resource that
hosts literature objects and the collections resource which serves as a named
collection for a set of corresponding literature objects. Both the items and the
collections resource have instances (with identifiers) that are depicted by
<item-id> and <collection-id> in Fig. 4. The item resource has three
subresources refersto, bibtex and attachments. The refersto resource
is itself a link list to other literature objects. The literature object is described
by its reference at the resource bibtex. Fulltext documents that are part of the
literature object are described and hosted at the attachments subresource. The
collections resource, on the other hand, is a list of links to one or more
literature objects identified by a URL. A plugin for a local literature management
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Fig. 4 URL structure of the LitObject middleware

application, like Zotero or an extended service, interacts with the URL structure via
a JSON representation utilizing the HTTP verbs GET, POST, PUT and DELETE.

4 Cogenerated Citation Networks with the Help of the
LitObject Middleware

In Sect. 3 we have introduced the LitObject middleware that serves as a generic
service to interconnect various literature management applications and extended
services. One example of an extended service for the LitObject middleware is the
provision of a technical infrastructure for cogenerated citation networks.

There exist various citation link networks such as the Arxiv HEP-PH citation
graph (Stanford University 2003) and also service interfaces to request link
databases, for example, the ArnetMiner system as presented by Tang et al. (2008)
The approach for building up the data set in the ArnetMiner system is to extract
researcher profiles at first, then querying databases with the researchers’ name as
identifiers and storing these information in a database. An alternative approach
is followed by the LitObject middleware by utilizing the exported literature
objects of the (locally) organized literature. Three use cases can be distinguished
that are supported by a naming convention for collections following the scheme
<collection/paper-name>:<linktype>.

1. The author’s own paper: What did he cite: <collection-name>:cited
2. The author’s retrieval process: What literature did he find relevant for the topic?

This is a latent construct: <collection-name>:relevant
3. The author follows the citation structure in papers. How does he record the

citations he followed: <paper-read>:citationfollowed

As depicted in Fig. 5, at first authors organize their literature with the help of
a literature management software such as Zotero following the naming convention
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Fig. 5 Steps for utilizing the LitObject middleware as data basis for citation networks

introduced above. In the second step, they transfer their literature objects to the
LitObject middleware. As shown in Fig. 4 there are two main resources in the
LitObject middleware: one for the literature objects (items) and the second one
for collections (collections). The extension for the literature management
software exports at first all literature objects to the items resource and in a
second step creates the same link structure as the local managed collections at
the collections resource on the LitObject middleware side. As these imported
literature objects as well as their arrangement in collections are saved in a database
in a structured manner their structure is exposed by an API and—following the
REST paradigm of various representations of resources—in different data formats,
for example, the pajek data format or as comma separated values (csv) data.

5 Discussion

Other extended services—for example, as depicted in Fig. 3 on top of the component
“Website”—are at least technically possible, e.g. the generation of an organization-
wide search index or an internal repository. Also the LitObject middleware can serve
as foundation for scientific projects in the fields of information retrieval, machine
learning or clustering.

Key reasons to continue the development on the LitObject middleware are
that the usage of the commercial sharing and collaboration features of Mendeley,
Zotero, etc., limits research capabilities, forces vendor lock-in and exposes research
activities permanently as well as reduces interoperability between various literature
management tools.

Additionally there are legal as well as technical challenges: Within the sphere
of “fair use” the exchange of full literature objects is allowed. However the
restrictions of fair use are ambiguous, differ between countries and are non-uniform
between publishers. Already the exchange of (digital) literature objects within one
organization unit is sketchy as some Libraries advice against the sharing of literature
as for instance the Health Science Library of the University of North Carolina
(2014). In this technically focused publication a deeper exploration is beyond the
scope, however, an exhaustive evaluation of these topics by country specific lawyers
would be desirable.

On the technical side as stated by Hull et al. (2008), there still exist issues how to
identify literature objects globally as not every object has a digital object identifier
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(DOI), international standard book number (ISBN) or a uniform resource name
(URN). The questions how to get metadata and in which representation is solved
technically, for example, by the unAPI specification (Chudnov et al. 2006b) that
is described and motivated more in detail in an article by Chudnov et al. (2006a).
Unfortunately, unAPI is lacking the linkage to fulltext documents, however, only a
small adaptation is necessary to support this requirement as well. Finally, citation
network analysis and visualization services (e.g. Pajek) can utilize this interface.

6 Summary

In this paper we have introduced the LitObject middleware that is a RESTful web
service to interconnect various literature management software tools. The aim of
the LitObject middleware is to improve collaborative literature work for advanced
publishing processes. The LitObject middleware offers the possibility to import
and export literature objects. Literature objects are the combination of a reference
in a data format such as BibTeX and one or more fulltext document that belong
to the reference. Additionally, literature objects can also be grouped together in
collections. On top of the LitObject middleware various extended services are
possible. As one possible extended service we presented an application for the
cogeneration of citation networks. With the help of many authors who import
literature objects into the LitObject middleware it is possible to build up a network
of citations and clusters of literature that belong to a particular topic.
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Subject Indexing of Textbooks: Challenges
in the Construction of a Discovery System

Bianca Pramann, Jessica Drechsler, Esther Chen, and Robert Strötgen

Abstract The purpose of this paper is to present the steps on the way of finding
a suitable classification system for subject indexing of textbooks and to integrate
this into a resource discovery system. Textbooks are usually not indexed at great
length. Yet, the research library of the Georg Eckert Institute has a unique status
regarding the range of collected textbooks. This makes a detailed subject indexing
indispensable. The currently used local solution shall be replaced by a more
standardised solution to serve greater dissemination and compatibility of our data
and to simplify the search process for the user.

1 Introduction: The Georg Eckert Institute and the Research
Library

The Georg Eckert Institute for International Textbook Research (GEI), a mem-
ber of the Leibniz Association, conducts application-oriented, multidisciplinary
research into textbooks and educational media, informed primarily by history and
cultural studies. The central mission of the Institute is to conduct research into
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historical, political and geographically significant depictions in textbooks and other
educational media used for schools in order to further the understanding of the
past, the present and the future. The GEI equips and supports its global partners
through knowledge transfer resources and its research infrastructure provides an
impetus to research into textbooks. At the heart of the Institute is our research
library, around which much of the digital research infrastructure is built. It contains
the most comprehensive collection in the world of textbooks and curricula for
history, geography, social studies/politics and religion/philosophy/ethics from 160
countries, in addition to primers and early readers. The library inventory currently
lists close to 253,000 items; of which the textbook collection comprises the majority
with 178,000 volumes, the remaining 75,000 volumes being academic literature. In
recent years the library has developed into an acclaimed, modern research facility,
with researchers and academics from around the world attracted by its accessibility
and high quality provision of services. The next chapter describes the challenges
concerning the indexing of textbooks—for the librarian and the researcher.

2 The Challenges of Subject Indexing Textbooks
and Curricula

The condensed and canonical character of textbooks gives them central significance
in academic, political and educational respects. Such a specialised collection
presents its own particular challenges, not only in terms of international search and
acquisition but also with regards to cataloguing and indexing the material. Without
this extremely laborious process, researchers would not be able to find a specific
textbook among our vast collection.

