
Current Challenges in the Verification
of Hybrid Systems

Stefan Schupp1(B), Erika Ábrahám1, Xin Chen1, Ibtissem Ben Makhlouf1,
Goran Frehse2, Sriram Sankaranarayanan3, and Stefan Kowalewski1

1 RWTH Aachen University, Aachen, Germany
stefan.schupp@cs.rwth-aachen.de

2 Verimag, Gières, France
3 University of Colorado, Boulder, CO, USA

Abstract. Latest developments brought interesting theoretical results
and powerful tools for the reachability analysis of hybrid systems. How-
ever, there are still challenging problems to be solved in order to make
those technologies applicable to large-scale applications in industrial con-
text. To support this development, in this paper we give a brief overview
of available algorithms and tools, and point out some of their individual
characteristics regarding various properties which are crucial for the ver-
ification of hybrid systems. We present exemplary evaluations on three
benchmarks to motivate the need for further development and discuss
some of the main challenges for future research in this area.

Keywords: Hybrid systems · Verification · Reachability analysis · Tool
support · Benchmarks

1 Introduction

Hybrid systems are systems containing both physical components which evolve
continuously over time, as well as discrete components which can influence the
continuous dynamics. Also cyber-physical systems can be seen as hybrid systems,
where communication between distributed components plays a further important
role.

As hybrid systems are often safety critical, in the last two decades much
effort was put into the development of efficient algorithms and powerful tools to
support their safety analysis. Whereas there is a deep-rooted research for pure
continuous and for pure discrete systems, their hybrid combination requires novel
methodologies and the adaptation, integration and extension of previous results.

Nowadays, a number of analysis tools for hybrid systems are available, such as
Ariadne [13], Cora [1], dReach [26], Flow* [12], HSolver [36], HyCreate
[25], iSAT-ODE [15],KeYmaera [32] and SpaceEx [20]. These tools implement

This work was partially supported by the German Research Council (DFG) in the
context of the HyPro project.

c© Springer International Publishing Switzerland 2015
C. Berger and M.R. Mousavi (Eds.): CyPhy 2015, LNCS 9361, pp. 8–24, 2015.
DOI: 10.1007/978-3-319-25141-7 2

Current Challenges in the Verification of Hybrid Systems 9

different analysis techniques, leading to individual strength and weaknesses. For
further development it is crucial to learn from previous results by evaluating these
tools to observe and compare their behaviours, and to identify common obstacles
and open problems. Our aim is to support this development by

– describing current analysis techniques, available tools and their individual
properties,

– providing exemplary evaluation of a few tools on some benchmarks, and dis-
cussing general problems related to tool evaluation and comparison, and

– collecting some important challenges for future research in this area.

The paper is organised as follows: In Sect. 2 we provide some background on
hybrid systems, their modelling, and techniques for their reachability analysis.
In Sect. 3 we give a brief overview of some tools and discuss their individual
properties. On the basis of some evaluations in Sect. 4, we collect challenges and
open problems for future research in Sect. 5, and conclude the paper in Sect. 6.

2 Hybrid Systems Modelling and Reachability Analysis

Hybrid systems are systems with combined discrete-continuous behaviour. Typ-
ical examples are digitally controlled physical processes, or physical processes
with inherent discrete state changes such as phase transitions.

2.1 Modelling

Besides hybrid Petri nets and hybrid programs, a popular modelling formalism
for hybrid systems are hybrid automata [23,24]. We give a simplified notion of
hybrid automata, where we neglect components which are only relevant for their
parallel composition.

Definition 1 (Hybrid automata: Syntax [23]). A hybrid automaton is a
tuple H = (Loc,Var ,Flow , Inv ,Edge, Init) consisting of:

– A finite set Locof locations or control modes.
– A finite ordered set Var = {x1, . . . , xn} of real-valued variables; we also use

the vector notation x = (x1, . . . , xn). The number n is called the dimension of
H. By ˙Var we denote the set {ẋ1, . . . , ẋn} of dotted variables (which represent
first derivatives during continuous change), and by Var ′ the set {x′

1, . . . , x
′
n}

of primed variables (which represent values directly after a discrete change).
Furthermore, PredX is the set of all predicates with free variables from X.

– Flow : Loc → PredVar∪ ˙Var specifies for each location its flow or dynamics.
– Inv : Loc → PredVar assigns to each location an invariant.
– Edge ⊆ Loc×PredVar×PredVar∪Var ′×Loc is a finite set of discrete transitions

or jumps. For a jump (l1, g, r, l2) ∈ Edge, l1 is its source location, l2 is its
target location, g specifies the jump’s guard, and r its reset function, where
primed variables represent the state after the step.

– Init : Loc → PredVar assigns to each location an initial predicate.

10 S. Schupp et al.

l0

ẋ = v
v̇ = −9.81

x ≥ 0

10 ≤ x ≤ 20 ∧ v = 0
x = 0 ∧ v < 0
v′ = −0.75v

Fig. 1. The hybrid automaton modelling a bouncing ball with height x and velocity v.

