
CAAL: Concurrency Workbench,
Aalborg Edition

Jesper R. Andersen, Nicklas Andersen, Søren Enevoldsen, Mathias M. Hansen,
Kim G. Larsen, Simon R. Olesen, Jǐŕı Srba(B), and Jacob K. Wortmann

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

srba@cs.aau.dk

Abstract. We present the first official release of Caal, a web-based
tool for modelling and verification of concurrent processes. The tool is
primarily designed for educational purposes and it supports the clas-
sical process algebra CCS together with its timed extension TCCS. It
allows to compare processes with respect to a range of strong/weak and
timed/untimed equivalences and preorders (bisimulation, simulation and
traces) and supports model checking of CCS/TCCS processes against
recursively defined formulae of Hennessy-Milner logic. The tool offers a
graphical visualizer for displaying labelled transition systems, including
their minimization up to strong/weak bisimulation, and process behav-
iour can be examined by playing (bi)simulation and model checking
games or via the generation of distinguishing formulae for non-equivalent
processes. We describe the modelling and analysis features of Caal, dis-
cuss the underlying verification algorithms and show a typical example
of a use in the classroom environment.

1 Introduction

Concurrency is a classical topic taught at many universities as a bachelor or
master degree course in Computer Science. For an introductory course in concur-
rency, the typical content includes the use of a simple language for the description
of parallel processes (e.g. CCS, CSP, ACP or Petri nets) that is used for modelling
concurrent systems and for explaining the key concepts of equivalence checking
and model checking. At Aalborg University, we offer such an introductory course
called Semantics and Verification to the 6th semester software engineering and
computer science students. The course is based on our Reactive Systems book [1]
that, among others, introduces the CCS process algebra (Calculus of Communi-
cating Systems [14]) and bisimulation/model checking approach, including the
corresponding game characterization. In order to motivate the students to study
and appreciate the theoretical concepts in concurrency, we engage them in a
few medium-size modelling exercises. This hands-on modelling experience makes
them realize that designing even small concurrent systems is difficult and that
support by an adequate tool can be very useful. For this purpose, we introduce
the open-source tool Caal (standing for Concurrency workbench developed at
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 573–582, 2015.
DOI: 10.1007/978-3-319-25150-9 33

574 J. Andersen et al.

Fig. 1. Game module in Caal

AALborg university) that supports CCS and TCCS as the input language. Caal
is programmed in TypeScript, a typed superset of JavaScript that compiles into
plain JavaScript. The input language of Caal is an extension of the well-known
Concurrency Workbench (CWB) [5] input syntax, so existing CWB projects can
be opened in Caal. The tool is hosted at

http://caal.cs.aau.dk

and it runs in any modern browser but a stand-alone installation is possible too.
Caal offers an editor with online syntax correction, an explorer for the

visualization of the generated labelled transition systems, including different
minimizations w.r.t. to strong and weak bisimulation as well as the display of
strong/weak and timed/untimed transitions. The explorer module enables an
interactive exploration of the state-space via a predefined depth of the view
horizon (suitable for exploring large state-spaces), automatic layout with the
possibility to lock and rearrange the position of nodes, zoom functionality, sim-
plification w.r.t. structural congruence and export as a raster graphics image.
The verification module of Caal allows to formulate equivalence and model
checking queries and verify them either individually or collectively. It is pos-
sible to generate distinguishing formulae for non-equivalent processes or enter
the game module (see Fig. 1) and interactively play (bi)simulation and model
checking games.

Related Work. Concurrency WorkBench (CWB) [5] and its continuation Con-
currency WorkBench of the New Century (CWB-NC) [6] are perhaps the best
known tools for modelling and analysing CCS processes. Throughout a number
of years, CWB has been the tool of choice in courses on concurrency at Aalborg
University. Unfortunately, both CWB and CWB-NC are no longer in active
development and the latest binaries are from 1999 (CWB) and 2000 (CWB-
NC). The download links on the CWB-NC homepage do not work any more

http://caal.cs.aau.dk

CAAL: Concurrency Workbench, Aalborg Edition 575

and it has become more and more difficult to acquire and install CWB as it
relies on an outdated compiler (as a consequence e.g. Mac OS X binaries are not
available). Moreover, CWB is only a command line tool and despite the fast ver-
ification algorithms it implements, the graphical interface is lacking. Apart from
the fact that Caal provides a modern user interface, integrated process editor
and the possibility to visualize the processes and play a variety of (bi)simulation
and model checking games, the verification approach also differs. While CWB
is using global partitioning algorithms for checking equivalences, we use local
on-the-fly approach based on dependency graphs.