Why is the indexing of educational media according to content so vital? With
textbooks conventional search parameters are of little use: textbooks and curricula
frequently share the same titles, and those titles are not always revealing. Textbooks,
in particular, are typically published in series, and the precise age group for which a
textbook has been designed is often not immediately apparent. Using the publisher
or author as a search criterion is not a valid alternative as these are commonly
not known to the user. Universal numbers, such as ISBN numbers, are only rarely
assigned to materials such as curricula (or known to the researcher) so that they
cannot be used as search parameters either. An additional complicating factor is
the absence of any similarly comprehensive or international collection of textbooks
and curricula in Germany, meaning that the cataloguing regulations of the German
National Library do not contain detailed subject cataloguing instructions for such
material. Here, textbooks are in the same category as, for example, calendars of
events or annual reports of activities. They are only indexed very generally by
subject group. Yet, we prefer a comprehensive approach as we believe that the broad
scope of our textbook collection makes detailed subject indexing of this material
essential, especially with regards to the exacting and differentiated theories to be
investigated with its help.
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By virtue of its extensive collection and detailed indexing of educational media
for schools the GEI’s research library has acquired a unique status. Indexing
textbooks and curricula according to country, school subject and target age group
enables the material to be collated to an internationally comparable standard
according to fundamental and substantive criteria. As very few institutions submit
this material to such a detailed subject indexing process, there is currently no
suitable classification scheme available that encompasses the standardised entry of
the criteria mentioned above such as country, school subject and education level. As
a result, the GEI currently uses a classification system designed in-house, which
can only assign records at a local level. The desire for greater standardisation
and improved metadata compatibility, as well as the need for a sustainable and
expandable system of textbook classification, has led to the search for similar,
compatible standards for country/region, educational level and school subjects. The
overall objective is to continue to improve usability in terms of searching in and
working with the collection and to achieve a greater degree of internationalisation.

3 Reviewing Classification Systems

How did we look for a new classification system? What were our criteria? The
new classification system should be internationally used and widely disseminated;
it should be extendable and compatible with other systems; and last but not least
it should be user-friendly and be available in different languages. Concerning the
content, we were looking for compatible standards for country/region, educational
level and school subjects. After formulating these requirements and determining
the criteria for a new system of classification, existing classification systems were
reviewed and assessed for their suitability to detailed textbook indexing. In addition
to well-established standard systems such as Dewey decimal classification (DDC)
or systems widely used in Germany, such as Regensburger Verbundklassifikation
(RVK) and Basisklassifikation (BK) (Balakrishnan 2013), specialised educational
classification systems and thesauri, like ISCED fields of education and training
or UNESCO IBE education thesaurus, were consulted. A review of the different
models quickly made apparent that no existing classification system would be
applicable for the GEI; there were none that fulfilled all prerequisites equally
well or allowed the degree of detail required for the criteria of country, school
subject and education level. Educational studies classifications and thesauri are well
suited to mapping academic subjects, but do not contain the desired geographical
specification, which is necessary to identify the country or region in which a
textbook or curricula is approved or applicable. On the other hand, the well-
established standard systems were very complex, yet not suited to index textbooks
in the needed detail.

These observations prompted the decision to subdivide the subject classification
into different categories. This allowed those components from other classification
systems that best served the index specifications to be combined, whilst also
fulfilling the requirements of a standardised, internationally distributed and user-
friendly classification system.
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Table 1 Mapping of possible thesauri

Local classification

ISCED (UNESCO 2013;
UNESCO Institute for
Statistics 2012)

UNESCO-IBE (UNESCO
2007)

u030 Geography 0521 Environmental sciences 680 Social studies:
Geography instruction

u050 History 0222 History and archaeology 680 Social studies: History
instruction

u070 Social/political studies 0312 Political sciences and
civics

680 Social studies: political
education/social studies

u091 Values education 0223 Philosophy and ethics 682 Values education: moral
education

The decision was made to code the geographical units according to a standard
based on ISO 3166-2 (Scheven 2013) as defined by the International Organisation
for Standardisation (ISO). This ISO standard allows further subcategories of
countries, which had not been possible with the standards applied thus far or the
internal notation. Curricula, in particular, need to be classified according to the
area for which they are valid (in Germany, for example, each of the 16 Länder
has a different curricula), but many textbooks also require detailed classification
of geographical validity. In federal countries the validity of curricula and textbooks
frequently only applies to regional subunits of the country. Such information must
be precisely indexed in order to make it available to researchers as a search option.
This ISO standard was the only system that fulfilled this specific requirement.

The International Standard Classification of Education (ISCED) (Schneider
2008a, b) proved to be a suitable tool with which to define education level. The
ISCED was developed by UNESCO with the aim of classifying and defining school
systems and types of schools; it endeavours to enable comparisons between interna-
tional qualifications, making it particularly suitable for comparing the international
educational levels of textbooks and curricula. Corresponding classifications from
the mappings produced by UNESCO, to which countries refer when compiling
the Report of National Education Data, can be of assistance for subject indexing
and provide a suitable framework for the classification of education systems in the
various countries.

Defining terms for school subjects is a more difficult process because of the
differences in subject classification and assignation of curricular material between
countries/federal states. Table 1 uses two educational studies thesauri to demonstrate
the complexities of this issue.

The process of deciding on terms for school subjects is still in progress. In order
to find a solution that meets all requirements and is internationally acceptable,
European partners—at the beginning EDISCO (Italy), Emmanuelle (France) and
MANES (Spain)—are invited to contribute to the process. These partner institutions
also collect textbooks, albeit restricted to specific countries, and therefore have
similar requirements and encounter corresponding challenges in the classification
of the school subject to which a textbook relates.



Subject Indexing of Textbooks 625

4 Examples of Implementation and Application

The decision to use different classifications allows a subject indexing of textbooks
and curricula which is both custom-made, and yet still standardised. Equally, classi-
fying media in this way enables its straightforward and user-friendly integration into
diverse research contexts. Standard classification allows, therefore, for a structured
search, according to applicable country, school subject and educational level, in
the “Curricula Workstation” (Georg Eckert Institute for International Textbook
Research 2015a), a database of curricula information. The Curricula Workstation
was developed by the Georg Eckert Institute as part of a project sponsored by
the German Research Foundation (DFG). It makes a very important contribution
to textbook and educational research infrastructure by making a valuable, yet
largely inaccessible, research source such as curricula permanently accessible and
searchable.

The fundaments of the classification system also provide for structured search
options in the GEI-DZS database (Georg Eckert Institute for International Textbook
Research 2015b), a directory of the textbooks approved in each of the German
federal states, which simplifies the search for textbook approval data.

