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Preface

The present book includes extended and revised versions of a set of selected papers
from the Second International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2014), held in Lisbon, Portugal, January 7–9, 2014.

The purpose of the International Conference on Model-Driven Engineering and
Software Development is to provide a platform for researchers, engineers, academi-
cians as well as industrial professionals from all over the world to present their research
results and development activities in using models and model-driven engineering
techniques for software development.

MODELSWARD 2014 was sponsored by INSTICC (the Institute for Systems and
Technologies of Information, Control and Communication) and held in cooperation
with ACM SIGMIS – ACM Special Interest Group on Management Information
Systems, ARTEMIS Project MBAT, MDE Expertise Project, The Open Group – SOA
Work Group, and technically co-sponsored by the AIS Special Interest Group on
Modeling and Simulation (AIS SIGMAS).

The conference received 88 paper submissions from 32 countries, covering all
continents. To evaluate each submission, a double-blind paper review was performed
by the Program Committee. After a stringent selection process, 15 papers were pub-
lished and presented as full papers (30-min oral presentation), leading to a full-paper
acceptance ratio of about 17 %, which shows our commitment of offering a high-
quality forum also for forthcoming editions of this conference.

The MODELSWARD program included panels and five invited talks delivered by
internationally distinguished speakers, namely: Philippe Desfray (SOFTEAM, France),
Colin Atkinson (University of Mannheim, Germany), Silvia Abrahão, (Universitat
Politecnica de Valencia, Spain), Kim G. Larsen (Aalborg University, Denmark), and
Andreas Holzinger (Medical University Graz, Austria).

This book contains ten papers from MODELSWARD 2014 that have been selected,
extended, and thoroughly revised.

We would like to thank the authors, whose research and development efforts are
recorded here for future generations.

April 2015 Joaquim Filipe
Luís Ferreira Pires

Rui César das Neves
Slimane Hammoudi
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World Wide Modeling: The Agility of the Web
Applied to Model Repositories

Philippe Desfray(&)

SOFTEAM, Paris, France
philippe.desfray@softeam.fr

Abstract. In today’s era of data sharing, immediate communication and
world-wide distribution of participants, at a time when teams are asked to be
ever more agile, the traditional approach of model repositories no longer meets
expectations. Centralized organization has become inconsistent with the way in
which the world and its companies function.
In today’s world, it is virtually impossible to set up a model repository for

different enterprise entities, large-scale systems or projects, which can be accessed
by all participants (readers, contributors, partners, and so on). Standard techniques
based on a centralized repository with a designated manager come up against a
vast variety of situations, with participants who neither want nor are able to
conform to uniform rules and management.
This does not allow model-based knowledge management at an enterprise or

global level. It inhibits agility and open team cooperation. We believe that this is a
major hurdle to the dissemination of model-based approaches; the reality of heavy-
weight model management hinders the most appealing of model-based approaches.
Based on the latest technologies and research for model repositories, this talk

will explain why current model repository technologies are a major drawback
and will present a way of supporting highly decentralized organizations, and
agile and open team cooperation. Scaling up and widening the scope of model
repositories will enable modeling support to be applied to the “extended
enterprise”, which incorporates its eco-system (providers, partners, and so on).

Keywords: Model repositories � World wide modeling � Pervasive modeling �
Model distribution � Model teamwork � Model organization � MDA � Model
fragment � Model governance � Models ecosystems

1 Overview

In today’s era of data sharing, immediate communication and world-wide distribution
of participants, at a time when teams are asked to be ever more agile, the traditional
approach of model repositories no longer meets expectations. Centralized organization
has become inconsistent with the way in which the world and its companies function.

Consequently, a new repository approach is emerging through the “Constellation”
repository technology provided by the upcoming version 3 of the Modelio modeling
tool1. This is a major change in concept, based on recent approaches and technologies

1 Modelio comes in an open source distribution available on www.modelio.org and in a commercial
distribution available on www.modeliosoft.com.

© Springer International Publishing Switzerland 2015
S. Hammoudi et al. (Eds.): MODELSWARD 2014, CCIS 506, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-25156-1_1

http://www.modelio.org
http://www.modeliosoft.com


that are better adapted to today’s world: Models have to be distributed and shared in as
vast and immediate a way as the web. Agile cooperation modes, such as those used in
open source projects, also have to be supported at model level (Fig. 1).

The existence of the open source distribution of Modelio will enable increased
repository accessibility, by removing cost and subscription-related barriers.

This white paper presents this new approach, and shows how different organization
modes can best use it.

This work is part of our continuous efforts for globalizing the MDA [1] approach,
in order to maximize the distribution and the ROI of the model driven technologies [2].
Getting a technology for easily distributing models, added to other model related
techniques such as the usage of viewpoints [3] and of techniques for packaging
know-how in model driven development [4] are means for having a broader access to
models and model driven technologies, and for improving the ROI from models [5].

2 Model Repository Centralization: The Limitations
of the Standard Model

In today’s world, it is virtually impossible to set up a model repository for different
enterprise entities, large-scale systems or projects, which can be accessed by all par-
ticipants (readers, contributors, partners, and so on). Standard techniques based on a
centralized repository with a designated manager come up against a vast variety of
situations, with participants who neither want nor are able to conform to uniform rules
and management (Fig. 2).

This traditional centralization imposes:

• A need for centralized declaration of users and configurations.
• A mandatory organization of repository models.

Fig. 1. Constellation of repositories.
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• A limited repository storage and access mode, which goes against the need for
ubiquity and nomadic mode autonomy.

• A costly approach, requiring “server” licenses for each participant.

This kind of approach clearly hinders team agility, as well as team and model
distribution. For example, it cannot be considered for contributory open source pro-
jects, or for systems and projects involving several partners. As a result, it cannot be
used by large companies, whose different departments are often autonomous. This is a
real obstacle to model-based knowledge management within organizations.

The use of a centralized repository does present a number of advantages, and has
proven its worth over the years. However, it has reached its limits for the adoption and
sharing of models, and goes against openness and agility. After presenting a totally
decentralized architecture, we will demonstrate how the two approaches can be com-
bined, so as to benefit from the advantages of both.

3 Taking Inspiration from the Web, a Widely Used
and Tested Approach for Information Publication

Modelio’s new “Constellation” repository technology is based upon two widespread
approaches supporting cooperation and information and contribution sharing:

• The web, whose omnipresence and flexibility are required by everyone.
• The distribution of models through “libraries”. This approach is widely used for

code in open source projects and software development, which are a major source
of sharing and re-use.

Like theweb, there is no “central server”with Constellation. The organization is highly
decentralized, which allows the most open and agile cooperation modes. In its own way,

Fig. 2. Centralized organization: A model which has reached its limits.
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the Modelio modeling tool plays the role of an internet browser. Its open source distri-
bution, which also includes “Constellation”, provides open access to the repository
(Fig. 3).

Constellation is a network (or web) of “model fragments”, which constitute
autonomous groups of model elements. Each model fragment has its own independent
storage, and can have several access modes (local, shared, versioned and configured,
library, web, secure web). The model elements in a fragment can be linked to other
model elements from different fragments (Fig. 4), and the “model” then has a range
which includes several distributed fragments.

A “model” groups fragments together in order to meet a specific goal. For example,
this can be a project, a system, architecture, and so on.

Using the Modelio modeling tool, which acts as a sort of fragment and model
browser, the user therefore edits a model which is a set of fragments whose components
are interlinked. These fragments can be transparently local or remote via the web or any
other network. The user edits or browses a model of unlimited size, without having to
worry about the actual location of the elements handled, which are scattered across
different fragments in the Constellation.

Fig. 3. Decentralized organization: Distribution of users and model fragments.
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4 Defining a Model and Its Components in a Constellation

A model is an abstract representation in the form of images and text. It represents
something (a system, a problem, a solution, concepts, procedures, …) for a particular
community of participants (designers, developers, business analysts, users,…), and has
a clearly defined objective (pedagogical example, business view, design, analysis,
implementation, …).

The images and texts that a model presents are views of the model elements which
constitute it. Model elements break a model down into elementary information, for
example a class, an attribute, an attribute’s type, an operation’s parameter, an associ-
ation end, and so on.

Handling an individual model element rarely makes sense for a user, who will
usually work with a more macroscopic agglomerated element. The following model
element aggregation structures can therefore be identified:

• Configuration Units are Groups of Model Elements which are Individually Man-
aged by the User. Their definition can vary, but in practice they constitute a
management unit for the user, who handles them and manages their version and
configuration. They typically correspond to a Class, a Use Case, a Component, a
Process or a Package. A configuration unit can also be locked to control and avoid
concurrent access to it: it is a user’s work unit.

• Model Fragments are Groups of Higher Level Model Elements. Materialized as
packages, they group configuration units. Model designers attribute logical con-
sistency to model fragments, but their primary function is to autonomously store a
part of a model. Their components can be linked to model elements belonging to
other model fragments. A model element is also not definitively linked to a frag-
ment. It can be moved to other fragments, according to the organizational needs of
the designers.

Fig. 4. Transparent referencing between fragments.

World Wide Modeling: The Agility of the Web Applied 7



• Models are Groups of Model Fragments with a Defined Goal (the Model of an
Application, of System Architecture, of a Particular Problem, and so on). Models
identify the fragments which compose it and group them in a specific context.
Fragments exist independently of models, and can be referenced by several models.

When a model is edited, the location of fragments is transparent: they can be local
to a machine, on a local company network, or published on the web. Decisions on
breakdown into fragments, physical location and accessibility are driven by partici-
pants’ organizational, cooperation and accessibility needs.

As with internet browsers, access to other fragments via the web cannot be guar-
anteed. The remote element may be absent, the internet connection can be interrupted,
and so on. The architecture of Constellation guarantees that links from origin elements
to remote elements remain visible, and that reconnection with absent elements happens
transparently, as with broken links and absent pages in internet browsers.

In Fig. 5, a model has been defined, targeting the software development of a Java
application made up of several fragments:

• The Model Developed during the Project. This model is shared by all project
participants. Access to the model is controlled by SVN, which manages versions,
configuration and concurrent access.

• A Local Test Model. This fragment is only visible to the current user, who stores it
locally on his/her workstation.

• The JDK (Java) Library Model: This reversed model is distributed in the form of a
“model component” (or model library), and is accessible in read-only mode.

Fig. 5. Example of model configuration.
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• The Requirements Model Resulting from Business Analysis. This model can be
accessed in read-only mode via http. It is used to trace the application model to
requirements and to run impact analyses.

This example shows us that a model (dedicated here to a project) is configured by
assembling fragments which can have different statuses and access modes (remote and
managed in teamwork mode and in configuration, local to a workstation, in the form of
a library, in open access mode via the internet).

5 Modelio Servers: Governing Modeling for a System
or Organization

Like the web, the Constellation technology is naturally distributed and has no cen-
tralizing element. This characteristic ensures openness for participants.

To combine the advantages of the openness of decentralization and the control
afforded by a centralized repository approach, servers must be put in place.

In a “Constellation” architecture, model servers provide a central access point to a
set of distributed model fragments. A server defines a community that will use a set of
fragments and takes care of making sure that access rights, conventions and rules are
respected. In a constellation of model fragments, an unlimited number of servers can
exist, with each model fragment accessible by zero or several servers.

The function of the model server (Modeliosoft solution) is therefore to organize the
repository, govern access to it, assist teams in a particular cooperation mode and
manage model and project portfolios. Servers also manage project configuration, by
updating and maintaining the consistency of all participant configurations (versions of
Modelio “plug in” extensions or “modules”, fragments and libraries)2. A server is used
to define user communities, which share organization rules and conventions. The server
presents its users with a portfolio of models (or projects). In a typical model Con-
stellation, several servers co-exist and share model fragments, by governing and
controlling the models accessible to the community. This co-existence of several
servers which share model fragments is the most important new development with
regard to standard server schemas. It enables openness and sharing between the dif-
ferent “worlds” that each server represents within a “universe” which is the Constel-
lation architecture.

The fragments managed by a server can be accessible from other servers or in the
absence of servers, which allows the most openness and the widest sharing. Con-
versely, they can be visible to only a restricted community, in accordance with strict
rules and security and confidentiality constraints.

The use of Modelio servers with the Constellation technology thus enables the
combination of the agility and openness required by certain cooperation modes with the
organization rules dedicated to certain groups of participants (Fig. 6).

2 Here we find traditional server services, already provided in the current version of Modelio.
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6 Conclusion

This new approach to organizing repositories removes the obstacles of the current
centralized view, both in terms of the organization and distribution of participants and
date, and in terms of the volume of data handled.

It provides repositories with great agility, and enables the use of organization
modes which are in tune with current cooperation modes.

This approach provides large-scale organizations with a means of building a real,
universally accessible model repository, while retaining the means of governing and
sharing conventions within participant communities. In this way, it supports the
diversity of entities which exist within an organization, and their autonomy, while
facilitating sharing and cooperation. This widening enables modeling support to be
applied to the “extended enterprise”, which incorporates its eco-system (providers,
partners, and so on).

This approach also provides a solution to tool limitations with regard to the support
of large-scale models (due to the size and number of concurrent accesses), by breaking
them down into fragments and allowing “load balancing” strategies and data replication/
synchronization strategies between servers.

Finally, it allows a more lightweight, more flexible organization for all sorts of
communities: open source, small to medium-sized companies, and so on.

Fig. 6. Servers organize different communities in a constellation of model fragments.
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The new technical and functional capabilities are recognized, and the time has
come for organizations to take ownership of this approach, in order to put in place open
and distributed cooperation modes which correspond to their goals.
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Abstract. Software architecture derivation and evaluation are complex and error
prone activities that still represent an open problem with many challenges and
opportunities where model-driven software development can play a leading role.
In software product line development, the use of model-driven principles could
help by providing a richer semantic representation of a product line and by
capturing the architectural design decisions and its impact on the product quality
attributes. In this chapter, we analyze the main challenges and opportunities
surrounding the product architecture derivation and evaluation and introduce
QuaDAI, a method for the derivation, evaluation, and improvement of product
architectures in model-driven software product line development environments.
The method comprises a multimodel, which represents the different viewpoints of
a software product line, and a process conducted by model transformations that
automate the derivation, evaluation, and improvement of product architectures.

Keywords: Software architectures � Software product lines � Model-driven
development � Quality assurance

1 Introduction

Software architecture derivation and evaluation in Software Product Line (SPL) devel-
opment environments is a complex and error-prone process [1] that still represents an
open problem with many challenges and opportunities where Model-Driven Software
Development (MDSD) can play a leading role. MDSD advocates the use of models not
only to document the software development lifecycle but also to obtain the final product
as a result of a model transformation chain. MDSD has been traditionally applied in the
development of SPLs, especially for solving the configuration and product architecture
derivation problem. A SPL is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way
[2]. SPLs emerged as a promising approach to improve software development processes
so as to reduce costs and enhance productivity and product quality.

Quality assurance is a crucial activity for the success of any software development
effort, but is even more important in SPL development since a defect in a core asset
may impact negatively on the quality of the whole set of products within the product
line. This fact is especially relevant when dealing with the software architecture.
Software architecture is a key asset in SPL development and plays a dual role: on the
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one hand, the product line architecture (PLA) should provide variation mechanisms that
help to achieve a set of explicitly allowed variations and, on the other hand, the product
architecture (PA) is derived from the PLA by exercising its built-in architectural var-
iation points [2]. Software architectures are the means for the attainment of the
non-functional requirements (NFRs) of the products that will be derived from the
product line, and thus assuring the achievement of those NFRs during the architecture
derivation process is a critical activity in the development process.

In the last few years, MDSD has been applied in several research works to face the
product architecture derivation problem in SPL environments (e.g., [3–17]) although
the majority of these approaches do not properly integrate NFRs in the derivation
process. It is surprising that being quality one of the main reasons for the adoption of
the SPL approach, it has been often neglected in such a critical and complex process
[18]. In addition, in those cases in which the derived PA is evaluated after its deri-
vation, this evaluation is carried out by using software architecture evaluation methods
that have not been specially defined for SPLs (e.g., ATAM [19], SAAM [20]). We
believe that the use of model-driven principles could help by providing a richer
semantic representation of a software product line and by capturing the architectural
design decisions and its impact on the product quality attributes.

In this chapter, we first discuss the challenges identified in the area of architecture
derivation and evaluation in Model-Driven Software Product Line Engineering
(MD-SPLE), and then introduce QuaDAI [21, 22], an integrated method for the der-
ivation, evaluation, and improvement of product architectures in MD-SPLE environ-
ments. The method comprises a multimodel, which represents the different viewpoints
of the software product line, and a process conducted by model transformations that
automate the derivation, evaluation, and improvement of product architectures.

The remainder of the chapter is structured as follows. Section 2 discusses existing
approaches that deal with the derivation and evaluation of architectures in SPL
development. Section 3 introduces QuaDAI, a method to support the derivation,
evaluation and improvement of product architectures in MD-SPLE environments.
Finally, Sect. 4 provides our conclusions and final remarks.

2 Existing Approaches for Architecture Derivation
and Evaluation in MD-SPLE

In this section, we analyze the approaches that support the derivation and quality eval-
uation of product architectures in MD-SPLE. Section 2.1 analyzes existing approaches for
product architecture derivation in MD-SPLE. Section 2.2 analyzes existing software
architecture evaluation methods that allow the quality evaluation and analysis of product
architectures in SPL development. Finally, Sect. 2.3 summarizes the main findings.

2.1 Product Architecture Derivation in MD-SPLE

Despite the huge number of research work dealing with architecture derivation in SPL
development, the introduction of quality concerns in this process has not received a
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proper coverage. In Table 2, we show a summary of the classification of these
approaches by applying an extension of the classification criteria defined by Rabiser
et al. [1] (see Table 1).

Given a set of architectural variation points for a product line architecture one of the
main challenges is how to decide which variation points should be selected and which
ones should not taking into account not only functional but also non-functional
requirements. For these reason, we have suggested the criteria on Table 1.

The analysis show that there is a lack of approaches that: (i) can be applied
regardless the architectural description language or architectural viewpoint; (ii) allow
the explicitly representation of the architectural variability; (iii) allow the explicit
representation of the NFRs as well as the relationships among the NFRs and the
features that represent the SPL external variability but also the architectural variants
that realize this external variability; (iv) allow to configure the product by considering
both the features and the NFRs that the product must satisfy; (v) solve the architectural
variability automatically by using model transformations.

2.2 Architecture Evaluation in MD-SPLE

Over the last years, several approaches that allow the quality evaluation and assessment
of SPL product architectures have been proposed (e.g., [19, 23, 25–37]). In Table 4, we
show the summary of the classification of these approaches by applying the classifi-
cation criteria shown in Table 3.

Table 1. Architecture derivation classification criteria.

Criteria Description

C1* Non-functional requirements (NFRs) support
C2* Explicit representation of NFRs/quality attributes and their relationships with the

features (SPL external variability) or the architectural variants
C3** Configuration support
C4** Automated derivation support
C5*** Adaptability and extensibility (i.e., metamodel support, extension points for the

integration of domain specific generators)
C6*** Flexible and user-specific visualizations of variability (filtering, classification and

ordering support based on tasks, users, roles etc.)
C7 Explicit representation of architectural variability
C8 Architectural views support
C9 ADL/Modeling language support
C10 Configuration consistency checking

*C1 and C2: Adapted from the “Application requirements management support” criterion
described in [1]
**C3 and C4: Adapted from the “Automated and interactive variability resolution” criterion
described in [1]
***C5 and C6: Proposed at the systematic review by Rabiser et al. [1]
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An analysis of these approaches reveals that the majority of them have not been
proposed specifically for SPL development and only few of them provide coverage to
the evaluation of product architecture at derivation-time (e.g., [23, 33–37]). The majority

Table 2. Classification of architecture derivation approaches.

Approach C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Koalish [4] − − + − + − + C&C Own −

Cabello et al. [6] − − + + + − + + Own +
Botterweck et al.
[5]

− − + + + − + (FM/C) C&C + + (FM/C)

Duran-Limon
et al. [8]

− − + + − − + (OWL
and
FM)

C&C + + (FM)

Guana and
Correal [23]

+ − + + + − + C&C + −

Czarnecki and
Antkiewicz [9]

− − + + + − + + + + (FM)

Ziadi and
Jézéquel [10]

+ − + + + − Model + UML +

PLUS-EE [11] − − + + − − Model Multiple
viewpoints

UML +

Perrouin et al.
[12]

− − + + + − + − UML +

Schaefer et al.
[13]

− − + + + − + CoBoxes CoBoxes −

Tawhid and
Petriu [14]

− − − + − − Model Structure Marte −

Sánchez et al.
[15]

− − − + + − + + + −

FeatureMapper
[16]

− − + + + − + (FM and
Model)

+ + +

Haugen et al.
[24]

− − + + + − + + + +

Legend: FM: Feature Model; C&C: Component and Connector; FM/C: Feature Model and
Component Model; +: Supported; −: Not Supported; ± Partially Supported

Table 3. Architecture evaluation classification criteria.

Criteria Description

C1 Defined for evaluating product architectures (PA)
C2 Multi-attribute support
C3 Objective evaluation (e.g., metric-based evaluation)/Subjective evaluation

(e.g., scenario-based evaluation)
C4 Multi-architectural viewpoint/Multi-architectural description language
C5 Derivation-time evaluation
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only provide scenario-based subjective evaluation (e.g., [19, 23, 25–28, 30, 31, 35–37])
and only few of them provide software metrics that allow to perform an objective
evaluation of the derived product architecture through measurement processes (e.g., [29,
32–34]). However, these approaches only cover performance metrics (e.g., [32–34]) or
do not cover the evaluation of product architectures (e.g., [29]). None of the approaches
allow the explicit representation of design decisions and their impact on the product
quality attributes.

The main finding of this analysis is that the architecture evaluation in MD-SPLE is
not sufficiently covered by methods that allow the evaluation of product architectures
regardless the set of quality attributes or the nature of the architecture being evaluated.
In addition, we observed a lack of metric-based product architecture evaluation
methods that can be applied at derivation time. In SPLE development, variability in
quality attribute levels is also possible and thus the application of metric-based eval-
uation methods at derivation-time will allow us to analyze whether the measured values
for a specific configuration are within the limits established for the product line or not.
The evaluation of quality attributes after the derivation (or during derivation time)
allows us the early detection of potential problems, reducing costs and enhancing
productivity and product quality.

2.3 Discussion

The main finding of the analysis of existing works in the field is that there is lack of
methods that support the derivation, evaluation and improvement of product architectures
in an integrated manner, by means of evaluation mechanisms that allow us to ensure the
fulfillment of the desired quality attribute levels at derivation and evaluation time.

Table 4. Classification of architecture evaluation approaches.

Method C1 C2 C3 C4 C5

ATAM [19] − + − + −

FAAM [25] − + − + −

D-SAAM [26] − + − + −

ALMA [27] − − (Modifiability) − + −

AQA [28] − + − + −

Alves et al. [29] − + + + −

Gannod and Lutz [30] − + − + −

Maccari [31] − − (Evolution) − + −

Riva and Rosso [32] − − (Evolution) + + −

Tawhid and Petriu [33] + − (Performance) + − +
Alonso et al. [34] + − (Performance) + + +
Guana and Correal [20] + + − + +
E-ATAM [35] + (PLA/PA) + − + +
HoPLAA [36] + (PLA/PA) + − + +
CaLiPro [37] + (PLA/PA) + − + +
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A lot of effort have been spent in obtaining optimal solutions for the configuration
problem [38–40], but these efforts are meaningless if the product obtained after the
derivation do not fulfill the quality attribute levels that it is supposed to have. Fur-
thermore, in many occasions the evaluations do not take into account the unpredict-
ability of certain quality attributes [41] which makes that certain properties could not be
modeled as the sum of the properties of their parts. This introduces a degree of
uncertainty that can only be solved through the measurement of the actual values of
these properties once the software artifacts have been obtained. Finally, the majority of
the approaches have been tailored for a specific modeling language or architectural
description language, or for a specific architectural viewpoint.

All the problems described above is what has motivated us to define QuaDAI as an
integrated product architecture derivation, evaluation and improvement method that is
applicable regardless the quality attributes to be evaluated or the architectural
description languages used to specify the architecture or the architectural viewpoints of
interest. We have also faced the problem of empirically validate the usefulness of the
method through a family of experiments reported in [22].

3 A Multimodel Approach for the Derivation, Evaluation
and Improvement of Product Architectures

QuaDAI is a generic, integrated method for the derivation, evaluation and improvement
of product architectures regardless the architectural description language in which they
are expressed or the domain. It is based in a multimodel [42]) that represents the
different SPL viewpoints and a process consisting of a set of activities conducted by
model transformations.

The approach is supported by a prototype1 that gives support to the configuration,
consistency checking and generation of the product architecture. The prototype allows
to import feature models and specifications defined using third party tools and to
establish the relationships among them so as to automate the product architecture
derivation.

The rest of the section is structured as follows: Sect. 3.1 introduces the example we
use to illustrate the method; Sect. 3.2 presents the multimodel for representing SPLs;
Sect. 3.3 introduces the main activities of the QuaDAI process; Sect. 3.4 describes the
details of the product architecture derivation; and finally, Sect. 3.5 describes the
product architecture derivation and improvement activities.

3.1 An Illustrative Example

The different activities of the approach are illustrated through the use of a running
example: a SPL from the automotive domain that comprises the safety critical
embedded software systems responsible for controlling a car. This SPL comprises

1 The prototype is available for download at: http://users.dsic.upv.es/*jagonzalez/CarCarSPL/index.
html.
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several features such as Antilock Braking System, Traction Control System, Stability
Control System or Cruise Control System2.

The Cruise Control System feature incorporates variability. This variability is
resolved depending on other selections made on a feature model (i.e., the selection of
the cruise control together with the park assistant implies the positive resolution of an
extended version of the cruise control). Figure 1 shows an excerpt of the feature model
that represents the SPL external variability.

3.2 A Multimodel for Specifying SPLs

Traditional product line development process are based on: (1) the reuse of software
assets (e.g., components, web services) that have been previously developed and
stored; and (2) the realization of a production plan addressed to a product family which
share a common functionality (product line architecture) but that vary in some features
(variants). This approach can only be realized by assuming that we have a limited
amount of variants, perfectly defined, and by assuming that these variants can be
captured as instances of a feature model. However this is not realistic: variants go
beyond the monotonic addition/removal of functionality grains from the product line
architecture. For instance, changes in the structure or behavior of the application that is
being produced can impact its quality, even for the same functionality, thus making the
product unfeasible. Moreover, different properties of the application domain, design
decisions, usability and user requirements, etc. are difficult to capture by means of only
one feature model. This leads to the fact that only one feature model is not sufficient to
define a software product line, but different views are needed.

Our approach is based on the existence of several models or system views (e.g.,
functionality, features, quality) with relationships among them. This approach implies
the parameterization of the software production process by means of a multimodel
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Fig. 1. Feature model representing the SPL external variability.

2 The whole specification of the example is available at http://users.dsic.upv.es/*jagonzalez/
CarCarSPL/links.html.
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which is able to explicitly represent the different views of the products within the
product line and the relationships among them.

A multimodel can be defined as a set of interrelated models that represent the
different viewpoints of a particular system. A viewpoint is an abstraction that yields the
specification of the whole system restricted to a particular set of concerns, and it is
created with a specific purpose in mind. In any given viewpoint it is possible to produce
a model of the system that contains only the objects that are visible from that viewpoint
[43]. Such a model is known as a viewpoint model, or view of the system from that
viewpoint. The multimodel permits the definition of relationships among model ele-
ments in those viewpoints, capturing the missing information that the separation of
concerns could lead to [42].

The multimodel used to specify SPLs in order to support the derivation, evaluation
and improvement of product architectures is composed of (at least) four interrelated
viewpoints:

• Variability Viewpoint, which represents the SPL external variability expressing
the commonalities and variability within the product line. Its main element is the
feature, which is a user-visible aspect or characteristic of a system [44]. It is
expressed in the multimodel by means of a variant [45] of the cardinality-based
feature model (see Fig. 1).

• Architectural Viewpoint, which represents the architectural variability of the
product line architecture that realizes the external variability of the SPL expressed in
the variability viewpoint. It is expressed in the multimodel by means of the
Common Variability Language (CVL) and its main element is the Variability
Specification (VSpec). We only represent in the multimodel the architectural var-
iability of the product line architecture. The PLA itself is represented in a base
model, which is referenced by the CVL specification. A base model, under the CVL
terminology, is a model on which variability is defined using CVL [46]. The base
model is not part of CVL and can be an instance of any metamodel defined via
MOF [46].

• Quality Viewpoint, which represents the hierarchical decomposition of quality into
sub-characteristics, quality attributes, metrics and the impacts and constraints
among quality attributes. It is expressed in the multimodel by means of a quality
model for software product lines [47], which extends the ISO/IEC 25010 (SQuaRE)
[48] and allows the definition of NFRs as constraints affecting characteristics,
sub-characteristics and quality attributes.

• Transformation Viewpoint [49] that contains the explicit representation of the
design decisions realized by the different model transformation processes that inte-
grate the production plan for the model-driven development of SPLs. Alternatives
may appear in a model transformation process when a set of constructs in the source
model admits different representations in the target model. The application of each
alternative transformation could generate alternative target models that may have the
same functionality but might differ in their quality attributes. In this work, we focus
on architectural patterns [50, 51]. Architectural patterns specify solutions to recurrent
problems that occur in specific contexts [52]. They also specify how the system will
deal with one aspect of its functionality, impacting directly on the product quality
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attributes. Architectural patterns can be represented as architectural transformations,
as a means to ensure the quality attributes attained by the product architectures.
Figure 2 shows an excerpt of the transformation viewpoint of the multimodel,
containing one design decision in which we have three alternative architectural
patterns that can be applied by means of their own transformation rules.

The multimodel also represents the relationships among elements of each viewpoint
with different semantics as is_realized_by [53] or impact relationships [42]. An excerpt
of these relationships is shown in Fig. 3. Through these relationships we can describe in
the multimodel:

(i) How the UserSafetyLevel1 NFR is_realized_by a set of features (e.g., the ABS or
the Stability Control).

(ii) How the selection of a given feature impacts positive or negatively on a quality
attribute.

Design decision 1

Tranformation 1

Transformation Rule R1

Alt 1:Sanity Check Alt 2:TripleRedundancy Alt 3:Watchdog

Transformation Rule R2

Transformation Rule R3 Transformation Rule R4

...

Fig. 2. Transformation viewpoint excerpt.
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Fig. 3. Multimodel relationships.
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(iii) How the MaturityLevel NFR is_realized_by a set of VSpecs (e.g., the
WheelRotationSensor).

(iv) How the ABS feature is_realized_by a set of VSpecs (e.g., the
WheelRotationSensor).

(v) How the positive resolution of a given VSpec (e.g. WheelRotationSensor) impacts
positive or negatively on a quality attribute (e.g., FaultTolerance).

(vi) How the selection of a given architectural transformation impacts positive or
negatively on a quality attribute.

These relationships are used to check the consistency of the product configuration
in order to decide which variation points should be resolved positively in the CVL
resolution model driving the product architecture derivation. The relationships are also
used to select and apply the architectural transformations that best fit the prioritized
quality attributes driving the transformation activity. All these activities are further
described in the following subsections.

3.3 Overview of the QuaDAI Process

The process consists of a set of activities conducted by model transformations that take
as input the multimodel viewpoints and the relationships defined among their elements.
Figure 4 shows a summary of this process that comprises four main activities:

• Obtain Product Configuration in which the application engineer defines the
configuration of the product under development by selecting the features, NFRs and
by establishing the priority of each quality attribute3.

Derivation Evaluation and
improvement

1 2

Product architecture
derivation

Application
engineer

Application
architect

Obtain product
configuration

Architecture
instanciation

Evaluation Transformation

No

YesEvaluator

3 4

Application
architect

PA Meets
NFRs

Fig. 4. QuaDAI main activities.

3 NFRs are defined in the quality viewpoint as constraints affecting the quality attributes whereas the
prioritization of the quality attributes allows expressing the relative importance of each quality
attribute.
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• Product Architecture Instantiation in which the application architect obtains the
first version of the product architecture based on the product configuration by
resolving the architectural variability of the PLA.

• Evaluation in which the evaluator measures the derived product architecture in
order to assess the degree of fulfillment of the NFRs.

• Transformation in which the architect applies architectural transformations so as to
improve certain quality attributes when the architectural variability is not sufficient
to achieve the required NFRs for the product.

3.4 Product Architecture Derivation

The derivation process for obtaining a first version of the product architecture com-
prises two main activities: the Product configuration and the Architecture instantiation.
Figure 5 shows an excerpt of this process with its main inputs and outputs. In the
product configuration activity, the application engineer configures the product by
selecting the features and the NFRs that the product must fulfill and establishes the
quality attributes priorities in the Obtain product configuration task. These quality
attributes priorities will be used during the derivation phase to choose from a set of
architectural variants that having the same functionality differ in their quality attribute
levels, and in the evaluation and improvement phases to select the architectural
transformations to the applied to the architecture.

Once the product has been configured, we can check the product consistency
(Consistency validation task). Our approach supports the intra (e.g., consistence of the
feature model, consistence of the quality model) and inter-model consistency (e.g.,
relationships between the feature and the quality models).
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Figure 6 shows the flow of steps to obtain a valid product configuration using
QuaDAI. In the Variability viewpoint validation, we check whether the selection of
features fulfills the constraints defined in the feature model. In the Quality viewpoint
validation we check whether the priorities of the quality attributes defined in the
configuration satisfy the impact relationships and constraints among them defined in
the quality viewpoint. In the Features-NFRs validation we check whether the con-
figuration satisfies the is_realized_by relationships defined among features and NFRs
defined in the multimodel. Finally, in the Features-attributes validation we check
whether the features selected and the prioritized quality attributes do not violate the
impact relationships among features and quality attributes defined in the multimodel.
The variability viewpoint consistency validation has been operationalized by using the
FAMA [54] validator. We transform the cardinality-based feature model into the
FAMA metamodel through a QVT model transformation and we project the selection
of features by using a model to text transformation. The quality viewpoint and the
inter-viewpoint consistency checking are carried out through OCL constraints checked
at runtime by the OCLTools validator [55].

In the architecture instantiation activity, the application architect generates the
product architecture by means of two model transformation activities. The first trans-
formation, CVL resolution model generation task, takes as input a valid product
configuration and the multimodel (i.e., the relationships between the architectural
viewpoint with the variability and the quality viewpoints) and, through a QVT model
transformation, generates a CVL resolution model. With the multimodel relationships,
the QVT transformation decides which architectural variants have to be positively
resolved in each variation point.

Finally, the product architecture instantiation task, through a CVL transformation,
takes as input the CVL resolution model and generates the product architecture. This
product architecture represents the resolution of the PLA architectural variability taking
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into account not only the functional requirements but also the NFRs and the quality
attributes priorities defined in the configuration.

Figure 7 shows the outline of the Product architecture instantiation in which the
product architecture is generated after the resolution of the PLA architectural variability
through the CVL resolution model generation. The product architecture shown in Fig. 7
has been generated by the product architecture instantiation for the automotive
example when the application engineer selects only the ABS feature (see Fig. 1) and
introduces the product specific NFRs, which come from the system’s requirements,
demanding a fault tolerance of the ABS greater than 99.5 % and restricting the ABS
latency time to 5 ms.

3.5 Product Architecture Evaluation and Improvement

After obtaining the product architecture during the product architecture instantiation, it
should be evaluated to assess the degree of fulfillment of the product’s NFRs and, in
those cases in which the NFRs cannot be achieved by exercising the architectural
variability mechanisms of the product line architecture pattern-based architectural
transformations can be applied to the product architecture in order to improve its
quality. This process comprises two main activities: Evaluation and Transformation.
Figure 8 shows an excerpt of this process with its main inputs and outputs.

In the Product architecture evaluation task the evaluator applies the software
measures from the quality viewpoint of the multimodel to the product architecture in
order to evaluate whether or not it satisfies the desired NFRs. This can be done by
means of various measurement methods:

• Measurement through model transformation processes: metrics that require more
complex processing can be implemented as model transformations.

• Measurement through architectural modeling tools: in those cases in which some
architectural modeling tools have mechanisms to perform the measurement, this
will be delegated to such architectural modeling tools.
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• Measurement through OCL restrictions: in those cases where the metrics can be
operationalized in this language, architectural models can be measured by using
OCL constraints defined directly on the models at M1 level by means of the OCL
Tools. These constraints can be used as a consistency validation for the obtained
architectural models (e.g., to validate the memory consumption of all the compo-
nents that combine the architecture using derived attributes).

Once the measurement process has been carried out by applying the measurement
method selected in each case, the multimodel allows us to validate the degree in which
the NFRs are fulfilled, using the measurement results. We have developed a tool that
gives support to the creation and use of multimodels and which allows, on one hand, to
specify the NFRs for both the SPL and the product under development and, on the
other hand, to enter the measurement result in the multimodel and to perform the
validation of the OCL constraints at runtime by using the OCLTools validator.

The evaluation for the example architecture shown in Fig. 7 may conclude that the
architecture meets the latency NFR but that the fault tolerance NFR is not achieved,
and architectural transformations may thus be required. In those cases in which the
NFRs cannot be achieved by exercising the architectural variation mechanisms, in the
second activity, Product Architecture Transformation, we can apply pattern-based
architectural transformations to the product architecture. This transformation uses the
impact relationships among architectural transformations and quality attributes to
determine which architectural transformation must be applied to the product line
architecture in order to achieve the desired quality attribute levels. In particular, the
architectural patterns that we used for the automotive example are: homogeneous
redundancy pattern [50] and triple modular redundancy pattern [50] whose details are
briefly introduced in Table 5.
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To define the corresponding impact relationships among architectural patterns and
quality attributes, the domain architect must rank each architectural transformation with
regard to the Q quality attributes in a trade-off analysis using the AHP technique. For
each quality attribute Qa, s/he compares the N potential architectural transformation in a
pairwise comparison. To determine how an architectural transformation Ax supports the
quality attribute Qa, in comparison to the pattern Ay, a weight is assigned (1 for equally
important, 3 for moderately more important, 5 for strongly more important, 7 for very
strongly more important, and 9 for extremely more important). For example, the
domain expert defines that TMR is strongly more important (a weight of 5) than HR
with regard to fault tolerance, and that HR is moderately more important (a weight of 3)
than TMR with regard to latency.

The result of this comparison is an N x Q matrix that shows the relative support of
the different architectural patterns to the quality attributes as shown in Table 6(a). Then,
these values are normalized by applying the formula (1) to (a) to produce Table 6(b),
and finally, the impact that an architectural pattern has on a quality attribute Qa is
calculated by applying the formula (2) to produce Table 6(c). This result is stored in the
multimodel in the impact relationships among architectural transformations and quality
attributes (see Fig. 3 in Sect. 3.2) and is valid for all the products in the product line.

NormQa i; j½ � ¼ Qa i; j½ �
Pn

k¼1 Q½k; j�
ð1Þ

I i½ � ¼
Pn

k¼1 NormQa½i; k�
n

ð2Þ

Rj ¼
Xk�1

i¼0

Qi � Iij ð3Þ

In the automotive example, if the architect selects both the latency and the fault
tolerance as being of equal importance (i.e., with a weight of 0.5 for each one) the
transformation process will select the TMR pattern by applying the formula (3) to the
values shown in Table 6(c) (TMR: 0.5 * 0.83 + 0.5 * 0.24 > HR: 0.5 * 0.17 +
0.5 * 0.76). Figure 9 shows the resulting product architecture after the application of
the TMR pattern to the product architecture shown in Fig. 7.