Example 1 (Bouncing ball). In the classical bouncing ball example, a ball is
dropped from some initial height with zero initial velocity. Due to gravity, the
ball has an acceleration pointing towards the earth. Therefore the ball falls until
it hits the ground, it bounces back into the air, raises until its velocity gets zero,
and starts to fall again. Upon bouncing, the ball loses a fraction of its kinetic
energy.

An example hybrid automaton model for the bouncing ball is shown graphi-
cally in Fig. 1. The dynamics of raising and falling is modelled in a single mode
Loc = {l0} using two variables Var = {x, v}, where x models the vertical posi-
tion (height) and v the vertical velocity of the ball. The flow Flow(l0) is specified
by the predicate ẋ = v∧ v̇ = −9.81 with the gravitational force as the only influ-
ence on the speed of the ball. The invariant Inv(l0) is x ≥ 0, which enforces
that the ball bounces when it reaches the ground. This bouncing is represented
by the only jump Edge = {(l0, g, r, l0)} with guard g given by x = 0 ∧ v < 0
(that means bouncing only occurs when the ball falls from above and reaches
the ground) and reset r specified by v′ = 0.75v (i.e., the sign of the velocity gets
inverted and the velocity is dampened by a constant factor 0.75). The initial
states are described by Init(l0) = (10 ≤ x ≤ 20 ∧ v = 0).

The behaviour of a hybrid automaton can be given by an operational seman-
tics. The states of an n-dimensional hybrid automaton are pairs (l,v), where
l ∈ Loc is the current location and v ∈ R

n specifies the current values of the
variables. Initial states (l,v) satisfy both the initial and the invariant conditions
of location l. State changes are due to time and discrete steps. A time step models
the passage of time: while control stays in a location, the values of the variables
evolve continuously according to a function which satisfies the flow condition of
the current location. Furthermore, the invariant of the location must not be vio-
lated during the whole time step. Given a set of states, the states which can be
visited from it via time evolution according to the flow in the given location form
a flowpipe. When flows are described by linear predicates (i.e., linear differential
equations) we talk about linear dynamics, in the case of polynomial predicates
about non-linear dynamics. Discrete steps follow a jump, moving the control
from one location to another, given that the jump’s guard is satisfied in the
predecessor state. The successor state, resulting from variable resets satisfying
the reset condition, must satisfy the invariant of the target location.

Current Challenges in the Verification of Hybrid Systems 11

Definition 2 (Hybrid automata: Semantics). The one-step semantics of a
hybrid automaton H = (Loc,Var ,Flow , Inv ,Edge, Init) of dimension n is speci-
fied by the following operational semantics rules:

l ∈ Loc v,v′ ∈ R
n

f : [0, δ] → R
n df/dt = ḟ : (0, δ) → R

n f(0) = v f(δ) = v′

∀ε ∈ (0, δ). f(ε), ḟ(ε) |= Flow(l) ∀ε ∈ [0, δ]. f(ε) |= Inv(l)

(l,v)
δ→ (l,v′)

Rule flow

e = (l, g, r, l′) ∈ Edge v,v′ ∈ R
n v |= g v,v′ |= r v′ |= Inv(l′)

(l,v)
e→ (l′,v′)

Rule jump

A path of H is a (finite or infinite) sequence (l0,v0)
δ0→ (l1,v1)

e1→ (l2,v2)
δ2→

(l3,v3)
e3→ (l4,v4)

δ4→ . . . with (li,vi) states of H, δi ∈ R≥0, ei ∈ Edge, and
v0 |= Init(l0) ∧ Inv(l0). A state (l,v) is reachable in H if there is a path
(l0,v0)

δ0→ (l1,v1)
e1→ (l2,v2)

δ2→ . . . of H with (l,v) = (li,vi) for some i ≥ 0.

2.2 Reachability Analysis

The reachability problem for hybrid automata, i.e. the problem to decide whether
a given set of states is reachable in a hybrid automaton, is in general undecidable.
Nevertheless, there exist subclasses of hybrid automata for which the reachability
problem is decidable. For undecidable classes, tools often compute jump-bounded
reachability (reachability via paths with a limited number of jumps) or time-
and jump-bounded reachability (where additionally the time step lengths are
bounded).

Some of those tools implement flowpipe-construction-based methods, which
over-approximate the flowpipe over a bounded time horizon by dividing the
time horizon into smaller segments (whose length is called the time-step size)
and over-approximating the flowpipe for each time segment by a single state
set. These methods use over-approximative geometric and/or symbolic represen-
tations [27] of state sets, e.g., by boxes (hyper-rectangles), convex polytopes,
zonotopes, ellipsoids, support functions or Taylor models. Given an initial state
set, its flowpipe and its discrete successors are computed using efficient opera-
tions on such state set representations and safe (over-approximative) conversions
between them. User-defined parameters and different techniques for reducing the
number of the state sets and the sizes of their representations (on the cost of
a stronger over-approximation) allow to find a balance between efficiency and
precision of the computations. These techniques have their strength in a high
level of automation and in the possibility to increase efficiency or improve the
precision according to the needs of the user. A weakness lies in the fact that, due
to over-approximative techniques, only safety (non-reachability) can be proven
this way, but not unsafety (reachability).

