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Abstract. Predicting the potential danger of a forest fire is an essential
task of wildfire analysts. For that reason, many scientists have focused
their efforts on developing propagation models that predict forest fire
evolution to mitigate the consequences of such hazards. These propaga-
tion models require a precise knowledge of the whole environment where
the fire is taking place. In the context of natural hazards simulation, it
is well known that, part of the final forecast error comes from the uncer-
tainty in the input data. In this work, we use a Dynamic Data-driven
methodology to overcome such problem. The core of the methodology is
a calibration stage previous to the forecast where complementary mod-
els, data injection and intelligent systems are working in a symbiotic way
to reduce the forecast errors at real time. This approach has been tested
using a forest fire that took place in Arkadia (Greece) in 2011.

Keywords: Forest fire · Simulation · Data uncertainty · Dynamic data-
driven

1 Introduction

Forest fires involve serious consequences from the environmental, economic and
social point of view. For that reason, the scientific community has developed
simulation tools with the aim of providing useful information about forest fire
spread evolution to the people in charge of managing extinction resources. Most
of the existing forest fire spread simulators [1–7] implement the spread kernel
equations based on the Rothermel’s model [8]. However, it is well known that
the forecast fire evolutions provided by existing fire spread simulators do not
exactly reproduce the real behaviour of the fire. The reason for such a differ-
ence ranges from the input parameters uncertainty to the imprecision of the
model itself. In previous works [9–11], it has been stated that a pre-processing
of the simulator input parameters based on a steering loop driven by real data
acquisition and fire behaviour observation, could lead to enhanced forecast fire
evolutions. This prediction scheme is the so call Two-Stage prediction system.

c© Springer International Publishing Switzerland 2015
S. Ravela and A. Sandu (Eds.): DyDESS 2014, LNCS 8964, pp. 54–67, 2015.
DOI: 10.1007/978-3-319-25138-7 6



DDDAS Forest Fire Framework 55

The Two-Stage strategy performs a forest fire prediction by previously execut-
ing a Calibration stage, which involves the most sensitive parameters. In this
stage, the actual evolution of the forest fire is observed and a Genetic Algorithm
(GA) is carried out to determine the set of parameters that best reproduces the
recent evolution of the fire. This set of values is then used as input parameters in
the Prediction stage. Since forest fires are a dynamic phenomena, which is quite
affected by changing data such as meteorological information, the mentioned
pre-processing data phase has been designed as a feedback loop where gathered
data guides the simulation and, the simulation results at a time, could even-
tually drive the data collection. This way of work feeds the so called Dynamic
Data Driven Application System [12,13]. A key point in this process is the eval-
uation of the simulation’s quality, because it has a direct impact in both the
Calibration stage and in the Prediction stage. The Calibration stage consists
of a Genetic Algorithm (GA), which tries to minimize a predetermined fitness
function. In the context of forest fire propagation, this fitness function is the
difference between the real burnt area and the burnt area obtained by simula-
tion. Eventually, a perfect match should be reflected into the fitness function
as a global minimum/maximum value according to its definition. Up to now,
the Two-Stage prediction system relies on the symmetric difference between sets
as a fitness function (also called error function). This error function has been
proven to provide good results when applied to predict forest fire to a maximum
of regional size. However, when moving to forest fire classified as “dangerous”
at European level, this fitness function was detected to be not enough accurate
and, for that reason, an alternative error has been defined. However, not all the
information needed by the prediction system could be considered in the cali-
bration process. In particular, those data considered as static information such
as elevation maps and fuel data, is typically obtained from public repositories.
There is not an unique source of this kind of data and, consequently, the fire
behaviour prediction delivered by a given forest fire spread model could vary
according to the selected static data sources. Furthermore, gathering dynamic
data such as real fire perimeter evolution and meteorological data could be a
bottleneck to the system if there is no a clear way to proceed. For that reason,
at European level, EFFIS (European Forest Fire Information System) raises as
the EU common platform to provide all input data required in a forest fire sim-
ulation system (FFSS). Therefore, relying on the EFFIS data, one can design
FFSS at European level based on standard basis. However, the resolution of
these information is not always at the desired precision, so, it becomes manda-
tory to include complementary models to the forest fire spread model in order to
obtain high resolution data, which takes into account the environment where
the hazard is occurring. For that reason, the basic Two-Stage forest fire simula-
tion system was enhanced by coupling two different models, a wind field model
(WindNinja [14]), which takes into account the wind speed and wind direction
variation due to the underlying topography and, a meteorological model (WRF
[15]) to evaluate the time evolution of the meteorological variables. The resulting
coupled prediction framework has been tested using a study case retrieved from
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the EFFIS database. In Sect. 2, the data uncertainty problem related to forest
fire spread forecast is introduced. The coupled dynamic data-driven prediction
framework (DDD-FFSS) is described in Sect. 3, as well as, the proposed error
equation for events at paneuropean level. The described DDD-FFSS is then
applied to a forest fire that took place in Arkadia (Greece) in 2011 in Sect. 4.
Finally, Sect. 5 summerizes the main conclusions of this work.

