iCHUM: An Efficient Algorithm for High Utility
Mining in Incremental Databases

Hai-Tao Zheng®™) and Zhuo Li

Tsinghua-Southampton Web Science Laboratory, Graduate School at Shenzhen,
Tsinghua University, Shenzhen, China
zheng.haitao@sz.tsinghua.edu.cn, lizhuol3@mails.tsinghua.edu.cn

Abstract. High utility mining is a fundamental topic in association
rule mining, which aims to discover all itemsets with high utility from
transaction database. The previous studies are mainly based on fixed
databases, which are not applicable for incremental databases. Although
incremental high utility pattern (IHUP) mining has been proposed, its
tree structure IHUP-Tree is redundant and thus IHUP algorithm has
relative low efficiency. To address this issue, we propose an incremental
compressed high utility mining algorithm called iCHUM. The iCHUM
algorithm utilizes items of high transaction weighted utilization (TWU)
to construct its tree structure, namely iCHUM-Tree. The iCHUM algo-
rithm updates iCHUM-Tree when new database is appended to the orig-
inal database. The information of high utility itemsets is maintained in
the iCHUM-Tree such that candidate itemsets can be generated through
mining procedure. Performance analysis shows that our algorithm is more
efficient than baseline approaches in incremental databases.

Keywords: Data mining - Association rule - High utility mining -
Incremental mining

1 Introduction

Mining association rule is a fundamental topic in the data mining applications,
especially in market analysis. In association rule mining, frequent pattern mining
was firstly proposed to find all itemsets which frequently appear together in the
transaction database. The initial solution is based on downward closure property
[1,2], which is a level-wise approach. However, it requires multiple database
scans and generates a large number of candidate itemsets to search and identity.
Extensive studies have been proposed to address the issues by introducing a
frequent pattern (FP) tree structure and corresponding FP-growth algorithm
[5,6], which is a pattern-growth approach. The main difference between both
approaches is whether the database is compressed into other data structure.
However, FP mining is prone to generate many frequent but low profitable
itemsets. The reason is that FP mining treats all items with the same weight,

© Springer International Publishing Switzerland 2015
S. Zhang et al. (Eds.): KSEM 2015, LNATI 9403, pp. 212-223, 2015.
DOI: 10.1007/978-3-319-25159-2_20



iCHUM: An Efficient Algorithm for High Utility Mining 213

and each item appears in binary format. In fact, weight and quantity are signifi-
cant for addressing the decision problems in the real world where sellers require
maximizing profit from transaction records [8,9,18,19].

A high utility mining model [13,14] is defined to discover all high utility pat-
terns from the transaction databases. The significance of itemsets is measured
by the concept of utility. An itemset is called a high utility itemset if its utility is
no less than a user-specified minimum utility threshold represented by min_util.
Moreover, most previous studies [4,11,13,15,16] are based on a fixed transaction
database and have not taken dynamic increase in database size into consider-
ation. In practice, the real markets add their transaction records dynamically,
where utility mining for incremental databases is required to be solved.

Studies [3,10,12,17] have been conducted based on incremental databases.
IUM and FIUM algorithm [17] are proposed to mine high temporal utility item-
sets, which are temporary and may be not high utility itemsets in the whole
database. FUP algorithm [10,12] is a level-wise approach, and its efficiency
becomes worse due to multiple scans of the whole database. IHUP [3] is a pattern-
growth solution for high utility mining in incremental databases. It compresses
databases into the IHUP-Tree and avoids multiple scans. IHUP could update
its IHUP-Tree when new transaction records are inserted. However, it becomes
inefficient when the number of items in the database is relatively large. IHUP
maintains its redundant THUP-Tree, which takes excess time to process items
that are unpromising to be high utility itemsets. In fact, not all items need be
maintained in tree structure according to transaction weighted downward closure
(TWDC) property [13,14].