The process iterates until the NFRs are achieved or when the architect detects that it
is not possible to build the product with the set of NFRs selected in the configuration.

Table 5. Architectural transformations description.

Name Rationale Left-hand side Right-hand side

T1: Triple Modular 
Redundancy (TMR)

Only detects random faults. Since the 
channels are homogeneous, any systematic 
fault in one channel must be present in both 
of the others.

T2: Sanity Check 
Pattern (SC)

Detects gross deviations from the controlled 
value to the actuator value. Provides minimal 
coverage against faults.
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The evaluation process may result also in a renegotiation of the NFRs with the cus-
tomer. In this case, the product architecture should be re-evaluated to check the con-
formance with the new NFRs. Finally, in some cases the architect should vary some
architectural variation points to modify the candidate product architecture. For instance,
in some cases the first candidate architecture may imply the positive resolution of a set
of architectural variation points that may lead to quality attribute levels that are far
above of a given NFR. Considering another combination of architectural variation
points may also imply the fulfillment of that specific NFR but also other that were
previously unfulfilled.

4 Conclusions and Final Remarks

Although in the last few years model-driven software development have been applied
to address the problem of software architecture derivation and evaluation in SPL
development, it still presents some drawbacks and opportunities. In general, quality
assurance has not received proper coverage in existing approaches for product archi-
tecture derivation and there is a lack of generic methods that support the derivation and
evaluation of product architectures regardless the quality attributes to be evaluated, the
architectural description languages used to specify the architecture or the architectural
viewpoints of interest. We believe that the use of model-driven principles would

Table 6. Architectural patterns and quality attributes trade-off analysis.

(a)
Fault Tolerance Latency

(b) 
Fault Tolerance Latency 

(c) 
Impacts 

TMR HR TMR HR TMR HR TMR HR Fault Tolerance Latency 

TMR 1 5 1 1/3 TMR 1 / 1.2 5 / 6 1 / 4 1/3 / 1.3 TMR 0.83 0.24 

HR 1/5 1 3 1 HR 1/5 / 1.2 1 / 6 3 / 4 1 / 1.3 HR 0.17 0.76 

Sum 1.2 6 4 1.3 
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provide a richer semantic representation of a SPL and may be used to relate the
different activities that should be performed during the derivation and evaluation of
product architectures (e.g., the impact that SPL external variability has on the
non-functional requirements or how the architectural design decisions impact on the
quality attributes).

We have also introduced QuaDAI as an integrated, generic method for supporting
the derivation, evaluation an improvement of product architectures in MD-SPLE. In
this method, the product derivation and the architectural transformations are guided by
the relationships and constraints established in a multimodel. The multimodel provides
a sufficiently formal interrelated model that can be supported by tools capable of
automating portions of the product line production planning. The approach explore
model-driven concepts and techniques to make explicit the knowledge and rationale
used for architectural design by capturing and representing architectural design deci-
sions during the architecting process necessary for reducing architectural knowledge
evaporation.

The multimodel is a solution for documenting design decisions and their impact on
the product quality attributes. The multimodel can also be used to analyze the
cost/benefit of having core assets with certain qualities (impact on quality and cost). As
further work, we plan to improve the configuration and consistency validation mech-
anisms, to provide recommendation mechanisms based on previous selections, and to
implement consistency validation for individual entities of the multimodel. In addition,
we want to improve the impact specification mechanism and to analyze other
multi-objective optimization methods. We also plan to perform replications of the
experiments conducted to evaluate the effectiveness of QuADAI with practitioners.
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Abstract. OCL is a formal notation to specify constraints on UML
models that cannot otherwise be expressed using diagrammatic notations
such as class diagrams. The type of constraints that can be expressed
using OCL include class invariants and operation preconditions and post-
conditions. Constraint patterns can be used to simplify the development
of consistent constraints for UML/OCL models. This paper investigates
an approach based on constraint patterns to developing JML specifica-
tions for Java implementations from OCL constraints. This would enable
the checking of OCL constraints at runtime since they can be translated
to JML executable assertions. The approach involves mapping each OCL
constraint pattern to a corresponding JML pattern. This results in a
library of JML constraint patterns that provides a seamless transition
from UML/OCL designs to Java implementations.

Keywords: Constraints · Patterns · OCL · JML

1 Introduction

The Object Constraint Language (OCL) [1,2] is an integral part of the Unified
Modelling Language (UML) [3], and was introduced to express additional con-
straints on models that diagrams cannot convey by themselves. Building class
models is essential for modelling applications, however the UML class diagram
cannot express all the relevant constraints about the application being modelled.
Therefore class models must typically be refined with textual constraints writ-
ten in OCL. Typical constraints include invariants on classes, and preconditions
and postconditions of operations. The use of OCL in modelling is essential for
the development of precise and abstract models. However, developing constraint
specifications is not an easy task. Among other things, one important aspect
needs to be taken into account: class diagrams can express complicated rela-
tionships, including subtyping, reflexive relations, or potentially infinitely large
instances, and constraining such facts requires dealing with this complexity. In
order to facilitate and simplify the development of constraints, the concept of
specification patterns has been introduced as constraint patterns in MDE [4–10].
A constraint pattern captures and generalizes frequently used logical expressions.
c© Springer International Publishing Switzerland 2015
S. Hammoudi et al. (Eds.): MODELSWARD 2014, CCIS 506, pp. 35–48, 2015.
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It is a parameterizable constraint expression that can be instantiated to solve
a class of specification problems. At a more formal level, a constraint pattern
with respect to a meta-model can be defined as a function that maps a set of
meta-model elements to a constraint.

As a design notation, however, OCL is not executable and OCL constraints
are not reified to implementation artifacts. This could lead to development and
maintenance problems of constraints such as inconsistency. These problems can
be overcome by mapping OCL constraints to source code in a form that can be
executed and checked at runtime. Hamie [11–13] has defined rules for translat-
ing OCL expressions and constraints to JML expressions and assertions. This
translation was refined and implemented in [14] by providing a JML class library
for OCL collection types that simplifies the translation. JML is a behavioural
interface specification language that can be used to specify Java classes and inter-
faces [15], and a significant subset of it can be checked at runtime [16]. JML is
very specific to the programming language Java and thus handles many low-level
details. What makes JML suitable for the translation is that it supports several
language and tool features, in particular, specification only variables called model
variables [17] and specification refinements.

This paper proposes an approach for translating OCL constraints expressed
in terms of patterns to JML constraints. This approach is based on translating
OCL patterns to JML specification patterns described as JML templates. That is
each OCL pattern will have a corresponding JML pattern. The use of constraint
patterns makes the translation intuitive and traceable. It is also expected that
the use of patterns facilitate automation of the translation. In addition, the JML
constraint patterns are useful for simplifying the development of assertions for
Java classes and interfaces. This is important since assertions are recognised as a
practical programming tool and are said to be more effective when derived from
formal specifications such as OCL constraints.

The remainder of the paper is organised as follows. In Sect. 2 we briefly review
OCL and JML through a small example that will be used throughout the paper.
In Sect. 3 we look at constraint patterns in OCL. In Sect. 4 we describe a way for
translating an OCL constraint pattern to a JML pattern. In Sect. 5 we compare
our work with other works for mapping OCL to JML. Section 6 provides the
conclusion and future work.

2 Background

2.1 Object Constraint Language

The Object Constraint Language (OCL) [1,2] is a textual, declarative notation
that can be used to specify constraints or rules that apply to UML models.
OCL can play an important role in model driven software engineering because
UML class diagrams are not precise enough to enable the transformation of a
UML model to complete code. In fact, it is an important component of OMG’s
standard for model transformation for the model-driven architecture [18].
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Fig. 1. A partial class model for video rental store.

A UML class diagram alone cannot express all relevant constraints about
an application. The diagram in Fig. 1, for example, is a UML class diagram
modelling a video rental store. There are various additional constraints on the
model that cannot be expressed diagrammatically. For example, a member can
only rent one copy of a video title at one particular time or the number of copies
of a title is greater than zero. It is very likely that a system based only on
diagrams alone will be incorrect. Such additional constraints can be precisely
described using the OCL which is based on predicate logic and mathematical
set theory. For example a simple constraint stating that the number of copies of
a title is greater than zero can be expressed as follows.

context Title
inv copiesGreaterZero : self.noOfCopies > 0

This constraint, called an invariant, states a fact that should be always true
in the model. The actual invariant is represented as an OCL boolean expression
using the variable self that refers to an object of class Title. copiesGreaterZero is
the name of the invariant.

It is also possible to use OCL in order to specify the behaviour of an oper-
ation. For example, the following OCL constraints specify the behaviour of an
operation Title::addCopies(n : Integer) using a pair of predicates describing a
precondition and a postcondition.

context Title::addCopies(n: Integer)
pre : n > 0
post : noOfCopies = noOfCopies@pre + n
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The pre and postconditions state that if invoked with parameter n greater
than zero the operation sets the new number of copies of the title by adding
n to the previous number of copies. In the postcondition, the @pre annotation
denotes the value of a property at the precondition time.

OCL supports several primitive types such as Integer, Real, Boolean, and
String and collection types such as Collection, Set, OrderedSet, Bag, and Sequence
[1,2]. These types are equipped with various operations that can be used for
writing OCL constraints. For example the collection operation size returns the
number of elements contained in a collection, and the forAll operation checks
whether an expression is true for all objects in a given collection.

2.2 Java Contracts in JML

The Java Modeling Language (JML) [15] is a formal specification language that
can be used to specify Java classes and interfaces. As such JML provides an
extended Design-by-Contract concept to the programming language Java. The
Design-by-Contract (DBC) concept includes conventional clauses for precondi-
tions and postconditions of methods as well as class invariants. JML specifica-
tions or assertions can be added directly to source code as a special kind of
comments called annotation comments, or they can live in separate specifica-
tion files. These assertions are usually written in a form that can be compiled,
so that their violations can be detected at runtime. In addition, JML provides
clauses for specifying exceptions, and its extensions include model and ghost
variables which describe specifications only data and therefore allow the mod-
elling of abstract state space. The relationship between the concrete state space
and the abstract one is achieved by the use of ‘represents’ clauses in the concrete
classes and thus formulate a data refinement relation.

Fig. 2. Sample Java code with JML annotations.
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Figure 2 shows a sample Java code annotated with JML specification written
in a Java source (.java) file. The annotation comments in the source code are
indicated by //@ and /*@ ... @*/. It describes the behaviour of class Title. The
JML keyword spec−public states that the private field noOfCopies is treated
as public for specification purpose; e.g., it can be used in the specifications of
public methods such as addCopies. The example also shows the specification
of the method addCopies. A method specification precedes the declaration of
the method. The requires clause specifies the precondition, the assignable clause
specifies the frame condition, and the ensures clause specifies the postcondition.
The JML keyword old in the postcondition denotes the pre-state value of its
expression; it is mainly used in the specification of a method such as addCopies
that changes the state of an object.

JML is widely accepted and supported by a range of tools covering the dif-
ferent levels of program verification from runtime checking (Iowa State JML
tools, via [19]) to static checking (ESC/Java2, [20]) to ‘real’ interactive verifica-
tion (Loop project, [21]). Typically JML extensions are encapsulated in specially
formatted Java comments, so that any Java tool can still handle the source code.

3 Constraint Patterns in OCL

Besides augmenting models with textual constraints, models can be refined by
applying patterns. A constraint pattern can be regarded as a parameterisable
constraint expression that can be instantiated to solve a class of specification
problems. Common constraint expressions are generalised and captured as con-
straint patterns. These patterns can then be instantiated in specific contexts to
generate the concrete constraints. The concept of constraint patterns has been
introduced for UML/OCL in order to simplify and speed up the development of
constraints and to ensure their consistency [4–10].

The semantics of constraint patterns can be captured as an OCL template,
i.e. a parameterisable OCL expression [8]. These templates are used as macros
because patterns are untyped. The syntax of an OCL template starts with
the keyword pattern followed by the name of the pattern and a set of typed
parameters in brackets. This is followed by an equals sign and an arbitrary
OCL expression in which the name of the formal parameters can be used.
The Singleton design pattern can be defined using the template as follows.

pattern Singleton(element: Class) =
element.allInstances()−>size() = 1

Instantiating the pattern involves replacing the formal parameters by the
values of the actual parameters. As an example, we instantiate the Singleton
pattern to constrain the number of video stores in a model state to one. Note
that in the following the constraints oneStore1 and oneStore2 are semantically
equivalent.
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context VideoRentalStore
inv oneStore1: Singleton(VideoRentalStore)
inv oneStore2: VideoRentalStore.allInstances()−>size() = 1

The above example shows that constraint patterns are a concise means of
hiding the syntactic and semantic complexity of OCL expressions and offering a
unique name and uniform interface to the model developer.

In [8,10] an extensible library of elementary constraint patterns was presented
for OCL modelling. The idea of elementary constraint patterns is to identify a
relevant set of atomic constraints that covers frequently occurring restrictions on
a model, e.g. restrictions on attribute values or on relations between objects. In
addition to elementary constraint patterns, composite constraint patterns were
introduced in order to express complex properties by combining an arbitrary
number of other constraints. The identified composite patterns include Negation,
If-Then-Else, Exists, Or, and And. Tool support for specification patterns is pro-
vided in the form of a set of plug-ins for the MDE tool IBM Rational Soft-
ware Architect (RSA) that enable consistency-preserving refinement of UML class
models with constraint patterns [8–10].

4 Mapping OCL Patterns to JML Patterns

In this section, we consider a subset of elementary constraint patterns and how
they can be mapped to JML patterns. These elementary patterns are identified
from a relevant set of elementary constraints that covers frequently occurring
restrictions on a model. The general form of an OCL constraint pattern is given
by the following template.

pattern patternName(p1 : Type1, ..., pn : Typen) = patternBody

patternName stands for the name of the pattern, p1, ..., pn is the list of para-
meters for the pattern of types Type1, ..., T ypen respectively, and patternBody
is the body of the pattern represented as an OCL expression built using the
parameters and OCL operations. The types of parameters Type1, ..., T ypen are
types from the UML/OCL metamodel.

We use a template similar to that of OCL to capture the semantics of the JML
patterns. The corresponding JML pattern is obtained from the OCL pattern
by mapping the types of parameters to types in the JML metamodel, and by
translating the body of the pattern into a JML expression. If Typei is mapped
to jmlTypei (i = 1, .., n) and patternBody is mapped to jmlpatternBody then the
JML pattern is given as follows.

pattern oclPatternName(p1 : jmlType1, ..., pn : jmlTypen) = jmlpatternBody
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Fig. 3. Constraint pattern mapping diagram.

Translating the body of the OCL pattern to a body for the corresponding
JML pattern can be achieved by using the translation rules defined in [13,14].
That is if µ is the mapping that maps OCL expressions to JML expressions
then we have µ(patternBody) = jmlPatternBody. The mapping µ is defined
recursively over the structure of OCL expressions. This process can be applied
to each OCL constraint pattern. The diagram in Fig. 3 can be interpreted as
saying that there are two ways to obtain a JML assertion from an OCL con-
straint. The starting point is applying an OCL constraint pattern. Unfolding the
definition of the pattern we obtain the OCL constraint which can be mapped
to a JML assertion using the mapping defined in [13]. This does not require
the introduction of patterns in JML. The other way is not to unfold the OCL
pattern but to use the corresponding JML pattern to do the mapping. Then the
JML assertion can be obtained by unfolding the definition of the JML pattern.
Assuming appropriate mappings have been used, the two ways should lead to
semantically equivalent JML assertions. Since constraint patterns can be used
in OCL for the development of constraints, it makes sense to introduce them in
JML so that the mapping of a pattern instantiation will be done in a natural and
direct way. This also has the advantage of expressing JML constraints concisely
using patterns.

4.1 Restricting Attribute Values

In this subsection we consider constraints that express relations between prop-
erties. There are three patterns that restrict the values of attributes namely
Attribute Sum Restriction, Attribute Relation, and Attribute Value Restriction.
In the following we deal with the first two patterns since the last one was con-
sidered in [22].

Attribute Sum Restriction. The Attribute Sum Restriction pattern has three
parameters. Besides the parameter navigation, which denotes a path expression to
a related class, this pattern has two parameters. Parameter summation refers to
the property in the context class that denotes the value that must not be exceeded,
and summand refers to the property in the related class that is accumulated.

pattern AttributeSumRestriction (navigation: Sequence(Property),
summand: Property, summation: Property) =

self.navigation.summand−>sum() <= summation
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This pattern can be used to capture the constraint that the number of copies
in the video store cannot exceed the maximum number of copies. This constraint
is given as follows.

context VideoRentalStore
inv copiesRestriction : self.catalog.noOfCopies->sum() <= maxCopies

Using this constraint pattern with the actual parameters catalog, noOfCopies,
and maxCopies, we can express the constraint copiesRestriction as follows.

context VideoRentalStore
inv copiesRestriction: AttributeSumRestriction(catalog, noOfCopies, maxCopies)

The corresponding JML pattern can be given as follows. Each parameter of
the OCL pattern is mapped to a parameter of the same name, and the type
Property is mapped to type Field.

pattern oclAttributeSumRestriction(navigation: List<Field>,
summand: Field, summation: Field) =

this.navigation.collect(x->x.summand).sum() <= summation

The OCL expression c.p where c is a collection and p is a property is a short-
hand notation for c−>collect(p). The OCL defines a set of iterator operations
such as select, reject, collect, forAll, and exists that take an OCL expression as
a parameter. These operations are harder to implement in Java without the
support of higher order methods. This problem can be solved since Java 8 sup-
ports higher order methods through lambda expressions [23]. For this pattern,
we introduce the JML methods collect and sum that implement OCL’s opera-
tions collect and sum respectively. The collect method takes a lambda expression
as a parameter.

Let us illustrate the approach by mapping the copiesRestriction constraint
to a JML assertion. The class VideoRentalStore has an association named cat-
alog, representing the set of titles in the video store (see Fig. 1). As shown in
Fig. 4 below, we introduce a JML model variable for this association. The model
variable has the same name as that of the association and is of type OclSet. The
OclSet class is part of JML library and implements OCL’s set [14]. The JML
invariant obtained by unfolding the pattern definition is also included in Fig. 4
for comparison.

Attribute Relation. The Attribute Relation pattern can be used to relate an
attribute contextAttribute to a remoteAttribute by an operator. The class contain-
ing the contextAttribute and the class containing the remoteAttribute are related
by navigation. This pattern is defined as an OCL template as follows.
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Fig. 4. JML annotations from OCL Attribute Sum Restriction pattern.

pattern AttributeRelation (navigation : Sequence(Property),
remoteAttribute: Property, operator: OclExpression,

contextAttribute : Property) =
self.navigation−>forAll(x | x.remoteAttribute operator contextAttribute)

This pattern can be used to capture the constraint that the number of copies
for each title is less than the maximum number of copies of the video store. This
constraint is given as follows.

context VideoRentalStore
inv lessMaximum : self.catalog->forAll(t | t.noOfCopies < self.maxCopies)

Using this constraint pattern with the actual parameters catalog, noOfCopies,
< and maxCopies, we can express the constraint lessMaximum as follows.

context VideoRentalStore
inv lessMaximum: AttributeRelation(catalog, noOfCopies, <, maxCopies)

The corresponding JML pattern can be given as follows. The parameters
of the OCL pattern are mapped to parameters with the same names and with
appropriate types. The body of the pattern is mapped using the universal quan-
tification operator in JML, namely \forall. The JML method includes imple-
ments OCL’s operation includes.

pattern oclAttributeRelation (navigation : List<Field>,
remoteAttribute: Field, operator: JmlExpression,

contextAttribute: Field) =
(\forall x; this.navigation.includes(x); x.remoteAttribute operator contextAt-
tribute)
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Fig. 5. JML annotations from OCL Attribute Relation pattern.

Another way to translate the body of the OCL pattern is by introducing a
higher order method forAll that directly implements the OCL operation forAll.
In this case the structure of the OCL pattern is preserved in JML.

pattern oclAttributeRelation(navigation : List<Field>,
remoteAttribute: Field, operator: JmlExpression,

contextAttribute : Field) =
this.navigation.forAll(x->x.remoteAttribute operator contextAttribute)

The use of the JML pattern is illustrated in Fig. 5 above.

4.2 Unique Identification

The Unique Identification pattern is very frequent. For example, in the video
rental model it is required that the id for members is unique. That is any members
m1 and m2 should be distinguishable by their membership identities. In OCL
such constraint can be expressed using the operation isUnique as follows.

context VideoRentalStore
inv uniqueID: self.members->isUnique(id)

This constraint can be generalized to composite primary keys by using the
OCL tuple type.

The Unique Identifier pattern [10] (referred to Semantic Key in [6]) captures
the situation where an attribute (or a group of attributes) of a class plays the
role of an identifier for the class. That is the instances of the class should differ
in their values for that attribute (group). The corresponding OCL template is
given as follows.
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pattern UniqueIdentifier(navigation: Sequence(Property), property : Property) =
self.navigation−>isUnique(property)

This pattern has two parameters navigation which represents a path expres-
sion to a related class, property, which denotes a property that have to be
unique for each object of the context class. The body of the pattern makes
use of the OCL operation isUnique. This formulation of the pattern is differ-
ent from [22] where the body of the pattern is defined in terms of the operation
allInstances, which returns the set of existing instances of the class, and the oper-
ation isUnique. This pattern can be generalised to more than one property by
using the OCL tuple type.

The corresponding JML pattern makes use of the JML operator \forall and
can be defined as follows.

pattern oclUniqueIdentifier (navigation:List<Field>, property: Field) =
(\forall a1, a2;this.navigation.includes(a1) && this.navigation.includes(a2);

a1 != a2 ==> a1.property != a2.property)

To make the correspondence between OCL and JML simpler it is possible
to introduce a primitive quantifier \unique that asserts the uniqueness of a
property or field. In that case the Unique Identifier pattern can be concisely
stated as follows.

pattern oclUniqueIdentifier (navigation:List<Field>, property: Field) =
(\unique a;this.navigation.includes(a); property)

An alternative way to map this OCL pattern is to make use of lambda expres-
sions in Java. This enables the implementation of the OCL operation isUnique
to a JML method to be direct and more natural. If the JML method isUnique
implements the OCL operation, then the JML pattern can be stated as follows.

pattern oclUniqueIdentifier (navigation:List<Field>, property: Field) =
this.navigation.isUnique(x->x.property))

Applying the Unique Identifier pattern in the context of the class Member
we get the following OCL invariant.

context Member
inv uniqueID: UniqueIdentifier(members, id)

Translating this invariant involves mapping the OCL expression Unique
Identifier(members, id) to the corresponding JML expression oclUniqueIdentifier
(members,id). The following code shows the translated invariant in JML.
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By unfolding the above invariant we obtain:

Note that the translated JML pattern does not work when the equality test
is based on value equality between objects. This is the case when the type of the
field is String where the equality test should be based on the method equals
rather than ==. One way to have another version of the JML pattern that uses
equals, so that the mapping chooses the right pattern based on the type of the
property. Yet another way is to use a generic equality when defining the pattern
and use the tool for generating the right expression based on the type of the
property. The latter approach is preferable since it allows the mapping of the
pattern to be natural and more elegant.

5 Related Work

The most relevant related work on constraint patterns, on which this paper is
based, is given by the approaches presented in [4–6] and [8–10]. However, the
contribution of this paper is introducing specification patterns for Java/JML
designs inspired from those of UML/OCL patterns and using the patterns to
map OCL designs to JML designs. In addition the work presented in this paper
extends and refines the work in [22].

The translation of OCL constraints to JML specifications has been addressed
in numerous publications. In [13] a mapping is defined that maps OCL expres-
sions to JML expressions. The mapping is defined recursively over the structure of
expressions and provided the foundations for future implementations. The paper
in [12] deals with some aspects of translating OCL into JML and proposed differ-
ent strategies that would be possible to use for the mapping. The mapping in [13]
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was refined and implemented in [14], where a new JML library that implements the
standard OCL library such as collection types was introduced. However, the cur-
rent approach is based on new JML specification patterns that implement or cor-
respond to OCL specification patterns. In addition we have used new constructs
in Java [23] in order to map some OCL operations to JML methods.

6 Conclusions

In this paper, we proposed an approach to translating OCL constraints to JML
assertions based on the concept of constraint pattern. The main component of
our approach is a set of JML constraint patterns implementing OCL constraint
patterns. That is each OCL constraint pattern is mapped to a corresponding
JML specification pattern represented as a JML template. The possible ben-
efits of this approach is enhancing the quality of the translated assertions by
expressing them in a more compact way, and support automating the transla-
tion. The pattern-based approach has proven to be effective for UML/OCL con-
straint development [8,10], so it follows that the approach of this paper helps to
decrease both the time and error rate for JML constraint development. That is
the JML patterns can be used stand alone to facilitate and simplify the develop-
ment of JML assertions. However, appropriate tool support is needed in order to
allow model developers to effectively use the pattern-based approach. The other
contribution of this paper is to enhance the mapping of OCL iterator operations
to JML by using lambda expressions. This has made it possible to provide a
direct and natural mapping of these operations.

Future work includes the identification and mapping of other OCL constraint
patterns to JML. This will also cover patterns for preconditions and postcon-
ditions of operations. Furthermore, automating the mapping of OCL patterns
and the instantiation of JML patterns need to be supported by means of an
appropriate tool. We will also provide an implementation of OCL iterator oper-
ations based on using lambda expressions as supported by Java. This will form
an extension of the JML library that implements the OCL standard library.
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Abstract. Stakeholders have to face requirements in increasing num-
ber and complexity, and the link between these requirements and design
artifacts is primordial. Agile design methods and documentation tech-
niques have emerged in the past years in order to trace the decision
process and the rationale sustaining a software model. The present work
proposes an integrated framework combining system requirement defi-
nitions, component-based models and model transformations. Architec-
turally significant requirements are explicitly linked to software archi-
tecture elements and iteratively refined or implemented by model trans-
formations. Any transformation must be documented, even briefly, and
the framework retains the transformations tree. This way, the iterative
decision and design processes are completely documented for future ref-
erence or modification, i.e., designers can (i) see the mapping between
a system requirement and its implementation in the architecture model,
(ii) explore design alternatives or apply structural modifications without
losing previous versions of the model, and finally (iii) at least understand
partially the reasons why the model is how it is.

Keywords: Software architecture · Design method · Design rationale ·
Traceability · Model transformation

1 Introduction

Software systems become complex products where many people and constraints
may intervene. They are intended to offer many functionalities that can evolve
over time. Many possibilities are often available to fulfill specific needs which
increase the amount of design choices. A requirement can be scattered over an
architecture model so that it becomes difficult to recover architectural knowl-
edge [24]. Without appropriate design decisions and rationale tracing mech-
anisms, system maintenance, evolution and redeployment may be costly and
time-consuming [25].

As we explain in Sect. 2, iterative design method in component-based sys-
tems is not new. The main goal of such methods is to face requirements and
constraints by integrating them step-by-step [3]. However, a tricky part resides
in ordering these requirements since the early decisions taken at the architecture

This paper is an updated version of A DSL for Stepwise Design of SA [7].
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or technological levels may impact the overall design possibilities [21]. Making
an early decision, like choosing a particular architectural style, limits the design
possibilities for later decisions and may cause expensive rework if it was wrong.

We propose in Sect. 4, an agile-based design framework intertwining struc-
tural models, requirement definitions, design rationale documentation and model
transformations. These underlying languages are presented in Sect. 3. The aim
of this work is to structure the iterative design process around step-by-step
refinements and model transformations [12]. On the one hand, architecturally-
significant requirements are expressed regarding some guidelines. On the other
hand, information systems are modeled in terms of types of constructs, concrete
and interconnected instances and deployment targets. The framework traces the
history of the iterative decision process with corresponding models. At any time,
it is possible to go back to an earlier model, make a modification and re-apply
the previously defined transformations with minor necessary rework at the archi-
tecture level. Decisions and rationale are first-class entities in the design process
so that we explicitly keep the link between requirements and implementing con-
structs with the reasons sustaining such decisions. We do not address ordering or
assessment between requirements, like the Architecture Tradeoff Analysis Method
(ATAM) [13] or the reasoning method proposed by Tekinerdogan et al. [23], even
if such methods can be integrated in our framework.

We challenged our approach on a comparative case study on a fictitious online
book store system. In Sect. 5, we present the broad outlines of the case study
and analyze some of its outcomes. We discuss how our transformation-oriented
method helped designers to structure the architectural knowledge, trace design
alternatives and build a documented system architecture. We will afterwards
discuss the benefits and limitations of our approach in Sect. 6. We finally conclude
this paper with our research perspectives and future work in Sect. 7.

2 Related Work

An increasing amount of research focuses on the relations between requirements,
design decisions, design rationale and architecture model. A basis for rationale
and decisions reasoning has been proposed by Kruchten et al. [14] and a formal
language for decisions modeling was developed by Zimmermann et al. where they
refined the notion of decision into issues, alternatives and outcomes [26].

Although, there is a need for embedded facilities to maintain a concrete link
between decisions and rationale, and resulting architecture models [2]. Architec-
ture Rationale and Element Linkage is a more complete technique that integrates
model elements and the rationale behind the associated design decisions [22].
Jansen et al. introduce a documentation enrichment method, supported by a
tool suite, to add formal knowledge even to existing documentation [11]. van
Heesch et al. propose a viewpoint-based representation of design decisions and
rationale with the possibility to record also personalized knowledge [8]. How-
ever, all these approaches require modelers to maintain extra models so that
the workload is significantly increased with a possible discouraging effect. Also,
the adequacy between models is rarely ensured on the long run. In our method,
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decisions and rationale are kept inside requirement models, concretely linked to
architecture model elements in a very simple way.

A couple of transformation-centric methods have emerged. In many of these
approaches, models are either transformed to integrate new requirements or
non functional qualities, or represent systems from a coarse-grained picture to
a fine-grained one. Matinlassi proposes a technique for quality-driven model
transformations where the author focuses on automation, but only on quality
properties [16]. Perovich et al. use a more complex representation for the system
functionalities [19], in terms of, among others, information flows or policies. But,
as far as we know, they currently do not provide tool support and concentrate
on deployment-related decisions and rationale.

3 Modeling Languages Overview

The present method focuses on software architecture design. It relies on three
languages: a component-based modeling language, a requirement language with
design decisions and rationale traceability, and a transformation language. In
the following sections, we present the main concepts of both modeling languages.
Afterwards, we introduce our specific transformation language in more details.

3.1 Architecturally Significant Requirement Modeling

In a previous work, we defined a simple modeling language to record and trace
architecturally significant requirements (ASR) [5], i.e., requirements that have
a measurable impact on the software system’s architecture [4]. We provide in
Listing 1.1 a sample model of a Client-Server system. Two requirements are
listed: a functional requirement identified by the name SayHello, and a non
functional one named FastAnswer. They are both assigned to the Server.
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The present ASR model clientserver is part of a package and refers to
an architecture model named example.clientserver. Both requirements are
described following the writing guidelines from Alexander and Stevens [1] and
conforms to the EARS templates [17]. In short, these templates define a struc-
tured way of writing system requirements in natural language. Specific pieces of
information, like events, or options, are highlighted by specific terms, respectively
when and where, and are present in the description at specific places. Amongst
the advantages of this approach, we particularly note its ease of learning since
no new (modeling) language or concept is necessary to learn, as well as its ability
to induce more completeness and conciseness in requirement descriptions.

Regarding a requirement, a number of decisions can be taken. We group them
in the following categories:

Assignation the requirement is assigned to a modeling construct.
Refinement a lower-level requirement is a refinement of a higher-level one, i.e.,

concerns part of the scope of the higher-level requirement, but describes it
more precisely.

Alternative a lower-level requirement is a possible refinement alternative for a
higher-level requirement.

Selection an alternative is actually selected by the designers as the implemen-
tation solution.

Interface usage or implementation in order to fulfill a requirement, an exist-
ing interface is used or implemented, or in case of non functional require-
ments, the given interface conforms to the needed properties to achieve this
requirement.

Re-assignment the requirement is reassigned to another modeling construct,
i.e., the responsibility to accomplish the requirement is transferred to another
model element (mainly software components).

Realisation a structural modification must be made into the component model
and this will be expressed as a model transformation (cfr. Sect. 4).

When a modeler takes a decision, its type is recorded in the model. For any
type of decision, a set of rationale can be added of which the assessment is
mandatory. We briefly present here the type of rationale that can be filled in an
ASR model.

Assessment the actual reason sustaining the design decision.
Assumption any assumption made on the environment or on other elements.
Strength any advantage of this decision.
Weakness any disadvantage or limitation of the decision.
Constraint any constraint or consequence related to this decision.

The proposed syntax for ASR models enforces designers to document their
choices in terms of assignments of requirement to modeling constructs, and
in terms of refinements of requirements. First, we explicitly trace the link
between a requirement and the model element in charge of its implementa-
tion. This enhances the architectural knowledge regarding who is implement-
ing what. Second, we keep the history of the decisions regarding a requirement
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(re-assignments, refinements and alternatives) for documentation purposes.
Third, design decisions must be documented by at least one reason sustain-
ing such a choice. A minimum amount of information is mandatory in order to
avoid putting to much unnecessary or unwanted effort in documentation tasks.
Further details, like strengths and weaknesses, can be added by the modeler at
his own discretion.

3.2 Architecture Modeling

Attached to a requirement model, a structural definition of the system must
be provided. For this purpose, we defined a 3-layers component-based modeling
language [6]1. We present in the following how information systems are modeled
in three inter-related stages: definition, assemblage and deployment (DAD).

Stage One: Definition. Roughly, in the first stage, abstract component types
are connected by link types through interfaces. The model can be drawn at any
level of details and component types may contain other types that are connected
by inner interfaces. For instance, a first architectural representation could be
composed by only one component named System with all requirements assigned
to it. Listing 1.2 illustrates part of the definition stage for our Client-Server.

As for an ASR model, a DAD model must belong to a package. In this case, we
decided to use the same names for both ASR and DAD models for convenience.
We defined a simple interface Hello with a unique synchronous service named
hello() without parameters. This interface is used by a type of component
Client and a Server. When an interface is exposed in any way by a type of
component, it becomes a facet of this component with a given polarity (usage
or implementation). We also define a type of connector which is point-to-point,
i.e. connecting one type of component to only one other type of component at
a time. We finally link the Client to the Server with the One2One type of
connector in a provide-require contract through the facets.

A set of primitive types has been defined, as integer, boolean or string. Archi-
tects may obviously define custom primitive types or structures. User-defined
types may also be mapped to Java types to reuse existing definitions or clarify
its semantics. In a DAD model, primitive types, structures or interfaces are all
considered as generic types and can be used to type a parameter.
1 The reader is encouraged to refer to this paper for a more complete discussion.
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At this point, we defined the building blocks we can instantiate and con-
cretely connect during the assemblage stage. The type of linkage defined from
now only constrains how the type of components can be linked to each other (i)
through which interface and, (ii) how many instances of a type of a component
will be involved in the connection.

Stage Two: Assemblage. In Listing 1.3, we introduce a communication pro-
tocol and present the assemblage stage of the DAD model.

The protocol TCP specifies with, basic properties, a communication protocol
that will be used to support the connection between instances of component
types. A protocol is at least defined by the communication layer, so it is possible
to specify a wide range of connections from low-level protocols like Bluetooth to
high-level ones like program call. In our case, we use the TCP protocol and add
it to the accepted protocols of our connector type.

We create a set of instances (SoI) for each component type previously defined.
SoI are declared with a minimum and a maximum cardinality that express the
amount of instances of the same type that can be present in a concrete archi-
tecture. In our example, a maximum of 100 instances of the Client component
type can be created. This SoI has one port typed by the facet hello on the TCP
protocol. The Server is unique and has 20 ports of the type hello available, also
over TCP. Clients SoIs are linked to the server according to the linkage type
defined at the previous stage. At this point, we specify a concrete architecture
instance with a certain amount of each component types, available ports (i.e.,
interface instances) and connections on specific protocols.

Stage Three: Deployment. Current design methods often omit infrastructure
constraints [15]. We believe that this problem can be partially tackled by inte-
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grating the constraints as soon as they appear in the design phase. We provide
basic and extensible building blocks to define the target platform. In Listing 1.4,
we specify these types of blocks and illustrate the abstract deployment phase.

Three new types of model elements are created at the definition stage. First,
a type of gate specifies a network interface or a physical port on a computation
device. Gate types support a possibly non exhaustive list of protocols. In our
example, we define an Ethernet gate type supporting our TCP protocol. Second,
we define a type of node that can represent any type of computation machine
or platform environment. A node type can be equipped by a number of gates of
certain types. Third, type of communication media, such as network cables or
communication buses, are defined. A type of medium also support a list of pro-
tocols. These physical infrastructure-related constructs, as well as many others,
can be more precisely defined by an extensible property mechanism out of the
scope of this paper.

When we have specified types of nodes, gates and media, we can define an
abstract deployment by mapping the set of instances onto these physical con-
structs. For this purpose, we have to create 101 nodes of type Computer. We do
not need to specify medium instances since we are only concerned by the prop-
erties attached to a type of medium and how nodes are accessible from outside.
so we plug communication medium types from all client machines to the server.

We now deploy our set of instances on nodes and open their ports (typed
by interfaces) on gates. The overall communication binding, from the definition
layer to the deployment, is reified using the communication protocol. In this
example, we use a unique protocol (TCP), but more complex verifications with
compatible protocols can be done, depending on user-defined properties.

Note that, in a DAD model, all stages are optional. One can isolate whatever
he wants in a specific DAD model and import (using the import keyword in the
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model header) any other model element defined elsewhere. This mechanism will
be further developed in Sect. 4.4 when we will talk about pattern injections.

4 Step-by-step Refinement with Model Transformations

During the creation of the architecture of a software system, architects usu-
ally start from a coarse-grained architectural style, choose one architecturally
significant requirement (regardless how they prioritize them), refine it to more
precise ones if necessary and implement it in the architecture. At some points
in the design process, architects may perform some validation of the produced
model(s). During this iterative process, multiple alternatives can be explored
and wrong decisions can be taken so that architects have to backtrack to a pre-
vious version of the model. As pointed out in Sect. 1, this decision process and
the rationale sustaining a final architecture are frequently lost after a while and
further evolutions and bug fixes become time consuming or error-prone.

The approach used in our framework is transformation-centric: any change in
an architecture model must be expressed as a model transformation. In order to
test our proposal, we implemented both languages presented in Sects. 3.1 and 3.2
and the transformation language described in the following as Eclipse plugins
with the Xtext framework2. We also implemented a transformation engine work-
ing on the abstract syntax tree of our model.

From the definition of all known requirements in an ASR model and a first,
even empty, DAD model, any modification to the architecture must be expressed
using one of the following transformation rules. A single file can group many
transformations, related to one requirement, that will be applied all in once. A
new model is then created by the transformation engine and this model can be
further refined, i.e. transformed, to implement other requirements.

4.1 General Template and Creation of Constructs

We group rules related to a specific requirement in a DAD-Transformations set
(DAD-T). Similarly to DAD and ASR models, a transformations set belongs to
a package. A transformation is always related to a requirement, referred in the
model by the keyword concerns, declared on top of the DAD-T file. A DAD
model can also be referenced when the transformation is linked to a specific
architecture model, i.e., the transformations set is not the definition of a pattern.

A creation rule is defined by the keyword create followed by the definition
of the new construct. In Listing 1.5, we show how the Hello interface could have
been created with related Client facet and port in a transformation model.

