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Preface

Addressing the challenges in environmental sustainability requires an effective inte-
gration of sensing, observation, and inference with physical, chemical, biological, and
social models. The necessary integration of data and science is multifaceted and
symbiotic with applications from model-based sensing to data-driven modeling. While
the attendant issues of predictability, uncertainty, and risk reduction are of great interest
in multiple areas of science, engineering, and mathematics, a rigorous forum to present
collective advances has been missing.

The Dynamic Data-Driven Environmental Systems Science (DyDESS) Conference
coalesces the environment with computation, systems science, and machine intelli-
gence. It provides a forum for scientists and engineers in the emerging environmental
systems research issues, an opportunity for young researchers to meet leading scien-
tists, and brings together those interested in the dynamic data-driven application sys-
tems framework for environmental applications. It provides an interdisciplinary forum
to help methodology meet application, and to showcase results and new, promising
methodologies.

Original papers in coupling of data and models for environmental applications are
presented in this volume including methodology and experiments. As a single-track
conference, DyDESS included papers are in the following areas:

(a) Sensing, imaging and retrieval for the oceans, atmosphere, space, land, earth and
planets that is informed by the environmental context

(b) Algorithms for modeling and simulation, downscaling, model reduction, data
assimilation, uncertainty quantification and statistical learning; methods that
tackle nonlinear and high-dimensional problems

(c) Methodologies for planning and control, sampling and adaptive observation, and
efficient coupling of these algorithms into information-gathering and observing
system designs

(d) Applications of methodology to environmental estimation, analysis and prediction
including climate, natural hazards, oceans, cryosphere, atmosphere, land, space,
earth and planets

On behalf of the Program Committee, we are grateful to Prof. R. van der Hilst,
Earth, Atmospheric and Planetary Sciences at MIT, for being a strong sponsor of this
event. We are grateful to the General Co-Chairs, whose support significantly enhanced
participation. We plan to continue the conference to bridge computational intelligence,
systems engineering, and the environment, broadly inclusive of all topics in Earth,
Atmospheric and Planetary Science.

December 2014 Sai Ravela
Adrian Sandu
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Small Satellite Constellations for Data Driven
Atmospheric Remote Sensing

W. Blackwell1(B) and K. Cahoy2

1 MIT Lincoln Laboratory, Lexington, MA 02420, USA
wjb@ll.mit.edu

2 Space Systems Laboratory, Department of Aeronautics and Astonautics,
Massachusetts Institute of Technolology, Cambridge, MA 02139, USA

kcahoy@mit.edu

Abstract. Nanosatellite missions flying microwave radiometers for
high-resolution microwave sounding are quickly proliferating, as
microwave instrumentation is particularly well suited for implementa-
tion on a very small satellite, as the sensor requirements for power,
pointing, and spatial resolution (aperture size) can be accommo-
dated by a nanosatellite platform. The first mission, the Microsized
Microwave Atmospheric Satellite (MicroMAS), will demonstrate tem-
perature sounding in nine channels near 118 GHz. MicroMAS is cur-
rently onboard the International Space Station awaiting deployment for
a 100-day mission. The Microwave Radiometer Technology Acceleration
(MiRaTA) cubesat will demonstrate multi-band atmospheric sounding
and co-located GPS radio occultation. MiRaTA will launch in early
2016, and will fly a tri-band sounder (60, 183, and 206 GHz) and a GPS
radio occultation (GPS-RO) sensor. We present recent work to develop
and demonstrate nanosatellite technologies for earth atmospheric remote
sensing using microwave radiometry, and describe approaches for transi-
tioning these new technologies into new research constellation missions
to provide unprecedented measurement capabilities. Of particular inter-
est is the potential of the constellation to provide data-driven sensing
capabilities.

Keywords: Cubesat · Nanosatellite · Constellation · MicroMAS ·
MiRaTA · Atmospheric sounding · Temperature · Moisture · Forecast-
ing · Hurricane

1 Introduction

The need for low-cost, mission-flexible, and rapidly deployable spaceborne sen-
sors that meet stringent performance requirements pervades the NASA Earth
Science measurement programs, including especially the recommended NRC
Decadal Survey missions. The challenge of data continuity further complicates
mission planning and development and has historically been exacerbated by
uncertain and sometimes substantial shifts in national priorities and budget
c© Springer International Publishing Switzerland 2015
S. Ravela and A. Sandu (Eds.): DyDESS 2014, LNCS 8964, pp. 3–9, 2015.
DOI: 10.1007/978-3-319-25138-7 1



4 W. Blackwell and K. Cahoy

availability that have degraded and delayed critical Earth Science measure-
ment capabilities. Furthermore, the recently published Midterm Assessment of
NASA’s Implementation of the Decadal Survey finds that:

The nations Earth observing system is beginning a rapid decline in capa-
bility as long-running missions end and key new missions are delayed,
lost, or canceled. The projected loss of observing capability could have
significant adverse consequences for science and society. The loss of obser-
vations of key Earth system components and processes will weaken the
ability to understand and forecast changes arising from interactions and
feedbacks within the Earth system and limit the data and information
available to users and decision makers. Consequences are likely to include
slowing or even reversal of the steady gains in weather forecast accuracy
over many years and degradation of the ability to assess and respond
to natural hazards and to measure and understand changes in Earth’s
climate and life support systems.

To address these challenges, we have initiated a number of technology devel-
opment and demonstration efforts to enable high-resolution atmospheric sens-
ing from very small satellite platforms that are relatively inexpensive to build,
launch, and operate. These efforts have included microwave receiver technology,
intermediate frequency processing, calibration, and advanced attitude determi-
nation and control. These efforts have been funded in part by the NASA Earth
Science Technology Office and NOAA. The MicroMAS and MiRaTA missions
will be the first demonstrations of single-band and multi-band (respectively)
cubesat radiometers.

1.1 Overview of Observables

Cross-track-scanning passive microwave radiometers measure upwelling ther-
mal emission near atmospheric absorption bands, typically due to oxygen and
water vapor. Measurements along these lines at multiple frequencies permit the
retrieval of vertical profiles (function of altitude). Observations near oxygen lines
are used to retrieve temperature profiles, and measurements near water vapor
lines are used to retrieve moisture profiles. The typical vertical resolution of
these products ranges from approximately three to five kilometers with uncer-
tainties of approximately 2 K (RMS) for temperature and 25 % (RMS, as a per-
centage of mean mass mixing ratio), respectively. Measurements of precipitation
based on scattering signatures from ice cloud tops are also possible. Observa-
tions of temperature, moisture, and precipitation are critically important for the
characterization of the hydrologic cycle and associated climate studies. Global
observations updated continuously at approximately 30-min intervals are needed
to improve understanding and forecasting of tropical cyclones, convective thun-
derstorms, and other dynamic meteorological events. This capability currently
does not exist, as current low-earth-orbiting systems only comprise a few satel-
lites. Therefore, a constellation of approximately 20 nanosatellites could provide
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unprecedented rapid-revisit observations. This current unmet need is a key driver
for the work discussed here.

2 MicroMAS

The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U CubeSat
(30 × 10 × 10 cm, ∼4 kg) hosting a passive cross-track-scanning microwave spec-
trometer operating near the 118.75-GHz oxygen absorption line. MicroMAS aims
to address the need for low-cost, mission-flexible, and rapidly deployable space-
borne sensors. The focus of the current MicroMAS mission is to observe con-
vective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial
orbit. As a low cost platform, MicroMAS is a core element of a new observing
system comprising multiple satellites in a constellation that can provide near-
continuous views of severe weather. The existing architecture of few, high-cost
platforms, infrequently view the same earth area thus potentially missing rapid
changes in the strength and direction of evolving storms leading to degraded
forecast accuracy. MicroMAS is a scalable CubeSat-based system that will pave
the path towards improved revisit rates over critical earth regions, and achieve
state-of-the-art performance relative to current systems with respect to spatial,
spectral, and radiometric resolution. The MicroMAS radiometer is housed in a
1U (10 × 10 × 10 cm) payload section of the 3U (10 × 10 × 30 cm) CubeSat.
The payload is scanned about the spacecraft’s velocity vector as the spacecraft
orbits the earth, creating crosstrack scans across the earth’s surface. The first
portion of the radiometer comprises a horn-fed reflector antenna, with a full-
width at half-maximum (FWHM) beamwidth of 2.4◦. Hence, the scanned beam
has an approximate footprint diameter of 17 km at nadir incidence from a nom-
inal altitude of 400 km. The antenna system is designed for a minimum 95 %
beam efficiency. The next stage of the radiometer consists of superheterodyne
front-end receiver electronics with single sideband (SSB) operation. The front-
end electronics includes an RF preamplifier module, a mixer module, and a local
oscillator (LO). The RF preamplifier module contains a low noise RF amplifier
and a weakly coupled noise diode for radiometric calibration. The mixer mod-
ule comprises a HEMT diode mixer and an IF preamplifier MMIC. The LO is
obtained using a 30-GHz dielectric resonant oscillator (DRO) and a resistive
diode tripler to obtain a 90-GHz LO frequency.

3 MiRaTA

The MiRaTA CubeSat will carry out mission objectives over a 100-day mis-
sion, including the on-orbit checkout and validation period. MiRaTA is a 3U
(30 cm ×10 cm ×10 cm) CubeSat comprising V- and G-band radiometers (52–
58 GHz, 175–191 GHz, and 203.8–206.8 GHz), the Compact TEC/Atmosphere
GPS Sensor (CTAGS) with three-element patch antenna array, and rela-
tively standard CubeSat spacecraft subsystems for attitude determination and
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Fig. 1. The MicroMAS CubeSat.

Fig. 2. The MicroMAS spacecraft bus. Custom components are shown in blue type,
“commercial off-the-shelf (COTS)” parts are shown in black type (Color figure online).
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control, communications, power, and thermal control. The spacecraft dimensions
are 10 × 10 × 34 cm, total mass is 4.0 kg, and total average power consumption
is 6 W (Figs. 1 and 2).

3.1 Concept of Operations

The primary MiRaTA mission concept of operations (ConOps) is summarized
in Fig. 3. The MiRaTA spacecraft will perform a slow pitch up/down maneuver
once per orbit to permit the radiometer and GPSRO observations to sound
overlapping volumes of atmosphere through the Earth’s limb, where sensitivity,
calibration, and dynamic range are optimal. These observations will be compared
to radiosondes, global high-resolution analysis fields, other satellite observations
(for example, ATMS and the Cross-track Infrared Sounder on the Suomi NPP
satellite) and with each other (GPSRO and radiometer) using radiative transfer
models.

Fig. 3. The MiRaTA primary mission validation concept of operations (ConOps) is
shown above. A slow pitch maneuver (∼0.5◦/sec) is used to scan the radiometer field
of view through the Earth’s limb and subsequently direct the GPSRO field of view
through the same atmosphere to catch a setting occultation. The entire maneuver
takes about 20 min.

3.2 Spacecraft Overview

The MiRaTA spacecraft is shown in Fig. 4. There are no moving mechanisms and
the only deployable structures (both with flight heritage) are two solar panels and
a simple tape-spring antenna for UHF communications with the NASA Wallops
Flight Facility 18.3-m ground station. The radiometers view the Earth through
the nadir deck of the spacecraft, and in this frame, the GPSRO patch antennas
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have a field of view in the zenith direction, which is oriented to the limb during
GPSRO sounding via a simple pitch or roll maneuver (see Fig. 3). A separate
GPS antenna is used for precision orbit determination during the maneuver.
The radiometer and GPSRO fields of view are used to probe the same volume
of atmosphere by using the control authority of the reaction wheel assembly to
rotate the spacecraft about either the pitch or roll axes approximately once per
orbit.

