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Abstract. How to model the influence propagation accurately in social network 
is a critical and challenge task. Although numerous attempts have been made 
for this topic, few of them consider the user’s negative influence. Positive influ-
ence will encourage people to perform some action while the negative one will 
degrade the probability. Thus, it is meaningful to model the influence propaga-
tion by considering both the positive and negative influence. What’s more, pre-
vious research is mostly based on the assumption that the influence probabilities 
between users are known, however, they are typically unknown in real-world 
social networks. To address these problems, a novel Multipolar Factors aware 
Independent Cascade model (MFIC) is proposed to outline the information dif-
fusion in social network. Then, the user-to-user influence probability is learnt 
with the users’ behavior logs based on the EM algorithm. We also apply the 
discovered influence probabilities to user behavior prediction. Experiments are 
conducted over real data sets, Flixster and Digg, validating the effectiveness of 
our methods. 
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1 Introduction 

The social networks such as Twitter, Digg and Flixster, providing platforms for 
people to share information and express their ideas, play an important role in informa-
tion diffusion. Much attention has been paid to the research on social influence and 
influence-driven information diffusion in social network, which have been applied in 
many areas, such as viral marketing [1], product recommendation [2, 3] and user be-
havior prediction [4]. For example, in viral marketing application, if a seller wants to 
promote a new product under a limited budget, he will choose some users with high 
influence in the social network and give them free products to use, and then, by the 
cascade effects produced by word-of-mouth, more people will be driven to buy this 
product. 

So far, a substantial research effort has been dedicated to develop more accurate 
propagation model [5,6] based on the Independent Cascade mode(IC) and Linear 
Thread model(LT) . However, these work only consider the positive influence  
between users. In addition to the positive influence, there is also negative influence 
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between users. For example, in Flixster1, the users will rate the movies they have 
seen, as shown in Fig.1. Given a movie i, the u1 ’ neighbors u2, u3, u4  gave high 
scores (4.5, 4.8, 4.7), while the neighbors u5, u6, u7 gave low scores (2.5, 2.3, 1.5). 
When u1 makes a decision to see the movie or not, he may see the rating scores of his 
friends. It can be plausibly concluded that u2, u3, u4 have a positive influence to u1, 
because their high ratings tend to promote u1 to see the movie and u5, u6, u7 have a 
negative influence to u1, because their low ratings tend to decrease the probability of 
u1 seeing the movie. So it is important to model the influence propagation by consi-
dering both the positive and the negative factors. 

Moreover, some conventional studies in social influence [1, 7, 8] arbitrarily assume 
the social network has edges labeled with the probability that a user’s action will be 
influenced by his neighbor’s behaviors. However, the influence probabilities are typi-
cally unknown in real-world social network. Despite previous work [9, 10] have  
studied how to estimate the influence probabilities in social network, a key limitation 
is their ignoring of negative influence aforementioned above.  
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Fig. 1. An example of positive influence and 
negative influence 

Fig. 2. An application of our work. 

In this research, our goal is to address the issues above: we propose a novel model 
that modeling the information diffusion through analyzing the multipolar influence. 
And then, based on our proposed model, we learn the influence probabilities. We also 
introduce the application of user behavior prediction based on the learnt influence 
probability. For example, as depicted in Fig.2, in the time-step t, u4’s neighbors u1, u5 
gave high rating scores on the movie “Avatar”, while the neighbors u2, u3 gave low 
rating scores, and then we can predict whether u4 will see the movie in the time-step 
t+1 based on the influence probabilities computed by our method. To summarize, this 
work contributes on the following aspects: 

1. A novel Multipolar Factors aware Independent Cascade model (MFIC) is proposed 
to model the influence propagation in social network. In MFIC, we analyze the be-
haviors of users by considering both the neighbors’ positive and negative influence 
on him. 

                                                           
1 http://www.flixster.com/ 
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2. We design a method based on the EM algorithm to learn the parameters in our 
model. In our method, we use the social relationship and the users’ past behavior 
logs to learn the influence probabilities between users based our MFIC model. We 
also apply the discovered influence probabilities to user behavior prediction. 

