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Abstract. In Reiter’s default logic, it is possible that no useful infor-
mation can be brought from inconsistent knowledge or no extension
of incoherent default theories exists. In this paper, based on Belnap’s
four-valued logic, we propose a new variant of default logic called the
restricted four-valued default logic to tolerate inconsistency and inco-
herency of knowledge in default reasoning. Our proposal can maintain
both the expressive power of full default logic and the ability of default
reasoning. Moreover, we present a transformation-based approach to
compute the restricted four-valued extensions.

1 Introduction

Reiter’s default logic [20] is a widely studied nonmonotonic logic. Despite that,
default logic has its own shortcomings. Some default theories have only one
trivial extension, which contains everything as its conclusion. Even the existence
of extensions is not always guaranteed. Such incoherences may happen when
contradictions occur in defaults or between defaults and facts.

To deal with incoherences, some variants of default logic were introduced.
Some researchers treat incoherences as illegal. With this viewpoint, they focus
on finding characterizations of default theories which have extensions, such as
normal default theories [20] and ordered default theories [18] among others.
These fragments of default logic are strictly weak and, as a result, lost full
expressive power of default logic.

Another approach to handle incoherences is to modify the definition of exten-
sions. For instances, the justified default extensions [16], the constrained default
extensions [21] and the cumulative default extensions [12] are all guaranteed to
exist for every default theory. However, these extensions have different semantics
from Reiter’s, even when Reiter’s default extensions exist and are consistent.

To deal with inconsistencies, an approach is to transform inconsistent default
theories into consistent ones, but still hold some useful conclusions. In [10], the
authors handle inconsistencies by default logic itself. Another approach takes
advantage of paraconsistent logics, which do not infer everything from contra-
dictions, such as the question marked logic [1], the four-valued default logic [23],
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the bi-default logic [14], the fault-tolerant default logic [15], and the annotated
default logic [22]. However, some of these attempts cannot handle all inconsistent
and incoherent problems, or have different semantics from Reiter’s.

In this paper we introduce a novel extension of default logic named the
restricted four-valued default logic, based on Belnap’s four-valued logic [3,8,
9], which is a multi-valued paraconsistent logic, to handle both inconsistencies
and incoherences. Not like in [23], which is also based on Belnap’s four-valued
logic, we ensure that every default theory has at least one nontrivial extension.
Moreover, we keep our extensions as similar as Reiter’s original ones. Finally, we
proved that Reiter’s default logic is a special case of our logic on consistent and
coherent default theories. Interestingly but not too surprisingly, we also show
that our default logic is indeed an expansion of the preferred four-valued logic.

The paper is structured as follows. First we review preliminaries in section 2.
Our main contributions are presented in sections 3 and 4, in which we describe
our restricted four-valued default logic from underlying logic to extensions,
together with comparison with default logic and four-valued logic. To calcu-
late the restricted four-valued extensions, we present an approach of the formula
transformation in section 5. We compare our results with related works in section
6, and summarize in section 7 as conclusion.

2 Preliminaries

In the rest of this paper we denote L as a propositional language, A as the set
of all atoms, |=2 as the classical propositional consequence relation and Th as
the consequence operator. The propositional constants t and f are interpreted
as true and false in all interpretations respectively.

2.1 Default Logic

A default d is an inference rule of form d = α:β1,...,βn

γ , where α, β1, . . . , βn, γ are
all propositional formulas. We define Pre(d) = α as prerequisite of d, Just(d) =
{β1, . . . , βn} as justification of d, and Con(d) = γ as consequence of d. For a set
of defaults D, define Pre(D) = {Pre(d)|d ∈ D}, Just(D) =

⋃{Just(d)|d ∈ D},
and Con(D) = {Con(d)|d ∈ D}.

A default theory is a pair T = (D,W ), where D is a set of defaults and W is
a set of formulas. For convenience, neither t nor f is permitted to be presented
in D or W .

An extension of a default theory is defined as follows.