The MiRaTA CubeSat will contain two complete instrument systems, a tri-
band atmospheric sounder and CTAGS, which is based on work described in [5].
These two instruments will be operated in a manner to allow cross-comparison
and cross-calibration. The tri-band microwave atmospheric sounder provides co-
located observations over three frequency bands, 52–58 GHz, 175–191 GHz, and
203.8–206.8 GHz and comprises two radiometer subsystems: (1) V-band (52–
58 GHz) front-end receiver with weakly coupled noise diode, low-noise MMIC
amplifier, mixer, intermediate frequency (IF) preamplifier, and ultracompact
IF spectrometer with highly-scalable LTCC/SIW architecture operating over
the 23–29 GHz IF band to provide six channels with temperature weighting
functions approximately uniformly distributed over the troposphere and lower
stratosphere; and (2) broadband G-band mixer front end operating from 175.31
to 206.8 GHz with a conventional IF spectrometer with lumped element filters.
Approximately 1,000 GPSRO + radiometer Earth limb scans are expected over
the course of the mission.

Fig. 4. The MiRaTA CubeSat.
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4 Toward Data Driven Constellations

We envision a constellation architecture comprising multiple cross-linked Micro-
MAS/MiRaTA spacecraft for unprecedented atmospheric measurement fidelity.
The cross-linked communication would provide: (1) reduced communications
latency to ground, a key performance attribute that is currently lacking in
present systems leading to suboptimal utilization of observations of dynamic
meteorological events such as tropical cyclones and hurricanes, and (2) data-
driven sensing whereby the lead sensor observes dynamic meteorological phe-
nomena and sends a message to the following sensor to temporarily enable a
very high resolution sensing mode (a higher sample rate, for example) to better
capture the interesting event and preserve spacecraft resources for when they
are most needed.
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interpretations, conclusions and recommendations are those of the authors and are not
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Abstract. Atmospheric aerosols and ozone (O3) have lifetimes of days to
weeks and continuously evolve chemically and physically. Frequent and glob-
ally spaced vertical profiles of O3, aerosol optical density, particle size distri-
bution, hygroscopic growth, and light absorption coefficients are highly desired
in order to understand their controlling processes and subsequent effects on air
quality and climate. High costs and logistical restrictions prohibit frequent
profiling on a global scale using current technologies. We propose a new
approach using state-of-the-art technologies including 3D printing and an
unpowered small Unmanned Aircraft System to make the desired measurements
at a fraction of the cost of current conventional methods.

1 Introduction

Atmospheric aerosols play an important role in Earth’s climate and are the single
largest source of uncertainty in climate model predictions of future climate [1].
Aerosols scatter sunlight, thus directly exerting a negative radiative forcing on climate
[2]. A fraction of aerosol particulate mass absorbs sunlight, producing a positive direct
radiative forcing [3]. Aerosols also interact with clouds producing either negative or
positive forcing depending on the aerosol and cloud properties as well as the atmo-
spheric state.

Aerosols are measured globally using satellites and networks of sun photometers.
However, several key properties are not measured regularly due to physical limitations.
The most common observations are of column properties such as the aerosol optical
depth, giving no vertical profile information. Vertical profiles are key for understanding
aerosol sources and cloud interaction; aerosols cannot interact with clouds if they are in
a completely different layer of the atmosphere. Vertical information from LiDAR
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installations is not sufficiently complete, generally returning only limited information
on particle properties such as their size.

Size distributions give key information about how aerosols evolve in time and
determine how particle mass impacts climate and air quality. Hygroscopic aerosol
particle sizes are affected by ambient relative humidity (RH). These particles grow
when ambient RH increases, leading to increased light-scattering. This aerosol
hygroscopic effect (AHE) can lead to large changes of the aerosol radiative forcing and
visibility following RH changes. Despite its importance, the AHE has not been well
characterized observationally due to the continuous evolution of aerosol hygroscopicity
throughout aerosol lifetime and the lack of systematic global measurements.

Another parameter that is difficult to determine remotely is the light absorption by
particles, which can change the sign of the aerosol climate forcing. Most of the remote
observations of aerosol light absorption are from the Aerosol Robotic Network
(AERONET), but the uncertainty of these observations is quite high unless the overall
aerosol optical depth (AOD) is higher than 0.4 at 440 nm [4, 5]. Since the AOD is
above 0.4 only about 10 % of the time, AERONET alone is insufficient for studying
light absorption by aerosol.

Ozone (O3) is a reactive greenhouse gas that can be rapidly produced under poor air
quality conditions and warm temperatures in the troposphere. High concentrations of
O3 harm human populations and vegetation. Surface O3 concentrations are partially
controlled by transport [6]. Vertical profiles of O3 are thus key to accurate forecast of
air quality. Currently routine high-resolution O3 profile measurements are only made in
few locations around the globe on a monthly basis. Satellite observations are inade-
quate for tracking tropospheric O3 transport due to their low temporal and vertical
resolutions.

Both O3 and aerosol particles in the troposphere have lifetimes of days to weeks in
the atmosphere. Understanding their evolution requires extensive observations because
ozone and aerosols spread far from their sources yet never become well-mixed enough
for a few observations to characterize a global distribution of pollutants. Aerosols
continuously change both chemically and physically during their lifetimes. Frequent
and globally distributed vertical profiles rather than ground-based measurements alone
are highly desired in order to understand the processes that control O3 and aerosols and
their subsequent effects on air quality and climate, and to map aerosol light absorption
and its evolution. Conventional profiling using aircraft provides excellent data, but is
cost prohibitive on a global scale. Three requirements necessary for a successful global
monitoring program are: Low equipment cost, low operation cost, and reliable mea-
surements with well characterized uncertainties.

2 An Innovative Approach

We have devised a new approach that satisfies all three requirements for a successful
global observational network (Fig. 1) using instrument packages deployed with a new
platform. The platform will consist of a small balloon and a small gliding unmanned
aircraft system (gUAS). The gUAS will be released from the balloon at about 5 km
altitude, returning a light instrument package to the launch location, and thus allowing
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for consistent recovery of the payload. Atmospheric profiling can be performed either
during ascent or descent (or both) depending on measurement requirements. The new
approach, once validated, will be used to form an observation network (Global Ozone
and Aerosol profiles and Aerosol Hygroscopic Effect and Absorption optical Depth
(GOA2HEAD) network) around the globe.

2.1 New Platform and Instruments

Balloon flights are exempted from U. S. Federal Aviation Administration (FAA) reg-
ulations if their payloads are less than 6 lbs. Small weather balloons are fairly inex-
pensive ($350 per launch) and are essentially the entire disposable operational cost of
the GOA2HEAD project since the gUAS and instrument packages are recoverable and
reusable. Considering the 6-lbs. FAA limit, the gUAS must be as light as possible.
Auto-piloted gliders and small UASs have been evaluated as gUASs. One of the small
UASs, 3DRAero by 3DRobotics with a Pixhawk autopilot (https://store.3drobotics.
com/products/3DR-Aero), which weighs about 2 lbs. without a motor, propellers, and
battery, is currently under consideration for this application in the Global Monitoring
Division (GMD) of the NOAA ESRL. Another gUAS, a SkyWisp (Southwest
Research Institute, San Antonio, Texas, USA) glider, is also under evaluation. How-
ever, parafoils might eventually be more desirable due to their small weight.

Sondes that measure relative humidity (RH), pressure (p), and temperature (T) (e.g.
iMet-1-RS, InterMet, Grand Rapids, MI, USA) are relatively inexpensive (* $230).
Electrochemical Concentration Cell ozone sensors (ECC ozonesonde, Droplet Measurement
Technologies, Boulder, CO, USA) are available for * $800 per unit. However, there
are no commercially available aerosol and radiation sondes for small balloons. A few
key instruments have been or are being developed in NOAA laboratories that are ideal

Fig. 1. A conceptual sketch. A small weather balloon carries the payload to a desired altitude.
Once released from the balloon, the gliding UAS (gUAS) brings the payload back to the launch
point. The payload takes data during both ascent and descent.
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for balloon applications. The Printed Optical Particle Spectrometer (POPS, 1.8 lbs.)
sizes individual aerosol particles between 140 and 3000 nm diameter at ambient RH.
This size range is adequate for AOD derivations. The POPS measurements compare
well with proven instruments. Dry aerosol particle sizes can be measured with a dryer
attachment. The miniature Scanning Aerosol Sun Photometer (miniSASP, 0.7 lbs.) is a
4-wavelength, sun-tracking, azimuth-scanning sunphotometer with a detection limit of
0.02 AOD. Both instruments have been developed at the National Oceanographic and
Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) in
the Chemical Sciences Division using advanced manufacturing techniques such as 3D
printing to reduce cost. The NOAA ESRL GMD has developed a filter-based aerosol
absorption instrument, the Continuous Light Absorption Photometer (CLAP), which
was designed for ground operations, but can easily be miniaturized for this balloon
application. The costs for the three instruments and the 3DAero are in the $2 K-$5 K
range, quite inexpensive for science-quality instruments, and should satisfy the
requirement of low equipment cost mentioned previously. These instruments are not
limited to the nighttime operations, thus can be used to track the diurnal changes in
aerosol size growth and optical modifications.

2.2 Instrument Packages in Development

Instrument packages must be deployed separately to provide the entire desired mea-
surements due to the 6-lb FAA limit. Two instrument packages are currently under
development. The first one consists of an ECC ozonesonde, a POPS with a dryer, a
miniSASP, and an iMet-1-RS (for p, T, RH). The second consists of a POPS, an
absorption spectrometer (miniaturized Continuous Light Absorption Photometer, or
mini-CLAP), and an iMet-1-RS. The POPS computer can serve as a central data system
for both instrument packages. Measured and derived quantities from the two instrument
packages are listed in Table 1.

Table 1. Measured and derived quantities from the two proposed instrument packages

Package 1 Package 2

Measured Aerosol optical depth profile
miniSASP

Aerosol absorption coefficient profile
(mini-CLAP)

Dry aerosol number and size
distribution profiles (POPS with a
dryer)

Ambient RH aerosol number and
size distribution profiles (POPS)

p, T, RH profile (iMet-1-RS) p, T, RH profile (iMet-1-RS)
Ozone profile (ECC ozonesonde)

Derived RH effect on aerosol size distributions (both packages launched together)
Dry AOD Aerosol absorption optical density

(AAOD)
RH effect on AOD
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3 Implementation

We envision a 3-step implementation program. The first step is validating the instru-
ments with other proven in situ instruments in the laboratory and at the NOAA
Table Mountain Test Facility (TMTF) via comparison with remote sensing instruments.
This initial part of the program will include test launches of the instrument packages at
NOAA TMTF, as well as the development of operational and data reduction
procedures.

Once the instrument packages are validated and procedures are perfected, the
second step of our program would be to deploy at all NOAA ozonesonde stations
(Fig. 2). Since these stations use the same type of balloon for ozonesondes, it will be
straightforward to launch our packages at these sites. Science quality data are expected
from flights at these sites.

