
Interval-Index: A Scalable and Fast Approach
for Reachability Queries in Large Graphs

Fangxu Li, Pingpeng Yuan(B), and Hai Jin

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan 430074, China

{ppyuan,hjin}@mail.hust.edu.cn

Abstract. Now more and more large graphs are available. One inter-
esting problem is how to effectively find reachability between any vertex
pairs in a very large graph. Multiple approaches have been proposed to
answer reachability queries. However, most approaches only perform well
on small graphs. Processing reachability queries on large graphs requires
much storage and computation and still remains challenges. In this paper,
we propose a scalable and fast indexing approach called Interval-Index,
based on traversal tree-based partitioning and relabeling scheme. Our
approach has several unique features: first, the traversal tree-based par-
titioning ensures access locality and parallelism in computation; second,
continuous relabeling ensures fast querying and saves search space; third,
we convert the entire graph database into a traversal tree graph on a
smaller scale, to reach a compact storage structure. Finally, we run exten-
sive experiments on synthetic graphs and real graphs with different sizes,
and show that Interval-Index approach outperforms the state-of-the-art
Feline in both storage size and the performance of query execution.

1 Introduction

Highly connected data sets have increased exponentially over the past several
years. For example, Facebook had more than 800 million users by the end of
2011 [2]. With the continued growth of graph-structured data, a common graph
application is to query whether there exist paths between two vertices in a
graph, namely reachability queries. In most cases of reachability queries, users
always lack exact knowledge of the graph. They can only provide a rough query
description. Thus, it is difficult to describe reachability queries using SQL-style
(SPARQL, etc.) languages due to their uncertain patterns.

Diverse approaches have been proposed to answer reachability queries. How-
ever, most approaches only perform well on relatively small graphs, with hun-
dreds of thousands of vertices and edges at most [3]. But for processing larger
graphs, they are either too costly in storage or slow in query time. For exam-
ple, Path-tree [11] has the restriction on scalability, as its index size on large
dense graphs may be very large. So many approaches, e.g., PWAH [12], GRAIL
[4], SCARAB [3], TF-Label [6] and Feline [7] are proposed to process large
graphs recently. However, the approaches are still crucial for performance limits.
c© Springer International Publishing Switzerland 2015
S. Zhang et al. (Eds.): KSEM 2015, LNAI 9403, pp. 224–235, 2015.
DOI: 10.1007/978-3-319-25159-2 21

Interval-Index: A Scalable and Fast Approach for Reachability Queries 225

For example, PWAH requires large memory to hold index in order to ensure effi-
ciency. So it is not scalable for large graphs. For GRAIL, the inclusion relation
between labels is necessary to indicate reachability, but not a sufficient one. So
GRAIL can only answer un-reachability between two vertices, otherwise GRAIL
requires to traverse the graph using DFS. Feline needs to keep the primitive
graph in memory, since it cannot answer reachability merely by the index. So it
requires long time to load data, and large memory. Like GRAIL, partial order-
based scheme in Feline is not a sufficient condition for reachability. So DFS is
also required to exclude those un-reachable vertex pairs in the worst case.

In this paper, we present a scalable and fast indexing approach for very large
graphs, named as Interval-Index. Our approach is motivated by our observation
that processing reachability queries need traverse graphs. But traversal through
large graphs will bring immeasurable time and space consumption. Therefore, we
first partition a large graph into tree-based partitions to improve access local-
ity and reduce search space. In order to build interval indexes on partitions
easily, we further assign vertices of each partition continuous IDs in parallel.
By this means, we further maximize sequential access and minimize random
access on storage media. Third, since vertex IDs of each partition are continu-
ous, we build an interval index which helps to determine the reachability in each
tree-partition. Our approach can prune search space greatly during answering
reachability queries. The main contributions of our research are as follows.