However, this model of subject indexing is of particular importance in the
presentation of media in the GEI’s discovery system (Drechsler and Strötgen 2014).
The TextbookCat research tool (Georg Eckert Institute for International Textbook
Research 2015c), which has been developed through the DFG-funded project
“The Promotion of Outstanding Research Libraries”, is intended to supplement the
library’s OPAC and to considerably improve the search options available for the
library’s textbook collection. Unlike the OPAC, it allows users to browse holdings.
It is based on the open source discovery software VuFind and enables over 178,000
titles from the library’s unique textbook collection to be searched through, according
to variable criteria such as country, federal state, education level and subject. The
research tool’s search interface is available in English as well as German, in order to
accommodate the library’s international target group. TextbookCat was developed
to meet the specific needs of researchers in this field and is carefully tailored to
textbook searches.

Our intent is to amalgamate our current holdings of data and subsequently enable
researchers to conduct detailed international searches for textbooks. At present our
solutions are primarily based on proprietary solutions and are not yet available for
external application. We plan to enable the integration of other databases through
the development and adoption of international standards.

5 Outlook: Standardisation as the Route to Becoming
a “Global Textbook Resource Centre”

The application of standardised and internationally recognised classification sys-
tems results not only in our own infrastructure (Strötgen 2014) better matching the
research requirements of our users but also facilitates the Institute’s plan to integrate
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textbook metadata from other institutions into a comprehensive, international
catalogue with the help of the “TextbookCat” which is based on the discovery
system software VuFind. The standardised indexing and classification of textbooks
is a preliminary step in the long-term goal of consolidating metadata, and enables
the necessary commutability of data. These plans and preparations are rooted in
the Georg Eckert Institute’s key objective of creating a Global Textbook Resource
Centre (GLOTREC); a vision that would provide an international research centre
for textbook resources and support researchers around the world. The project in
its finished form will comprise three parts; the first to include the construction
and operation of a textbook centre. The aim of this will be the standardisation
and the virtual amalgamation of existing textbook collections, as mentioned above.
This will represent a major advance for this field of research as in many libraries
textbooks are not recorded separately and the generalised nature of their titles
renders them laborious to locate. The Georg Eckert Institute also envisions a
methodical examination of the collated textbook collections of its varied partners
in order to detect any gaps and will supervise targeted acquisition, particularly
of non-European textbooks, to rectify them. A workshop was held in autumn
of 2014 with representatives from relevant textbook collections (EDISCO/Italy,
Emmanuelle/France and MANES/Spain) who discussed the likely design and
organisation of this priority field.

The “Global Textbook Resource Centre” will not be confined to a central
catalogue of textbooks; its second key area will be a “Centre for Digitisation and
Research” through which the availability of full text versions will be intensively
developed in response to research needs. The Institute will contribute its own
digitised full text versions and continue with its digitisation programme, but as a
centre of competence for textbook digitisation it will also support the process in
other countries and use its own programme to drive the digitisation of particularly
important textbook examples in other countries and collections.

GLOTREC’s infrastructure project will be the third key area and will further
underpin the Georg Eckert Institute’s role as a central hub and forum for textbook
research. Guest academics will be invited to Braunschweig to work with the
Institute collection, but also with its researchers, and to give regular feedback on
the user-friendliness of the research infrastructure. Findings of research conducted
by, and with, guest academics will be discussed at conferences and workshops.
Commensurate with contemporary academic desideratum, these plans will fortify
and further improve the position of the Georg Eckert Institute as a significant
international social research facility.

6 Summary

The paper tried to formulate the various steps taken on the road to a standardised
classification system for textbooks. At the beginning, looking for an integral
solution, we thoroughly examined the more commonly used classification systems.
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Yet, we soon realised that a combination of several standardised systems seemed
more future-oriented. This combined classification system is already effectively
in use in some applications at the GEI. One example is the GEI’s “TextbookCat”
which is based on the open source discovery software VuFind and enables the
GEI’s textbook collection to be easier searched, considering the specific needs
of researchers in this field. The next years will see further extensions of the
classification systems and the reduction of deficits especially in the field of subject
classification, a further internationalisation and an extended exchange with partners
from all over the world. The major goal is to build an international textbook
catalogue with integrated data provided by institutes from other countries that also
collect textbooks.
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The Ofness and Aboutness of Survey Data:
Improved Indexing of Social Science
Questionnaires

Tanja Friedrich and Pascal Siegers

Abstract In this paper we adopt a user-centered indexing perspective to propose
a concept for the subject indexing of social science survey data. Operationalization
processes in survey development mean that the constructs being studied are mostly
hidden in the verbalization of the questionnaire (latent subject content). Indexable
concepts are therefore found at two different semantic levels that, inspired by
research on the indexing of pictures (Shatford, Cat Classif Q 6(3):39–62, 1986), we
treat as the ofness and aboutness of survey data. We apply a syntax of term linking
and role indicators, combining directive terms (e.g., attitude, experience, perception)
with subject terms (e.g., corruption, foreigners). Each directive and subject term
combination represents a retrievable unit of interest to the secondary researcher.

1 Introduction

While data documentation is a core responsibility of specialized institutions such
as data centers and data archives, principles of subject indexing have largely
been developed in the library and information science (LIS) community, and thus
are highly adapted to textual material. As research data are mostly numerical it
is all but impossible to index this kind of information according to established
subject indexing principles. There is a common understanding that research data
(or datasets) represent a type of information which is distinct from books or
journals (Gold 2007) and that their nature is highly discipline-specific (Borgman
2012). Therefore, any attempt to develop documentation standards for this kind of
information should consider the characteristics of research data on a discipline basis.

We investigate specifics of social science survey data drawing on Shatford’s
theory for the indexing of pictures, we propose a concept of syntactic indexing
for this type of data. To familiarize the reader with this information type and to
identify aspects that are relevant to its indexing, the following section deals with
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the characteristics and usage of survey data. In Sect. 3 we outline Shatford’s theory,
adapt it to the indexing of survey data, and present our concept of syntactic indexing
on these grounds. The section closes with a few remarks on possible retrieval
scenarios. Finally, we draw some conclusions and make suggestions for future work.

2 Survey Data: Its Characteristics and Its Usage

Crucial to user-centered indexing (Fidel 1999) is that indexers need to know and
investigate users’ information needs and seeking practices. We assume that a user
orientation is all the more important when it comes to the indexing of non-text
material or, in our case, research data. A mere document-oriented approach to
indexing1 would, in contrast, pose several problems, not least the fact that most
research data are numerical data. Consequently, our point of departure is the
question: How do users look for data?

Social science survey data2 are distributed for purposes of secondary use by data
archives. In these archives, field experts (social scientists) as well as experts in data
documentation give support to secondary researchers who are looking for data that
are suited to their research interests. From their experience in advising researchers,
these experts know the cornerstones of survey data seeking. With regard to indexing,
this knowledge gives valuable insights that should help us identify indexing rules
that promise to provide optimal retrieval results.