Fig. 2. NOAA O3 sonde stations (Source: http://www.esrl.noaa.gov/gmd/ozwv/network.php)

Table 2. Comparison between GOA2HEAD and commercial/mature instruments

GOA2HEAD Commercial/Mature
Instr. Performance Instr. Performance

ECC O3 Equivalent ECC O3 Equivalent
POPS 140–3000 nm diam. DMT PCASP 100-3000 nm diam.
miniSASP 4 wavelengths,

0.02 % precision
CIMEL 8-9 wavelengths

< 0.1 % precision
Mini-CLAP Equivalent CLAP Equivalent
iMet-1-RS Equivalent iMet-1-RS Equivalent
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The last step would be the full scientific deployment around the world. It is our
intention to include as many research institutes as possible. This step is likely several
years away, and many details have to be worked out before implementation. Two
critical issues are data quality control (including instrument calibration and intercom-
parison) and data sharing. Careful attention to collaboration with scientific agencies
from multiple nations will be necessary to ensure global deployments and maximize
scientific return. There are a number of global networks of atmospheric observations
stations such as the World Meteorological Organization’s Global Atmosphere Watch
(GAW) and the GCOS Reference Upper Air Network (GRUAN). These stations could
be natural hosts for the GOA2HEAD operations (Table 2).

4 Conclusions

A novel approach for affordable tropospheric O3 and aerosol profiling has been pre-
sented. The approach is based on the use of small weather balloons, a small gliding
UAS, and relatively inexpensive state-of-art instrument packages with scientific
quality. Measurements currently feasible include profiles of O3, RH, p, T, aerosol
particle size distribution, AOD, and aerosol absorption coefficient.
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Abstract. A consortium of NASA, commercial, and academic partners, we
have begun utilize small UAVs and aerostats for in situ sampling of vol-
canogenic gases and aerosols, using Turrialba Volcano as natural laboratory.
Significant progress has been made over the last several years in utilizing single
platforms with a number of newly miniaturized instruments appropriate to air-
craft with sub-500 gm payloads. For example, we have been mapping the SO2-
water-vapor plume at Turrialba, for comparison with NASA spacecraft-based
(e.g., ASTER) data, and are measuring diffuse CO2 emissions over the volcano’s
flanks, as well as in and near its eruption column. Future work will include
devising strategies, platforms, and instrumentation for deployments of multiple
UAV formations (“swarms”) as 2D and 3D time-series meshes, to better char-
acterize the mass fluxes and dynamics of emissions. We plan to undertake test
flights in the United States, as well as at Turrialba and Poas Volcanoes in Costa
Rica. Our most immediate aims are to improve characterizations of local
emissions for mitigation of proximal volcanic hazards and for validation of
abundance retrievals and transport models based on orbital data. Overall, of
course, we strive to better understand how volcanoes work, specifically to better
constrain estimates of global SO2 and CO2 perennial (diffuse) and event-related
(eruptive) emissions—changes in which may foster regional and global climate
perturbations.

Keywords: Unmanned aircraft � UAVs � Volcanoes � SO2 � CO2 � Diffuse
emissions

1 Icelandic Ash and the Rise of the Drones

Our scientific documentation of the products and effects of volcanic eruptions over the
past few hundred years of volcanological science has been immeasurably aided by the
fact that such manifestations have been accessible on or near the ground. In stark
contrast, our knowledge of transient and inaccessible airborne volcanic emissions is
regrettably far poorer, since access has only been available from remote observing
platforms, or from sparse in situ data acquired during inadvertent, and often heroic,
encounters with airborne volcanic ash by manned aircraft [1–4]. As more and larger
aircraft more densely populate world-wide air lanes, it has become vitally important to
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track the gas and solid aerosol components of volcanic eruptions globally, to more
aptly characterize their composition and mass concentrations, and to document and
predict drift trajectories in ways that are meaningful to airlines, airframe manufacturers,
and national weather agencies (Fig. 1).

Difficulties in predicting the trajectories, extents, and physical constitutions of
drifting ash clouds have on a number of occasions contributed to unplanned aircraft
encounters with ash plumes, exposing passengers and crews to high risk. For instance,
in December 1989, an ash cloud erupted by of Redoubt Volcano caused the near-fatal
all-engine shutdown of a Boeing 747-400 aircraft near Anchorage, Alaska [5]. In
another egregious example, in early 2000, an ash plume from Iceland’s Hekla volcano
(probably masked by ice rinds around ash grains [6, 7]) was encountered over the
Atlantic Ocean, several hundred miles northeast of its source. It caused severe engine
damage to a Douglas DC-8-72 research aircraft operated by the United States National
Aeronautics and Space Administration (NASA) on its way to measure ozone above
Scandinavia and Russia [2, 8]). Most generally, both of these surprise transient
encounters occurred because of inadequate knowledge of the position and properties
(e.g. ash injection altitude, concentration distributions) of the two volcanic clouds,
illustrating the inadequate state of our knowledge (then and since) of basic physical
extent and plume composition, especially in the context of the use of such parameters
as boundary conditions for both mass retrieval and predictive models of cloud tra-
jectories [3, 5, 8] (Fig. 2).

A B

Fig. 1. (A, left) NASA Global Hawk. for use in high-altitude, long-duration Earth science
missions, 13.5 m in length, with a wingspan of 36 m, payloads up to 900 kg and at altitudes of up
to 20 km. Its range is greater than 18,500 km and its endurance is greater than 31 h. Dropsondes
for nadir deployment into volcanic clouds would be a possibility from Global Hawk—neutral
buoyancy heights of most explosive eruption plumes are below the operational ceiling of this
aircraft, thus dropsondes or glidesondes could be deployed from this platform, or from Ikhana
(B, right) NASA Ikhana, named after the Native American Choctaw word for intelligent,
conscious or aware. NASA uses this airborne platform for a variety of long-duration Earth
science missions, and to demonstrate and validate electronic sensor technologies. The enlarged
fuselage nose accommodates various payloads, including imaging systems, LIDARs and radars.
The aircraft is 11 m in length, with a wingspan of 20 m. (Photograph: NASA).
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The eruption of Eyjafjallajökull Volcano, beginning in March of 2010 [9], was a
watershed moment because it generated a sustained airborne ash hazard that affected
prime European airspace and devastated the region’s air commerce. It pushed airlines,
aviation manufacturers, and researchers to seriously examine the limits of knowledge of
aircraft vulnerabilities, as well as to explore all available technical means to characterize
ash clouds in detail, including (of special interest here) in situ techniques. Previous to the
2010 Icelandic airborne ash crisis, it was generally accepted that zero ash tolerance (i.e.
“zero risk”) was the policy most appropriate for aviation. During and after the crisis,
however, resulting economic pressures ($5B loss estimated by Oxford Economics [10])
forced aviation interests in the European region to accept some increased risk, with
corresponding pressure on researchers for accurate and precise estimates of volcanic ash
concentration and variability within airspace transited by commercial and general avi-
ation, as well as by military aircraft [11]. Thus, the near complete lack of in situ vali-
dation of constituent concentration and predictive transport models provoked a strong
international impetus to find ways to safely penetrate, sample, and otherwise measure
ash plumes. In both Europe and America, there was a call for the use of unmanned
airborne vehicles (UAVs) to fly into the most problematic and dangerous areas of high
ash and gas concentrations, proximal to erupting volcanic vents.

UAVs can indeed address a variety of measurements that are beyond the reach of
manned aircraft, mainly for reasons of crew safety, but also because of the endurance
required. The direct measurements and sampling that can be achieved by UAVs
address serious gaps in knowledge of volcanic processes, and provide important val-
idation data for estimations of volcanogenic ash and gas concentrations gleaned using
remote sensing techniques. These data, in turn, constrain key proximal and distal
boundary conditions for aerosol and gas transport models [12, 13, and 14], on which
are based a number of decisions and evaluations by hazard responders and regulatory
agencies. Clearly, a situation in which such estimates and models remain systematically
unvalidated is untenable.

Large NASA UAVs, such as the Global Hawk (13.5 m long, 116 ft wingspan, gross
takeoff weight of 12,159 kg, ceiling 18.5 km ASL) and the Ikhana (NASA version of
the well-known Predator UAV) (11 m long, 20 m wingspan, gross takeoff weight of

Fig. 2. Medium-sized UAV – NASA SIERRA. SIERRA medium UAV at NASA Ames
Research Center, Moffett Field, California. (Photograph: NASA.)
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4,772 kg, ceiling 7.9 km ASL) are capable, sophisticated and successful in terms of
range and payload [15]. For eruption response missions requiring long range and high
endurance, they may be suitable. Their complexity, however, demands substantial
ground support and incurs high operational expense and extended pre-flight prepara-
tion. They represent major capital investment by government and the risk–benefit of
operating them in ash contaminated airspace is a serious issue. Thus, it is probably
most appropriate to deploy them at the distal margins of dilute volcanogenic ash
clouds, for remote sensing and limited in situ sampling, or as launch platforms for small
deployable micro-UAV glidesondes (Fig. 3) to acquire atmospheric profile data and to
conduct volcanogenic aerosol and gas sampling.

Medium-sized UAVs, such as the Sensor Integrated Environmental Remote
Research Aircraft (SIERRA—225 kg empty weight, 45 kg payload) operated by
NASA Ames Research Center (ARC) with moderate endurance and payload capabil-
ities, has demonstrated utility for scientific missions in harsh and remote environments
(e.g. the 2009 NASA Characterization of Arctic Sea Ice Experiment [CASIE]).
SIERRA would be appropriate for eruptions where a relatively quick response is key
(less than 1wk, if pre-positioned), and where operations are carried out relatively near
the volcano (< 25 km) at altitudes of less than 4 km ASL. Its order-of-magnitude lower
operating costs compared to NASA flagship UAVs make it less risk-averse, yet it can
still carry substantial payloads (e.g. miniaturized mass spectrometer). If alternatively
powered by batteries or fuel cells, as has been discussed, and thus relatively insensitive
to ash ingestion, SIERRA will be capable of extending the range of manned obser-
vations, both remote sensing and in situ, into the most ash-dense and gas-dense parts of
eruption plumes, in all weather, and at night in proximity to hazardous terrain. Its sister
UAV, the Viking 400C, as of 2014, is also in the NASA Airborne Science Program
inventory, and so multiple aircraft flights are possible, although there is no
multi-aircraft medium UAV operational capability at the time of writing. Thus, large
and medium-payload UAVs in the NASA inventory do not now offer the possibility of
an operational sensor-web. That is, the ability to deploy multiple aircraft simultane-
ously in response to an evolving volcanic crisis, or to undertake systematic

Fig. 3. The steerable NavSonde vehicle by Latitude Engineering, Tucson, AZ. A glidesonde
under development within the NASA SBIR Program, it can carry a volcanic ash sampler, camera,
or electrochemical gas sensors. It is recoverable, and can be tube-dropped from a standoff
vantage point to penetrate volcanic ash plumes—minimum 10:1 glide ratio (Courtesy of
Latitude).
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observations at multiple altitudes or from aircraft distributed across an Area of Interest,
does not yet exist with this class of NASA UAV.