3. Experiments are conducted on two real data sets: Flixster and Digg. Experimental 
results show that the learnt influence probabilities based on our MFIC model can 
greatly improve the accuracy of user behavior prediction. 

 

The rest of the paper are organized as follows: Section 2 formally formulates the 
foundations for our problem. Section 3 explains the proposed model MFIC and Sec-
tion 4 introduces the method of parameter learning in detail. In Section 5, we intro-
duce the application of user behavior prediction. In Section 6, we experimentally 
compare and evaluate our model with other models. Finally, Section 7 discusses the 
related work and Section 8 concludes the work. 

2 Preliminaries 

2.1 Independent Cascade (IC) Model 

Independent Cascade (IC) model [1] is one of the widely used representative influ-
ence diffusion model. In the IC model, given a network G (V, E), for each directed 
link e= (u, v ) ∈ E, we specify a value , (0< , 1). Here ,  is the influence 
propagation probability from u to v. The diffusion process starts with some initial 
active nodes (called “seeds”) and proceeds in the following way: when a node u first 
becomes active at time-step t, it has only one chance to activate its each current inac-
tive out-neighbor v and the attempt succeeds with the probability , . If the attempt 
succeeds, v becomes active at time t+1. The attempt is performed only at time-step t, 
whether or not u succeeds and u will not make any further attempts to activate v in the 
subsequent rounds. The process terminates until no more nodes can be activated. 

2.2 Problem Formulation 

Definition 1 (Social Network). A social network can be represented as G= (V, E), 
where V denotes the set of users, E is the set of edges. A directed / undirected edge 
(u,v) ∈E represents a social link between user u and user v. In some social networks 
like Twitter and Digg the edge is directed which represents v has followed u and u 
will influence v while in Flixster and Facebook the edge is undirected which 
represents they are friends for each other and they will influence each other.  

Definition 2 (User Behavior Log).  The user behavior log  is a set of actions (Us-
er, Item, Time), which a tuple (u, i, tu)∈  indicates that user u performs an action for 
item i at time tu. We assume that no user performs the same action more than once. 
The projection of  on User is contained in the set of nodes V of the social network.  
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Definition 3 (Positive Neighbor and Negative Neighbor). For an edge (u,v) ∈E, if u 
is active on item i at time t, we denote as  1, that is to say, u performs the action 
on item i at time t. If u has a positive opinion on the product, such as giving a high 
rating score to the movie, we think u is a positive user as well as a positive neighbor 
of v, u∈  and u will have a positive influence to v. Otherwise, if u has a 
negative opinion on the product, such as giving a low rating score to the movie, we 
think u is a negative user as well as a negative neighbor of v, u∈  and u will 
have a negative influnce to v. 

3 MFIC: Multipolar Factors Aware Independent Cascade 
Model 

In the proposed MFIC model, the working principle is similar to Independent Cascade 
model [1]. The diffusion process unfolds in discrete time-steps t and begins from a 
given initial active user set. When a user v observes a piece of information at time t, 
he makes his decision depending on his neighbor’s status. If he adopts the informa-
tion, his status becomes active at time t+1, otherwise inactive. For example, we can 
imagine the information is a movie in Flixster and user adopts a movie means he saw 
the movie. In time t, some of his neighbors saw the movie, which we think whether 
the user (u1, as shown in Fig.1) will see the movie is influenced by both his positive 
neighbors(u2,u3,u4) and negative neighbors(u5,u6,u7). If u1 sees the movie, we regard 
u1 as influenced successfully by the positive neighbors or failure influenced by his 
negative neighbors and becoming active. Otherwise, if u1 doesn’t see the movie, we 
regard u1 as influenced successfully by the negative neighbors or failure influenced by 
his positive neighbors and become inactive.  

