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Abstract. In model-driven development (MDD), numerous metamod-
els, models, and model transformations need to be taken into account.
These MDD-based artifacts—although highly interdependent—are
autonomously maintained. Changes in one artifact (e.g., in a model)
are not automatically reflected in other dependent artifacts (e.g., in a
model transformation). The barrier for a tight integration of MDD-based
artifacts stems from two limitations of current approaches. On the one
hand, model transformations are unidirectional and changes can be prop-
agated in one direction only. On the other hand, changes can only be
propagated into output artifacts of transformations, not into transfor-
mation definitions themselves. In order to overcome these co-evolution
problems, our approach is based on establishing bidirectional transfor-
mations (BX) between modeling artifacts and on applying higher-order
transformations (HOTs) on first-class model representations of trans-
formation specifications. In this paper, we present a generic approach
and provide initial prototypes for an integrated tool support which inte-
grates BX into well-established Eclipse-based MDD frameworks, thereby
neither being restricted to a specific modeling nor model transformation
language.

Keywords: Model-driven development · Model co-evolution · Bidirec-
tional transformation · Higher-order transformation

1 Introduction

In model-driven development (MDD; see, e.g., [2,3]), numerous models and
transformations on different abstraction levels need to be taken into account. The
high number of models involved originate from a layered modeling architecture
(i.e. metamodels, MMs) as well as from refinements (i.e. transformations) from
generic to implementation-centric model representations [4]. On the one hand,
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the need for model transformations is inherent to the abstraction mechanism in
MDD to represent platform-specific concepts (e.g., statements in a programming
language) as platform-independent models [5]. On the other hand, model trans-
formation necessities stem also from, for instance, changes in MMs (e.g., changes
from the original MM to a new MM are implemented by model-to-model trans-
formations, M2M) or the support for multiple platforms (e.g., platform-specific
textual representations, such as, source code or configuration and deployment
documents, are provided by different model-to-text transformations, M2T).

MDD-based artifacts are frequently subject to change and evolve over time [6].
In most cases, the evolution of (meta)models and model transformations is a man-
ual process [7]. Individually maintain and manually evolve MDD specifications is
a tedious and error-prone task [8,9]. For instance, consider an evolution of a MM
and accompanying constraints. First, all instance models need to be migrated in
order to conform to the new MM definition. Furthermore, all model transforma-
tions need to be adapted (e.g., due to model type changes). Moreover, tests need
to be rewritten to check that the generated source code fulfills the specified con-
straints.

The artifacts which make up a MDD process (models, M2M/M2T
transformations, model and transformation constraints etc.)—although highly
interdependent—are autonomously maintained. Changes in one artifact (e.g., in
a model) are not automatically reflected in other dependent artifacts (e.g., in a
M2T transformation). The barrier for a tight integration of MDD-based artifacts
stems from two limitations of current approaches: (1) Model transformations are
unidirectional and changes can be propagated in one direction only (e.g., a model
change is reflected in generated code); (2) changes can only be propagated into
output artifacts of transformations (e.g., models), not into transformation defi-
nitions themselves.

In order to overcome these co-evolution problems, our approach, on the one
hand, is based on (1) establishing bidirectional transformations (BX) between
modeling artifacts (see, e.g., [8]). BX is a mechanism for maintaining the con-
sistency of two (or more) related sources of information. A BX between two
sources of information A and B (e.g., two different models) comprises a pair of
unidirectional transformations: one from A to B (forward transformation) and
another from B to A (backward transformation) [10].

On the other hand, we apply (2) higher-order transformations (HOTs) on
first-class model representations of transformation specifications [11]. A HOT “is
a model transformation such that its input and/or output models are themselves
transformation models. [. . . ] This demands the representation of the transfor-
mation as a model conforming to a transformation MM” [11].

