
Subset Spaces Modeling Knowledge-Competitive
Agents

Bernhard Heinemann(B)

Faculty of Mathematics and Computer Science,
University of Hagen, 58084 Hagen, Germany
bernhard.heinemann@fernuni-hagen.de

Abstract. The bi-modal logic of subset spaces, LSS, was originally
designed for revealing the intrinsic relationship between knowledge and
topology. In recent years, it has been developed in several directions,
not least towards a comprehensive knowledge-theoretic formalism. As to
that, subset spaces have been shown to be smoothly combinable with
various epistemic concepts, at least as long as attention is restricted to
the single-agent case. Adjusting LSS to general multi-agent scenarios,
however, has brought about few results only, presumably due to reasons
inherent in the system. This is why one is led to consider more special
cases. In the present paper, LSS is extended to a particular two-agent
setting, where the peculiarity is given by the case that the agents are com-
petitive in a sense; in fact, it is assumed here that one agent is always
able to go ahead of another one regarding knowledge (or, the other one
is possibly lagging behind in this respect), and vice versa. It turns out
that such circumstances can be modeled in corresponding logical terms
to a considerable extent.
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1 Introduction

Our topic in this paper is reasoning about knowledge. This important founda-
tional issue has been given a solid logical basis right from the beginning of the
research into theoretical aspects of artificial intelligence, as can be seen, e.g.,
from the classic textbook [5]. According to this, a binary accessibility relation
RA connecting possible worlds or conceivable states of the world, is associated
with every instance A of a given finite group G of agents. The knowledge of A is
then defined through the set of all valid formulas, where validity is understood
with regard to every state the agent considers possible at the actual one. This
widespread and well-established view of knowledge is complemented by Moss
and Parikh’s bi-modal logic of subset spaces, LSS (see [11], [4], or Ch. 6 of [1]),
of which the basic idea is reported in the following.

The epistemic state of an agent in question, i.e., the set of all those states
that cannot be distinguished by what the agent topically knows, can be viewed
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as a neighborhood U of the actual state x of the world. Formulas are now inter-
preted with respect to the resulting pairs x,U called neighborhood situations.
Thus, both the set of all states and the set of all epistemic states constitute the
relevant semantic domains as particular subset structures. The two modalities
involved, K and �, quantify over all elements of U and ‘downward’ over all neigh-
borhoods contained in U , respectively. This means that K captures the notion
of knowledge as usual (see [5] again), and � reflects a kind of effort to acquire
knowledge since gaining knowledge goes hand in hand with a shrinkage of the
epistemic state. In fact, knowledge acquisition is this way reminiscent of a topo-
logical procedure. Thus, it was natural to ask for the appropriate logic of ‘real’
topological spaces, which could be determined by Georgatos shortly afterwards;
see [6]. The subsequent research into subset and topological spaces, respectively,
is quoted in the handbook [1], whereas more recent developments include, among
others, the papers [2] and [12].

Despite the fact that most treatises on LSS deal with the single-agent case,
a corresponding multi-agent version was proposed in the paper [7]. The key idea
behind that approach is to incorporate the agents in terms of additional modali-
ties. This clearly leads to an essential modification of the logic, while the original
semantics basically remains unchanged. However, avoiding such substantial add-
ons to the logic in case of multiple agents, if at all possible, calls for restricting
to special cases. It is the purpose of this paper to consider one of these.

The scenarios we are interested in here are (first and foremost) constituted
by two agents which are competitive in the following sense. One of these can
always surpass the other one with regard to knowledge.1 Here, ‘always’ means
formally: at every neighborhood situation referring to the latter. And what’s
good for the goose is good for the gander: a knowledge state of the first agent
can always be beaten by one of the second. (Note, however, that such a notion
of ‘being better than’ is assumed to be not necessarily strict everywhere, since
otherwise it could be ‘not converging’ in some sense.) These ideas will be made
precise below, with some new technical peculiarities coming along, opening up
interesting new lines of research into logics of subset spaces.