In each time-step t+1, the user v receives two kinds of influence, one is the positive 
influence effected by the positive neighbors , (v) in time-step t, and another 
is the negative influence effected by the negative neighbors , (v) in time-step 
t. We also assume that the probabilities of different neighbors influencing the user are 
independent, each neighbor has a probability to trigger the user to perform the action 
or not. In time-step t+1, the influence that user v receives from the positive neighbors 
denotes as ( 1) and the influence that user v receives from the negative 
ones denotes as ( 1) . Their calculation formula are follows: 
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For example, in Flixster, if user u sees the movie i, we denote (u)=1 and (u) 
represents the rating score that user u give to the movie i. We use (t) represent the 
users that saw the movie at time t. In reality, if the user very like the movie, he will 
give a high rating score to it, and if he dislike, he will give a low rating score. We use 
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the avg(i) denotes the average score of the movie i. If u sees the movie i and the rating 
score (u) >avg(i), we think u is a positive user at time t, u∈ (t), and u is a 
positive neighbor of v, i.e., u ∈ , (v). Otherwise, u gives a low rating score, 
i.e., (u) <avg(i), we think u is a negative user at time t, u∈ (t) , and u is a 
negative neighbor of v, u ∈ , (v). 

In time-step t+1, user v will become active if the positive neighbors successfully 
influence v or the negative neighbors failure in influence v, and the probability that 
user v becomes active can be computed as follows. 

   ( 1) ( 1) 1 ( 1) ( 1) * 1 ( 1)
positive positiveactive negative negative

v vv v vp t P t P t P t P t                

                  ( 1) ( 1) * ( 1)1 negative positive negative
t t tv v vp p p                     

(3)
 

Equally, when the negative neighbors successfully influence v or the positive 
neighbors failure in influence v, user v will become inactive, and the probability of 
being inactive as following Eq.(4).  

   ( 1) ( 1) 1 ( 1) ( 1) * 1 ( 1)
negative negativeinactive positive positivep t Pv v vv vt P t P t P t                              

( 1) ( 1) * ( 1)1 positive positive negative
t t tv v vp p p                      (4)  

To unified comparison, we normalize the ( 1)active tvp  , ( 1)inactive tvp   as follows. 
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The equation of  ( 1)inactive tpv   is similar to ( 1)active tp v  . 
Following Saito el al. [9], we also assume the input propagation have the same shape 

as they were generated by the MFIC model itself. This means that the propagation trace 
of an item i must be a sequence of sets of users (0),…,  (n), corresponding to  
the discrete time steps of the MFIC propagation. Moreover for each node v∈ (t+1), 
there exists at least a neighbor u of v such that u∈ (t). Next, let (t) denote a set of 
users having become active by time-step t, (t)= ( ). Let use C(u) denotes the  
child nodes of u:C(u)={v|(u,v) ∈ , F(v) denotes the parent nodes of v: F(v)={u|(u,v) ∈

. We use  denote the propagation trace of item i, for an propagation trace  we 
can define the following likelihood function as a joint probability of every observed user 
status on item i on every timestamps with respect to ,  in Equation (5). 
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There are many items propagation in the network, so we let { 1, … , } be a 
set of independent information diffusion episodes. Then we can define the following 
object function with respect to θ.                                                     
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where , ( 1), , ( 1) represent the probability of v become active 
or inactive about item i at time-step t+1. , ( 1), , ( 1) stand 
for the probability that user v was affected by the positive influence or negative influ-
ence successfully at time-step t+1 about movie i, and their computational formulas as 
given in Eq.(1)-Eq.(4). Then our problem is to obtain the set of influence probabilities 
between users,  , , which maximizes Eq.(6).  In the next section we will 
illustrate how to obtain the parameters. 

4 Learning the Parameters of MFIC  

Directly maximizing Equation (6) is rather not tractable, so we apply the Expectation 
Maximization(EM) algorithm [13] to obtain the parameters , . In the rest of 
the paper, following the standard EM notation,  .  will represent the current esti-
mate of the influence probability of user u to user v.   

v v v v
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Fig. 3. The cases among link (u, v) for item i. 