In this way, we are able to propagate changes in two directions (1): From a
source model to a target model and vice versa. These changes can be propagated
into models on the same or on different abstraction levels. Furthermore, we
ensure not only the co-evolution of models, but (2) model transformations, as
well. We represent transformation definitions as models and are able to propagate
changes into horizontal and vertical model transformations (i.e. transformations
between models on the same and on different abstraction levels).
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Our contributions are as follows:

– A Method for MDD-based Co-evolution: Our approach of bidirectional higher-
order transformation (B-HOT) for the co-evolution of model artifacts builds
on former work [12–15]. This paper presents first enhancement steps which will
allow for coupling, synchronization, and tracing of all model artifacts involved
in a MDD process.

– Integrated Tool Support: We provide initial prototypes for an integrated MDD-
based tool support for B-HOTs via the Eclipse IDE. Our implementations
build on well-established MDD tools (e.g., Eclipse EMF [16], ATL [17],
Epsilon [18])1.

– Conformance between BX and MDD: To facilitate reproduction and transfer-
ability, we present an approach independent of any transformation language
and we prepare for generalizations according to OMG specifications, for exam-
ple, MOF [19], QVT [20], MOFM2T [21]. Besides integrated BX and MDD
tooling, we also want to contribute to establish a common terminology to
bridge the gap between the BX and MDD communities [10,22].

The remainder of this paper is structured as follows. Section 2 reviews tra-
ditional model-driven architectures and explains why current approaches can-
not sufficiently cope with the co-evolution of multiple MDD-based artifacts.
Section 3 describes our approach to overcome the shortcomings of current meth-
ods. Requirements of our approach are discussed in Sect. 4. Our initial MDD-
based developments are briefly explained in Sect. 5. Section 6 concludes the paper
by discussing implications and mentioning limitations of our approach as well as
pointing to ongoing and future work.

2 Current Approaches

A traditional model-driven architecture (MDA), as proposed by the OMG [23,24]
and as supported by a variety of tools, is sketched in Fig. 1. MMs provide the
reference frame to which instance models must conform to, for example, a UML
class model conforms to its MM defined in the UML specification [25]. M2M
transformations are applied over one or more input models with the purpose
of generating one or more output models conforming to the same or different
MMs. A typical M2M transformation example is the generation of platform-
specific models (PSMs) from platform-independent models (PIMs). As models
are a means for abstraction, they mostly do not capture enough implementation
details to be directly executable. Hence, M2T transformations generate textual
artifacts (e.g., source code, configuration documents) which can be deployed on
a specific platform.

When a MDD-based artifact evolves, changes must be reflected in all depen-
dent (meta)models, transformations, and platform artifacts. The complexity of

1 All software artifacts are publicly available at http://www.biglab.org and http://
nm.wu.ac.at/modsec.

http://www.biglab.org
http://nm.wu.ac.at/modsec
http://nm.wu.ac.at/modsec
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Fig. 1. Traditional model-driven architecture.

change operations increases with the number of different MMs and models (e.g.,
due to different modeling languages), M2M transformations (e.g., due to inter-
mediary model representations), and M2T transformations (e.g., due to multi-
ple supported platforms) involved. Current approaches cannot sufficiently cope
with the co-evolution of multiple MDD-based artifacts because of restrictions to
express and propagate changes which manifest in (1) unidirectional model trans-
formations and (2) disregarding transformation definitions as first-class mod-
els (see Fig. 1). An example for evolution mismatches is the inability to reflect
changes in generated platform artifacts back to their corresponding instance
models. For example, in Eclipse EMF, changes to the generated Java source code
may be lost when executing the unidirectional M2T transformation once again.
Furthermore, by default, the generation templates (i.e. Java Emitter Templates,
JETs) cannot be easily adapted, excluding the possibility to reflect changes in
the code generator logic (i.e. transformation definitions are not treated as first-
class artifacts).

Yu et al. [26] provide a platform-specific (i.e. Java-bound) solution for the
co-evolution problem stated above. In the approach, BX is used to synchro-
nize models with generated and user-modified code. Prerequisites are that the
platform-specific language encodes a textual duplicate of the PIM (i.e. @model
annotations) and that a MM representation exists for the platform-specific lan-
guage (i.e. a Java Ecore MM).

To establish BX, triple graph grammars [27] are commonly employed in MDD
for keeping related models consistent (see, e.g., [28]). Triple graph transforma-
tions relate a source and a target graph (i.e. a model) by some correspondence
graph. In this way, source and target graphs are coupled which provides a basic
structure for their co-evolution.