Clearly, settings like this have a strong temporal flavor. Thus, it should be
possible to model them by means of the common logic of knowledge with incor-
porated time as well (cf. [5], Sect. 4.3.), which is justified whenever one is obliged
to focus on the chronological order most notably. But sometimes it is unnecessary
or even undesirable to make time explicit. For example, with regard to certain
teacher-student relationships, the effort of teaching and, respectively, learning
in order to catch up with or even overtake the conveyer of knowledge might be
rated as more important than just the amount of time it costs or the exact point
of time it meets with success. We shall, therefore, introduce two-agent subset
spaces in such a way that this kind of mutual consecutiveness of the agents is
reflected. Our main concern is then dealing with the arising two-agent subset
space logic.

1 Thus, the use of the term ‘competitive’ is here different from the one that is nowadays
common in the multi-agent systems community.
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The rest of the paper is organized as follows. In the next section, we recapitu-
late the language and the logic of subset spaces for single agents. In Section 3, the
scenarios of two knowledge-competitive agents, as sketched above, are formal-
ized. In Section 4, the completeness of the resulting logic is proved. The subse-
quent Section 5 is devoted to the corresponding decidability problem. Finally, we
summarize and make some additional remarks. – All relevant facts from modal
logic not explicitly introduced here can be found in the standard textbook [3].

2 The Language and the Logic of Subset Spaces Revisited

The purpose of this section is threefold: to clarify the starting point of our investi-
gation on a technical level, to set up some concepts and results to be introduced
and, respectively, proved later on, and to enable a posterior validation of the
thesis that the common single-agent case and the novel two-agent framework
follow a closely related idea of knowledge; as to the latter, see the comments on
Definition 4 below.

First in this section, the language for (single-agent) subset spaces, L, is
defined precisely. Then, the semantics of L is linked with the common rela-
tional semantics of modal logic. Finally, the ensuing relationship is utilized after
the most important facts on the logic of subset spaces have been recalled.

To begin with, we define the syntax of L. Let Prop = {p, q, . . . } be a denu-
merably infinite set of symbols called proposition variables (which shall represent
the basic facts about the states of the world). Then, the set SF of all subset for-
mulas over Prop is defined by the rule α ::= � | p | ¬α | α ∧ α | Kα | �α.
The missing boolean connectives are treated as abbreviations, as needed. The
operators which are dual to K and � are denoted by L and �, respectively. In
view of our remarks in the previous section, K is called the knowledge operator
and � the effort operator.

Second, we fix the semantics of L. For a start, we single out the relevant
domains. We let P(X) designate the powerset of a given set X.

Definition 1 (Semantic Domains).

1. Let X be a non-empty set (of states) and O ⊆ P(X) a set of subsets of X.
Then, the pair S = (X,O) is called a subset frame.

2. Let S = (X,O) be a subset frame. The set NS := {(x,U) | x ∈ U and U ∈
O} is then called the set of neighborhood situations of S.

3. Let S = (X,O) be a subset frame. Under an S-valuation we understand a
mapping V : Prop → P(X).

4. Let S = (X,O) be a subset frame and V an S-valuation. Then, M :=
(X,O, V ) is called a subset space (based on S).

Note that neighborhood situations denominate the semantic atoms of the bi-
modal language L. The first component of such a situation indicates the actual
state of the world, while the second reflects the uncertainty of the agent in
question about it. Furthermore, Definition 1 shows that values of proposition
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variables depend on states only. This is in accordance with the common practice
in epistemic logic; see [5] once more.

For a given subset space M, we now define the relation of satisfaction, |=M ,
between neighborhood situations of the underlying frame and formulas from SF.
Based on that, we define the notion of validity of formulas in subset spaces. In
the following, neighborhood situations are often written without parentheses.

Definition 2 (Satisfaction and Validity). Let S = (X,O) be a subset frame.

1. Let M = (X,O, V ) be a subset space based on S, and let x,U ∈ NS be a
neighborhood situation of S. Then

x,U |=M � is always true
x,U |=M p : ⇐⇒ x ∈ V (p)
x,U |=M ¬α : ⇐⇒ x,U 	|=M α
x,U |=M α ∧ β : ⇐⇒ x,U |=M α and x,U |=M β
x,U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α
x,U |=M �α : ⇐⇒ ∀U ′ ∈ O : [x ∈ U ′ ⊆ U ⇒ x,U ′ |=M α] ,

where p ∈ Prop and α, β ∈ SF. In case x,U |=M α is true we say that α
holds in M at the neighborhood situation x,U.