Most existing methods for fixed databases are not applicable for incremen-
tal databases. The approaches for incremental databases spend much time on
maintaining redundant information, which causes a relatively low performance.
The situations get worse when the size of database becomes large. To address
the issues, we propose an incremental compressed high utility mining (ICHUM)
algorithm for high utility mining in incremental databases. In this paper, we
have three main contributions as below.

1. We propose the iCHUM algorithm for high utility mining in incremental
databases. The algorithm performs efficiently to obtain all high utility itemsets
as transaction records increase dynamically.

2. The iCHUM algorithm constructs and updates iCHUM-Tree incrementally,
which maintains high utility itemsets information of the transaction database.
The iCHUM algorithm avoids rebuilding the tree structure entirely and reduces
construction and update runtime.

3. We conduct a series of experiments on both real and synthetic datasets.
We compare the performance between ours and baseline methods. The results
show that our algorithm is more efficient in incremental databases.

The rest of this paper is organized as follows. In Section 2, we introduce the
related work. In Section 3, we propose iCHUM algorithm in details following
the problem definition. The experimental results and evaluations are shown in
Section 4 and the conclusion and future work are given in Section 5.



214 H.-T. Zheng and Z. Li

2 Related Work

The definition of utility mining problem is given in [13,14], which is similar to
what we adopt. In their work, they propose the Two-Phase algorithm and intro-
duced the concept of transaction weighted utilization (TWU), which satisfies
the downward closure property. The Two-Phase algorithm adopts a level-wise
generation-and-test approach. It firstly finds all one-element high TWU itemsets
and then generates two-element candidate itemsets to test whether there exist
two-element high TWU itemsets or not. If there exist any high TWU candidate
itemsets, Two-Phase algorithm generates candidate itemsets by adding one more
element. Otherwise, it stops generation process and then identifies utility of all
candidate itemsets. It finds all high TWU itemsets level by level, and it needs
to scan the whole transaction for each generation-and-test iteration. Therefor,
Two-Phase algorithm suffers from the multiple scans of database and huge can-
didates.

Studies [3,4,11,15] are proposed together with their corresponding tree struc-
ture as pattern-growth approaches. The main difference between them is how
to construct their tree structure. These approaches scan the database to build
their corresponding tree structure separately at first. They compress the entire
transaction records into their corresponding tree structure. The mining process
utilizes property of prefix-tree and introduces conditional pattern base [6]. Thus
the high TWU itemsets are generated by mining the compressed tree struc-
ture instead of the whole transaction database. The pattern-growth approaches
largely reduce the amount of scans and that of candidates. They perform better
in the relatively dense or long pattern databases. However, most pattern-growth
methods above are designed for the fixed databases. Their tree structures need
to be reconstructed once the database is updated.

There exist some researches based on high utility itemset mining for incre-
mental database [3,10,12,17]. Yeh et al. [17] proposed two methods: incremental
utility mining (TUM) algorithm and fast incremental utility mining (FIUM) algo-
rithm. However, these algorithms find high temporal utility itemsets, which are
high utility itemsets in the part of the database. When parts joint into the whole,
some of high temporal utility itemsets may not be high utility ones. Lin et al.
[10,12] proposed an incremental updated HUP maintenance algorithm. The algo-
rithm divides the incremental databases into four cases when new transactions
are appended to an original database. However, their algorithm suffers from
multiple scans and excessive candidates. Ahmed [3] proposed their incremental
mining method THUP based on the IHUP-Tree. The IHUP-Tree maintains all of
the items, and it inserts new transaction records without rebuilding the whole
tree. All it needs is to maintain the order of the items by TWU and it is conve-
nient for mining procedure. Limited to the property of their tree structure, the
efficiency of the algorithm is not satisfactory when the number of items is large or
number of high TWU items is small. On those conditions, IHUP should maintain
unnecessary inserting or reordering operation for those low utility items.