Definition 1 ([20]). Let T = (D,W ) be a default theory. For any set of for-
mulas E, let Γ (E) be the smallest set of formulas such that:

1. W ⊆ Γ (E);
2. Th(Γ (E)) = Γ (E);
3. For any d ∈ D, if Γ (E) |=2 Pre(d) and ¬β �∈ E for all β ∈ Just(d), then

Γ (E) |=2 Con(d).
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A set of formulas E is an (default) extension of T iff Γ (E) = E, i.e. E is a
fixed point of the operator Γ .

We say T skeptically entails a formula set F , if all extensions of T entail F .

A default theory may have none, one or many extensions. Sometimes the
extension may be trivial, which means it contains all propositional formulas.

Example 1. Let Ti = (Di,Wi)(i = 1, 2, 3, 4) be a default theory, where

1. D1 = { :p
q }, W1 = {¬p, r,¬r};

2. D2 = { :p
¬p}, W2 = {q};

3. D3 = { :p
q , :p

¬q }, W3 = ∅;
4. D4 = { :q

¬r , :r
¬p , :p

¬q }, W4 = ∅.

T1 has a trivial extension, while, none of T2, T3, T4 has any extension.

2.2 Four-Valued Logic

To deal with inconsistent and incomplete knowledge, Belnap’s four-valued logic
[3,8,9] is constructed on the bilattice structure FOUR = {t, f,�,⊥}. The ele-
ments of FOUR can also be represented by pairs of two-valued truth values:
t = (1, 0), f = (0, 1), � = (1, 1), ⊥ = (0, 0). Intuitively, the truth values � and
⊥ represent inconsistencies and lacking of information respectively.

The set of designated elements is chosen as D = {t,�}. A four-valued val-
uation is a function that assigns a truth value from FOUR to each atomic for-
mula. The truth operators on 〈FOUR〉 are defined as follows: ¬(x, y) = (y, x),
(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∨ y2), (x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∧ y2) and
(x1, y1) ⊃ (x2, y2) = (¬x1 ∨x2, x1 ∧y2). For constants, let v(t) = t and v(f) = f .

A valuation v satisfies a formula φ if v(φ) ∈ D. We say v is a model of a
formula set S if v satisfies every formula in S. We use 〈FOUR〉 to denote the
structure FOUR together with D. The consequence relation on 〈FOUR〉 are
defined in the following.

Definition 2 ([3]). Suppose that Γ and Δ are two sets of formulae. Γ |=4 Δ if
every model of Γ in 〈FOUR〉 is a model of some formula of Δ.

Definition 3 ([3]). Let u, v be four-valued valuations. u is more classical than
v if v(p) ∈ {�,⊥} whenever u(p) ∈ {�,⊥}.

Suppose that Γ and Δ are two sets of formulas. Γ |=4
cl Δ if every most

classical model of Γ is a model of some formula of Δ.

As a nonmonotonic and paraconsistent consequence relation, |=4
cl is equiva-

lent to classical logic on consistent theories. For more details, see [3].
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3 Restricted Four-Valued Default Logic

3.1 Restricted Four-Valued Logic

In this section, we present a restricted four-valued logic as the underlying logic
of our default logic. In our restricted four-valued logic, we focus on those valu-
ations whose nonclassical values only occur in a given set of atoms. The idea of
restricting paraconsistent atoms in a fixed subset can be inspired from Vasil’év’s
imaginary logic [7].

Definition 4. Let S be a set of atoms. A four-valued valuation v is restricted
by S, if {a ∈ A|v(a) �∈ {t, f}} ⊆ S.

Definition 5. Let S be a set of atoms, Γ , Σ be sets of formulas. A four-valued
valuation v is a four-valued model of Γ restricted by S if v is a four-valued
model of Γ and restricted by S.

Γ |=S Σ if every four-valued model of Γ restricted by S is a four-valued
model of Σ.

Denote ThS(Γ ) as the consequence operator restricted by S: ThS(Γ ) =
{α|Γ |=S α}.