2. Let M = (X,O, V ) be a subset space based on S. A subset formula α is
called valid in M iff it holds in M at every neighborhood situation of S.

Note that the idea of knowledge and effort described in the introduction is
made precise by Item 1 of this definition. In particular, knowledge is here, too,
defined as validity at all states that are indistinguishable to the agent.

Subset frames and subset spaces can be considered from a different perspec-
tive, as is known since [4] and reviewed in the following, for the reader’s conve-
nience. Let a subset frame S = (X,O) and a subset space M = (X,O, V ) based
on it be given. Take XS := NS as a set of worlds, and define two accessibility
relations RK

S and R�
S on XS by

(x,U)RK
S (x′, U ′) : ⇐⇒ U = U ′ and

(x,U)R�
S (x′, U ′) : ⇐⇒ (x = x′ and U ′ ⊆ U),

for all (x,U), (x′, U ′) ∈ XS . Moreover, let a valuation be defined by VM(p) :=
{(x,U) ∈ XS | x ∈ V (p)}, for all p ∈ Prop. Then, bi-modal Kripke structures
SS :=

(
XS , {RK

S , R�
S })

and MM :=
(
XS , {RK

S , R�
S }, VM

)
result in such a way

that MM is equivalent to M in the following sense.

Proposition 1. For all α ∈ SF and (x,U) ∈ XS , we have that x,U |=M α iff
MM, (x,U) |= α.

Here (and later on as well), the non-indexed symbol ‘|=’ denotes the usual
satisfaction relation of modal logic. – The proposition can easily be proved by
structural induction on α. We call SS and MM the Kripke structures induced
by the subset structures S and M, respectively.
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We now turn to the logic of subset spaces, LSS. The subsequent axiomatiza-
tion from [4] was proved to be sound and complete in Sect. 1.2 and, respectively,
Sect. 2.2 there.

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �p) ∧ (�p → p)
6. � (α → β) → (�α → �β)
7. �α → (α ∧ ��α)
8. K�α → �Kα,

where p ∈ Prop and α, β ∈ SF. – The last schema is by far the most interesting
one, as it displays the interrelation between knowledge and effort. The members
of this schema are called the Cross Axioms since [11]. Note that the schema
involving only proposition variables is in accordance with the remark on Defini-
tion 1 above. (In other words, it is expressed by the latter schema that L ‘only’
speaks about the ongoing modification of knowledge.)

As the next step, let us take a brief look at the effect of the axioms from
the above list within the framework of common modal logic. To this end, we
consider bi-modal Kripke models M = (W,R,R′, V ) satisfying the following
four properties:

– the accessibility relation R of M belonging to the knowledge operator K is
an equivalence,

– the accessibility relation R′ of M belonging to the effort operator � is reflex-
ive and transitive,

– the composite relation R′ ◦ R is contained in R ◦ R′ (this is usually called
the cross property), and

– the valuation V of M is constant along every R′-path, for all proposition
variables.

Such a model M is called a cross axiom model (and the frame underlying M a
cross axiom frame). Now, it can be verified without difficulty that LSS is sound
with respect to the class of all cross axiom models. And it is also easy to see
that every induced Kripke model is a cross axiom model (and every induced
Kripke frame a cross axiom frame). Thus, the completeness of LSS for cross
axiom models follows from that of LSS for subset spaces (which is Theorem 2.4
in [4]) by means of Proposition 1. This inferred completeness result can be used
for proving the decidability of LSS; see [4], Sect. 2.3. We shall proceed in a similar
way below, in Section 5.

3 Knowledge-Competitive Agents

The formalisms from the previous section will now be extended to the case of
two knowledge-competitive agents. We again start with the logical language,
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which comprises two �-operators as of now. (This may appear a little surprising
at first glance.) Thus, the set 2SF of all 2-subset formulas over Prop is defined
by the rule α ::= � | p | ¬α | α ∧ α | Kα | �1α | �2α. The above syntac-
tic conventions apply correspondingly here. Concerning semantics, the crucial
modifications follow right now.

Definition 3 (Two-Agent Subset Structures).