2 UAV Sensorwebs

The situation for micro-UAVs, such as the Aerovironment Inc. Dragon Eye (* 2.7 kg
gross takeoff weight; 500 g payload, Fig. 3) or the prospective multi-aircraft Apollo
micro-UAV system (comparable to Dragon Eye, J. Elston—personal communication;
Fig. 5) is, however, dramatically different. These aircraft are substantially more flexible
than large and medium UAVs and can be more easily sacrificed, when necessary.
Nevertheless, we have demonstrated [16] they are able to carry out useful scientific
missions. Aerostats (e.g. tethered balloons and kites) are also appropriate platforms
where measurements are desired over a particular place near a volcano for extended
periods of time. To illustrate how the current generation of small UAVs, aerostats and
available instruments can be used to investigate relatively low-altitude (3.7 km ASL)
plumes from passively emitting volcanoes, we briefly describe near-term plans for our
field study at Turrialba Volcano in Costa Rica with multiple Dragon Eye aircraft. Our
goal at Turrialba is to undertake a systematic series of in situ measurements of vol-
canogenic SO2, CO2, and other gases, as well as aerosols, in conjunction with
over-flights by the NASA Terra Earth orbital platform with the ASTER instrument
onboard, and potentially with OMI orbital observations [17, 18] (Fig. 4).

Currently, our plans are to deploy up to a half-dozen Dragon Eye aircraft in the
emission plume at Turrialba Volcano in the Central Valley of Costa Rica in March

Fig. 4. NASA Dragon Eye, originally built in 2001 by Aerovironment Inc. This small (0.9 m
length, 1.1 m wingspan, 2.7 kg weight) is a rugged and versatile platform for deployment of
small sensors (≤ 500 g) into volcanic plumes. It cruises at 65 km/h over a 5–10 km range and
flies completely autonomously with automatic ascents and landings. The current NASA ARC
Dragon Eye fleet consists of 75 aircraft plus spares, operated by the NASA Airborne Science
Program (Photograph: Justin Linick, JPL).
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2015. Turrialba is part of a complex volcanic edifice that includes Volcan Irazu, which
was a previous center of activity over geologic time. Turrialba is one of the largest
volcanic structures in Meso-America and has had ash-flow eruptions within the last
several hundred years. It is currently restless, constantly emitting a water vapor and
sulfur dioxide gas plume, with occasional small phreato-magmatic bursts up to about
1000 m above its summit crater (* 3300 m ASL), which are then entrained into an
3-5 km from the main vent before dissipating. It is this plume that we and colleagues
from the University of Costa Rica (UCR) have systematically (twice monthly for
almost two years) sampled in single UAV sorties with the NASA Dragon Eye, with the
UCR Vector Wing 100 and Vantar UAVs, and with aerostats (Fig. 6A, B).

Moving to a sensorweb mode next, we plan to create 2D and 3D in situ sampling
meshes, using arrays of small UAVs, taking time-series areal and volumetric snapshots
of the Turrialba SO2 plume across its expanse [19]. Knowing the approximate physical
dimensions of the plume, along with gas and aerosol concentrations is key to validating
species’ column abundance estimates from multispectral satellite images, and has only
rarely been done to date. It is also important in improving estimates for SO2 flux from
the volcano, changes in which (an increase or decrease) can be precursory to eruptions.
Also, in-plume hydrolysis of SO2 to H2SO4 with ultimate precipitation as acid rain has
devastated farmlands and forests around the volcano. Better knowledge of the SO2 flux
will help in understanding mechanisms of those processes, and in separating SO2-
related phenomena to similar devastation caused by CO2 emissions.

Fig. 5. Illustration of prospective Apollo multi-UAV-based sensorweb showing an intuitive user
interface. Currently under development within the NASA SBIR Program (courtesy of J. Elston,
BlackSwift Technologies).
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CO2 emissions at volcanoes can be dichotomous, with strong emissions from the
main summit vent(s) of the volcano, and with a more diffuse component whose
emission occurs via numerous fractures or faults, often diffusing into the regolith or soil

A B

Fig. 6. (A) SO2-sonde package ready to be lifted as part of a tethered balloon aerostat on the
slopes of Turrialba Volcano. Note the severe vegetation damage due to SO2 and CO2 poisoning,
in the background. (B) UCR crew pre-flights the Vector Wing 100 UAV on Turrialba (Photo:
J. Linick, JPL).

Fig. 7. GPS flight track of a NASA Dragon Eye aircraft over the slopes of Turrialba Volcano,
Costa Rica, on 13 March 2013, with an electrochemical SO2 sensor onboard. A relatively thin
SO2 plume was present, with intercepted concentrations below 10 ppmv. SO2 concentrations ≥ 30
ppmv have been observed within 3 km of the vent at altitude (Courtesy of CICANUM, UCR)
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overburden, then into the air. Often, such emissions suffocate root systems of trees, and
general die-offs ensue—such a situation is occurring at Turrialba, in addition to acid
rain damage.

In addition, changes in the ratio between CO2 and SO2 concentrations may be
related to pre-eruption dynamics within the volcano’s magmatic supply system, and a
better understanding of their systematic may improve eruption predictions. Currently,
the column abundances of both gases are typically measured vicariously via near-field
remote sensing through the plume (e.g., differential optical absorption spectroscopy).
Poor knowledge of the dynamic extent of the plume thus induces high errors in the
accuracy of flux estimates. Spatial and temporal variability of concentrations across
these emission plumes is only poorly known at present. Single UAV measurements
along transects are some improvement over point measurements on the ground or
near-field remote sensing observations, however, simultaneous multiple UAV-based
time-series 2D-3D mesh measurements promise dramatic improvement.

Finally, determining the volcanic flux of CO2 proves to be particularly difficult,
because of rapid dilution of the volcanic contribution by the inherently high (and
increasing) background CO2. Often ubiquitous and diffuse volcanic CO2 sources (e.g.,
along fractures and diffusing through regolith and soil overburdens) are difficult to

Fig. 8. Concentration profiles obtained with an off-the-shelf commercial CO2 sensor on board a
Vector Wing 100 (Maryland Aerospace; Fig. 6B) operated by the University of Costa Rica in the
gas emission plume from Turrialba Volcano, Costa Rica. Values above the active summit crater
(3300 mASL) range up to 4000 ppmv. Instrument sensitivity is 10-20 ppmv (Courtesy
CICANUM, UCR).
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differentiate at minimum above-terrain altitudes typical for manned aircraft
(300-1000 m AGL or more). Volcanic contributions above background may suffer 102

to 103 or more dilution factors, even at low altitudes right over volcanic sources. Thus
the detection of such small increases requires very high precision, and thus expensive
equipment, generally beyond the payload capabilities of small UAVs, although
SIERRA has experimentally carried the Picarro gas analyzer (< 1ppmv sensitivity,
35 kg mass).

Small UAVs like Dragon Eye or Apollo, however, can fly very low (≤ 50 m AGL),
using commercial-off-the-shelf inexpensive CO2 detectors (10-20ppmv sensitivity;
100 g), to detect CO2 emissions right above sources at minimal background dilution
(1000-1500ppmv). Of course, within volcanic plumes or over summit vents where gas
velocities are high, the CO2 (and SO2) signals are very strong (3000-4000ppmv; Figs. 7
and 8). Such devices are easily within the payload and economic range of small UAVs
that we fly. In addition, a promising relatively new tunable laser CO2 detector
(* 500 g; [20, 21]) can make measurements at the 1ppmv sensitivity level
with < 0.3 % lab calibration repeatability and will be deployed this year on Dragon
Eye. Finally, sometime in 2015, we are planning to fly the UCR mini mass spec-
trometer (3 kg, 100 amu range) on the UCR VW300 delta-winged UAV (Fig. 9A and
B). We plan to deploy these newer instruments at test sites in the United States, and at
both Volcan Turrialba and Volcan Poas in Costa Rica, in support of both the OCO-2
and GOSAT orbital missions, and for fundamental observations of volcanic degassing.

3 Conclusions

The disruption of European and trans-Atlantic airspace in 2010 provoked serious
re-examination of aviation procedures with respect to airborne volcanic ash hazards,
and increased demands on the scientific and hazard response communities to provide
timely, precise, and, above all, accurate data on the presence and character of volcanic
emissions that could affect air travel. The estimated resultant economic losses of US

A B

Fig. 9. A (Left) The UCR experimental VectorWing300 design. Figure 9B (Right) Cutaway
illustration of the UCR VectorWing300 with an integrated mini mass spectrometer (3 kg)
payload. Wingspan is approximately equivalent to the VectorWing100 aircraft shown in Fig. 6B.
(Courtesy of CICANUM, UCR).
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$5B were a particularly strong driver, along with air safety. While orbital platforms and
manned aircraft can provide some of the critical boundary condition inputs to ash and
gas abundance retrievals and predictive transport models, key proximal zones of high
ash and gas concentrations remain beyond their reach, due to crew safety considera-
tions (aircraft) or instrumental limitations (satellites). The future increased use of UAVs
was recommended by practitioners in Europe and in America, in their post-mortem
analyses [11].

At JPL and UCR, with colleagues at the NASA Ames Research Center, NASA the
Wallops Flight Facility of the Goddard Spaceflight Center, and the NASA Glenn
Research Center, along with our commercial partners, we have embarked on a program
to utilize small UAVs and aerostats to conduct in situ sampling of volcanogenic gases
and aerosols, using Turrialba Volcano as our initial natural laboratory. We have made
substantial progress in this effort, utilizing single platforms with a number of newly
miniaturized instruments appropriate to aircraft with payloads of under 500 g mass. We
have mapped the extent and constituent abundances within the SO2 water-vapor plume
at Turrialba, for comparison with NASA spacecraft-based data, and have measured
diffuse CO2 emissions over its flanks and its eruption column, all with single aircraft
sorties. Moving forward, we are developing strategies and technologies that will
accommodate simultaneous multiple UAV sorties as 2D and 3D mesh time-series
sampling areas and volumes to better characterize the mass fluxes and dynamics of
volcanic emissions. During the coming year or two, we plan to test and implement this
approach at test sites in the United States, as well as at Turrialba and Poas Volcanoes in
Costa Rica. Ultimately we hope not only to better characterize local emissions for hazard
mitigation and orbital/airborne instrument calibration, but generally, to better constrain
estimates of global SO2 and CO2 perennial and eruptive emissions from volcanoes—
both of which have the potential to perturb regional and global climate [22, 23].
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Abstract. Light field imaging is becoming an increasingly useful tool
for measuring fluid mechanical systems. We present advances in light
field imaging for fluids along three directions. The first concerns robust
reconstruction of fluid measurement volumes using synthetic aperture
refocusing followed by deconvolution. Then, we discuss how a flame,
which distorts the refractive index, augments the light field. The error
introduced into particle image velocimetry measurements by this effect
is discussed. Finally, we develop a framework for the application of light
field imaging to the reconstruction of a specular gas-liquid interface.

Keywords: Light field imaging · Experimental fluids · Volume recon-
struction · Flames · Specular surfaces

1 Introduction

Modeling of fluid mechanical systems benefits from and often requires high-
fidelity three-dimensional data. This need has pushed experimental fluid dynam-
icists to look to other fields, such as computational imaging, for innovative
measurement methods. Light field (LF) imaging is one (broad) method that has
found traction in experimental fluids, mostly being used for three-dimensional
velocity measurements in laboratory experiments. Levoy [1] provided a review
of LF imaging, which involves sampling the intensity and direction of light rays
intersecting a scene. Knowledge of the direction of individual rays - information
that is not contained in a traditional camera’s image - allows for more informa-
tion to be computed about the scene post-capture.