Some other solutions use satisfiability checking algorithms for the reachability
analysis, which is based on the formulation of the one-step reachability relation as
mixed integer-real arithmetic formulas. Fast SAT-modulo-theories (SMT) solvers

12 S. Schupp et al.

can be used if the solutions of the Ordinary Differential Equations (ODEs) in the
models are known (e.g., in the case of constant derivatives). When the solutions
are not known, the underlying theories in the solvers can also be extended to cope
with ODEs. These techniques can efficiently combine a wide range of decision
procedures for expressive theories and can theoretically prove both safety and
unsafety. However, running times are hard to predict and computations might
return inconclusive answers, even for decidable problems, if fast but incomplete
solving techniques (e.g., interval constraint propagation) are used.

Last but not least, some other tools are based on theorem proving with an
embedded theory for hybrid systems. On the one hand, these techniques are very
powerful and can handle (at least in theory) a wide range of models using deduc-
tion. On the other hand, these approaches are interactive and need experienced
users. Predefined and user-defined strategies can be of great help to increase the
level of automation and reduce the need for interaction to a minimal level.

3 Tools

The vast variety of tools for hybrid systems verification makes it impossible to
rate one particular tool above the others. Each tool brings its strengths and
weaknesses, which make it suitable for a certain purpose. Knowing these differ-
ences allows users to choose the right tool for their problem requirements. In
this section we provide an overview of some of the most popular tools (in alpha-
betical order) and describe their main capabilities and features; see Table 1 for
a short summary.

Ariadne [13] is a software package implementing functionalities for the
reachability analysis of hybrid systems. The package is based on the theory of
computable analysis and on a rigorous function calculus with provable approx-
imation bounds on the computations. Ariadnecan handle expressive models
with non-linear differential equations, where state sets can be represented by
Taylor models or grid pavings. Besides others, interval arithmetic along with
interval solvers and propagation mechanisms are applied in the computations.
The support for parallel composition and assume-guarantee reasoning improve
scalability.

Cora [1] is an object-oriented Matlab toolbox which can be used for the fast
implementation of different reachability analysis algorithms for continuous and
hybrid systems. It implements different state set representation types, conversion
algorithms between them, and operations needed for reachability analysis. Addi-
tionally to well-known representations such as boxes, polytopes and zonotopes, it
provides also non-convex representations (polynomial zonotopes) and represen-
tations dedicated to stochastic verification (probabilistic zonotopes). Coracan
be used for the analysis of systems with linear, linear stochastic and non-linear
dynamics with uncertain parameters, where non-linear systems are abstracted
by linear or polynomial systems.

dReach [26] is an SMT-based tool performing bounded model checking.
Unsafe system runs of bounded length are described by formulas and passed

Current Challenges in the Verification of Hybrid Systems 13

Table 1. Some hybrid systems reachability analysis tools and their characteristic
functionalities.

Tool

Ariadne non-linear ODEs; Taylor models, boxes; interval constraint
propagation, deduction

Cora non-linear ODEs; geometric state set representations; several
reachability analysis algorithms, linear abstraction

dReach non-linear ODEs; logical state set representation; interval constraint
propagation, δ-reachability, bounded model checking

Flow* non-linear ODEs; Taylor models; flowpipe computation

HSolver non-linear ODEs; logical state set representation; interval constraint
propagation

HyCreate non-linear ODEs; boxes; flowpipe computation

iSAT-ODE non-linear ODEs; logical state set representation; interval constraint
propagation, bounded model checking

KeYmaera differential dynamic logic; logical state set representation;
deduction, computer algebra

SpaceEx linear ODEs; geometric and symbolic state set representations;
flowpipe computation

on to the internal SMT solver dReal [22], which determines its δ-satisfiability
using interval constraint propagation. Due to the generality of interval constraint
propagation, dReach is able to handle non-linear dynamics involving transcen-
dentals. The user can access the SMT calls in SMT-LIB format [5] as well as a
witness for the reachability of the set of bad states.

Flow* is a tool to compute reachable set over-approximations using Taylor-
model-based methods. It is able to handle an expressive class of hybrid system
models such that the continuous dynamics can be defined by non-linear ODEs
with uncertainties, while the jump guards and mode invariants are defined by
polynomial inequalities. The basic technique in use is called Taylor model flow-
pipe construction which is described in [11] and later enhanced by more efficient
algorithms [10]. By properly setting the parameters, the tool shows a good scala-
bility on non-linear case studies and succeeds even on large initial sets. Since the
tool focuses on non-linear systems, its performance on handling convex guards
or invariants is not optimised.