2 Data Uncertainty in Forest Fire Simulation

As it has been mentioned, fire behavior models require accurate input data to
provide fire spread forecast as reliable as possible. Although the model sensitiv-
ity to the input data clearly depends on the nature of each required parameter,
the precision and quality of all of them are not dismissible. In general, the data
needed to perform the predictions can be divided into two main groups: static
and dynamic data. The static input data is the one that keeps constant dur-
ing the whole prediction interval, and the dynamic data changes during the fire
spread simulation. According to this feature (static/dynamic), the way of gath-
ering and processing the information to obtain the corresponding input files is
quite different. In the case of static data, the pre-processing and organization of
the required layers in the proper format could be done previously to the haz-
ard occurrence. There are certain constraints related to the terrain dimension
that should be considered in an accurate way, but the process of homogenize
the precision, projection and datum could be done off-line, and have this data
characterized and ready to be used when a crisis occurs. If the static data of a
region is available before a fire occurrence, the efforts must be focused on those
parameters that vary dynamically during the simulation or depend on the fire
scenario studied. In this case, it is necessary to collect them in real-time, thanks
to the different data sources and services that can provide this information. Obvi-
ously, this case is the most critical since we depend on third-parties frequency of
data arrival, and data format. Therefore, the conversions and the injection must
be done in an on-line mode, while the simulation is being carried out. As we
have previously mentioned, at European level, the reliable third-party is EFFIS
(European Forest Fire Information System) and, therefore, this is the data source
we have used to perform this study. Subsequently, we shall describe how static
and dynamic data related to forest fire evolution is considered by EFFIS.

2.1 Topography

This data is obtained by processing Digital Elevation Maps (DEMs). A DEM
defines the height of the terrain in every cell of the map. This is a discretization
of a continuous surface, taking into account measures in certain points of the
terrain. Those maps are obtained from the ASTER (Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer) imaging instrument onboard NASAs
Terra satellite that takes high-resolution images of the earth. These images are
processed and raster files are extracted with the information needed to perform
the fire spread simulations (elevation, aspect and slope). The ASTER map res-
olution is 30 m.
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2.2 Fuel Map

The vegetation map (or fuel map) is a raster file that describes the predominant
vegetation in every cell. The fuel model used for fire simulation purposes, is the
standard fuel model defined by [14]. This information has been obtained from
the fuel type map of Europe developed at the JRC. The classification scheme
adopted for the fuel map encompasses 42 fuel types representing the variety of
fuel complexes found in European landscapes. A cross-walk to the original set of
13 fire behaviour fuel models tabulated by Anderson fire spread model is done
at the JRC [14].

2.3 Meteorological Data

The meteorological data used is the ECMWF (European Centre for Medium-
Range Weather Forecasts) operational high-resolution single global deterministic
model (ec16), with a horizontal resolution of about 16 km [16]. The model is
initiated on both the 00 and 12 UTC analysis reaching to a 24-hour forecast
horizon with archived time-step of 3 hour. It is worth mentioning, that this is
the configuration used in this work for experimental purposes, but it is not the
unique source of meteorological data processed at the JRC.

2.4 Fire Perimeter

A key point in any forest fire simulation system is the capability to feed the
system with either a real initial fire perimeters or a precise ignition point.
The EFFIS Burnt Area Map module is in charge of this data. To obtain the
fire perimeter information, the JRC relies on the MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) sensors systems, which are on board both the
NASAs Terra and Aqua satellites. Each satellite requires to complete 3 orbits
(approximately 3 h) to cover the whole Europe area, so it could be possible to
obtain fire perimeters twice a day, one from each satellite. The image resolution
provided by the MODIS system is of 250 m.