2 Xtext is a toolset designed to build configurable textual editors for Domain Specific
Languages as Eclipse plugins on top of the Eclipse Modeling Framework. See www.
eclipse.org/Xtext and www.eclipse.org/modeling/emf.

www.eclipse.org/Xtext
www.eclipse.org/Xtext
www.eclipse.org/modeling/emf
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Any construct from the definition stage can be created in a similar fashion.
The transformation engine will inject them into the bound DAD model. Prior
to a creation, the engine verifies that no name conflict occurs: names must be
unique by construct type and a check is performed using fully qualified names.

4.2 Deletion of Constructs

It is indeed possible to delete constructs from an architecture model. Not only
definition stage elements can be deleted, but also any other model elements.

The transformation engine ensures that deletions are always done in cascade,
i.e., all related constructs or instances are deleted when a particular element is
deleted3. For example, Listing 1.6 is the resulting DAD model after the deletion
of the Client component type from the model illustrated in Listing 1.4.

In this example, the related linkage type involving the Client component
type has been removed. The transformation engine deleted the set of instances
typed by the Client, the linkage where this set of instances appeared, as well
3 For a complete view of the relations between model constructs, please refer to [6].
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as the related deployment statements. Note that the plug clause is still present
since the infrastructure configuration is meant to support the deployment of the
assemblage, but does not depend on it. A similar behavior is always applied for
all other model elements where the engine removes all constructs with a reference
to the suppressed element.

4.3 Fine-Grained Alteration of Constructs

Frequently, architects need more fine-grained transformations where they can,
for example, add a service to an interface, add a gate to a node or alter a
data structure. For example, in Listing 1.7, we modify the hello interface.

A new asynchronous service is added into the interface with a delay parame-
ter. The second alteration adds a new parameter with its access type (may be
input, output or both) to the hello service to define the content of the message.

For every construct with internal definitions, similar transformations can
be defined. Here again, name validity checks (names must be unique for their
parent’s scope) are performed to avoid conflicts.

4.4 Pattern Definition, Injection and Replacement

In order to enhance re-usability, design patterns can be created with DAD-T
sets. They are expressed as transformation rules, as illustrated in Listing 1.8, and
linked to ASR models specifying their assets (not included for brevity reason).
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The transformations set creates the Observer and Subject as well as the
needed interfaces, facets and types of linkage. A pattern must be self-contained,
i.e. all needed constructs are defined in the model, or it can import some external
resources with the import keyword, similarly to DAD models.

To inject this pattern into an architecture model, assume we had a require-
ment asking for such a pattern, we simply need to include the pattern-related
transformations set, then to replace and merge the target constructs, as shown
in Listing 1.9. The include mechanism can be used for any type of reusable
transformation rules. Note that if the merge option is not passed, a construct is
totally replaced by another one without merging their definitions.

The result is presented in Listing 1.10. An Observer construct has been
created and the Server now implements and uses the Subject-related inter-
faces. More complex replacements with specific overrides can also be defined.
For example, one can override a given facet by another with a compatible defi-
nition (i.e., services signatures and properties).

Other types of transformations exist, such as renaming, moving elements,
etc., but are not shown in the present paper for brevity reasons.

4.5 Decision and History Tracking

Coupled with the rationale and design decision tracing in ASR files, as presented
in Sect. 3.1, we implemented a simple tree-based history tracing mechanism.
Figure 1 shows a screen capture of our Eclipse plugin and illustrates a history
tree in the package explorer (left-hand side of the picture).
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Every time a model is transformed, a new model is created in a separate
folder. By convention, we start from a folder named revision1 and append .1
after a transformation is carried on a DAD model. When backtracking to a
previous model, a new branch will be created by increasing the higher sub-
branch number. For example, after the model revision 1.1.1.1, we started back
from the model at revision 1.1 so a new branch numbered 1.1.2 was created.
This mechanism keeps the history of all created models and can be used to draw
revision graphs to explore the iteration history in a more convenient way.

We intend to review the iteration process in order to define release points
where a set of transformations are grouped to define coarse-grained evolutions or
patches, which offers possibilities for software configuration management. Other
avenues worth exploring would be to see how task-oriented methods, like the
MyLyn4 project, can be integrated into our framework, as well as collaborative
model editing and versionning [20].

5 A Comparative Case Study

We experimented our approach with a comparative case study on a fictitious
online book store system. We confronted our framework against SysML [18]. In
brief, a web-based online library presents a catalog of books aggregated from
registered book stores. When a customer purchases a book, the library starts an
auction between the stores to buy the book at the cheapest price. Afterwards,
the library contacts a delivery system to pick up the book at the winning store
and to deliver it to the customer.

The case study was conducted on a group of 24 master students at the
University of Namur, all familiar with UML diagrams, but not with SysML,

Fig. 1. Capture of the Eclipse plugin with history tracking in package explorer.
4 www.eclipse.org/mylyn/.

www.eclipse.org/mylyn/
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neither with our framework. We organized a preliminary round to evaluate their
system modeling competences. During a lecture, the students were asked to
draw a class diagram based on a requirement document. Three researchers, also
familiar with software modeling, classified the diagrams in four categories based
on their syntactic and semantic correctness. This way, we divided the students
in two groups of comparable competences and made teams of two students for
the remaining of the study, the first group had to design the online library in
SysML, the second with our framework.

We presented separately the language artifacts and the tool support to each
group. Both groups also received the same description of the system-to-be and
were asked to build it (design and code) in two phases. For the first phase, the
requirements were clearly stated in the documents to let them getting familiar
with the new languages. For the second phase, the descriptions were more fuzzy
and were related to the evolution of the system.

After each phase, we evaluated the quality of the models and the documenta-
tion created by the students, as well as the functional correctness of the produced
code. We verified to what extent they documented the decisions sustaining the
produced architectures. Basically, we checked if all model elements had at least
one justification explaining why they were created into the model.

Students were asked to answer anonymously to a questionnaire in classroom
to evaluate the expressiveness, the documentation and evolution facilities of the
languages they used. The students also formulated reviews and advices in a
project report where they could express their feelings regarding the aforesaid
criteria. In the questionnaire, we used a non-graduated ruler going from “fully
disagree” (0 value) to “fully agree” (5 value) and measured the students answers.
We also dissimulated redundant questions in order to double-check the given
answers. On the 24 questionnaires, we discarded four of them for each group
because the gaps between the answers to these control questions were too large.
We present in Table 1 part of the results regarding expressiveness, evolution and
documentation facilities. The second column (S) shows the aggregated rating for
SysML and the last column for our framework (D).

As shown in Table 1, our framework offers a significant improvement regard-
ing constructs expressiveness (q.1 ). Regarding documentation (q.2 ), the differ-
ence is not significant enough. Concerning model evolution (q.3 ), the results of
our framework are slightly inferiors. Two aspects can explain these last values.
First, our framework relies on textual models which are, by nature, less visual
than graphical models. Second, during the experiment, the comments present in
the DAD models were lost after a transformation, which revealed to be a signif-
icant lack at participants eyes when we analyzed their reviewing documents.

In their reviews, many students mentioned a significant improvement in
the traceability of requirements, design rationale and decisions compared to
their experience (mainly with UML diagrams and text-based documenta-
tion). Moreover, we noticed a higher tendency to refine requirements into
sub-requirements and explore alternatives with our formalisms. The overall
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Table 1. Sample questions and aggregated ratings.

Questions S D

1. The languages constructs allow to represent:

a. the functionalities of the system 3.68 4.33

b. the technological and communication constraints 1.95 4.48

c. the non functional requirements 3.10 4.12

2. The written documentation allows to efficiently comprehend
the system within the framework of a modification of the
system

2.63 2.85

3. During the second phase:

a. A major work was necessary to comprehend again the
architectural concepts of the system

0.97 1.21

b. The modeling languages eased the structural changes
linked to the new functionalities to implement

3.83 3.25

functional completeness was also slightly higher in our framework since 6 teams
had a fully functional auction process against 4 teams on the SysML side.

6 Discussion and Limitations

The ASR model covers a notable part of the project backlog, as defined by
Hofmeister et al. [10], which is a key document for system engineering. Design
rationale, decisions and structured requirements are present in the model and
related to the modeling constructs that implement them. This simple mechanism
enhances the architectural knowledge without asking much documentation effort.
By adding user-defined properties, meta-properties regarding the project itself,
like requirement ordering methods, standards and so forth can be specified. The
framework also enforces documentation of design iterations in a lightweight way
and records changes in the model as explicit transformations.

The transformation inclusion mechanism offers a lightweight way to define
and re-use patterns in a transformations set. Working on the concrete syntax
results in more concise rules and improves the readability of such transformations
comparing to general-purpose transformation languages. However, reusability of
transformations is limited to concrete syntax elements and patterns injections
require to write mapping rules between pattern constructs and the current model.
But since patterns play an important role as a mean of documentation and
communication, we believe a concrete syntax is more accurate for such a goal.

Coupled with the history mechanism, design or technological alternatives
can be explored and documented. Similarly to the study conducted in [9], we
observed a more systematic refinement of requirements and alternative explo-
rations in our case study. Though, a proper graphical visualization facility should
be provided to efficiently identify deltas between models and to navigate eas-
ily between revisions. Also, a couple of relations between design decisions will
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be taken into account in a future release of the language. It will be possible
to identify conflicts and inter-dependencies between requirements, so that the
decision-making process will be enhanced for designers.

At current point of development, models are expressed in textual syntax.
Even if such representation is very expressive, the analysis and communication
of textual models is often less natural for humans.

Last, a larger case study should be conducted in order to evaluate if the
transformation-centric method coupled to a task-oriented approach scales to
industrial cases.

7 Conclusions and Future Work

We introduced a transformation-centric design framework based on Domain Spe-
cific Languages. Architectural constructs are explicitly related to requirement
specifications and implemented iteratively in the architecture with model trans-
formations. Every decision is recorded in the requirement model with its design
rationale. A tool is provided for textual models, as well as a transformation
engine. We conducted a comparative case study to partially validate our pro-
posal and evaluate its benefits.

In the future, we intend to add behavioral specifications to definition layer
construct types with, at first, tag-based properties and first order predicate logic
statements. Such behavioral properties will help designers to ensure a transfor-
mation does not break behavioral aspects of an existing architecture. Addition-
ally, coupled with the extended requirements modeling language, mechanisms
will be provided to record personalized knowledge too.

A visual representation of the history tree with model deltas should be inte-
grated in the tool to facilitate further references to transformations outcomes,
design alternatives and system evolutions. Ideally, a final goal would be to syn-
chronize a graphical representation on textual architecture models to benefit
from the advantages of both textual and graphical visualizations.
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Abstract. UML offers a very large set of constructs for each of its dia-
gram types, however many of them seem scarcely used or even their
existence is not known. Here, we decided to present a precise view of the
usage levels of the constructs of activity and use case diagrams by means
of a document and tool analysis study, covering preliminarily: books,
courses, tutorials, and tools about UML. Results of the study show that,
among the 47 activity diagrams constructs, a large majority of them
seem to be scarcely used, while, only nine result widely used, whereas
only two of the nine constructs of the use case diagrams seem scarcely
used. This work is part of a larger project aimed at investigating the
usage level of the UML diagrams and their constructs, also by means of
a personal opinion survey intended for UML users.

Keywords: UML usage · Survey · Empirical study

1 Introduction

UML is a truly large notation offering many different diagrams, 14 in the last
approved version [1], and for each diagram it provides a large set of constructs
covering any possible need of any modeller for any possible task. As a result,
the UML specification is a huge book, the UML metamodel is large and quite
complex, and the definition and the understanding of its static and dynamic
semantics is a truly difficult task, with also the consequence to make difficult
to teach it both at the school/university level or in the industry [2]. Moreover,
the large number of constructs and the consequent very large metamodel make
complex and time consuming developing transformations of UML models and
building tools for the UML. Clearly, these UML features have a negative impact
on how the UML is perceived by the modellers hindering its adoption [3], and
leading in some cases to replace the UML by ad-hoc Domain Specific Languages
(DSLs).

On the other hand, users naturally tend to consider and use only a portion
of its diagrams/constructs, and forgetting about some other ones. On his blog
I. Jacobson states “For 80 % of all software only 20 % of UML is needed” [4].
c© Springer International Publishing Switzerland 2015
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Furthermore, few people try to learn the UML by reading its specification [1],
instead the large majority of the users rely on books and courses/tutorials or
just start to use some tools for drawing UML diagrams that in general do not
cover the whole UML. For this reason, in many cases, the UML users will never
become aware of the existence of many specific constructs (e.g., how many of
you do know the existence of the “Parameter Set” for activities or has even used
this construct?).

We would like to asses by means of a document and tool analysis study
which parts of the UML (diagrams and constructs) are the most used in prac-
tice and which are the less ones (and thus also indirectly which part of the UML
is really known), using again the words of Jacobson trying to see if an “essential
UML” [4] emerges. To discover how much a UML diagram/construct is used,
we chose to preliminarily investigate objective sources: (1) the books about the
UML, (2) the IT University courses covering also the UML, (3) the tutorials
presenting the UML to the practitioners, and (4) the tools for producing UML
models. Moreover, similarly to [2,5], we are conducting a personal opinion sur-
vey [6] asking to UML users of different kinds (e.g., industrial practitioners and
academics) which parts of the UML they know and which they have never used.

For a given UML diagram/construct, we have proceeded as follows. We have
investigated the books to discover if they were citing such diagram/construct,
and if they were giving an example of it. Similarly for the courses/tutorials,
whereas for the tools we have tried to produce a model containing such diagram/
construct (notice that we speak of a model not of a diagram, since there are
several UML constructs that cannot be shown in a diagram). Finally, we have
computed descriptive statistics to present the results. In this study, we analysed
30 books, 20 tools, 22 courses, and 18 tutorials.

The dimension of the UML prevented us to investigate the usage level of the
constructs of all the 14 diagram types (for example a personal survey covering
all diagrams would require at least one hour to be filled), thus we considered
only the constructs of activity and use case diagrams, chosen because both are
quite known and used, and the former has a large number of constructs, whereas
the latter has only few constructs.

The results of this document and tool analysis study, and of the future per-
sonal opinion survey should be of help to many different categories of people:

– Teachers and Instructors: allowing to offer courses and/or tutorials con-
centrating only a smaller language made out of the most used UML dia-
grams/constructs;

– Tool Builders/Users: obvious advantages since the tools covering the most
used diagrams/constructs will be simpler to implement/use;

– Notation Designers: interested in discovering scarcely used constructs, and
understanding for which reasons they have been added to the language. More-
over, other interesting questions arise: are the scarcely used constructs derived1

or primitive? Can the scarcely used constructs be applied only in specific cases?

1 A derived construct may be replaced by a combination of other constructs.
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It will be interesting to investigate whether the metamodel (and subsequently
the UML specification book) may be easily simplified to cover only the most
used constructs.

In our opinion, handling a notation with a large set of constructs where a
portion of them are scarcely used, if not almost unknown, is problematic because
it can cause a waste of effort and resources by who want/must use it (e.g.,
there are countries where some contracts with the public administration must be
accompanied by a UML model). Indeed, trivially, to print the reference document
requires 700 sheets, but also understanding the metamodel/preparing for the
certification/deciding what to teach to the students/reading a UML book require
a large number of hours; and we do not have to forget that also maintaining
the official specification and any related item requires a large amount of effort
due to its size.

Also the OMG has recently recognised the need to simplify the UML with
the initiative “UML Simplification” [7] which will result in the next UML version
(2.5), but in this case the simplification concerns only the way UML is defined
without any impact about its constructs.

In a previous phase of this document and tool analysis study [8], we analysed
the usage level of the 14 types of UML diagrams; in this paper, we present the
results of a following step of our work focusing on the usage level of the activity
and use case diagram constructs covering books, courses/tutorials, and tools.

The remainder of the paper is organized as follows. In Sect. 2, we present
related work literature regarding empirical study about the UML. In Sect. 3, we
sketch the relevant aspects of the conducted document and tool analysis study
such as: goals, research questions, followed process and analysis methodology.
The results of the document and tool analysis study about activity and use
case diagram’s constructs are presented in Sect. 4, preceded by a summary of
the results on the UML diagrams shown in [8], while threats to validity are
discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

The systematic literature review by Mohagheghi et al. [9] about model-based
software development states that “the UML is currently the most widely used
modelling language”. A similar result has also been obtained in [10] where a
personal opinion survey with 155 Italian professionals has been conducted, while
in [11] emerges that UML is often employed by companies in the software analysis
and design phases.

Another personal opinion survey about UML (171 professionals in total), by
Dobing and Parsons [5], points out another strong statement: “regular usage of
UML was lower than expected”. The authors of [5] suggest that the difficulty
of understanding many of the notations supports the argument that the UML
may be too complex. The same claim, in more or less different forms, is present
in several blogs, where several proposals of UML simplification are arising2.
2 e.g., www.devx.com/architect/Article/45694 and blogs.msdn.com/b/sonuarora/

archive/2009/11/02/simplify-uml.aspx.

www.devx.com/architect/Article/45694
http://blogs.msdn.com/b/sonuarora/archive/2009/11/02/simplify-uml.aspx
http://blogs.msdn.com/b/sonuarora/archive/2009/11/02/simplify-uml.aspx
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Maybe, the most authoritative is the one of Ivar Jacobson entitled “Taking the
temperature of UML” [4], where he wrote: “Still, UML has become complex and
clumsy. For 80 % of all software only 20 % of UML is needed. However, it is not
easy to find the subset of UML which we would call the ‘Essential’ UML. We
must make UML smarter to use”. The need to simplify the UML is also shown
by the recently released OMG draft proposal about this topic [7]. Moreover, the
complexity of the UML seems to be one of the factors that limit its diffusion
and usage in the industry [3]: “UML is considered unnecessarily complex” and
understanding its notation could require a considerable overhead.

In the tentative to find the “essential UML”, Erickson and Siau [12] have con-
ducted a Delphi study3 with the goal of identifying a UML kernel for three well-
known UML application areas: Real-Time, Web-based, and Enterprise systems.
The participants to the study (44 experts in total) were asked to rate the rela-
tive importance of the various UML diagrams in building systems. UML overall
results (i.e., non-domain specific) were: 100 % for Class and Statechart diagrams,
95.5 % for Sequence diagrams, 90.9 % for Use Case diagrams. All the others dia-
grams received a percentage lesser than 50 % (e.g., 27.3 % for Activity diagrams).
Another personal opinion survey about UML [2] with 131 subjects confirms the
results of Erickson and Siau. Results indicate that the three most important dia-
grams are Use Case diagrams, Class diagrams and Sequence diagrams.

The main conclusions from another systematic literature review by Budgen
et al. [13] about empirical evidence of the UML are two:

– while there are many studies that use the UML in some way, including to
assess other topics, there are relatively few for which the UML is itself the
object of study, and hence that assess the UML in some way (e.g., UML
studies of adoption and use in the field).

– there is a need to study the UML and its elements much more rigorously and
to identify which features are valuable, and which could be discarded.

Our preliminary empirical work, much in the spirit of the Erickson and Siau’s
work but using a different approach, tries to add a small tile to the empirical
knowledge about the UML as requested in the first conclusion of the Budgen’s
systematic literature review. We could say that our work tries to identify which
UML features (diagrams and constructs) are valuable, and which could be dis-
carded — as requested in the second point of the Budgen’s work — equating the
word “valuable” with “used in practice” and the concept “could be discarded”
with “not used in practice”.

3 Study Definition

The instrument we selected to take a snapshot of the state of the practice con-
cerning UML usage is that of a document and tool analysis study [14]. In the
work’s design and execution phases we followed as much as possible the guide-
lines provided in [15] and used the same presentation format of [16].
3 It attempts to form a reliable consensus of a group of experts in specialized areas.
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The document and tool analysis study has been conducted through the fol-
lowing steps: (1) goals selection, (2) goals transformation into research questions,
(3) identification of the population, sample and process, (4) data extraction, and
(5) analysis of results and packaging.

We conceived and designed the document and tool analysis study with the
goal of understanding which are the less/most used parts of the UML in practice.

Within the scope of this work, in this paper we aim at addressing two
research questions related to the above described goal:

RQ1: Which UML constructs for the activity diagrams are the most/less used
in practice?

RQ2: Which UML constructs for the use case diagrams are the most/less used
in practice?

3.1 Population Identification

The first step to conduct a document and tool analysis study is defining a target
population. The target population of our study consists of sources concerning
UML. In particular, in this study we considered the following four kinds of objec-
tive sources: books, tools, courses and tutorials. Currently, we are conducting a
personal opinion survey [6] with industrial practitioners and academics to under-
stand which parts of the UML they know, which they use, and which they have
never used.

To sample the population and select the sources to consider in our study
we: (1) conducted a systematic search performed using Internet resources, Web
search engines and electronic databases and (2) used non-probabilistic (conve-
nience sampling) methods [17]. Moreover, in making decisions about whether
(or not) to include a source in the study, we adopted some well-defined inclu-
sion/exclusion criteria (see below).

Inclusion and Exclusion Criteria. The inclusion/exclusion criteria can be
common for all the kind of sources or specific. For all the sources we adopted
the following inclusion criterion: only sources concerning UML versions ≥ 2.0.

Concerning books, in case of different editions of the same book we opted
(when possible) for the last one. Moreover, we excluded elements of “grey” lit-
erature, i.e., books without ISBN.

Concerning tools, we included only UML modelling tools (both commercial
and non-commercial) and excluded: (1) general graphics editor (e.g., Inkscape),
(2) tools providing only a specific type of diagram (e.g., class diagrams), (3) really
unstable, not complete or preliminary tools (e.g., tools in beta version).

About courses, we considered only university courses concerning IT studies.
We considered courses offered also in languages different from English but known
or understood by the authors (e.g., French, Italian and Spanish).

Concerning tutorials, we considered only tutorials provided on Internet as
written documents (either on-line or downloadable) and video (where a person
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gives instructions on how to do something) but we have excluded tutorials taking
the form of a screen recording (screencast) and interactive tutorials. For selecting
a document of this kind we used the common meaning/perception of tutorials:
a tutorial is more interactive and specific than a book or a lecture; a tutorial
seeks to teach by example.

3.2 The Process

The process followed to conduct a document and tool analysis study should be
as much as possible well defined in order to ensure that such a study can be
objective and repeatable. For each category of sources, we followed a different
process to collect them.

Books. We started by the Amazon website and used the search form to find
UML related books. We selected the “Computers & Technology” category in
the books section. Then, we experimented with several different search criteria
using different combinations of strings. Finally, the one that retrieved the highest
number of useful items was the simple string “UML 2”. Starting from this long
list of books ordered by relevance (2.726 books on July 20, 2013) we filtered out
books not satisfying the inclusion criteria explained above. Then, we tried to

Title Edition Author(s) Year Publisher
UML 2.0 in a Nutshell 1st Pilone, Pitman 2005 O'Reilly Media Inc.

The Elements of UML 2.0 Style 1st Ambler 2005
Cambridge University 
Press

Sams Teach Yourself UML in 24 Hours 3rd Schmuller 2004 Sams Publishing

UML 2 Certification Guide: Fundamental & Intermediate Exams 1st Welkiens, Oestereich 2006
Morgan Kaufmann 
Publishers

UML Distilled: A Brief Guide to the Standard Object Modeling Language 3rd Fowler 2003 Addison-Wesley
Learning UML 2.0 1st Miles, Hamilton 2006 O'Reilly Media Inc.
UML 2 for Dummies 1st Chonoles, Schardt 2003 Wiley Publishing Inc.
UML 2 Toolkit 2nd Eriksson, Penker, Lyons, Fado 2004 Wiley Publishing Inc.
UML 2.0 in Action 1st Grassle, Baumann, Baumann 2005 Packt Publishing Ltd
UML Bible 1st Pender 2003 Wiley Publishing Inc.
UML Demystified 1st Kimmel 2005 McGraw-Hill
UML for the IT Business Analyst 1st Podeswa 2005 Muska & Lipman Pub
Verification and Validation for Quality of UML 2.0 Models 1st Unhelkar 2005 John Wiley & Sons
The Unified Modeling Language Reference Manual 2nd Rumbaugh, Jacobson, Booch 2005 Addison-Wesley

The Unified Modeling Language User Guide 2nd Booch, Rumbaugh, Jacobson 2005 Addison-Wesley

Object-Oriented Software Engineering Using UML, Patterns and Java 3rd Bruegge, Dutoit 2010 Prentice Hall
System Analysis & Design with UML version 2.0:
An Object-Oriented Approach

3rd Dennis, Wixom, Tegarden 2009 John Wiley & Sons

UML 2 and the Unified Process:
Practical Object-Oriented Analysis & Design

2nd Arlow, Neustadt 2005 Addison-Wesley

UML 2 Semantics and Applications 1st Lano 2009 John Wiley & Sons
Object-Oriented Analysis & Design:
Understanding System Development with UML 2.0

1st O'Docherty 2005 John Wiley & Sons

Using UML: Software Engineering with Objects and Components 2nd Stevens, Pooley 2006 Addison-Wesley
UML 2 Pour les bases de donnees 1st Soutou 2007 Éditions Eyrolles
Fast Track UML 2.0 1st Scott 2004 Apress Media LLC
Model-Driven Development with Executable UML 1st Milicev 2009 Wiley Publishing Inc.

Professional Application Lifecycle Management with Visual Studio 2010 1st
Gousset, Keller, 
Krishnamoorthy, Woodward

2010 Wiley Publishing Inc.

Software Modeling and Design 1st Gomaa 2011
Cambridge University 
Press

Systems Engineering with SysML UML: Modeling, Analysis, Design 1st Weilkiens 2006
Morgan Kaufmann 
Publishers

Use Case Driven Object Modeling with UML: Theory and Practice 1st Rosenberg, Stephens 2007 Apress Media LLC
Management of The Object-Oriented Development Process 1st Liu, Roussev 2006 Idea Group Inc.
Real-Time Object Uniform Design Methodology with UML 1st Duc 2007 Springer
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Fig. 1. UML books considered.
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recover them using the electronic facilities provided by our library. Finally, we
collected and analysed 30 books. Note that, 18 of them are in the top 24 books
ordering the Amazon list by relevance. The list of the selected books is shown in
Fig. 1. More in detail, we have selected two kinds of books. UML guides (UML
Notation Guides) and books using UML as a notation, i.e. books where UML is
not the primary subject (Software Engineering books based on UML).

Tools. We started by the “List of Unified Modeling Language tools” Wikipedia
page4 containing 49 UML tools. Then, we considered also the UML-tools web-
site5. A full Internet search was also carried out using Google. Also in this case,
we experimented with several different search criteria using different combina-
tions of strings to provide to Google (“UML tools”, “UML tools list” and “UML
free tools”).

For each tool of our list, we found the official website and checked whether it
was satisfying the inclusion criteria explained above. Then, we downloaded and
installed the most recent version of all the selected tools. In case of commercial
tools, we selected a “free for not commercial use” version or a version with
university licence or a trial version. At the end, we collected and analysed 20
different tools. The complete list of tools is shown in Fig. 2. Finally, we tried to
produce a model containing the diagrams and constructs of interest for our study
(for each tool we produced the same model with the same diagrams and the same
UML constructs). Notice that Argo UML, one of the most known UML tool, was
not included in our document and tool analysis study since it does support UML
1.x only.

Courses. We started carrying out a search using Google. The combinations of
strings used were: “UML course”, “UML lecture” and “UML university course”.
We found several university courses satisfying the inclusion criteria stated above,

Name Release Year Licence Web Site
Altova Umodel 2012 Commercial (Enterprise – Trial) www.altova.com/umodel.html

Artisan Studio 7.4 2012 Commercial (Trial) www.atego.com/products/artisan-studio/

Astah 6.6 2012 Commercial (Community Edition) astah.net/

Borland Together 12.0 2012 Commercial (Trial) www.borland.com/products/together/

BOUML 6.4.3 2013 Commercial (Viewer - Limited) www.bouml.fr/

Enterprise Architect 10 2013 Commercial (Trial 30 days) www.sparxsystems.eu/enterprisearchitect/

IBM Rational Rhapsody Modeler 7.5 2009 Free www-01.ibm.com/software/awdtools/modeler/

IBM Rational SW Architect 8.5.1 2012 Commercial (Trial 30 days) www-01.ibm.com/software/awdtools/swarchitect/

MagicDraw 17.0.3 2012 Commercial (Enterprise – Trial) https://www.magicdraw.com/

Metamill 6.1 2012 Commercial (Trial) www.metamill.com/

Modelio 2.2.1 2012 Free sourceforge.net/projects/modeliouml/

Open Modelsphere 3.2 2012 Free www.modelsphere.org/

Papyrus 0.9.1 2012 Free (Eclipse Plug in) www.eclipse.org/papyrus/

Poseidon for UML 8 2009 Commercial (Community Edition) www.gentleware.com/

Power Designer 16.1 2012 Commercial (Trial) www.sybase.com/products/

RedKoda 3.0.7 2012 Commercial (Community Edition) www.redkoda.com/

Software Ideas Modeler 5.82 2013 Free www.softwareideas.net/

StarUML 5.0.2.1570 2006 Free staruml.sourceforge.net/

Violet 0.21.1 2007 Free sourceforge.net/projects/violet/

Visual Paradigm 10.1 2013 Commercial (Community Edition) www.visual-paradigm.com/product/vpuml/

Fig. 2. UML tools considered.

4 en.wikipedia.org/wiki/List of Unified Modeling Language tools.
5 www.uml-tools.com.

http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
http://uml-tools.com
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Lecturer Country Title Year
Afsarmanesh Netherlands Project Analysis 2012
De Angelis Italy Lab. Ingegneria del SW 2012/13
Ciancarini, Iorio Italy Lab. Ingegneria del SW 2012/13
Vincent Australia System Analysis and Modeling 2012/13
Casalicchio Italy Progettazione SW 2009/10
Gérard France UML 
Prié France Systèmes d'information méthodes avancées 2011/12
Felici UK Software Engineering with Objects and Components 2011/12
Siebers UK Object Oriented Systems 2012/13
Varrò Hungary Modellalapú szoftvertervezés 2012
Lehre Germany Softwaretechnik 2012/13
Rumpe Germany Modellbasierte Softwareentwicklung 2011/12
Correo, Rossi Argentina Uml Basico
Brambilla Italy Ingegneria del SW 2012/13
Alkan Turkey Object Oriented Software Engineering 2012/13
Farrow UK Software Engineering 2012/13
Easterbrook Canada Engineering Large SW Systems 2012
Negre France Ingéniérie des Systèmes d'Information 2012/13
Sellares Spain Enginyeria del Software 2008/09
Jezequel France Approche objet pour le développement de logiciels par objets avec UML
Turgut US Software Engineering I 2009
Cheng US Advanced Software Engineering 2013

Fig. 3. UML courses considered.

Author / Source Title Web Site
Allen Holub Allen Holub's UML Quick Reference www.holub.com/goodies/uml/index.html

Analisi-disegno Introduzione a UML www.analisi-disegno.com/uml/uml.htm

Crag Systems A UML Tutorial Introduction www.cragsystems.co.uk/uml_tutorial/index.htm

devmentor UML Guide v2.1 devmentor.org/references/uml/uml.php

Dumke UML Tutorial www-ivs.cs.uni-magdeburg.de/~dumke/UML/index.htm

Embarcadero
Practical UML: A Hands-On Introduction 
for Developers

edn.embarcadero.com/article/31863

HTML.it Guida UML www.html.it/guide/guida-uml/

John Deacon
Developer's Guide to UML 2: A UML 
Tutorial

www.johndeacon.net/UML/UML_Appendix/Generated/UML_Appendix.asp

lemiffe Reference Guide for UML 2.0 www.lemiffe.com/wp-content/uploads/2008/12/uml2.pdf

New Think Tank Video Tutorials www.newthinktank.com/2012/11/

Online Teach UML Training www.online-teach.com/u-m-l.php

Parlezuml UML Tutorial www.codemanship.co.uk/parlezuml/

Richard Botting
A Beginners Guide to The Unified 
Modeling Language (UML)

www.csci.csusb.edu/dick/cs201/uml.html

SmartDraw What is UML? www.smartdraw.com/resources/tutorials/uml-diagrams/

Sparx Systems UML 2 Tutorial www.sparxsystems.com.au/resources/uml2_tutorial/index.html

Storrle & Knapp Unified Modeling Language 2.0 www.pst.ifi.lmu.de/veroeffentlichungen/UML-2.0-Tutorial.pdf

Uml.free
UML, le langage de modélisation objet 
unifié

uml.free.fr/index-cours.html

uml-diagrams UML 2.5 Diagrams Overview www.uml-diagrams.org/uml-25-diagrams.html

Fig. 4. UML tutorials considered.

but in several cases it was difficult, if not impossible, to recover the slides of
the lectures, and in general the material. Often, the material was not publicly
available; only the content of the lessons was present on the website. For this
reason, we resort also to convenience sampling, asking to our colleagues the slides
of UML courses they teach. At the end, we collected and analysed 22 different
University courses. The complete list of lectures is shown in Fig. 3. Convenience
sampling was also useful to balance a little the geographic origin of the UML
courses (e.g., before convenience sampling we had three courses from France and
zero from USA).
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Tutorials. We started with the tutorial lists present in three websites6. Then, we
integrated the obtained results with other tutorials recovered using Google (the
research was conducted using the strings: “UML tutorials” and “UML guide”).
Finally, we collected and analysed 18 tutorials. The complete list of tutorials is
shown in Fig. 4.

4 Results of the Document and Tool Analysis Study

After having collected the sources, we extracted the data of interest for our
research questions and finally we performed the analysis. Given the nature of
this document and tool analysis study, that is mainly descriptive (it describes
some condition or factor found in a population in terms of its frequency and
impact) and exploratory, we mainly applied descriptive statistics and showed
our findings by means of charts.

We preliminarily decided to interpret the results of our survey assuming that
a diagram/construct is widely used if it is present in the 60 % or more of the
sources, similarly it is scarcely used if it is present in the 40 % or less of the sources,
having also some non-defined cases (grey zone). In the following subsections we
briefly summarize the results concerning UML diagrams, see [8] for the details,
and present the ones for the activity and the use case diagram constructs.

4.1 Level of Usage of the UML Diagrams

The level of usage of the various UML diagrams in books, courses, tutorials,
tools, and in the totality of the sources respectively is summarized in Fig. 5.

If we consider the totality of the sources, disregarding their kind, we have
that the scarcely used diagrams are timing, interaction overview and profile,
listed starting from the most used; all of them were not present in UML 1.x,
and the profile diagram appeared only in version 2.2. The last position of the
profile diagram is not very surprising due both to the late appearance and to the
fact that this kind of diagram has a very restrict scope (indeed it is used only to
present a profile) and that, it is essentially a variant of the package diagram. Also
timing diagrams have a restrict scope, and UML offers other ways to model time
related aspects (e.g., timed events may be used in state machines and activity
diagrams; durations and time intervals may appear in sequence diagrams), and
this may be the motivation for their low usage. Finally, interaction overview
diagrams are quite complex and in many cases may be replaced by sequence
diagrams and/or a combination of sequence and activity diagrams, and perhaps
this is the reason for not being so considered.

The widely used diagrams, when considering the totality of the sources, are
instead, listed again starting from the most used ones, class (100 % in any kind
of sources), activity, sequence, state machine, use cases, communication, deploy-
ment, component, object and package diagrams. The first position of class dia-
grams is not surprising; it is indeed the main building block of the UML, while
6 www.uml.org/#Links-Tutorials, http://stackoverflow.com/questions/1661961/recommen

ded-uml-tutorials, and www.jeckle.de/umllinks.htm#tutorials.

www.uml.org/#Links-Tutorials
http://stackoverflow.com/questions/1661961/recommended-uml-tutorials
http://stackoverflow.com/questions/1661961/recommended-uml-tutorials
www.jeckle.de/umllinks.htm#tutorials
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UML Diagram Book Guide Book Spec Book Tot Tool Course Tutorial All Sources

Class 100% 100% 100% 100% 100% 100% 100%
Activity 100% 93% 97% 100% 95% 100% 98%
Sequence 100% 93% 97% 100% 100% 89% 97%
Use Case 100% 93% 97% 100% 95% 89% 96%
State Machine 100% 93% 97% 100% 95% 89% 96%
Communication 100% 80% 90% 90% 59% 89% 82%
Component 93% 80% 87% 85% 59% 89% 80%
Deployment 93% 80% 87% 90% 55% 89% 80%
Object 93% 80% 87% 70% 55% 67% 71%
Package 100% 79% 89% 65% 52% 67% 70%
Composite Structure 87% 60% 73% 80% 14% 33% 52%
Timing 87% 53% 70% 40% 5% 33% 40%
Interaction Overview 80% 53% 67% 45% 5% 28% 39%
Profile 7% 13% 10% 30% 0% 6% 11%

Fig. 5. Usage levels of UML diagrams.

the fact that activity diagrams are the second is relevant and is due, in our opin-
ion, to the fact that they are used also for business process modelling [18] and
for describing SOA based systems [19,20]. All the widely used diagrams, except
the package diagram, were already present in the UML 1.x versions (although
the communication diagrams were before called collaboration diagrams).

The only diagram in the grey area (i.e., above 40 % and below 60 %) is the
composite structure, which allows to represent both structured classes and col-
laborations; again it is a new diagram appearing in the UML 2.0 and this may be
a reason for its low usage. However, the result is surprising because structured
classes were completely absent in UML 1.x, and this was a perceived problem,
and the new collaborations are truly useful (see for example the big role that they
have in representing service oriented architectures in the SoaML OMG standard
profile [21]). For a more complete analysis of the results on UML diagrams and
a deeper discussion see [8].

4.2 Level of Usage of the Activity Diagram Constructs

The number of available constructs in activity diagrams is 47, a truly large num-
ber, and as it is shown in Fig. 8 a lot of them are scarcely used (their description
and some examples may be found in the UML specification [1]).

If we consider the totality of our sources disregarding the fact that they are
of different kind, we have that the widely used constructs are only nine, pre-
cisely Action and Control Flow Edge (both 100 %), Initial and Final Node (99 %),
Decision/Merge Nodes (98 %), Fork/Join Nodes (95 %), Activity Partition, i.e., swim-
lanes (83 %), Object Node (80 %), and Object Flow Edge (76 %)7.

7 This surprising result, since it is not possible to connect an object node to other
nodes without using the object flow, is due to the fact that in some courses the
classification of the arcs in activity diagrams in control and object flow was not
mentioned.
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Fig. 6. Activity parameter set, usage level 10 % in the totality of the sources.

Fig. 7. Call Behaviour Action (Rake) construct, usage level 39 % in the totality of the
sources.

Those scarcely used, i.e., with a percentage less than 40 % are 31, and in
8 cases the percentage is lower than 10 %. One of the least used constructs
Parameter Set is shown in Fig. 6, it is used to provide alternative sets of inputs or
outputs that a behaviour, and thus an activity, may use.

The fact that Activity is in the grey area is a little surprising since Activity is
the construct that, together with Call Behaviour Action (rake), allows to structure
complex activity diagrams, also if we suspect that in some cases Activity is con-
sidered but not precisely indicated with its proper name. See an example of Call
Behaviour Action (rake) in Fig. 7.