For a link (u, v) in the propagation trace Di of item i where u ∈ (t), we know that 
the user u will attempt to influence v with the probability  p . . There are four cases 
existing among link (u, v), as shown in Fig. 3. For case (a), user u is a positive neigh-
bor of user v, and user v became active at time step t+1, which means user v was suc-
cessfully influenced by the positive influence or failure influenced by the negative 
influence, so the probability that user v was activated by user u is  p .  p ,⁄  and 
v was activated not because of u with the probability (1-   p .  p ,⁄ ), 
where  p ,  is calculated by using Eq.(3). On the  other hand, as is shown in case 
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(b), user v is not  active at time step t+1, so we can be surely think the attempt that 
user u try to activate user v failed. Similar, for case (c), user u is a negative neighbor 
of user v and user v is active at time step t+1, and we can be surely think the attempt 
that user u try to make user v inactive failed. For case(d), user v is inactive at time 
step t+1, so the probability that user v was inactivated by user u is   p .  p ,⁄  
and v was inactivated not because of user v with the probability (1-   p .  p ,⁄ ), 
where  p ,  is calculated by using Eq.(4). Considering these case, we have the 
following Q-function describe users’ status for all propagation traces | 1, … , } 
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Let  u,v 0Q p   , obtaining the new estimate of ,  , the update equation is follow-
ing:  
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Here ,  denotes the items that u successfully influence v by positive influence, which 
satisfies both u∈Di ,positive(t) and v ∈ (t+1).  ,  denotes the items that u failure influ-
ence v by positive influence, which satisfies both u∈Di,positive(t) and v (t+1). ,  
denotes the items that u successfully influence v by negative influence, which satisfies 
both  u∈Di, negative(t) and v (t+1).  ,  denotes the items that u failure influence v 
by negative influence, which satisfies both u∈Di, negative(t) and v ∈ (t+1).  Moreover, | , |, | , |, | , |, | , | denote the number of items in them .  

Our Expectation-Maximization method for learning the parameters of MFIC is given 
in Algorithm 1. The learning algorithm takes input the social graph G=(V,E) and a log of 
past propagations. The output is the set of all parameters : those are ,  for all the 
edge (u,v) ∈ . The learning method starts with a random initialization of the probabili-
ties of all the edges with value  ,  ∈ (0 1) (line1). We know that the EM algorithm is 
related with the initial value, that is different initial parameters will bring different locally 
optimal solution, so we set various values in our experiments, and we find that the initial 
values set between 0.6 and 0.9 could get the best effects. Then for each edge (u,v) ∈  
finding the items that u influenced v successfully by positive influence or negative influ-
ence, and we compute the probability of user v becomes active or inactive in these items 
(line3-line18), which equals the E-step in EM. And then, for each edge (u,v) ∈ , update 
the probability ,  of user u influence user v using the Equations(8) (line19-line 21), 
which equals the M-step in EM. Finally, the process will end until the change of the 
probabilities between two times converge to a threshold. The EM is an iterative updating 
algorithm, which will update every parameter in every iteration. So when there are a lot 
of arguments, the running time will become longer.  
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Algorithm 1. EM method of learning the parameters of MFIC 
Input: Social graph G= (V, E), User behavior log Ω. 
Output:The set of all parameters of MFIC , that is: (u,v) ∈ : ,  

1. init { , } 
2. repeat 
3. For all the (u,v) ∈  do 
4.    For every item i  in Ω 
5.         If(u ∈ , (v)) 

6.               If (  is active)    
7.                    , = ,  {i} 
8.                    Compute   , (t+1)  
9.                Else  
10.                                           , = , i} 
11.         If(u ∈ , (v)) 
12.               If (  is active)    
13.                    , = ,  {i} 

14.               Else 
15.                                       , = , i} 
16.                     Compute  , (t+1) 
17.          End For 
18.   End  For                                    
19.   For  every  the (u,v) ∈   do 
20.    ,  = , , , , (∑  . ,∈ , ∑  . ,∈ ,  ) 

21.    End For 
22.    until convergence; 

5 User Behavior Prediction 

The learned influence probabilities among users can be used to help with many appli-
cations. Here we illustrate one application on user behavior prediction, i.e., how the 
learned influence can improve the performance of user behavior prediction. 