1. Let X be a non-empty set and O1,O2 ⊆ P(X) two sets of subsets of X
satisfying
(a) for all U1 ∈ O1 and every x ∈ U1, there exists some U2 ∈ O2 such that

x ∈ U2 ⊆ U1, and
(b) for all U2 ∈ O2 and every x ∈ U2, there exists some U1 ∈ O1 such that

x ∈ U1 ⊆ U2.
Then, the triple S = (X,O1,O2) is called a two-agent subset frame.

2. Let S = (X,O1,O2) be a two-agent subset frame. The set NS := {(x,U) |
x ∈ U and U ∈ O1 ∪ O2 ∪ {X}} is then called the set of neighborhood
situations of S.

3. The notions of S-valuation and two-agent subset space are completely anal-
ogous to those introduced in Definition 1.

Some comments on this definition seem to be appropriate. First, the just
introduced structures obviously do not correspond to the most general two-agent
scenarios, but have already been adjusted to those indicated above. In fact, given
that Oi is associated with agent i for i ∈ {1, 2}, condition 1.(a) says that the set
of knowledge states of the first agent is ‘filtered’ by certain knowledge states of
the second with respect to the inclusion relation; in this sense, the second agent
can always increase her knowledge so that she is (at least temporarily) on par
with or superior to the first. And the same applies the other way round. Thus –
to say it with the example from the introduction –, the agents mutually assume
the student’s and the teacher’s role, respectively. (This is not typical of teacher
and learner in the classical understanding, but should, e.g., be kind of normal for
professors and their best students.) We shall obtain simple logical counterparts
to the requirements 1.(a) and 1.(b), capturing their intended meaning as just
described; see below. Second, the set of all neighborhood situations of a two-
agent subset frame not only is constituted of O1 and O2 but makes use of X as
well. This will be advantageous for the proof of Theorem 1 below. The very fact
that {X} is written separately in Definition 3 means that the set of all states,
X, is considered indefinite, i.e., it cannot be allocated to a particular agent.

With regard to satisfaction and validity, we need not completely present the
analogue of Definition 2 here, but may confine ourselves to the clauses for the
new operators.

Definition 4 (Satisfaction). Let S = (X,O1,O2) be a two-agent subset frame,
M = (X,O1,O2, V ) a two-agent subset space based on S, and x,U ∈ NS a
neighborhood situation of S (i.e., U ∈ O1 ∪O2 ∪{X}). Then, for every α ∈ 2SF,

x,U |=M �1α : ⇐⇒ ∀U1 ∈ O1 : [x ∈ U1 ⊆ U ⇒ x,U1 |=M α]
x,U |=M �2α : ⇐⇒ ∀U2 ∈ O2 : [x ∈ U2 ⊆ U ⇒ x,U2 |=M α] .
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Now, the knowledge of the two involved agents can be defined through the
validity of knowledge formulas at the respective neighborhood situations; in other
words, agent 1 knows α at x,U by definition, iff x,U |=M Kα and U ∈ O1, and
agent 2 knows α at x,U , iff x,U |=M Kα and U ∈ O2.

These fixings clearly require justification. To this end, note that the knowl-
edge operator K can no longer be assigned to a particular agent unambiguously.
This instead happens ‘externally’, i.e., by means of an additional semantic condi-
tion having no direct counterpart in the object language, namely the requirement
that the subset component U of the actual neighborhood situation be contained
in the set of all knowledge states of the agent in question; i.e., U must have been
‘enabled’ for the usage of K by a preceding application of the corresponding �.
The modality �i might therefore be called the knowledge-enabling operator of
agent i, whereas Kα expresses that knowledge of α by agent i is actually present
(i = 1, 2). Relating to this, it should be mentioned that all the knowledge of
agents we talk about in this paper is an ‘ascribed’ one (cf. [5], p. 8), in fact,
by the system designer utilizing epistemic logic as a formal tool for specifying
multi-agent scenarios. This gives us a kind of freedom regarding the choice of
the relevant system properties, which is only limited by the suitability of the
approach for the intended applications. Here, the expressive power of formulas
has to be restricted to some extent, on the other hand, the appearing relaxation
makes it possible to describe the competitive knowledge development of the two
agents under discussion; see below for some examples.

The final semantic issue to be mentioned is that induced Kripke structures
are formed in the same way as in Section 2 here so that the two-agent analogue
of Proposition 1 is obviously valid.