Wachsmuth [29] considers MM/model co-evolution as a step-wise adap-
tation of MMs (via transformation relations) and instance-preservation of
models. Instead of describing the co-evolution of models as a transforma-
tion between two MMs, Wimmer et al. [30] employ in-place transformations.
Herrmannsdoerfer et al. [31] present a framework to model the co-evolution of
MMs/models via the composition of coupled transactions to adapt the MM and
specify the corresponding model migrations.

Furthermore, state-based MM/model co-evolution approaches, for instance,
adopt HOTs which take a difference model obtained by comparing two MMs and
generate a model transformation able to produce the co-evolution of involved
models [9].
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Although all of these co-evolution methods cope with model transforma-
tion restrictions, a combined and uniform solution is missing, so far. Either the
approaches provide only one-way co-evolution possibilities (i.e. unidirectional) or
only for a subset of MDD artifacts (e.g., only MM/model co-evolution). There-
fore, in the next section, we propose a generic approach for co-evolving MDD-
related artifacts.

3 Model Co-evolution via B-HOT

With our approach (Fig. 2 provides an overview) we want to overcome short-
comings of current methods and offer a generic solution for co-evolving MDD
artifacts. The upper part of Fig. 2 reflects a traditional MDA. Model co-evolution
is achieved by integrating (1) BX capabilities (lower part of Fig. 2) and (2) sup-
port for HOTs into the MDA.

As an example, consider a model transformation from an object-oriented rep-
resentation (e.g., a class diagram) to a relational database model. For instance,
both MMs are defined in a MOF-based language (see upper part of Fig. 2).
Hence, their instance models (e.g., using Ecore as technological projection) con-
form to the (E)MOF MM. A transformation (e.g., specified via ATL or ETL) is

Fig. 2. Overview of our model co-evolution approach.
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applied to class models and generates database models. This forward transfor-
mation proves useful in one case only: Changes in evolving class models should
be reflected in database models, as well. Updates in database models cannot be
propagated back to their source class models. A coupling of both representa-
tions limits the target model to be read-only (otherwise changes get lost when
re-executing the transformation).

In our approach, we integrate BX capabilities by reusing native MDD con-
cepts. Every transformation is represented as a first-class model conforming to a
transformation MM. B-HOTs (see Fig. 2) provide for the mapping of unidirec-
tional MDD-based transformation models (e.g. defined via ATL or ETL) into
a bidirectional graph transformation model (and vice versa). Reconsidering the
BX of the class-to-database model transformation example, in a next step, both
source and target models (i.e. class and database models) are mapped to a graph
structure (defined via UnCAL [32], a graph algebra). Source and target graph
schemas are represented as MOF-based MMs. In order to establish bidirectionality
between the class-to-database transformation, the unidirectional transformation
model need to be mapped to a bidirectional transformation model. This is done
via a B-HOT (defined via UnQL+ [13], a SQL-like graph query/transformation
language) which provides the forward and backward transformations between two
transformation specifications (in our example, transformation models specified in
ATL/ETL and UnQL+). The result of the B-HOT is a BX specification (again
defined via UnQL+) which provides both, a forward transformation from class
to database graphs as well as a corresponding backward transformation. Thus,
changes in the database graph can be propagated back to the class graph. As the
transformation of models to graphs is also bidirectional, updated class and data-
base graphs can be represented in their initial model-based forms. Therefore, a BX
of source and target models (class and database models in our example) is estab-
lished. The backward database-to-class transformation is distinct to the BX and
no corresponding MDD-based transformation equivalent exists (i.e. no backward
transformation defined via, e.g., ATL or ETL). Therefore, as a last step, the back-
ward transformation (in UnQL+) must be represented in its original MDD-based
form (in ATL, ETL) via the B-HOT mapping (see Fig. 2).

We discuss co-evolution properties of our approach according to the following
four categories.