The motivation for restricting nonclassical values is a trade-off between clas-
sical reasoning power and paraconsistent properties. Obviously, classical logic
and four-valued logic can be treated as two extreme cases of our restricted four-
valued logic.

Proposition 1. Let S be a set of atoms, Γ a set of formulas and φ a formula.
Γ |=∅ φ iff Γ |=2 φ, and Γ |=A φ iff Γ |=4 φ.

In fact, our restricted four-valued logic can be expressed in four-valued logic.

Theorem 1. Let S be a set of atoms, Γ a set of formulas and φ a formula.
Γ |=S φ iff Γ ∪ fA(S) |=4 φ, where fA(S) =

⋃
a∈A\S{a ∨ ¬a, (a ∧ ¬a) ⊃ f}. 1

Proof. For any four-valued valuation v and atom a, v satisfies a∨¬a iff v(a) �= ⊥
and v satisfies (a ∧ ¬a) ⊃ f iff v(a) �= �. As a result, v satisfies fA(S) iff
v(a) ∈ {t, f} for all a �∈ S, i.e. v is restricted by S.

Therefore, the four-valued models of Γ ∪ fA(S) are exactly the four-valued
models of Γ restricted by S. ��

By Theorem 1, many properties of restricted four-valued logic can be proved
by transforming them to four-valued logic, such as monotonicity.

Proposition 2 (Monotonicity). Let Γ , Σ be sets of formulas, S a set of
atoms and φ a formula. If Γ ⊆ Σ and Γ |=S φ, then Σ |=S φ.

Proof. Γ |=S φ infers that Γ ∪ fA(S) |=4 φ, where f is defined in Theorem 1. As
four-valued logic is monotonic([3]) and Γ ⊆ Σ, we know that Σ ∪ fA(S) |=4 φ,
which is equivalent to Σ |=S φ according to Theorem 1. ��
1 It may be argued that fA(S) can cause infiniteness if A is not finite. In fact, A can

be replaced by any atom set which contains all atoms occur in Γ and φ.
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3.2 Restricted Four-Valued Extension

In this subsection, we introduce the restricted four-valued extensions based on
the restricted four-valued logic. We include a restricting set as a part of an
extension.

In Reiter’s default logic, a justification is satisfiable in a formula set E if
its negation is not in E. The corresponding concept in restricted four-valued
extension has a subtle distinction since a formula may coexist with its negation
in the same formula set but not be trivial in restricted four-valued logic. We use
formula β ⊃ f as a stronger negation of β, since {β, β ⊃ f} is always unsatisfiable
in restricted four-valued logic. We also need to ensure that restricted four-valued
extension is satisfiable, since we should better enlarge the restricting set rather
than accept it as an extension if it is not satisfiable. We define the restricted
four-valued extension as follows.

Definition 6 (Restricted Four-Valued Extension). Let T = (D,W ) be a
default theory and S a set of atoms. For any set of formulas E, let ΓS(E) be the
smallest set satisfying the following properties:

1. ΓS(E) �|=S f ;
2. W ⊆ ΓS(E);
3. ThS(ΓS(E)) = ΓS(E);
4. For any d ∈ D, if ΓS(E) |=S Pre(d) and βi ⊃ f �∈ E for any βi ∈ Just(d),

then ΓS(E) |=S Con(d).

For any set of formulas E and set of atoms S, 〈E,S〉 is a restricted four-
valued extension iff ΓS(E) = E, i.e. E is a fixed point of the operator ΓS. We
denote S as the restricting set of 〈E,S〉 and say that 〈E,S〉 is restricted by S.

We review Example 1 to show that the restricted four-valued extensions fol-
low our intuition and recover several useful conclusions which are lost in Reiter’s.

Example 2. (Continuation of Example 1) Consider default theories in Exam-
ple 1 which are all trouble in Reiter’s default logic. In contrast, all these default
theories have restricted four-valued extensions which are nontrivial and intuitive.

1. One restricted four-valued extension of T1 is 〈ThS1(W1), S1〉, where S1 =
{r}. This extension keeps all information of W1 but is not trivial. For
instance, it rejects q as its conclusion.