Our proposed iCHUM algorithm aims to improve time efficiency by main-
taining promising items which may be elements of high utility itemsets.



iCHUM: An Efficient Algorithm for High Utility Mining 215

When transaction database grows incrementally, we recall such high TWU items
in new database, whose TWU is low in original database. Then we insert high
TWU items of both original and new databases to update the iCHUM-Tree
without rebuilding the tree structure entirely. It is efficient to mine the updated
iCHUM-Tree to obtain high utility itemsets compared with baseline methods.

3 iCHUM Algorithm

3.1 Problem Definition

Let I ={i1,42,...,%m} be a finite item set. Each item has its profit p(i;) where
1<j<m. A transaction database consists of a finite set of transaction records D =
{T1,Ts,...,T,} and item profit table. Each transaction Ts = {451,459, .-,%ss} C
I where 1<s<n,1<t<m. In each Ty, each item has its quantity ¢(i;,Ts) where
1<j<m, 1<s<n. Let Table 1 be an example of transaction database and Table 2
be a profit table.

Set X = {ij;,4jy,...,15,} € I is an itemset, where 1<[/<m, and [ is the
length of itemset X. Vi; € X, if i; € Ty, then the itemset X C T, which means
that T, contains X.

Table 1. Transaction database Table 2. Profit table Table 3. TWU table

Tid Transaction TU Item|Profit It TWU
i [(A5) (B2) 9 A | 1 MBo[D0 + D1
QT |(E]L) (F2) 7 C 3 B [26] 51
T, |(C,3) (D,2) 13 D 2 C |24 24
T5 [(A2) (B,2) (C1) (D,2)[ 11 E 5 D [30] 40
116 [(A3) (B1) (E,2) 15 F 1 E | 7| 32
Q77 [(B,1) (D,1) (E1) (F,1)] 10 F |7 17
TS (A72) 2

Definition 1. The utility of an itemset X is denoted as U(X). An itemset X
is a high wutility itemset if U(X) > min_util. High utility mining is to
find the set of all itemsets X = {X1,Xa,..., X,;n} satisfies the condition that
VX; € X,U(X;) > min_util.

UX)= > > pliy)xaqlijTa) (1)

XCTseDi;eX

After we define utility mining problem, we introduce TWU [13] which helps
build up iCHUM-Tree.

Definition 2. The transaction weighted utility (TWU) of an itemset X denoted
as TWU (X) is the sum of the transaction utilities (TU) of all transaction records



216 H.-T. Zheng and Z. Li

containing X, shown in Table 3. An itemset X is a high TWU itemset if
TWU(X) > min_util.

TWUX)= > TUT)= Y. > plis)xqlij,Ts) (2)

XCTyeD XCT4€Di;€Ty

Noted that U(X) < TWU(X) for VX, if TWU(X) < min_util, then
U(X) < min_util. If X is not a high TWU itemset, then X is not a high utility
itemset. Moreover, TWU (X) satisfies downward closure property [13,14] while
U(X) does not. Therefore, high utility mining problem is divided into high TWU
itemsets mining and corresponding utility identification, which constitutes the
framework of our algorithm.

Definition 3. An item i € I is a promising item if TWU (i) > min_util. Oth-
erwise, the item is an unpromising item.

If an item 4, is unpromising, all itemsets containing i, should not be high
TWU itemsets, which are not high utility itemsets accordingly.

3.2 iCHUM Algorithm Framework

The framework of iCHUM algorithm includes four procedures: iCHUM-Tree con-
struction, iCHUM-Tree update, mining procedure and candidates identifying,
which are shown in Fig. 1. The overall inputs consist of the transaction database
and a user-specified minimum utility threshold called min_util. Actually, for the
incremental databases, we have two parts of the transaction database, an orig-
inal database D0 and a new database D1. The final output is the collection of
high utility itemsets in both database D0 and database D0 + D1.