Model Relations: Our approach establishes BX-based relations between mod-
els, graphs, and model and graph representations. The mapping relation between
traditional MDD-based transformations and BX representations (B-HOT) allows
to add BX support in traditional MDAs. Furthermore, relations are not restricted
to one source and one target artifact only, but can be used for the transformation
of multiple dependent models/graphs, as well (see also compositional BX down
below). The coupling of models via BX allows, on the one hand, to establish syn-
chronization definitions and, on the other hand, to collect transformation traces.
As many modeling artifacts make up a MDD process, keeping models consistent
is of special importance. Moreover, trace information are a relevant source for
documentation and debugging purposes.
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Model Co-evolution Scenarios: Our approach supports any M2M relation and
any number of MM-layers. Horizontal co-evolution examples are, for instance,
the synchronization of different MMs or different instance models. Vertical co-
evolution examples are, for instance, keeping instance models and corresponding
MMs or PIMs and PSMs consistent. Consider, for example, a PIM representing
a MM of an object-oriented system and a Java-based MM as its PSM equivalent.
Both MMs are synchronized via a B-HOT keeping them consistent. In this case,
changes in the PIM can be propagated into the PSM (and vice versa). If the
Java-based MM needs to be modified (e.g., due to the release of a new Java ver-
sion), these changes—when affecting the object-oriented system representation,
as well—can be propagated back into the PIM via the B-HOT. Moreover, trans-
formation models permit to propagate changes also in horizontal and vertical
M2M and M2T transformation definitions, for instance, for the co-evolution of
MMs and transformation models or different transformation models. Referring
to the example of synchronizing a general object-oriented MM and a Java-based
MM, consider that their instance models are transformed into a textual object-
oriented representation and Java source code, respectively. Changes in the Java-
based MM (again, e.g., because of a new Java version) must also be reflected
in its M2T transformation (e.g., type changes). Via a B-HOT between the PIM
and PSM M2T transformations, changes in one of the M2T transformations can
be propagated into the other M2T transformation keeping them consistent.

Language-independent Integration: Our approach is not dependent on a spe-
cific model transformation language, i.e. it does not matter if the model trans-
formation is defined via ATL, ETL, or any other language. This is because we do
not integrate bidirectionality into a model transformation language directly. The
B-HOT definition serves as a language-specific binding between the concepts of
the unidirectional MDD-based transformation and the bidirectional graph trans-
formation. These bindings must be specified only once for each MDD-based
transformation language (e.g., ATL, ETL) and facilitate reuse of our approach.

BXProperties: We develop B-HOTs via a functional bidirectional graph trans-
formation language named UnQL+ [13]. UnQL+ is an extension of UnQL [32], a
graph querying language based on structural recursion (which can be expressed in
first-order logic extended with transitive closure) [33]. The BX ensures the well-
behavedness of forward and backward transformations (i.e. that they are consis-
tent with each other) and satisfy the round-trip property [10]. As the BX does not
restrict forward transformations to be information preserving, a backward trans-
formation requires not only the modified target graph/model, but also the orig-
inal source graph/model. Large BX can be developed in a compositional way of
reusing existing information (e.g., via intermediate models). Compositional BX
can be employed, on the one hand, for a pair of consecutive transformations, where
the output of transformation A is the input of transformation B ; for example, the
output of the source model-to-graph transformation is fed into the forward source-
to-target graph transformation (see Fig. 2). On the other hand, compositional BX
can be used for a pair of transformations that share an identical input model, for
instance, transformations from one PIM to multiple PSMs [12].
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4 B-HOT Requirements

This paper provides a first step to make co-evolution in MDD via B-HOTs possi-
ble. Initial work regarding the methodology and accompanying tool support has
been performed, but is far from being finalized. In this section, we list challeng-
ing requirements for the implementation of our approach. We present completed
work and discuss prerequisites for future developments.

Transformation MMs: Our B-HOT approach relies on transformation
(meta)models. MDD-based M2M transformation MMs exist, for instance, for
ATL [11] and for a subset of the Epsilon-language family [34]. Regarding M2T
transformations, Hoisl et al. [15] extended the Epsilon model representations
of Wei [34]. The BX framework [13] does not need MM representations for the
UnQL+ and UnCAL languages. Syntax definitions in Backus-Naur Form (BNF)
exist for both languages and need to be mapped to EMOF-compliant (e.g. Ecore-
based) MM representations (ongoing work; see also Sects. 5 and 6).