2. One restricted four-valued extension of T2 is 〈ThS2({¬p, q}), S2〉, where S2 =
{p}. It means that we allow ¬p in this extension, but leave p with suspicion
in S2. This extension has no doubt on formula q since it is independent of p.

3. One restricted four-valued extension of T3 is 〈ThS3({q,¬q}), S3〉, where S3 =
{q}. We keep two conflict default consequences q and ¬q together with no
explosion. Also ¬p is not derivable, since we still treat p as a classical atom.
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4. Three restricted four-valued extensions of T4 are: 〈ThS1
4
({¬p,¬q}), S1

4〉,
〈ThS2

4
({¬q,¬r}), S2

4〉, and 〈ThS3
4
({¬r,¬p}), S3

4〉, where S1
4 = {p}, S2

4 = {q},
S3
4 = {r}. All these extensions entail two of {¬p,¬q,¬r}, but none of them

entail all these three formulas. Our intuition is that the three rules in D4

cannot be executed together unless considering one of their justifications as
troubled.

Restricted four-valued extensions inherit many properties of Reiter’s exten-
sions due to the monotonic property. Although most variants of default logic
hold these properties naturally, it is not the same as paraconsistent ones, espe-
cially those whose underlying logic is nonmonotonic. For example, the following
propositions hold and can be proved by the same way of Reiter’s original proofs.

Proposition 3. Let T = (D,W ) be a default theory, and let S be a set of atoms.
For any set of formulas E, 〈E,S〉 is a restricted four-valued extension iff E �|=S f
and E =

⋃∞
i=0 Ei, where:

1. E0 = W ;
2. For all i ≥ 0, Ei+1 = ThS(Ei) ∪ {γ ∈ Con(d)|d ∈ D,wherePre(d) ∈

Eiandβ ⊃ f �∈ Eforallβ ∈ Just(d)}.
Proposition 4. Let T = (D,W ) be a default theory. Suppose 〈E,S〉 is a
restricted four-valued extension of T , then E = ThS(W ∪ Con(GD(E, T ))),
where GD(E, T ) = {d ∈ D|Pre(d) ∈ E, β ⊃ f �∈ Eforanyβ ∈ Just(d)}.

Our restricted four-valued default logic can ensure that the extensions of any
default theory always exist.

Theorem 2. Every default theory has restricted four-valued extensions.

Proof. Let T = (D,W ) be a default theory and S the set of all atoms occurs in
T . Let E =

⋃∞
i=0 Ei, where:

1. E0 = W ;
2. For all i ≥ 0, Ei+1 = ThS(Ei) ∪ {γ ∈ Con(d)|d ∈ D,Pre(d) ∈ Ei}.

Let v be the valuation with v(a) = � for all a ∈ A. v is a four-valued model
of E while only classical connectives occurs in E([3]). Because v(f) = f which
is not a designated value, E �|=S f . For any β ∈ Just(D), v(β) = � implies
v(β ⊃ f) = f , so E �|=S β ⊃ f . Compare with Proposition 3, we have proved that
〈E,S〉 is a restricted four-valued extension of T . ��

3.3 Preferred Restricted Four-Valued Extension

Although we guarantee that every default theory has at least one restricted
four-valued extension, it is still too tolerant to permit all of them.

Example 3. (Continuation of Example 2) Considering default theory T1 in
Example 2, all restricted four-valued extensions of T1 are:
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1. E1 = 〈ThS1
1
(W1), S1

1〉, where S1
1 = {r}. This is our intuitive extension.

2. E2 = 〈ThS2
1
(W1 ∪ {q}), S2

1〉, where S2
1 = {r, p}. The unnecessary atom p in

restricting set causes ¬p not enough to prevent applying of the only default
rule and causes q be included as a counter-intuitive conclusion.

3. E3 = 〈ThS3
1
(W1), S3

1〉, where S3
1 = {r, q}. The unnecessary atom q in restrict-

ing set weakens reasoning power. For example, E1 entails ¬q → s, which does
not hold in E3.