Recently, there have been efforts to provide graphical add-ons to CWB as
e.g. the Bisimulation Game-Game project [15], but there is no support for model
checking games and the tool relies on transition graphs generated by CWB. The
tool pseuCo [7] allows to compile an educational Java-based concurrent language
into CCS and visualize/minimize the resulting transition systems. TAPAs [4]
is another educational tool for specifying and analyzing concurrent processes
described in CCSP (CCS plus additional CSP operators). It has a nice GUI
but it does not consider bisimulation/model checking games and timed process
algebra. Other tools supporting CCS language are more on the experimental
level (command line input) and are not targeted towards educational purposes.
Let us name here e.g. implementation of CCS in Maude [16] or in Haskell [3].

Finally, there exist mature tools with modern designs like FDR3 [9],
CADP [8] and mCRL2 [10], with expressive input languages and efficient analysis
methods. Our tool does not aim to compete with them in terms of performance,
we are instead focusing on the educational aspects.

2 Modelling Features

Caal supports the CCS and timed CCS (TCCS) input syntax. Let A be a
finite set of channels, let A = {a | a ∈ A} be the set of dual channels1 and let
Act = A ∪ A ∪ {τ} be the set of actions. Let K be a finite set of process names.
The collection of CCS expressions is given by the abstract syntax

P,Q: := K
∣
∣
∣ α.P

∣
∣
∣ P + Q

∣
∣
∣ P | Q

∣
∣
∣ P [f]

∣
∣
∣ P \ L

∣
∣
∣ 0

where K ∈ K, α ∈ Act, L ⊆ A and f : Act −→ Act is the relabelling function
satisfying f(τ) = τ and f(a) = f(a) for every a ∈ Act. By convention τ = τ .
The behaviour of each process name K ∈ K is given by its defining equation
K

def= P . The syntax of TCCS is further extended with the delay prefix operator
such that for every nonnegative integer d and a process expression P , we have
that d.P is also a process expression.

The SOS rules for the CCS and TCCS operators are given in Table 1. For
TCCS we support at the moment the discrete time semantics that is defined
1 In Caal dual channels are prefixed with an apostrophe and the output bar is dis-

played automatically by the editor.

576 J. Andersen et al.

Table 1. SOS rules for CCS and TCCS

ACT
α.P

α−→ P
SUM1 P

α−→ P ′

P + Q
α−→ P ′ SUM2

Q
α−→ Q′

P + Q
α−→ Q′

COM1 P
α−→ P ′

P | Q
α−→ P ′ | Q

COM2
Q

α−→ Q′

P | Q
α−→ P | Q′ COM3

P
a−→ P ′ Q

a−→ Q′

P | Q
τ−→ P ′ | Q′

CON P
α−→ P ′

K
α−→ P ′ K

def
= P REL P

α−→ P ′

P [f]
f(α)−−−→ P ′[f]

RES P
α−→ P ′

P \ L
α−→ P ′ \ L

α, α /∈ L

Table 2. SOS rules for unit delays in TCCS (d ranges over nonnegative integers)

ONE
d.P

1−→ (d − 1).P
d ≥ 1 ACT

α.P
1−→ α.P

α �= τ REL P
1−→ P ′

P [f]
1−→ P ′[f]

SUM
P

1−→ P ′ Q
1−→ Q′

P + Q
1−→ P ′ + Q′

CON P
1−→ P ′

K
1−→ P ′

K
def
= P RES P

1−→ P ′

P \ L
1−→ P ′ \ L

COM
P

1−→ P ′ Q
1−→ Q′

P | Q
1−→ P ′ | Q′

if P | Q � τ−→

in Table 2. The semantics is for simplicity given for single-unit time delays as
longer delays are just a syntactic sugar for a series of one time unit delays.