The subset space logic of two knowledge-competitive agents, 2LSS, is given by
the following list of axioms, where i, j ∈ {1, 2}, p ∈ Prop, and α, β ∈ 2SF.

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �ip) ∧ (�ip → p)
6. �i (α → β) → (�iα → �iβ)
7. �iα → �j�iα
8. K�iα → �iKα
9. �iα → �iα

At first glance, this list is like a doubling of that for LSS; cf. Section 2.
Differences arise, in particular, in the seventh schema. The original one obviously
consists of two parts, �α → α and �α → ��α, by means of which, regarding
the relational semantics, the reflexivity and the transitivity, respectively, of the
associated accessibility relation are expressed. Now, the reflexivity axiom has
been separated off and weakened to seriality with respect to both agents; this
yields the new schema 9.2 This schema is responsible for the above mentioned
2 A binary relation R is called serial iff ∀x∃y xRy; see [5], p. 57.
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filtering of O1 by O2 and vice versa (which may, therefore, be also called the
interleaving of O1 and O2). Thus, this is the point where, compared to LSS,
one of the crucial changes appears: that weakening of � allows for interpreting
the �i’s in knowledge-competitive scenarios as described above; and Theorem 1
below can, in fact, be proved with this.

On the other hand, the new schema 7 comprises, in particular, two-agent
transitivity, by letting i = j. In case i 	= j, however, additional new axioms
appear, mirroring the fact that the interleaving of O1 and O2 is compatible with
the subset space structure of the respective collections of knowledge states; see
the proof of Proposition 2 (and also the comments on Definition 5) below.

As to examples of derived 2LSS-sentences, let us call a formula α i-stable
in a two-agent subset space, iff K�iα is valid there. Since K�iα implies �iKα,
i-stability means, in particular, that agent i knows α with a kind of future
certainty. Moreover, it can be asserted that i-stable formulas will in actual fact
be known, because �iKα can be deduced from K�iα. Going beyond that, it
can easily be shown that i-stability itself is stable knowledge of each of the
two agents, or, to put it another way, K�iα → K�jK�iα belongs to 2LSS for
i, j ∈ {1, 2}. All this can easily be obtained with the aid of the above axioms.

Concluding our discussion on the arising logic, we would like to draw the
reader’s attention to the multi-method logics of subset spaces examined in [8],
Sect. 4. Despite all the differences in details, those are formally more similar to
the present approach than the multi-agent version of LSS quoted in the intro-
duction.

Finally in this section, it is proved that the logic 2LSS is sound with respect
to the class of all two-agent subset spaces.

Proposition 2. Let M = (X,O1,O2, V ) be a two-agent subset space. Then,
every axiom from the above list is valid in M.

Proof. We confine ourselves to the instance �1α → �2�1α of the seventh
schema. Let x,U |=M �1α be satisfied. This means that, for all U1 ∈ O1 such
that x ∈ U1 ⊆ U , we have x,U1 |=M α. Now, let U2 ∈ O2 be any subset of
U containing x. Furthermore, let U ′ ∈ O1 be an arbitrary element satisfying
x ∈ U ′ ⊆ U2. Then, in particular, U ′ ⊆ U . Thus, x,U ′ |=M α. It follows that
x,U2 |=M �1α. Consequently, x,U |=M �2�1α, since U2 was chosen arbitrarily
as well. This proves (the particular case of) the proposition.

As the transitivity of the subset relation is crucially used for the preceding
proof, one may call the just treated schemata the quasi-transitivity axioms.

4 Completeness

In this section, we primarily present the new concepts required for proving the
semantic completeness of 2LSS on the class of all two-agent subset spaces. As it
is mostly the case with subset space logics, the overall structure of such a proof
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consists of an infinite step-by-step model construction.3 Utilizing a procedure of
that kind seems to be necessary, since subset spaces in a sense do not harmonize
with the main modal means supporting completeness, viz canonical models.

The canonical model of 2LSS will come into play nevertheless. So let us fix
some notations concerning that model first. Let C be the set of all maximal 2LSS-
consistent sets of formulas. Furthermore, let K−→ and �i−→ be the accessibility
relations induced on C by the modalities K and �i, respectively, where i ∈ {1, 2}.
And finally, let α ∈ 2SF be a formula which is not contained in 2LSS. Then, we
have to find a model for ¬α.