4. E4 = 〈ThS4
1
(W1 ∪ {q}), S4

1〉, where S4
1 = {r, p, q}. This is an even worse

extension since it merges both shortcomings of E2 and E3.
5. We have more extensions if we add other atoms which are not present in our

language to any restricting sets above.

As we can see in the above example, adding redundant atoms to restricting
set would cause unwanted or/and weaker conclusions. We prefer to extensions
which have only necessary atoms in their restricting sets.

Definition 7 (Preferred Restricted Four-Valued Extension). Let T be
a default theory. A restricted four-valued extension 〈E,S〉 of T is a preferred
restricted four-valued extension of T , if there is no restricted four-valued exten-
sion of T restricted by R and R � S.

Example 4. The restricted four-valued extensions mentioned in Example 2 are
whole preferred restricted four-valued extensions of their corresponding default
theories respectively. As explained before, they are all conform to our intuition.

Similarly, we also ensure the existence of preferred extensions.

Theorem 3. Every default theory has at least one preferred restricted four-
valued extension.

Proof. Let T be a default theory. T has a restricted four-valued extension 〈E,S〉
by Theorem 2. Since the atom set S is finite, there is a minimal atom set R
which restricts a restricted four-valued extension 〈E′, R〉 of T and is a subset of
S. 〈E′, R〉 is also a preferred restricted four-valued extension. ��

4 Discussions

4.1 Connection with Reiter’s Default Logic

Restricted four-valued default logic enhances the flexibility of default logic. On
the other hand, if default extensions are consistent, we should not make any of
them invalid. It is even better if we do not accept any out of them either.

Fortunately, the restricted four-valued extensions have the classical property,
which can be formalized by the following theorem.

Theorem 4. Let T be a default theory. E is a consistent default extension of T
iff 〈E, ∅〉 is a restricted four-valued extension of T .
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Proof. According to the difference between default extension and restricted four-
valued extension, we need to prove:

1. E is consistent iff E �|=∅ f ;
2. Th∅(E) = Th(E);
3. for any formula α and formula set Σ, Σ |=2 α iff Σ |=∅ α; and
4. for any formula β and formula set Σ, E �|=2 ¬β iff E �|=∅ β ⊃ f .

which are all corollaries of Proposition 1. ��
Now we can see why the preferred restricted four-valued extensions are intu-

itive: the classical extensions are always preferred, and the only preferred.

Corollary 1. Let T be a default theory which has a consistent default exten-
sion. E is a default extension of T iff 〈E, ∅〉 is a preferred restricted four-valued
extension of T .

Proof. Combine Theorem 4 and the following fact:
if 〈E, ∅〉 is a restricted four-valued extension of T , then all preferred restricted

four-valued extension of T are restricted by ∅. ��
Theorem 4 and Corollary 1 show that (preferred) restricted four-valued

default logic is an expansion to Reiter’s default logic. In fact, Reiter’s default
extensions are only distinguishable with preferred restricted four-valued default
extensions when there is no nontrivial default extension. So we can safely replace
Reiter’s default extensions with preferred restricted four-valued extensions.

4.2 Connection with Preferred Four-Valued Logic

Restricted four-valued default logic is not only a default logic, but also four-
valued. The following theorem reveals that the four-valued consequence relation
|=4

cl can be treated as a special case of restricted four-valued skeptical entailment.

Theorem 5. W |=4
cl φ iff all preferred restricted four-valued extensions of

default theory T = (W, ∅) entail φ.

Proof. Denote M as the model set of all minimal four-valued model of W .
For any model m ∈ M , let S(m) = {a ∈ A|m(a) �∈ {t, f}}, i.e. m is exactly

restricted by S(m). We denote M ′(m) = {n ∈ M |S(n) = S(m)} as the set of
minimal models which share the same restricted set as m. Since m ∈ M ′(m),
we know that M =

⋃
m∈M M ′(m). As a result, W |=4

cl φ iff M ′(m) |= φ for all
m ∈ M .