We briefly discuss two of the least used constructs (resulting used only in 3 %
of the sources): Input and Output Effects for Object Node and Decision Node with Input

Flow. The semantics of the first one is not very clear “Specifying the effect that
the behaviour of actions has on the objects passed in and out of their parameters
can be represented by placing the effect in braces near the edge leading to or
from the pin for the parameter” see [1]. Indeed, it may be interpreted as a kind
of constraint (the preceding/following action should be such that to produce
the depicted effects) and so it is not clear the difference with the local pre-
post conditions. Otherwise, it may be considered as a kind of comment making
explicit some effects already defined by the behaviour of the preceding/following
action. In the latter case it may be replaced by a comment. Also the semantics of
Decision Node with Input Flow is quite complex, see [1][371–372], but this construct
may be considered as derived (it may be replaced by combining the normal and
the extra input tokens of the decision node by means of a new data structure).
We think that however in these two cases one of the reasons of the fact that they
are neglected is the complexity of their definition.

One of the possible reasons, for the quite surprising result summarized in
Fig. 8, is that in UML 1.x there were few constructs for the activity diagrams,
more or less those resulting widely used in our document and tool analysis study,
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Fig. 8. Usage levels of activity diagram constructs.

and so those resulting scarcely used are quite new. Another reason for these
constructs being so unpopular is that many of them are not depicted visually
by the tools on the activity diagrams (for example, the Object Node Ordering Kind
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construct may be defined using the Visual Paradigm tool for an Object Node by
means of the property panel but cannot be visualized).

In our opinion, some of the constructs classified by our document and tool
analysis study as scarcely used or in the grey area may be useful for modelling
workflows and business processes [18,19,22–24], e.g., Flow Final Node, Accept Event

Action, Send Signal Node, Activity and the constructs related with exception han-
dling; whereas many others are just a kind of derived constructs, i.e., they may
be replaced by an equivalent activity diagram fragment (e.g., Value Pin).

If we examine the usage data considering separately the various kind of
sources, we have that the tools and the books are “using” a greater num-
ber of constructs, whereas courses and tutorials are considering less constructs.
Precisely the numbers of scarcely used/widely used constructs for the various
kinds are:

– books guide: scarcely used 25 and widely used 16
– books spec: scarcely used 32 and widely used 10
– books tot (i.e., all books): scarcely used 28 and widely used 11
– tools: scarcely used 20 and widely used 15
– courses: scarcely used 38 and widely used 9
– tutorials: scarcely used 38 and widely used 9

Moreover, three constructs Accept Event Action, Action Pin and Flow Final Node

result widely used for both books guide and tools. The percentages relative to
courses and tutorials are really striking; the considered activity diagrams con-
structs are just 1/5 of those available. Finally, looking at Fig. 8, it is interesting to
note that the usage levels among different sources, even if different in magnitude,
have similar trends.

4.3 Level of Usage of the Use Case Diagram Constructs

Figure 9 presents the level of usage of the constructs relative to the use case
diagram in the different kinds of sources. As before, we consider a construct
widely used if the percentage is ≥ 60 %, and scarcely used if such percentage
is ≤ 40 %.

Use case diagrams are quite simple, and the results are straightforward and
not surprising. All constructs except Actor User Defined Icon and Extend with Condi-

tion are widely used, and Use Case and Actor have a percentage of 100 %. The use
cases relationships (Include and Extend) are over 90 %, the Actor Specialization and
Use Case Specialization are over 70 %, and the Subject (System) Box is over 80 %.

In this case the tools are not those providing the larger set of constructs,
for Extend with Condition, User Defined Actor Icon and Subject (System) Box the per-
centage of tools proving them is lower than that of the books mentioning them,
perhaps because they cannot be drawn reusing other visual constructs. For the
courses also the Include and the Extend reach a 100 %, and the Subject (System)

Box reaches 95 %.
The results seem quite clear in this case, the fundamental constructs for use

case diagrams are Use Case, Actor, Extend and Include; Subject (System) Box, and
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Fig. 9. Usage levels of Use Case Diagram Constructs.

Actor/Use Case Specialization are quite useful, whereas Extend with Condition and
Actor User Defined Icon are perceived as less relevant.

5 Threats to Validity

In our study a possible threat is the fact that when examining books, courses and
tutorials we have decided to assume that a construct is used in that source if it is
mentioned without making a deeper analysis to measure how much detailed was
presented or taught. Unfortunately, it is really difficult to devise a better metric;
for example, trying to distinguish if a diagram is just mentioned, shortly pre-
sented, presented, and presented with all the details may be too much depending
on the personal judgement of who examines the textual sources; also counting
the occurrence of the name of a construct is in our opinion too dependent on the
way the texts are written, e.g., more or less verbose. We have also tried to dis-
tinguish the case of a simple mention of a construct in the text and the presence
of an example of such construct, without detecting a relevant difference.

To avoid to bias the results of our document and tool analysis study, we
have considered only sources concerned with the use of the UML, avoiding those
with different aims, for example drawing tools suitable to produce pictures of
UML diagrams, or books presenting a survey on the current visual notations
have been excluded; whereas instead books covering specific use of the UML or
courses about software engineering where the UML was taught were included.

Concerning the textual sources, we have considered only books/courses/
tutorials presented using languages understood by the authors (i.e., English,
Italian, French and Spanish). For the courses the limitation on the language
is less problematic, indeed many of the courses presented using the English
language are taught in countries where the English is not the mother tongue
(e.g., Hungary and Turkey).

For the tools, instead, we are quite confident to have examined almost all the
available ones; we think that a UML tool cannot exist without being presented
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somewhere on the Web. Notice that Argo UML, one of the most known UML
tool was not included in our document and tool analysis study since it supports
only UML 1.x.

We have considered here only four kinds of sources (books, courses, tutorials,
sources) and we are aware that these are not the only ones; indeed there are
also the UML users, and we are now running a personal survey to investigate
which constructs they know and which they use. Instead, we do not plan to
make a literature survey examining which constructs are used in scientific papers
in the area of modelling or of Model Driven Development, since this will be
surely biased: e.g., there are few scientific papers about class diagrams, whereas
the newest and the most problematic constructs will appear in many of them.
However, literature survey covering applicative areas for modelling, for example
concerning SOA (Service Oriented Architecture) or requirement engineering may
give valuable insights.

The various diagrams/constructs of the UML have different ages, i.e., they
were introduced in the UML at different times, some appeared in the UML 1.x,
others in UML 2.0 and someone is still more recent (e.g., the profile diagram
appeared only in UML 2.2). To mitigate this threat we have careful considered
only sources that explicitly stated that were considering at least UML 2.0. A
more refined analysis made considering as a source for a given construct only
those dated after the official time of appearance of the same is unfeasible, also
because we have the official date of appearance of a constructs, i.e., the official
approval of the OMG document presenting it, but such document was already
available to the community and so the construct was already know and used.

Finally, we have decided to define widely used (scarcely used) when a con-
struct was considered in the ≥ 60 % (≤ 40 %) of the sources, resulting also in
a grey area. We think that this a sensible choice, using a threshold lower than
60 %, e.g., 50 %, should have led to have that a construct is either widely used
or scarcely used without any doubt cases, and this does not sound realistic. On
the other hand, a higher threshold, e.g., 80 %, should have led to a quite large
number of inconclusive cases.

We have also computed the widely/scarcely used on the totality of the
sources, disregarding the fact that they are of very different kinds, e.g., books
and courses, and so assigning them different weights would have been more real-
istic. Again, we had the problem to compute these weights in an unbiased way:
is it sensible to say that a book is three times more relevant than a course, or
that a tool is two times more relevant than a tutorial? To avoid to make our
results too dependent on our personal judgement we have preferred to assume
that all the sources have the same weight.

6 Conclusions

We have investigated, by means of a document and tool analysis study, the level
of usage of the UML activity and use case diagram constructs, considering in
this paper four kinds of sources: books, tools, courses, and tutorials. The results
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of our document and tool analysis study show that, the level of usage varies
considerably among the different constructs, and in some cases it is really very
low. However, it is important to note that, a low level of usage of a construct
does not mean that it is useless. This could be caused by different factors, for
example: (1) a construct may be replaced by a combination of other constructs
(i.e., it is derived), (2) its existence may be not widely known, (3) its definition
could be too complex and not very clear, and thus discouraging potential users,
or finally, (4) it could be useful only in very specific and rare cases.

Results show that, a large majority of the 47 activity diagrams constructs
seem to be scarcely used. More precisely, 31 activity diagram constructs result
scarcely used (in some cases the percentage of usage is less than 10 %), while,
only nine constructs result widely used by our document and tool analysis study:
Action, Control Flow Edge, Initial/Final Node, Decision/Merge Nodes, Fork/Join Nodes,
Activity Partition (i.e., swimlane), Object Node, and Object Flow Edge. Instead, only
two of the nine constructs of the use case diagram (Extend with Condition and
Actor User Defined Icon) result scarcely used, with percentages 37 % and 27 %
respectively.

In this paper, we have considered only unbiased and objective sources and
examined them for checking if some UML constructs are used in an objective
way (e.g., can a tool produce a model including such constructs?, is a course/
tutorial teaching the fact that UML has such constructs?). For this reason, we
believe that the results of this document and tool analysis study are not biased
by any personal opinion (neither ours nor of any human being taking part in
the examination of the sources). We are now investigating the usage of the other
UML diagrams/constructs and performing a personal survey [6] to investigate
which UML diagrams/constructs are known and used by UML users trying to
cover different categories of them, and different applicative fields. The combined
results of this work and of the ongoing personal opinion survey should lead to
finally sketch an “essential” UML.
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Abstract. In order to be able to specialise metamodels and thereby
enhance reusability of metamodels, we introduce the notions of meta-
model types and subtypes. Model-driven engineering considers models
and metamodels as first-class entities, however, there has not been much
work on how to type models or metamodels. In this paper we discuss
how a metamodel can be enclosed within a class and how this enclosing
class defines the type for the metamodel. This allows us to use estab-
lished object-oriented mechanisms on the metamodel level and supports
specialisation of metamodels.

Keywords: Metamodelling · Typing · Subtyping · Domain-specific
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1 Introduction

Model-Driven Engineering (MDE) [1] is a collective term for a number of
approaches and methodologies for software development in which models are
first-class entities. MDE can be seen as a natural progression of object-
orientation by raising the abstraction level from the class level to the model
level. A model is a set of related objects, whose descriptions are formalised by a
metamodel (class model). In spite of MDE’s model-centric view, most MDE tech-
nologies and tools do not have native support for typing models or metamodels.
This has consequences with respect to reuse of models, model transformations
and interpreters. The notion of polymorphism at the metamodel level is also
unclear, as the type of a metamodel is not well defined. The work of [2] moti-
vates strongly why model substitutability is a valuable property to aim for in
MDE, whereas [3] discusses using inheritance, in the form of subtype specialisa-
tions, as a basic relationship between models.

The work of [4] presents one approach to model typing in MDE. In partic-
ular, the work adresses concerns related to reuse of model transformations and
interpreters, or in general, situations where external code should be applicable
to a number of different models all sharing a minimum set of properties as spec-
ified by a reference model type. However, there are still many open questions on
how to support cases where model types also cover behavioural aspects - in the
c© Springer International Publishing Switzerland 2015
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form of functional model types. That is, model types whose definitions also cover
behavioural semantics in addition to structure. Being able to address software
evolution is also a motivating factor for focusing on model types.

The success of object-orientation is to a large extent a consequence of its
powerful mechanisms, e.g. specialisation, polymorphism and composition (using
object references). The MDE philosophy supports the idea that such mechanisms
should also be available at the model and metamodel levels. Many mechanisms
address these aspects of (meta)model usage and evolution, e.g. [5–10]. However,
these mechanisms require the use of additional frameworks. Furthermore, com-
position and variability directives are described in separate resources (files) in the
form of either a weaving model, pointcut model or composition/variability rules.
Such additional resources complicate reuse. They also pose certain challenges in
maintaining files to reflect variations of the metamodels.

The notion of specialising (as in subtyping) metamodels has not received
the same attention as model transformations and composition. In this paper,
we discuss how metamodels can be typed by nesting them within an enclos-
ing class. We will see how the enclosing class may indeed represent the type
of the enclosed metamodel. The enclosing class can be subtyped which allows
us to specialise metamodels. We will focus on metamodels whose behavioural
semantics is defined in methods or operations, as supported by the Eclipse Mod-
eling Framework (EMF) [11], Kermeta [12] and the Epsilon Object Language
(EOL) [13].

The paper is organised in five main sections. Section 2 discusses the basic
mechanics of using class nesting to type metamodels, and the purpose of typing
metamodels. Section 3 delves into the matter of using class nesting for defin-
ing metamodel types, whereas Sect. 4 presents related work. Section 5 concludes
the paper.

2 Metamodel Types

A metamodel defined in the Essential MetaObject Facility (EMOF) [14] archi-
tecture comprises a set of classes contained in one or more packages. Models of
the metamodel consist of objects of the classes. The classes are related by asso-
ciation and specialisation relationships. A metamodel can be uniquely identified
by the name and namespace of its containing package. However, a package is not
a semantically powerful concept [15], and can not be used as a type specification
for the contained metamodel. Specifically, it is not clear how different packages
relate and which operations that can globally be applied on the model objects
described by the classes of the package.

A class specifies the type of its instances. The type is defined by the attributes
and operations of the class. In addition, non-static nested classes (inner classes)
contribute to the type, as they can be considered class-valued attributes. In this
paper, we pursue the idea of defining a metamodel within an enclosing class. The
enclosing class is contained in a package. The purpose of defining a metamodel
within an enclosing class is that the class explicitly describes a type for the meta-
model. Hence, using an enclosing class allows us to take advantage of established



86 H. Berg and B. Møller-Pedersen

principles of object-orientation - at the metamodel level. The metamodel’s type
is that of the enclosing class. In the context of this paper, we will simply refer
to a class that encloses a metamodel as a metamodel type. A specific instance
of a metamodel type represents a specific metamodel/language, and models of
this metamodel/language will be in terms of objects of the classes enclosed in
the specific instance. The instances of a given metamodel type will be generated
by tools, while modellers will only be concerned with making models in terms
of objects of the enclosed classes.

2.1 Definitions and Example

Definition 1. A metamodel type is an enclosing class containing an arbi-
trary number of non-static nested classes, attributes and operations. The nested
classes constitute an EMOF-compatible metamodel. A metamodel type τm can
be described as the sequence 〈name, c, f, o〉 · s, where c ⊂ C - a finite set of
EMOF-compatible (nested) classes, f ⊂ F - a finite set of features (attributes
and references), o ⊂ O - a finite set of operations and s ⊂ T - a finite set of
super metamodel types.

An example of a state machine metamodel type, named TStateMachine, is
given below:

τm : 〈TStateMachine,

{ StateMachine, State, Transition, Event },

{ sm : StateMachine, events : Event },

{ transitionTable : String }〉 · nil

Definition 2. A metamodel type instance is an object of the class defining a
metamodel type. The metamodel classes of a metamodel type can be accessed
and instantiated via a metamodel type instance. Several models can be created
using the same instance. A metamodel type instance may have attribute values
(according to the metamodel type definition) that can be used to customise the
metamodel.

We will use Kermeta to illustrate the idea of metamodel types1. However, we
will only use a subset of Kermeta to avoid complicating the picture. Kermeta
is an object-oriented language for creating EMOF-compatible metamodels. It
allows specifying the behavioural semantics of metamodels within class opera-
tions. The operations are invoked at runtime when executing a model/program.
We do not discuss static semantics (OCL) in this paper.

Figure 1 gives the metamodel type TStateMachine in Kermeta syntax. The
metamodel type encloses a metamodel/language for modelling of state machines.
The metamodel comprises the four classes: StateMachine, State, Transition and
Event. StateMachine is the top node class of the metamodel from which all other

1 Note that the current version of EMOF/Kermeta does not support nesting of classes
as discussed in this paper.
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classes are reachable through relationships. There is a reference typed with this
class in the enclosing TStateMachine class. This reference is used to access the
current model being processed by a tool (editor, interpreter, etc.). The meta-
model details are not of interest, therefore three consecutive dots are used to
represent additional content.

As seen in Fig. 1, the enclosing class has a reference typed with the meta-
model’s top node class. It also has an operation named transitionTable() that
returns a textual description of all possible state transitions of a state machine
model (i.e. the model referenced by the sm reference). A step of the state machine
is performed by invoking the step(...) operation in the State class. The step is car-
ried out if the current state has a transition whose event value is equal to the
operation argument.

Fig. 1. A simple metamodel type (language) for state machines.

A weighted state machine is a variant of the basic state machine that supports
the description of a probabilistic aspect of events: how likely that a given tran-
sition should be triggered. This aspect can be added to the basic state machine
using specialisation. A first attempt to define this special kind of state machine
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would be to define a subclass of StateMachine. This seems obvious, as objects
of the class StateMachine represent state machine models, and as such the class
StateMachine appears to be the type of all these models. However, this would
not work as intended, as the addition should be in the Transition class. Hence,
a next attempt would be to create a subclass of Transition (as an addition to
the existing Transition class). However, this would imply that even simple state
machine models might have weighted transitions. Instead, by defining the addi-
tional properties of a weighted state machine within a subclass of TStateMachine,
we are able to specialise the state machine metamodel as a holistic entity and
clearly differentiate the state machine variants while still being able to use tools
defined according to the general variant of the state machine metamodel. (Tools
e.g. editors will not be able to instantiate new classes that have been added in
subtypes.) The existing models of the general state machine metamodel are still
valid, as changes and added properties are given in the metamodel subtype vari-
ant. Existing tools may then invoke redefined virtual operations in the nested
classes of the metamodel subtype (this requires a casting to the subtype dur-
ing instantiation of the nested classes). A metamodel type for a weighted state
machine is given below (the arrows indicate inheritance):

τmw : 〈TWeightedStateMachine,

{ State ↑ State, Transition ↑ Transition },

{ },

{ }〉 · { TStateMachine }

Figure 2 illustrates the new metamodel type in Kermeta. Notice that TWeight-

edStateMachine is a specialisation of TStateMachine. The classes Transition and State

are given additional properties. Figure 3 illustrates the two metamodel types, and
how they relate, using a graphical notation.

Fig. 2. A metamodel type for weighted state machines.

Alternatively, a state machine that supports composite states can be
defined as:

τmc : 〈TCompositeStateMachine,

{ CompositeState ↑ State },

{ },

{ }〉 · { TStateMachine }
Figure 4 shows the metamodel type in Kermeta syntax.
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Fig. 3. Illustration of how metamodel types and classes of the metamodels relate
through inheritance.

Note that this metamodel type has two classes for modelling of states: State
and CompositeState (Fig. 5).

Fig. 4. A state machine metamodel type with support for composite states.

2.2 Specialisation and Polymorphism

Changing an artefact of a system is not trivial since changes may impact other
parts of the system, or even other systems. Changes made to artefacts at higher
abstraction levels typically are more severe when it comes to impacting other
parts of a software system. A metamodel is a model describing a set of models,
i.e. the language of realisable models [16]. Changing a metamodel impacts all the
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Fig. 5. The different metamodel types and how they relate.

conformant models. That is, the language of valid models that can be recognised
is changed. In most cases, changing a metamodel may render its existing confor-
mant models incompatible. This in turn requires manually changing the models
or automating this process by creating a model transformation that incorporates
knowledge about the changes to apply. Changes to a metamodel also impact its
tools. By using specialisation based upon metamodel types it is possible to cre-
ate new metamodel variations without rendering existing tools unusable. That
is, the tools will still work by invoking redefined virtual operations. Hence, some
of the challenges of changing software artefacts (additions) can be tackled.

One of the main contributions using metamodel types is the ability to use
polymorphism. In the example, the metamodel type TWeightedStateMachine may
be used as a substitute for TStateMachine. External code defined according to
basic state machines can still be used with weighted state machines.

Metamodel type hierarchies may form a type system that facilitates reuse of
commonly occurring metamodel structure and semantics [17]. Using an enclosing
class to specify a metamodel type yields a high degree of encapsulation; a tool
that is built to be compatible with the TStateMachine type can also operate on
subtypes of this, e.g. TWeightedStateMachine.

So far we have discussed concrete metamodel types. An interesting variant is
abstract metamodel types. Figure 6 gives an excerpt of an abstract metamodel
type named TAbstractStateMachine.

Fig. 6. An abstract metamodel type.
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By using an abstract metamodel type it is possible to define “a lowest com-
mon denominator” among a set of metamodels. That is, a minimal set of required
structure that allows arbitrary metamodels to be equally typed (according to the
abstract metamodel type). This is illustrated in Fig. 7.

The figure lists two different metamodel types AType and BType that both
incorporate the structure defined by TAbstractStateMachine. The domains for the
metamodels defined by the types are irrelevant. The point is that modelling
of both domains requires the ability to specify behaviour in the form of state
machines. For AType, the StateMachine class is specialised to contain an A1 object
(A1, A2 and A3 are additional classes of the metamodel not related to state
machines). Both the State and Transition classes are specialised in the definition
of BType.

The resulting AType and BType are metamodels with arbitrary types of con-
cepts (including concepts for modelling of state machines). However, they can
still be typed according to a state machine viewpoint. For instance, a framework

Fig. 7. Metamodel types incorporating common structure.

Fig. 8. The basic structure of an interpreter.
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built around the TAbstractStateMachine can execute the behavioural semantics in
the operations of the state machine classes, which may be overridden. This is
possible regardless of how the AType and BType metamodel types are defined.
Figure 8 illustrates how such a framework/interpreter may be constructed based
on TAbstractStateMachine.

3 Implications of Metamodel Types

3.1 Interpretation and Code Generation

In Kermeta, a metamodels’ behavioural semantics is defined in class operations.
For instance, the semantics for stepping/triggering a new state in the state
machine metamodel is defined in the step(...) and trigger() operations in the State

and Transition classes. The exact definition of this semantics is not interesting.
However, it is clear that the default stepping/triggering semantics will not suffice
for a weighted state machine. By subtyping State and Transition, the semantics of
these classes can be redefined for the new state machine type. The main point
here is that a framework for interpretation of state machine models will still work
by utilising the redefined semantics (as accessible through dynamic binding of
step(...) and trigger()).

A typical approach for realising executable DSLs is to use code generators
that work on purely structural metamodels/models. An alternative is to use the
operations in the metamodel classes and in the enclosing class for implement-
ing a code generator (where each operation contains code written in a target
language). Since we allow subtyping of both the enclosing class and the inner
classes of a metamodel type, we are able to redefine the code generator using
virtual operations (and types).

3.2 Analysis Tools

The operations in the classes may also be used to generate information about
the models. In particular the enclosing class may contain operations that work
on models as a whole. We have given one such operation in the TStateMachine,
namely transitionTable(). This operation contains semantics that is not part of
the metamodel/language for creating state machines. Yet, it allows calculating
information about a state machine that can be presented to the modeller during
the modelling process. By using subtyping it is possible for analysis tools to
work on metamodel variants, since the access points of the analysis tools are
predefined as operations in the enclosing class.

3.3 Type Safety

In this paper, we relate variants of metamodel types using the subtyping
relation [18]. Subtyping imposes certain restrictions on subtypes: the parameter
types of an operation are required to be contravariant, whereas the return type
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needs to be covariant. What this means is that virtual operations of subtypes
can be invoked type-safely in place of their supertype equivalents. As pointed
out in [4], types of class properties are required to be invariant in MetaObject
Facility (MOF) [14] metamodels. This latter requirement is difficult to fulfill, as
additions of attributes and references to a class is common when creating meta-
model variants. Such additions change the type of the containing class, which
in turn results in a covariant redefinition of attributes and references that are
typed with the class. Let us see how this affects metamodel types as presented
in this paper.

There are two places where subtyping occurs in creating a metamodel type
variant. First, the enclosing class is subtyped. Second, the inner classes con-
stituting the metamodel may be subtyped selectively depending on which spe-
cialisations that are required. Recall how the Transition class needs an additional
attribute probability to create a weighted state machine metamodel from the basic
state machine metamodel. Let us assume that this would be the only required
addition to the basic state machine metamodel. What we have now is a sit-
uation of covariant type redefinition. The attributes incoming and outgoing of
the State class (see Fig. 1) are typed with Transition. The new Transition class
variant contains an additional attribute. Hence, the types of the incoming refer-
ence and the outgoing attribute in the State class of the metamodel type variant
(TWeightedStateMachine) are not invariant, but covariant. A potential problem
would occur when related metamodel types are mixed, e.g. when a model con-
tains instances of both state machine and weighted state machine metamodel
classes. However, these situations do not occur since e.g. a model editor has to
instantiate either of the metamodel types. Hence, it is not possible to instantiate
the subtype of the Transition class when creating a basic state machine.

3.4 Multiple Inheritance

We have seen how metamodel types can be used to represent metamodel patterns
or fragments, e.g. a state machine. We have also discussed how a metamodel can
be considered and interpreted from the perspective of one specific metamodel
type. Seen in the light of this, a metamodel may have several types. Put dif-
ferently, a metamodel can be constructed by combining an arbitrary number
of patterns. This means that a metamodel can also be considered from several
perspectives depending on situation and purpose (e.g. a tool may present several
viewpoints to the user, where each viewpoint corresponds to a metamodel type)
(Fig. 9).

Regardless of specialisations of the inner classes, the enclosed metamodel of
TMetamodel can still be considered from two perspectives/aspects: state machine
and game. That is, tools defined for TAbstractStateMachine and TAbstractGame can
still be used. For example, it is convenient to analyse a model conforming to the
composite metamodel from the state machine perspective alone, e.g. by writing
out the state transition table or similar. This is possible regardless of the added
properties in specialisations of the inner classes.
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Fig. 9. Using multiple inheritance to relate metamodel types (yielding a composite
metamodel).

Using multiple inheritance may potentially require resolution of name con-
flicts. There are several approaches to improve the applicability of multiple inher-
itance, e.g. Kermeta allows the modeller to explicitly specify the operation to
override in ambigious situations. We will not go into details on this subject.

An alternative to multiple inheritance is to allow references to be typed with
metamodel types. This means that a class may be a consumer of e.g. a state
machine. Put differently, the class may reference a metamodel type comprising
constructs for modelling of state machines. Allowing references being typed with
metamodel types gives interesting opportunities. However, things also get more
complicated. Recall that each object of a metamodel type gives a unique meta-
model. For the example this means that different objects of the state machine
metamodel type (or subtypes of this) gives unique referenced state machine
metamodels. Even though type-safety is still achieved, execution of the models
may differ depending on the exact object of the metamodel type (or its subtypes)
that is used.

3.5 Using Virtual Classes and Generic Parameters

The classes of a metamodel type can be defined as virtual and utilise generic
type parameters. Let us return to our example. If the language for making meta-
models (e.g. Kermeta) supports virtual classes [19], then the Transition could
be defined as a virtual class and then redefined in TWeightedStateMachine (by
extending the Transition class). See Fig. 3. This allows code in TStateMachine to
generate Transition objects with the additional property, given that the context in
which this code is executed is an object of TWeightedStateMachine. Virtual classes
also allow existing tools like editors to instantiate redefined classes in meta-
model subtypes. It would also be possible to define the enclosing class as virtual.
See [20] for more information on using virtual classes in metamodels.

3.6 Metamodel Customisation

In its simplest form, an enclosing class does not contain other elements than the
nested metamodel classes. The enclosing class may also contain attributes and
operations. This adds a new dimension to metamodels. Specifically, the state of
a metamodel type object can be used to customise the behavioural semantics
of its encapsulated metamodel. As an example, the behavioural semantics of a
metamodel (as defined in operations) may use different algorithms depending on
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context. These algorithms may share basic properties (attributes) whose values
can be changed with the intention of tuning the behavioural semantics for a
specific usage or context. Being able to adjust these properties simultaneously for
all the algorithms allows customising the semantics easily without changing the
actual models. The properties with their values are in the object of the enclosing
class. Hence, this object’s state captures an (execution) configuration for models
of a given metamodel/language. Changing such values for a metamodel/language
would change the meaning for all conformant models/programs. It would also be
possible to maintain several objects of the enclosing class and thereby facilitate
execution profiles (serialised to files). However, this will give rise to an additional
level of polymorphism as different object states give different execution results.

3.7 Nesting of Metamodel Types

Metamodel types are realised using class nesting. Specifically, the enclosing class
gives the enclosed metamodel a type. However, the enclosing class is only an
ordinary class that takes a special role. This means that a metamodel class, i.e.
a class enclosed by an outer class, may take the role as a metamodel type as
well. What we achieve by this is nesting of metamodel types. In theory, there
may be an arbitrary number of levels of nested metamodel types. By utilising
subtyping and polymorphism this means that metamodels may be specialised at
different levels. Further studies are necessary to gain insight into whether nesting
of metamodel types is practical.

In [20], we discussed generic metamodels; a theoretical concept where class
nesting is used together with type parameters for adding language constructs
and customising metamodels. This work may be referred for additional details
on using class nesting in metamodels.

Fig. 10. Overview of how metamodels and models relate to other modelling artefacts.
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3.8 Existing Tools

A key advantage with metamodel subtypes is that existing tools are not rendered
invalid as new metamodel variants are created. As an example, Fig. 10 illustrates
how editors and transformations interact with state machine metamodels and
models.

The Basic Editors allow creating and editing model elements related to basic
state machines. The Basic + Weighted Editors additionally allow modelling the
probabilistic aspect of weighted state machines. The key point is that the models
can still be treated as basic state machine models by the Basic Editors. A simi-
lar reasoning applies to transformations. Even though the models may include
elements that model the probabilistic aspect of weighted state machines, the
transformations only relate to basic state machine concepts since the transfor-
mations are defined relative to the State Machine Metamodel, i.e. the TStateMachine

metamodel type.

4 Related Work

There are several mechanisms that address model composition and variability.
Some of these are discussed in [21]. Common to these mechanisms is their exter-
nal definition from the language used to define the models and/or metamodels.
Moreover, most mechanisms use some kind of merging techniques to combine
the metamodels which compromises the principle of encapsulation.

We have used Kermeta to illustrate metamodel types. Kermeta features a
mechanism known as static introduction. This mechanism allows specifying par-
tial class definitions using aspects. Several aspect definitions are combined (or
woven) at runtime to form the definition of a class. The mechanism allows defin-
ing new aspects that are combined with an existing class definition. Aspects
allow creating metamodel variants. However, they can not be used to type a
metamodel - the resulting classes are contained in a regular package.

Model types, as described in [4] resembles the work of this paper. There are
some differences and similarities that we will discuss. First, a model type can be
seen as a type-safe set of an arbitrary number of model object types. The model
type mechanism defines a conformance relation between model types, which
allows reusing code or transformations. Specifically, code for manipulating or
executing models (interpretation) can be defined according to a reference model
type. All models that are typed with a model type conformant to the reference
model type can be manipulated or executed by the same code. A model type
is created by referring to classes of an arbitrary number of existing metamod-
els. This is a powerful ability, since classes defined in different packages can be
“extracted” to constitute a model type.

A metamodel type, as discussed in this paper, allows typing metamodels
as holistic MDE structures. We have used the notion metamodel type instead
of model type because of a significant difference between the approaches. An
instance of a metamodel type (object of the enclosing class) represents one par-
ticular metamodel. The object can be used to access the metamodels’ classes
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and thereby create model objects. The object of the enclosing class also refer-
ences one model whose semantics is e.g. intended to be executed at runtime.
Conversely, in the work of [4], an instance of a model type can not be used to
instantiate the classes of the model type. Instances of these classes are instead
added to the model type instance. The model type instance acts as a filter where
only objects of the model type’s classes can be added to the model type instance
successfully. The similarity in this respect between the approaches is that both
a metamodel type instance and a model type instance can be used to reference
a conformant model. The capabilities of the two model typing approaches differ.
Model types are designed to simplify reuse of code from an external perspective,
e.g. from the perspective of an interpreter or transformation. Conversely, meta-
model types allow creating metamodel variants. By design, metamodel types are
functional types. Reuse of code is achieved by creating type variants in the form
of subtypes. Model types, on the other hand, are structural. They can not be
combined, or be related to create variations.

The inability to use substitution in model typing is addressed by [22]. The
paper discusses four subtyping mechanisms, and how these allow defining rela-
tions between model types as defined in [4]. The work differentiates between total
and partial subtyping relations, that are either isomorphic (model type matching
with respect to properties and operations) or non-isomorphic. According to the
definitions of [22], using an enclosing class as type specification for metamodels
can be seen as a total isomorphic subtyping relation that is declared explicitly.
The explicitly declared subtyping relation allows reusing structure of supertypes
through inheritance. And, as we have seen, the inherited classes can be rede-
fined. Using an enclosing class supports compile-time checking of the subtyping
relations between types. It is stated in [22] that it is not possible to achieve type
group substitutability using object subtyping. The work on metamodel types
shows that this is in fact possible when a metamodel is a property of an object -
as realised using class nesting. Hence, we are able to achieve type group substi-
tutability based upon established object subtyping principles. This includes the
ability to reuse existing type checking algorithms. The drawback of our approach
is that substitutability of metamodels can not be defined partially. However, as
illustrated, a metamodel can be typed according to several metamodel types,
which addresses this concern to some extent.

An approach for generic specification of metamodel’s behaviour is discussed
in [23]. The approach relies on the use of generic concepts for defining behaviour
that is applicable to a family of unrelated metamodels. Concepts allow specify-
ing details of models’ structure by utilising parameters. A concept can be bound
to metamodels that satisfy the concept’s requirements using pattern matching.
There is no dependency between a metamodel and a concept. Hence, utilising con-
cepts is non-intrusive. Conversely, we have seen how metamodel types are related
using subtyping in two levels. In other words, we utilise a typical object-oriented
typing scheme that allows defining metamodel variants explicitly using subtyping.

Specialisation relationships between models are carefully discussed in [2]. The
work formalises two relations for specifying forward- and backward-compatibility
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between models and applies these relations to, e.g. models related using subtyp-
ing. The compatibility relations are defined using a definition of conformance.
Forward-compatibility is achieved if instances of a submodel conform to the
supermodel, and vice versa for backward-compatibility. One important point
discussed is the desire to maximise the forward-compatibility of a language
since this allows reusing existing tools on new models (via redefined vir-
tual operations). The subtyping relation ensures a high degree of forward-
compatibility. Subtyping also guarantees mutator forward-compatibility. This
supports a round-trip between new instances of submodels and support for
these by existing tools. That is, the submodel instances appear like supermodel
instances. Subtyping is the most restrictive specialisation relationship, with strict
behaviour conformance of subtypes. We believe that this type of relationship is
the best suited for relating metamodel types.

5 Conclusions

In this paper we have presented a novel way of typing a metamodel by defining
it within an enclosing class. The enclosing class is thus the type of the meta-
model. By exploiting object-oriented mechanisms we get the notion of subtyping
of metamodels. Subtyping ensures substitutability between metamodel types.
That is, tools defined according to a metamodel type can be reused on subtype
variations of this metamodel type (possibly with redefinition of virtual opera-
tions). Another important aspect of using subtyping is the ability to maintain
conformance between models and their metamodels.

An object of the enclosing class is not part of a model. It is used by tools for
accessing the enclosed metamodel and for maintaining an execution configuration
for the models.
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4. Steel, J., Jézéquel, J.-M.: On model typing. Softw. Syst. Model. 6(4), 401–413

(2007)
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Abstract. The design of large systems often involves the creation of
models that describe partial specifications. Model composition is the
process of combining partial models to create a single coherent model.
This paper presents an automatic composition technique for creating
a sequence diagram from partial specifications captured in multiple
sequence diagrams with the help of Alloy. Our contribution is twofold: a
novel true-concurrent semantics for sequence diagram composition, and
a model-driven transformation of sequence diagrams to Alloy that pre-
serves the semantics of composition defined. We have created a tool
SD2Alloy that implements the technique as follows: two given sequence
diagrams are transformed into two Alloy models, and merged according
to a set of syntactic logical constraints describing how their elements
should be matched. These constraints are in accordance to our composi-
tional semantics. The technique can also be used to detect problems and
inconsistencies in the composition of diagrams.

Keywords: UML sequence diagrams · Model transformation · Compo-
sition · Alloy

1 Introduction

The process of developing modern systems is gradually becoming more and more
complex. Due to the increase in the complexity of such software development
processes, we often make use of multiple models for expressing various scenarios
and viewpoints. To reduce the complexity of the design, models of the system are
usually broken into partial specifications. For example, behaviour related to the
interaction between parts can be captured by different sequence diagrams. How-
ever, integrating these diagrams into one to describe the whole behaviour requires
model composition techniques. Manual model composition is error-prone, time-
consuming and tedious [1]. In recent years, automated model composition has
received considerable attention [2,3]. For example [2] make use of Alloy for auto-
mated composition. Nonetheless, most automated merging methods only focus
on static models.
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In this paper we focus on the automated integration of sequence diagrams,
one of UML’s most popular behavioural models [4]. In particular, we focus on
the composition of sequence diagrams with the help of Alloy. Our contribution
is twofold: a novel true-concurrent semantics for sequence diagram composition,
and a model-driven transformation of sequence diagrams to Alloy that preserves
the semantics of composition.

Our automated technique follows three main steps. In the first step, mul-
tiple sequence diagrams are automatically transformed into Alloy models. For
each sequence diagram a unique Alloy model is produced which if solved has as
many solutions as there are possible traces of execution in the original sequence
diagram. These traces have a direct correspondence to the ones obtained in the
underlying semantics of sequence diagrams used, namely labelled event struc-
tures (LES) [5,6]. In the second step, the Alloy models are merged to produce
a single Alloy model, which contains elements from the individual Alloy models
of each sequence diagram in addition to syntactic logical constraints specify-
ing how the elements are matched and the diagrams should be composed. The
logical constraints used for the matching are syntactic and considered in our
true-concurrent semantics of composition. In the third step, we use the com-
posed model obtained, that is the conjunction of the overall logical constraints,
to formally check if the sequence diagrams can be composed and obtain the com-
position of the diagrams automatically. These steps are fully automated in our
tool SD2Alloy which was implemented using Model Driven Architecture (MDA)
techniques [7]. Later in the paper, we justify further our choice of Alloy as a
target language.

The remainder of the paper is structured as follows: Sect. 2 gives a general
background of sequence diagrams, their formalisation with event structures and
Alloy. Section 3 addresses model composition syntactically (at the UML level)
and semantically (over labelled event structures) which guides the model trans-
formation from sequence diagrams onto Alloy as discussed in Sect. 4. Section 5
describes model composition via Alloy, and Sect. 6 gives some details of our tool.
Finally, Sect. 7 describes related work and Sect. 8 concludes the paper.

2 Background

2.1 Sequence Diagrams

UML sequence diagrams capture scenarios of execution as object (or in some
cases component) interactions. Each object has a vertical dashed line called
lifeline showing the existence of the object at a particular time. Points along the
lifeline are called locations (a terminology borrowed from LSCs [8]) and denote
the occurrence of events. The order of locations along a lifeline is significant
denoting, in general, the order in which the corresponding events occur.

A message is a synchronous or asynchronous communication between two
objects shown as an arrow connecting the respective lifelines, that is, the under-
lying send and receive events of the message. We only consider synchronous
communication in this paper, even though both forms of communication can
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Fig. 1. A sequence diagram with nested fragments.

be addressed in our approach. An interaction between several objects consists
of one or more messages, but may be given further structure through so-called
interaction fragments. There are several kinds of interaction fragments including
seq (sequential behaviour), alt (alternative behaviour), par (parallel behav-
iour), neg (forbidden behaviour), assert (mandatory behaviour), loop (itera-
tive behaviour), and so on [4]. Depending on the operator used, an interaction
fragment consists of one or more operands. In the case of the alt fragment, each
operand describes a choice of behaviour. Only one of the alternative operands
is executed if the guard expression (if present) evaluates to true. If more than
one operand has a guard that evaluates to true, one of the operands is selected
nondeterministically for execution. In the case of the par fragment, there is a
parallel merge between the behaviours of the operands. The event occurrences
of the different operands can be interleaved in any way as long as the ordering
imposed by each operand as such is preserved.