We assume the classical definitions of weak/strong and timed/untimed equiv-
alences and preorders like simulation and trace preorder/equivalence, and bisim-
ilarity (see e.g. [1]) that are supported in Caal, including their game character-
ization via two-player games between attacker (trying to disprove the validity of
the equivalence/preorder) and defender (supporting its validity).

As for model checking, the tool supports a subset of the modal μ-calculus [12]
with recursively defined fixed points given by the syntax:

φ: := tt | ff | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈α〉φ | [α]φ | 〈〈α〉〉φ | [[α]]φ | X

where α ∈ Act and where X is a variable from a finite set of variables such that
every variable has exactly one declaration of the form X

min= φ (minimum fixed
point) or X

max= φ (maximum fixed point). Here the modal operators are available
in their strong variants 〈α〉 (there is an α-successor) and [α] (for all α-successors),
as well as the weak ones 〈〈α〉〉 and [[α]] that abstract away from τ -actions. We
use the abbreviations 〈A〉φ and [A]φ for a set of actions A ⊆ Act, standing
for ∨α∈A〈α〉φ and ∧α∈A[α]φ, respectively. By 〈−〉φ we understand 〈Act〉φ and
similarly for [−]φ. The same conventions are used for the weak modalities.

CAAL: Concurrency Workbench, Aalborg Edition 577

For most practical applications it is enough to consider formulae where the
recursively defined variables do not contain cyclic references (hence a variable
X can refer to itself and/or to another variable Y , but Y may not refer back to
X, neither directly or indirectly via other variables). This restriction, adopted
by Caal, allows for faster implementation of the verification engine and makes
the interpretation of model checking games between defender (claiming that a
process satisfies a given formula) and attacker (claiming that it does not satisfy
the formula) a lot easier as we can always uniquely determine whether we are
in the context of a minimum or a maximum fixed point. Defender is then the
winner of any infinite play whenever we are in the context of maximum fixed
point and attacker is the winner if we are in the minimum fixed-point context.

For guarded CCS processes (where every occurrence of a process name is
within the scope of action prefixing) we know that two processes are bisimilar if
and only if they satisfy exactly the same set of formulae of the Hennessy-Milner
logic [11]. In case of strong bisimilarity we allow only the strong modalities in the
formulae, and in case of weak bisimilarity we consider only the weak modalities.
The theorem implies that if two processes are not bisimilar, we can find the
so-called distinguishing formula that is satisfied in one of the processes but not
in the other one. This can be useful when debugging CCS processes.

Finally, the tool supports also the extension of the logic with time modalities
so that we can have formulae of the form 〈d〉φ, [d]φ, 〈〈d〉〉φ and [[d]]φ where
d is a nonnegative integer. The modality 〈d〉φ requires that it is possible to
delay d time units and then satisfy φ, while the modality [d]φ expresses that
whenever it is possible to delay d time units then φ must be satisfied. Even though
the future after a given time delay is always deterministic, there is a difference
between the two operators as if a process cannot delay d time units (due to some
enabled τ actions that are urgent in the TCCS semantics) then [d]φ will be always
satisfied while 〈d〉φ will never be satisfied. The weak time delay modalities allow
us to interleave the single-unit time delays with arbitrary many τ -actions. The
modalities are in Caal further extended with time intervals such that 〈d1, d2〉φ
with d1 ≤ d2 is the abbreviation for 〈d1〉φ ∨ 〈d1 + 1〉φ ∨ 〈d1 + 2〉φ ∨ . . . ∨ 〈d2〉φ,
and similarly [d1, d2] stands for [d1]φ ∧ [d1 + 1]φ ∧ [d1 + 2]φ ∧ . . . ∧ [d2]φ. The
intervals in weak modalities are defined analogously.

3 Verification Engine

The verification algorithms for both equivalence/preorder checking and model
checking are based on a fixed-point computation over a structure called depen-
dency graph [13]. Such graphs, for the verification problems in question, can
be generated on-the-fly and there exist efficient local algorithms by Liu and
Smolka [13] for computing the fixed points.