Of particular interest for fluids measurements is the ability to extract the
depth of objects, which enables three-dimensional velocity measurements via
particle image velocimetry (PIV). Several methods are available for sampling
and post-processing light fields of particle-laden fluid flows. Multiple camera
techniques include Tomographic PIV [2,3], Synthetic Aperture (SA)PIV [4] and
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Defocusing PIV [5]. A single camera technique using a lenslet-based LF camera
has also been demonstrated [6]. A lenslet-based LF camera has recently been
commercialized (Lytro, Inc.); however the spatial resolution of this off-the-shelf
product is too poor for most laboratory fluids experiments. The hardware used
to capture the LF sets the spatial and temporal resolution, which has been well
explored in the relevant references. The accuracy and speed of algorithms used
to reconstruct the 3D volume and extract data of interest are still benefiting
from development. In Sect. 2, we discuss a robust 3D deconvolution approach
for reconstructing volumes captured using LF cameras and multi-camera SA
systems along with ideas for reducing overall computation time.

In the remainder of the paper, we apply LF imaging to the measurement
of fluids with variation in refractive index (RI). One topic of interest is the
quantification of the 3D shape and velocity fields of reacting flames. For instance,
fuel is only burned in a small part of the flame called the flame front. Turbulent
flames contain flow structures that can strain the flame front to the point of
localized extinctions, allowing fuel to pass through without burning. A more
accurate understanding of the turbulent flow field can increase our knowledge
of when and where these extinctions might occur and potentially increase fuel
efficiency. However, measurements of flames are often inaccurate as the flame
temperature gradient causes spatial variation in the RI, which has not been
properly accounted for in many published velocimetry studies. In Sect. 3, we
use LF imaging to reconstruct the visual hull of a flame. The error that can
arise in velocity measurements due to the RI gradient is then assessed. Finally,
in Sect. 4 we present a framework for using a LF camera to measure the local
orientation and location of a gas-liquid interface. This technique leverages past
work on projector-camera systems combined with LF imaging to synthesize a
novel method for specular surface geometry measurements.

2 Volume Reconstruction

We focus here on reconstruction of volumes generated using the synthetic aper-
ture (SA) refocusing method, which can be applied to light fields captured using
a multi-camera setup [7,8]. In such a configuration, all cameras view a common
measurement volume entirely in focus (i.e., large depth of focus). All cameras
are calibrated in a common metric reference frame. In SA refocusing, the images
from each camera are reprojected onto a common plane in the measurement
volume, and then averaged to produce a synthetic image with a narrow depth-
of-focus; this can be expressed mathematically as

ISAk
=

1
N

N∑

i=1

IFPki
(1)

where ISAk
is the SA image on the kth synthetic focal plane and IFPki

is the
image from the ith camera reprojected onto the kth plane. A focal stack can be
generated by applying Eq. 1 to several planes spanning the volume; limits on
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Fig. 1. Raw image from one camera of a nine camera array and slices at three depths
from a SA focal stack.

spatial resolution are discussed in [4]. Figure 1 shows slices from a SA focal stack
applied to a bubbly flow field as reported in [9]. Generation of a SA focal stack
can be considered the “image” resulting from a LF imaging system. Reconstruct-
ing the original object requires additional operations on the image to remove
artifacts imposed from the SA refocusing. In past experimental fluids studies,
objects have been estimated using various focus metrics to remove artifacts of
the SA image formation [4,9]. However, a more robust reconstruction method
is 3D deconvolution. Consider modeling the SA image formation process as a
convolution,

v (X,Y,Z) = p (X,Y,Z) ⊗ o (X,Y,Z) (2)

where v, o and p describe the intensity distribution of the image, object and
the 3D point spread function (psf) of the LF imaging system, respectively. 3D
deconvolution is concerned with effectively inverting Eq. 2 to estimate o given v
and an estimate of p [10]. For LF images, we opt to perform the deconvolution
in the space domain using a constrained iterative algorithm because the psf is
often not broadband [11].

SA refocusing involves projecting camera pixels along their lines-of-sight
(LOS) and combining these projections across all cameras. The psf for a SA
imaging system thus takes on the geometry of the lines of sight. In the work of
Levoy et al. [11] using a LF microscope, the psf was accurately assumed to be
shift-invariant. However, as demonstrated in Fig. 2, the geometry of the psf will
generally be a function of location within the measurement volume due to the
different viewing directions of the cameras. A space-domain constrained iterative
deconvolution algorithm, such as Richardson-Lucy [10], may still be applied but
the psf will be different for each voxel in the volume. When applying the psf
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Fig. 2. Schematic of the geometry of the 3D psf associated with an SA imaging system.
The psf is dependent on the location of the point within the volume and is thus not
shift-invariant.

to the current object estimate, a voxel’s intensity must be projected along all
camera LOS and interpolated onto the estimated image volume. Thus, an inter-
polation matrix that determines the contribution of each voxel to all other voxels
along the LOS must be stored for each voxel, which requires a large amount of
memory. However, if the psf were shift-invariant, then only one interpolation
matrix would be required for all voxels, greatly reducing the storage required
and the computation time associated with voxel projection.

One scenario for which the psf is shift-invariant is when all camera centers of
the array lie on the same plane and the focal planes are fronto-parallel [7]. In this
case, after applying an initial homography to each image, each mapping function
used to take images to other focal planes are integer pixel shifts of the images.
For PIV applications, we can use SA refocused images of individual particles
to accurately capture the intensity distribution of the psf. Figure 3(a) shows an
X-Z slice of the psf from a simulated SAPIV experiment using nine cameras (for
details of simulation see [4]). This psf is used with the Richardson-Lucy (R-L)
deconvolution algorithm to reconstruct a particle volume containing 50000 sim-
ulated particles that was formed by SA refocusing simulated particle images.
The accuracy of reconstruction is first quantified using a reconstruction quality
metric, Q, described in [3], which is a normalized correlation coefficient between
the reconstructed volume and the true simulated volume; a value of Q ≥ 0.75 is
considered adequate for 3D PIV volumes. Figure 3(b) summarizes Q as a func-
tion of number of iterations. In all cases, the reconstruction quality using 3D
deconvolution is improved over the thresholding method. Accuracy is also char-
acterized by the number of particles accurately reconstructed in the volume and
the number of “ghost” particles (artifacts) that remain in the volume. A particle
is considered to be accurately reconstructed if the particle centroid is within
3 voxels (typical particle diameter) of a known particle position. These results
are summarized in Fig. 3(c). All reconstruction methods accurately reconstruct
greater than 90 % of the true particles. The number of ghost particles - which
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Fig. 3. (a) X-Z slice from a shift-invariant 3D psf for a simulated SA imaging system.
(b) Volume reconstruction quality, Q, as a function of number of Richardson-Lucy
iterations. (c) Number of accurately reconstructed particles and “ghost” particles for
several reconstruction methods.

ultimately reduce accuracy in the PIV velocity measurements - is lowest for the
thresholding method and increases with an increasing number of R-L iterations.
The performance of the thresholding method is not surprising as the threshold
level has been optimized by trial and error for this simulation. In practice, the
deconvolution method is far more robust as no trial and error is needed. The
thresholding method has already been shown to perform well in actual 3D PIV
experiments [4], and thus the proposed 3D deconvolution method is expected to
improve results and robustness.

3 Flames

Optical methods are an attractive measurement option for flames because they
are non-invasive. LF imaging has the potential to benefit flame measurements by
resolving 3D shapes using a process similar to the visual hull method described
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by Adhikari and Longmire [12], and by resolving 3D PIV giving all three spatial
components of velocity through time. PIV, in particular, presents an interesting
problem. Reacting flows generate a large amount of heat that can significantly
change the RI throughout the measurement volume. This can cause a large error
in determining the location of particles in the flame. Interestingly this effect is
often ignored by those performing PIV measurements on flames [13–16].

Shape reconstruction of the visual hull of a flame using LF imaging is per-
formed using an array of cameras, all set at different positions and focused on
the same volume. Images are processed using the SA refocusing algorithm to
produce a focal stack, as shown in Fig. 4. Unlike SAPIV, the focal stack con-
tains images that show the shape of the flame as opposed to particles coming
into and out of focus. ISO surfaces are used with a set intensity threshold to
recreate the surface of the flame in each image of the focal stack. The surfaces
from each image are then stacked onto each other and the resulting volume is a
reconstruction of the shape of the flame, an example of which is shown in Fig. 5.
The results are shown along with individual images and qualitatively show that
the reconstruction captures the shape of the flame.

Fig. 4. From left to right; five reconstructed cross sections from the front to the center
of a partially premixed Bunsen burner diffusion flame (5 mm depth spacing). These
flames are the result of refocusing images from 8 high-speed cameras to form a focal
stack.

As discussed before, velocity measurements within a flame are highly sought
after, but have been hindered by the inability to compensate for RI gradients.
In order to address this problem, we first must understand how the RI gradients
affect 2D PIV measurements and 3D SAPIV reconstructions. To assess the for-
mer, a grid was placed in the background of an image with a field of view of ∼
70 mm (typical size for PIV). One image was taken with no flow field in front,
and another was taken with a flame in front. The difference of the images was
found to see how much the lines moved as a result of the refraction field of the
flame; the results are shown in Fig. 6. The difference image shown in Fig. 6(c),
reveals a maximum shift of two pixels. For 2D PIV, particle motions are typically
on the order of 10 pixels and thus the RI gradient introduces quite large error.

When applying SA refocusing to LF images of a flame, the RI gradient intro-
duces an aberration into the formation of 3D particle images. This is depicted in
Fig. 7(a); because the cameras are assumed to image in a medium with uniform
RI, the LOS don’t intersect in a single point. For comparison, Fig. 7(b) shows
lines of sight for an experiment in air with no RI gradients. Rather, the refo-
cused particles become larger blobs, with size corresponding to the amount of
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Fig. 5. Images taken in time of a flame (top row) and the corresponding volume recon-
struction of the visual hull of the flame (bottom row).

(a) (b) (c)

Fig. 6. Three images demonstrating the index of refraction shift of a flame. Image 6(a)
is an image of a background grid with no flame and 6(b) is a grid background with a
flame front. Image 6(c) shows the difference of the two images, highlighting the pixels
that have experienced a change.

error introduced by the RI gradient. At best, this effect would introduce error
into particle location and at worst it could cause particles to not be reconstructed
at all. There has been some recent work on camera calibration through refractive
interfaces to suggest the refraction field can be accounted for [17,18] and in a
very promising paper Atcheson et al. [19] presented a method for reconstructing
the discretized three dimensional index of refraction field of a camp stove flame.
The method used an array of cameras arranged in a semi-circle around the flame,
each with a noise pattern background. The differences in the images were found
using an optical flow method, and combined to find the 3D RI field.

4 Gas-Liquid Interface Measurement

The geometric reconstruction of a diffuse surface can be accomplished with a
simple projector-camera system [20]. However, in the case of specular objects -
such as a gas-liquid interface (GLI) - these same methods fail to uniquely define
surface location and orientation. Several methods have been demonstrated for
recovering specular surface geometry including: using multiple cameras with dif-
fuse scene points [21,22], using one camera with images of a calibration target
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(a)

(b)

Fig. 7. X-Z slices from SA refocused particle-laden volumes (b) in a flame flow in which
the RI gradients introduce aberrations into the formation of 3D particle images and
(b) in air with no RI gradients.

in two or more locations [23] and resolving the distortion of known geometry
imaged by one camera [24,25]. We seek a method that uses one lenslet-based
LF camera and one projector to reconstruct a GLI. This setup is attractive for
situations that require the hardware to be small to perform measurements in
confined spaces.