According to the flow of the iICHUM framework, we firstly construct an initial
iCHUM-Tree from the original database D0. Through mining procedure of the
iCHUM-Tree, we get the collection of high TWU itemsets in D0O. We obtain the
collection of high utility itemsets in DO following identifying procedure. Then
when a new database D1 is appended to DO as an incremental database, the
iCHUM-Tree is to be updated instead of being rebuilt. The iCHUM-Tree update
procedure is to update the iCHUM-Tree according to transaction records in
database D1. The updated iCHUM-Tree is then the input of mining procedure,
which produces the candidate itemsets with high TWU value. The final step
of identifying is to pick up real high utility itemsets from the candidates. After
that, we obtain all high utility itemsets in the whole transaction database namely
D0 + D1, which consists of DO and D1.

3.3 iCHUM-Tree Construction and Update

The iCHUM-Tree consists of tree structure and its headtable H for traversal,
shown in Fig. 2. In the iCHUM-Tree, the nodes includes its name, TWU value,
count, a parent node, a brother node and a collection of child nodes, expressed as



iCHUM: An Efficient Algorithm for High Utility Mining 217

{root}

original new
database =~ mMin_util  database

DO D1 Item | TWU | Link {A¥1,9, {D}:3,30
AT N,
D | 30 et kS | ™~
Yest‘ update A 26 -~ ,{B}Zl’g'\ (Al):z’ﬂ {C);1‘13
//’ N\, //
- B 26 ] B}:2,17 /
/
c 24 /
N N N I B M ot - {Ch1,117
construction
(@
{root.
@ Iten | TWU | Link ==
B 51 {4 {B}5,51 {D}1,13 {E):l,z LArL2
f T
. A | 43| T |
mining o ; ST 9l
- TR G gg (T
D 40 . 2 AT
- 17X e !
E | 82 | ] PR 05T ka0
identifying -~
c 24 - {111

®
high utility itemsets

Fig. 2. Construction and update of iCHUM-Tree
Fig. 1. Framework of iCHUM (a) after inserting 75, (b) after inserting Ts

{name} : (count, TWU). In the headtable, each entry consists of the item name,
TWU value and a link pointed to nodes with the same name in the iCHUM-Tree.

The iCHUM-Tree construction is to build iCHUM-Tree from the original
database D0, shown in Algorithm 1. According to the TWDC property, the
items with low TWU value cannot appear in high utility itemsets. Therefore,
the headtable of iCHUM-Tree exclusively maintains the promising items whose
TWU > min_util. Before each transaction record is inserted to iICHUM-Tree, we
arrange the items in TWU descending order. It is efficient for mining procedure
when traversing branches from bottom to top orderly. When mining process
enters entry of higher TWU items, it would not check those low TWU items.
If an item has been existed during insertion operation, we add its count by one
and its TWU by the TU of current transaction record inserted. Otherwise, we
create a node of the item and set its count as one and its TWU as TU value of
the current record. The space complexity to construct iCHUM-Tree is O(mf,),
where m,, represents number of promising items.

Algorithm 1. iCHUM-Tree Construction
Input: original database D0 , minimum utility threshold min_util
Output: item TWU table TWU|[1..m] , iCHUM-Tree and its headtable H of D0
Scan D0 to update TWU|[1..m]
Create H for each ¢ satisfying TWU[i] > min_util in TWU descending order
/* Scan and Insert process is as below */
for each T, in DO do
Sort Ty to T in TWU descending order
Insert i to iICHUM-Tree for each i € H in T}
end for




218 H.-T. Zheng and Z. Li

The iCHUM-Tree update is performed when a new transaction database
D1 comes to be appended based on original database D0, shown in Algorithm 2.
In new database, there would exist such items whose TWU value is high in
new database but low in original database. Among such items, recalled items
are ones whose TWU value is greater than min_util in the whole transaction
database D0 + D1, such as item E in Fig. 2b. In this case, the iCHUM algo-
rithm needs to find the recalled items from D0, and insert them to headtable
H as well as iCHUM-Tree. Moreover, the iCHUM-Tree should be maintained in
TWU descending order after recalled items are appended. We adopt bubble sort
operation [7] to reorder the nodes in the iCHUM-Tree and its headtable. The
operation exchanges adjacent items to meet the order. If an item X is adjacent
to an item Y in headtable and X is Y’s parent node in iCHUM-Tree, the bubble
sort operation is performed when Y’s TWU becomes greater than that of X. The
time complexity of update is O(nm?), where n represents number of transaction

P
records. In worst case, it needs to bubble sort n times for m,, entries.