– A traversal tree-based partitioning approach is proposed to search each par-
tition in parallel. Partitioning a graph into multiple smaller trees does not
break the relationships of graph. Furthermore, it ensures access locality and
reduces the storage space.

– An efficient and scalable graph indexing technique - Interval-Index is pro-
posed to help quickly determine which trees a vertex is in. In order to facil-
itate building interval index, vertices of each partition are assigned continu-
ous IDs so that vertex IDs of each partition will not overlap. The relabeling
scheme ensures high efficiency in pruning of search space during answering
reachability queries.

2 Preliminary

Since undirected graphs can be converted into directed connected graphs and
disconnected graphs can be split into connected subgraphs, thus, we will mainly
discuss directed connected graph in the following.

Definition 1 (Graph). A graph G = (V,E) is defined by a finite set V of
vertices, {vi|vi ∈ V } (0 ≤ i < |V |), and a set E of directed edges which connect
certain pairs of vertices, and E = {e = (u, v) ∈ E|u, v ∈ V }.

The in-degree of vertex u is denoted as deg−(u) = |{v|(v, u) ∈ G}|. Its out-degree
deg+(u) = |{v|(u, v) ∈ G}|, and d(u) = deg−(u) + deg+(u).

226 F. Li et al.

Definition 2 (Traversal Tree). A traversal tree T = (VT , ET) of G = (V,E)
is defined as follows: 1) ET ⊆ E; (2) ∃vr ∈ VT , ∀u ∈ VT ,(u, vr) /∈ ET . vr is the
root of T ; (3) ∀u ∈ VT , u satisfies the following conditions: (i) ∃v ∈ V , u is v
or u is a dummy copy of v; (ii) ∃v ∈ VT and v is a child of u s.t. (u, v) ∈ ET ;
(iii) if u is a leaf of T , u is a dummy vertex or deg+(u) = 0. if u is a non-leaf
of T , u has at most deg+(u) children.

Definition 3 (Rooted Traversal Tree). An Rooted Traversal Tree (RT-Tree)
R = (VT , ET) of G = (V,E) is a traversal tree starting from a vertex v ∈ V
whose deg−(v)=0.

For instance, the tree indicated by the dotted line in Fig. 1(a) is an RT-Tree.
G may have multiple RT-Trees. The number of RT-Trees of G depends on the
number of vertices with zero in-degree. The intersection of two RT-Trees may
be not empty. Here, we define the intersection of two RT-Trees as pivotal tree
because two or more RT-Trees share it.

Definition 4 (Pivotal Tree). Given a directed graph G = (V,E), assume
Rm, Rn(m �= n) are RT-Trees of G. The pivotal tree PT of Rm and Rn is
defined as follows: (i) PT = Rm

⋂
Rn; (ii) ∃ < v0, v1, ..., vk >, such that

v0 = vrt(Ri)(i = m,n), vk = vrt(PT),∀j ∈ [0, k − 1] : (vj , vj+1) ∈ Ri. The
root of pivotal tree is named as pivotal vertex.

Achieving high performance in processing a large scale graph requires par-
titioning of the graph. Here, we partition a graph into multiple non-overlaping
traversal trees. In the following, traversal trees indicate non-overlapping traversal
trees if we do not state explicitly.

Definition 5 (k-way Partition). Let P1, P2, . . . , Pk denote a set of traversal
trees of G = (V,E), where (1) Pi = (VPi

, EPi
), VP1 ∪ VP2 ∪ . . . ∪ VPk

= V ,
VPi

∩ VPj
= ∅(i �= j); (2) ∀(u, v) ∈ E, u ∈ VPi

, v ∈ VPi
⇒ (u, v) ∈ EPi

.
P1, P2, . . . , Pk (1 ≤ k ≤ |V |) are named as k partitions of G.