The geometry of our proposed LF camera-projector system is shown in Fig. 8
for one light ray. The angle φ of each ray is assumed to be known, as are the
camera extrinsic parameters and location of the laser source relative to the global
X-Y-Z coordinate system; the camera fixed coordinate system is x-y-z. The spec-
ular surface is locally parameterized by the distance D and the angle β relative
to the X axis. The angle that the reflected ray makes with the Y axis is given as

θ = φ − 2β (3)

In our system model, all rays are traced exactly until they strike the surface
at point (Xs, Ys). The paraxial approximation is then employed to trace the
reflected rays to the main lens of the LF camera (point (XL, YL)). If the camera
is angled, then the location and angle at which the ray hits the lens are converted
to local camera coordinates,

x = (XL − XC) cos γ − (YL − YC) sin γ (4)
θL = θ − γ (5)

where (XC , YC) are the coordinates of the camera center. The angle of the ray
inside the camera is computed as
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Fig. 8. Schematic of the LF imaging arrangement used to resolve local GLI location
and orientation.
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Fig. 9. Simulation showing the ability of the LF camera-projector system to accurately
define local surface orientation and location.

θ′ = θL − x/F (6)

Combined with the distance sl, this angle determines which lenslet the ray hits.
It is then assumed that the lenlsets are focused at infinity and the main lens is at
infinity, so the chief ray is traced through the lenlset to determine the pixels the
ray strikes, as shown in Fig. 8. In our system, we assume that the image formed
on each pixel can be paired with the angle of the light ray that formed it.

When the pixel-lenlset association is known, the angle of the light ray is
uniquely defined (with some resolution set by the LF camera). Using Eqs. 3–6,
this ray can then be traced backwards through the lenslet, main lens and free-
space and the intersection with the source ray can be found. This intersection
point fixes the location of the surface and the constraints on angles fixes the
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orientation of the surface. A Matlab simulation demonstrates the ability of the
LF camera-projector system to accurately define local surface orientation and
location using this approach. Figure 9 shows two rays hitting an angled specular
surface; the estimated surface is the average of the location and orientation found
from backward tracing of these two rays; the accuracy on location is < 2 mm and
the accuracy on angle is < 1 degree.

5 Conclusions

Advances in light field imaging for fluid flow measurements have been presented.
Robust reconstruction of volumes formed through synthetic aperture imaging
was demonstrated using a 3D deconvolution technique. Some aspects of light
field imaging were then explored for measurements in flames, including visual
hull shape reconstruction as well as the error introduced into 2D and 3D PIV
due to refractive index gradients. Finally, we developed a framework for resolving
specular gas-liquid interface location and orientation using a light field camera-
projector system.
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Dr. Ronald Joslin (ONR Code 331).
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Abstract. This work describes a multiscale approach for creating a fast
surrogate of physics based simulators, to improve the speed of applica-
tions that require large ensembles like hazard map creation. The novel
framework is applied in determining the probability of the presence air-
borne ash at a specific height when an explosive volcanic eruption occurs.
The procedure involves representing both the parameter space (sample
points at which the numerical model is evaluated) and physical space
(ash concentration at a certain height covered well delimited parcel) by
a weighted graph. The combination of graph representation and low rank
approximation gives a good approximation of the original graph (allows
us to identify a well-conditioned basis of the adjacency matrix for its
numerical range) that is less computationally intensive and more accu-
rate when out-of-sample extension is performed at re-sample points as
higher resolution parcels.

Keywords: Hazard map · Multiscale sampling · Low-rank approxima-
tion · Out-of-sample extension

1 Introduction

Perhaps the most fundamental product created to characterize the potential for
destruction of a volcano is the hazards map. Often a reasonable hazards map can
be made when the distribution of ash clouds are well-exposed, and easily dated
and mapped. Volcano observatories and volcanic ash advisory centers (VAACs)
predict the likely position of ash clouds generated by explosive volcanic eruptions
using deterministic mathematical models of advection and dispersion, known as
volcanic ash transport and dispersal (VATD) models [1]. These models require
input data on volcanic source conditions as well as the wind field [2]. Probabilis-
tic hazard maps may be generated from using large ensembles of simulations.
However, this strategy fails when simulations are expensive and running of large
ensembles is computationally infeasible especially in a dynamic data environ-
ment. In this case, it is common to create “cheap to evaluate” surrogate models
c© Springer International Publishing Switzerland 2015
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often termed emulators (e.g. Gaussian Process regressions) in the statistics liter-
ature. Critical issues then are the cost-efficient creation of these emulators and
the fidelity with which they represent the outputs of the underlying simulators.

In this work, we introduce a multiscale scheme for emulator construction. The
proposed scheme overcomes a primary limitation of the parameter selection in
the Bayesian approaches to emulator construction, which always involve repeated
inversion of “correlation matrix”, R. The requirement of repeated matrix inver-
sion restricts emulators to small amounts of data mostly because for “large”
N , R is also usually poorly conditioned and cost of inverting R using O(N3)
operations is unaffordable. Geospatial systems like the propagation of volcanic
ash require coverage of vast areas in space and several days in time. Model and
parametric uncertainty thus lead to a very large system. For ensembles of suffi-
cient size needed to characterize the uncertainty we must deal with large amount
of data in the physical space multiplied by the large number of sample points
in the parameter space (size of which depends on the sampling techniques that
are used). Therefore, a combination of subsampling and out-of-sample exten-
sion techniques performed in both spaces (parameter and physical) provides a
more suitable representation of the analyzed data at a low computational cost
and allows us to form computationally affordable ensembles. The idea of using
random projections goes back to the Johnson-Lindenstrauss Lemma [3], which
work was continued by [4] who first derived the bound introducing the idea of
oversampling beyond the desired rank. Optimally, such a representation would
not be affected by the availability of the data or by a sampling method but only
rely on the behavior of the observed data and analysis.

Our scheme is based on mutual distances between data points and on a con-
tinuous extension of Gaussian functions. It uses a coarse-to-fine hierarchy of the
multi-resolution decomposition of a Gaussian kernel. It generates a sequence of
approximations at the given function on the data, as well as their extensions to
any newly-arrived data point. The subsampling is done by interpolative decom-
position of the associated Gaussian kernel matrix in each scale in the hierarchi-
cal procedure. In this way a well-conditioned basis is identified and used in the
extension/extrapolation process. Use of this strategy for sampling will lead to
an accurate and computationally efficient method to create probabilistic hazard
maps for ash plume motion, which quantifies the uncertainties present in any
model of ash advection and dispersion. Providing such a map will enable public
safety officials to make better decisions.

2 The Numerical Model and Hazard Maps

For the purpose of this paper, we will assume that a suitable physical model of
geophysical mass transport is the PUFF [5] model of volcanic ash transport. Given
an initial ash-laden volume, the PUFF Lagrangian model can be used to populate
the volume and then propagate ash parcels in the wind fields. PUFF tracks a
finite number of Lagrangian point particles of different sizes, whose location r is
propagated from timestep k to timestep k+1 via an advection/diffusion equation
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ri(tk+1) = ri(tk) + W (tk)Δt + Z(tk)Δt + Si(tk)Δt (1)

Here ri(tk) is the position vector of the ith particle at time kΔt, W (tk) is the local
wind velocity at the location of the ith particle, Z(tk) is a turbulent diffusion
that is modeled as a random walk, and Si(tk) is a source term that models the
fallout of the ith particle due to gravity. Note therefore that PUFF takes into
account dry particle fallout, as well as dispersion and advection.

In developing a complete probabilistic forecast for the ash concentration at
a given time and location, we will investigate the effects of aleatoric uncertainty
associated with volcanic eruption source parameters. VATD models require input
data on volcanic source conditions such as vent radius or vent velocity. The inputs
are usually not well constrained, and estimates of the uncertainty in the inputs
are needed. Based on our knowledge of the conditions of the source, observations
and known constraints, probability distributions are assigned to the eruption
source parameters (based on samples of past eruptions which have been collected
from the historical record), which are later sampled using both Monte-Carlo and
non-Monte Carlo techniques. Note, that as shown in [6] we can solve an inverse
problem to refine these assumed distributions. In this contribution, simulation
ensembles with different input volcanic source parameters are chosen to predict
the average of the output correctly for all the hazard map generation methods as
described below. A hazard map is a predictive map for a region which provides a
probabilistic measure of a hazard (e.g. ash cloud reaching certain concentration
or height that can be considered hazardous/critical). There are numerous ways
to create a volcanic hazard map based on ash transport and dispersion mod-
eling. Several approximate techniques are commonly used to approximate the
state pdf evolution [7], the most popular being Monte Carlo (MC) methods [8],
Gaussian closure [9], and Stochastic Averaging [10,11]. In addition, a Gaussian
Process approach to solve nonlinear stochastic differential equations has been
proposed in [12]. All of these algorithms except MC methods are similar in sev-
eral respects, and are suitable only for linear or moderately nonlinear systems,
because the effect of higher order terms can lead to significant errors. Simple
uncertainty quantification using a Monte Carlo approach for generating such
hazard maps will require at least O(103 − 106) such simulations. The computa-
tional difficulties include managing and accessing select entities from the large
data and of processing it using compute intensive operations.

Assessing uncertainty of the spatial phenomenon requires the analysis of
the parameters which must be processed by the VATD model. To capture the
possibility of a wide range of uncertainty in numerical model response, a large
set of geostatistical model realizations needs to be processed. Stochastic spatial
simulation can rapidly provide multiple, equally probable realizations [13]. In
general, the numerical model is applied to each realization and thereby obtain
its repose (e.g., ash height, ash concentration etc.), which may be a single-valued
or consist of a time-varying response. If many realizations are processed through
the same numerical model, a probability distribution of the response can be
constructed and serve as a model of uncertainty.
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3 Multiscale Hazard Map

Any simulator/numerical model will naturally require values for input parame-
ters. If the input values for a future event of interest were known exactly, then
a hazard map could be generated from a single simulation evaluated at those
inputs. Since we lack perfect knowledge of the future, it is necessary to examine
flow behavior over a range of inputs. While there are some sampling methods,
such as the ones described above, there are far too expensive (resulting in a large
number of samples) or to complex to use to create a feasible hazard map. The
solution we came up to this problem can be summarized as:

– Running a relatively small number of simulations (a few hundred to a few
thousand) followed by

– Representing both the sample points and ash concentration at a certain height
over a specified parcel as a weighted graph

– Identifying representative points in both parameter and physical space by
performing a multiscale sampling (using a randomized projection to obtain a
low-rank approximation of the weighted graph adjacency matrix)

– Performing out-of-sample extension at a relatively larger number of resample
points (a few hundred to a few thousand) in the parameter space which acts
as a fast surrogate for the expensive simulator

– Creating realizations (interpolation in the physical space) are created at the
same or finer resolution

– Generating the hazard map from the fast surrogate.

Although this paper employs the PUFF model, any other numerical model
can be used with the appropriately adapted graph representation. The output
of the model provides us information of the ash cloud, such as absolute air-
borne concentration, absolute fallout concentration etc. at every 6 h forecast
and every 2000 m pressure levels. In this study we apply our framework for the
Eyjafjallajökull eruption from 14–18 April, 2010, being interested in generating
a hazard map which will provide information regarding the probability of having
ash (absolute airborne concentration > 0) on April 16 12 UTC (36 h forecast)
at 2000 m. The framework introduced here provides an approach for develop-
ing maps for many hazard scenarios, at a low computational cost. Due to space
limitations we review the methods here and refer the interested reader to the
dissertation of [14] for details.