Simply put, survey research is about measuring the existence of or the rela-
tionship between social phenomena. As a distinct type of information, survey data
have several characteristics that have a direct influence on how these particular data
should be treated in documentation. These characteristics are best understood by
envisioning the process of survey research. Basically, this research process consists
of the formulation of a theoretical problem and hypothesis, data collection, data
analysis, and support or rejection of the initial hypothesis or theory.3 For our
purposes, the first half of this process is the most interesting one, that is, the
theoretical evolvement of a research problem and the development of an instrument
for data collection. This phase of research design bears the content inherent in
the data, because the topics of surveys are not contained in the datasets, but in
the surrounding materials, like study descriptions, primary publications, and—most
importantly—the questionnaire. The questionnaire contains all the measurements

1A comparison and detailed description of the two opposed indexing approaches of “user
orientation” and “document orientation” is given by Fidel (1999).
2Survey data are only one of several forms of data that are used in empirical social research. Other
social science data are, for example, data from observation, from depth interviews, focus groups,
or experiments (cf. Blair et al. 2014).
3This description of the research process follows Bernard (2013). There are more detailed accounts
of the process available, for instance in Bryman (2012).
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that have been used in the study. Thus, if we assume that conceptual analysis in
subject indexing determines “what a document is about—that is, what it covers”
(Lancaster 1998), the key to the aboutness of survey data is the questionnaire.
Taking the secondary data user’s perspective, we know from archival practice that
even though survey data are archived and retrieved study-wise, users are very rarely
looking for entire surveys, but rather for particular measurements of constructs that
have been employed in a study (i.e., one or a few questions that have been asked
in a survey). For successful retrieval and thus subject indexing this means that
the appropriate indexing level is not given by the complete study itself but by the
individual measurements of the studied constructs. Since these are reflected in the
questionnaire, the latter should be the primary information source for the indexing.

What a study is about or what it covers can be traced back to the social
phenomena that the primary investigator intended to study. But often they will not
appear literally in the questionnaire, because only simple social phenomena can
easily be measured by directly asking respondents about them (examples are age,
gender, or household size). Most other social phenomena (or constructs, cf. Bernard
2013) are more complex and have to be broken down into simpler variables in order
to be measurable (Bernard 2013). This process, referred to as operationalization,
translates the constructs into a measurement. For example, a researcher would be
ill-advised to collect data on xenophobia by asking respondents “How xenophobic
would you say you are?” because either the respondents would not understand the
term or, for reasons of social desirability, might refrain from giving an accurate
self-description (Bernard 2013). This example shows that a construct which is as
complex as xenophobia needs to be operationalized in order to become measurable.
For instance, one suitable question within a measurement of xenophobia might be
“Do you think that there is more crime due to foreigners living in our country?”
Survey questions of this kind have a clear content that is easily accessible through
the question wording (i.e., crime, foreigner), but they also refer to an additional level
of meaning that is the construct (i.e., xenophobia).

How does all this affect the data seeking practices of secondary researchers?
Researchers who do not collect their own data still develop their research questions
and hypotheses from a theoretical problem. They then look for individual data that
refer to specific variables of interest for their own research. Therefore, we can
assume that secondary data users search using terms that depict complex constructs
(like xenophobia) as well as terms that depict measurements (like crime and
foreigners).4 These two cases resemble the process of operationalization in survey
design. We view them as two subject layers that relate to the same data. For indexing
purposes this means that, while the questionnaire is the primary information source,
it is crucial to realize that the questions usually do not literally contain the studied
constructs but rather verbal representations or paraphrases. The challenge for subject
indexing is to capture both subject levels in indexing, the construct level and the
measurement level. A theoretical foundation for the problem of indexing different

4Exemplary tests that we ran with log files from the GESIS data catalogue support this assumption.
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subject levels can be found in the work of Sara Shatford Layne on the indexing of
pictures.

3 Indexing Survey Data

3.1 Ofness and Aboutness According to Sara Shatford Layne

In order to capture the two subject levels of survey data analytically, we draw on
an indexing theory that has been developed for indexing pictures (Shatford 1986;
Shatford Layne 1994). The underlying motivation of Shatford’s theory was that
“[t]he subjects of pictures have essential qualities that make them different from
the subjects of textual works, and it should be possible to improve access to those
subjects if their qualities are clearly understood” (Shatford 1986). As we elaborated
earlier, this is also true for survey data and, as our analysis shows, Shatford’s ideas
can to some extent be applied to our indexing problem.

Building on earlier work by art historian Erwin Panofsky, Shatford developed
a theory of indexing pictures, considering different aspects and attributes that she
identified to be particularly important. She named four classes of attributes that
needed to be considered in picture indexing: biographical, subject, exemplified, and
relationship attributes (Shatford Layne 1994). Not all of them are applicable in our
context, but the subject attributes are. Shatford also calls them aspects of a picture
and defines three of these aspects as of interest in indexing: ofness and aboutness of a
picture, generic and specific identity of a picture, and four subject facets of a picture
(time, space, activities, events). The aspects that are of interest in the case of survey
data indexing are ofness and aboutness. According to Shatford, it is possible to
distinguish analytically (at least) two subject levels or meanings of pictures. The first
level refers to the concrete and objective subject or factual meaning of a picture, that
is to say, the objects that are depicted. Shatford calls this subject level the ofness of
the picture. She then uses the familiar term aboutness to refer to another level which
is abstract and subjective and which can also be called the expressional meaning of a
picture. Shatford uses examples to illustrate her theory: “[. . . ] an allegorical image
might be of a man and a lion, but be about pride [. . . ]; or an image of a person
crying might be about sorrow” (Shatford Layne 1994). In other words, ofness refers
to what is visibly depicted in the picture, while aboutness refers to an intended
meaning that is not visible in the picture, but identifiable on the grounds of world
knowledge. We found an impressive similarity to the subject levels of survey data
in this theory and adapted it for our purposes.
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3.2 The Ofness and Aboutness of Survey Data

Subject indexing of survey data can benefit from Shatford’s theory because here
too the indexer is dealing with two subject levels. The first level of meaning in
survey data refers to the literal question wording, i.e., the manifest content of
the questionnaire. This corresponds to the ofness of a picture. The second level
of meaning is the construct that the primary investigator wishes to measure. As
described above, in many cases the construct is not directly accessible from the
question wording—it remains latent. This corresponds to the aboutness of a picture.
The major challenge for subject indexing of survey data is to capture the latent
content of the questions, i.e., aboutness.

For these reasons, we suggest an approach to indexing aboutness of survey data
that is based on the questionnaire but which approximates the latent content of the
data. We mentioned above that operationalization is the process that translates the
construct into a measurable unit. A closer look at this measurable unit reveals that
it has two components that have been deduced from the construct: the topic and
the attribute of the measurement. To illustrate this point somewhat further: It is not
possible to “measure” a table. The attributes of a table that are of interest (i.e., the
height, width, weight) have to be specified (Schnell et al. 2011). Conversely, it is not
possible to measure the height, etc. if the object which the measurement addresses
(e.g., tables or chairs, etc.) has not been specified. Thus, a useful operationalization
defines a measurable unit corresponding to a theoretical construct by providing
information on the topic of the measurement (e.g., foreigners) as well as on the
attributes of the measurement (e.g., attitude, behavior, feeling, etc.). The measurable
unit as a combination of topics and attributes represents the subject content of the
construct. We argue that indexing the topics and the attributes of the measurement
with combinations of thesaurus terms5 enables a good approximation of the
aboutness of survey data (e.g., ATTITUDE, FOREIGNERS) whereas indexing only
the topic of the content (e.g., FOREIGNERS, CRIME) would merely capture the
ofness of the data.