Note that m is already one four-valued model of W and restricted by S(m),
we know that W �|=S(m) f . According to the definition of restricted four-valued
extension, 〈W,S(m)〉 is a restricted four-valued extension of T . We call this
extension be generated by m and denote it as E(m).
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In fact, all models of W restricted by S(m) are minimal models. Otherwise,
there would be a minimal model n restricted by R and R � S(m), which con-
tradicts with m is minimal. So M ′(m) = {n|nisamodelofW restrictedbyS(m)}.
As a result, E(m) |= φ iff M ′(m) |= φ.

Now we want to show the equivalent relation between preferred restricted
four-valued extensions and generated extensions. We prove it in two directions:

1. E(m) is preferred for any m ∈ M . If E(m) is not preferred, then there is a
restricted four-valued extension 〈E,R〉 of default theory T and R � S(m).
Since E �|=R f , E has a four-valued model m′ restricted by R. Because
R � S(m), m′ is a four-valued model of W and is more consistent than m,
which contradicts with m is minimal.

2. Every preferred restricted four-valued extension 〈E,S〉 is generated by some
m ∈ M . Since E �|=S f , there is a four-valued model n of E restricted by S. If
n ∈ M , let m be n itself. Otherwise, there is a minimal model m ∈ M which
is more consistent than n. In both case m is restricted by S. So S(m) ⊆ S.
Because both 〈E,S〉 and E(m) = 〈W,S(m)〉 are preferred restricted four-
valued extensions, we also know that S(m) �� S. Therefore, S = S(m).

Altogether, we show that W |=4
cl φ iff M ′(m) |= φ for all m ∈ M , iff E(m) |=

φ for all m ∈ M , iff all preferred restricted four-valued extensions entail φ. ��

5 Calculate Restricted Four-Valued Extensions

To compute the restricted four-valued extensions, we introduce the formula
transformation proposed in [4]. The main purpose of this approach is to simulate
four-valued reasoning by classical reasoning, which can be achieved by separat-
ing the truth relation of a formula and its negation. The technique details have
been explained in [2,4,5].

Definition 8. For any atom p ∈ Σ and formula φ, ψ ∈ L, define inductively:

– t+ = t, t− = f , f
+

= f , f
−

= t;
– p+ = p+, p− = p−;
– ¬φ

+
= φ

−
, ¬φ

−
= φ

+
;

– φ ∨ ψ
+

= φ
+ ∨ ψ

+
, φ ∨ ψ

−
= φ

− ∧ ψ
−
;

– φ ∧ ψ
+

= φ
+ ∧ ψ

+
, φ ∧ ψ

−
= φ

− ∨ ψ
−
;

– φ ⊃ ψ
+

= ¬φ
+ ∨ ψ

+
, φ ⊃ ψ

−
= φ

+ ∧ ψ
−
;

Theorem 6 ([4]). Σ |=4 φ iff Σ
+ |= φ

+
.

The following theorem is a restricted four-valued version of Theorem 6.

Theorem 7. For any formula set E and formula φ, let E
+

S = {φ
+|φ ∈ E} ∪

{p+ ↔ ¬p−|p �∈ S}). E |=S φ iff E
+

S |= φ
+
.
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Proof. According to Theorem 1 and 6, we have
E |=S φ iff E∪⋃

p�∈S{p∨¬p, (p∧¬p) ⊃ f} |=4 φ , iff E
+ ⋃

p�∈S{p+∨p−,¬p+∨
¬p−} |= φ

+
, iff E

+

S |= φ
+

. ��
In [11], they construct their paraconsistent logic by transforming proposition

theories to default theories after applying signed transformation. In contrast, we
want to apply our signed transformation on default theories.

Definition 9. For any default rule d = α:β1,...,βn

γ , let d
+

= α+:β1
+

,...,βn
+

γ+ .