Definition 6 (Graph of Traversal Trees). Given a directed graph G =
(V,E), and T is the set of non-overlapping traversal trees, which is a partition
of G. |T | ≥ 1. The graph of traversal trees GT = (VGT

, EGT
) of G is defined as

follows: (i) The function f : T ↔ VGT
is bijective. Namely, each traversal tree

in T is mapping into a vertex of VGT
; (ii)∀Ti, Tj ∈ T (i �= j), if the root of Tj is

reachable from the root of Ti, (f(Ti), f(Tj)) ∈ EGT
.

3 The Interval-Index Approach

In our approach, we first traverse a graph and construct its RT-Trees, and then
split these RT-Trees into multiple non-overlapping traversal trees based par-
titions. So parallelism and locality of the computation can be improved. The
vertices in the same partition will be assigned continuous IDs in order to build a
compact index easier. So we can quickly determine which partition or RT-Trees

Interval-Index: A Scalable and Fast Approach for Reachability Queries 227

a vertex is in by comparing vertex id with the ranges of partitions. Thus, the
reachability between two vertices can be determined by the relationship between
two IDs. In the following, we will first introduce how to search pivotal vertex,
partitioning a graph into traversal trees, relabeling. Finally, we will build interval
index and store it in an efficient manner.

3.1 Searching Pivotal Vertices

Traversal of large graphs will cause huge cost. Consider the case to answer reacha-
bility queries, we always have to frequently access the neighborhood of the recent
visited vertices, or the paths where the recent visited vertices are. Therefore, to
improve access locality and reduce search space, we need place those neighbor-
ing vertices in paths into a same partition. Each partition can be an RT-Tree.
However, there may exist overlapping subgraphs, namely pivotal trees among
RT-Trees of a graph. These pivotal trees may also overlap with each other. Since
the intersection of traversal trees is not empty, it is difficult to index traversal
trees and answer reachability. So we need to further partition RT-Trees into
disjoint traversal trees.

Algorithm 1. Searching Pivotal Vertex
Require: Graph G, root set S
1: Pivotal vertex set P ← ∅;
2: for each root ∈ S do
3: if root is unvisited then
4: enqueue(root);
5: while queue is not empty do
6: j = dequeue();
7: if j is unvisited then
8: label(j) ← root;
9: for each direct successor u of j do

10: enqueue(u),deg−(u) ← deg−(u) − 1;
11: else if label(j) �= root and deg−(u) == 0 then
12: P ← P ∪ {j};

To partition RT-Trees further into disjoint parts, we first find out pivotal
vertices using BFS. The traversal starts from the root of each RT-Tree. Each
time when a vertex is visited, the in-degrees of its direct successors should be
reduced by one. Assume we visit vertex j, there are three situations depending
on whether vertex j was visited before (Algorithm 1). Consider the situation in
which vertex j has not been visited yet, we label it with the vertex ID of the
current tree’s root. If j has been visited before and its label is not equal to the
current root ID, j belongs to a pivotal tree. If the in-degree of j is zero, j is a
pivotal vertex. If j has been visited yet, and its label is equal to current root
ID, it indicates that the RT-Tree has cross edges (e.g., edge: v27 → v98). For
example, in Fig. 1(a), all the pivotal vertices are v7, v9.

228 F. Li et al.

(a) a graph (b) Graph after partitioning and
relabeling

Fig. 1. Tree-based partitioning and relabeling

3.2 Traversal Tree-Based Partitioning

After finding all the pivotal vertices, we then partition the graph using traversal
tree-based partitioning (Algorithm 2). If we can reach a vertex u (e.g. v30 in
Fig. 1(a)) via pivotal vertex s1 (e.g. v9 in Fig.1(a)), or a vertex s2 (e.g.,v99
in Fig.1(a)), the topological traversal process will assign u to the partition s1
resides due to its in-degree restriction on visiting order. However, DFS or BFS
can not do it correctly. For instance, in BFS, if the traverse from s2 to u is earlier
than from s1 to u, u will be assigned to the partition s2 resides, otherwise, the
partition s1 resides. Actually, since u is a successor of a pivotal vertex, it should
be as a part of the pivotal tree to be partitioned.