HSolver [36] implements classical interval constraint propagation on top of
the constraint solving package RSolver. Due to its general solving technique, it
can handle expressive non-linear ODEs and non-linear jumps. Though HSolver
uses floating point arithmetic, it uses sound rounding to assure correct results.
Besides verification purposes, the tool can also be used to compute abstractions.

HyCreate [25] is a tool implemented in Java for both time-bounded and
unbounded (complete) reachability analysis from an initial state. The tool is
designed for low-dimensional models with non-linear, non-deterministic dynam-
ics. It uses box representation and provides error reduction by splitting boxes

14 S. Schupp et al.

at the cost of increased complexity. HyCreate allows further processing of the
generated output as well as visualisation via projection on a 2D space.

iSAT-ODE [15] performs, similarly to dReach, bounded model checking. It
is based on the iSAT [17] SMT solver, which tightly integrates interval constraint
propagation into a SAT solver. iSAT-ODE extends iSAT with a theory solver
module for ODEs to compute validated numerical enclosures for them using
the VNODE-LP [31] library. This approach can handle expressive models with
non-linear dynamics and transcendental functions. However, despite different
embedded optimisation mechanisms, this expressiveness comes at the cost of
scalability.

KeYmaera [32] is an interactive hybrid tool combining deductive, real alge-
braic, and computer-algebraic prover technologies. Hybrid systems are specified
in differential dynamic logic [33] using the notation of hybrid programs, cover-
ing non-linear dynamics under uncertainties and non-linear jumps. KeYmaera
tries to prove properties of a given system by finding invariants. On the one
hand, this approach is automated but it is still inherently interactive. On the
other hand it is flexible, can cope also with infinite time horizons and paramet-
ric models, and can provide verified counterexamples. A new re-implementation
KeYmaera X [21] is in its early development phase and it can therefore handle
only a restricted model class, but it additionally allows the user to define their
own proof search techniques as tactics.

SpaceEx [20] is designed for complex, high-dimensional models with piece-
wise affine dynamics and non-deterministic inputs. SpaceEx comes with a web-
based graphical user interface and a graphical model editor. Its input language
facilitates the construction of complex models from automata components using
a block-diagram representation. The analysis engine of SpaceEx offers differ-
ent algorithms (LGG [20,28], STC [18,19]) which combine geometric state set
representations (template polyhedra), symbolic state set representations (sup-
port functions) and linear programming to achieve maximal scalability while
maintaining high accuracy. The prime goal of SpaceEx being scalability, it uses
floating-point computations that do not formally guarantee soundness.

4 Benchmarking and Evaluation

Although there are many tools available, their comparative evaluation is prob-
lematic. First of all, they do not support the same model classes. The main differ-
ences concern the type of the supported ODEs. Though theoretically unspectac-
ular, some tools cannot handle jumps with guard predicate true, or unspecified
(arbitrary) dynamics. Even if the user identified those tools which can handle
a given model class, it is hard to compare their performance: as each algorithm
brings its own set of parameters, it requires expertise and knowledge about
implementation details to properly instantiate the tool parameters to get opti-
mal results.

Other obstacles are the relatively low number of available benchmarks and
missing input language standards. In some other communities, e.g. in SAT and
SMT solving or in software verification, the development of such standards

Current Challenges in the Verification of Hybrid Systems 15

and the organisation of annual competitions gave impressive force and led to
a new sequence of innovations in the given areas. A standardised specification
language for hybrid system models could have a similar positive effect. Currently,
the number of available benchmarks is not satisfactory, even though lately some
improvements were achieved [2,8,16]. The situation is worsened by the fact that
nearly each tool has its own input specification language. To solve this problem,
a CIF 3 standard was proposed [6], however, it is not yet widely established in
the community. Furthermore, some approaches for model conversion were pro-
posed in [4]. A standardisation could drastically improve the situation, enable
the establishment of a competition, give new drive to tool development and thus
contribute to stronger tool functionalities and better efficiency, and ease the
selection of a suitable tool.

To give an impression for the analysis capabilities of available tools and to
motivate some challenges, in the following we give some exemplary verification
results, where we focus on limitations.

Two tanks [8,29]: A two-tank system consists of two connected tanks. The first
is filled with a constant inflow and an additional controlled inflow of a liquid.
A drain at the bottom of the first tank leads to a constant outflow and thus a
constant inflow in the second tank. Conversely, the second tank has a drain which
creates a constant outflow, and a controlled valve which results in an additional
controlled outflow. The hybrid automaton model of this tank system has four
locations, corresponding to the different states of the valves for the controlled in-
and outflows. The dynamics is described by linear differential equations. Initially
both valves are closed, and for the filling levels x1 and x2 of the first respectively
the second tank it holds that x1 ∈ [1.5, 2.5] and x2 = 1. More details about the
model can be found at [8].