Finally, interaction fragments can be nested producing expressive and com-
plex scenarios of execution. One simple example illustrating the concepts above
and with a parallel nested within an alternative fragment is given in Fig. 1. In
this case, all messages (from m1 to m4) are sent synchronously between objects
a and b. The locations along the lifeline of object a are shown explicitly. The
importance of locations as well as the effect produced through the nesting of
fragments (i.e., the possible traces of execution) are described in the next sub-
section. In particular, the distinction between the syntactic notion of a location
on a sequence diagram from its semantic counterpart of an event will be clarified.

2.2 Formal Model

Several possible semantics for sequence diagrams have been defined (see [9] for
an overview). In this paper we use the semantics defined in [6] which introduces
a very simple and intuitive behavioural model to capture interactions, and is the
only true-concurrent semantics available for sequence diagrams.

Prime event structures [5], or event structures for short, describe distributed
computations as event occurrences together with binary relations for expressing
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causal dependency (called causality) and nondeterminism (called conflict). The
causality relation implies a (partial) order among event occurrences, while the
conflict relation expresses how the occurrence of certain events excludes the
occurrence of others. From the two relations defined on the set of events, a
further relation is derived, namely the concurrency relation co. Two events are
concurrent if and only if they are completely unrelated, i.e., neither related by
causality nor by conflict.

Formally, an event structure is a triple E = (Ev,→∗,#) where Ev is a
set of events and →∗,# ⊆ Ev × Ev are binary relations called causality and
conflict, respectively. Causality →∗ is a partial order. Conflict # is symmetric
and irreflexive, and propagates over causality, i.e., e#e

′ →∗ e
′′ ⇒ e#e

′′
for all

e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent, e co e

′
iff ¬(e →∗ e

′ ∨e
′ →∗

e ∨ e#e
′
).

We omit further technical details on the model, but note that for the appli-
cation of event structures as a semantic model for sequence diagrams we use dis-
crete event structures. Discreteness imposes a finiteness constraint on the model,
i.e., there are always only a finite number of causally related predecessors to an
event, known as the local configuration of the event. A further motivation for
this constraint is given by the fact that every execution has a starting point or
configuration.

Event structures are enriched with a labelling function (usually a total func-
tion μ : Ev → L that maps each event onto an element of the set L). This
labelling function is necessary to establish a connection between the semantic
model (event structure) and the syntactic model (here a sequence diagram).

Intuitively, each location marked along a lifeline of an object in a sequence
diagram corresponds to one (possibly more) event(s) in the labelled event struc-
ture. The set of labels used could be the set of locations in a sequence diagram
but is usually more concrete information on what the location represents: the
initialisation of an object, sending/receiving a message, beginning/ending an
interaction fragment, etc.

Consider the locations marked on Fig. 1 for object a. The events in the model
shown in Fig. 2 have a direct correspondence to the locations of object a.

The graphical representation of the event structure Ea shows immediate
causality between events (e.g., e0 → e1) and direct conflict (e.g., e2#e3). By
conflict propagation we also have e2#e4, etc. Unrelated events are concurrent
(e.g., e5 co e6). Intuitively, events e1 and e4 denote the beginning of the alter-
native and parallel fragments respectively. Consequently events e5 (denoting the
receipt of message m3) and e6 (denoting the receipt of message m4) are concur-
rent. Events e81 and e82 both correspond to location l8 denoting the end of the
alternative fragment. These events must be in conflict because they represent
different ways to reach the location. Note that there cannot be one end event
in this case, because conflict propagates over causality and it would lead to an
event in conflict with itself and hence an invalid event structure (conflict is ir-
reflexive). Some event labels are given where (m1, s) denotes sending message
m1, and (m3, r) denotes receiving message m3.
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Fig. 2. Event structure for object a of Fig. 1.

Let I denote the set of objects involved in the interaction described by
sequence diagram SD. A model MSD = (E,μ) for a sequence diagram SD
is obtained by composition of the models Mi = (Ei, μi) of each object instance
i ∈ I. In the composed model, the set of events Ev is such that e ∈ Ev iff there
is an object i ∈ I such that e ∈ Evi, or (e1, e2) ∈ Ev iff there are two objects
i �= j ∈ I with e1 ∈ Evi, e2 ∈ Evj , μi(e1) = (m, s) and μj(e2) = (m, r). In
other words, shared events (e1, e2) correspond to message synchronisation. To
keep it simple, we assume that μ : Ev → Mes is a partial function defined over
shared events only and indicating the message exchanged. I.e., μ(e1, e2) = m
iff μi(e1) = (m, s) and μj(e2) = (m, r) for some i, j ∈ I. More details on the
semantics of sequence diagrams using event structures can be found in [6].

2.3 Alloy

Alloy [10] is a declarative textual modelling language based on first-order rela-
tional logic. An Alloy model consists of a number of signature declarations, fields,
facts and predicates. Furthermore, each signature denotes a set of atoms, which
are the basic entities of Alloy. Alloy is supported by a fully automated constraint
solver called Alloy Analyzer, which permits the analysis of system properties by
searching for instances of the model. It is possible to check whether certain prop-
erties of the system are present. This is achieved via an automated translation
of the model into a Boolean expression, which is then analysed by SAT solvers
such as SAT4J [11] embedded within the Alloy Analyzer. The Alloy Analyzer has
been used in various applications including the composition of static models [2].

In this paper, Alloy is used as part of an automated tool to compose sequence
diagrams. The composition is based on a set of logical constraints which we des-
ignate merging glue. Alloy is a language for describing the structural information
underlying a design model whereas labelled event structures are needed to make
sure the semantics of the behavioural model and the composition are as expected.

The choice of Alloy as a target framework makes it straightforward to find
a model (if available) for the composition of sequence diagrams. The approach
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converts each sequence diagram into a set of logical constraints to which it is
simple to add additional constraints capturing the merging glue. Alloy solves
these constraints to find a model that complies to both sequence diagrams and
the glue.

3 Model Composition

For the integration of two or more scenarios we define syntactic composition of
sequence diagrams and its underlying semantics.

Our mechanism for composition of sequence diagrams considers interleaving
of diagrams and shared behaviour. In the first case, diagrams evolve completely
autonomously whereas in the latter case diagrams have shared behaviour (shared
objects and messages). We treat the cases separately and consider only the com-
position of two diagrams. The case for an arbitrary number of diagrams is easily
generalised from here. In the sequel, let SD1 and SD2 be two sequence diagrams,
with sets of instances and messages given by I1, I2, Mes1 and Mes2 respectively.

The interleaving of diagrams SD1 and SD2 with Mes1∩Mes2 = ∅ is written
SD1 ‖ SD2 and is defined syntactically as par(SD1, SD2). In other words, it
consists of a diagram with a par fragment and two operands where each operand
contains the behaviour described in SD1 and SD2 respectively.

Semantically, the model for SD1 ‖ SD2 is an event structure MSD1‖SD2 =
(E,μ) where Ev = Ev1 ∪ Ev2, all relations are preserved, and μ(e) is defined
for all e iff μi(e) is defined for some i ∈ {1, 2} in which case μ(e) = μi(e). For
shared instances o ∈ I1 ∩ I2 we further match the initial and maximal events
in Ev1 and Ev2. We illustrate this with an example (see Fig. 3) showing shared
objects but different messages.

The models associated to SD1 and SD2 are given in Fig. 4.
As described above, if we compose both models we can merge initial and

maximal events for shared objects which in this case corresponds to events ea0
and ea0

′
, eb0 and eb0

′
, ea2 and ea2

′
, and eb2 and eb2

′
. The final composition

SD1 ‖ SD2 is shown in Fig. 5. This is the exact model obtained for a sequence
diagram which consists of a parallel fragment with two operands where the first
operand is taken from SD1 and the second operand is taken from SD2.

The composition of diagrams SD1 and SD2 with shared behaviour is written
SD1 ‖G SD2 where G = Mes1 ∩ Mes2 indicates the shared behaviour.

If G = Mes1, in other words, all the behaviour in SD1 is shared, then we say
that SD1 is syntactically contained in SD2, and the composition SD1 ‖G SD2

can be reduced to SD2.

m2

a:A

l2

l1
l0

sd 1
b:B

m1

a:A

p2

p1
p0

sd 2
b:B

Fig. 3. Two simple sequence diagrams.
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Fig. 4. Model for SD1 (left) and SD2 (right).

eb0ea0

ea2

(ea1,eb1)
m1

(ea1’,eb1’)
m2

eb2

Fig. 5. Model for SD1 ‖ SD2.

We now consider the case that G = {m}. This case can be generalised to a
finite number of messages, but we omit it here for simplicity.

Consider SD1 = seq(ϕ0,m, ϕ1) and SD2 = seq(ϕ0
′
,m, ϕ1

′
) where seq

denotes a sequential fragment, ϕ0, ϕ1, ϕ0
′
and ϕ1

′
are interactions which on their

own would define a valid sequence diagram and may be empty. The composition
SD1 ‖G SD2 is defined syntactically by seq(par(ϕ0, ϕ0

′
),m, par(ϕ1, ϕ1

′
)).

Note that the seq fragment describes the default (sequential) behaviour of
a sequence diagram and can be omitted in a diagram, but is useful here to
describe composition in general. For example, SD1 from Fig. 3 can be seen as
seq(ϕ0,m1, ϕ1) with ϕ0 and ϕ1 both empty.

Consider a more complex case where SD1 = f(seq(ϕ0,m, ϕ1), ϕ2) and SD2 =
seq(ϕ0

′
,m, ϕ1

′
) where f denotes an arbitrary fragment (e.g., par, alt, etc.). The

composition SD1 ‖G SD2 is defined syntactically by:

f(seq(par(ϕ0, ϕ0
′
),m, par(ϕ1, ϕ1

′
)), ϕ2)

In other words, if the shared behaviour is contained in an arbitrary fragment,
then this fragment is preserved in the composed behaviour.

Consider the sequence diagrams SD1 and SD2 given in Fig. 6 which share
message m2.

The sequence diagrams can be seen as SD1 = alt(ϕ0, seq(∅,m2, ϕ1)) and
SD2 = seq(∅,m2, ϕ1

′
)), with ϕ0 corresponding to a simple interaction with m1,

and similarly for ϕ1 and message m3, and ϕ1
′
and message m4. The composition

SD1 ‖G SD2 as outlined above is given by alt(ϕ0, seq(∅,m2, par(ϕ1, ϕ1
′
))). The

composed diagram is our first sequence diagram from Fig. 1.
Given the syntactic composition of two sequence diagrams we derive the

model (a labelled event structure) as described before.
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Fig. 6. Two sequence diagrams with shared message m2.

4 Model Transformation to Alloy

We implement our composition method with the help of MDA techniques [7]. Due
to space restrictions, in this paper we only discuss some of the transformation
rules from sequence diagrams to Alloy. These rules can be implemented via any
MDA transformation engine. Our approach is such that if an Alloy model can
be solved, it generates all possible solutions each of which corresponds to a run
of the original sequence diagram and in accordance to the formal semantics
defined in the previous sections. The following transformation rules illustrate
the transformation for sd1 from Fig. 6.

4.1 Lifeline and Message

Each lifeline in a sequence diagram, which corresponds to an object with a name
and of a given class (type), is transformed into Alloy code as follows.

1 abstract sig Lifeline {}
2 one sig A {} //Lifeline Class
3 one sig a {} //Lifeline name
4 one sig sd1_L_1 extends Lifeline {name: a, type: A }
5 one sig sd1_L_2 extends Lifeline {name: b, type: B }

A Lifeline corresponds to an abstract signature refined further by concrete
lifelines from a sequence diagram. The code above shows the transformation of
sd1 lifelines in Alloy. Lines 4 and 5 give concrete lifeline declarations sd1 L 1
and sd1 L 2. The keyword one in the declaration indicates that there is exactly
one instance of the signature. Furthermore, a lifeline signature has fields name
to specify the object name and type to specify its class.

A message has two message ends, a send and a receive events, which cover
a lifeline. A receive event cannot occur unless its corresponding send event has
happened before. An event is either a send or a receive event.

7 abstract sig Event { cover :one Lifeline , next :set Event }
8 abstract sig Message { send :one Event , receive :one Event }
9 //a message send event always occurs before the associated receive event

10 fact MessageEventsOrder {all m: Message |
11 m.receive in m.send.next }
12 // all events correspond to send or receive events of one message
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13 fact {all e: Event | one m: Message |
14 e = m.send or e = m.receive }

The rule above creates the domains Event and Message. In both cases these
are abstract signatures with two fields. The Event signature has a field cover
corresponding to a relationship with the lifeline it belongs to, and a field next
denoting a relationship with a set of events. This relationship corresponds to the
immediate causality relation from our labelled event structures. The Message
signature has two fields send and receive both corresponding to one event.
The facts on lines 10–14 describe two constraints over the elements in the domain
as mentioned before and are straightforward.

A message also has a name which is introduced when creating a concrete
message.

15 lone sig sd1_m1 extends Message { name : m1}
16 lone sig sd1_m2 extends Message { name : m2}
17 lone sig sd1_m3 extends Message { name : m3}

In diagram sd1 of Fig. 6 we have three messages m1,m2 and m3. The lines
above show the declaration of these messages. The messages are declared as
lone (a multiplicity keyword in Alloy meaning 0 or 1). This has to do with the
fact that messages within an alternative fragment are not guaranteed to occur.
We will explain this in more detail in the transformation rule for the alternative
fragment.

18 lone sig sd1_e1 extends Event {}
19 lone sig sd1_e2 extends Event {}
20 lone sig sd1_e3 extends Event {}
21 lone sig sd1_e4 extends Event {}
22 lone sig sd1_e5 extends Event {}
23 lone sig sd1_e6 extends Event {}
24

25 // assigning events to messages
26 fact { sd1_m1.send = sd1_e1 and sd1_m1.receive = sd1_e2 and
27 sd1_m2.send = sd1_e3 and sd1_m2.receive = sd1_e4 and
28 sd1_m3.send = sd1_e5 and sd1_m3.receive = sd1_e6 }
29

30 // assigning events to lifelines
31 fact EventToLifeline {
32 sd1_e1. cover =sd1_L_1 and sd1_e2. cover =sd1_L_2
33 ...
34 sd1_e5. cover =sd1_L_1 and sd1_g6. cover =sd1_L_2 }

Six events are declared in lines 18–23 above. Events are always associated
to the sending or receiving of messages. How these events are associated to the
messages declared in lines 15–17 is given in the fact of lines 26–28, and which
lifeline they cover is given in the fact of lines 31–34. All events are declared
as lone as the corresponding messages fall within the scope of an alternative
fragment and may therefore not occur.

In the case of sequential messages without interaction fragments, or messages
within the same operand (e.g., m2 and m3), this implies a total order among
the events of the lifeline of an object. This is specified in Alloy by another
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logical constraint called GeneralOrder shown below for the events underlying
messages m2 and m3.

36 fact GeneralOrder {
37 sd1_e6 in sd1_e3.ˆnext and sd1_e5 in sd1_e4.ˆnext
38 }

The fact above specifies the expected ordering between events e3 (m2.send)
and e6 (m3.receive), and between e4 (m2.receive) and e5 (m3.send). No
statement is made about the relation between these events and those underlying
m1 because they belong to a different operand and are hence not related by
causality.

4.2 Alternative Combined Fragment

For the alternative interaction fragment (aka combined fragment in UML’s meta-
model [4]), the transformation generates a set of abstract signatures as follows.

39 abstract sig Combinedfragment {
40 operand:set Operand}
41 abstract sig Operand{cover:set Event+Combinedfragment}
42

43 fact {all e: Event | lone op: Operand |
44 e in op. cover }
45

46 fact {all cf: Combinedfragment |
47 lone op: Operand | cf in op. cover }
48

49 fact {all op: Operand |
50 one cf: Combinedfragment | op in cf. operand }
51

52 // alt: exactly one operand will be executed
53 fact Alt-Execution {all CF: Combinedfragment |
54 ( CF.TYPE = CF_TYPE_ALT) => # CF.operand = 1}

These abstract signatures represent the main elements of combined fragments
and how interactions are defined at the metamodel level in UML [4]. The abstract
signature for CombinedFragment consists of one or more operands whereby
operands contain events (i.e., cover the send and receive events of the messages
defined inside it) and/or combined fragments nested within the operand. In
addition, three facts impose further constraints on the elements of these domains.
Fact on line 43 states that every event e belongs to at most one operand, and
fact on line 46 states that every combined fragment cf belongs to at most one
interaction operand (indicating fragment nesting). Fact in line 49 states that all
interaction operands are operands of only one combined fragment. Finally, the
fact in line 53 defines that at most one operand is executed. This implies that
a different set of events may occur for each possible run of the code preserving
the semantics of alternative combined fragments.

56 one sig CF_TYPE_ALT {}//Combinedfragment Type
57 one sig sd1_CF extends Combinedfragment{TYPE = CF_TYPE_ALT}
58 lone sig sd1_Operand_1 extends Operand{}
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59 lone sig sd1_Operand_2 extends Operand{}
60

61 // Covering: Combined Fragment->Operands
62 fact{
63 sd1_Operand_1 in CF.operand
64 sd1_Operand_2 in CF.operand}
65 // Connect events to Operands
66 fact EventToOp{
67 sd1_e1 in sd1_Operand_1.cover and sd1_e2 in sd1_Operand_1.cover and
68 sd1_e3 in sd1_Operand_2.cover and sd1_e4 in sd1_Operand_2.cover and
69 sd1_e5 in sd1_Operand_2.cover and sd1_e6 in sd1_Operand_2.cover}

In line 56, the signature CF TYPE ALT declares the type of the combined
fragment, in this case an ALT. Following this, in lines 57–59, three signatures
define the combined fragment and the number of operands used, in this case
Operand 1 and Operand 2. The operands (lines 58–59) are declared as lone
which allows the previous fact in line 53 to execute only one operand. Moreover,
the facts in line 62 and 66 establish a connection between the combined fragment
and its operands, and between the operands and their events, respectively.

4.3 Parallel Combined Fragment

In Alloy the representation of a parallel combined fragment (not present in
Fig. 6) is similar to that of an alternative combined fragment, but without fact
Alt-Execution. The following is an example.

1 one sig CF_TYPE_PAR {}//Combinedfragment Type
2 one sig sd1_CF extends Combinedfragment{
3 TYPE = CF_TYPE_PAR}
4 one sig Operand_1 extends Operand{}
5 one sig Operand_2 extends Operand{}
6 // Covering: Combined Fragment->Operands
7 fact{
8 Operand_1 in CF.operand
9 Operand_2 in CF.operand}

10 // Connect events to Operands
11 fact EventToOp{
12 sd1_e1 in sd1_Operand_1.cover and sd1_e2 in sd1_Operand_1.cover and
13 .........
14 sd1_e5 in sd1_Operand_2.cover and sd1_e6 in sd1_Operand_2.cover}
15

16 fact{all CF: Combinedfragment, OP1: CF.operand, OP2: CF.operand,
17 E1: OP1.cover, E2: OP2.cover, E3: OP1.cover | no E4: OP2.cover | OP1 != OP2
18 and E2 in E1.next and E3 in E4.next }

All operands of a parallel fragment are declared as one since they are nec-
essarily executed. The Alloy model that contains a parallel combined fragment
must show a parallel execution of Operand 1 and Operand 2, i.e., the events
covered by each operand are not related and can thus occur in an arbitrary order.
This is given in the fact of line 16, and is in accordance to the labelled event
structure semantics given earlier. It implies a relation of concurrency between
events in different operands whilst the events within an operand remain ordered
in the usual way. Therefore, this fact guarantees the preservation of the correct
and intended order of events in a parallel fragment.
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5 Composition via Alloy

In order to compose Alloy models that have been obtained by transformation
from sequence diagrams, two fundamental conditions must be satisfied:

– Matching elements must indicate correspondence between equivalent elements
of the source. The purpose of matching is to uncover how two models corre-
spond to each other.

– Merging of equivalent elements identified earlier producing a composed version
of the models.

In Alloy, these conditions can be encoded by adding facts that must be sat-
isfied to match and merge equivalent elements. For example, consider two Alloy
models A1 and A2 each with two lifelines, where these lifelines have the same
name and type. In order to compose the lifelines with the same name from each
one of the models we have to specify the following fact.

fact lifelineEquality {
all L1: A1_Lifeline_1 , L2: A2_lifeline_1 |
(L1.type=L2.type && L1.name=L2.name) =># L2 =0}

The Alloy code above shows that if the matching condition is satisfied, then
lifelines will be merged into one given by L1 and L2 will be hidden. The same
is true of messages. For example, if the two Alloy models A1 and A2 have two
messages with the same name and involving the same objects (lifelines) then
Alloy will compose these messages into one.

The idea of the procedure of merging entered models in Alloy is as follows.
First we generate a new Alloy model A3 representing the result of merging the
original models. Second, we copy all the elements of A1 to A3. Third, we copy all
elements of A2 except the duplication elements such as abstract signatures that
are shared in the two models. Fourth, for any pair of equal elements, one of the
signatures keyword has to be changed from one to lone to be able to merge it
and then add the merging facts mentioned above. Finally, in terms of merging
messages, the merged message events (send and receive) are replaced with their
equivalent message events to apply the behaviour environment of both models
into this message.

To validate our approach, we implemented the example of Fig. 6 in Alloy.
After solving the merged model, we obtained three Alloy solutions (also referred
to as instances). These instances show exactly the expected behaviour underlying
Fig. 1 with possible traces of execution: only m1 occurs, or m2·(m3 co m4) occur.
Figure 7 shows two Alloy instances, one for each of the possible executions of the
second operand of the alternative fragment. These instances show in particular
that m2 is always before m3 and m4, and m3 and m4 are in parallel. The
complete Alloy code for the example used as well as the composed model is
available from our research webpage1.

1 http://www.cs.bham.ac.uk/∼bxb/research/matching-merging/alloy-example.

http://www.cs.bham.ac.uk/~bxb/research/matching-merging/alloy-example


112 J. Bowles et al.

Fig. 7. Alloy instance obtained from merging sd1 and sd2 of Fig. 6.

6 The SD2Alloy Tool

Our approach relies on Model Driven Development (MDD) techniques that aim
to enhance the role of modelling in software development [12]. It allows the
developer to model the required functionality and the overall architecture of the
system instead of calling on developers to spell out every detail of the system’s
implementation using a programming language. Hence, MDD results in reduced
development cycles and lower cost of software production.

To ensure that the methods developed can be adopted by the software indus-
try, it is crucial to follow standards set by the Model Driven Architecture (MDA)
framework [7]. MDA is a framework for software development proposed by the
Object Management Group (OMG). It provides a set of guidelines for the struc-
turing of models and their specifications. It also defines a standard for applica-

Fig. 8. An overview of MDA.
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Fig. 9. The SD2Alloy architecture.

tion design and implementation. Central to MDA is the notion of metamodels
[13]. A metamodel defines all elements that are available for a designer to use
when modelling with a language. In MDA, a model transformation is defined
by mapping the meta-elements, i.e., the constructs of the source metamodel
(e.g., sequence diagrams) are mapped onto constructs in the target metamodel
(e.g., Alloy) as Fig. 8 shows. Subsequently, every model arising from the source
metamodel can be transformed automatically to an instance of the destination
metamodel with the help of a model transformation framework such as SiTra [14].

We now give a brief description of our composition tool SD2Alloy which was
built in accordance to MDA. The transformation rules have been implemented as
an Eclipse plugin. Figure 9 depicts the SD2Alloy architecture. The tool includes a
modified open source tool called Papyrus [16], which allows the user to generate
any number of sequence diagrams, and exports these diagrams as XMI files
so they can be parsed. SD2Alloy parses the XMI files generated by Papyrus
into Java objects using the UML2 library. SiTra is used to transform the UML
sequence diagrams and create the Alloy Java object that produces the Alloy code.

In Fig. 9, two sequence diagrams SD1 and SD2 are transformed individually
to Alloy generating Alloy 1 and Alloy 2 respectively. Moreover, this tool allows the
user to specify composition constraints required in Alloy to merge the entered
models, shown as S and denoting the syntactic matching of model elements. The
composition model obtained is shown as Alloy 3 which corresponds to the union
of all constraints associated to the individual models Alloy 1, Alloy 2 and the glue
contraints in S. If there are no conflicts in Alloy 3 then the Alloy Analyzer produces
an Alloy instance (in fact as many as there are possible traces of execution in
Alloy 3). If no solution can be produced, Alloy highlights the constraints that
are causing a conflict. More details on the tool can be found in [15].

Figures 10 and 11 show two snapshots of the interface of SD2Alloy. In both
cases, to the left we have a list of the current sequence diagrams used (here
sd1.di and sd2.di where di is the extension name given by Papyrus) as well as the
syntactic matching declarations of model elements from the different diagrams
(here sd1-sd2Equality.eq). Different levels of detail can be shown on different
panes in the tool with the editor in the middle showing the current diagram or
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Fig. 10. A snapshot of the SD2Alloy interface.

Fig. 11. Showing Alloy code in SD2Alloy.

code that is being edited. For example, in Fig. 10 we show a diagram and in
Fig. 11 we look at the generated Alloy code for the same diagram. Properties of
elements being edited can also be seen and changed on a separate pane at the
bottom right of the tool.

7 Related Work

Over the last decade, a number of software tools and algorithms have been
designed and implemented to compose behavioural models. Liang et al. [17],
have presented a method of integrating sequence diagrams based on the formal-
isation of sequence diagrams as typed graphs. Rubin et al. [2], illustrate the use
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of the Alloy Analyzer to compose class diagrams based on syntactic properties
of metamodels and the primary model. This approach uses UML2Alloy [18] to
transform UML class diagrams into Alloy and the Alloy Analyzer to compose
these classes. However, their method only composes static models and the com-
positional code produced is generated manually.

In addition, Widl et al. [3] present an approach for composing concurrently
evolved sequence diagrams in accordance to the behaviour given in state machine
models. They describe the problem of merging sequence diagrams formally using
SAT solvers. However, similarly to [17], the approach does not merge complex
sequence diagrams.

When looking at the integration of several model views or diagrams, [19]
presents a method of mapping a design consisting of class diagrams, OCL con-
straints and sequence diagrams into a mathematical model for detecting and
analysing inconsistencies. Finally, [20] propose a further approach to composi-
tion of sequence diagrams by composing sequence diagram operators directly.
This approach is very different from ours and can be seen as a high-level com-
position strategy at the UML level.

8 Conclusions

In this paper, we have defined a new compositional semantics of sequence dia-
grams based on the true-concurrent model of labelled event structures, and pre-
sented an automated technique based on Alloy to generate a composed model
in accordance to the true-concurrent semantics.

The underlying developed tool takes as input one or more sequence diagrams,
and automatically constructs Alloy solutions for the composition. Each of the
solutions corresponds to a run that can be derived from the underlying labelled
event structure of the composed sequence diagram. Our approach has been eval-
uated through a series of examples and larger case studies.
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Abstract. Use case driven software development starts, in general, with
abstract problem domain descriptions of how the users see themselves using the
system being developed, and involves a series of iterative refinement steps that
incrementally add detail to the use case model, bringing those descriptions to the
solution domain. Use cases involve interactions between human actors and the
system state. These interactions are held within interaction spaces, which are
modeled through a user interface model. Business applications are in general
data-driven, comprising a set of typical functions that the users can make on the
system. When a use case driven approach is used to develop data-oriented
applications those typical functions pop-up as use case patterns, and their
interactions occur within a set of user interface patterns. This paper presents a set
of use case patterns and the corresponding user interface patterns typically found
in data-oriented business applications. For that, a user interface metamodel and
corresponding concrete user interface modeling language are also proposed.

Keywords: Use case model � Use case patterns � Interaction modeling � User
interface model � User interface patterns � Model-driven development

1 Introduction

Use cases are present in most software projects, and evolve iteratively since the first
analysis activities until the activities of design and coding. Use case driven software
development encourages software engineers to follow an approach that is guided by the
system functionality. This approach, typically starts with high-level problem domain
descriptions of how the users see themselves using the system being developed, and
involves a series of iterative refinement steps that incrementally detail the use case
model, bringing those descriptions to the solution domain [1]. These refinement steps
comprise the simultaneous development of a domain model, which models the domain
entities and the structural relations between them [2], and the model of the system state
on which the system functionality will act upon. Such a process produces increasingly
detailed use case models and domain entity models that must be kept consistent with
each other [3].

According to the UML specification [4], a use case, being a BehavioredClassifier,
specifies some offered behaviors, which involve interactions between its actors and a
subject comprising a collection of classifiers. This collection of classifiers that form the
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subject of a use case may be the system state or a partial view of the system state
containing the domain entities affected by the use case behaviors (its functionality). Use
case behaviors may be semi-formally specified, in UML, through various means,
including state machines, activities, interactions, pre-conditions, post-conditions and
natural language text [4].

As the use case model becomes more detailed, with use cases including or being
extended by other, more concrete, use cases, its use case specifications become more
obvious, and each use case behaviors may be informally inferred from a short
description or from the use case name itself. These use case behaviors act on one or
more system domain entity instances (its subject or collaborative entity classes) [4], so
the use case model needs to be closely related to the system domain model. This
proximity is in the sense that the use case behaviors refer to entities from the domain
model [5].

Indeed, at platform independent level, use case (UC) and domain models are two
sub-models (views) of one and the same system model. The former models a vision of
the system functionality, and the latter models a vision of its structural features [2].
Other relevant model views are the system user interface (UI) view, modeled by a user
interface model (UIM), and a behavioral view, which is, in this approach, divided
between class methods and invariant constraints in the domain model and through use
case behaviors, which may be specified as mentioned above [5].

When confining ourselves to data-oriented applications, which constitute the vast
majority of business applications, the use case model tends to present a set of use case
patterns that comprise typical functions that the users can make on the system [6].
Similarly, the spaces (user interface) where those use case patterns interactions take
place form, at a platform independent level, a set of user interface patterns. This paper’s
main contribution is the presentation, in Sect. 5, of the user interface patterns related to
the use case patterns previously presented in [6], and summarized in Sect. 3. Another
major contribution is the proposition of a UI metamodel, aligned with UML, and the
corresponding UI modeling concrete notation, in Sect. 4.

The next section addresses some background issues concerning abstract user
interface models and the UML use case metamodel. Section 3 presents the mentioned
set of use case patterns typically found in business (data-oriented) applications. In
Sect. 4, a UI metamodel and the concrete notation for constructing UI models is
proposed, and in Sect. 5, the set of abstract user interface patterns corresponding to the
use case patterns previously defined, is presented. Section 6 illustrates the relation
between use case and UI patterns through a demonstration case. Section 7 overviews
related work and, finally, Sect. 8 concludes the paper.

2 Background

This section addresses some background issues, namely user interface models and the
Canonical Abstract Prototypes (CAP) notation for modeling abstract user interface
models, in the next subsection, and the UML use case metamodel, in Subsect. 2.2.

CAP will be used, in Subsect. 4.2, as a basis for proposing a concrete notation for
abstract UI models that conform to the metamodel proposed in Sect. 4.
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2.1 Abstract User Interface Models

User Interface model-based development techniques build a more or less declarative
User Interface Model (UIM), which is typically composed of various sub-models, or
model views. This UIM captures the relevant aspects of the UI and is typically
developed using a model-based user interface development environment (MB-UIDE)
[7]. Different MB-UIDEs use different kinds of models specified with different kinds of
modeling languages.

Typically, a model-based UI development process begins with the construction of a
task model [7, 8]. Afterwards, an abstract interaction model (or abstract UI model) is
built and at the end of the process a concrete interaction model (or concrete UI model)
is constructed.

User Interface Models provide a description of the UI at different levels of
abstraction. Platform dependent (concrete) user interface models make use of widgets
and functionality that may be specific to one given platform. Platform independent
declarative (abstract) user interface models provide an abstract description of the UI,
which can be reused and can be refined to more concrete (platform dependent) models.

UIMs can, then, be found at different levels of abstraction during the UI design
process. A UIM provides an infrastructure for allowing automated tasks in the UI
design and implementation processes.

Canonical Abstract Prototypes is an approach and notation, proposed by Con-
stantine [9], for capturing the presentation aspects of interactive systems. Canonical
Abstract Prototypes capture only the abstract presentation aspects of a user interface, by
making use of abstract interaction objects (AIO), which are UI elements that don’t have
a unique concrete representation.

CAP is based on 3 extensible generic universal symbols [9]:

1. Material (or generic container): represents information, data or other objects shown
to the user during a task.

2. Tool (or generic action/operation): represents UI objects that can be used to
manipulate, control or transform materials.

3. Hybrid (or active material): represents UI components with characteristics both
from materials and tools like, for instance, editable fields or lists of selectable items.

Figure 1 shows the main symbols of the canonical abstract notation, which allow the
development of abstract user interface models (AUIM) like the one shown in Fig. 2. The
figure shows a prototype of a selectable list and the output of detailed information about
the selected list item. The symbol ⋙ represents repetition and, in the example, it means
that the aligned elements in the Film Clips selectable collection are repeated in every line.

2.2 Use Cases in the UML Metamodel

Use cases can be used both for modeling the external requirements of a subject and the
functionality offered by a subject. In both cases the subject can be the system domain
model or a subset of it. Moreover, use cases can also be used to specify the require-
ments the subject (the system) poses on its environment, by defining how the actors
should interact with the subject [4].
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The UML metamodel for use cases (see Fig. 3) supplies two use case relations,
namely Extend and Include, which allow the modeler to organize a use case behaviors
into further refined behaviors that are included in a bigger, more complex, use case, and
optional or conditional behaviors that may extend the bigger use case by the actors’
option or when certain pre-conditions hold.

Besides those two relations, as a (Behaviored) Classifier, a use case may also
specialize another use case through an Inheritance relation. A use case that inherits
from another use case, inherits all its features (included use cases, associated Domain
Model Classifiers and Features, etc.).

Use cases comprise behaviors that can be instantiated within an interaction. Those
behaviors consist of a specification of events that may occur dynamically over time [4].
On a behavior invocation, the actual sequence of events that occur, and are consistent
with the behavior specification, is called an execution trace [4]. An execution is, then,
an instance of a Behavior.

Fig. 1. Canonical abstract prototypes symbols (adapted from [9]).

Fig. 2. Example of a CAP for a Film Clip Viewer (taken from [9]).
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A system use case model acts upon the system domain model, whose instance
forms the system state.

Use cases define behaviors that may modify the system state. Those behaviors
occur within interactions, which form the space where actors interact with the system,
in the scope of a use case.

A use case behavior can be seen as an orchestrator of its owned subject’s behavioral
features. In a model-driven setting, a use case behavior can be defined, for instance,
through Alf, OMG’s proposal for Action Semantics concrete notation [10].

The simpler types of use case behavior consist of calling CRUD (create/retrieve/
update/delete) operations over domain entities (the use case subject), user-defined
operations enclosed in methods within the use case subject, and navigational operations
over domain entities that are available within each use case.

The use case model also identifies the actors (user roles) that have access to each
use case (system functionality), thus providing authorization information about the
system.

When focusing on data-oriented applications, a set of use case patterns, and
associated behavior and domain model entities (subjects), can be identified, as
addressed in the next section.

3 Use Case Patterns for Data-Oriented Applications

Data oriented applications have as main functionality the management of stored enti-
ties’ information. Operations in such applications typically include listing the (possibly
filtered) instances of an entity, editing entity properties, defining or modifying entities’
relationships, etc., and may be grouped in the following use case patterns [3, 6]:

Fig. 3. Use cases portion of the UML metamodel (taken from [4]).
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• Manage an entity instance;
• Manage dependent related entity instances;
• Manage independent related entity instances;
• Manage dependent related entity collections;
• Manage independent related entity collections.

This section presents these typical functionality patterns, modeled as use case
diagrams, taking the form of use case patterns that can be used in constructing a
system’s use case model.

Two categories of use cases can be distinguished in the patterns presented herein
[3, 11]:

• Independent use cases: can be initiated directly, and so can be linked directly to
actors, which initiate them. Independent use cases cannot extend and cannot be
included in any other use case.

• Dependent use cases: can only be initiated from within other use cases, called
source use cases, because they depend on the context set by these. Dependent use
cases extend or are included by the source ones, according to their optional or
mandatory nature, respectively.

Some use cases may exhibit characteristics from either of these categories,
depending on the use case where the actor-system interaction begins.

3.1 Manage an Entity Instance

Managing an entity instance typically involves listing all or some of the existing
instances, and selecting one of those instances for editing (retrieving its information for
visualizing, updating or deleting it), or creating a new instance.

“Manage an entity instance” is, thus, a use case pattern comprising three use cases
where use cases for creating an entity instance (Create E1; see Fig. 4(a)) and editing an
existing instance (Retrieve, Update, Delete E1) are dependent of, and extend, the use
case for listing existing instances (List E1).

List E1 may also be extended with a use case for defining filtering criteria. And, of
course, Create E1 might also be directly accessed by actors.

As specified in [3, 11], each use case references an entity (its subject) through a
tagged value, for consistency between models. All use cases of this pattern refer to the
same entity in the domain model (E1).

3.2 Manage Dependent Related Entity Instance

A dependent related entity instance is an instance of an entity E2 that has a “one to one”
or a “zero-or-one to one” association with E1 (refer to Fig. 4(b)).

Managing the instance of E2 associated to a given instance of E1 typically involves
creating a new related instance (Create Related E2, in Fig. 4(b)), or editing the existing
related instance (Retrieve, Update, Delete Related E2).
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Fig. 4. Use case patterns and the corresponding appropriate patterns in the domain model.
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These two use cases are available from within the use case that allows creating or
editing the instance of E1 (CRUD E1, in Fig. 4(b)).

“Manage dependent related entity instance” is, therefore, a use case pattern com-
prising the three use cases referred to above, where CRUD E1 references instance E1,
in the case of a “zero-or-one to one” association between E2 and E1, and it needs to
reference E1 and E2, in the case of a “one to one” association between the two
instances.

The other two use cases need to reference, as subject, both instance E1 and E2,
because, creating or updating E2 always demands a related E1.

3.3 Manage Independent Related Entity Instance

An independent related entity instance is an instance of an entity E2 that has a “one to
many” or a “zero-or-one to many” association with E1.

Managing the instance of E2 associated to a given instance of E1 typically involves
linking (Select and Link Related E2, in Fig. 4(c)) or unlinking (Unlink Related E2) an
existing instance of E2, or simply retrieving its information (Retrieve Related E2).
These three use cases are available from within the use case that allows creating or
editing the instance of E1 (CRUD E1, in Fig. 4(c)).

Use case “Select and Link Related E2” includes a use case for listing existing
instances of E2 not related to the instance of E1 being managed (List Unrelated E2).

As a result, “Manage independent related entity instance” is a use case pattern
comprising the five use cases referred to above, where CRUD E1 references an instance
of E1, in the case of a “zero-or-one to many” association between E2 and E1, and it
needs to reference E1 and E2, in the case of a “one to many” association between the
two instances.

The other use cases need to reference instances of both E1 and E2, because,
creating or updating E2 may imply a related instance of E1.

3.4 Manage Dependent Related Entity Collection

Dependent related entities are the instances of an entity E2 that have a mandatory “to
one” association to E1. Managing the collection of instances of E2 associated to a
given instance of E1 typically involves listing all or some of the existing related
instances, and selecting one of those instances for editing (retrieving its information for
visualizing, updating or deleting it), or creating a new related instance.