MM-specific Bindings: For a B-HOT, language-specific bindings need to be
established between uni- and bidirectional transformation MMs. Initial work
provides a unidirectional transformation from a subset of the ATL language to
UnQL+ (excluding imperative code and OCL expressions of ATL). This trans-
formation does not take the model representation of ATL into account [14]2.
Thus, language-specific bindings for, for instance, ATL and/or ETL to UnQL+

and/or UnCAL via B-HOT is future work. Furthermore, a first prototype exists
for the BX of model-to-graph representations (Ecore-based models to UnCAL
and vice versa), but needs improvements (future work).

Round-tripping of Transformation Definitions: Our B-HOT approach
demands transformation models as input. In contrast, most model transforma-
tion engines cannot execute model representations of transformation definitions.
Therefore, the round-tripping of executable (i.e. text-based) transformation spec-
ifications and their model representations must be provided. For M2M trans-
formations, “an ATL transformation is itself a model, conforming to the ATL
MM” [11]. Furthermore, Wei [34] developed initial round-tripping support for
an Epsilon subset which was extended for M2T transformations (i.e. EGL) by
Hoisl et al. [15]. Currently, the automatically derived backward transformation
of a BX can neither be expressed as UnQL+ or UnCAL textual statements nor
via corresponding model representations (future work).

Generic Mappings: Prototype developments define transformations in a spe-
cific language as implementation vehicle (e.g., ATL, ETL). To support uptake
and transferability of our approach we need to establish mappings to OMG spec-
ifications (see also Fig. 2). Hoisl et al. [15] provide mappings between EGL-based
M2T transformation concepts used for the prototype and the MOFM2T speci-
fication. As future work, uni-/bidirectional M2M transformation concepts (e.g.,
ATL, ETL, UnQL+) will be mapped to the QVT specification.
2 This separate work of integrating ATL and BX is performed in collaboration with
the AtlanMod team, uses the same BX framework (GRoundTram), but in contrast
focuses on unidirectional transformations from ATL to UnQL+ with a concrete
semantic alignment between these two technical spaces.
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Development Support: Initial support for the requirements-driven testing of
(meta)models and model transformations via scenarios is provided by Sobernig
et al. [35] and is extended/evaluated by Hoisl et al. [36,37]. Furthermore, val-
idation for source and target models as well as for BX is presented by Hidaka
et al. [13]. We have started implementing an IDE (e.g., a text editor) to sup-
port the development of UnQL+ BX (see Sect. 5) and UnCAL-based graphs
(future work). For this task, we have chosen Eclipse Xtext as candidate frame-
work because it combines the grammar specification for a textual syntax with
an Ecore-based model representation and provides for an Eclipse-based IDE.

Combine BX and MDD: Model (i.e. graph) transformations are important
to both BX and MDD [10,22]. Our approach allows to integrate BX into MDD,
thereby reusing native methods and tools for both. We want to support the
creation of a shared terminology [10] via the generalization and mapping of
language-specific uni-/bidirectional transformation concepts to OMG specifica-
tions. After our developments have matured, as future work, we need to provide
for a larger case study to show that our approach works in practice.

5 Prototypical MDD-Based Support for UnQL+

This section introduces our initial MDD-based developments for the UnQL+ BX
language: an Ecore-based UnQL+ MM (see Fig. 3), an Xtext grammar specifi-
cation for the UnQL+ textual syntax (see Listing 1), and editors to support the
development of UnQL+ BX in both textual and model-based syntax notations
(see the example text- and model-based transformation definitions in Listing 2
and Fig. 4, respectively)3 These developments are based on Eclipse EMF and
matured versions will fulfill the following B-HOT requirements (see Sect. 4):
The mapping of BNF-compliant/Xtext-based UnQL+ grammar definitions to
EMOF-compliant/Ecore-based MM representations. This allows the specification
of an UnQL+ BX MM with two corresponding and interchangeable concrete
syntax variants (textual and model-based). As the Xtext grammar describes how
an Ecore model is derived from a textual notation, round-tripping of UnQL+

BX definitions is partially fulfilled (i.e. transformations specified textually are
automatically mapped to their model representations). Furthermore, the imple-
mented software artifacts (e.g., text/model editors) support the development of
UnQL+ BX.