Let T = (D,W ) be a default theory. The transformed default theory T
+

S of T

restricted by S, is defined as T
+

S = (D
+
,W

+

S ), where D
+

= {d
+|d ∈ D}.

Theorem 8. Let T = (D,W ) be a default theory. E is a restricted four-valued
extension of T restricted by S, iff E

+

S is a consistent extension of T
+
.

Proof. According to Theorem 7 and the definition of restricted four-valued exten-
sion, we only need to prove that E �|=S β ⊃ f iff E

+

S �|= ¬β
+
, which is also proved

by Theorem 7. ��
Theorem 8 represents a feasible approach to convert a restricted four-valued

default logic problem to the corresponding default logic problem.

6 Related Works

As an important nonmonotonic logic, Reiter’s default logic has been widely used
in knowledge representation. In [11], their signed system is paraconsistent by
using default logic to restore information from inconsistent theories. In [6], they
also use default logic to process inconsistent knowledge. Conversely, we introduce
paraconsistency to default logic. In [17], they develop a novel framework to deal
with default reasoning with fuzzy and uncertain information. In this paper, we
focus on handling inconsistent and incoherent information.

Reiter’s default logic has many variants presented by different researchers. In
justified default extensions [16], constrained default extensions [21] and cumu-
lative default extensions [12], they modify the definition of extensions to ensure
their existences. However, they have different semantics from default logic and
still cannot deal with inconsistencies.

To take advantage of tolerance on inconsistencies, paraconsistent variants
of default logic are represented by several researchers. Among these, question
marked logic [1] is a generalization of the inconsistent default logic [19] which
is based on Da Costa’s paraconsistent logic [13]. The basic idea is annotating
formulas with a hierarchy of meta-levels by question marks, and preventing triv-
ialization by paraconsistent logic. Also, its semantics is different from Reiter’s.

The bi-default logic [14] is based on a signed system and proposed for han-
dling inconsistencies by splitting default theories to two consistent parts. The
four-valued default logic [23] is based on Belnap’s four-valued logic and can be



50 C. Chen and Z. Lin

treated as an expansion of four-valued logic in k-minimally reasoning. However,
these approaches focus on eliminating inconsistencies but not on preventing inco-
herences. Also, our preferred extensions can infer stronger consequences than the
k-minimal models. For example, the law of excluded middle can be infered from
the only preferred restricted four-valued extension of default theory (∅, ∅), but
cannot be concluded in its k-minimal models.

The fault-tolerant default logic [15] is constructed on its own paraconsistent
reasoning relation �mc, and succeeds in handling inconsistencies and incoher-
ences simultaneously. Unfortunately, it still needs to be clarified that how to
compute its extensions. In contrast, we have provided a transformation from our
logic to classical default logic.

By using a nonmonotonic underlying logic based on a 16-valued lattice, the
annotated default logic [22] also guarantees the existence of nontrivial extensions
and characterizes Reiter’s default extensions in its extensions. By contrast, our
default logic does not only take these advantages, but also keeps our underlying
logic monotonic. As a result, our default logic holds some useful properties such
like Proposition 4, which do not hold if the underlying logic is nonmonotonic.

An approach to the trivial extension problem by transforming default theo-
ries with minimally unsatisfiable subformulas is also presented in [10]. The trans-
formed default theories still hold some information from original ones. Despite
that, this approach does not handle incoherences, and some propositions only
hold on normal default theories but not general ones. Even more, some informa-
tion may be lost in transformation. As a comparison, our extensions are based
on general default theories. We also ensure that the facts W of a default theory
T = (D,W ) always hold in every restricted four-valued extensions.

7 Conclusion

In this paper we present our restricted four-valued default logic based on the
monotonic restricted four-valued logic. In our default logic, we guarantee the
existence of nontrivial extensions of default theories with inconsistent or inco-
herent knowledge. We also have showed that our default logic is an expansion of
both default logic and preferred four-valued logic. To compute restricted four-
valued extensions, a signed formula transformation is also presented.

In future, we would consider other features of restricted four-valued default
logic and try to extend our work in first-order logic.
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