Figure 2 shows the reachability analysis results of SpaceEx/STC (max. iter-
ations: 50, local time horizon: 5, flowpipe tolerance: 0.1) and Flow* (jump
depth: 2, local time horizon: 5, time-step size: 0.01) on this benchmark. The ini-
tial set is located in the upper right of each diagram. As we can see, the results on
this benchmark are comparable, though Flow* gave a bit more precise results.

Fig. 2. SpaceEx/STC (left) and Flow*(right) results for the two-tanks benchmark.

16 S. Schupp et al.

Fig. 3. SpaceEx/LGG results for the three-vehicle platoon benchmark.

Three-vehicle platoon [7,8]: The system consists of a human-driven vehicle and
three communicating vehicles following it in a platoon. Two locations are used to
model functioning and disrupted communication, respectively. The flows in the
locations are described by linear differential equations (without uncertainties).
For more details on the model and the initial states see [8].

Some reachability analysis results for this benchmark using SpaceEx/LGG
are shown in Fig. 3, using local time horizon 12 and max. iterations 5. The results
show the distance e1 between the human-controlled vehicle and the first following
platoon vehicle, and the distance e2 between the first and the second following
platoon vehicles, which are initially e1, e2 ∈ [0.9, 1.1] units. The three results in
the first row in Fig. 3 are created using boxes while for the results in the second
row octagons are chosen. In the analysis we use time-step sizes 0.3, 0.1 and
0.01 s (from left to right in both rows). We can observe that in general boxes
over-approximate more strongly, whereas octagons give more precise results.
As expected, for both representations the error can in general be reduced by
reducing the time-step size. The error reduction comes at the cost of longer
running times: for boxes the computations needed 0.05, 0.1 resp. 0.14 s, whereas
in the case of octagons the computational effort has grown from 2.97 over 9.5 to
42.4 s. Note that the plots in the left column use different scales.

Furthermore, an interesting effect can be observed in the top-right plot: the
reachable set for precision 0.01 seems to be larger as for time-step size 0.1. How-
ever, this fact is not due to stronger over-approximation. In contrast to Flow*,
where the user specifies a jump depth (i.e., all paths with this number of jumps
are explored), SpaceEx takes the total number of jump successor computations

Current Challenges in the Verification of Hybrid Systems 17

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1 1.5 2

e2

e1

Fig. 4. SpaceEx/LGG (left) and Flow* (right) results for the three-vehicle platoon
benchmark.

in the analysis (in this example 5) as input parameter. Some jumps, which were
enabled due to over-approximation with larger step-sizes, are not enabled any
more with step size 0.01. Thus the larger reachable set is due to the fact that
with the finer precision longer paths can be explored.

Some more results for Flow* are presented in Fig. 4 (right) in comparison
to the octagon setting in SpaceEx/LGG (left). Both tools used a time-step size
of 0.01 s and local time horizon 12, max. iterations was set to 5 in SpaceEx,
and jump depth to 5 in Flow*. The computed reachable set is clearly larger for
Flow* than for SpaceEx. This has two reasons. Firstly, in Flow* all paths
with 5 jumps are considered, in contrast to SpaceEx computing a total of 5
jumps. Secondly, the intersection computations for jumps lead to stronger over-
approximations in Flow*, which accumulate in further computation steps. This
case illustrates that sometimes tools, which were designed for more expressive
model classes (Flow* was designed for non-linear dynamics), work less optimal
on simpler models (here linear dynamics).

Navigation [16]: This benchmark models the movement of an object in a two-
dimensional plane. In our case the plane is subdivided into a 3 × 3 grid struc-
ture, whereas other configurations with more cells are also possible. The linear
dynamics inside each cell is determined by its position. The corresponding hybrid
automaton models each cell by an own location. Jumps between the locations
are enabled for all states at the boundaries between the cells; these jumps modify
only the location but no other state components. Therefore, this hybrid automa-
ton model exhibits Zeno behaviour, because such switches between the cells can
be done back-and-forth infinitely often, without letting time elapse.

This Zeno behaviour can be observed on the reachability analysis results of
SpaceEx/LGG (max. iterations: 5, local time horizon: 2, time-step size: 0.001)
shown in Fig. 5 (top left). In the zoomed part (top right) the effects of the Zeno
behaviour are exposed.

The two plots in the bottom of Fig. 5 show some Flow* results (jump depth:
1 for bottom left and 2 for bottom right, local time horizon: 2, time-step size: 0.1).

18 S. Schupp et al.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

y

x

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

y

x

Fig. 5. SpaceEx/LGG results for the navigation benchmark (above), Flow* results
below.

We have chosen a larger time-step size for Flow*, in order to make the same
effect of the Zeno behaviour visible in the plots, however, a similar reachable set
is computed also for the smaller time-step size 0.001. For comparability, in the
bottom-left plot, we indicate the SpaceEx domain [0.4, 2.0] × [0.9, 1.25] of the
plot above by a rectangle.