Algorithm 2. iCHUM-Tree Update
Input: DO, new database D1 , min_util , TWU|[1..m], iICHUM-Tree and its H of DO
Output: updated iCHUM-Tree and its headtable H of D0 + D1
Scan D1 to update TWU[1..m] and Find collection of recalled items I’
if I' #( then
Add alli' € I' to H
Scan DO and Insert i’ to iICHUM-Tree
end if
Scan D1 and Insert i € H to iCHUM-Tree
Reorder H and iCHUM-Tree by bubble sort operation

Let us give an example of the construction and update procedure. Considering
DO in Table 1, we set the min_util 40% of the sum of all TU, which is 18.4. The
headtable H is created with items whose TWU > 18.4. The items of H are “D A
B C” in TWU descending order. We insert these items in each transaction by the
order and formulate iCHUM-Tree in Fig. 2a. When D1 comes, TWU of items
changes and min_util is 29.2, shown in Table 3. We insert E to the headtable
and iCHUM-tree following the previous order. Here, we keep the unpromising
item C because it had once been high TWU items. It is likely that it becomes
high TWU item again in incremental databases. We rearrange the iCHUM-Tree
and its headtable in the “B A D E C” order by bubble sort operation. Not only
items in headtable should be sorted in this order, but also the corresponding
nodes in the iCHUM-Tree do the same as well. After all items have been sorted,
the iCHUM-Tree is updated as shown in Fig. 2b.

3.4 Mining and Identifying Procedures

Mining procedure discovers the collection of high TWU candidate itemsets
represented by cand from iCHUM-Tree. The mining procedure is a pattern-



iCHUM: An Efficient Algorithm for High Utility Mining 219

growth approach, which is shown in Algorithm 3. It is based on the FP-growth
mining algorithm [6]. We firstly construct conditional tree CT,, for each entry «
in H. We follow the link in /s entry to obtain all transaction records containing
item a. For each a node in iCHUM-Tree, we find its prefix nodes and calculate
TWU of its prefix nodes based on TWU of a. If prefix node 5's TWU > min_util
in CT,, then we add 8 to CT,, and add {af} to cand. The time complexity
to mine iCHUM-Tree is O(hm}), where h is the height of iCHUM-Tree and
m,, represents number of promising items. The mining recursion complexity is
determined by the height and node number of iCHUM-Tree.

For example, we construct B’s conditional tree CTpg from iCHUM-Tree in
Fig. 2a. For node {B}:(1,7), we obtain its prefix node A as {A}:(1,9). In terms of
node {B}:(2,17), we add A’s count and TWU by 2 and 17 respectively. Besides,
we obtain B’s another prefix node D as {D}:(2,17). The prefix nodes of B is now
that {A}:(3,26) and {D}:(2,17). Considering min_util is 18.4, B’s conditional tree
consists of node A and discards node D. We add itemset {AB} into set cand. For
{AB}’s prefix nodes, we can obtain that {D}:(2,17), which is less than min_util.
Mining procedure for B is finished and then iCHUM continues to process item
A. After iCHUM processes each entry in headtable H, we can obtain the set
cand containing {C},{CD},{B},{AB},{A},{D} in original database DO.