A dependency graph is a pair G = (V,E) where V is a finite set of nodes and
E ⊆ V × 2V is a finite set of hyperedges of the form (v, T) where v ∈ V is the
source node and the nodes in T ⊆ V are called the target nodes. An assignment
on G is a function A : V → {0, 1}. We define a function F from assignments
to assignments as follows: F (A)(v) = 1 if and only if there is (v, T) ∈ E such

578 J. Andersen et al.

s

s1

s2 s3

a

b c

t

t1 t2

t3 t4

a a

b c

s, t

s1, t1 s1, t2

s2, t3 s3, t4∅

t
a−→ t1 t

a−→ t2

s1
b−→ s2

t1
b−→ t3

s1
c−→ s3

s1
c−→ s3

t2
c−→ t4

s1
b−→ s2

s
a−→ s1

Fig. 2. Two processes s and t (left) and the constructed dependency graph (right)

that A(v′) = 1 for all v′ ∈ T . As all assignments form a complete lattice w.r.t.
to the natural point-wise ordering and the function F is monotonic, there is
by Knaster-Tarski theorem a unique minimum and maximum fixed point of the
function F , denoted by Amin resp. Amax . The fixed points for G can be computed
in linear-time by the use of local on-the-fly Algorithms [13].

We shall now hint at how the verification questions for CCS/TCCS can be
encoded in fixed-point computations on dependency graphs. The idea, depicted
in Fig. 2 for strong bisimulation, is that nodes in the dependency graph are pairs
of processes and for any transition from one of the two processes, we create a
new hyperedge with targets that correspond to all possible transitions under the
same label from the other process. The hyperedges in the dependency graph are
annotated with the transitions that initiated their creation. If for some pair of
states there is a transition for which the other process does not have any answer,
the resulting set of target nodes is empty and the created hyperedge ensures that
the pair will get the value 1 in the minimum fixed-point assignment (denoted in
our example by a double circle around the pair). One can prove that for any
pair of nodes (s′, t′) in the dependency graph it holds that s′ ∼ t′ (the states
are strongly bisimilar) if and only if Amin((s′, t′)) = 1. In order to establish that
Amin((s, t)) = 1, it is enough to explore only a fraction of the dependency graph
(e.g. constructing only two hyperedges from (s, t) to (s1, t1) and from (s1, t1) to
the emptyset is sufficient). As the construction of the complete dependency graph
can often be avoided by using on-the-fly algorithms, it is sometimes possible to
show nonequivalence even for processes with infinitely many reachable states,
a situation where the traditional partitioning algorithms will never terminate.

We can also use the computed fixed point on the dependency graph to derive
a distinguishing formula for the processes s and t in Fig. 2. First, for every node
that has a hyperedge with an empty set of targets, we can directly find such
a formula, like for the node (s1, t1) where s1 |= 〈c〉tt while t1 �|= 〈c〉tt . From
this formula we can now inductively construct a distinguishing formula [a]〈c〉tt
for the root node (s, t). Note that this is not the only distinguishing formula,
if we e.g. use instead the hyperedge from (s, t) with the two target nodes, we
derive the formula 〈a〉(〈c〉tt ∧ 〈b〉tt) that is arguably more complex than the
formula [a]〈c〉tt . The problem of finding the simplest distinguishing formula is

CAAL: Concurrency Workbench, Aalborg Edition 579

Algorithm 1. Simple Communication Protocol (CCS) in Caal

1: Send = acc.Sending;

2: Sending = ’send.Wait;

3: Wait = ack.Send + error.Sending + ’send.Wait;

4: Rec = trans.Del;

5: Del = ’del.Ack;

6: Ack = ’ack.Rec;

7: Med = send.Med’;

8: Med’ = ’trans.Med + tau.Err + tau.Med;

9: Err = ’error.Med;

10: set L = {send, trans, ack, error};
11: Impl = (Send | Med | Rec) \ L;

12: Spec = acc.’del.Spec;

nontrivial and Caal uses a greedy heuristic approach to report reasonably small
distinguishing formulae.

The approach via dependency graphs is used also for trace-like equivalences
and the corresponding dependency graphs are described in master theses avail-
able at the tool’s homepage. For recursive formulae the construction of depen-
dency graphs requires several copies of the graphs, one for each fixed-point defi-
nition, but the same uniform approach is also used here. Finally, the dependency
graphs are used for guiding the tool in bisimulation and model checking games.