This model is constructed stepwise and incrementally in such a way that bet-
ter and better intermediary structures are obtained (which means that more and
more existential formulas are realized). In order to ensure that the finally result-
ing limit structure behaves as desired, several requirements on those approxi-
mations have to be met at every stage. This makes up the technical core of the
proof, of which only the outset is specified in detail below. With this aim in
view, we need a definition.

Definition 5 (Almost Partially Ordered Sets). Let P be a non-empty set.

1. A binary relation � on P is called weakly trichotomous iff, for all π, ρ ∈ P ,
at most one out of (π � ρ, ρ � π, π = ρ) is true. Now, (P,�) is called an
almost partially ordered (apo) set and � an almost partial order on P , iff
� is transitive and weakly trichotomous.

2. Let �1,�2 be almost partial orders on P . Then, (P,�1,�2) is called a
twofold almost partially ordered (2apo) set iff, for all π, ρ, σ ∈ P and
i, j ∈ {1, 2}, it ensues from π �i ρ �j σ that π �j σ.

We comment on 5 first. Compared against partial orders, reflexivity is obvi-
ously missing, whereas antisymmetry ensues from weak trichotomy. – Concerning
5, it should be remarked that not only are 2apo-sets those equipped with two
almost partial orders, but these satisfy an additional requirement corresponding,
among other things, to the fact that the interleaving of the two distinguished sets
of subsets of a two-agent subset frame is ‘good-natured’ with respect to inclu-
sion. Actually, this condition is the semantic equivalent of the quasi-transitivity
axioms in case i 	= j, hence itself is called quasi-transitivity (of (�1,�2)).

We now describe the ingredients of the above mentioned approximation struc-
tures. Their possible worlds are successively taken from a denumerably infinite
set of points, Y , chosen in advance. Also, another denumerably infinite set, Q, is
chosen such that Y ∩ Q = ∅. The latter set shall gradually contribute to a 2apo-
set representing the subset space structure of the desired limit model. Finally,
we fix particular ‘starting elements’ x0 ∈ Y , ⊥ ∈ Q, and Γ ∈ C containing the
formula ¬α from above. Then, a sequence of quadruples (Xm, Pm, jm, tm) has
to be defined inductively such that, for all m ∈ N,

3 See [4], Sect. 2.2, for a fully completed proof regarding LSS, and [9], Sect. 5, for an
outline of a particular variation.
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– Xm is a finite subset of Y containing x0,
– Pm is a finite subset of Q containing ⊥ and carrying two almost partial

orders �1,�2 such that
• (Pm,�1,�2) is a 2apo-set and
• ⊥ is the least element in Pm (i.e., ⊥ �1 π or ⊥ �2 π for all π ∈ Pm),

– jm : Pm → P (Xm) is a function satisfying (π �i ρ ⇐⇒ jm(π) ⊃ jm(ρ)),
for all π, ρ ∈ Pm and i ∈ {1, 2}, and

– tm : Xm × Pm → C is a partial function such that, for all x, y ∈ Xm and
π, ρ ∈ Pm,

• tm(x, π) is defined iff x ∈ jm(π); in this case it holds that
∗ if y ∈ jm(π), then tm(x, π) K−→ tm(y, π),

∗ if π �i ρ, then tm(x, π) �i−→ tm(x, ρ), where i ∈ {1, 2},
• tm(x0,⊥) = Γ .

By the way, the intermediary sets Om
1 and Om

2 of subsets of Xm are obtained
from that as follows: Om

i := {jm(π) | π ∈ Pm and π has a �i -predecessor}, for
i = 1, 2.

During the construction indicated above, the sets Xm and Pm must be
enlarged with new elements and the mappings jm and tm correspondingly be
extended in each step. It turns out that this plan can indeed be followed faith-
fully. All this finally yields the subsequent theorem.

Theorem 1 (Completeness). Let α ∈ 2SF be a formula which is valid in all
two-agent subset spaces. Then α belongs to the logic 2LSS.