Figure 3 shows an excerpt of the Ecore-based UnQL+ MM. For this, the
BNF grammar of UnQL+ was mapped to a model representation consisting of
(abstract) classes and class attributes as well as containment references and
inheritance relationships between these classes. From Fig. 3 it can be seen that
four different Statement types can be contained in an UnQLplus expression:
Selection, Replacement, Deletion, and Extension. All of these statements
operate on graphs (Template); for example, to select a graph based on certain
conditions.
3 All software artifacts can be obtained from the URLs mentioned in the footnote of
Sect. 1.
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Fig. 3. Ecore-based UnQL+ MM (excerpt).

Listing 1 shows an excerpt of the Xtext grammar for the UnQL+ textual
syntax. The grammar definition of UnQL+ was translated from BNF to Xtext
and aligned to match the Ecore model concepts. The entry rule on lines 7–8
in Listing 1 defines that an UnQLplus expression contains Statements. The
Statement rule (lines 10–12) delegates in line 11 to the four alterna-
tive statement rules (defined later) and specifies the syntax of an optional
condition (line 12). As examples, the syntax of two statements is spec-
ified in the Selection rule (lines 14–15) and in the Replacement rule
(lines 17–18). Furthermore, the definition of graphs is shown in lines 22–23
(Template rule) and lines 25–33 (TemplateExpression rule), respectively (del-
egated rules are omitted).

1 grammar org.biglab.groundtram.bx.UnQLplus
2 hidden(WS, SL_COMMENT , ML_COMMENT)
3
4 import "http :// unqlplus /0.1"
5 import "http ://www.eclipse.org/emf /2002/ Ecore" as ecore
6
7 UnQLplus:
8 statements += Statement *;
9

10 Statement:
11 (Selection | Replacement | Deletion | Extension)
12 (’where ’ condition += Condition (’,’ condition += Condition)*)?;
13
14 Selection:
15 ’select ’ template=Template;
16
17 Replacement:
18 ’replace ’ rpp=RegularPathPattern ’->’ gvar=GraphVar ’by’ template1=

Template ’in’ template2=Template;
19
20 ...
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21
22 Template:
23 TemplateExpression (=>’U’ template=Template)?;
24
25 TemplateExpression returns Template:
26 {Template} ’{’ labeled_graph += LabeledGraph? (’,’ labeled_graph +=

LabeledGraph)* ’}’ |
27 ’(’ expr=Statement ’)’ |
28 fname=FunctionTemplate |
29 conditional=Conditional |
30 variable_binding=VariableBinding |
31 structural_recursion=StructuralRecursion |
32 mutual_structural_recursion=MutualStructuralRecursion |
33 gvar=GraphVar;
34
35 VariableBinding:
36 ’let ’ gvar=GraphVar ’=’ template1=Template ’in’ template2=Template;
37
38 ...

Listing 1. Xtext grammar definition for the UnQL+ textual syntax (excerpt).

With the Ecore MM and the Xtext grammar defined in Fig. 3 and List-
ing 1, it is possible to provide editor support for textual as well as model-based
UnQL+ BX. Listing 2 shows an example class-to-database UnQL+ BX replac-
ing attributes by columns (excerpt taken from Hidaka et al. [13]). The BX in
Listing 2 makes use of Selection (e.g., starting from line 1 and line 3) and
Replacement statements (starting from line 7). The UnQL+ BX was created
using our Eclipse-based textual editor providing features, such as, syntax col-
oring, auto completion, error detection, and so forth. In this way, it is ensured
that developed UnQL+ BX conform to the Xtext grammar defined in Listing 1.
A benefit of using the editor to write UnQL+ BX is the early detection and
immediate correction of syntactical errors.