5 Further Challenges

The previously described tools cope with a wide range of models and offer pow-
erful technologies for reachability analysis. Nevertheless, there are several chal-
lenges still to be addressed in order to increase the applicability and usability of
the tools. In this section we discuss some of these challenges.

State set representation: The choice of the state set representation is always a
trade-off between computational complexity and precision. There are many dif-
ferent representations usable for the analysis of a hybrid system. Boxes and poly-
topes are frequently used, also support functions and zonotopes are prominent for
models with linear ODEs, whereas Taylor models can be used also for non-linear
ODEs. However, none of the representations offers an optimal solution, since they

Current Challenges in the Verification of Hybrid Systems 19

have individual strengths and weaknesses, mainly in the representation size and
in the efficiency of certain operations (e.g., union, intersections, Minkowski sum,
linear transformation, etc.) needed during the reachability analysis. Although
several tools use conversions between representations for certain computations,
context-sensitive approaches are still missing. For example, the representation
could be adopted to the form of the ODEs in different locations. Also an auto-
mated dynamic conversion to reach an optimal trade-off between precision and
efficiency during computation using an iterative refinement technique is not yet
supported. Furthermore, there is rare support for non-convex representations.
Last but not least, most representations are over-approximative, and therefore
applicable for safety verification. However, for proving unsafety, novel under-
approximative computations would be of help.

Precision: Precision is a crucial component during analysis. For systems, where
the distance between the reachable and the unsafe states is small, the used
precision can be crucial for the outcome of the reachability analysis. If the out-
come is inconclusive (the over-approximation intersects with the unsafe state
set), currently the only solution is to re-start the analysis from scratch with new
parameters which lead to an error reduction (e.g., reduction of the time-step size
in the flowpipe construction). However, since higher precision comes with longer
running times, the new parameters must be chosen carefully by the user. An
automatic adaptation of the parameters would be not only more user-friendly,
but could also be applied dynamically to refine the search only along those paths
which led to an intersection with the unsafe state set, instead of executing the
whole analysis with high precision.

Fixed-point recognition: Recognising fixed-points in the reachability analysis,
i.e., when the whole reachable state set of a hybrid system is already checked
for safety, enables the solution of the unbounded reachability problem. How-
ever, in order to detect fixed-points, a huge number of state sets need to be
stored, and successor sets must be tested for inclusion. As this comes at high
costs, current tools use only heuristic checks for fixed-points. A more systematic
check would require a highly efficient storage of state sets and fast operations on
them - a possible approach could use memory-efficient under-approximations in
a representation with fast inclusion and intersection computations (e.g. boxes).

Large uncertainties: Uncertainties can be included in the models when, e.g.,
some coefficients of the dynamics cannot be fixed precisely, or in the presence of
time-varying external inputs like natural forces or users. Though systems with
bounded uncertainties can be verified, models with large uncertainties are one
more challenge in the verification of hybrid systems. Each uncertainty intro-
duces a bloating factor which is carried onwards and even aggregated during
the computation of the reachable set. Although a few approaches were proposed
to overcome these limitations (see, e.g., [35]), most tools have problems to find
conclusive answers for models with large uncertainties.

20 S. Schupp et al.

Zeno behaviour: Whenever it is possible to execute an infinite number of jumps
in a finite amount of time, we observe Zeno behaviour (see the navigation bench-
mark example and Fig. 5). Naturally, no real system exhibits Zeno behaviour.
However, it is hard to avoid Zeno paths in modelling. In [3] the authors distin-
guish between chattering Zeno (infinite jump sequences with zero dwell time)
and genuine Zeno (infinite jump sequences with nonzero dwell time in-between
converging to zero) behaviour.

Examples for chattering Zeno behaviours can be found in switching systems,
where the state space is divided into grids, each grid having its own dynamics,
modelled by an own location. Switching between different grids does not modify
the continuous state and is always possible whenever the current state lies at
the boundary between two grids. Therefore, infinite back-and-forth switching
on boundaries can happen in such models, causing a problem for reachability
analysis if the reach-set approximation is not idempotent: Even if no new states
are reached, successor states in a sequence of jumps may grow and even diverge
as the approximation errors accumulate. If the reach-set computation is exact
(such as in HyTech or PHAVer), chattering Zeno has no particularly adverse
effect (it may increase the number of image computations necessary to reach a
fixed-point).

Genuine Zeno can be problematic for any computation that follows the exe-
cution of the system, because any finite number of successor computations may
not be able to cover all reachable states. Over-approximations may resolve the
problem if they cover the limit points of the sequence. This can be achieved
automatically with widening operators [14]; here the difficulty lies in keeping
the over-approximation reasonably small [30].