Algorithm 3. Mining procedure

Input: min_util , iICHUM-Tree, headtable H
Output: collection of high TWU itemsets cand
for each entry a in H do
Add {a} to cand
Call Mining(CTq, Ha, @)
end for
proc Mining(CTq,Ha, a)
Create a’s conditional tree CT,, from iCHUM-Tree
Create headtable H, for CT,,
for each entry 8 in H,
Add {g} U {a} to cand
Call Mining(CTag, Hag, a8)
end for

Identifying procedure is to calculate the utility of these itemsets in the
collection of high TWU candidate itemsets cand according to Definition 1. The
iCHUM algorithm needs to rescan the transaction database to obtain utility of
all itemsets in cand. For those recalled items and their corresponding itemsets,
we need to rescan the original database as well as the new database. We calculate
their utility in each transaction records and sum them up. For other items, we
have had calculated their utility in the identifying process of D0O. We only rescan
the new database for those itemsets and add to their utility.

In the above example, we calculate the utility of each itemset in cand accord-

ing to Table 1. U({C}),U({B}),U({A}),U({D}) is 12, 10, 9, 10 respectively.



220 H.-T. Zheng and Z. Li

The utilities of items in headtable H are less than min_util. For two-element
itemsets, U({CD}) is 20 and U({AB}) is 19, which are high utility itemsets
for transaction database D0. After a new database D1 is inserted, the updated
iCHUM-Tree is as shown in Fig. 2b. Following mining procedure, we obtain the
cand of the database DO+ D1, which includes {E},{D},{A},{AB},{B}. For {E},
we rescan the whole transaction database and obtain its utility as 20. For the
rest, we add their utility in D1 and obtain their final utility as 12, 14, 24, 14.
Because the utility of each candidate itemset is less than min_util 29.2, there is
no high utility itemset for transaction database D0 + D1 when min_util is set
as 40% of total transaction utilities.

4 Experiment

In this section, we evaluate the performance of iCHUM algorithm written in
C++. The experiment were conducted on Ubuntu server with a dual-2.4GHz
CPU processor and 4G memory. Both real and synthetic dataset could be
obtained from NU-MineBench !'. Real dataset, named Chainstore, is a sparse
and large database. It contains 1,112,949 transaction records and total 46,086
kinds of items. We split the database into D0 of 700,000 and D1 of 412,949.
Synthetic dataset, named T10I6D100, contains 100 items and 93,058 transac-
tion records whose average length is 10, where | DO0| is 60,000 and |D1]| is 33,058.

As a comparison, we implement the ITHUP algorithm [3] and an iCHUM with-
out update (iICHUMxU) algorithm in C++ as baseline methods. The iCHUMxU
algorithm mines iCHUM-Tree twice without update procedure regarding the DO
and D0 + D1 as original database input respectively. The iCHUMxU is a high
utility mining algorithm for fixed database and we compare its mining efficiency
with iCHUM’s in incremental databases.

e iCHUM

400 700
v |HUP

350 =8 iCHUMxU 050

600

400/ |®—® ICHUM
¥—¥ |HUP
301 |m—m  iCHUMXU

runtime(sec.)
runtime(sec.)

0.1 0.5 1 5 10 0.10 0.15 0.20 0.25 0.30
minimum utility(%) minimum utility(%)

Fig. 3. Runtime on T10I6D100 Fig. 4. Runtime on Chainstore

Fig. 3 shows the execution runtime on T10I6D100. With a logarithmical
X axis, the runtime at different minimum utility thresholds is easy to view.