Identifying the aboutness of a measurement often requires more than simply an
evaluation of the text of one particular question. For instance, the European Values
Study (EVS 2011) asks respondents whether they agree with the statement “Both
the husband and wife should contribute to household income” (see v164, Table 1).

The topic represented in the question wording, i.e., the ofness of the question,
might be indexed using the thesaurus terms HOUSEHOLD INCOME and MAR-
RIED COUPLE. This would be the literal manifestation of the operationalization
of a construct, as it is found in the questionnaire. The disadvantage of indexing
the ofness of this question is that the selected terms are ambiguous in that they
suggest an indicator of household income for married couples more than an opinion

5In order to provide satisfactory recall, we use a social science thesaurus that allows us to control
for synonyms and term relationships.
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Table 1 Question Q48 from EVS (2011)

Agree
strongly Agree Disagree

Disagree
strongly

Don’t
know

No
answer

v160 A pre-school child is likely to
suffer if his or her mother works

1 2 3 4 8 9

v161 A job is alright but what most
women really want is a home and
children

1 2 3 4 8 9

v162 Being a housewife is just as ful-
filling as working for pay

1 2 3 4 8 9

v163 Having a job is the best way for
a woman to be an independent
person

1 2 3 4 8 9

v164 Both husband and wife should
contribute to household income

1 2 3 4 8 9

Q48 People talk about the changing roles of men and women today. For each of the following
statements I read out, can you tell me how much you agree with each. Please use the responses on
this card

on who should contribute to the income of the household. But the question format
and the context contain more information to help uncover the latent content of the
question. First of all, the fact that for this question answers are to be given on a four
point scale ranging from 1 = I strongly agree to 4 = I strongly disagree shows that
the question is not about a behavior (i.e., earning money), but about an evaluation.
Secondly, the statement is one of several statements about the roles of men and
women (see Table 1). This shows that, in fact, the construct attitudes towards
gender roles is measured. This aboutness would best be indexed using the thesaurus
terms ATTITUDE and GENDER ROLE. The first term, ATTITUDE, refers to the
attributes of the measurement whereas the second, GENDER ROLE, stands for the
topic. To index the more specific ofness of the first statement, one could additionally
assign the term HOUSEHOLD INCOME.

As the example shows, aboutness can be revealed by systematically assessing
topics and attributes of the measurement. Identifying aboutness requires careful
examination of the context of the question; it also requires field knowledge, and
data literacy (Gray 2004). These requirements correspond to the knowledge needed
to index the aboutness of a picture according to Shatford (1986).

3.3 How to Index Ofness and Aboutness

Indexing surveys at the level of the measurement unit, as is proposed here, is very
exhaustive. That is to say, it results in a large number of assigned terms per study,
which leads to high recall in retrieval. We would also expect low precision as our in-
depth indexing should result in multiple assignment of terms. To avoid this problem,
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we propose an indexing syntax (cf. Lancaster 1998) that allows for assignment of
terms to single measurement units within one survey (term linking, Lancaster 1998)
and that combines terms according to their different roles (role indicators, Lancaster
1998). To define the role indicators we revert to the already mentioned constitutive
components of a measurement unit: the topic and its attribute. First, we use the idea
of ofness to assess the topic of the measurement. Indexing terms that represent the
topics are derived from the question wordings. We call these terms subject terms.
A subject term can be any subject area that is relevant for the social sciences. In
line with the general indexing rule of specificity (Lancaster 1998), we choose the
most specific term for each measured subject. If necessary, we allow combinations
of subject terms. Secondly, we introduce directive terms to index the attributes of
the measurements. Terms in this role can be assigned to one of four broad classes of
attributes: (1) cognition, (2) evaluation, (3) emotion, and (4) action.

These classes are based on similarities of constructs used in social sciences.
Theories of action explain (1) individual or collective behavior (i.e., actions) as
a function of (2) individuals’ perception of the social world (i.e., cognitions)
and (3) positive or negative values that individuals assign to specific objects or
behaviors (i.e., evaluations). Examples for this structure of explanations are rational
choice theory (Coleman 1986), the theory of planned behavior (Ajzen 2012), and
theories of values (for instance Schwartz 1994). Particularly in (social) psychology,
(4) emotions also have a central role in the study of individual behavior (e.g.,
Festinger’s 1957 theory of cognitive dissonance). The classes have a primarily
heuristical value because they link directive terms if they are related to the same
class of attributes (e.g., evaluations) and the same topic (e.g., immigration). For
instance, ATTITUDES and PREJUDICE describe different forms of evaluation.
Users searching for questions on attitudes towards immigrants might also be
interested in questions on prejudice towards immigrants (see Sect. 3.4).

It is important to note that the four classes are neither exhaustive nor exclusive.
In some cases assigning directive terms to the four classes might be ambiguous
depending on the specific discipline. The terms in Table 2 are preliminary sug-
gestions for directive terms with possible assignments to our four broad attribute
classes. In the first step the selection of directive terms and the assignment to
attribute classes will be based on theoretical reasoning. However, these decisions
have to be preliminary, because they have to be evaluated in the course of the
evaluation of the indexing. Evaluation will, however not lead to a firm and finalized

Table 2 Examples for directive terms from four attribute classes

Cognition Evaluation Emotion Action

PERCEPTION ATTITUDE MOOD BEHAVIOR

KNOWLEDGE PREFERENCE FEAR USE/UTILIZATION

AWARENESS JUDGMENT ANGER CHOICE

INTEREST PREJUDICE HAPPINESS INTERACTION

BELIEF SATISFACTION HATE COMMUNICATION
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list of keywords, but only to a fair starting point, because “[o]nce a vocabulary has
grown to a leveling-off point we can expect continued gradual growth, to increase
specificity and to accommodate new topics [. . . ] new terms will be derived from
the indexing and searching operations” (Lancaster 1972, 103). This means that
throughout our indexing work with the thesaurus, we will continue evaluating and
updating our directive term choices and the assignment to the classes of attributes.

We argue that we reach the level of aboutness in subject indexing of survey data
by linking directive with subject terms. The directive terms that we use are chosen
from an initially limited but extendable pool of terms that are assigned to one of the
four broad attribute classes (see Table 2) in order to facilitate faceted retrieval (see
Sect. 3.4).

The following examples show how this syntactic indexing works. The Euro-
barometer 76.1 survey includes questions about corruption in Europe. The first
sample statement is “There is corruption in the in the national public institutions in
Germany.” (European Commission 2014). The ofness of the item would be indexed
using the subject terms CORRUPTION and PUBLIC INSTITUTIONS. In addition,
the statement refers to the subjective perception of social reality which is a special
form of cognition. We would assign the directive term PERCEPTION here. In this
way we index the aboutness of the question by assigning three thesaurus terms
that have two different roles. The second sample statement is “Are you personally
affected by corruption in your daily activities?” (European Commission 2014). The
subject terms are again derived from the question wording: CORRUPTION and
EVERYDAY LIFE. In this case, the question is about personal involvement in
corruption. This is part of the broader class of action (because corruption involves
two interacting parties). The suitable thesaurus term would be EXPERIENCE. This
example shows that by adding a directive term to subject terms we can reveal the
aboutness level of survey data in subject indexing (see Fig. 1).