Non-convex invariants: Most tools require that the invariants of the locations are
convex sets, mainly for representation reasons. However, similarly to programs
which might have disjunctions in loop conditions, also non-convex invariants
appear in hybrid system applications. Though one can apply model transfor-
mation to eliminate non-convex invariants by splitting the non-convex set into
convex subsets and introducing a new location for each convex subset, with this
approach the models are extended with Zeno behaviour, hardening their analysis
(see Fig. 6). An efficient analysis without such model transformations could be
enabled for example by non-convex state set representation techniques.

Urgent transitions: Invariants are one possibility in modelling to force the con-
trol to move from one mode to another. Another possibility are urgent tran-
sitions, which must be taken as soon as they are enabled. Urgent transitions
have the advantage that they make the reason for the mode change more visible
(observable), and therefore they are sometimes preferred instead of the usage of
invariants. However, most tools do not support urgent transitions, though their
analysis would even reduce the computation effort: both the expensive compu-
tations of intersections with invariants as well as the computation of flowpipes
from those state sets which are included in the guard of an outgoing urgent
transition become superfluous.

Current Challenges in the Verification of Hybrid Systems 21

Fig. 6. The split of a location with a non-convex invariant (left) into two locations
with convex invariants (right) might introduce Zeno behaviour.

Compositionality: Large systems are usually modelled compositionally as a set of
modules running concurrently. Most available tools build the parallel composi-
tion of the modules to get a non-compositional model, which can be subsequently
analysed. However, the composition results in high-dimensional systems, which
pose challenges for the analysis. Compositional analysis techniques would be
advantageous, but there is no straightforward way to extend the available tech-
niques to support compositionality. As assume-guarantee methods proved to be
useful in program verification, it might also be a promising option in hybrid
systems reachability analysis. But when we aim at push-button approaches,
suitable assumption-commitment specifications should be derived automatically.
Another possibility could be to analyse the concurrent modules simultaneously
and communicate between the concurrent analysers on synchronisation-relevant
computations using, e.g., partial order reduction techniques.

Counterexamples: Although a few tools, like for example KeYmaera, can pro-
vide counterexamples for unsafe models, most tools do not have this func-
tionality. However, counterexamples are extremely important and provide valu-
able information for system developers to correct unsafe designs. Furthermore,
counterexamples play an important role in counterexample-guided abstraction
refinement (CEGAR).

CEGAR: Frequently used in various other research areas, counterexample-guided
abstraction refinement is not yet established in the field of hybrid systems. Util-
ising a relaxed version of the problem can introduce a significant speed up in
verification. In case the verification fails, a counterexample path is used to refine
relevant components of the model.

Parallelisation: Regarding the efficiency of the reachability analysis of hybrid
systems, the current main focus lies on improving the efficiency of sequential
algorithms. Approaches for parallelisation are rare and not yet well understood.
However, the exploitation of multi-core hardware systems could help to improve
the scalability and the applicability of available technologies to large-scale
systems.

22 S. Schupp et al.

Modelling language expressiveness: To make hybrid automata as a modelling
language more attractive and usable for a wider range of applications, also
further extensions regarding expressiveness should be considered. For exam-
ple, cyber-physical systems are distributed hybrid systems, where additionally
to discrete and dynamic aspects, also communication plays an important role.
Spatio-temporal hybrid automata [37] are a possible extension in this direction,
supporting the modelling of communication and other spatial aspects.

Another relevant aspect is randomised behaviour, which can affect either
the dynamics of a system via stochastic differential equations [9] or the discrete
behaviour via probabilistic transitions [38]. The later can involve probabilistic
properties regarding the choice between enabled transitions as well as the when
to take an enabled transition. A pioneer tool in this area is ProHVer [34],
which implements analysis algorithms using a transformation of probabilistic
hybrid automata to hybrid automata without probabilistic components.

6 Conclusion

In this paper we gave a brief introduction to state-of-the-art tools for the reach-
ability analysis of hybrid systems, and discussed current challenges for further
research. Despite great achievements, there is still a need for efforts to increase
applicability and scalability. Standardisation, competitions, and the strengthen-
ing of the functionality and the efficiency of techniques and tools may increase
visibility and intensify the developments in this relevant research area.

References

1. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans. Robot. 30(4), 903–918 (2014)

2. Althoff, M., Frehse, G.: Benchmarks of the workshop on applied verification of
continuous and hybrid systems (ARCH) (2014). http://cps-vo.org/group/ARCH/
benchmarks

3. Ames, A.D., Sastry, S.: Characterization of Zeno behavior in hybrid systems using
homological methods. In: Proceedings of ACC 2005, pp. 1160–1165. IEEE Com-
puter Society Press (2005)

4. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and transla-
tion tool for hybrid automaton models. In: Proceedings of HSCC 2015, pp. 128–133.
ACM (2015)

5. Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-
LIB) (2010). http://www.SMT-LIB.org