When we reach an unvisited vertex u (not a pivotal vertex) from a root, we
assign it to the partition where this root is, and delete u and its direct out-
edges from the graph. Otherwise, if u is a pivotal vertex, the RT-Trees where u
appears will be recorded in a data structure (e.g. Table 1). Thus, we can easily
find the RT-Trees where a pivotal vertex appears. When we finish the topological
traversal from one root, we can get a partition. The above steps are performed
for each root of RT-Trees repeatedly until all vertices are assigned.

Consider the graph in Fig. 1(a) again, initially, partition part1 = {V1, E1},
V1 = E1 = ∅. The traversal begins at root vertex v1 and v1 is inserted into the
queue. Now, V1 = V1 ∪ {v1} = {v1}. If queue is not empty, execute dequeue
(v1) and delete its out-edges (v1, v5), (v1, v7) from the graph. Among v1’s direct
successors {v5, v7}, v5 is unvisited and not a pivotal vertex, and its current
deg−(v5) is zero. So we visit v5, enqueue(v5) and V1 = {v1} ∪ {v5} = {v1, v5}.
Then, we reach v7. Since v7 is a pivotal vertex, we just record (v1, v7) and (v3, v7),
where v1,v3 are the roots of RT-Trees where v7 resides. Now queue = {v5}. The
above steps will be executed until the queue is empty. Finally, we can get three
partitions part1, part2, and part3.

After traversing all RT-Trees, we perform the same steps as the above repeat-
edly to get pivotal trees from pivotal vertices. The partitioning result is indicated
using dotted lines in Fig. 1(b) (IDs in Fig. 1(b) are assigned using Algorithm 2).

Interval-Index: A Scalable and Fast Approach for Reachability Queries 229

Algorithm 2. Tree-Based Partitioning
Require: Graph G=(V,E), root set S, pivotal vertex set P
1: i ← 1, D = (∅, ∅);
2: for each unvisited vertex root ∈ S do
3: enqueue(root);
4: parti = (Vi, Ei), Ei ← ∅, Vi ← {root};
5: while queue is not empty do
6: j = dequeue();
7: for each successor u of j do
8: deg−(u) ← deg−(u) − 1;
9: if u ∈ P then

10: for each t ∈ Root(u) do
11: D ← D ∪ (t, u);
12: else
13: if u is unvisited and deg−(u) == 0 then
14: enqueue(u); Vi ← Vi ∪ {u}; set u as visited;
15: for each edge (u, v) ∈ E and u, v ∈ Vi do
16: Ei ← Ei ∪ (u, v);
17: i ← i + 1;
18: for each vertex j ∈ P do
19: execute step 3-17;

Our traversal tree-based partitioning scheme has three salient advantages.
First, since neighboring vertices and paths are in same partitions, it can improve
memory and disk access locality. Second, it prunes unnecessary search space, and
ensure a quick index lookup. Third, smaller tree-partitions facilitate parallel
processing.

3.3 Relabeling Trees

Each vertex of a graph has an ID. Since the initial vertex IDs are randomly
assigned and the vertices are distributed over the graph, it is difficult to build the
index on vertices. To improve locality for search and facilitate index construction,
vertices belonging to the same partition are assigned with continuous IDs. So
each partition can be indicated by a range (interval). We can efficiently determine
which partitions a vertex is in merely using intervals, and further determine the
corresponding RT-Trees it resides. Then, the reachability of two vertices can be
partially determined by checking whether their IDs fall in a range.

Algorithm 3 shows the relabeling process using DFS. Global variable idcount
indicate the starting ID assigned to every partition. In each partition, atomic
sync fetch and add operation is used to seize the interval of IDs first. Then

vertices in each partition are assigned ids according to theirs visiting order. For
example, V1 = {v1, v5, v27, v98} of part1 is relabeled as {v1, v2, v3, v4} (Fig. 1(b)).