“Manage dependent related entity collection” is, hence, a use case pattern com-
prising four use cases where use cases for creating a new related instance (Create
Related E2, in Fig. 4(d)) and editing existing related instances (Retrieve, Update,
Delete Related E2) extend the use case for listing existing related instances (List
Related E2), which in turn extends or is included in a use case where E1 is managed
(CRUD E1).
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3.5 Manage Independent Related Entity Collection

Independent related entities are the instances of an entity E2 that have an optional
shared “to one” or “to many” association with E1. Managing the collection of instances
of E2 associated to a given instance of E1 typically involves listing all or some of the
existing related instances, and selecting one of those instances retrieving its information
or unlinking it, or selecting an existing unrelated instance of E2 and link it to E1.

“Manage independent related entity collection” is, so, a use case pattern comprising
five use cases where use cases for selecting and linking a related instance (Select and
Link Related E2, in Fig. 4(e)) and unlinking existing related instances (Unlink Related
E2) extend the use case for listing existing related instances (List Related E2), which in
turn extends or is included in a use case where E1 is managed (CRUD E1). Also, use
case “Select and Link Related E2” includes a use case for listing existing instances of
E2 not related to the instance of E1 being managed (List Unrelated E2).

4 UI Metamodel and Modeling Notation

Use cases comprise behaviors that occur within interactions between a user playing the
role of an actor (user role) and the system. An Interaction occurs within an interaction
space. As seen in Sect. 2, interaction spaces may be specified through a User Interface
Model, which, just as the use case and domain models we have been addressing, shall
be defined in a platform independent manner.

As we are focusing on data-oriented applications, and these typically exhibit
form-based user interfaces, the following subsections present a metamodel for devel-
oping form-based abstract user interface models (AUIM) at a platform independent
level, and the concrete notation for modeling UIs according to the defined metamodel.

4.1 A Metamodel for User Interface Modeling

For enabling the construction of an AUIM, a metamodel for form-based UI modeling is
proposed in this subsection. The proposed metamodel (see Fig. 5), extends UML by
importing its packages, and is an evolution of the metamodel presented in [5, 11],
which has been refined and simplified.

An interaction space (InteractionSpace in the figure) is an abstract UI space where
interaction between a human actor (user role) and the system takes place, in the context
of a use case. An InteractionSpace is composed of InteractionBlocks, which may
contain a set of DataAIO elements. Both interaction spaces and interaction blocks may
contain ActionAIO objects, which may navigate to another interaction space, trigger
operations on the user interface (e.g.: CancelOp), or execute domain operations, which
are behaviors associated to the use cases whose interactions take place within that
interaction space, or methods of the domain entities belonging to the subject of those
use cases (e.g.: CRUD operations).

An InteractionBlock is associated to one entity class (entity), from the domain
model, and may be optionally associated to another class (master_entity) associated
with the former, enabling master-detail information in an interaction space, provided
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that in the same interaction space another interaction block is associated to the latter
entity as its mandatory entity.

An InteractionSpace may contain a menu bar, composed of menus that aggregate
menu items, each one of these allowing the navigation to another interaction space.

An InteractionBlock has four specializations:

• ViewEntity, which represents a form associated to an entity in the domain model;
• ViewList, which represents a list associated to an entity in the domain model;
• ViewRelatedEntity, representing a form associated to two entities in the domain

model that have a dependent instance (“one to one” or “one to zero-or-one”) or
independent instance (“many to one” or “many to zero-or-one”) relation between
them, the one side entity being the master_entity and the other side entity being the
main entity;

• ViewRelatedList, that represents a list associated to two entities in the domain model
that have a dependent collection (“one to many”) relation between them, the one
side entity being the master_entity and the other side entity being the main entity, or

Fig. 5. User interface metamodel.
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an independent collection (“many to many”), being either one of them the mas-
ter_entity and the other one, the main entity.

An InteractionBlock may contain DataAIOs, which may have a type and may be
associated to properties in the domain model entities. A SimpleAIO (DataAIO or Ac-
tionAIO) may enable or disable other SimpleAIOs when interacted with.

4.2 UI Model Concrete Notation

In this subsection, a concrete notation for abstract UI models that conform to the
previously presented metamodel, is proposed.

Note that the concrete presentation of the final UI is not the goal of an AUIM. This
way, the concrete notation for the AUIM shall be simple and leverage the aspects we
want to address within this kind of models, that include the user interface interaction
spaces, their contents, the relation between UI elements, navigation between spaces or
action elements and the behavior triggered by them.

Table 1 shows the proposed concrete symbols for the UI modeling concepts defined
in the proposed UI metamodel. The language symbols are borrowed from CAP.

Table 1. Relation between concrete symbols from CAP and the UI modeling language concepts
proposed in the metamodel.

CAP 
symbol

CAP meaning Proposed Metaclass
Identified by symbol

Constraints

container InteractionSpace

container InteractionBlock

container ViewEntity / 
ViewRelatedEntity

collection ViewList / ViewRelatedList

Selectable collection ViewList / ViewRelatedList selectable = true

input/accepter DataAIO

editable element DataAIO isCalculated = true

element DataAIO isReadOnly = true

action/operation ActionAIO

delete, erase CancelOp (UIOperation)

start/go/to UINavigation

perform (&return) CallDomainOperation
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5 UI Patterns for Use Case Patterns’ Interactions

Just as data-oriented systems typically include the use case patterns identified in
Sect. 3, which can be used in constructing the use case model, also their UIM typically
includes a set of UI patterns in which the use case patterns’ interactions take place.

Figure 6 presents the previously identified use case patterns and the corresponding
UI patterns. The presented UI patterns comprise a set of InteractionBlocks, which may
be in the same or different InteractionSpaces.

Fig. 6. Use case patterns for data-centered applications and the corresponding UI patterns.
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The UI pattern for the “Manage Entity” use case pattern comprises a ViewList that
lists instances of domain entity E1, from where a ViewEntity block for creating new
instances of E1, or a ViewEntity block for retrieving, updating or deleting an existing
instance of E1, may be accessed. Both of these ViewEntity blocks will contain Data-
AIOs related to the attributes of E1. ViewList for listing instances of E1 may contain
DataAIOs related to all attributes of E1 or to attributes used for unique identification of
instances by the users (e.g.: stereotyped as «ident», as proposed in [11]).

UI pattern corresponding to the “Manage Dependent Related Entity Instance” use
case pattern comprises, besides the ViewEntity for performing CRUD operations on an
instance of E1, a ViewEntity for displaying the identification attributes of the related
instance of E2, which will contain UINavigation ActionAIOs for allowing navigating to
ViewEntity blocks for creating a new related instance of E2 or for retrieving, updating
or deleting the existing related instance of E2.

UI pattern corresponding to the “Manage Independent Related Entity Instance” use
case pattern comprises, besides the ViewEntity for performing CRUD operations on an
instance of E1, a ViewEntity for retrieving and displaying all or the identification
attributes of the related independent instance of E2. A “Select and Link Related E2”
UINavigation ActionAIO will allow navigating to a ViewList block for selecting and
linking a new related instance of E2. An ActionAIO is also present for performing the
domain operation of unlinking the existing related instance of E2.

Besides the ViewEntity for performing CRUD operations on an instance of E1, the
UI pattern corresponding to the “Manage Dependent Related Entity Collection” use
case pattern, comprises a ViewList for displaying all or the identification attributes of
the related instances of E2. On selecting an instance of E2 from the list, a UINavigation
ActionAIO will allow navigating to an interaction space containing a ViewEntity block
for retrieving, updating or deleting an existing related instance of E2. Other UINavi-
gation ActionAIOs will allow navigating to a ViewEntity block for creating a new
related instance of E2.

UI pattern corresponding to the “Manage Independent Related Entity Collection”
use case pattern comprises, besides the ViewEntity for performing CRUD operations on
an instance of E1, a ViewList for displaying all or the identification attributes of the
related independent instances of E2. A “Select and Link Related E2” UINavigation
ActionAIO will allow navigating to a ViewList block for selecting and linking new
related instances of E2. An ActionAIO is also present for performing the domain
operation of unlinking an existing related instance of E2.

6 Demonstration Case

This section shows a demonstration case to illustrate some of the use case patterns, and
the corresponding user interface patterns.

Figure 7 shows the partial domain and use case models for a car rental system. The
use case model in the figure has three blocks marked, corresponding to three previously
identified use case patterns: (A) “Manage Entity”, (B) “Manage Dependent Related
Entity Collection”, and (C) “Manage Independent Related Entity Instance”.
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The UI model excerpt corresponding to the bold use cases in the three blocks
marked in the use case model is illustrated in Fig. 8. It starts with an interaction space
“List Customers” with a selectable ViewList associated to Customer, which lists the
instances of Customer. Selecting a customer from the list triggers the navigation to an
interaction space with two interaction blocks: a ViewEntity with editable DataAIOs,
associated to Customer, and a ViewRelatedList associated to CarRentals, with Cus-
tomer as master entity. The selection of a car rental navigates to interaction space “Edit
Related CarRental”, that has a ViewEntity with read only DataAIOs displaying the

Fig. 7. Car rental partial domain and use case models.

Fig. 8. Partial UI model for the car rental example.
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selected car rental details. From there, the user may unlink the Car from the CarRental or
navigate to another space with a ViewList listing the cars unrelated to the selected car
rental, where the selection of a car triggers its linking to the previously selected CarRental.

7 Related Works

A few works that relate abstract UI elements with use cases have been proposed.
Radeke et al. [12] propose an approach that interactively generates an abstract UI
model, and then a concrete UI, by applying UI-patterns to elements of UI sub-models
(e.g. task models). The approach is based on the manual selection of patterns, from a
repository, that drives the UI model construction.

Costa et al. [13] combine CAP and task models to build abstract UI models, and
from there obtain concrete Web Interfaces. The approach is based on the specification
of a UI model comprising an abstract presentation model, a dialog model and a task
model, together allowing the generation of a final concrete UI.

Martínez et al. [14] present a methodology for deriving UIs from early require-
ments existing in an organization’s business process model. Their approach involves
building a use case model and specifying each use case normal and alternative sce-
narios, which are then enriched with UI related information. The UI enriched scenario
specifications are used in the generation of graphic components of the interface.

Elkoutbi et al. [15] propose formalizing use cases through a set of UML collab-
oration diagrams, each corresponding to a use case scenario. Each collaboration dia-
gram message is manually labeled with UI constraints, from which it will then
automatically produce message constraints with UI widget information. Elkoutbi’s
approach is then able to derive UI standalone prototypes for each interface object
defined in the domain model.

Elkoutbi et al. and Martinez et al. approaches are able to produce a UI from the
structural, use case and UI behavioral models, but demand the attachment of UI related
information (input/output fields and/or widgets) to the use case detail specification,
respectively collaboration diagrams and message sequence charts.

None of the surveyed approaches is restricted to data-oriented applications, but they
all demand building a complete UIM. By restricting ourselves to data-oriented systems,
our approach enables the generation of an UIM, from a system’s use case model, easing
the process of constructing the UIM. This is made by identifying patterns in use case
models and generating the corresponding UI patterns in the UIM. Our approach also
provides a concrete UI modeling language that enables modifying and completing the
generated UIM, especially for the parts of the use case model that do not form an
identifiable pattern and for which a UIM portion is not, consequently, generated.

8 Conclusions

This paper is based on the assertion that a system model has four views: structural
view, where informational requirements are modeled through a domain model; func-
tional view, where system functionality, and the user roles that may access it, are
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modeled through a use case model; user interface view, modeling the spaces where
interaction within use cases take place, and a behavioral view, modeling the system
behaviors or behavioral constraints.

Use cases, then, control which roles (actors) may access which system function-
ality, and hold the functionality that is executed in the context of an interaction, through
execution traces, by instantiating available behaviors. Use cases may, then, be seen as
providing services to the UI, which are based on the CRUD or user defined operations
distributed as behavioral features in the system state (the domain model).

This view allowed us to propose the modeling of the abstract UI for use case
interactions, based on a proposed UI metamodel and corresponding concrete notation.
We also proposed a set of use case patterns and the corresponding UI patterns, which
may be used when modeling data-oriented systems. These relations between use case
and UI patterns enable the pattern based generation of the abstract UIM from the use
case and domain models, as proposed in [5, 11], and for which a model-transformation
prototype has been built [5]. In this setting, the proposed UIM concrete language
allows the abstract UIM modification after its generation and before generating con-
crete UIMs for different target platforms [5].

Ongoing work, in the context of project Amalia (Agile Model-driven AppLIcAtion
Development Method and Tools), aims at developing a modeling tool for the integrated
modeling of the domain, use case and user interface model views of a system. The
domain and use case models may be, however, developed using any UML tool, as the
UML alone provides the needed mechanisms to associate domain entities and use
cases, namely tagged values. In fact, a UML profile can be defined as a convenient and
lightweight means, associated with a UML modeling tool, of building the domain and
use case models. For developing the UIM, an appropriate modeling tool needs to be
constructed, though. And that is one of the ongoing Amalia project’s goals.
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Abstract. Graph transformation rules provide an opportunity to spec-
ify model transformations in a declarative way at a high level of abstrac-
tion. So far, compilers have translated graph transformation rules into
conventional programming languages such as Java, C, or C#. In con-
trast, we follow a staged translation approach: We developed a compiler
which translates graph transformation rules into a procedural language
for behavioral modeling (Xcore). By reusing the Xcore compiler, the
code may be compiled down to a conventional programming language
in a second step. The generated Xcore code is significantly more concise
and readable than programming language code. Furthermore, the code
is portable since it is completely programming language independent.

Keywords: Graph Transformation Rules · Behavioral Modeling · Code
Generation

1 Introduction

Model transformation languages have been developed for specifying transforma-
tions of models at a higher level of abstraction than in conventional programming
languages. Among many features [5], model transformation languages may be
classified according to their underlying paradigm: In procedural languages, the
transformation is described by specifying the order in which elementary trans-
formation steps are executed. In contrast, rule-based languages specify transfor-
mations with rules for matching and replacing patterns. Since the algorithms for
pattern matching and replacement need not be provided by the user, rule-based
languages are located at a higher level of abstraction.

A model may be considered as a graph whose nodes and edges correspond
to the model’s objects and links. Graph transformation rules [8] are ideally
suited for specifying model transformations in a declarative way. Essentially,
a graph transformation rule consists of a left-hand side — the graph pattern to
be searched — and a right-hand side — the replacing pattern. Quite a number of
graph transformation languages have been proposed, including PROGRES [17],

This paper is an extended and revised version of [24].
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Fig. 1. Staged translation.

Fujaba [14], GReAT [1], GrGen.NET [11], Henshin [3], MDELab [10], VIATRA2
[21], eMOFLON [2], and ModGraph [4]. Users of these languages specify trans-
formations with the help of high-level graph transformation rules. Users are not
concerned with the algorithms for pattern matching and replacement, which are
taken care of by the underlying execution engines.

To support the execution of graph transformation rules, both interpreters
and compilers have been developed. An interpreter provides excellent support
for debugging, which is slowed down by a compiler. On the other hand, com-
piled code is more efficient. So far, compilers have translated graph transfor-
mation rules into conventional programming languages such as Java, C, or C#.
This approach results in rather complicated generated code which is difficult to
understand.

In contrast, we built a compiler which translates graph transformation rules
into a procedural language for behavioral modeling (Figure 1). The compiler
accepts ModGraph rules and translates them into Xcore [6], a recently devel-
oped modeling language which is based on Ecore. Xcore is a textual language
which covers both structural and behavioral modeling. Our compiler transforms
ModGraph rules into procedural Xcore operations, specifically making use of
Xcore’s expression language. The Xcore environment in turn translates Xcore
into Java (and prospectively into other target languages in the future). Within
our work we follow our goal to provide total model driven software engineering
as explained in [23] and [24]. Xcore interacts with ModGraph in order to provide
high level control structures for rules. The translation to Xcore unifies the level
of abstraction between rules and procedural code.

This staged translation approach (Figure 1) provides the following advantages
over the traditional approach of compiling into a conventional programming
language directly, which is followed by all competing tools:

Conciseness. The generated code is concise (but it still takes care of the details
of pattern matching and replacement which should be shielded from the
user).

Readability. The generated code is human readable, which facilitates e.g. code-
level debugging.

Simplicity. The task of compiling is simplified significantly since Xcore pro-
vides more high-level language constructs than conventional programming
languages such as Java.
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Portability. With direct compilation into a programming language, one com-
piler is required for each target language. In our approach, the compiler
does not depend on the programming language which is eventually used for
execution.

Section 2 provides background information on ModGraph and Xcore. Section 3
introduces a running example. Section 4 describes the generation of Xcore code
from graph transformation rules. Section 5 illustrates this approach with the help
of the running example. Section 6 discusses our approach. Section 7 compares
related work, and Sect. 8 concludes the paper.

2 Background

The Eclipse Modeling Framework (EMF) [19] has been designed with the intent
to improve the software process by providing lightweight support for model-
driven software engineering. For this reason, EMF provides a fairly minimalistic
metamodel for structural modeling (Ecore, an implementation of Essential MOF
(EMOF) [16]). Using the components of the EMF core, software engineers cre-
ate Ecore models as instances of the Ecore metamodel. From an Ecore model,
the EMF code generator creates code for classes, including methods for creat-
ing objects, assigning attribute values, as well as creating and deleting links.
However, for user-defined operations, the EMF code generator may only create
empty method bodies.

Xcore [6] adds behavioral modeling to EMF. Xcore provides a single language
for both structural and behavioral modeling. To this end, Xcore introduces a
textual syntax for Ecore models as well as procedural behavioral models. Xcore
is driven by the vision that software engineers need no longer deal with code in
a programming language such as Java (as current programmers do not inspect
assembly or byte code). In Xcore, the sublanguage Xbase [7] is used to model
behavior, i.e. the bodies of operations. Xbase is an expression language that was
designed to be reused in different domain-specific languages. Xbase expressions
provide both control structures and program expressions in a uniform way. Its
program expressions may be used e.g. for navigation in models and checking
constraints. Altogether, Xbase programs specify computations in a procedural
way at a higher level of abstraction than Java.

ModGraph [4] is an EMF-based language for specifying graph transformation
rules. With ModGraph, an operation defined in an Ecore or Xcore model may be
realized as a graph transformation rule (or rule in short form). A graph pattern
forms the core of a ModGraph rule. The graph pattern describes both the pattern
to be searched and the replacing pattern in a single diagram. If no replacement
is specified, the rule describes a test or a query rather than a transformation. In
addition to the core, a rule may comprise optional components such as textual
pre- and postconditions and graphical negative application conditions (NACs).

A graph pattern may be composed of several kinds of nodes and edges. Nodes
are distinguished into a current object, named this, bound nodes, representing
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Fig. 2. Interplay between ModGraph and Xcore.

the non-primitive parameters of the operation, and unbound nodes, represent-
ing the objects to be searched in the model instance. Both bound and unbound
nodes may be single- or multi-valued. Nodes provide a status which may be pre-
served (grey, no marker), created (green, ++), or deleted (red, −−). They can be
marked as return parameter (<<out>>) or as optional (<<optional>>) nodes.
Nodes to preserve or to delete may be constrained, nodes to create or to preserve
may be modified, for example by setting an attribute value or calling an opera-
tion (operation calls allow ModGraph rules to interact directly with each other).
All nodes may be connected by two kinds of edges: links and paths (instances of
intrinsic and derived references, respectively). Analogously to nodes, links have a
status. Paths are marked with a path expression, written in OCL [15] or Xbase.
Negative application conditions describe patterns which must not occur when
the main pattern has been matched. NACs are specified in a similar way as
graph patterns; however, nodes and edges do not have a status and nodes may
only be single-valued. Pre- and postconditions may be written in OCL or Xbase.

The interplay between ModGraph and Xcore is illustrated in Fig. 2. The user
defines the structural model in Xcore’s textual notation or migrates an existing
Ecore model to Xcore. With respect to behavioral modeling, the user may choose
between the procedural and the rule-based paradigm. Simple operations may be
defined directly in Xcore using Xbase to implement its body. Complex opera-
tions may be specified in ModGraph, taking advantage of its expressiveness and
its easily readable graphical notation. If a complex operation may not be coded
as a single rule, the user may resort to Xbase control structures for controlling
the application of multiple rules. In general, Xbase operations may call Mod-
Graph rules and vice versa. For the purpose of execution, ModGraph rules are
first compiled into Xcore operations. The second stage of compilation (currently
targeting Java) is performed by the Xcore compiler. Please note that the user
gets in touch only with Xcore and ModGraph (orange boxes); there is no need
to inspect the generated Java code (yellow boxes).
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3 Example

This section introduces a running example which illustrates modeling with Mod-
Graph and Xcore. As running example, we study the refactoring of structural
models. The example was drawn from our tool support for consistent refac-
toring of structural models and graph transformation rules which is described
elsewhere [25]. Altogether, we implemented 19 refactoring transformations with
a total of 35 graph transformation rules and 71 Xcore operations.

We consider two refactoring operations on an Ecore model: changing a uni-
to a bidirectional reference and collapsing the inheritance hierarchy as defined
by Fowler [9]. The graph transformation rules were selected (and adapted) to
serve as demonstration examples for the generation of Xcore code.

An excerpt from the Xcore specification of the structuralmodel for refactoring
is shown in Listing 1. A refactoring class references the elements of the Ecore
model to be refactored (classes, operations, etc.), and provides the refactoring
operations to be applied. Each refactoring operation is applied to model elements
fixed by parameters. The operations are invoked through an interactive user
interface; thus, the user decides which refactoring transformations are applied
to which elements of the structural model to be refactored. For demonstration
purposes, both strings and objects are used to identify model objects. In the
first example, the use of string parameters implies the insertion of nested loops
into the generated code. In the second example, objects are used instead of
strings to focus on other issues of code generation. In the actual implementation,
parameters are supplied consistently as objects rather than as strings.

Listing 1. Xcore Model for refactoring.
1 c l a s s R e f a c t o r i n g {
2 r e f e r s E O p e r a t i o n [ ] r e f e r e n c e T o E O p e r a t i o n
3 r e f e r s EClass [ ] r e f e r e n c e T o E C l a s s
4 r e f e r s ERefe rence [ ] r e f e r e n c e T o E R e f e r e n c e
5 r e f e r s EParame te r [ ] r e f e r e n c e T o E P a r a m e t e r
6 r e f e r s E S t r u c t u r a l F e a t u r e [ ] r e f e r e n c e T o E S t r u c t u r a l F e a t u r e
7

8 op void c h a n g e U n i T o B i d i r e c t i o n a l R e f e r e n c e (
9 S t r i n g class1Name, S t r i n g class2Name )

10 op void c o l l a p s e H i e r a r c h y ( ClassType c l a s s T y p e,
11 EClass s u p e r C l a s s, EClass s u b C l a s s )
12 op void removeSub ( EClass s u p e r C l a s s, EClass s u b C l a s s )
13 op void removeSuper ( EClass s u p e r C l a s s, EClass s u b C l a s s )
14 }

The rule for changing a uni- to bidirectional reference is supplied with two
string parameters which identify the source class and the target class of the uni-
directional reference (Figure 3). The precondition (in OCL) on the top requires
that both strings must not be empty. The graph pattern on the left is rooted at the
current object (this) on which the refactoring operation is invoked. Starting at the
current object, two classes need to be found (class1 and class2) whose names equal
the supplied string parameters (see the checks in the Constraints compartment).
Furthermore, there must be a reference (reference1) which is owned by class1 and
is typed by class2. The negative application condition on the right ensures that
the reference is unidirectional (there is no opposite reference (oppositeRef). If the
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Fig. 3. ModGraph rule for changeUniToBidirectionalReference.

graph pattern can be matched and the NAC holds, as well, the transformation
may be applied, resulting in a new reference (reference2) which is connected to its
opposite reference (reference1) as well as to its source class, its target class, and the
current object. The name of the new reference is composed from the names of the
connected classes (Changes compartment).

Our second refactoring operation — collapsing a class hierarchy — demon-
strates the interplay of procedural and rule-based operations. This refactoring
is applied to two classes connected by inheritance. Collapsing a hierarchy means
eliminating either the sub- or the superclass. Both alternatives may be modeled in
separate ModGraph rules implementing the methods removeSub and removeSuper.

Listing 2. Xcore implementation of method collapseHierarchy.

1 op void c o l l a p s e H i e r a r c h y ( ClassType c l a s s T y p e , EClass s u p e r C l a s s ,
2 EClass s u b C l a s s ){
3 i f ( c l a s s T y p e == ClassType : : SUPER CLASS ) t r y {
4 removeSuper ( s u p e r C l a s s , s u b C l a s s )
5 } catch ( GTFa i lu r e f ) { /∗ do s t h . ∗ /}
6 i f ( c l a s s T y p e == ClassType : : SUB CLASS ) t r y {
7 removeSub ( s u p e r C l a s s , s u b C l a s s )
8 } catch ( GTFa i lu r e f ) { /∗ do s t h . ∗ /}
9 }

At the user interface, we would like to offer a single refactoring operation
with a parameter controlling whether the sub- or the superclass is removed. Its
Xcore implementation is shown in Listing 2. The method selection is realized by
a condition, depending on the given value of enumeration classType. Exception
handling, using try-catch blocks, is necessary because each method implemented
by a graph transformation rule may raise an exception of type GTFailure.

The rule to remove the subclass is shown in Figure 41. An Xcore precondition
ensures the parameters not to be null2. In contrast to the rule for changing

1 The rule was simplified by omitting various positive and negative application condi-
tions which are immaterial in the context of this paper.

2 This precondition is redundant and was included to demonstrate that Xcore expres-
sions may be used alternatively to OCL expressions.
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Fig. 4. ModGraph rule for removeSub.

a uni- to a bidirectional reference, the classes required as parameters are now
supplied directly as objects (while they had to be searched via their names in the
previous rule). In addition to the current object, the subclass, and the superclass,
the rule includes only multi-objects (shaded rectangles) which are designated as
optional (stereotypes inside the top compartments of the rectangles). The multi-
objects are obtained by traversing instances of multi-valued references. Since the
subclass object is deleted, all adjacent links are deleted, as well. All outgoing
containment links to structural features and operations are transferred to the
superclass. Furthermore, references which were typed with the subclass have to
be retyped with the superclass.

4 Code Generation

According to our staged translation approach, graph transformation rules are
compiled into Xcore operations. Each graph transformation rule is translated
into a single Xcore operation. The generated code is injected into the overall
Xcore model as described in [24]. The resulting extended Xcore model may
then be compiled down to Java, using Xcore’s code generator. Alternatively, the
Xcore code may be interpreted directly, which may accelerate the debugging
cycle considerably.

In the following, we provide a brief overview of our code generation approach
at a conceptual level (leaving out implementation details). To this end, let us
explain first the execution steps to be performed at run time:

1. Check All Preconditions. If some precondition fails, execution terminates with
failure.

2. Match Graph Pattern. Graph pattern matching will be described below. If no
(new) match can be found, execution terminates with failure.

3. Check Negative Application Conditions. If at least one of the patterns specified
as NACs is present, backtrack to the previous step.

4. Evaluate All Attribute Expressions. Before any change is performed, all
expressions are evaluated whose values are needed later for attribute assign-
ments.
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5. Perform Deletions. Delete objects and links with status −−.
6. Perform Insertions. Insert objects and links with status ++.
7. Perform Assignments. Assign the values of expressions evaluated in Step 4

to attributes, as specified in the Changes compartments.
8. Call Operations. Perform operation calls, as specified in the Changes compart-

ments.
9. Check Postconditions. If any postcondition is violated, terminate with failure.

Otherwise, terminate successfully.

Only Step 2 is required for each rule; the presence of all other steps depends
on the presence of corresponding optional elements of the rule. If no changes are
specified at all, the rule constitutes a test or a query; in the latter case, one or
more nodes of the pattern are marked as output parameters.

The order of the steps is fixed such that graph transformation rules have a
well-defined semantics:

– In general, insertions and deletions do not commute; consider, e.g., single-
valued references. Therefore, an appropriate order needs to be fixed. In Mod-
Graph, deletions are performed first because otherwise insertions could be
undone by subsequent deletions.

– Attribute expressions are evaluated in the pre-state of the transformation, e.g.,
because they may refer to objects which are deleted by the transformation.

– Called operations provide for a simple way of rule chaining. Since they are
executed as the last modification step, the called operations may rely on the
fact that the rule has been executed completely. Furthermore, the execution
of called rules may contribute to the satisfaction of postconditions, which are
checked only in the very last step of rule execution.

Pattern matching constitutes the most complex step of executing a graph
transformation rule. In the simplest case, a graph pattern defines a subgraph
to be searched in the model graph. However, in ModGraph the notion of graph
pattern is more general since ModGraph provides abstraction mechanisms such
as multiplicities of nodes and paths. Therefore, a graph pattern defines a set of
matching subgraphs which may vary with respect to the number of nodes and
the paths by means of which these nodes are connected. In general, a match is
defined by a relation between pattern nodes and model graph nodes which meets
the following conditions:

1. Each single-valued pattern node is matched to a single model graph node,
each multi-valued pattern node is matched to a set of model graph nodes.

2. Each mandatory pattern node must be matched to at least one model graph
node.

3. The class of a matched node must conform to the class of its pattern node.
4. Each edge in the pattern graph must be present between the matched nodes

in the model graph, as well. This condition applies to both links and paths.
5. Each matched node must satisfy all constraints defined on its pattern node.
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ModGraph provides a localized search for matches. This means that matching
starts from one or more anchor nodes. Both the current object and the bound
objects (supplied as parameters) serve as anchor nodes. From the anchor nodes,
all unbound nodes are determined by a navigational search, i.e., by traversing
links or paths. Thus, all unbound nodes must be reachable from the anchor
nodes. This eliminates the need for global searches.

For efficient pattern matching, it is crucial to search nodes in such an order
that the number of match candidates to be considered is kept as small as possible.
Therefore, ModGraph constructs a spanning forest from which the search order
is derived. The spanning forest covers all nodes of the pattern and determines
for each node a unique path from one of the anchor nodes. The spanning forest
is constructed by a heuristic greedy algorithm as follows:

1. The forest is initialized with all anchor nodes, each of which acts as a root of
a tree inside the forest.

2. Next, all mandatory unbound nodes are processed. The forest is extended
step by step with unvisited nodes. Each iteration considers all unvisited nodes
which may be reached from visited nodes by a link or a path. If possible, an
unvisited node is selected which is connected to a visited node by a unique
link (an instance of a single-valued reference). Paths are treated in the same
way as multi-valued references3.

3. Finally, all optional unbound nodes are processed in the same way as done in
the previous step for mandatory unbound nodes. This ensures that the search
path for a mandatory node never contains an optional node.

Fig. 5. Search forests and search order for the sample rules.

The search order for unbound nodes is derived from the search forest in an
analogous way. Thus, all mandatory nodes are ordered before all optional nodes.
Furthermore, a child node is appended to the search sequence only after its
parent node. Finally, among the candidate nodes to be appended next to the
search sequence, nodes are preferred which are reachable over unique links.
3 This is a pessimistic assumption which could be improved only by analyzing the

path expression.
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The Xcore code is generated by a template-based model-to-text transforma-
tion. The templates are written in Xpand, a template language provided by the
Eclipse Modeling Project4. The generated code is structured according to the
execution steps explained above. Pattern matching is implemented by nested
loops: For each node for which multiple match candidates need to be considered,
a loop is created in the generated code. The loops are nested according to the
search order derived from the spanning forest.

5 Example Revisited

In this section, we revisited the example introduced in Sect. 3 and present the
Xcore code which is generated from the sample graph transformation rules for
refactoring.

For the graph transformation rule for changing a uni- to a bidirectional refer-
ence (Fig. 3), the ModGraph compiler creates the search forest which is displayed
on the left-hand side of Fig. 5. In search forests, anchor nodes are shown in grey.
Arrows are annotated with multiplicities (either 1 for a single-valued reference
or * for multi-valued references or paths). From the search forest, ModGraph
derives a search order which complies with the rules explained in Sect. 4.

The Xcore code generated for this rule is shown in Listing 3. In line 1 a
Genmodel annotation is used to mark the operation as generated by ModGraph.
Line 2 checks the OCL precondition (shown at the top of Fig. 3), using the
EMF OCL Pivot evaluator via an annotation. Lines 3 and 4 show the Xcore
generated operation head. For each unbound object in the rule’s graph pattern,
the generator declares variables as shown in lines 5–7. Lines 8–20 implement the
matching of the graph pattern. Nested for loops are built up according to the
search order defined in Fig. 5. These loops use the Xbase λ-expression language
to filter the collections they iterate by the constraints given to the objects in
the rule, e.g., name == class1Name. The innermost loop contains a condition
that checks the NAC. If matching succeeds, the variables defined above the
loops are set. Unfortunately Xcore does not support break commands. Therefore,
the variables are eventually set with the last match found5. Line 20 checks if
matching has succeeded; otherwise, an exception is raised.

Line 21 shows the calculation of the name for the new reference depending on
the pre-state of the model. The reference itself is created in line 22 and its name
is set to the calculated one in line 23. Lines 24–28 put the new reference into
its context by executing the following expressions: The new reference’s opposite
is set to the existing one and vice versa. class2 is set as a container for the new
reference by adding the latter to its structural features. A link is added from the
refactoring object to the new reference, and the reference’s type is set to class1.

4 http://eclipse.org/modeling/
5 Since we expect that break commands will be added soon to Xcore, we refrain from

rewriting the generated code with more awkward while loops returning the first
match.

http://eclipse.org/modeling/
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Listing 3. Generated Xcore implementation of changeUniToBidirectionalReference.

1 @GenModel ( d o c u m e n t a t i o n =” G e n e r a t e d by ModGraph . ” )
2 @OCL (pre p r e 1 =” class1Name . s i z e ()>0 and class2Name . s i z e ()>0 ” )
3 op void c h a n g e U n i T o B i d i r e c t i o n a l R e f e r e n c e (
4 S t r i n g class1Name , S t r i n g class2Name ) {
5 var EClass c l a s s 1 = n u l l
6 var EClass c l a s s 2 = n u l l
7 var ERefe rence r e f e r e n c e 1 = n u l l
8 f o r ( c l a s s 1 : r e f e r e n c e T o E C l a s s . f i l t e r ( e | e . name == class1Name ) ) {
9 f o r ( c l a s s 2 : r e f e r e n c e T o E C l a s s . f i l t e r ( e | e . name == class2Name ) ){

10 f o r ( r e f e r e n c e 1 : c l a s s 1 . E R e f e r e n c e s .
11 f i l t e r ( e | e . EType . e q u a l s ( c l a s s 2 ) ) ) {
12 i f ( ! ( r e f e r e n c e 1 . EOppos i t e != n u l l ) ) {
13 c l a s s 1 = c l a s s 1
14 c l a s s 2 = c l a s s 2
15 r e f e r e n c e 1 = r e f e r e n c e 1
16 }
17 }
18 }
19 }
20 i f ( c l a s s 1 == n u l l ) throw new GTFa i lu re
21 v a l r e fe rence2NameValue = class2Name + ” t o ” + class1Name
22 var r e f e r e n c e 2 = E c o r e F a c t o r y : : eINSTANCE . c r e a t e E R e f e r e n c e ( )
23 r e f e r e n c e 2 . name = re fe rence2NameValue
24 r e f e r e n c e 2 . EOppos i t e = r e f e r e n c e 1
25 r e f e r e n c e 1 . EOppos i t e = r e f e r e n c e 2
26 c l a s s 2 . E S t r u c t u r a l F e a t u r e s . add ( r e f e r e n c e 2 )
27 r e f e r e n c e T o E R e f e r e n c e . add ( r e f e r e n c e 2 )
28 r e f e r e n c e 2 . EType = c l a s s 1
29 }

Listing 4 shows the generated Xcore code for the ModGraph rule removeSub;
the respective search forest and the search order are illustrated on the right-hand
side of Fig. 5. Lines 1 and 2 include an annotation containing the documenta-
tion which was attached to the ModGraph rule. The head of the method follows
in line 3. Line 4 checks the Xcore precondition. Lines 5–7 declare variables for
storing matches of multi-objects. In lines 8–11, values for these variables are

Listing 4. Generated Xcore implementation of removeSub.
1 @GenModel ( d o c u m e n t a t i o n =” G e n e r a t e d by ModGraph : Removes t h e
2 s u b c l a s s . P a r t o f t h e c o l l a p s e h i e r a r c h y r e f a c t o r i n g . ” )
3 op void removeSub ( EClass s u p e r C l a s s , EClass s u b C l a s s ) {
4 i f ( ! ( s u p e r C l a s s != n u l l && s u b C l a s s != n u l l ) ) throw new GTFa i lu re
5 var ELis t<E S t r u c t u r a l F e a t u r e> s t r u c t u r a l F e a t u r e s = n u l l
6 var ELis t<EOpera t ion> o p e r a t i o n s = n u l l
7 var ELis t<EReference> e x t e r n a l R e f e r e n c e s = n u l l
8 v a l o p e r a t i o n s = s u b C l a s s . E O p e r a t i o n s
9 v a l s t r u c t u r a l F e a t u r e s = s u b C l a s s . E S t r u c t u r a l F e a t u r e s

10 v a l e x t e r n a l R e f e r e n c e s = r e f e r e n c e T o E R e f e r e n c e
11 . f i l t e r ( e | e . EType . e q u a l s ( s u b C l a s s ) ) . a s E L i s t
12 s t r u c t u r a l F e a t u r e s = s t r u c t u r a l F e a t u r e s
13 o p e r a t i o n s = o p e r a t i o n s
14 e x t e r n a l R e f e r e n c e s = e x t e r n a l R e f e r e n c e s
15 o rg : : e c l i p s e : : emf : : e c o r e : : u t i l : : E c o r e U t i l : : remove ( s u b C l a s s )
16 s u p e r C l a s s . E S t r u c t u r a l F e a t u r e s . a ddAl l ( s t r u c t u r a l F e a t u r e s )
17 s u p e r C l a s s . E O p e r a t i o n s . a ddA l l ( o p e r a t i o n s )
18 e x t e r n a l R e f e r e n c e s . f o rEach ( e | e . EType = s u p e r C l a s s )
19 }
20

21 op void removeSuper ( EClass s u p e r C l a s s , EClass s u b C l a s s ) {
22 /∗ a n a l o g o u s l y t o removeSub ∗ /
23 }
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retrieved which are assigned in lines 12–14. Line 15 removes the subclass. Since
all adjacent links are deleted automatically anyway, there is no need to generate
additional code for the deleted links specified in the graph pattern. Lines 16 and
17 assign the structural features and operations to the superclass, respectively,
and line 18 retypes the references.

6 Discussion

6.1 Staged Translation

Staged translation is a well-known engineering approach for decomposing trans-
lations into manageable, modular parts. It has been applied for long in many
different contexts, including (but not limited to) model transformations [20].
For example, Java makes use of staged translation by compiling Java programs
into portable byte code which is translated into machine code in a second step.
Furthermore, staged translation reduces the effort of writing converters between
different data formats: The introduction of an intermediate neutral data format
reduces the number of data converters from O(n2) to O(n).

In ModGraph, we applied staged translation to make the generated code
portable (i.e., programming language independent). Furthermore, by compiling
graph transformation rules to Xcore, we may reuse the Xcore interpreter for
debugging. Finally, the task of code generation is simplified significantly, com-
pared to the direct generation of Java code.

To demonstrate the advantages of our staged translation approach, we con-
sider the three implementations to delete a subclass in an Ecore model in order
to collapse the hierarchy: the ModGraph rule (Fig. 4), the generated Xcore
implementation (Listing 4), and the Xcore generated Java code (Listing 5).