3.1 Background

Our methods build on the development of randomized algorithms for numeri-
cal linear algebra [15], that provide powerful tools for constructing approximate
matrix factorization [16]. The goal is to change the representation of data sets,
originally in a form involving a large number of data points (both in the para-
meter space and physical space), into a low-dimensional description using only a
small number data points [17]. The new representation should describe the data
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in a faithful manner, preserving some quantities of interest such as local mutual
distances. These techniques are simple and effective.

We are interested in finding a well-conditioned basis of the given matrix A
arising from a graph (at different scales), by applying of a low rank approxima-
tion method. We are not interested in the best approximation of specified rank,
which is given by the truncated SVD, but rather an approximation that has com-
parable memory requirements, is efficient to compute and that preserves impor-
tant structure of the matrix. Most of the graph representing matrices ( e.g., kernel
matrices and Laplacian matrices) are symmetric positive semi-definite (SPSD)
matrices. One common column-sampling-based approach to low-rank approxi-
mation of SPSD matrices is the Nyström method. The simplest Nyström-based
procedure selects columns from the original data set uniformly at random and
then uses those columns to construct a low-rank SPSD approximation [18].

3.2 Multiscale Sampling

We represent both the parameter space (sample points at which the numerical
model is evaluated) and physical space (ash concentration covering a parcel) by a
weighted graph G = (V,E) characterized by a set of vertices V = {1, . . . , n} and
a set of edges E = {eij |i, j ∈ V }. The n observations (vertices) are considered to
be the sample points or the ash concentration at a given location. Let A = [aij ]
be the n×n adjacency matrix, such that aij = f(xi, xj) When the covariance of
the data points is unknown, an artificial function has to be chose [19]. A Gaussian
covariance is a popular choice in defining the weights of the edges:

f(xi, xj) = fε(xi, xj) = exp(−‖xi − xj‖2/ε) (2)

where ‖ . . . ‖ constitutes a metric on the space (Euclidean distance in our case).
The corresponding covariance (affinities) is

(Aε) = fε(xi, xj), i, j = 1, 2, . . . , n. (3)

The matrix Aε is called the Gaussian kernel over the dataset n. One can think
of a kernel function as an implicit map to a higher dimensional space in order to
perform certain operations there without paying a high price computationally.
It was proven by [20] that using a kernel, the data is now linearly separable in
the high-dimensional space, and one can randomly project back down to lower
dimensions and preserve this separability. he largest or a few dominant clusters,
thus filtering out smaller ones completely.

The combination of graph representation and low rank approximation can
give a better approximation of the original graph. A standard low rank compu-
tation is likely to only extract information from the largest or a few dominant
clusters. [21] used a multiscale approach where a sequence of Gaussian kernel
matrices As, s = 0, 1, . . . , have entries defined as:

fε(xi, xj) = exp(−‖xi − xj‖2/εs). (4)
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εs is a positive monotonic decreasing function of s, which tends to zero as the
scale parameter s tends to infinity (i.e. εs = 2−s, s = 0, 1, . . . .). The kernel app-
roach, used for dimensionality reduction, has been applied with success by [21]
for the out-of-sample extension tasks. Kernel methods work under the assump-
tion that the used kernel has a small set of significant eigenvalues that should be
considered for the analysis, and the rest are negligible in the sense that they are
numerically zero. The above methodology has been also explored in the litera-
ture under the Gaussian Process Regression [22–25]. Its main limitation is that
memory requirements and computational demands grow as the square and cube
respectively, of the number of data points n, effectively limiting a direct imple-
mentation to problems with at most a few thousand cases [26–29]. Another con-
cern is declining accuracy of the estimates as the dimension increases, as matrix
inversion becomes more unstable with the propagation of errors due to finite
machine precision [30,31]. This problem is more acute if the covariance matrix
is nearly rank deficient, which is often the case when the function to be evaluated
is considered at nearby points. The above problems necessitate approximation
techniques. These schemes rapidly extract information from large datasets often
make use of low-rank decompositions of large, sparse data structures such as
matrices or tensors. These decompositions usually involve the computation of
eigenvectors or singular vectors and fast, scalable approximation to such vectors
is important for the underlying scheme to be practical. The benefits of these
algorithms is their simple implementation, applicability on large scale problems,
and existence of theoretical bounds for the approximation errors [17].

3.3 Stochastic Algorithms for Low Rank Matrix Approximation

In this contribution the relationship between between data points (in the para-
meter space and physical space) is represented using graphs. Weighted graphs are
usually employed to represent a notion of geometry based on the local similarity
or interactions between data points. In many situations, each data sample is rep-
resented by a collection of numerical attributes, and in this case, the condition for
two nodes to be connected is based on the proximity of the corresponding data
point in the feature space. Assembling data points according to local similarities

Algorithm 1. Random projection algorithm for low-rank approximation
Data: n × n matrix A, the target low-rank k and number of samples

s = k + p
Output: Ã ∈ R

n×n which approximately minimizes
minrank(A′)≤k ‖A − A′‖2

F

1. Draw a random test matrix Ωn×s.
2. Form the product Yn×s = AΩ
3. Compute an orthonormal basis Qn×k for the range of Y
4. Return Ã = QQTA



Multiscale Method for Hazard Map Construction 47

to obtain reliable scale-dependent global properties, which arise from local simi-
larities implies using algorithms for finding salient, coherent regions that display
similar features. An important tool for analysis and interpretation of the data is
the low rank approximation of the adjacency matrices or graph Laplacian related
to the graphs at hand.

The idea of using random projections to construct approximations of large
matrices goes back to Johnson-Lindenstrauss Lemma [3], which work was con-
tinued by [4] who first derived the bound introducing the idea of oversampling
beyond the desired rank to improve the bounds considerably. This method also
arises out of the success of random projection techniques in compressed sens-
ing [32,33]. Most of this literature focuses on the ability to reconstruct a signal
from compressive measurements, with theoretical guarantees provided on the
accuracy of a point estimate under sparsity assumptions. In contrast, our goal
is to accurately approximate the unknown function in a fundamentally different
setting. The benefits of using randomized projection algorithms for computing
low rank matrix approximations is their simple implementation, applicability on
large scale problems, and existence of theoretical bounds for the approximation
errors. The randomized algorithm proposed by [16], uses randomness to con-
struct a matrix Y that approximates the dominant subspace of the range of a
given matrix A. The error bounds of Algorithm 1 are well defined in [16].

3.4 Out-of-Sample Extension

Let D = x1, . . . , xn ∈ R
d be the dataset, where d is the size of the space and let g

to be a function that needs to be evaluated at a new data point x∗ ∈ R\D. D can
be data points in parameter space or physical space, and g = [g1, . . . , gn]T can
be the ash concentration or ash height. We need need to calculate an extension
g∗ to x∗. By the application of a randomized projection to As, a well-conditioned
basis is identified for it numerical range. At each scale g is decomposed into a
sum of its projections on this basis and it is extended as g

(s)
∗ (see Algorithm 2).

In addition, selection of the proper columns in As is equivalent to data sampling
of the associated data points. Ã(s) represents a low rank approximation of Aε is
at a scale s.

Algorithm 2. Out-of-sample extension

Data: The sampled data Ds = {x1, . . . , xk}, Ā(s), a new data point
x∗ ∈ Rd, a function g = [g1, . . . , gn]T to be extended

Output: g
(s)
∗

1 Calculate the pseudo-inverse (Ã(s))† of Ã(s).;
2 Calculate the coordinates vector of the orthogonal projection of f (s) on

the range of Ã(s) in the basis of Ã(s)’s columns c = (Ã(s))†f ;
3 Calculate the orthogonal projection of g on the columns of Ã(s),

g(s) = Ã(s)c;
4 Form the matrix A

(s)
∗ = [fε(x∗, xs1) . . . fε(x∗, xsk

)];
5 Calculate the extension g

(s)
∗ = A∗c;
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(a) (b)

(c) (d)

Fig. 1. Representative points of absolute airborne concentration (mg/m3) out of 274
data points in the physical space at April 16 1200 UTC level 2000 m. The adjacency
matrix of physical space graph was defined using εs = 2(−s) a) For s = 1 there are
55 representative points b) Interpolation RMSE = 0.027 c) For s = 1 there are 109
representative points d) Interpolation RMSE = 0.013

For the random sampling algorithm, one critical question is what importance
sampling distribution should be used to construct the sample. For the random
projection algorithms, one must decide how to implement the random projec-
tions. Due consideration must be given to important issues of data sparsity, the
decay of the eigenvalues, and the nonuniformity properties of eigenvectors. Nev-
ertheless, the method requires no grid. It automatically generates a sequence
of adaptive grids according to the data distribution. It is based on the mutual
distances between the data points and on a continuous extension of Gaussian
functions. In addition, most of the costly computations are done just once during
the process, independently of the number of the extended data points since they
depend only in the data and on the given function.

4 Results

Our goal is to produce a map showing the probability of absolute airborne con-
centration (mg/m3) > 0 on April 16 1200 UTC, at 2000 m at each location in
the parcel, from a collection of simulator runs whose parameters are drawn from
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Fig. 2. Absolute airborne concentration (mg/m3) at a given location as a function of
vent velocity and vent radius. Blue dots are LHS samples and red dots are re-samples
data points (Color figure online)

a distribution that represents a volcanologist’s best guess of the range of possi-
ble scenarios. We consider the study case for Eyjafjallajökull eruption on 14–18
April, 2010, for which ranges of the vent radius and vent velocity are available.
For a good match of the ash volume range, the vent radius values were uni-
formly distributed between 65 and 150m, while the vent velocity followed the
same distribution with values between 45 and 124m/s [34].

The 2-dimensional input parameter space is sampled using a simple space
filling design like Latin Hypercube Sampling (LHS) to obtain 128 sets of input.
Simulations are performed at each sample point using the PUFF model to gener-
ate a map of absolute airborne concentration, absair(x) as function of position.
In our approach, we first identify in the physical space the representative points
(location in the parcel) for which we need to do out-of-sample extension of the
absolute airborne concentration. Using the weighted graph approach, we gener-
ate an adjacency matrix as defined in where xi and xj represent the absolute
airborne concentration at location i and j, respectively. By applying Algorithm 2
we identify representative data points at different scales: s = 0, 1 and 1.5. Out-
of-sample extension will be performed at the same resolution (1◦latitude by
1◦longitude grid) as the original output. This allows us to evaluate the perfor-
mance of the out-of-sample extension (interpolation in this case) by calculating
the Root Mean Square Error (RMSE) (scaled). Based on the results presented
in Fig. 1, we’ve decided that 55 points out of 274 (corresponding to s = 1) to be
the chosen data points in the physical space for which we will perform evaluation
in the parameter space.