Distribution of pivotal vertices has been recorded during partitioning. So
we can easily search for their corresponding RT-Trees to merge partitions. For
example, Table 1 records distribution of pivotal vertices in Fig. 1, part4 with old

230 F. Li et al.

Algorithm 3. Relabeling Traversal Trees
Require: Partition set P, vertex size set C of partitions, global variable idcount
1: parfor each parti = (Vi, Ei) ∈ P do
2: new id ← sync fetch and add(&idcount, Ci);
3: for each vertex v ∈ Vi in DFS order do
4: old id(v) ← new id;
5: new id ← new id+1;

root v7 resides in two RT-Trees with old root v1 and v3 (v1 and v5 are their new
root IDs). So part4 should be merged into these two RT-Trees. Table 2 is the
collection of partitions described by intervals for each RT-Tree (after relabeling).
For example, [5, 6], [11, 12] and [13, 15] compose a RT-Tree with new root v5.

Table 1. Distribution of
pivotal vertices

old root ID pivotal vertex

v1 v7
v3 v7
v1 v9
v3 v9
v4 v9

Table 2. Partition-based RT-Tree

new root ID partition

v1 [1, 4], [11, 12], [13, 15]

v5 [5, 6], [11, 12], [13, 15]

v7 [7, 10], [13, 15]

3.4 Interval-Index Construction

After partitioning a large graph into a set of tree-partitions, we may get a large
number of tree partitions. It is important to lookup a tree in order to answer
reachability. Since vertices of each partition are assigned the continuous IDs,
each partition can be indicated by a minimal id and a maximal id. The minimal
id of a partition is a root of traversal tree. Thus, we can quickly locate a traversal
trees where a vertex is. It greatly reduces the search space. We will construct the
graph of traversal tree. Specifically, we consider the partition with continuous
IDs as a vertex in the graph of traversal trees. If two partitions are in the same
RT-Tree, we add an edge between them into the graph of traversal trees. The
traversal tree graph of Fig. 1(b) is shown in Fig. 2. Now, only direct edges
between two vertices should be taken into consideration. That is, there exists
no transitive relation in a traversal tree graph. Vertices v3, v5 reside in different
RT-Trees, even though the two partitions denoted by interval [1, 4] and [5, 6]
are indirectly connected by partition [11, 12].

We build an adjacency list index for the graph of traversal trees. Table 3
shows the adjacency list index of Fig. 2. Because it indicates a range, we call
it interval index. We can determine the reachability of vertex pairs by checking
the adjacency list index. The reachability of any two vertices can be determined

Interval-Index: A Scalable and Fast Approach for Reachability Queries 231

using the interval index. Concretely, we first search the partition where the first
vertex resides and locate the corresponding row in the adjacency list. All the
neighboring partitions of this partition can be found in the list. Second, we
check whether the second vertex resides in the neighboring partitions. By this
way, we can quickly answer the reachability of vertex pairs.

Fig. 2. The graph of traversal trees

Table 3. Adjacency list index

vertex list of edges

[1, 4] [11, 12],[13, 15]

[5, 6] [11, 12], [13, 15]

[7, 10] [13, 15]

[11, 12] [1, 4], [5, 6],[13 15]

[13, 15] [1, 4],[5, 6], [7, 10],[11, 12]

With interval index, the reachability of vertex pairs can be determined
quickly. It requires two binary searches. First, we search offset index for the
offset address of the partition where the first vertex resides and locate the cor-
responding row in the adjacency list. And all the neighboring partitions of this
partition can be found in the list. Second, we search whether the second vertex
resides in these neighboring partitions to answer the reachability.