3 Dynamic Data-Driven Forest Fire Simulation System

As it has been mentioned, the Two-Stage prediction scheme uses the Calibration
stage to search for those input parameters setting that, fitted to the underlying
simulator, better reproduces the recent observed forest fire spread. The obtained
parameter configuration will then be used to fit the simulator in the Prediction
stage to forecast the near future evolution of the fire. As a search technique in
the Calibration stage, a Genetic Algorithm (GA) is applied, where a random
initial population of individuals (input parameter setting) is generated. Each
individual is simulated using FARSITE [6] (the underlying forest fire spread
simulator) and the resulting forest fire spread is compared to the real observed
fire evolution to compute the GA’s fitness function (called error in this case).
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Then, according to the quality of the prediction, the individuals are ranked and
the genetic operators are applied to generate the new population. The process is
repeated a certain number of iterations and the best individual at the end of the
process is selected to run the prediction at the Prediction stage. Since evaluating
the prediction quality is a key point in this scheme, in the following subsection,
we shall describe the selected fitness function (error) and, subsequently, we will
introduce how the DDD-FFSS has been improved by coupling complementary
models.

3.1 Quality Prediction Evaluation

In order to compare the obtained predictions with the real fire behavior, it is
necessary to define metrics in order to determine the quality of the simulations
what enables the capacity of ranking them. There exist several metrics to com-
pare real and predicted values [17] and each one weights the events involved
differently. The event notation used to define those error functions is depicted
in Fig. 1.

Fig. 1. Events involved in metrics related to forecast verification.

The cells around the map that have not been burnt by neither the real fire
nor the predicted map are considered Correct Negatives (CN). Those cells that
have been burnt in both maps are called Hits. The cells that are only present in
the real fire and are not burnt by the predicted fire are called Misses. Finally, in
the opposite case, the cells that the simulator predicts as burnt area but the real
fire does not actually reach, are called False Alarms (FA). Besides these factors,
some equations take into account the real map (RealCell), the simulated or
predicted map (SimCell), the ignition map (ICell) or the total number of cells
of the terrain (TotalCell). This notation may vary but the meaning remains the
same.

Up until now, we have been using the symmetric difference between maps as
error function. The values given by this error function are positive, but not in a
closed interval, with the best value being 0 without an upper limit. We use the
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concept of UCell (all cells belonging to both real fire and simulated fire) and
InterCell (cells belonging to both real fire and simulated fire) as factors in the
equation. To better understand and to simplify the equations, the initial fire is
considered a point and, therefore, it can be removed from the original equations
what simplifies the translation of Eq. 1 to the notation previously described.

Error =
(UCell − ICell) − (InterCell − ICell)

RealCell − ICell
=

=
(Hits + Misses + FA) − (Hits)

RealCell
= (1)

=
Misses + FA

RealCell

In fact, both real and simulated maps can also be transformed as a combi-
nation of Hits, Misses, and FA events as is shown in Eq. 2

RealCell = Hits + Misses

SimCell = Hits + FA (2)

Equation 1 equally penalizes the misses and the false alarms. Another metric
that was used to rank individuals was the Critical Source Index (CSI), which
gives us the rate of hits achieved from 0 to 1, with 1 being the perfect match
between maps. It also weight misses and false alarms in the same way.

Error =
InterCell

UCell
=

Hits

Hits + Misses + FA
(3)

The fact of equally penalizing both factors is not suitable in our field because
it is much more important to minimize the misses than to reduce the false
alarms. The consequences of misses can cause severe damage, both to the envi-
ronment and in human lives, while the false positives may represent an extra
effort in fire-fighting resources.

The main problem of these metrics when applied to the Two-Stage method-
ology is concentrated into the Calibration stage. In this part of the methodology,
we evaluate several scenarios, then we rank them using the error function, and
finally, we select the best parameter set to perform the prediction. We have
detected that when dealing with large forest fires at paneuroepan level, the indi-
viduals with less spread, tend to provide the best error values. Analyzing the
shape of the other individuals, we observe that potential good predictions were
discarded from the calibration process due to the high penalty generated by the
false alarms. In order to solve this undesired effect, we changed Eq. 1 in order to
minimize the effect of false alarms. The new error function is shown in Eq. 4.