Comparing the ModGraph rule to the Xcore implementation, we observe
that a rule is still more intuitive than the generated code: its clearly structured
format with the graphical, color-coded, nodes and edges visualize the pattern
to be matched and the actions to be performed. The Xcore code is a clearly
structured, target language independent text which we consider to be still concise
and simple enough to be human readable. Its high level of abstraction increases
the readability especially when the functional expressions provided by Xbase
come into play.

The generated Xcore code shown in Listing 4 could be written more concisely
if written by hand. In fact, lines 5–14 could be expressed by only three lines
of hand-written code. In contrast, the code generator creates declarations of
variables which are assigned values only when a complete match has been found.
During the matching, intermediate variables are used to store partial matches.
In this way, it can be checked conveniently whether matching has succeeded
(if it has not, the variables for complete matches will still be null). This code
generation approach supports the most general case, in which matching has to
be performed in (potentially nested) loops (see Listing 3 for the refactoring rule
converting a unidirectional to a bidirectional reference).
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Listing 5. Xcore generated Java code for method removeSub.
1 /∗∗
2 ∗ begin use r doc end use r doc
3 ∗ @genera ted
4 ∗ /
5 p u b l i c vo id removeSub ( f i n a l EClass s u p e r C l a s s , f i n a l EClass s u b C l a s s ){
6 t r y {
7 boolean and = f a l s e ;
8 boolean n o t E q u a l s = ( ! O b j e c t s . e q u a l ( s u p e r C l a s s , n u l l ) ) ;
9 i f ( ! n o t E q u a l s ) {

10 and = f a l s e ;
11 } e l s e {
12 boolean n o t E q u a l s 1 = ( ! O b j e c t s . e q u a l ( subC la s s , n u l l ) ) ;
13 and = ( n o t E q u a l s && n o t E q u a l s 1 ) ;
14 }
15 boolean n o t = ( ! and ) ;
16 i f ( n o t ) {
17 GTFa i lu r e g T F a i l u r e = new GTFa i lu re ( ) ;
18 throw g T F a i l u r e ;
19 }
20 ELis t<E S t r u c t u r a l F e a t u r e> s t r u c t u r a l F e a t u r e s = n u l l ;
21 ELis t<EOpera t ion> o p e r a t i o n s = n u l l ;
22 ELis t<EReference> e x t e r n a l R e f e r e n c e s = n u l l ;
23 f i n a l ELis t<EOpera t ion> o p e r a t i o n s = s u b C l a s s . g e t E O p e r a t i o n s ( ) ;
24 f i n a l ELis t<E S t r u c t u r a l F e a t u r e> s t r u c t u r a l F e a t u r e s =
25 s u b C l a s s . g e t E S t r u c t u r a l F e a t u r e s ( ) ;
26 R e f a c t o r i n g t h i s = t h i s ;
27 ELis t<EReference> r e f e r e n c e T o E R e f e r e n c e =
28 t h i s . g e t R e f e r e n c e T o E R e f e r e n c e ( ) ;
29 f i n a l Func t ion1<EReference , Boolean> f u n c t i o n =
30 new Func t ion1<EReference , Boolean >()
31 {
32 p u b l i c Boolean a p p l y ( f i n a l ERefe rence e ){
33 E C l a s s i f i e r eType = e . getEType ( ) ;
34 boolean e q u a l s = eType . e q u a l s ( s u b C l a s s ) ;
35 re turn Boolean . va lueOf ( e q u a l s ) ;
36 }
37 } ;
38 I t e r a b l e <EReference> f i l t e r = I t e r a b l e E x t e n s i o n s .<EReference>f i l t e r (
39 r e f e r e n c e T o E R e f e r e n c e , f u n c t i o n ) ;
40 f i n a l ELis t<EReference> e x t e r n a l R e f e r e n c e s =
41 E C o l l e c t i o n s .<EReference>a s E L i s t (
42 ( ( ERefe rence [ ] ) C o n v e r s i o n s . unwrapArray ( f i l t e r , ERefe rence . c l a s s ) ) ) ;
43 s t r u c t u r a l F e a t u r e s = s t r u c t u r a l F e a t u r e s ;
44 o p e r a t i o n s = o p e r a t i o n s ;
45 e x t e r n a l R e f e r e n c e s = e x t e r n a l R e f e r e n c e s ;
46 E c o r e U t i l . remove ( s u b C l a s s ) ;
47 ELis t<E S t r u c t u r a l F e a t u r e> e S t r u c t u r a l F e a t u r e s =
48 s u p e r C l a s s . g e t E S t r u c t u r a l F e a t u r e s ( ) ;
49 e S t r u c t u r a l F e a t u r e s . a ddAl l ( s t r u c t u r a l F e a t u r e s ) ;
50 ELis t<EOpera t ion> e O p e r a t i o n s = s u p e r C l a s s . g e t E O p e r a t i o n s ( ) ;
51 e O p e r a t i o n s . addAl l ( o p e r a t i o n s ) ;
52 f i n a l Procedure1<EReference> f u n c t i o n 1 = new Procedure1<EReference >()
53 {
54 p u b l i c vo id a p p l y ( f i n a l ERefe rence e ) {
55 e . se tEType ( s u p e r C l a s s ) ;
56 }
57 } ;
58 I t e r a b l e E x t e n s i o n s .<EReference>f o r E a c h ( e x t e r n a l R e f e r e n c e s , f u n c t i o n 1 ) ;
59 } catch ( Throwable e ){
60 throw E x c e p t i o n s . sneakyThrow ( e ) ;
61 }
62 }

This example demonstrates that hand-written code may be shorter
than generated code. This is not surprising and quite common. Nevertheless,
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the generated code is still concise and readable. Thus, debugging may be per-
formed quite conveniently on the generated code.

The result of compiling the Xcore code of Listing 4 to Java code is shown
in Listing 5. Comparing them, we note a significant difference in length: The
generated Java code is much longer than the Xcore code. In general, we may
expect Xcore code to be more concise than Java code. However, the actual fac-
tor obtained by dividing the code lengths depends heavily on the way code is
generated. We have already discussed above that hand-written Xcore code usu-
ally is shorter than the code produced by the ModGraph compiler. However,
this argument holds for the Java code generated by Xcore, as well (to a greater
extent!): The generated code makes massive use of variables for storing interme-
diate results.

The decisive argument for decomposing the translation is Xcore’s higher
level abstraction, e.g., with respect to its expression language (λ expressions).
Compare, e.g., the precondition initially written as one line Xcore expression in
the rule in Fig. 4 and the Xcore implementation in Listing 4, line 4. The Java
implementation uses lines 7–19 to ensure this condition. A closer look at the
Xcore generated Java code reveals that internal functions need to be called or
even implemented. The filter function shown in Listing 4, lines 10–11 to filter
the references typed over the subclass is mapped to lines 38–42 in Listing 5. An
additional Java filter function is called to map the procedural expression to Java.
The foreach expression shown in Listing 4, line 18, even forces a reimplementation
to be mapped to Java, see lines 52–58.

6.2 Higher Order Transformations

The ModGraph2Xcore compiler performs a higher order transformation: It
transforms a rule-based transformation specification written in ModGraph into
a procedural transformation specification written in Xcore. In general terms, a
higher order transformation transforms a source transformation into a target
transformation.

However, the definition given in [20] is less general: It demands that both the
source transformation and the target transformation are represented as models,
and the higher order transformation is realized as a model-to-model transforma-
tion. [20] employs the language ATL [13] for this purpose; many other languages
are available, as well [12].

Since we had already developed a compiler from ModGraph to Java [22], we
could have bootstrapped the ModGraph2Xcore compiler. However, we refrained
from an implementation as a model-to-model transformation (in whatever lan-
guage) and instead decided to implement a template-based model-to-text trans-
formation. We consider this approach superior in conciseness and readability:
Building up the target model in terms of its abstract syntax requires much
longer transformation definitions which are more difficult to read.
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6.3 Hybrid Behavioral Modeling

The integration of ModGraph and Xcore provides for hybrid behavioral modeling,
combining rule-based modeling in ModGraph and procedural modeling in Xcore
in an opportunistic way. This approach is not new, and it has been applied in all
languages and tools to be compared in Section 7 (Related Work). Evaluating the
hybrid modeling approach goes beyond the focus of this paper, which is devoted
to the ModGraph2Xcore compiler. Nevertheless, we discuss this topic briefly,
mainly referencing other publications.

Opportunistic combination of rule-based and procedural modeling means
that graph transformation rules are employed only when they pay off; other-
wise, transformations are encoded as procedures. In earlier work, we evaluated
this approach by examining several medium-sized to large projects written in
different languages [26]. The evaluation was performed both qualitatively and
quantitatively (by analyzing data such as the number of rules and procedures,
the number of nodes and edges per rule, etc.). Based on our analysis, we con-
cluded that typically large fractions of the behavior may be implemented best as
procedures, but graph transformation rules do provide an added value if complex
transformations are to be performed requiring structural consistency checks.

The development of ModGraph builds upon these observations: we intend
to focus ourselves exactly on the added value of graph transformations, and
reuse everything else (the data model provided by Ecore and the procedural
abstractions provided by Xcore). In the refactoring project which we used as a
running example in this paper, we wrote graph transformation rules only when
they provided an added value, and resorted to Xcore code otherwise. For a more
comprehensive presentation of this project, the reader is referred to [26]. Alto-
gether, we implemented 19 refactoring transformations; see [25] for a complete
list. The transformations provided to the end user were realized with a total of
35 graph transformation rules and 71 Xcore operations.

The rules which we selected for this paper roughly have average complexity;
thus, they are (more or less) representative. Concerning the generated Xcore
operations, it might be argued that we were “too successful” in generating concise
and readable code: Why should we write the rules if the generated operations are
fairly simple (and hand-written operations would be even simpler and shorter)?
However, this argument is too simplistic: Still, rules are specified declaratively,
while Xcore operations have to deal with all the algorithmic details of pattern
matching and transformation. If the rules are more complex than the sample
rules given in this paper, encoding the pattern matching and the transformation
by hand may be considerably more complex and error-prone. Furthermore, the
rule provides a graphical documentation of the transformation which is much
easier to understand than the corresponding procedural code.

7 Related Work

This paper is related to our own previous work as follows: Originally [4], Mod-
Graph was strongly based on Java in several respects. First, Java was used as
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Table 1. Graph transformation languages and tools.

language/tool interpreter compiler target language(s) (if compiled)

eMOFLON [2] x x Java

Fujaba [14] x x Java

GReAT [1] x - -

GrGen.NET [11] - x C#

Henshin [3] x - -

MDELab [10] x - -

ModGraph (x) x Xcore or Java

PROGRES [17] x x C or Java

VIATRA2 [21] - x Java

the control flow language. Thus, the ModGraph user has to encode both simple
operations and the composition of graph transformation rules as Java methods.
This results in a hybrid approach, mixing high level rules with low level methods
written in a conventional programming language. Subsequently, we integrated
ModGraph with Xcore to support total model-driven software engineering [23]:
the ModGraph user may provide a complete behavioral model and need not
leave the level of modeling any more.

Second, the ModGraph compiler generated Java code directly [22]. For var-
ious reasons which have been explained repeatedly in this paper, we developed
the ModGraph2Xcore compiler. It differs from the ModGraph2Java compiler
not only in generating Xcore rather than Java code. Furthermore, the generated
code is structured differently: The ModGraph2Java compiler does not gener-
ate the code for a graph transformation rule into a single method; rather, the
code is distributed over several methods to keep the generated methods small.
The selection of Xcore as target language obviates the need for such a proce-
dural decomposition. Thus, the ModGraph2Xcore compiler generates a single,
yet concise method.

Table 1 provides a short comparison of related tools / languages. Here we
consider only tools related to EMF and based on the theory of graph transfor-
mation.6 Some tools provide a direct interpreter. Quite a number of tools compile
graph transformation rules into widely used programming languages such as C,
C#, or Java. Only ModGraph provides model-level code generation (into Xcore
code). None of the competing tools supports a staged translation approach as
illustrated in Fig. 1.

6 Please note, that PROGRES is not EMF related, but needs to be mentioned as
godfather of practically oriented graph transformation tools.
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8 Conclusions

We presented a new approach of compiling high level graph transformation rules
into a procedural language for behavioral modeling (Xcore). Summing up, the
integration of Xcore and ModGraph offers the following general benefits:

– Complex transformations which are awkward to program in Xcore may be
specified with ModGraph’s high-level graph transformation rules.

– Graph transformation rules may be composed with control structures provided
by Xcore.

– Simple operations may be encoded exclusively in Xcore.
– Complete application code may be generated by relying on the code generators

of EMF, Xcore, and ModGraph.
– Re-targeting the ModGraph code generator to Xcore gains platform indepen-
dence for ModGraph: Generating code for a specific programming language
may be delegated completely to Xcore.

Using this approach, the modeler may resort to graph transformation rules
for complex operations, while simple operations may be directly implemented
in Xcore using Xbase. The code produced by the ModGraph2Xcore compiler
may be compiled as well as interpreted. It is much more concise, readable, and
simple than programming language code due to the fact that we do not leave the
modeling level. Furthermore, the Xcore code is portable since it is programming
language independent. The approach presented here is unique with respect to
these properties: All competing tools for generating code from graph transforma-
tion rules create code in a conventional programming language (see Section 7).

We applied the ModGraph/Xcore environment in a recent project addressing
the consistent refactoring of Ecore models and graph transformation rules [26].
The experiences we gained so far are promising. In future work, we intend to
employ ModGraph/Xcore for other applications such as e.g. model merging [18].
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Abstract. In model-driven development (MDD), numerous metamod-
els, models, and model transformations need to be taken into account.
These MDD-based artifacts—although highly interdependent—are
autonomously maintained. Changes in one artifact (e.g., in a model)
are not automatically reflected in other dependent artifacts (e.g., in a
model transformation). The barrier for a tight integration of MDD-based
artifacts stems from two limitations of current approaches. On the one
hand, model transformations are unidirectional and changes can be prop-
agated in one direction only. On the other hand, changes can only be
propagated into output artifacts of transformations, not into transfor-
mation definitions themselves. In order to overcome these co-evolution
problems, our approach is based on establishing bidirectional transfor-
mations (BX) between modeling artifacts and on applying higher-order
transformations (HOTs) on first-class model representations of trans-
formation specifications. In this paper, we present a generic approach
and provide initial prototypes for an integrated tool support which inte-
grates BX into well-established Eclipse-based MDD frameworks, thereby
neither being restricted to a specific modeling nor model transformation
language.

Keywords: Model-driven development · Model co-evolution · Bidirec-
tional transformation · Higher-order transformation

1 Introduction

In model-driven development (MDD; see, e.g., [2,3]), numerous models and
transformations on different abstraction levels need to be taken into account. The
high number of models involved originate from a layered modeling architecture
(i.e. metamodels, MMs) as well as from refinements (i.e. transformations) from
generic to implementation-centric model representations [4]. On the one hand,
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the need for model transformations is inherent to the abstraction mechanism in
MDD to represent platform-specific concepts (e.g., statements in a programming
language) as platform-independent models [5]. On the other hand, model trans-
formation necessities stem also from, for instance, changes in MMs (e.g., changes
from the original MM to a new MM are implemented by model-to-model trans-
formations, M2M) or the support for multiple platforms (e.g., platform-specific
textual representations, such as, source code or configuration and deployment
documents, are provided by different model-to-text transformations, M2T).

MDD-based artifacts are frequently subject to change and evolve over time [6].
In most cases, the evolution of (meta)models and model transformations is a man-
ual process [7]. Individually maintain and manually evolve MDD specifications is
a tedious and error-prone task [8,9]. For instance, consider an evolution of a MM
and accompanying constraints. First, all instance models need to be migrated in
order to conform to the new MM definition. Furthermore, all model transforma-
tions need to be adapted (e.g., due to model type changes). Moreover, tests need
to be rewritten to check that the generated source code fulfills the specified con-
straints.

The artifacts which make up a MDD process (models, M2M/M2T
transformations, model and transformation constraints etc.)—although highly
interdependent—are autonomously maintained. Changes in one artifact (e.g., in
a model) are not automatically reflected in other dependent artifacts (e.g., in a
M2T transformation). The barrier for a tight integration of MDD-based artifacts
stems from two limitations of current approaches: (1) Model transformations are
unidirectional and changes can be propagated in one direction only (e.g., a model
change is reflected in generated code); (2) changes can only be propagated into
output artifacts of transformations (e.g., models), not into transformation defi-
nitions themselves.

In order to overcome these co-evolution problems, our approach, on the one
hand, is based on (1) establishing bidirectional transformations (BX) between
modeling artifacts (see, e.g., [8]). BX is a mechanism for maintaining the con-
sistency of two (or more) related sources of information. A BX between two
sources of information A and B (e.g., two different models) comprises a pair of
unidirectional transformations: one from A to B (forward transformation) and
another from B to A (backward transformation) [10].

On the other hand, we apply (2) higher-order transformations (HOTs) on
first-class model representations of transformation specifications [11]. A HOT “is
a model transformation such that its input and/or output models are themselves
transformation models. [. . . ] This demands the representation of the transfor-
mation as a model conforming to a transformation MM” [11].

In this way, we are able to propagate changes in two directions (1): From a
source model to a target model and vice versa. These changes can be propagated
into models on the same or on different abstraction levels. Furthermore, we
ensure not only the co-evolution of models, but (2) model transformations, as
well. We represent transformation definitions as models and are able to propagate
changes into horizontal and vertical model transformations (i.e. transformations
between models on the same and on different abstraction levels).
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Our contributions are as follows:

– A Method for MDD-based Co-evolution: Our approach of bidirectional higher-
order transformation (B-HOT) for the co-evolution of model artifacts builds
on former work [12–15]. This paper presents first enhancement steps which will
allow for coupling, synchronization, and tracing of all model artifacts involved
in a MDD process.

– Integrated Tool Support: We provide initial prototypes for an integrated MDD-
based tool support for B-HOTs via the Eclipse IDE. Our implementations
build on well-established MDD tools (e.g., Eclipse EMF [16], ATL [17],
Epsilon [18])1.

– Conformance between BX and MDD: To facilitate reproduction and transfer-
ability, we present an approach independent of any transformation language
and we prepare for generalizations according to OMG specifications, for exam-
ple, MOF [19], QVT [20], MOFM2T [21]. Besides integrated BX and MDD
tooling, we also want to contribute to establish a common terminology to
bridge the gap between the BX and MDD communities [10,22].

The remainder of this paper is structured as follows. Section 2 reviews tra-
ditional model-driven architectures and explains why current approaches can-
not sufficiently cope with the co-evolution of multiple MDD-based artifacts.
Section 3 describes our approach to overcome the shortcomings of current meth-
ods. Requirements of our approach are discussed in Sect. 4. Our initial MDD-
based developments are briefly explained in Sect. 5. Section 6 concludes the paper
by discussing implications and mentioning limitations of our approach as well as
pointing to ongoing and future work.

2 Current Approaches

A traditional model-driven architecture (MDA), as proposed by the OMG [23,24]
and as supported by a variety of tools, is sketched in Fig. 1. MMs provide the
reference frame to which instance models must conform to, for example, a UML
class model conforms to its MM defined in the UML specification [25]. M2M
transformations are applied over one or more input models with the purpose
of generating one or more output models conforming to the same or different
MMs. A typical M2M transformation example is the generation of platform-
specific models (PSMs) from platform-independent models (PIMs). As models
are a means for abstraction, they mostly do not capture enough implementation
details to be directly executable. Hence, M2T transformations generate textual
artifacts (e.g., source code, configuration documents) which can be deployed on
a specific platform.

When a MDD-based artifact evolves, changes must be reflected in all depen-
dent (meta)models, transformations, and platform artifacts. The complexity of

1 All software artifacts are publicly available at http://www.biglab.org and http://
nm.wu.ac.at/modsec.

http://www.biglab.org
http://nm.wu.ac.at/modsec
http://nm.wu.ac.at/modsec
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Fig. 1. Traditional model-driven architecture.

change operations increases with the number of different MMs and models (e.g.,
due to different modeling languages), M2M transformations (e.g., due to inter-
mediary model representations), and M2T transformations (e.g., due to multi-
ple supported platforms) involved. Current approaches cannot sufficiently cope
with the co-evolution of multiple MDD-based artifacts because of restrictions to
express and propagate changes which manifest in (1) unidirectional model trans-
formations and (2) disregarding transformation definitions as first-class mod-
els (see Fig. 1). An example for evolution mismatches is the inability to reflect
changes in generated platform artifacts back to their corresponding instance
models. For example, in Eclipse EMF, changes to the generated Java source code
may be lost when executing the unidirectional M2T transformation once again.
Furthermore, by default, the generation templates (i.e. Java Emitter Templates,
JETs) cannot be easily adapted, excluding the possibility to reflect changes in
the code generator logic (i.e. transformation definitions are not treated as first-
class artifacts).

Yu et al. [26] provide a platform-specific (i.e. Java-bound) solution for the
co-evolution problem stated above. In the approach, BX is used to synchro-
nize models with generated and user-modified code. Prerequisites are that the
platform-specific language encodes a textual duplicate of the PIM (i.e. @model
annotations) and that a MM representation exists for the platform-specific lan-
guage (i.e. a Java Ecore MM).

To establish BX, triple graph grammars [27] are commonly employed in MDD
for keeping related models consistent (see, e.g., [28]). Triple graph transforma-
tions relate a source and a target graph (i.e. a model) by some correspondence
graph. In this way, source and target graphs are coupled which provides a basic
structure for their co-evolution.

Wachsmuth [29] considers MM/model co-evolution as a step-wise adap-
tation of MMs (via transformation relations) and instance-preservation of
models. Instead of describing the co-evolution of models as a transforma-
tion between two MMs, Wimmer et al. [30] employ in-place transformations.
Herrmannsdoerfer et al. [31] present a framework to model the co-evolution of
MMs/models via the composition of coupled transactions to adapt the MM and
specify the corresponding model migrations.

Furthermore, state-based MM/model co-evolution approaches, for instance,
adopt HOTs which take a difference model obtained by comparing two MMs and
generate a model transformation able to produce the co-evolution of involved
models [9].
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Although all of these co-evolution methods cope with model transforma-
tion restrictions, a combined and uniform solution is missing, so far. Either the
approaches provide only one-way co-evolution possibilities (i.e. unidirectional) or
only for a subset of MDD artifacts (e.g., only MM/model co-evolution). There-
fore, in the next section, we propose a generic approach for co-evolving MDD-
related artifacts.

3 Model Co-evolution via B-HOT

With our approach (Fig. 2 provides an overview) we want to overcome short-
comings of current methods and offer a generic solution for co-evolving MDD
artifacts. The upper part of Fig. 2 reflects a traditional MDA. Model co-evolution
is achieved by integrating (1) BX capabilities (lower part of Fig. 2) and (2) sup-
port for HOTs into the MDA.

As an example, consider a model transformation from an object-oriented rep-
resentation (e.g., a class diagram) to a relational database model. For instance,
both MMs are defined in a MOF-based language (see upper part of Fig. 2).
Hence, their instance models (e.g., using Ecore as technological projection) con-
form to the (E)MOF MM. A transformation (e.g., specified via ATL or ETL) is

Fig. 2. Overview of our model co-evolution approach.
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applied to class models and generates database models. This forward transfor-
mation proves useful in one case only: Changes in evolving class models should
be reflected in database models, as well. Updates in database models cannot be
propagated back to their source class models. A coupling of both representa-
tions limits the target model to be read-only (otherwise changes get lost when
re-executing the transformation).

In our approach, we integrate BX capabilities by reusing native MDD con-
cepts. Every transformation is represented as a first-class model conforming to a
transformation MM. B-HOTs (see Fig. 2) provide for the mapping of unidirec-
tional MDD-based transformation models (e.g. defined via ATL or ETL) into
a bidirectional graph transformation model (and vice versa). Reconsidering the
BX of the class-to-database model transformation example, in a next step, both
source and target models (i.e. class and database models) are mapped to a graph
structure (defined via UnCAL [32], a graph algebra). Source and target graph
schemas are represented as MOF-based MMs. In order to establish bidirectionality
between the class-to-database transformation, the unidirectional transformation
model need to be mapped to a bidirectional transformation model. This is done
via a B-HOT (defined via UnQL+ [13], a SQL-like graph query/transformation
language) which provides the forward and backward transformations between two
transformation specifications (in our example, transformation models specified in
ATL/ETL and UnQL+). The result of the B-HOT is a BX specification (again
defined via UnQL+) which provides both, a forward transformation from class
to database graphs as well as a corresponding backward transformation. Thus,
changes in the database graph can be propagated back to the class graph. As the
transformation of models to graphs is also bidirectional, updated class and data-
base graphs can be represented in their initial model-based forms. Therefore, a BX
of source and target models (class and database models in our example) is estab-
lished. The backward database-to-class transformation is distinct to the BX and
no corresponding MDD-based transformation equivalent exists (i.e. no backward
transformation defined via, e.g., ATL or ETL). Therefore, as a last step, the back-
ward transformation (in UnQL+) must be represented in its original MDD-based
form (in ATL, ETL) via the B-HOT mapping (see Fig. 2).

We discuss co-evolution properties of our approach according to the following
four categories.

Model Relations: Our approach establishes BX-based relations between mod-
els, graphs, and model and graph representations. The mapping relation between
traditional MDD-based transformations and BX representations (B-HOT) allows
to add BX support in traditional MDAs. Furthermore, relations are not restricted
to one source and one target artifact only, but can be used for the transformation
of multiple dependent models/graphs, as well (see also compositional BX down
below). The coupling of models via BX allows, on the one hand, to establish syn-
chronization definitions and, on the other hand, to collect transformation traces.
As many modeling artifacts make up a MDD process, keeping models consistent
is of special importance. Moreover, trace information are a relevant source for
documentation and debugging purposes.
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Model Co-evolution Scenarios: Our approach supports any M2M relation and
any number of MM-layers. Horizontal co-evolution examples are, for instance,
the synchronization of different MMs or different instance models. Vertical co-
evolution examples are, for instance, keeping instance models and corresponding
MMs or PIMs and PSMs consistent. Consider, for example, a PIM representing
a MM of an object-oriented system and a Java-based MM as its PSM equivalent.
Both MMs are synchronized via a B-HOT keeping them consistent. In this case,
changes in the PIM can be propagated into the PSM (and vice versa). If the
Java-based MM needs to be modified (e.g., due to the release of a new Java ver-
sion), these changes—when affecting the object-oriented system representation,
as well—can be propagated back into the PIM via the B-HOT. Moreover, trans-
formation models permit to propagate changes also in horizontal and vertical
M2M and M2T transformation definitions, for instance, for the co-evolution of
MMs and transformation models or different transformation models. Referring
to the example of synchronizing a general object-oriented MM and a Java-based
MM, consider that their instance models are transformed into a textual object-
oriented representation and Java source code, respectively. Changes in the Java-
based MM (again, e.g., because of a new Java version) must also be reflected
in its M2T transformation (e.g., type changes). Via a B-HOT between the PIM
and PSM M2T transformations, changes in one of the M2T transformations can
be propagated into the other M2T transformation keeping them consistent.

Language-independent Integration: Our approach is not dependent on a spe-
cific model transformation language, i.e. it does not matter if the model trans-
formation is defined via ATL, ETL, or any other language. This is because we do
not integrate bidirectionality into a model transformation language directly. The
B-HOT definition serves as a language-specific binding between the concepts of
the unidirectional MDD-based transformation and the bidirectional graph trans-
formation. These bindings must be specified only once for each MDD-based
transformation language (e.g., ATL, ETL) and facilitate reuse of our approach.

BXProperties: We develop B-HOTs via a functional bidirectional graph trans-
formation language named UnQL+ [13]. UnQL+ is an extension of UnQL [32], a
graph querying language based on structural recursion (which can be expressed in
first-order logic extended with transitive closure) [33]. The BX ensures the well-
behavedness of forward and backward transformations (i.e. that they are consis-
tent with each other) and satisfy the round-trip property [10]. As the BX does not
restrict forward transformations to be information preserving, a backward trans-
formation requires not only the modified target graph/model, but also the orig-
inal source graph/model. Large BX can be developed in a compositional way of
reusing existing information (e.g., via intermediate models). Compositional BX
can be employed, on the one hand, for a pair of consecutive transformations, where
the output of transformation A is the input of transformation B ; for example, the
output of the source model-to-graph transformation is fed into the forward source-
to-target graph transformation (see Fig. 2). On the other hand, compositional BX
can be used for a pair of transformations that share an identical input model, for
instance, transformations from one PIM to multiple PSMs [12].
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4 B-HOT Requirements

This paper provides a first step to make co-evolution in MDD via B-HOTs possi-
ble. Initial work regarding the methodology and accompanying tool support has
been performed, but is far from being finalized. In this section, we list challeng-
ing requirements for the implementation of our approach. We present completed
work and discuss prerequisites for future developments.

Transformation MMs: Our B-HOT approach relies on transformation
(meta)models. MDD-based M2M transformation MMs exist, for instance, for
ATL [11] and for a subset of the Epsilon-language family [34]. Regarding M2T
transformations, Hoisl et al. [15] extended the Epsilon model representations
of Wei [34]. The BX framework [13] does not need MM representations for the
UnQL+ and UnCAL languages. Syntax definitions in Backus-Naur Form (BNF)
exist for both languages and need to be mapped to EMOF-compliant (e.g. Ecore-
based) MM representations (ongoing work; see also Sects. 5 and 6).

MM-specific Bindings: For a B-HOT, language-specific bindings need to be
established between uni- and bidirectional transformation MMs. Initial work
provides a unidirectional transformation from a subset of the ATL language to
UnQL+ (excluding imperative code and OCL expressions of ATL). This trans-
formation does not take the model representation of ATL into account [14]2.
Thus, language-specific bindings for, for instance, ATL and/or ETL to UnQL+

and/or UnCAL via B-HOT is future work. Furthermore, a first prototype exists
for the BX of model-to-graph representations (Ecore-based models to UnCAL
and vice versa), but needs improvements (future work).

Round-tripping of Transformation Definitions: Our B-HOT approach
demands transformation models as input. In contrast, most model transforma-
tion engines cannot execute model representations of transformation definitions.
Therefore, the round-tripping of executable (i.e. text-based) transformation spec-
ifications and their model representations must be provided. For M2M trans-
formations, “an ATL transformation is itself a model, conforming to the ATL
MM” [11]. Furthermore, Wei [34] developed initial round-tripping support for
an Epsilon subset which was extended for M2T transformations (i.e. EGL) by
Hoisl et al. [15]. Currently, the automatically derived backward transformation
of a BX can neither be expressed as UnQL+ or UnCAL textual statements nor
via corresponding model representations (future work).

Generic Mappings: Prototype developments define transformations in a spe-
cific language as implementation vehicle (e.g., ATL, ETL). To support uptake
and transferability of our approach we need to establish mappings to OMG spec-
ifications (see also Fig. 2). Hoisl et al. [15] provide mappings between EGL-based
M2T transformation concepts used for the prototype and the MOFM2T speci-
fication. As future work, uni-/bidirectional M2M transformation concepts (e.g.,
ATL, ETL, UnQL+) will be mapped to the QVT specification.
2 This separate work of integrating ATL and BX is performed in collaboration with
the AtlanMod team, uses the same BX framework (GRoundTram), but in contrast
focuses on unidirectional transformations from ATL to UnQL+ with a concrete
semantic alignment between these two technical spaces.
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Development Support: Initial support for the requirements-driven testing of
(meta)models and model transformations via scenarios is provided by Sobernig
et al. [35] and is extended/evaluated by Hoisl et al. [36,37]. Furthermore, val-
idation for source and target models as well as for BX is presented by Hidaka
et al. [13]. We have started implementing an IDE (e.g., a text editor) to sup-
port the development of UnQL+ BX (see Sect. 5) and UnCAL-based graphs
(future work). For this task, we have chosen Eclipse Xtext as candidate frame-
work because it combines the grammar specification for a textual syntax with
an Ecore-based model representation and provides for an Eclipse-based IDE.

Combine BX and MDD: Model (i.e. graph) transformations are important
to both BX and MDD [10,22]. Our approach allows to integrate BX into MDD,
thereby reusing native methods and tools for both. We want to support the
creation of a shared terminology [10] via the generalization and mapping of
language-specific uni-/bidirectional transformation concepts to OMG specifica-
tions. After our developments have matured, as future work, we need to provide
for a larger case study to show that our approach works in practice.

5 Prototypical MDD-Based Support for UnQL+

This section introduces our initial MDD-based developments for the UnQL+ BX
language: an Ecore-based UnQL+ MM (see Fig. 3), an Xtext grammar specifi-
cation for the UnQL+ textual syntax (see Listing 1), and editors to support the
development of UnQL+ BX in both textual and model-based syntax notations
(see the example text- and model-based transformation definitions in Listing 2
and Fig. 4, respectively)3 These developments are based on Eclipse EMF and
matured versions will fulfill the following B-HOT requirements (see Sect. 4):
The mapping of BNF-compliant/Xtext-based UnQL+ grammar definitions to
EMOF-compliant/Ecore-based MM representations. This allows the specification
of an UnQL+ BX MM with two corresponding and interchangeable concrete
syntax variants (textual and model-based). As the Xtext grammar describes how
an Ecore model is derived from a textual notation, round-tripping of UnQL+

BX definitions is partially fulfilled (i.e. transformations specified textually are
automatically mapped to their model representations). Furthermore, the imple-
mented software artifacts (e.g., text/model editors) support the development of
UnQL+ BX.

Figure 3 shows an excerpt of the Ecore-based UnQL+ MM. For this, the
BNF grammar of UnQL+ was mapped to a model representation consisting of
(abstract) classes and class attributes as well as containment references and
inheritance relationships between these classes. From Fig. 3 it can be seen that
four different Statement types can be contained in an UnQLplus expression:
Selection, Replacement, Deletion, and Extension. All of these statements
operate on graphs (Template); for example, to select a graph based on certain
conditions.
3 All software artifacts can be obtained from the URLs mentioned in the footnote of
Sect. 1.
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Fig. 3. Ecore-based UnQL+ MM (excerpt).

Listing 1 shows an excerpt of the Xtext grammar for the UnQL+ textual
syntax. The grammar definition of UnQL+ was translated from BNF to Xtext
and aligned to match the Ecore model concepts. The entry rule on lines 7–8
in Listing 1 defines that an UnQLplus expression contains Statements. The
Statement rule (lines 10–12) delegates in line 11 to the four alterna-
tive statement rules (defined later) and specifies the syntax of an optional
condition (line 12). As examples, the syntax of two statements is spec-
ified in the Selection rule (lines 14–15) and in the Replacement rule
(lines 17–18). Furthermore, the definition of graphs is shown in lines 22–23
(Template rule) and lines 25–33 (TemplateExpression rule), respectively (del-
egated rules are omitted).

1 grammar org.biglab.groundtram.bx.UnQLplus
2 hidden(WS, SL_COMMENT , ML_COMMENT)
3
4 import "http :// unqlplus /0.1"
5 import "http ://www.eclipse.org/emf /2002/ Ecore" as ecore
6
7 UnQLplus:
8 statements += Statement *;
9

10 Statement:
11 (Selection | Replacement | Deletion | Extension)
12 (’where ’ condition += Condition (’,’ condition += Condition)*)?;
13
14 Selection:
15 ’select ’ template=Template;
16
17 Replacement:
18 ’replace ’ rpp=RegularPathPattern ’->’ gvar=GraphVar ’by’ template1=

Template ’in’ template2=Template;
19
20 ...



Towards Bidirectional Higher-Order Transformation 163

21
22 Template:
23 TemplateExpression (=>’U’ template=Template)?;
24
25 TemplateExpression returns Template:
26 {Template} ’{’ labeled_graph += LabeledGraph? (’,’ labeled_graph +=

LabeledGraph)* ’}’ |
27 ’(’ expr=Statement ’)’ |
28 fname=FunctionTemplate |
29 conditional=Conditional |
30 variable_binding=VariableBinding |
31 structural_recursion=StructuralRecursion |
32 mutual_structural_recursion=MutualStructuralRecursion |
33 gvar=GraphVar;
34
35 VariableBinding:
36 ’let ’ gvar=GraphVar ’=’ template1=Template ’in’ template2=Template;
37
38 ...

Listing 1. Xtext grammar definition for the UnQL+ textual syntax (excerpt).

With the Ecore MM and the Xtext grammar defined in Fig. 3 and List-
ing 1, it is possible to provide editor support for textual as well as model-based
UnQL+ BX. Listing 2 shows an example class-to-database UnQL+ BX replac-
ing attributes by columns (excerpt taken from Hidaka et al. [13]). The BX in
Listing 2 makes use of Selection (e.g., starting from line 1 and line 3) and
Replacement statements (starting from line 7). The UnQL+ BX was created
using our Eclipse-based textual editor providing features, such as, syntax col-
oring, auto completion, error detection, and so forth. In this way, it is ensured
that developed UnQL+ BX conform to the Xtext grammar defined in Listing 1.
A benefit of using the editor to write UnQL+ BX is the early detection and
immediate correction of syntactical errors.

1 select {tables : $table} where
2 $persistentClass in
3 (select $class where
4 {Association .(src|dest).Class : $class} in $db,
5 {is_persistent : {Boolean : true}} in $class),
6 $table in
7 (replace attrs -> $g
8 by (select {Column : $a} where
9 {attrs.Attribute : $a} in $persistentClass)

10 in $persistentClass)

Listing 2. Example class-to-database UnQL+ BX (excerpt).

Figure 4 shows an excerpt of a tree-based view on a model representation of
the same class-to-database UnQL+ BX example introduced in Listing 2. Via the
Ecore MM and the corresponding Xtext grammar, a model representation can
be derived from textual UnQL+ BX definitions. This instance model conforms to
the Ecore-based UnQL+ MM in the same way as a textual UnQL+ BX definition
conforms to the Xtext grammar. The representation of transformation models
(e.g., expressing UnQL+ BX as models as exemplified in Fig. 4) is one of the
main requirements to realize our B-HOT approach.
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Fig. 4. Tree-based view on example class-to-database UnQL+ BX model (excerpt).

6 Concluding Discussion

In this paper, we presented an approach for model co-evolution by combining
BX and HOT for MDD. The developed method (B-HOT) intends to overcome
current limitations for model co-evolution as transformations are represented
as models and model transformations are bidirectionalized. In our approach,
models are coupled via BX providing the benefit that synchronization of mod-
els is ensured via forward/backward transformations. Another advantage is that
changes can be propagated into model transformations keeping them consistent
with their evolving dependent artifacts (MMs, model instances). Our approach
of integrating BX into MDD is generic and can be applied to any model trans-
formation language via binding specifications.

With our work and according to the feature-based classification of BX
approaches presented in [38], we combine graph-based and MDD-based arti-
fact representations involved in BX. In particular, the employed demonstrator
BX framework (GRoundTram) is based on graphs, while metamodels in Eclipse
approximate the MOF specification (implemented via Ecore models). Therefore,
the technical space of GRoundTram needs to cope with MDD-based artifact
representations, as well. In GRoundTram (for further BX approaches and their
characteristic features see [38]), the correspondence relation between source and
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target artifacts is defined via user-provided unidirectional transformation speci-
fications. In this case, the backward transformation is not explicitly stated (see
also Sect. 4) and is automatically derived by the bidirectional engine (inversion).
Thus, the results of the computed backward transformation needs to be concep-
tualized in the technical space of GRoundTram (i.e. represented in UnQL+ or
UnCAL). The proposed B-HOT approach presented in this paper demands to
switch from an implicit to an explicit representation of the backward transfor-
mation.