3.5 Delta Compression and Integer Encoding

Relabeling scheme makes differences among IDs residing in the same partition
smaller to further improves locality. We store the interval-based adjacency list
using byte-level delta compression scheme [8], in which the minimum number of
bytes are used to label the delta value between IDs. The relabeling scheme makes
the difference between IDs or intervals smaller. For one row of the adjacency list
like [id1, id2] : [s1, e1], [s2, e2]... , we store it as id1, id2 − id1, s1, e1 − s1, s2 −
e1, e2 − s2, We then append the first interval [id1, id2] and the offset of its
corresponding row into a file named offset index in order to efficiently locate its
row in subsequent query processing.

The ID (including the delta value) is an integer. The size for storing an integer
is typically 4 bytes. Not all integers require the whole word space to store them.
For example, in small graphs like linkedmdb, the number of vertices is about 1
million. The storage for each id is at most 3 bytes. So it is wasteful to store them
with a larger number of bytes when a smaller number of bytes are sufficient.
However, for bigger graph, 4 bytes may be not enough to store an ID. Thus, we
use the flexible approach - variable integer encoding [8].

3.6 Complexity Analysis

Index construction involves four steps: we need search pivotal vertices first, then
partition the graph using traversal trees and relabel vertices. Finally, we build

232 F. Li et al.

interval index. The complexity of Algorithm 1 is O(|E|), because both of them
enumerate all vertices once. The complexity of Algorithm 2 is O(|V | + |E|),
because each vertex is visited when every edge is visited. The index construction
can be executed when the relabeling process finishes (Algorithm 3). The com-
plexity of the last two steps is O(|V |). Thus, its final complexity is O(|V |+ |E|).

Assume vertex pairs (u, v), our approach first locate the partition where u
appears. The way is to perform binary search in the storage block in which
u’s partition is stored. Thus, the complexity depends on the average num-
ber of partitions in a storage block. In our approach, the block size is 4KB.
Thus, there are not many partitions stored in a block. If u, v belong to the
same partition, then v is reachable from u. If u, v are not in the same parti-
tion, after determining the location of a partition, we binary search its adja-
cent list to check whether v appears. If v is in the list, then v is reachable
from u. Otherwise, they are not reachable. Thus, our approach takes time
O(log(block size)+log(average len)), where average len is the average length of
adjacent lists of partitions. average len is less than the average depth of rooted
traversal trees.

4 Experimental Evaluation

Since Veloso et al. [7] showed that Feline outperforms the recently systems,
such as GRAIL [4], we choose Feline as the competitor. Both Feline and our
method are complied using g++. We run all experiments on a server with an
Intel 2.13GHz CPU, 48GB memory, and CentOS 6.5 (2.6.32 kernel).

4.1 Performance on Real Graphs

Real Data Sets. We use six real-world data sets from a wide spectrum
of domains: linkedmdb1, de wiktionary2, dblp3, pagelinks en4, yago3 and
wikidata2. These real graphs vary both in size and in average degree (i.e.,davg).
The characteristics of the data sets are shown in Table 4.

Table 4. Characteristics of real data sets

Data sets linkedmdb de wiktionary dblp pagelinks en yago wikidata
vertices 1,404,454 3,499,638 30,812,730 18,268,992 101,722,334 164,223,339
edges 3,087,311 8,518,892 67,840,417 136,591,822 205,638,803 377,173,710
davg 2.20 2.43 2.20 7.48 2.02 2.30

Storage. Table 5 reports the results. Interval-Index approach requires less stor-
age than Feline does. The reason is that Interval-Index approach is based on
1 http://queens.db.toronto.edu/∼oktie/linkedmdb/
2 http://www.rdfhdt.org/datasets
3 http://datahub.io/zh CN/dataset
4 http://data.dws.informatik.uni-mannheim.de/dbpedia

http://queens.db.toronto.edu/~oktie/linkedmdb/
http://www.rdfhdt.org/datasets
http://datahub.io/zh_CN/dataset
http://data.dws.informatik.uni-mannheim.de/dbpedia

Interval-Index: A Scalable and Fast Approach for Reachability Queries 233

local partitioning and byte-level delta compression. Moreover, relabeling makes
the IDs residing in the same partition continuous, significantly improving com-
pactness of the index.