4 Case Study

We shall now present a simplified version of a communication protocol, where a
sender is supposed to forward messages through unreliable medium to a receiver,
who then acknowledges it via a direct handshake after which the protocol is again
ready to accept another message. A more sophisticated variant of such a protocol
(e.g. the Alternating Bit Protocol [2]) is a typical mini-project exercise that we
use in our Semantics and Verification course.

The CCS processes describing the protocol are given in Algorithm 1. The
sender, defined at lines 1–3, receives a message acc from the environment, for-
wards the message via the internal channel send to the medium and then waits
for the acknowledgment, an error message from the medium, or tries to resend
the message. The receiver, defined at lines 4–6, can receive the message through
the medium via the internal channel trans, deliver the message to its envi-
ronment via the output action ’del and then acknowledge this to the sender.
The medium, defined at lines 7–9, communicates with the sender/receiver via the
channels send and trans but can also enter an error state and inform the sender
about this (line 9) or silently lose the message and enter its initial state. The
implementation of the protocol (line 11) is a parallel composition of the three
components described above where all channels except for acc and ’del are

580 J. Andersen et al.

(a) Before weak bisimulation collapse (b) After weak bisimulation collapse

Fig. 3. Reachable state-space for the process Impl

restricted, enforcing a handshake synchronization over these channels. Finally, at
line 12, we can see the abstract specification of the protocol. We have deliberately
introduced some design errors in order to demonstrate the typical mistakes the
students make when modelling more advanced variants of communication pro-
tocols. In the rest of this section, we shall demonstrate the debugging options
that Caal offers for analysing and correcting such mistakes.

By entering the verification module of Caal, we can promptly find out that
the processes Impl and Spec are not weakly bisimilar. We can now enter the
explorer module in order to visualize and interactively explore the transition
system of the process Impl as depicted in Fig. 3a, however, even for this small
example, the system is already too large. We can choose to visualize the collapsed
transition system where all weakly bisimilar states are merged together as shown
in Fig. 3b and here we can already see some design issues. We can e.g. observe
that the implementation contains a deadlock (the right-most state).

In general, the labelled transition systems (even after the bisimulation col-
lapse) are often too large to analyse manually. Hence, if two processes are not
weakly bisimilar, a natural question to ask is whether they provide the same
weak traces (sequences of visible actions). It appears that this is not the case
for our example and Caal informs the user that the process Impl can perform
the sequence of visible actions acc, ’del, ’del and such a trace is not possible
in the specification. By analysing the trace in the game module, we can see that
the problem is at line 3 where the sender has the option to resubmit the message
unboundedly many times. Hence we may decide to remove this resubmission
option and modify the CCS definition as Wait = ack.Send + error.Sending.
After this fix, we can now verify that the implementation and the specification
are weakly trace equivalent, while they are still not bisimilar. We can ask Caal
to generate a distinguishing formula that holds in Impl but not in Spec and the
tool returns the formula <<acc>>[[’del]]F that states that the implementation

CAAL: Concurrency Workbench, Aalborg Edition 581

Algorithm 2. Time Annotated Communication Protocol (TCCS) in Caal

1: Send = acc.2.’send.1.ack.2.Send;

2: Rec = trans.1.’del.2.’ack.8.Rec;

3: Med = send.(3.’trans.Med + 5.tau.Med);

4: Impl = (Send | Med | Rec) \ {send, trans, ack};
5: Spec = acc.’del.Spec;

can perform the visible action acc, possibly with some additional τ -transitions
before and after, such that after this it is not possible to perform the action ’del
(not even preceded by some τ -actions). By entering the game module, the user
can play a game against the computer (playing defender) that will reveal to the
user (playing attacker) that the formula holds in the state Impl. The game will
in fact reveal the presence of a deadlock configuration that we already observed
in the explorer.