Error =
(UCell−ICell)−(InterCell−ICell)

RealCell−ICell + (UCell−ICell)−(InterCell−ICell)
SimCell−ICell

2
=

=
Misses+FA

Real + Misses+FA
Sim

2
(4)
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The latest equation has shown better behavior in the Calibration stage than
the other metrics. In those cases where the difference between the predicted burnt
area and the real burnt are is the same in terms of magnitude but opposite
according to the event related (misses or false alarms), the individuals that
provide overestimated predictions have a better error than those individuals
that underestimated the fire evolution. Therefore, the new error function was
incorporated to the Dynamic Data-Driven Forest Fire Simulation System (DDD-
FFSS) describe below.

3.2 Coupling Models to the DDD-FFSS

As it was previously introduced, we rely on DDD-FFSS to perform forest fire
spread predictions. This system encapsulates the Two-Stage prediction scheme
with the possibility of coupling/uncoupling complementary models to better con-
sider available environmental conditions (wind, humidity,...). The basic scheme
of the Two-Stage approach is depicted in Fig. 2 (2ST-BASIC). It is well known
that one of the parameters that most affect fores fire propagation is the wind,
for that reason, the efforts has initially been concentrated on this parameter.
The complementary models included in DDD-FFSS are: a wind field model to
consider the effect of the terrain on wind speed and wind direction and, a meteo-
rological model whose output has been post-processed to deliver a meteorological
wind speed and wind direction at the pinpointed centroid of the fire. Since the
objective of this work is to test the DDD-FFSS approach at European level,
it is unrealistic to consider that the data injected in the Calibration stage will
only come from meteorological stations. In fact, the data fitted into the steering
loop is provided by a metereological model but it also can be improved with
real data obtained from meteorological stations and sensors. This information
can be directly fitted into the Calibration stage of the forest fire spread predic-
tion system. However, during the prediction stage such values are not available
beforehand. So, it is necessary to introduce a meteorological model that can
provide the expected values for the meteorological wind speed and wind direc-
tion used at the prediction stage (see Fig. 3, 2ST-MM). The last enhancement
included in the system was to consider the influence of the topography on the
wind components as it is shown in Fig. 4 (2ST-MM-WF). In this case, the infor-
mation related to wind speed and wind direction used at the Calibration stage
is introduced to the wind field model before running all forest fire spread simu-
lations. In the Prediction stage, the meteorological data is provided by a certain
meteorological model and then introduced to the wind field model to provide
the corresponding wind field.

These prediction schemes have been tested at European level using fire cases
from the EFFIS repository. In the following section, we show the results obtained
in terms of quality improvement for a particular study case.

4 Experimental Study

The Mediterranean area is one of the European regions most affected for forest
fires during high risk seasons. As we have previously mentioned, we rely on
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Fig. 2. 2ST-BASIC prediction scheme

Fig. 3. 2ST-MM prediction scheme

EFFIS and JRC (Joint Research Centre) data sources to fit the dynamic data-
driven prediction system described in the previous section. Therefore, we have
selected as study case one event stored in the database of EFFIS. In particular,
we have retrieved the information of a past fire that took place in Greece during
the summer season of 2011 in the region of Arkadia, one of the seven prefectures
of the Peloponnese peninsula in Greece. The forest fire began on the 26th of
August and the total burnt area was 1,761 ha. The experimental results shown
in this section were obtained using a computing platform, which consists of two
PowerEdge C6145 nodes, each one including 4 AMD OpteronTM6376 with 16
cores each (128 cores).

In Fig. 5(a), the images provided by the MODIS system are shown for three
different time instants:
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Fig. 4. 2ST-MM-WF prediction scheme

– t0: August 26th at 09:43am obtained from the Terra satellite.
– t1: August 26th at 11:27am obtained from the Aqua satellite.
– t2: August 27th at 08:49am obtained from the Terra satellite.

The corresponding burnt areas (shapes) once the images have been processed,
are shown in Fig. 5(b). These shapes are the information available at EFFIS.
From these shapes, we obtain the real fire perimeters as are shown in Fig. 6.