1 select {tables : $table} where
2 $persistentClass in
3 (select $class where
4 {Association .(src|dest).Class : $class} in $db,
5 {is_persistent : {Boolean : true}} in $class),
6 $table in
7 (replace attrs -> $g
8 by (select {Column : $a} where
9 {attrs.Attribute : $a} in $persistentClass)

10 in $persistentClass)

Listing 2. Example class-to-database UnQL+ BX (excerpt).

Figure 4 shows an excerpt of a tree-based view on a model representation of
the same class-to-database UnQL+ BX example introduced in Listing 2. Via the
Ecore MM and the corresponding Xtext grammar, a model representation can
be derived from textual UnQL+ BX definitions. This instance model conforms to
the Ecore-based UnQL+ MM in the same way as a textual UnQL+ BX definition
conforms to the Xtext grammar. The representation of transformation models
(e.g., expressing UnQL+ BX as models as exemplified in Fig. 4) is one of the
main requirements to realize our B-HOT approach.
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Fig. 4. Tree-based view on example class-to-database UnQL+ BX model (excerpt).

6 Concluding Discussion

In this paper, we presented an approach for model co-evolution by combining
BX and HOT for MDD. The developed method (B-HOT) intends to overcome
current limitations for model co-evolution as transformations are represented
as models and model transformations are bidirectionalized. In our approach,
models are coupled via BX providing the benefit that synchronization of mod-
els is ensured via forward/backward transformations. Another advantage is that
changes can be propagated into model transformations keeping them consistent
with their evolving dependent artifacts (MMs, model instances). Our approach
of integrating BX into MDD is generic and can be applied to any model trans-
formation language via binding specifications.

With our work and according to the feature-based classification of BX
approaches presented in [38], we combine graph-based and MDD-based arti-
fact representations involved in BX. In particular, the employed demonstrator
BX framework (GRoundTram) is based on graphs, while metamodels in Eclipse
approximate the MOF specification (implemented via Ecore models). Therefore,
the technical space of GRoundTram needs to cope with MDD-based artifact
representations, as well. In GRoundTram (for further BX approaches and their
characteristic features see [38]), the correspondence relation between source and
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target artifacts is defined via user-provided unidirectional transformation speci-
fications. In this case, the backward transformation is not explicitly stated (see
also Sect. 4) and is automatically derived by the bidirectional engine (inversion).
Thus, the results of the computed backward transformation needs to be concep-
tualized in the technical space of GRoundTram (i.e. represented in UnQL+ or
UnCAL). The proposed B-HOT approach presented in this paper demands to
switch from an implicit to an explicit representation of the backward transfor-
mation.

Please note that BX approaches (see, e.g., [38]) differ in terms of feature
characteristics and implementation methods, for example, according to the tech-
nical space (e.g., text-, graph-, MDD-based), the directionality of the consistency
definition (e.g., unidirectional, bidirectional transformation specifications), the
representation of changes (e.g., state-, operation-based), or the definition of the
backward transformation (e.g., explicit, implicit) [38]. Although we focus in this
paper specifically on one BX approach (i.e. GRoundTram), other BX methods
which conceptually conform to the requirements discussed in the former para-
graph as well as in Sect. 4 are candidates for consideration, as well.

A drawback of our proposal is that the efforts of creating initial modeling
and transformation artifacts can be high. Transformation MMs may have to be
defined for the intended target language. Currently, no bindings for transfor-
mation languages exist. Although these have to be defined only once for each
language, this is a barrier for uptake. Transformation engines might not execute
transformation models directly making model/text round-tripping functions nec-
essary (but again these can be reused per language). Adequate tool support must
be provided to facilitate the development of models and transformations.

Currently, we are developing an EMOF-based MM for the UnQL+ BX lan-
guage (in Ecore). In parallel, we transfer the BNF-based grammar definition
to Xtext. This will ensure the consistent mapping of transformations written
in UnQL+ to their modeling equivalents. An editor to support the definition
of UnQL+ statements will be provided, as well. Initial developments (see also
Sect. 5) are available at the URLs mentioned in the footnote of Sect. 1 and are
continuously updated. UnQL+ concepts will be mapped to the QVT-Relations
language in the near future.
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