Alternatively, we can directly formulate the deadlock property as a recursive
HML formula X min= [-]ff or <->X. Caal confirms that the implementation
satisfies the property X and in the game module, the computer can convince the
user that a deadlock is indeed reachable. The analysis of the discovered deadlock
points to the fact that medium should not be allowed to silently discard messages.
After changing the definition at line 8 into Med’ = tau.Err + ’trans.Med we
finally achieve a correct implementation (weakly bisimilar to its specification).

We may also ask if the protocol contains a reachable livelock (an infinite
sequence of τ -actions that can be executed in a row). Caal allows to formulate
this property using two recursively defined variables Y min= Z or <->Y (claiming
the reachability of livelock) and Z max= <tau>Z (expressing the existence of an
infinite τ -sequence). The implementation indeed contains a livelock and the game
provides a convincing argument for this fact.

Caal moreover allows to model TCCS processes. A variant of the commu-
nication protocol is given in Algorithm 2, where both the sender, receiver and
medium have been annotated with delays such that e.g. the medium needs 3
time units to deliver the message but it will lose it after 5 time units. Caal will
show that the processes Impl and Spec are weakly untimed bisimilar. However,
if the receiver process gets just little bit slower and the delay prefix 8 at line 2 is
replaced with delay 9 then the weak untimed bisimulation equivalence does not
hold anymore as it is now possible that the medium loses a message.

We can also verify that the TCCS process Impl satisfies the formula

X max= [acc] <<0,6>> <’del> tt and [-]X;

expressing the invariant that whenever the action acc is performed then the
message can be delivered within 6 time units. The property X actually does not
hold but if we ask instead whether the message can be delivered withing 7 time
units then it is satisfied.

582 J. Andersen et al.

5 Conclusion

We presented Caal, an educational tool for modelling and analysing CCS
processes. The tool runs in a browser with limited computational resources but
it benefits from the efficient on-the-fly algorithms. This is clearly sufficient for
the typical student exercises and mini-projects. At the moment, we are exploring
the parallelization of the fixed point computation and outsourcing this work to
a super-computer via the approach “verification as a web-service”. Our Reactive
System book [1] is now used at more than 18 universities around the world and
we expect that Caal, once publicly announced, becomes a natural supplement
to the concurrency courses based on the CCS formalism.

References

1. Aceto, L., Ingolfsdottir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling.
Cambridge University Press, Specification and Verification (2007)

2. Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex
transmission over half-duplex links. Commun. ACM 12(5), 260–261 (1969)

3. Birgisson, A.: CCS model checker in Haskell (2009). https://github.com/arnar/
ccs-searching. Accessed on 03 August 2015

4. Calzolai, F., De Nicola, R., Loreti, M., Tiezzi, F.: TAPAs: a tool for the analysis
of process algebras. Trans. Petri Nets Other Models Concurr. 5100, 54–70 (2008)

5. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993)

6. Cleaveland, R., Sims, S.: The NCSU concurrency workbench. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 394–397. Springer,
Heidelberg (1996)

7. Freiberger, F., Biewer, S., Held, P.: PseuCo (2014). http://pseuco.com. Accessed
on 03 August 2015

8. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transfer 15(2), 89–107 (2013)

9. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

10. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
The MIT Press, Cambridge (2014)

11. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
Assoc. Comput. Mach. 32(1), 137–161 (1985)

12. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science
27, 333–354 (1983)

13. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 53.
Springer, Heidelberg (1998)

14. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Berlin
(1980)

15. Mosegaard, M., Brabrand, C.: The bisimulation game (2006). http://www.brics.
dk/bisim/. Accessed on 03 August 2015

16. Verdejo, A., Marti-Oliet, N.: Executing and verifying CCS in Maude. Technical
report, Dpto. Sistemas Informaticos y Programacion, Universidad Complutense de
(2002). http://maude.cs.uiuc.edu/maude1/casestudies/ccs/

https://github.com/arnar/ccs-searching
https://github.com/arnar/ccs-searching
http://pseuco.com
http://www.brics.dk/bisim/
http://www.brics.dk/bisim/
http://maude.cs.uiuc.edu/maude1/casestudies/ccs/

	CAAL: Concurrency Workbench, Aalborg Edition
	1 Introduction
	2 Modelling Features
	3 Verification Engine
	4 Case Study
	5 Conclusion
	References