In practice there are some special cases that merit discussion. First, there might
be cases where there is a one-to-one correspondence between construct, question
wording, and thesaurus terms. For example, the construct life satisfaction is usually
measured by one direct question: “All things considered, how satisfied are you
with your life as a whole these days?” (EVS 2011). In this case ofness and
aboutness are not distinct, and we will most likely find the precombined term LIFE
SATISFACTION in the thesaurus. Second, some questions measure objective or

Fig. 1 Indexing measurable
units with subject and
directive terms

Measurable unit (e.g. survey question)↙ ↘
subject term(s) directive terms

Precoordination/syntactic indexing
= linked terms that are specified by role indicators
︸ ︷︷ ︸

Aboutness of survey questions
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ascriptive characteristics of the respondents (for instance age, gender, and marital
status). These objective characteristics cannot be classified with one of the four
broad classes of attributes in survey research. In many cases single thesaurus terms
will be available for indexing these questions (i.e., AGE, HOUSEHOLD INCOME,
etc.).

To sum up: we capture the ofness of each measurable unit by assigning one or
more subject terms. Linking these with directive terms reveals the aboutness of the
data. Each directive and subject term combination represents a measurable unit of
interest to the secondary researcher and makes the data retrievable.

3.4 Ofness and Aboutness in Retrieval

The system of syntactic indexing allows for various faceting mechanisms in
retrieval. For example, refinement of search results by the two role operators (subject
and directive terms) is possible. Also, a retrieval of measurements (“refine by
concept/construct”) seems interesting.

Syntactic indexing at the variable level and faceting mechanisms in retrieval are
particularly useful for question databases, where they enable users to search for
specific measurements for questionnaire design. As mentioned above, most users
in data catalogues search for very general terms like youth, crime, corruption.
Precision, however, is low for these queries because many specific measurements
that relate to the terms. We suggest two ways of post-query faceting possibilities to
the user. First, subject terms that are frequently related to the search term can be
suggested to increase the precision of the results. With respect to corruption such
terms might be PUBLIC INSTITUTIONS or EVERYDAY LIFE (see example in
Sect. 3.3). Second, the directive terms associated to a topic term can be suggested as
facets so that users can then refine the results according to whether they search
for data about accepting or offering a bribe (BEHAVIOR) or how respondents
perceive corruption in their country (PERCEPTION). Moreover, the classification
of directive terms with the classes of attributes links similar directive terms. This
allows for suggesting alternative queries. A search for attitudes towards immigrants
might be extended to the directive term PREJUDICE if both are also frequently
linked to the topic term IMMIGRANT. Thus, the classification of directive terms
improves retrieval because similarities in the measurement are revealed.

4 Conclusion

Different subject levels need to be considered when indexing survey data. These
different levels are suitably captured by the theory of ofness and aboutness. The use
of a syntax with term linking and role indicators allows for systematic indexing
at the aboutness level and enables us to make measurable units searchable for
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secondary research. Syntactic indexing of survey data permits sophisticated faceted
searching and can be a promising component of an efficient, user-oriented question
database. The indexing concept outlined here should work for surveys of individuals
as well as for surveys of organizations. It could also be adjusted to data collected by
lab experiments in social psychology or economics, or to data from observational
studies.
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Subject Indexing for Author Name
Disambiguation: Opportunities and Challenges

Cornelia Hedeler, Andreas Oskar Kempf, and Jan Steinberg

Abstract Author name disambiguation is becoming increasingly important due to
the prevalent availability of publications in digital libraries. Various approaches
for author name disambiguation are available, utilising a variety of information,
e.g., author name, affiliation, title, journal and conference name or venue, citation,
co-author, and topic information (Ferreira et al., SIGMOD Rec 41(2), 2012). Topics
can be obtained, e.g., using subject information captured in various controlled
vocabularies, classifications and mappings between them used to index publications
(Torvik et al., J Am Soc Inf Sci Technol 56(2):140–158, 2005). Research interests of
authors, evident in topics, might change over time though (Ferreira et al., SIGMOD
Rec 41(2), 2012), and thus limit their usefulness for author name disambiguation.
Here we present a longitudinal analysis of topics with respect to their suitability for
author name disambiguation. We analyse the distribution of subject headings and
classification notations taken from the Thesaurus (TSS) and the Classification for
the Social Sciences (CSS) (http://www.gesis.org/en/services/research/thesauri-und-
klassifikationen/) for research projects and literature (available in sowiport—http://
sowiport.gesis.org maintained by GESIS) and the changes in distribution over time.
To assess the suitability of subject information for author name disambiguation more
closely, we then analyse the changes in the annotation over time for a selection of
authors and author groups at different stages in their career, also taking into account
the hierarchical organisation of the applied controlled vocabularies.

1 Introduction

There is an increased demand for the evaluation and assessment of the impact of
research carried out by individual researchers, research communities and institutions
(Mahieu et al. 2014; D’Angelo et al. 2011). The information gathered during such
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assessments is utilised by funding bodies as well as policy makers, and plays a role
for accreditations and university rankings or promotion decisions for individuals.
As part of the overall assessment, bibliometric and scientometric measurements,
such as the h-index (Hirsch 2005), are used as one way of measuring the impact
of research. Such measures tend to rely on the number of citations of the papers
written by a particular author. For these measures to perform accurately and provide
a realistic measure of the impact, the citations need to be attributed to the correct
person, otherwise, the impact measure of a person or institution could appear to
be better or worse than it actually is. For this reason, author name disambiguation,
one of the most difficult problems in the context of digital libraries (e.g., Santana
et al. 2014; Ferreira et al. 2012; Torvik et al. 2005), is a relevant and core issue for
information specialists which affects the quality of services and content in library
and research information systems.

The remainder of the paper is structured as follows: Sect. 2 reviews existing
approaches for author name disambiguation and topic evolution analysis. Section 3
introduces CSS and TSS, followed by Sect. 4 with a description of the bibliographic
data set and the method we used to analyse the distribution of the terms from the
classification and the thesaurus. We present the results of our analysis in Sect. 5 and
conclude our paper with a discussion of future work in Sect. 6.

2 Background

2.1 Author Name Disambiguation

In addition to the assessment of the impact of research, more frequently users
of digital libraries are interested in literature written by a particular author
(Islamaj Dogan et al. 2009). To support research impact assessments and author-
centred searches, author name ambiguity needs to be resolved, i.e., synonyms
(authors that publish under different names, e.g., Ulrike and Uli Sattler, as resolved
in DBLP—http://dblp.uni-trier.de—http://dblp.uni-trier.de/pers/hd/s/Sattler:Uli.
html), and polysemes [different authors with the same name, e.g., Wolfgang
Schluchter: de.wikipedia.org/wiki/Wolfgang_Schluchter and de.wikipedia.org/
wiki/Wolfgang_Schluchter_(Cottbus)] need to be identified to be able to attribute
publications to the correct person.