Based on the MFIC model proposed in Section 3, we present the Algorithm 2 for 
predicting the user behavior. This algorithm focuses on the question of whether a user 
will perform a behavior at time-step t+1, given the behaviors of his neighbors at time-
step t. For example, in Flixster, the behavior is defined as whether a user rates a mov-
ie and in Digg, the behavior is defined as whether a user digs a story. For a user u, if 
he performed the behavior, we think that user u is active. Otherwise, we think that u is 
inactive. For each item i and inactive user v in the testing dataset, we find his positive 
and negative neighbors in time-step t and calculate the user’s the positive and nega-
tive influence receives from his positive and negative neighbors (line 3- line 6). Then 
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we compute the probability that user be active and inactive (line 8-line 9). If the prob-
ability that user be active is larger than user be inactive, we think the user become 
active, otherwise, inactive (line 10- line 12). 
 
Algorithm 2. User Behavior Prediction 
Input:  Social network G=(V,E), User behavior log Ω, influence probabilities {Pu,v} 
Output: The user’s state for the item i in the testing dataset 

1. For each item i  in the testing dataset          
2.       For each inactive  user v  
3.               Find positive neighbors of v:  (v) 
4.                     =  1-  ∏ (1 , )∈ ( )  
5.               Find  negative neighbors of v:  (v) 
6.                     =  1-  ∏ (1 , )∈ ( )             
7.       End  For 
8.              = (1 ) + *  
9.              = (1 ) + *  
10.             If     ≥    
11.             Then v is active; 
12.             Else v is inactive; 
13.    End For 

6 Experiments 

In this section, we report our results on two real datasets and we compare our MFIC 
model to the state-of-the-art models. Our goal is to validate whether our proposed 
model can help to describe real-world influence cascade. 

6.1 Datasets 

The datasets in our experiments are Flixster2 and Digg3. They are publicly available, 
both containing a social graph G=(V,E) and a set of past propagation log Ω ={(User, 
Item ,Time)}. Next we describe the data sets in the following:  Table 1. Details of the Flixster, Digg datasets 

Statistics Flixster Digg 
Training  Test Training Test 

#Users 15,675 5,104 27,488 18,664 
#Items 8,105 4613 3553 2786 
#Actions 1,433,768 480,000 2,517,067 414,620 
#Friendship 1,084,895 250,096 683,160 492,138 

                                                           
2 http://www.cs.sfu.ca/~sja25/personal/datasets/ 
3 http://www.isi.edu/~lerman/downloads/digg2009.html 
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Flixster. Flixster is one of the main players in the mobile and social movie rating 
business. In this context, the action is defined as user rate the movie, if user u gives a 
high score on the movie, we think a positive influence will happen between user u and 
user v. otherwise, we think a negative influence will happen between u and v.  

Digg. Digg is a social network website, where users vote stories. In this context, if 
user u votes a story, we think u have a positive influence on v. If u didn’t vote the 
story, but at least one of his neighbors did, we think u will impose negative influence 
on v. 

We preformed some standard consistency cleaning on the two datasets. We remove 
those items that appear in the log Ω less than 20 times. We also remove those users 
that not appear in the log Ω and have no friends. Moreover, for the experiment we 
perform a chronological split of log Ω in both datasets into training (80%) and testing 
(20%). Details of datasets are shown in Table 1.                                                                   

6.2 Experimental Setup  

For different datasets, the life span of information is various, as shown in Fig. 4, in 
Digg (the left part), most behaviors occurred in the first 40 hours, so we set the time-
step interval at 5, 10, 15, 20, 25, 30 hours respectively that divide the users in the 
dataset into different time-step. In Flixster (the right part), most behaviors occurred 
within the first 36 months, so we set the time-step interval at 4, 8, 12, 16, 20, 24 
months. 

 
Fig. 4. The information diffusion quantity over time delay in Digg and Flixster. 

We apply the learned influence probabilities for user behavior prediction as de-
scribed in Section 5. We compare the following methods to our proposed PNIC model 
and evaluate its performance in terms of Precision, Recall and F1-Measure. 