In order to simplify the initial tests, the forecast meteorological data used for
the simulations are the wind components (wind speed and wind direction), dew
point and temperature of the pinpointing centroid of the observed fire. These
meteorological data is provided with an frequency of 3 h, for that reason, the
injection time step within the forest fire spread simulator has been set to 3 h. The
prediction time horizons have been set according to the exact time the MODIS
images have been obtained to be as fair as possible to the reality. In order to
compare the prediction results in terms of quality when applying the DDD-FFSS
coupling different complementary models, the system has been set to the three
following configurations: 2ST-BASIC, 2ST-MM and 2ST-MM-WF. Keeping in
mind that any configuration of the DDD-FFSS always implies the execution
of the Calibration stage and then, the execution of the Prediction stage, it is
necessary to describe how both stages use the available data perimeters. For
calibration purposes, we used as initial perimeter perimeter1 from Fig. 6 and,
as a reference perimeter, perimeter2 from Fig. 6. So, the simulations involved
in the Calibration stage have been set to a time horizon around 2 h. In the
case of the Prediction stage, the perimeter to be predicted is perimeter3 from
Fig. 6 and, the initial perimeter is perimeter2. Therefore, the time horizon for
the simulation at this stage has been set to 22 h. All these data inputs have
been harmonized to fit a simulation grid map with a basic cell of 100 m× 100 m
square.
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(a) MODIS images

(b) Vectorial shapes as a result of MODIS images

Fig. 5. MODIS images and their corresponding extracting shapes

Fig. 6. Fire perimeters corresponding to Arkadia fire

The obtained results are shown in Fig. 7. As it can be observed, the 2ST-
BASIC configuration is the one that provides the best error at the Calibration
stage. Despite seeming this result contradictory to the claim of coupling models
to obtain enhanced predictions, it is necessary to highlight that the prediction
error in this case is the worst. To understand this, it is noteworthy that the
interval between the first and second perimeters is around two hours, and there
is only a single meteorological data sample in this interval. This lack of knowledge
has a direct impact on the quality of the calibration. Figure 8 shows an example
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Fig. 7. Calibration and prediction errors for every prediction scheme

Fig. 8. Calibration stage perimeters for each prediction scheme

of the best calibrated perimeter for each scheme. All three methods under-predict
the fire behavior, and there are some possible causes for this fact. The measured
wind could be less than the reality, and the schemes could not tune the other
parameters to minimize this effect. This fact arise another potential problem
related to the fuel models used. It is possible that the fuel model conversion from
the European cover uses to the standard fire models resulted in low-propagation
types. The main reason to support this idea was the behavior of the 2ST-BASIC
scheme. Although not sensitive to sudden changes, this method usually finds
calibrated winds that make the fire spreading quite close to the real fire, although
the final shape can differ due to its uniform conditions.
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Fig. 9. Prediction stage perimeters for each prediction scheme

As it has been mentioned, this situation changes when we analyze the pre-
diction stage that lasts around 22 h. In this case, the best prediction errors are
the ones given by the 2ST-MM and 2ST-WF-MM schemes. The dynamic injec-
tion of meteorological data seems to be positive to the system and to provide
good prediction shapes, as we can see in Fig. 9. Although in numerical terms
the 2ST-MM is the best scheme, the 2ST-WF-MM gives back better perimeters
and better covers the real burnt area. The 2ST-BASIC scheme uses the tuned
weather values obtained in the calibration stage, which present a high wind speed
value. This causes to excessively over-predict the real fire behavior.

5 Conclusions

Natural hazards, such as forest fire, are phenomena that require complex mod-
els to predict their evolution. In the particular case of forest fire, propagation
models require input parameters that in some cases present a high degree of
uncertainty. So, a Dynamic-Data Driven system was introduced to calibrate the
input parameters based on the observation of the actual evolution of the fire.
Moreover, some parameters are dynamic and present a temporal evolution that
require the coupling of complementary models such as meteorological models to
the Dynamic Data-Driven Forest Fire Framework. Finally it must be considered
that all the input parameters must be introduced to the model at the same res-
olution what in some cases require the coupling of complementary models such
as wind field models. The coupled Dynamic Data-Driven Forest Fire Framework
has been used on the context of the European Forest Fire Information System
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to analyse the potential improvement in forest fire spread prediction and it has
demonstrate a quite significant improvement. In this context, a new error equa-
tion has been proposed to evaluate the prediction quality for large forest fires
taking into account the factor of overestimated/underestimated predictions com-
pared to the real forest fire spread.
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