Recent years have seen a number of new approaches driven by increased use
of publication records and in particular of citations to assess researcher impact
(Mazloumian 2012; Acuna et al. 2012). Several digital libraries are undertaking their
own efforts to disambiguate authors in their data sets and manage the quality of their
author and publication data using the metadata available to them (Liu et al. 2013;
Reuther et al. 2006). However, as digital libraries tend to integrate information from
various sources, they suffer from inconsistencies in representation of, e.g., names
(e.g., initial vs. forename, different spellings, e.g., due to typos or “ue” or “u” instead

http://dblp.uni-trier.de
http://dblp.uni-trier.de/pers/hd/s/Sattler:Uli.html
http://dblp.uni-trier.de/pers/hd/s/Sattler:Uli.html
de.wikipedia.org/wiki/Wolfgang_Schluchter
de.wikipedia.org/wiki/Wolfgang_Schluchter_(Cottbus)
de.wikipedia.org/wiki/Wolfgang_Schluchter_(Cottbus)
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of “ü”), or venue titles (abbreviation vs. full title) despite best efforts to maintain a
high data quality. These differences in representation and spelling variations can
have an effect on the performance of author name disambiguation approaches.

For the actual disambiguation process, a wide variety of metadata are used,
including journal or conference names, affiliations of the authors, co-author net-
works, keywords or topics either explicitly available as metadata, or estimated from
the text using, e.g., Latent Dirichlet Location (LDA) (Blei et al. 2003), abstracts, and
references to other papers, including self-citations (Ferreira et al. 2012; Smalheiser
and Torvik 2009; Liu et al. 2013). Examples of the use of keywords or topics
along with other information for author name disambiguation include Torvik and
Smalheiser (2009) and Santana et al. (2014), the former using Medical Subject
Headings (MeSH) in the author name disambiguation in MEDLINE and the latter
using terms extracted from the publication and venue titles. However, in some
digital libraries the available metadata can be quite sparse, providing insufficient
amount and detail of information to disambiguate authors efficiently. For example,
in the social sciences a large number of publications have a single author (Borgman
2007) which limits the use of co-author networks. Also, the publications are more
likely to be books rather than conference or journal papers, which means only
publisher information is available with less information content suitable for author
name disambiguation than venues, such as journals or conferences, which tend to
have similar names if they cover similar research areas. There are also very few
established, long running conferences, unlike in other research communities. The
sparseness of the available metadata in the social sciences makes it even more
important to utilise the available metadata, which includes keywords or subject
topics, appropriately.

2.2 Topic Evolution Analysis

Topic models, such as LDA, are frequently used to determine the topics of
publications, and are utilised as additional evidence for author name disambiguation
(Ferreira et al. 2012). However, LDA does not take into account the evolution
of terms representing topics over time, nor does it take into account a change
in research interests of authors when applied to author name disambiguation. A
number of approaches for author name disambiguation acknowledge that a change
in research interest of authors makes accurate author name disambiguation harder
(e.g., Liu et al. 2013) and try to account for such changes in their similarity function
(e.g., Santana et al. 2014) or account for errors that could be caused by such a change
in a post-processing step to improve the results of the author name disambiguation
(e.g., Liu et al. 2013). In addition, efforts are being undertaken to analyse and model
the evolution of topics over time (e.g., Wu et al. 2010; Blei and Lafferty 2006; Wang
et al. 2008), which could provide further insights into the use of keywords or subject
topics when applied to author name disambiguation.
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3 Subject Indexing for Author Name Disambiguation

3.1 Classification for the Social Sciences

The effectiveness of subject indexing for author name disambiguation is tested
on the GESIS literature database Social Science Literature Information System
(SOLIS). Publications are annotated with terms from GESIS’ proprietary domain-
specific classification system Classification for the Social Sciences (CSS). CSS was
developed in its current form and mapped to previous classification systems in 1995,
and has been in use in practice since 1996. It consists of 159 classes organised
into four different hierarchical levels. There are five major classes including 26
subclasses, such as sociology or political science. For these classes in turn, there
are 102 subclasses, representing subfields of, e.g., sociology, such as sociology of
religion. For two of the disciplines as represented by the subclasses there exists a
further lower hierarchical level (i.e., subclasses for mass communication as part of
communication sciences and economics and business economics for economics).
The core classes include all those classes or disciplines that are considered to be
part of the first major class, which is Social Sciences. In practice one so-called
main class and one or more so-called auxiliary classes are assigned to a publication
or research project by domain experts. Recently, a mapping between CSS and the
Dewey Decimal Classification (DDC) has been built up manually.

3.2 Thesaurus for the Social Sciences

In addition to the classification (CSS) GESIS also maintains and uses its own
discipline-specific thesaurus TSS, which is the core thesaurus for subject indexing
in the German-speaking social sciences. It has been translated from German
into English and French and consists of about 8000 subject headings and about
4000 non-descriptors or synonyms. The TSS has its own classification scheme,
which assigns each subject heading to one or more subject categories, such
as, “Fundamentals and Manifestations of Social Behavior” or “Interdisciplinary
Application Areas of Social Sciences”. In practice approximately between 10 and
15 subject headings are assigned to each publication. For the annotation process,
a so-called geographical up-posting policy is followed for non-European regions,
making geographical subject headings mandatory as soon as there is a geographical
reference in the text, resulting in a potential over-representation of geographical
subject headings in the assigned descriptors. Over the past few years mappings to
other thesauri have been established, e.g., to the Integrated Authority File (IAF) of
the German National Library and the Thesaurus of Sociological Indexing Terms.
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4 Analysis of Subject Indexing

4.1 Data Set

To analyse the suitability of subject indexing for author name disambiguation, we
analysed publications in the SOLIS database maintained by GESIS in terms of
the distribution of classification notations of the CSS and subject headings from
the TSS. SOLIS is part of the social science portal sowiport which provides an
integrated search space for more than 7 million social science research publications
and projects from 12 different databases. It was founded in 1978 and includes social
science research literature since 1945. SOLIS captures the full name of a person,
including middle name, rather than just the initials and the surname, and contains
mostly German-speaking social science researchers with predominantly European
rather than Asian names, which reduces the chance of two people having exactly
the same full name significantly. For this reason and based on feedback from users
of SOLIS, for the purpose of the analysis presented here, we perceive the data set in
SOLIS to be fully disambiguated, even though no author name disambiguation has
taken place in SOLIS or sowiport.

To limit spurious analysis results due to limited use of classification notations
from the CSS and terms from the TSS, we limited the publications to those
published in the 60-year period between 1954 and 2013. As we are interested in the
change of topics of individual and groups of authors over time, we excluded authors
with a single publication, leaving us with 63,683 different author names (for about
340,000 publications) for the analysis presented here. An analysis of single- and
co-authorship revealed that more than 80 % of the papers are single-author papers,
resulting in a limited use of co-authorship for author name disambiguation, and
potentially making subject indexing a more important source of evidence for author
name disambiguation.