! http://cucis.ece.northwestern.edu/projects/DMS /MineBench.html


http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html

iCHUM: An Efficient Algorithm for High Utility Mining 221

For larger min_util or minimum utility, runtime of iCHUM is less than that of
THUP. When min_util is 10%, the total runtime of iCHUM is 52.99 seconds,
compared with 101.65 seconds of IHUP and 70.17 seconds of iCHUMxU. It is
because that the items in iCHUM-Tree is a small part of the total items. It takes
less time on update and does not need to reconstruct the whole iCHUM-Tree.
However, the performance of iCHUM algorithm becomes worse when min_util
gets smaller compared with THUP. When min_util is 0.1%, the total runtime
of iCHUM is 378.43 seconds, which is larger than 366.97 seconds of IHUP. It is
because that the number of items with high TWU value reaches close to the total
items number. In time complexity, m, is approximated with number of items
m. The cost of maintaining headtable is almost the same. Besides, the iCHUM
algorithm should spend more time on finding back recalled items. That happens
in such a dataset, where there are less items and transaction length is longer.
The iCHUM algorithm has an advantage over IHUP on sparse and large
database, shown in Fig. 4. In Chainstore dataset, each item accounts for small
proportion of whole transaction (m, < m), where maintaining headtable with
high TWU items is efficient. When min_util is 0.2%, total runtime of iCHUM is
435.86 seconds, which is less than 651.61 seconds of IHUP. THUP should maintain
entire items and takes overhead time, which is larger than 501.41 seconds of
iCHUMxU. The reason is that valuable items in a large transaction database
is rare, and thus it is efficient to maintain these promising items instead of
entire items. From runtime distribution in Table 4, runtime is largely reduced
in construction and update procedures, which the iCHUM algorithm focuses
on. The fewer items save the execution time on construction and update of
the iCHUM-Tree. Besides, the iCHUMxU is a time-consuming method in both
datasets. It is more efficient to update iCHUM-Tree than to rebuild the tree
structure entirely since we reuse the previous tree structure and mining results.

Table 4. Runtime Distribution (sec.) of iCHUM and ITHUP

DO D1
construction mining identify update mining identify
T10I16D100 IHUP 33.89 0.27 0.07 6740 042 0.22 102.27
0.5% iCHUM 30.60 0.26 0.07 62.64 041 022 94.20
Chainstore THUP 209.14 1.45 46.09 318.78 2.29 73.86 651.61
0.2% iCHUM 113.98 1.33 46.00 199.74 2.18 72.63 435.86

Dataset Algorithm Time

To verify whether the iCHUM algorithm obtains all high utility itemsets,
we keep records of mining results from both iCHUM and IHUP. Moreover, we
compare the results on different datasets with that of Two-Phase algorithm
provided by NU-MineBench [13,14]. Table 5 shows that the number of high
utility itemsets at different minimum utility threshold on T10I6D100 dataset.
Table 6 shows the mining results on Chainstore dataset.



222 H.-T. Zheng and Z. Li

Table 5. Number of High Utility Itemsets on T10I6D100

Minimum Utility Threshold

Database 1507597 1% 05% 0.1%
DO 0 2 292 1643 46471
DO+D1 O 2 292 1644 45614

Table 6. Number of High Utility Itemsets on Chainstore

Minimum Utility Threshold
Database  §3507025% 0.20% 0.15% 0.10%
DO 15 13 29 8 36
DO+ D1 15 17 2 50 80

5 Conclusion and Future Work

In this paper, we propose an efficient iCHUM algorithm for mining high utility
itemsets in incremental databases. The iCHUM algorithm compresses transac-
tion database into a compact tree structure called iCHUM-Tree. The update of
iCHUM-Tree maintains the tree structure with all promising items which guar-
antees all high utility itemsets to be found. Experimental analysis shows that
iCHUM performs better than other baselines in incremental databases, espe-
cially in terms of those with large number of transaction records or items. We
believe that iCHUM algorithm will play an important role for high utility mining
in incremental databases in practice.

We notice that the performance of the iCHUM algorithm degrades as the
amount of the recalled items increases. In the future, we will explore a knowledge-
based method to improve the promising item discovering. In addition, we will
study the idea of B+ tree to improve our data structure and algorithm in con-
struction and mining procedures.

Acknowledgments. This research is supported by the 863 project of China
(2013AA013300), National Natural Science Foundation of China (Grant No. 61375054
and 61402045), Tsinghua University Initiative Scientific Research Program (Grant
No0.20131089256), and Cross fund of Graduate School at Shenzhen, Tsinghua University
(Grant No. JC20140001).