Table 5. Storage for real data sets (in MB)

Data sets linkedmdb de wiktionary dblp pagelinks en yago wikidata
Interval-Index 108.6 108.0 308.0 2798.2 3133.5 10250.2

Feline 153.3 182.3 524.6 4831.0 4690.0 13230.0
Reduction 40.8% 41.3% 42.1% 33.2% 22.5% 44.3%

Query Answering Time. We randomly select 1,000k pairs of vertices for each
data set. Table 6 reports the total time taken to run queries in real graphs. The
experimental results are the average values of 5 runs. Since Feline uses a memory-
based access mechanism, its query time includes the loading time of the graph
and the time for processing 1,000k pairs of vertices. On the contrary, Interval-
Index’s access mechanism is based on external memory operation, implemented
by mmap virtual storage technique. So it only needs to load the required data
into memory. More importantly, its local partitioning holds neighbors together,
so the search space is well pruned. Continuous IDs in each partition further
reduce query time. The results clearly show that Interval-Index outperforms
Feline in all data sets.

Table 6. Query time for real data sets (in second)

Data sets linkedmdb de wiktionary dblp pagelinks en yago wikidata
Interval-Index 139.43 69.65 532.87 132.32 926.73 22037.29

Feline 181.82 86.73 685.91 438.25 1267.26 32159.30

4.2 Scalability

We also perform experiments on six synthetic random graphs with different size
generated using LUBM data generator [1]. So we can evaluate the scalability of
our approach. The characteristics of six data sets are shown in Table 7.

Table 7. Characteristics of synthetic data sets

Data sets LUBM10M LUBM50M LUBM100M LUBM200M LUBM300M LUBM500M
vertices 3,303,724 16,349,317 32,905,170 65,764,621 98,640,459 164,416,780
edges 13,409,395 66,751,196 133,613,894 267,027,610 400,512,826 667,592,614

Fig. 3 reports the results on synthetic data sets. The storage of Interval-
Index increases more slowly than Feline does as the graph sizes grow. Since
Feline needs to keep the primitive graph in memory, thus larger storage restricts

234 F. Li et al.

its scalability. The right part of Fig. 3 shows that our approach is again faster
than Feline. As the number of edges increases, the query time of Interval-Index
increases slowly, while the time of Feline increases more quickly. The reason
is that Interval-Index’s partition-based index sharply reduces search space to
ensure efficient query performance. Its external memory-based access mechanism
further ensures robust performance against the growth in graph size. Since it only
needs to load the required data into memory, the graph size does not have much
effect on IO and memory read/write. However, Feline requires much time to load
all data into memory for computation. Thus, the performance of Feline is not
better than our approach.

Fig. 3. Performance on varying edges (M = 106)

5 Related Work

Reachability querying is a fundamental graph operation with numerous appli-
cations both in research and in industry. Due to the emergence of large graph-
structured data sets, reachaility queries have attracted enormous attention cur-
rently. Although many efforts have been devoted to it, it is still a challenge
whether we can do faster and more scalable to answer reachability queries over
even larger graphs with minimum cost (time and/or space).

Wei et al. [10] classifies existing approaches into two categories: Label-Only
and Label+G. The label-only methods only utilize the labels to answer reachabil-
ity queries, e.g., 3-Hop [9] and TF-Label [6]. Some of these methods [9] compress
TC (transitive closure) to reduce index size. But majority of them are still space-
consuming, and thus they are not so promising with regard to scalability on large
graphs. SCARAB [3] is recently proposed as a general framework to represent
a reachability backbone. It is used to further improve the scalability of existing
methods. Since the backbone is much smaller than the graph itself, querying
can generally be faster. However, if the size of backbone remains too large, these
methods probably do not work [3,6]. TF-Label [6] is constructed based on a
topological folding structure that recursively folds a target graph into half to
restrict the size of label. The Label+G methods will answer reachability queries

Interval-Index: A Scalable and Fast Approach for Reachability Queries 235

only by label if possible, otherwise DFS will be required. GRAIL [4], Ferrari
[5] and Feline [7] are classified to this category. GRAIL is a reachability index
formed by multiple intervals obtained by the traditional min-post strategy. Ran-
domized interval labeling is applied to it. Ferrari employs a selective interval set
compression and a topological ordering to prune search space.