4.2 Multilevel Analysis Approach

To answer our research question on whether topic information, i.e., classification
notations or subject headings, can help to distinguish between different authors with
the same name, we analysed the longitudinal distribution of annotations on multiple
levels.

On a macro-level we calculated the average value of discrimination for subject
headings of the TSS and classes of the CSS. It served as an approximation of the
expressiveness of CSS classes and TSS descriptors.

On a meso-level we analysed the frequency of classes and subject headings with
regard to three different time spans of authors’ research activity.

On a micro-level we looked at individual authors from each of these three
different time spans.
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5 Results

5.1 Macro-Level of Study

Our macro-level analysis has shown that an author has on average 6.57 classes
and subclasses from the entire CSS, and 6.02 from the core classes. Aggregation
of the sub-disciplines (subclasses) shows that on average an author only has 3.98
aggregated classes, and only 3.47 when considering only the aggregated core
classes.

The same analysis on the whole thesaurus (TSS) has shown that on average an
author has 48.11 subject headings. The mean value of authors per subject heading
is 375.46 and the frequency of subject headings ranges from one author to 29,599
authors.

The average number of authors per class of the whole CSS is 2631. This number
changes when we consider only the core classes (2655), aggregated classes for the
whole classification (7908) and aggregated classes of the core classes (10,421). This
illustrates that the coverage of the core areas of the CSS is higher than for the
more marginal areas of the classification. To gain an impression of the divergent
use of classification notations of the CSS and subject headings taken from different
notations of the TSS classification scheme see Fig. 1.

5.2 Meso-Level of Study

As a second step, we dealt with our research question on a meso-level. For the
purpose of this analysis, we formed three different groups of authors based on the
total number of years of their research activity, allowing us to analyse the topic
distributions of research interests over the duration of a researcher’s career. The
first group of authors with a time span of research activity between 5 and 10 years
consists of 16,108 authors. The second group of authors with a time span of research
activity between 20 and 30 years includes 7953 authors. The third group of authors,
covering between 40 and 50 years of research activity consists of 482 authors.

Our analysis shows that on average an author of the first group has 5.45 number
of classes when considering all classes of the CSS, and 3.61 when considering the
aggregated classes. Authors of the second group publish on average 10.98 of all
classes, and 5.79 of the aggregated classes, and authors of the third group publish
on average 21.50 classes and 9.31 aggregated classes, respectively.

With regard to TSS the average number of different subject headings for the first
group of authors is 37.87, for the second group it is 84.48, and for the third group it
is 191.92.
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Fig. 1 Temporal distribution of a selected number of classification notations (left) of the CSS and
notations of the TSS classification scheme (right)

Fig. 2 Temporal distribution of a selected number of classification notations (left) and subject
headings (right) for first author

5.3 Micro-Level of Study

Finally, on the micro-level we looked at the frequency of classes and subject
headings for individual anonymised authors from each of these three different
group-specific time spans. The first example shown in Fig. 2 published 29 publi-
cations over 10 years of research activity. Looking at the distribution of the two
most common notations “Philosophy of Science” and “Sociology of Science” it
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Fig. 3 Temporal distribution of a selected number of classification notations (left) and subject
headings (right) for second author

can be observed that these two occur constantly throughout the entire period of
activity. Even notations considered to represent research areas that tend to be less
frequently studied, such as “Philosophy & Religion” and “Cultural Sociology”,
can be observed continuously throughout the publication activity. Looking at the
distribution of the most frequently indexed subject headings the situation is much
less clear. Here, however, it must be considered that the distribution of subject
headings represents a much more granular description of the content of a publication
than the distribution of notations of a classification system. Only the two most
frequently indexed subject headings occur twice or more and can be observed
throughout the whole publication period.

The second example shown in Fig. 3 has accumulated 146 publications over 24
years of publication activity. Connected to the overall significant increase in the
number of publications compared to the first example, all of the five most frequently
indexed classification notations continuously occur throughout the entire period of
publication activity. Even the class “Cultural Sociology” appears continuously in
the 1990s as well as in the 2000s. The distribution of subject headings also appears
clearer than in the first example. Again linked to the overall significant increase in
the number of publications even less frequent subject headings, such as “Luhmann,
N.” (for publications discussing the work of N. Luhmann), appear throughout the
whole publication period.

The third example shown in Fig. 4 has published 241 publications in 41 years
of publication activity. This large number of publications allows the creation of a
fairly representative research profile based on the distribution of the most frequent
classification notations as well as the most frequent subject headings in which this
author publishes. On the one hand, and most likely related to the long period of
publication activity it can be observed that sometimes research disciplines, such as
“Education & Pedagogics”, could be taken up again after a long break of inactivity
of nearly 20 years. On the other hand, with regard to the distribution of subject
headings, the emergence of new research interests (e.g., “Health”), that are then
continuously studied over a number of years can be observed for individual authors
even after a significant research activity of more than 15 years.



Subject Indexing for Author Disambiguation 647

Fig. 4 Temporal distribution of a selected number of classification notations (left) and subject
headings (right) for third author

6 Conclusion and Future Work

The results of the analysis presented here seem to suggest that, at least for the
social sciences, subject indexing could provide useful information content for author
name disambiguation. This result, however, is only apparent when analysing the
distributions of classifications and subject headings at the micro-level. Analysis
results at the macro-level only provide an impression of the different frequency
of use of classification notations and subject headings. For this reason, speaking of
an “average author” could only serve as an approximation to answer the research
question. The frequency of use differs significantly between different classification
notations and subject headings. Similarly, a look at the mere number of classification
notations and subject headings for the different time periods of publication seems to
provide little insight. Perhaps unsurprisingly, the average number of classification
notations and subject headings increases continuously over the duration of a
research career.

The analysis results suggest that using the most frequently occurring classifica-
tion notations and subject headings for publications of an author could help create
a profile for the author and aid author name disambiguation. The creation of such
topic profiles can lead to the identification of topic continuity for authors. However,
the analysis at the different levels of detail, in particular the analysis of authors
with different durations of research activity suggests that different approaches for
different author groups might be advisable. For example, for authors with a large
number of publications, the subject headings might be suitable to generate an author
profile, whereas for authors with a limited number of publications the classification
notations representing the disciplinary assignment rather than the allocation of
subject headings which represent the topic of a publication on a much more granular
level might be more suitable for generating an author profile.

We aim to incorporate the generation of topic-based author profiles at appropriate
level of detail to aid the author name disambiguation planned at GESIS. The
author name disambiguation process is seen as a multi-step process consisting of
initial author name disambiguation using existing standard algorithms that take into
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account publication and author-centred information, such as co-authors and year of
publication. Classification and subject heading information will then be considered
as part of the second step to resolve cases in doubt. Sowiport does not only contain
publications annotated with CSS and TSS, but also publications annotated with
entries from other controlled vocabularies. Existing cross-concordances between
these controlled vocabularies and CSS as well as TSS can be utilised and enabled to
use the same approach for author name disambiguation on those publications, too.
As an additional step to enrich the existing data with person records, this will be
followed by a third step that utilises external person-centred reference information
in the form of individualised person records of the IAF that are then linked to the
authors in sowiport.
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