 PIC. The PNIC model which only consider the positive factor without the negative 
factor, the influence probabilities among users also are learnt. 

 Static Model. Static model is the method proposed in [10], since we don’t focus on 
the time-dependent influence propagation in this paper, so we only compare our 
method with the Static Model. The influence probability ,  is computed by Equ-
ation (9), where | , | is the number of actions that v has influenced u and | | is 
the number of actions performed by v. 
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                         , =  | , | | |                                    （9） 

 IC. The influence probability for each edge (u, v) is assigned as 0.01, which is 
widely adopted by previous studies with the IC model. 

6.3 Prediction Performance Analysis 

Fig. 5 and Fig. 6 show the prediction performances of all the tested approaches under 
different measurements at different time-step interval on Digg and Flixster dataset. 
We can see that the proposed PNIC model can consistently achieve better perfor-
mance comparing with baseline methods, the IC model worst. Notably, both PNIC 
and PIC all perform better than Static Model (with an improvement 2-6%). Because 
in Static Model, the influence probability pu,v is computed only based the number of 
information diffusions from u to v. And in IC model, the influence probabilities 
among users are random assigned. Therefore, the predicting performances of Static 
Model and IC model are uncompetitive. In contrast, in PNIC and PIC model, the in-
fluence probabilities are learnt by the user behavior log and considering all the  
interacting users, so improve the performance significantly. The experiment results 
confirm that our model considering both positive and negative influence will better 
describe real-world.  
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Fig. 5. Prediction performances on Digg dataset. 
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Fig. 6. Prediction performances on Flixster dataset. 

Furthermore, we also can see the performance of our PNIC model outperforms the 
PIC in Flixster, significantly improvements (3-10%). While in Digg they perform 
similar, but still has an improvement 1.6% in some case. Our explanation is that in 
Flixster, when a user wants to see a movie, the opinion of his friends are very impor-
tant. If the most friends gave a low rate, he may don’t see the movie. So the negative 
influence plays an important role in user behavior. But in Digg, vote or not is a very 
easy action, so when he see his friends vote the story he may possible to vote it even 
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though other friends didn’t vote. We can conclusion that the importance of negative 
influence in Flixster is larger than in Digg. It is very useful when analyze the user 
behavior in different social network. 

7 Related Work 

The problem of influence propagation in social network has been widely studied [1, 7, 
8]. While pervious works on influence maximization typically assume a social graph 
G with edges labeled with influence probabilities. Very few works focus on estimat-
ing the influence probabilities without the characteristic of items (such as the contents 
of Twitter). The most relevant works with us are [9, 10]. Satio et al. [9] focus on the 
IC model and defined the likelihood for multiple episodes. They present a method for 
predicting diffusion probabilities from a log of past propagations by using the EM 
algorithm. Bonchi et al. [10] devise various probabilistic models of influence and 
develop algorithms for learning the influence probabilities. However, none of them 
pay attention to the influence probabilities calculation by considering the negative 
influence. 

To the best of our knowledge only few papers have analyzed social influence con-
sidering the negative factor [11, 12]. Li et al. [11] quantifies the influence and con-
formity of each individual in a network by utilizing the positive and negative relation-
ships between individuals. However, they don’t propose any propagation model, nor 
study the user-to-user influence probability. Chen et al.[12] discuss the influence 
diffusion considering the negative influence,  but their focus is design efficient heu-
ristic for influence maximization in social network rather than learning the influence 
probability. 

8 Conclusion and Future Work 

In this paper, a novel influence propagation model MFIC is proposed to model the 
information diffusion incorporating the positive and negative influence. We model the 
user’s behavior consider the multipolar factors. Then, we design method to learn the 
influence probabilities based on the history behavior logs of users and we also apply 
the discovered influence probabilities to user behavior prediction. We conduct expe-
riments to test the effectiveness of our model in real datasets. In future work, we will 
take advantage of the influence probabilities to design more accurate model to predict 
user’s behaviors considering other factors, such as the user preference. 
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