6 Conclusions

In this paper, we propose a scalable and fast graph indexing scheme, Interval-
Index to answer reachability queries in large graphs. The Interval-Index app-
roach, converts a large graph into a collection of fewer tree-partitions. The reach-
ability of any two vertices can be determined effectively and accurately using the
interval index. With extensive experiments, we demonstrate that Interval-Index
outperforms Feline, one of the recent best systems in storage and query answer-
ing. Furthermore, Interval-Index is scalable proven to be not only efficient, but
also robust against the increase in graph size.

Acknowledgments. The research is supported by National High Technology
Research and Development Program of China (863 Program) under grant
No.2012AA011003.

References

1. LUBM. http://swat.cse.lehigh.edu/projects/lubm/
2. http://www.facebook.com/press/info.php?statistcs
3. Jin, R., Ruan, N., Dey, S., Yu, J.X.: SCARAB: scaling reachability computation

on large graphs. In: Proc. of SIGMOD 2012, pp. 169–180 (2012)
4. Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: Scalable reachability index for large

graphs. PVLDB 3(1), 276–284 (2010)
5. Seufert, S., Anand, A., Bedathur, S.J., Weikum, G.: FERRARI: flexible and effi-

cient reachability range assignment for graph indexing. In: Proc. of ICDE 2013,
pp. 1009–1020 (2013)

6. Cheng, J., Huang, S.L., Wu, H.H., Fu, A.W.-C.: TF-label: a topological-folding
labeling scheme for reachability querying in a large graph. In: Proc. of SIGMOD
2013, pp. 193–204 (2013)

7. Veloso, R., Cerf, L., Junior, W., Zaki, M.: Reachability queries in very large graphs:
a fast refined online search approach. In: Proc. of EDBT 2014, pp. 511–522 (2014)

8. Yuan, P., Liu, P., Wu, B., Liu, L., Jin, H., Zhang, W.: TripleBit: a fast and compact
system for large scale RDF data. PVLDB 6(7), 517–528 (2013)

9. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-HOP: a high-compression indexing
scheme for reachability query. In: Proc. of SIGMOD 1999, pp. 813–826 (2009)

10. Wei, H., Yu, J.X., Lu, C., Jin, R.M.: Reachability querying: An independent per-
mutation labeling approach. PVLDB 7(12), 1191–1202 (2014)

11. Jin, R., Ruan, N., Xiang, Y., Wang, H.: Path-tree: An efficient reachability indexing
scheme for large directed graphs. TODS 36(1), 7 (2011)

12. Schaik, S.J., Moor, O.D.: A memory efficient reachability data structure through
bit vector compression. In: Proc. of SIGMOD 2011, pp. 913–924 (2011)

http://swat.cse.lehigh.edu/projects/lubm/
http://www.facebook.com/press/info.php?statistcs

	Interval-Index: A Scalable and Fast Approach for Reachability Queries in Large Graphs
	1 Introduction
	2 Preliminary
	3 The Interval-Index Approach
	3.1 Searching Pivotal Vertices
	3.2 Traversal Tree-Based Partitioning
	3.3 Relabeling Trees
	3.4 Interval-Index Construction
	3.5 Delta Compression and Integer Encoding
	3.6 Complexity Analysis

	4 Experimental Evaluation
	4.1 Performance on Real Graphs
	4.2 Scalability

	5 Related Work
	6 Conclusions
	References