5 Decidability

The standard method for proving the decidability of a given modal logic is filtra-
tion, which restricts inspection of the relevant models to the finite ones among
them and enables a decision procedure thus. However, just as subset spaces
do not harmonize with canonical models, they are incompatible with filtration.
Thus, a detour is required, which takes us back into the relational semantics. In
the following, we shall single out a class of tri-modal Kripke structures for which
2LSS is as well sound and complete, and which is closed under filtration in a
suitable manner. This will give us the desired decidability result. Subsequently,
K is supposed to correspond to R, and �i to R′

i for i = 1, 2.

Definition 6 (Two-Agent Model). Let M := (W,R,R′
1, R

′
2, V ) be a tri-

modal Kripke model, where R,R′
1, R

′
2 ⊆ W × W are binary relations and V

is a valuation. Then M is called a two-agent model, iff the following conditions
are satisfied.

1. R is an equivalence relation,
2. both R′

1 and R′
2 are serial and transitive,

3. both pairs (R′
1, R

′
2) and (R′

2, R
′
1) satisfy the quasi-transitivity condition,

4. both pairs (R,R′
1) and (R,R′

2) satisfy the cross property, and
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5. the valuation V of M is constant along every R′
i-path, for i ∈ {1, 2} and all

proposition variables.

The class of all Kripke models induced by a two-agent subset space is con-
tained in the class of all two-agent models, as can be seen easily. It follows that
2LSS is (sound and) complete with respect to the latter class; see the final part
of Section 2 above. Therefore, it remains to be proved that this class is closed
under filtration.

For this purpose, let a 2LSS-consistent formula α ∈ 2SF be given. Then, a
filter set of formulas, involving the set sf(α) of all subformulas of α, is defined
as follows. We start off with Σ0 := sf(α) ∪ {¬β | β ∈ sf(α)}. In the next step,
we take the closure of Σ0 under finite conjunctions of pairwise distinct elements
of Σ0. After that, we close under single applications of the operator L. And
finally, we join the sets of subformulas of all the elements of the set obtained
last. (This final step is necessary because L was introduced as an abbreviation.)
The resulting set of formulas, denoted by Σ, is the one that meets the current
requirements. Note that Σ is finite.

Now, the canonical model of 2LSS is filtered through Σ. As a filtration of
the corresponding accessibility relations, we take the smallest one in each of
the three cases. Let M := (W,R, S1, S2, V ) be the resulting model, where the
valuation V shall be in accordance with Definition 6 for the proposition variables
outside of Σ. Then, the following lemma is crucial.

Lemma 1. The structure M is a finite two-agent model. Furthermore, the size
of M can be computed from the length of α.

Proof. The finiteness of W follows from that of Σ, and we must now show that
the five conditions from Definition 6 are satisfied. According to the way the
filter set Σ was formed, the verification of 1 and 4 is not difficult. Next, both
the validity of 5 for the proposition variables occurring in Σ and the seriality of
the R′

is can easily be concluded from the fact that M is the result of a filtration.
Moreover, establishing the transitivity of the R′

is is covered by the proof of
Lemma 2.10 from [4]. Thus only the verification of the third condition requires
a separate argument. Fortunately, it turns out that one can proceed for it in a
way similar to the one taken for transitivity (but this is the most sophisticated
portion of the whole proof). In this manner, the lemma is proved.

The desired decidability result is now an immediate consequence of
Lemma 1 and the facts stated above.

Theorem 2 (Decidability). The logic 2LSS is a decidable set of formulas.

6 Conclusion

In this paper, a subset space logic of two knowledge-competitive agents, denoted
by 2LSS, has been introduced. A corresponding axiomatization was proposed,
which turned out to be sound and complete with respect to the intended class
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of models. This constitutes the first of our main results. The second assures the
decidability of the new logic.

It is to be expected that the complexity of 2LSS can be determined not until
solving this problem for the usual logic of subset spaces. As to that, only partial
results are known; see [2].

Generalizing our approach to the case of more than two agents does not pose
difficulties on the formal side. However, the interpretation of some of the com-
petitively relevant formulas is different then; for example, seriality in the more
general context means that all agents different from a particular one can do
better than the latter. Finally, the question for other interesting agent interrela-
tionships and the effects of them on knowledge comes up and should be answered
by future research; concerning this, the paper [10] may serve as a starting point.
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