Please note that BX approaches (see, e.g., [38]) differ in terms of feature
characteristics and implementation methods, for example, according to the tech-
nical space (e.g., text-, graph-, MDD-based), the directionality of the consistency
definition (e.g., unidirectional, bidirectional transformation specifications), the
representation of changes (e.g., state-, operation-based), or the definition of the
backward transformation (e.g., explicit, implicit) [38]. Although we focus in this
paper specifically on one BX approach (i.e. GRoundTram), other BX methods
which conceptually conform to the requirements discussed in the former para-
graph as well as in Sect. 4 are candidates for consideration, as well.

A drawback of our proposal is that the efforts of creating initial modeling
and transformation artifacts can be high. Transformation MMs may have to be
defined for the intended target language. Currently, no bindings for transfor-
mation languages exist. Although these have to be defined only once for each
language, this is a barrier for uptake. Transformation engines might not execute
transformation models directly making model/text round-tripping functions nec-
essary (but again these can be reused per language). Adequate tool support must
be provided to facilitate the development of models and transformations.

Currently, we are developing an EMOF-based MM for the UnQL+ BX lan-
guage (in Ecore). In parallel, we transfer the BNF-based grammar definition
to Xtext. This will ensure the consistent mapping of transformations written
in UnQL+ to their modeling equivalents. An editor to support the definition
of UnQL+ statements will be provided, as well. Initial developments (see also
Sect. 5) are available at the URLs mentioned in the footnote of Sect. 1 and are
continuously updated. UnQL+ concepts will be mapped to the QVT-Relations
language in the near future.
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Abstract. Tailoring software processes to particular contexts applying
model transformations has proved to be appropriate and technically fea-
sible. However, the use of this approach can become awkward for most
process engineers, because it requires knowledge about the process and
its tailoring needs, and also about building model transformations. In a
previous work we have proposed a tool based on model-driven engineer-
ing (MDE) for automatically generating software process model tailor-
ing transformations. This paper presents an improved user interface of
the tool and proposes a process for guiding its application for tailoring
processes. We illustrate its use by applying it for tailoring the process of
Rhiscom, a Chilean small software company. The tool and the process
balance the formally required by MDE with the usability needed by the
process engineers.

Keywords: Software process · Tailoring transformations

1 Introduction

Software process tailoring allows process engineers to adapt the organizational
software process to the needs of particular projects. Although there is a variety
of approaches for implementing tailoring processes, during the last years several
researchers have identified in MDE a promising opportunity to address it [3,6,7].
MDE-based tailoring takes as input the organizational process model including
its variability, and the project context model, and generates the project adapted
process model through a model transformation. For each variable process element
in the process model, there will be a rule in the tailoring transformation that
determines if it is to be included or not (for optional elements) or which element
should be included in the adapted process (for alternative elements), according
to the values of the project context model attributes.

MDE-based approaches in general allow software modeling at different
abstraction levels and addressing different application domains [12]. However,
it requires mastering new concepts and formalisms relating model definition and
writing model transformations in specific languages [13]. Particularly, generating
c© Springer International Publishing Switzerland 2015
S. Hammoudi et al. (Eds.): MODELSWARD 2014, CCIS 506, pp. 171–182, 2015.
DOI: 10.1007/978-3-319-25156-1 11
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appropriate tailoring transformations requires two different kinds of knowledge.
On the one hand, process engineers, who are in charge of this activity, should
know precisely how the context attribute values impact the process variation.
And on the other hand, they should be able to write the model transforma-
tion, mastering the syntax and semantics of the transformation language. Most
process engineers usually have the first kind of knowledge (i.e., how the process
should be tailored), but they are usually not experienced in the use of transfor-
mation languages and MDE concepts. Moreover, software engineers that know
how to build models and transformations are almost never in charge of processes
and tailoring.

Costa-Silva et al. [5] present a qualitative study where they compare eight of
the most relevant approaches for developing model transformations. The compar-
ison considers aspects about the approaches foundations, features and applica-
bility. The study shows that these proposals have rigorous foundations (from a
theoretical perspective), they include most of the features required in the trans-
formations, but they are difficult to use by developers. These results highlight
the need for developing new solutions that simplify rule definition, while still
providing all the expressive power required for software process model tailoring.
This type of tailoring is only an example of the application scenarios that are
not well supported by the current way of developing model transformations.

In order to address this challenge, in a previous work [20] we have presented
a model-based tool that uses a generative approach to define tailoring transfor-
mations. This tool allows process engineers to interactively define rules using a
graphical user interface, taking advantage of the formality provided by MDE,
but hiding its inherent complexity. Thus, the process engineer defines transfor-
mation rules to tailor the organizational software process, only by instantiating
on a graphical user interface the project context attributes that impact variable
process elements. In this paper we describe an improved tool user interface and
we provide a process that different stakeholders should follow for using the tool.

The rest of the paper is structured as follows. Next section presents and
discusses some related work. Section 3 presents the foundations and the general
structure used for the MDE software process tailoring tool. Section 4 presents
the tool-based tailoring process and its application to a real world case using
the improved user interface. Finally, conclusions and future work are presented
in Sect. 5.

2 Related Work

Building appropriate model transformation requires expertise for choosing the
right kind of transformation, and also for mastering the transformation language
syntax and semantics. Therefore writing these transformations is usually difficult
and requires knowledge that is not usually available in process engineers. These
knowledge-gap barriers are partly addressed by transformation-by-example tech-
niques [11]. Particularly, MOLA [10] and GREaT [1] allow specifying transfor-
mation rules through visual mapping patterns. They specify rules and map-
pings using class diagrams, but considering an environment inspired in activity
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diagrams. Both works also allow establishing relationships between metamodel
attributes and elements. A limitation of MOLA and GREaT is that they need
the user to directly interact with metamodels and class diagrams, which still
represents a strong restriction for process engineers in terms of usability.

Varró and Balogh, through the VIATRA framework [25], provide a text-based
rule editor. Although this proposal is supported by Eclipse, it does not provide
an easy-to-use environment that can be used by process engineers for defining
tailoring rules.

There are also some recent proposals, such as MTBE (Model Transforma-
tions By Example) [24,26] and MTBD (Model Transformation By Demonstra-
tion) [22], that use strategies and patterns with a visual support to simplify the
implementation of model transformations. These strategies generate part of the
code required for the model transformations, however, the process engineer still
needs to understand and complete such a code. Therefore, using these approaches
also represents a challenge for process engineers.

Fig. 1. MDE-based software process tailoring (Colour figure online).

Hurtado et al. [7] proposes a tailoring approach that generates an adapted
process model from a general process model, which is adapted according to a
project context model. The tailoring transformation is written in ATL [17] and
it demonstrates the feasibility of this approach for tailoring software processes;
however, it does not help overcame the stated problem due the rules still need
to be written using ATL.

This knowledge-gap has lately been addressed by new proposals such as
Domain-specific transformation languages [18]. For instance, Irazabal et al. [8]
have proposed a DSTL implementation using MOFScript [15] (transforma-
tion language Model-to-Text) for the domain of data bases. Canovas et al. [9]
have development Gra2Mol using Java (general purpose language) for generating
grammar-to-model transformations.
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3 MDE-based Software Process Tailoring

Figure 1 shows the general architecture of the MDE-based process tailoring app-
roach organized as a megamodel [2]. This approach requires two input models: an
organizational software process model that conforms to the eSPEM (experimen-
tal SPEM) metamodel that is a subset of SPEM (Software Process Engineering
Metamodel) [14], and a project context model that is an instance of the Orga-
nizational Context Model. This approach uses a model-to-model transformation
(the yellow triangle in the middle of Fig. 1) to generate a project adapted software
process model as output. The resulting process model also conforms to eSPEM
but includes no variability.

The organizational software process model is defined using the Eclipse Process
Framework Composer (EPFC)1, including its variabilities [21]. This tool has been
well received by software companies’ process engineers because it is free and pro-
vides an intuitive user interface. The process, as specified in EPFC, conforms
to the UMA (Unified Method Architecture) metamodel in its internal represen-
tation, and the tool exports an xml file that cannot be directly used as input
for the tailoring transformation. Therefore, an injector has been built for con-
verting the process representation between format,s obtaining an organizational
software process model in xmi format and conforming to eSPEM as needed.

The organizational context model indicates the project attributes that may
influence the process tailoring along with their potential values. A project con-
text model is an instance of this organizational context model. The organiza-
tional context model is defined using Eclipse Modeling Framework (EMF) and
conforming to the SPCM (Software Process Context Metamodel) metamodel [7].

The Variation Decision Model (VDM), which conforms to a Variation Deci-
sion MetaModel (VDMM) [20], is a mapping that defines the tailoring rules using
domain concepts. Each mapping has two subcomponents: Condition and Conclu-
sion. Conditions may be simple (conditions [attribute and its value] with logical
connectors), or complex (conditions are formed by combining simple conditions
[attributes and its values] with logical connectors). Conclusions indicate if the
process indicate a boolean value (true or false) for optional process elements, or
a particular process element identification for alternative process elements.

Provided that model transformations can be also considered as models con-
forming to their language metamodel [4], a Higher-Order Transformation (HOT)
is a transformation in itself, but it either takes a transformation model as input
or generates a transformation model as output [23]. We use a HOT to generate
the tailoring transformation, thus avoiding writing it directly. Our HOT takes
the VDM previously built as input, and its output is the desired process tailoring
transformation. There are two approaches for building HOTs: model-to-model
(M2M) and model-to-text (M2T) transformations. We choose M2T and there-
fore the output is the ATL source code of the tailoring transformation. We have
decided to use a general purpose language, such as Java, to build the HOT, at
least for the first version, because it is a mature language that is easily mas-

1 https://eclipse.org/epf/downloads/tool/tool downloads.php.

https://eclipse.org/epf/downloads/tool/tool_downloads.php
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tered by developers [19]. A final version of the HOT will be implemented in a
transformation-specific language, probably ATL for symmetry of the solution.

The tailoring transformation in this proposal is written in ATL. For each
variable element identified as part of the organizational process, there is a rule
included in the transformation. For optional process elements, the rule decides,
according to the values in the project context model attributes, if it should
be included or not in the adapted process. For process elements defined with
alternatives, the rule decides which of them will be included in the adapted
process. Even though this strategy seems quite clear, translating it into ATL
rules is a challenging task.

4 Applying the MDE-Based Tool

In this section we first describe who, what and when the tool should be used
for process tailoring, i.e., its associated process. Afterwards, we illustrate the
application of the tool and process for tailoring the software process of Rhiscom,
a small Chilean software company.

4.1 The Process

The stakeholders for tool application process are: the process engineer, the
project manager and the tool itself. Next, we will briefly describe each of them.

Fig. 2. Process supported by the proposed tool.
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Fig. 3. Rhiscom’s requirements activity.

Process Engineer. According to Fig. 2, the process engineer is in charge of the
tasks Define Organizational Process, Define Organizational Context, and Define
Tailoring Rules (orange in the figure). The definition of the process, together
with its variability, is addressed using EPF Composer. Figure 3 shows a part
of Rhiscom’s process highlighting its variability. We have also developed a web-
based tool to support the process engineer to Define Organizational Context [16].
The only task the process engineer should do applying the proposed tool is to
Define Tailoring Rules.

Project Manager. The most appealing feature of the proposed tool is that
the project manager should only Define Project Context, i.e., the characteristics
of the project at hand. However, as shown in Fig. 2, he/she can only do this
once the Organizational Context has been defined. Afterwards, once the Project
Adapted Process is available, he/she can apply it for developing the concrete
project.

The Proposed Tool. The tool plays an active role in the process. Once the
Organizational Process and the Project Context have been defined, the tool is in
charge of generating the Project Adapted Process. However, and according to the
description in Sect. 3, the internal structure of the tool is much more complex
than just a task.
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Fig. 4. User interface for input models selection.

Fig. 5. Selection of process variation points.

4.2 Application Case

Rhiscom is a Chilean software company that develops integrated software and
hardware solutions for points-of-sale. It is a 15 year old company and it has
defined its development process around five years ago. Since two years ago, they
have been addressing the issue of systematically tailoring its process, provided
that is was being tailored anyway but with no agreed criterion. In this section
we illustrate how the proposed tool supports this activity for tailoring Rhiscom’s
process.

The process engineer uses a visual interface to indicate the models that will
be used in the definition of tailoring rules (Fig. 4). After that, she/he can define
tailoring rules for each process variation point. This activity involves two steps:
the interactive definition of a decision model (using the visual user interface) and
the automatic generation of the tailoring transformation, based on the previously
built decision model.
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Fig. 6. Interactive interface for defining the VDM.

Fig. 7. Tailoring transformation. “Establish Requirements Baseline” has alternatives
so a decision is made with respect to which one is included.

During the first step, the process engineer uses the tool to indicate which
variation point he/she will define (see Fig. 5) and then interactively define the
relationships between the context attribute values and the process variable ele-
ment. Repeating this for all variable elements will yield a Variation Decision
Model (VDM). This VDM is a mapping, i.e., a high-level representation of the
transformation rules. The VDM is then used as input for a Higher Order Trans-
formation (HOT) to automatically generate the tailoring transformation that
will be used to adapt the organizational software process model.

Interactive Definition of the Variation Decision Model. Once the process
engineer has specified the models that will be used as input, she/he can start
with the interactive definition of the Variation Decision Model. Figure 5 shows
five optional variation points for Rhiscom’s process: Requirements, Execute Test
Cases, Meet for integration agreement, and Design, and also two alternative
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Fig. 8. Rhiscom’s process after applying the tailoring transformation.

variation points: Establish Requirements Baseline and Specify Requirements. If
the user selects a variation point (e.g., Establish Requirements Baseline) and
clicks on the “Create Rules” button, she/he can define the rules that will be used
to tailor the organizational process in such a point, depending on the values of
the context attributes of a specific project.

Figure 6 shows the interactive interface that allows the process engineer to
define the decision model. Each decision has a condition and a conclusion. The
condition is a predicate that could be simple or complex. Simple predicates are
typically a conjunction of context attributes and particular values. Complex con-
ditions also consider the use of disjunctions. In the upper right part of the figure
we can see the conditions defined so far.

In this example, the engineer defines that the Establish Requirements Base-
line activity should be replaced by “Establish Requirements Baseline without
Test Cases” when the “Project Tye” is New Development, “Project Duration”
is Medium and “Business Knowledge” is Unknown. This decision is part of the
adaptations defined by Rhiscom for its organizational process. The actual ATL
rule, that is generated according to this interactive definition, is shown in Fig. 7.
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Resulting Process. Figure 8 shows the resulting process after applying the
tailoring transformation interactively generated. As can be seen, the “Estab-
lish Requirements Baseline” task has been replaced by “Establish Requirements
Baseline without Test Cases” as indicated by the process engineer.

5 Conclusions and Future Work

We have presented model-based tool for interactively defining and automati-
cally generating process tailoring transformations, as well as shown its practical
application in a real world example. The tool combines MDE and generative
programming aspects, together with a web-based user interface. The resulting
tool is powerful enough to generate the tailoring transformation for a real world
company’s process and yet usable for process engineers.

The main purpose of building an interactive tool was aiding the process engi-
neer to tailor her/his process. We provided a running example that shows how
to apply MDE concepts without directly interacting with the code or requiring
knowledge about transformation languages. Transformations in general could be
quite complex. However, we have shown that building process tailoring transfor-
mations requires only a few types of rules that may be automatically generated
from a VDM. Although we have been able to generate transformations automat-
ically, this kind of tool is only applicable for the software process domain, but
this experience can be the starting point to be extended to other domains.

Complex rules can be generated using simple conditions, logical operators
and complex conditions (with logical connectors). In this sense, if there are rules
with different conclusions on the same variability point, it still does not solve it;
this can be addressed by adding constraint definitions. Future work is necessary
to extend the VDM to support constraints definition between software process
elements and complex rules.

We are currently conducting industrial experiments in order to collect empir-
ical evidence to help us validate the tool expressiveness for tailoring a variety of
software processes and its usability for real world process engineers.
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2012. IEEE Computer Society (2012)

17. Project, A.E.: Atlas transformation language (2006). http://www.eclipse.org/atl/
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Abstract. Software Engineering aims to apply methods and processes for
effective and efficient software development. One of the most relevant para-
digms for achieving this goal is Model-Driven Development (MDD), which
advocates the use of models for automatically generating software products.
However, an important issue in the development and selection of MDD tech-
nologies is the lack of standardization regarding the features that need to be
considered to support the current industry needs. This hinders the comparison of
existing technologies since there is no reference point for the creation of new
MDD approaches with their corresponding supporting tools. As a solution, this
paper proposes a set of main features that MDD tools must support. The set is
based on different characteristics that have been acknowledged in the literature,
and has been validated by means of an exploratory study with tool vendors. We
also present an analysis of how eight industrial MDD tools support these fea-
tures in order to illustrate the application of our proposal.

Keywords: Model-Driven Development (MDD) � Tools � Features � Explor-
atory study � Model-Driven Architecture (MDA)

1 Introduction

The goal of Software Engineering is to apply methods for the effective and efficient
development of software products [15]. The Model-Driven Development (MDD) par-
adigm [34] has become a relevant way for achieving this purpose in both academia and
industry. Many researchers are working on the development of new MDD approaches
for a wide variety of software-related purposes, such as requirements engineering [17],
testing [36], and compliance [5]. Practitioners are increasingly adopting MDD [11],
which is also reflected in the wide variety of OMG (Object Management Group)
standards [24]. MDD approaches typically use technology-independent models at
different abstraction levels in order to generate software products by means of model
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transformations. The software products include source code, documentation, and
modeling artifacts.

The MDD paradigm is moving the software development processes to a different
dimension, from the solution space (software product) to the problem space (conceptual
models). Thus, MDD is focusing on the specification of the real-world phenomena to
support instead of on the way to support them. In this journey, the success of MDD
solution adoption is directly related to the capability of the available tools to satisfy the
needs of different development projects. However, and even though there exists an
important amount of MDD tools in the software industry [19], there is a shortage of
references that provide a collection of key aspects that need to be considered for
selecting or developing a MDD tool. These tools must be properly aligned with
industrial MDD processes, needs, and expectations, thus taking this collection of key
aspects into account can be essential for MDD tool success.

This paper contributes to mitigating the above issue by proposing a set of main
features that MDD tools should possess. This set extends past proposals (see Sect. 2) by
compiling several characteristics that have been recently acknowledged by different
authors. The set of main features for MDD tools has been validated by means of an
exploratory study. A questionnaire was created to ask practitioners about the need for
the features, with four people working at tool vendor companies participating in the
study. Finally, we show the application of the set of features by analyzing eight MDD
tools.

The main contribution of the paper is twofold. Firstly, it presents and analyses a set
of main features that a MDD tool must have in order to be successfully adopted in
industry. Secondly, it presents which of these features are currently supported by a set
of existing MDD tools. This contribution can be very valuable for both researchers and
practitioners. Researchers will gain awareness of the features that they need to take into
account when proposing new MDD approaches, in order to facilitate their adoption in
industry. Practitioners will be able to more easily identify those MDD tools that will be
more suitable in practice.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 introduces the exploratory study conducted. Section 4 presents the main
features for MDD tools and the study results, whereas Sect. 5 presents an analysis of
these features in a set of industrial MDD tools. Section 6 presents conclusions and
future work.

2 Related Work

Specification of key aspects for software development tools and the application of the
corresponding set of features for tool analysis is an area to which significant attention
has been paid the last years. Thus, it is easy to find studies that have analyzed and
compared software development tools, including tools for requirements engineering [3],
collaborative software development [32], and testing [38], among other activities.
However, the number of studies proposing sets of key aspects for MDD tools is very
limited. We have identified the following ones.
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Based on his experience in the development of IBM Rational tools [34], Bran Selic
proposed the following success criteria for the development of MDD tools:

• Standards. The use of standards is essential to facilitate the adoption of new
technologies and reduce the learning curve related to the application of MDD
software processes. In this sense, the Model-Driven Architecture (MDA) proposed
by the OMG is probably the most well-known implementation schema for MDD
tools.

• Observability and Executability of the Model. Observability refers to the inte-
gration of comparison tools that help in the identification of model versions. Ex-
ecutability refers to the capability to execute the models in early stages of software
development, supporting the analysis of system behavior though experimentation
and before system deployment.

• Efficiency of the Generated Code. The efficiency of the generated code can be
decomposed into performance and use of memory. In addition, it is important to
take into account the size of the generated system and the compilation time of the
models.

In a similar way to Selic’s work, Richard Paige and Dániel Varró [28] reported on the
knowledge obtained during the development of the Epsilon [8] and VIATRA2 [1]
tools. The main conclusions in relation to the features of MDD tools were as follows:

• Use of Requirement Models for Driving the Development Process. The use of
requirement models in MDD processes help to understand and handle development
complexity. Requirements models can drive system construction in terms of
development iterations.

• Flexibility of Architectures and Modeling Tools. When the MDD paradigm
appeared, the flexibility of architectures was promoted instead of the selection of the
correct architecture. By having a flexible architecture, it is possible to adapt the
generation of the final software products to different architectural patterns in
accordance to the needs of the development project.

• Modeling Technologies. Modeling technologies refer to the methods used to
represent the models (e.g., EMF model representation). The selection of the mod-
eling technology can significantly affect the usability and flexibility of a modeling
tool in aspects such as the implementation of model transformations and typing of
model elements. In addition, the final user does not necessarily need to know how
the representation of the models is implemented; final users just need to know the
graphical representation of the models in order to handle the complexity of the
modeling technology.

Although the insights provided are useful, the publications above considered a
limited set of specific views for the development of MDD tools. Such views were also
only based on the authors’ experience and opinion. We tackle these issues by con-
sidering different publications for the definition of the main features that MDD tools
must possess, and by performing an exploratory study with practitioners in order to
validate the need for the features. The remaining publications from which we have
defined the set of main features, and the motivation for their definition, are presented in
Sect. 4.
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3 Exploratory Study

In this section, we present an exploratory study on the main features for MDD tools. It
corresponds to qualitative research [13], also called flexible research [37], which aims
to interpret a phenomenon. The exploratory study has been carried out by means of a
survey, which helps to collect information from people that describe, compare and
explain knowledge and behavior [37]. This study was carried out by following the
guidelines presented in [14].

3.1 Research Question

The aim of this survey is to gain knowledge about the main features that a MDD tool
must have from a practitioner’s viewpoint. Thus, we have formulated the following
research question RQ: What features of MDD tools do practitioners regard as the most
important ones?

3.2 Survey Design

The survey corresponds to an exploratory study [37], which provides insights for future
research. This study consisted in an online questionnaire with 19 questions. The
questions were defined by considering the relevant related work presented in Sect. 2.
We also added model verification and interoperability as possible features for MDD
tools.

Model verification is a relevant feature for ensuring that: (1) all the model infor-
mation can be transformed into the corresponding software artifacts (syntactic verifi-
cation) and; (2) the final software product satisfies user requirements (semantic
verification) [18]. Model interoperability is a key feature to facilitate (and automate) the
interchange of modeling information among tools related to a same domain. For
example, it is necessary for interoperability among different UML (Unified Modeling
Language) tools, as well as for interoperability among different modeling approaches [29].
Table 1 shows the 19 questions and the related feature for the questionnaire.

Each question was answered using a 5-point Likert scale, which goes from 1
(totally disagree) to 5 (totally agree). Some parts were presented in a randomized way
in order to avoid the possible errors in the answers produced by fatigue. Also, some
parts were presented using icons that represent the values of the 5-point Likert scale.
The respondents had the possibility to add more information in each answer in a text
box that was placed in each question. The estimated time for completing the ques-
tionnaire was 15 min. The questionnaire can be accessed at https://testmodeproject.
typeform.com/to/eUhWIU.

3.3 Instrument Evaluation and Data Collection

Regarding the instrument evaluation, the first and fourth authors screened the ques-
tionnaire in order to validate the understandability of each question. From this
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evaluation, some minor changes were made in the wording of the questions. Then, a
pilot study was performed in order to validate the time for completing the question-
naire. Four undergraduate researchers completed the questionnaire, and the results
suggested that it was possible to complete it in less than 15 min.

Regarding data collection, the first and third authors received an e-mail when a
respondent finished the questionnaire. Afterwards, a table was created with all the
responses for further analysis.

Table 1. Questions and related features of the questionnaire.

Id Question Feature

Q1 The MDD tool must support the standard UML Standardization
Q2 The MDD tool must support MDA in terms of CIM, PIM, PSM Standardization
Q3 The MDD tool must provide extension mechanisms for modeling

languages customization to allow the communication with
different tools

Interoperability

Q4 The MDD tool must provide extension mechanisms that allow the
communication/interoperability with different tools

Interoperability

Q5 It is necessary to have a graphical visualization of a model Observability
Q6 It is necessary to have a version manager of models Observability
Q7 It is necessary to have easy human interaction (such as touch

screens) to work with models
Efficiency

Q8 The MDD tool must provide verification mechanisms of the
models

Verification

Q9 The MDD tool must provide automatic defect detection for the
models

Verification

Q10 The MDD tool must provide automatic test case generation of the
models

Verification

Q11 The MDD tool must provide simulations of the executability of the
model

Executability

Q12 The MDD tool must allow redefinitions of the transformation of
the models

Flexibility

Q13 The generated code of an MDD tool must have the same efficiency
as the code generated with traditional programming

Flexibility

Q14 The MDD tool must allow the selection of different architectural
patterns to generate code

Flexibility

Q15 The MDD tool must be able to generate code reviews Code
generation

Q16 The MDD tool must generate at least the skeleton of the code Code
generation

Q17 The MDD tool must generate totally executable code Code
generation

Q18 The MDD tool must support the specification of all views of a
system

Requirements

Q19 The MDD tool must save the traceability from requirements to
code

Requirements
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3.4 Subjects Characteristics and Data Analysis

Respondents were selected from our industrial collaboration networks, and four tool
vendors completed the online questionnaire. The collected answers are shown in Fig. 1.
TV1 to TV4 represent the tool vendors that participated in the survey.

From the results, we can state that the top-three questions (the best results) cor-
respond to Q16, Q8, and Q19, which are related to code generation, verification, and
requirements. This indicates that these are important characteristics for MDD tools. By
contrast, the worst result is for Q13, related to the efficiency of the generated code,
which suggests that in general terms it does not seem necessary that the generated code
has the same efficiency as code programmed manually.

Even though there are some threats to the validity of this exploratory study, such as
the representativeness of the questions for the different criteria, we consider that it is
possible to derive the main features that a MDD tool must have. Repeating the
exploratory study with other subjects (e.g., tool vendors or tool users) can give more
information about the generalizability of the results obtained.

4 Main Features for MDD Tools

This section presents a set of features that a MDD tool designed to work in industrial
projects should offer. The features are based on the literature and on the results of the
exploratory study.

4.1 Standardization and Interoperability

Since its inception, the OMG has promoted the standardization of different
model-based and object-oriented approaches, such as UML [26] and MDA [21].

Fig. 1. Study results.
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Standardization allows establishing an agreement of good practices that facilitate the
reuse and interoperability among different tools and modeling approaches, for example
by using XMI [27]. For Q1, 50 % of the respondents totally agreed upon MDD tool
support to the UML standard, whereas the other 50 % were neutral about this question.
For Q2, 50 % of respondents did not agree upon MDD tools support to MDA in terms
of CIM, PIM, and PSM, but the other 50 % did. No total agreement or disagreement
was indicated for Q2.

Regarding interoperability, 75 % of the respondents totally agreed with Q3, which
states that MDD tools must provide extension mechanisms for modeling language
customization. For Q4, 75 % of the respondents indicated that MDD tools must provide
extension mechanisms for communication or interoperability among different tools.

4.2 Visualization and Management of Models

The main input artifact in a MDD approach is a model, which specifies all the views
that represent a system. MDD tools must provide a suitable set of management and
visualization features for model definition. The minimum feature to be considered is the
possibility of visualizing the models at design time. In particular, it is necessary to
provide a graphical user interface that facilitates the management of multiple views that
are modeled for a system. In fact, 75 % of the respondents stated in Q5 that it is
absolutely necessary to have a graphical visualization of the model.

However, the graphical user interface is not the only concern related to visuali-
zation that should be taken into account when a MDD tool is built. Nowadays, more
than ever, it is necessary to provide user interfaces that take into account quality
characteristics such as usability [12], and new characteristics of hardware devices such
as touch panels in desktop and laptop computers [10]. In Q7, we found that 50 % of the
respondents agreed upon having an easy human interaction to work with models, and
the other 50 % answered that it is not necessary.

Regarding model versioning, in Q6 50 % of the respondents stated that it is
absolutely necessary to manage it. They put in the open textbox that this is the only
way to work in collaborative industrial projects, where different members of a devel-
opment team can work over the same model. The remaining 50 % of the respondents
indicated that it is not mandatory to have a version manager, but it is a desirable feature.

4.3 Verification

MDD tools use conceptual models as input to generate code. In this context, the
generated code becomes black box, rarely reviewed software, in the same way that the
machine code generated by a programming language compiler is rarely reviewed
because this generation is performed using widely-accepted standards in industry. For
this reason, the verification of the model should be a mandatory feature for an industrial
MDD tool. In fact, 100 % of the respondents indicated in Q8 that MDD tools must
provide verification mechanisms. This implies that the MDD tool is used to find the
presence of desirable characteristics and the absence of undesirable characteristics in a
model.
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Regarding the absence of undesirable characteristics, different researchers have
applied reading techniques or heuristics to identify defects in UML models [4, 7, 16,
35]. When asked if it is necessary that a MDD tool provides automatic defect detection
in the models (Q9), the respondents indicated that it is desirable, but with a deactivation
possibility because some defects depend on the methodology selected in a project. In
other words, it would be good to support custom defect detection mechanisms for
fulfilling modelers’ needs.

4.4 Testing

The most important and most frequently used quality assurance technique applied in
the software industry is testing [20]. As a way of performing testing of models, several
researchers have proposed model-based testing approaches to generate test cases [6].
These approaches usually create a state transition model to represent the current state of
a system and the next state, specifying the events that occur to change the state. In these
models, test case design focuses on event execution paths. However, state transition
models only provide the behavioral view of the final software system. Thus, after the
application of these test cases, it is necessary to manually test the remaining func-
tionality of a system. MDD tools should provide model-based testing approaches that
focus on holistic models, in order to reduce the human effort in testing.

In Q10, 50 % of the respondents answered that MDD tools must provide automatic
test case generation from models, and the other 50 % answered that it could be good
but that it is not essential.

4.5 Code Generation and Simulation

A MDD tool must generate at least the skeleton of the code. The exploratory study
supports this assertion in Q16, since all the respondents agreed upon this statement,
75 % of them in full agreement.

Supporting technologies for automating model-based operations such as model
transformation, validation, verification, and compilation, are essential for achieving the
benefits of MDD. Depending on the tools, code generation can go from the skeleton or
code fragments to the complete code of software products. Nevertheless, in Q17 of the
study only 25 % of the respondents agreed with the fact that a MDD tool must generate
totally executable code, and 50 % of the respondents stated that in some cases the total
code generation is adequate. This 50 % of respondents argued that the model needed
for generating completely executable code has the same complexity as the code
generated.

Regarding simulation, MDD tools should allow the execution of models even
though they are incomplete, but valid. The idea is not to wait to finish the model in
order to see how the software obtained from the already-specified part of the model
looks like. This allows early model correction. In Q11 of the study, 50 % of the
respondents agreed that MDD tools must generate simulations of the models created.
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4.6 Transformation

A model transformation corresponds to a set of rules and activities such as refactoring,
reverse engineering, and application of patterns, among others. Transformations take
one or more models as input and, by applying the rules specified, generate one or more
output models. This can include the code of the final software product (implementation
model). A suitable MDD tool must offer a number of predefined transformations for
ensuring a complete model transformation. Features oriented to customize the trans-
formation rules implemented by an MDD tool are supported by only 25 % of the
respondents in Q12 of the study.

4.7 Efficiency and Scalability

MDD tools should significantly reduce system development time, effort, and com-
plexity. The productivity gained by using MDD tools can be significant when the code
generated is similar to code manually generated in terms of efficiency and scalability.
A relevant efficiency measure that can be considered when evaluating a MDD tool
performance in relation to the volume of information handled are execution time and
the amount of memory used by the generated code. It is expected that the efficiency in
execution time of automatically-generated code has a deviation no greater than a 10 %
compared to manually programmed code [34]. Results of the study in Q13 reveal that
efficiency in the generated code is not a relevant feature for the respondents, taking into
account the increase in the productivity of MDD projects.

4.8 Architectures and Maintenance

Since MDD tools work with platform-independent models, the tools must support the
transformation to executable code not only to a variety of languages, but also to
different architectural design patterns. For example, if a software developer wanted to
generate an application in a particular programming language, then the MDD tool
should allow the selection between a Client-Server architecture [2] or
Model-View-Controller architecture [33]. In Q14 of the exploratory study, 75 % of the
respondents agreed that a MDD tool must allow the selection of different architectural
patterns for code generation. Regarding the generation of code reviews, 75 % of the
respondents are neutral about the ability of MDD tools to perform partial generation of
code after model changes when asked in Q15, so that it is not necessary to recompile
the whole model if a small change is made. Nonetheless, we believe that this would
facilitate software maintenance when small changes or corrections are made during
system lifecycle.

4.9 Requirements

Requirements management helps to adequately handle a software development project.
To do this, it is desirable that the MDD tool supports the traceability from requirements
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specifications to the other views of a system. In Q19, 75 % of respondents agreed that is
necessary to support the requirements traceability in MDD tools. The remaining 25 %
answered that it depends on the usage of the tool since some MDD tools are focused on
specific modeling phases.

5 General Analysis of MDD Tools

This section presents a general analysis of the features that existing MDD tools have.
To this end, a list of products that are compliant with the MDA approach [22] were
considered. This list presents 48 MDA tools. However, many of these tools are no
longer available or have not been updated for more than one year. From the 48 MDA
tools, only 10 (21 %) are currently in use and have active support. The remaining 79 %
have been deprecated or acquired by a larger company.

The 10 available tools provide support for different systems, such as real-time
systems or management information systems. We focus the analysis on MDD tools for
management information systems since they are more broadly used in industry. Just
three tools recognized by the OMG were taken into account in the analysis.
Open-source tools that are not included in the OMG site were also included in order to
make a more representative analysis. This resulted in the selection of five open-source
tools, and thus eight MDD tools were finally analyzed.

First, a characterization of the selected tools was performed regarding the modeling
language used, the system views covered by the tool, the language for the specification
of the functional view, and the software products generated. This is shown in Table 2.

As Table 2 shows, seven tools support UML [25, 26] and one tool supports
OO-Method [30] as modeling language. UML is the de-facto standard, and
OO-Method starts from the UML class diagram and adds semantic information to allow
the generation of fully-executable code. Using UML or UML-based modeling lan-
guages reduces the learning curve of a MDD tool and facilitates the integration with
different project management tools.

As a way to avoid or diminish defects and faults in the generated applications, it is
very important that a MDD tool provides support to the holistic representation of a
system in a conceptual model, including the static, dynamic, functional, and presen-
tation views. More details of these views can be found in [19]. From the eight tools
analyzed, and as shown in Table 2:

• One tool (OpenMDX) does not detail the different views supported;
• Two tools (AndroMDA and IBM Rational Rose) support the structural and the

dynamic views;
• Three tools (Acceleo, TopCased, and StarUML) support the structural, dynamic and

functional views, and;
• Only two tools (Integranova and Blue Age) support structural, dynamic, functional,

and presentation views.

Regarding the language for the specification of the functional view, four tools use
OCL [23], one tool uses Plain Old Java Objects (POJO) [9], and one tool uses OASIS
[31], which is a proprietary scripting language similar to OCL. One tool does not
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specify the final product generated, four tools generate the skeleton of code, and just
three tools generate the code completely. An analysis performed to the features defined
in Sect. 4 shows that, in relation to standardization, most of the tools support UML.
Only one tool does not support UML, but it supports an extension of UML called
OO-Method. However, not all the tools support the same version of UML, which
would alleviate the exportation of the models to other formats and promote the
interoperability of the tools.

Regarding the visualization of the models, the analyzed tools provide graphical
visualization or connections with graphical tools (such as MagicDraw or Eclipse EMF).
However, there do not exist any tools that improve the usability by taking advantage of
new interaction features provided by current devices such as touch panels [10], which
could increase the productivity of software engineers. For model verification, some
tools offer verification of syntactical defects in the models and verification of the
consistency of the different views supported. Nevertheless, it is also necessary that

Table 2. Characterization of the MDD tools analyzed.

MDD tool Modeling
language

System views Functional
view
language

Products generated

AndroMDA UML by
using
MagicDraw

Structural and
dynamic views

– Structure of the system

OpenMDX UML – POJO –

Acceleo UML 2, by
using EMF

Structural,
dynamic, and
functional views

OCL Code skeleton

TopCased UML 2, by
using EMF

Structural,
dynamic, and
functional views

OCL Code skeleton.
Documentation. Allows
complete code generation by
using plugins

StarUML UML 2.0 Structural,
dynamic, and
functional views

– Code skeleton and
requirements and
implementation documents

Integranova OO-method Structural,
dynamic,
functional, and
presentation
views

OASIS Complete, fully working
generation code.
Documentation. Functional
size measurement

IBM
rational
rose

UML 2.1 Structural and
dynamic views

OCL Complete, fully working
generation code

Blu age UML 2.1 Structural,
dynamic,
functional, and
presentation
views

OCL Complete, fully working
generation code
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MDD tools offer verification of semantic defects in order to prevent faults when the
generated system is executed (e.g., appropriate specification of the cardinality involved
in the ends of an association between two classes).

With respect to testing and simulation of the models, the analyzed MDD tools do
not offer options to generate tests or simulation artifacts in order to facilitate model
validation, rather than testing the code once the system is generated. Even though the
tools offer refactoring and reverse engineering features, they do not provide facilities to
customize transformations in particular situations.

Regarding efficiency and architecture, commercial tools such as Rational or Inte-
granova provide ready-to-use model compilation facilities to generate code and data-
base scripts in different target platforms. In contrast, open-source tools require manual
specification of the model-transformation scripts to perform model compilation tasks.

Moreover, none of the eight tools provides support to code optimization.
Finally, regarding requirements traceability, the tools analyzed do not provide

mechanisms to ensure the traceability from requirements to code.

6 Conclusion

This paper presents a set of features that a MDD (Model-Driven Development) tool
should have for successful application and adoption of the MDD paradigm in industry.
An exploratory study was conducted to validate this set of main features for MDD
tools.

In addition, an analysis of available MDD tools has been presented to evaluate the
support to the features proposed in existing tools. Although the current OMG catalogue
of tools was considered for performing this analysis, almost 80 % of these tools are no
longer available. This dramatically reduces the set of MDD tools that possess the
features proposed and thus are aligned with the needs of software projects.

The remaining tools in the OMG list have reached a level of maturity in which it is
possible to generate solutions from a model. However, none of these tools support all
the features presented in this paper. An interesting challenge is to collaborate with the
existing MDD tool providers to analyze in more depth the features proposed, and to
develop a tool (or a suite of tools) more aligned with all these features.

This work is part of a research agenda that aims to develop MDD tools for man-
agement information systems. This agenda also include the development of techniques
to semantically verify the models and generate test cases automatically from conceptual
models as well as empirical studies that validate these techniques. At this respect, the
results presented in this paper provide a relevant background for the development of
novel model-based technologies that are aligned with industry needs and that cover
those features not supported by existing MDD solutions.
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