6. van Beek, D.A., Fokkink, W.J., Hendriks, D., Hofkamp, A., Markovski, J., van de
Mortel-Fronczak, J.M., Reniers, M.A.: CIF 3: model-based engineering of super-
visory controllers. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS).
LNCS, vol. 8413, pp. 575–580. Springer, Heidelberg (2014)

7. Ben Makhlouf, I., Diab, H., Kowalewski, S.: Safety verification of a controlled
cooperative platoon under loss of communication using zonotopes. In: Proceedings
of ADHS 2012, pp. 333–338. IFAC-PapersOnLine (2012)

http://cps-vo.org/group/ARCH/benchmarks
http://cps-vo.org/group/ARCH/benchmarks
http://www.SMT-LIB.org

Current Challenges in the Verification of Hybrid Systems 23

8. Benchmarks of continuous and hybrid systems. http://ths.rwth-aachen.de/
research/hypro/benchmarks-of-continuous-and-hybrid-systems/

9. Bujorianu, M., Lygeros, J.: Toward a general theory of stochastic hybrid systems.
In: Blom, H.A.P., Lygeros, J. (eds.) Stochastic Hybrid Systems. LNCIS, vol. 337,
pp. 3–30. Springer, Heidelberg (2006)

10. Chen, X.: Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Mod-
els. Ph.D. thesis, RWTH Aachen University, Germany (2015)

11. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proceedings of RTSS 2012, pp. 183–192. IEEE
Computer Society Press (2012)

12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

13. Collins, P., Bresolin, D., Geretti, L., Villa, T.: Computing the evolution of hybrid
systems using rigorous function calculus. In: Proceedings of ADHS 2012, pp. 284–
290. IFAC-PapersOnLine (2012)

14. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of SIGACT-SIGPLAN, pp. 84–96. ACM (1978)

15. Eggers, A.: Direct Handling of Ordinary Differential Equations in Constraint-
solving-based Analysis of Hybrid Systems. Ph.D. thesis, Universität Oldenburg,
Germany (2014)

16. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In:
Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341.
Springer, Heidelberg (2004)

17. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. J.
Satisf. Boolean Model. Comput. 1, 209–236 (2007)

18. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in
space-time. In: Proceedings of HSCC 2013, pp. 203–212. ACM (2013)

19. Frehse, G.: Reachability of hybrid systems in space-time. In: Proceedings of
EMSOFT 2015. ACM (2015)

20. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

21. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 527–538. Springer, Heidelberg (2015)

22. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT Solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208–214.
Springer, Heidelberg (2013)

23. Henzinger, T.: The theory of hybrid automata. In: Proceedings of LICS 1996, pp.
278–292. IEEE Computer Society Press (1996)

24. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

25. HyCreate: a tool for overapproximating reachability of hybrid automata. http://
stanleybak.com/projects/hycreate/hycreate.html

26. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015)

http://ths.rwth-aachen.de/research/hypro/benchmarks-of-continuous-and-hybrid-systems/
http://ths.rwth-aachen.de/research/hypro/benchmarks-of-continuous-and-hybrid-systems/
http://stanleybak.com/projects/hycreate/hycreate.html
http://stanleybak.com/projects/hycreate/hycreate.html

24 S. Schupp et al.

27. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous
dynamics. Ph.D. thesis, Université Joseph-Fourier-Grenoble I, France (2009)

28. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support
functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)

29. Lygeros, J.: Lecture notes on hybrid systems. In: Notes for the ENSIETA 2004
Workshop (2004)

30. Maka, H., Frehse, G., Krogh, B.H.: Polyhedral domains and widening for veri-
fication of numerical programs. In: NSV-II: Second International Workshop on
Numerical Software Verification (2009)

31. Nedialkov, N.S.: VNODE-LP - A validated solver for initial value problems in
ordinary differential equations. Technical Report CAS-06-06-NN, Department of
Computing and Software, McMaster University, Ontario (2006)

32. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

33. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

34. ProHVer: Safety verification for probabilistic hybrid systems. http://depend.cs.
uni-sb.de/tools/prohver/

35. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method for computing
an over-approximation for the reachable set of uncertain nonlinear systems. IEEE
Trans. Autom. Control 54(10), 2352–2364 (2009)

36. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propaga-
tion based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005.
LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005)

37. Shao, Z., Liu, J.: Spatio-temporal hybrid automata for cyber-physical systems. In:
Liu, Z., Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 337–354.
Springer, Heidelberg (2013)

38. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, p. 31. Springer, Heidelberg
(2000)

http://depend.cs.uni-sb.de/tools/prohver/
http://depend.cs.uni-sb.de/tools/prohver/

	Current Challenges in the Verification of Hybrid Systems
	1 Introduction
	2 Hybrid Systems Modelling and Reachability Analysis
	2.1 Modelling
	2.2 Reachability Analysis

	3 Tools
	4 Benchmarking and Evaluation
	5 Further Challenges
	6 Conclusion
	References