References

1. Agrawal, R., Imieliniski, T., Swami, A.: Mining association rules between sets of
items in large databases. ACM SIGMOD Record 22(2), 207-216 (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ings of the 20th International Conference on Very Large Data Bases, pp. 487—499
(1994)

3. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K.: Efficient tree structures for
high utility pattern mining in incremental databases. IEEE Transactions on Knowl-
edge and Data Engineering 21(12), 1708-1721 (2009)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

iCHUM: An Efficient Algorithm for High Utility Mining 223

Erwin, A., Gopalan, R.P., Achuthan, N.: Ctu-mine: an efficient high utility itemset
mining algorithm using the pattern growth approach. In: 2007 7th IEEE Interna-
tional Conference on Computer and Information Technology, pp. 71-76 (2007)
Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using fp-trees.
IEEE Transactions on Knowledge and Data Engineering 17(10), 13471362 (2005)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
ACM SIGMOD Record 29(2), 1-12 (2000)

Koh, J.-L., Shieh, S.-F.: An efficient approach for maintaining association rules
based on adjusting fp-tree structures. In: Lee, Y.J., Whang, K.-Y., Li, J., Lee, D.
(eds.) DASFAA 2004. LNCS, vol. 2973, pp. 417-424. Springer, Heidelberg (2004)
Li, Y.C., Yeh, J.S., Chang, C.C.: Efficient algorithms for mining share-frequent
itemsets. In: Proceedings of the 11th International Fuzzy Systems Association
World Congress, pp. 534-539 (2005)

Li, Y.C., Yeh, J.S., Chang, C.C.: Isolated items discarding strategy for discovering
high utility itemsets. Data & Knowledge Engineering 64(1), 198-217 (2008)

Lin, C.W., Hong, T.P., Lu, W.H.: Maintaining high utility pattern trees in dynamic
databases. In: 2010 2nd International Conference on Computer Engineering and
Applications, pp. 304-308 (2010)

Lin, C.W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility
itemsets. Expert Systems with Applications 38(6), 7419-7424 (2011)

Lin, C.W., Lan, G.C., Hong, T.P.: An incremental mining algorithm for high utility
itemsets. Expert Systems with Applications 39(8), 7173-7180 (2012)

Liu, Y., Liao, W.K., Choudhary, A.: A fast high utility itemsets mining algorithm.
In: Proceedings of the 1st International Workshop on Utility-based Data Mining,
pp- 90-99 (2005)

Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of
high utility itemsets. In: Cheung, D., Ho, T.-B., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689-695. Springer, Heidelberg (2005)

Tseng, V.S., Wu, C.W., Shie, B.E., Yu, P.S.: Up-growth: an efficient algorithm for
high utility itemset mining. In: Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 253-262 (2010)
Wu, C.W., Shie, B.E., Tseng, V.S., Yu, P.S.: Mining top-k high utility itemsets. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 78-86 (2012)

Yeh, J.S., Chang, C.Y., Wang, Y.T.: Efficient algorithms for incremental utility
mining. In: Proceedings of the 2nd International Conference on Ubiquitous Infor-
mation Management and Communication, pp. 212-217 (2008)

Yun, U.: Efficient mining of weighted interesting patterns with a strong weight
and/or support aflinity. Information Sciences 177(17), 3477-3499 (2007)

Yun, U., Leggett, J.J.: Wfim: weighted frequent itemset mining with a weight range
and a minimum weight. In: Proceedings of the 2005 STAM International Conference
on Data Mining, pp. 636-640 (2005)



	iCHUM: An Efficient Algorithm for High Utility Mining in Incremental Databases
	1 Introduction
	2 Related Work
	3 iCHUM Algorithm
	3.1 Problem Definition
	3.2 iCHUM Algorithm Framework
	3.3 iCHUM-Tree Construction and Update
	3.4 Mining and Identifying Procedures

	4 Experiment
	5 Conclusion and Future Work
	References