In Fig. 2 is shown the absolute airborne concentration at two different location
on the parcel as a function of the two parameters (the red dots are the LHS
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(a) MC 3500 sample runs (b) PCQ 255 sample runs

(c) Multiscale 128 sample runs and 50 re-
samples

(d) Multiscale 128 sample runs and 200 re-
samples

Fig. 3. Probability of having absolute airborne concentration (mg/m3) > 0

sample). It can be observed that the absolute airborne concentration has not
only very small values, but the majority of the LHS sample give an absolute
airborne concentration equal to 0. In many situations these findings would create
a lot of computational challenges in order to obtain an out-of-sample extension
at re-sample points in the parameter space. Using a similar approach as for
the physical space, we define the adjacency matrix whose entries are defined
by: fε(xi, xj) = exp(−‖xi − xj‖2/εs). Here, xi and xj ∈ [65 150] × [45 124],
as given by the range of vent radius and vent velocity. This will results in a
39 representative points out of 128 LHS samples which are used in the out-of
sample extension at a larger number of re-sample points (red dots in Fig. 2).

Now for each re-sample point in parameter space we can generate a map
showing absolute airborne concentration and for each grid point find the fraction
of re-sample points with absolute airborne concentration > 0. The probability
map resulted is shown in Fig. 3(c, d). Our scheme is compared to MC when
3500 realizations of the parameter space are used and PCQ with 255 samples in
the parameter space. Both methods are in detailed explained by Dalbey et al.
[35]. Performing a qualitative analysis of the methods used, it can be seen that
our approach gives comparable results with MC and PCQ with much smaller
number of evaluations of both simulator and emulator.
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5 Conclusions

We introduce a multiscale scheme to generate efficiently probabilistic hazard
maps. Typical usage involves evaluating the fast surrogate at hundreds of thou-
sands or millions of re-sample input points. The number of samples needed to
generate the fast surrogate are exponential in the number of dimensions. Also
when the output of the model has a predominant value, evaluation at re-sample
points also becomes challenging. Our scheme relies on graph-based algorithms.
Weighted graphs are employed to represent the “geometry” based on the local
similarity or interaction between the data points. Since each of the data sample
is represented by a collection of numerical attributes, the condition of two nodes
to be connected is based on the proximity of the corresponding data points in
the feature space. We also introduced a stochastic algorithm for computing a low
rank approximation of the entire adjacency matrix of the graph. By performing
a multiscale data sampling we identify a well-conditioned basis of a low rank
Gaussian kernel matrix, which is used for out-of-sample extension.
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Abstract. Predicting the potential danger of a forest fire is an essential
task of wildfire analysts. For that reason, many scientists have focused
their efforts on developing propagation models that predict forest fire
evolution to mitigate the consequences of such hazards. These propaga-
tion models require a precise knowledge of the whole environment where
the fire is taking place. In the context of natural hazards simulation, it
is well known that, part of the final forecast error comes from the uncer-
tainty in the input data. In this work, we use a Dynamic Data-driven
methodology to overcome such problem. The core of the methodology is
a calibration stage previous to the forecast where complementary mod-
els, data injection and intelligent systems are working in a symbiotic way
to reduce the forecast errors at real time. This approach has been tested
using a forest fire that took place in Arkadia (Greece) in 2011.

Keywords: Forest fire · Simulation · Data uncertainty · Dynamic data-
driven

1 Introduction

Forest fires involve serious consequences from the environmental, economic and
social point of view. For that reason, the scientific community has developed
simulation tools with the aim of providing useful information about forest fire
spread evolution to the people in charge of managing extinction resources. Most
of the existing forest fire spread simulators [1–7] implement the spread kernel
equations based on the Rothermel’s model [8]. However, it is well known that
the forecast fire evolutions provided by existing fire spread simulators do not
exactly reproduce the real behaviour of the fire. The reason for such a differ-
ence ranges from the input parameters uncertainty to the imprecision of the
model itself. In previous works [9–11], it has been stated that a pre-processing
of the simulator input parameters based on a steering loop driven by real data
acquisition and fire behaviour observation, could lead to enhanced forecast fire
evolutions. This prediction scheme is the so call Two-Stage prediction system.
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The Two-Stage strategy performs a forest fire prediction by previously execut-
ing a Calibration stage, which involves the most sensitive parameters. In this
stage, the actual evolution of the forest fire is observed and a Genetic Algorithm
(GA) is carried out to determine the set of parameters that best reproduces the
recent evolution of the fire. This set of values is then used as input parameters in
the Prediction stage. Since forest fires are a dynamic phenomena, which is quite
affected by changing data such as meteorological information, the mentioned
pre-processing data phase has been designed as a feedback loop where gathered
data guides the simulation and, the simulation results at a time, could even-
tually drive the data collection. This way of work feeds the so called Dynamic
Data Driven Application System [12,13]. A key point in this process is the eval-
uation of the simulation’s quality, because it has a direct impact in both the
Calibration stage and in the Prediction stage. The Calibration stage consists
of a Genetic Algorithm (GA), which tries to minimize a predetermined fitness
function. In the context of forest fire propagation, this fitness function is the
difference between the real burnt area and the burnt area obtained by simula-
tion. Eventually, a perfect match should be reflected into the fitness function
as a global minimum/maximum value according to its definition. Up to now,
the Two-Stage prediction system relies on the symmetric difference between sets
as a fitness function (also called error function). This error function has been
proven to provide good results when applied to predict forest fire to a maximum
of regional size. However, when moving to forest fire classified as “dangerous”
at European level, this fitness function was detected to be not enough accurate
and, for that reason, an alternative error has been defined. However, not all the
information needed by the prediction system could be considered in the cali-
bration process. In particular, those data considered as static information such
as elevation maps and fuel data, is typically obtained from public repositories.
There is not an unique source of this kind of data and, consequently, the fire
behaviour prediction delivered by a given forest fire spread model could vary
according to the selected static data sources. Furthermore, gathering dynamic
data such as real fire perimeter evolution and meteorological data could be a
bottleneck to the system if there is no a clear way to proceed. For that reason,
at European level, EFFIS (European Forest Fire Information System) raises as
the EU common platform to provide all input data required in a forest fire sim-
ulation system (FFSS). Therefore, relying on the EFFIS data, one can design
FFSS at European level based on standard basis. However, the resolution of
these information is not always at the desired precision, so, it becomes manda-
tory to include complementary models to the forest fire spread model in order to
obtain high resolution data, which takes into account the environment where
the hazard is occurring. For that reason, the basic Two-Stage forest fire simula-
tion system was enhanced by coupling two different models, a wind field model
(WindNinja [14]), which takes into account the wind speed and wind direction
variation due to the underlying topography and, a meteorological model (WRF
[15]) to evaluate the time evolution of the meteorological variables. The resulting
coupled prediction framework has been tested using a study case retrieved from



56 C. Brun et al.

the EFFIS database. In Sect. 2, the data uncertainty problem related to forest
fire spread forecast is introduced. The coupled dynamic data-driven prediction
framework (DDD-FFSS) is described in Sect. 3, as well as, the proposed error
equation for events at paneuropean level. The described DDD-FFSS is then
applied to a forest fire that took place in Arkadia (Greece) in 2011 in Sect. 4.
Finally, Sect. 5 summerizes the main conclusions of this work.

2 Data Uncertainty in Forest Fire Simulation

As it has been mentioned, fire behavior models require accurate input data to
provide fire spread forecast as reliable as possible. Although the model sensitiv-
ity to the input data clearly depends on the nature of each required parameter,
the precision and quality of all of them are not dismissible. In general, the data
needed to perform the predictions can be divided into two main groups: static
and dynamic data. The static input data is the one that keeps constant dur-
ing the whole prediction interval, and the dynamic data changes during the fire
spread simulation. According to this feature (static/dynamic), the way of gath-
ering and processing the information to obtain the corresponding input files is
quite different. In the case of static data, the pre-processing and organization of
the required layers in the proper format could be done previously to the haz-
ard occurrence. There are certain constraints related to the terrain dimension
that should be considered in an accurate way, but the process of homogenize
the precision, projection and datum could be done off-line, and have this data
characterized and ready to be used when a crisis occurs. If the static data of a
region is available before a fire occurrence, the efforts must be focused on those
parameters that vary dynamically during the simulation or depend on the fire
scenario studied. In this case, it is necessary to collect them in real-time, thanks
to the different data sources and services that can provide this information. Obvi-
ously, this case is the most critical since we depend on third-parties frequency of
data arrival, and data format. Therefore, the conversions and the injection must
be done in an on-line mode, while the simulation is being carried out. As we
have previously mentioned, at European level, the reliable third-party is EFFIS
(European Forest Fire Information System) and, therefore, this is the data source
we have used to perform this study. Subsequently, we shall describe how static
and dynamic data related to forest fire evolution is considered by EFFIS.

2.1 Topography

This data is obtained by processing Digital Elevation Maps (DEMs). A DEM
defines the height of the terrain in every cell of the map. This is a discretization
of a continuous surface, taking into account measures in certain points of the
terrain. Those maps are obtained from the ASTER (Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer) imaging instrument onboard NASAs
Terra satellite that takes high-resolution images of the earth. These images are
processed and raster files are extracted with the information needed to perform
the fire spread simulations (elevation, aspect and slope). The ASTER map res-
olution is 30 m.
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2.2 Fuel Map

The vegetation map (or fuel map) is a raster file that describes the predominant
vegetation in every cell. The fuel model used for fire simulation purposes, is the
standard fuel model defined by [14]. This information has been obtained from
the fuel type map of Europe developed at the JRC. The classification scheme
adopted for the fuel map encompasses 42 fuel types representing the variety of
fuel complexes found in European landscapes. A cross-walk to the original set of
13 fire behaviour fuel models tabulated by Anderson fire spread model is done
at the JRC [14].

2.3 Meteorological Data

The meteorological data used is the ECMWF (European Centre for Medium-
Range Weather Forecasts) operational high-resolution single global deterministic
model (ec16), with a horizontal resolution of about 16 km [16]. The model is
initiated on both the 00 and 12 UTC analysis reaching to a 24-hour forecast
horizon with archived time-step of 3 hour. It is worth mentioning, that this is
the configuration used in this work for experimental purposes, but it is not the
unique source of meteorological data processed at the JRC.

2.4 Fire Perimeter

A key point in any forest fire simulation system is the capability to feed the
system with either a real initial fire perimeters or a precise ignition point.
The EFFIS Burnt Area Map module is in charge of this data. To obtain the
fire perimeter information, the JRC relies on the MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) sensors systems, which are on board both the
NASAs Terra and Aqua satellites. Each satellite requires to complete 3 orbits
(approximately 3 h) to cover the whole Europe area, so it could be possible to
obtain fire perimeters twice a day, one from each satellite. The image resolution
provided by the MODIS system is of 250 m.

3 Dynamic Data-Driven Forest Fire Simulation System

As it has been mentioned, the Two-Stage prediction scheme uses the Calibration
stage to search for those input parameters setting that, fitted to the underlying
simulator, better reproduces the recent observed forest fire spread. The obtained
parameter configuration will then be used to fit the simulator in the Prediction
stage to forecast the near future evolution of the fire. As a search technique in
the Calibration stage, a Genetic Algorithm (GA) is applied, where a random
initial population of individuals (input parameter setting) is generated. Each
individual is simulated using FARSITE [6] (the underlying forest fire spread
simulator) and the resulting forest fire spread is compared to the real observed
fire evolution to compute the GA’s fitness function (called error in this case).
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Then, according to the quality of the prediction, the individuals are ranked and
the genetic operators are applied to generate the new population. The process is
repeated a certain number of iterations and the best individual at the end of the
process is selected to run the prediction at the Prediction stage. Since evaluating
the prediction quality is a key point in this scheme, in the following subsection,
we shall describe the selected fitness function (error) and, subsequently, we will
introduce how the DDD-FFSS has been improved by coupling complementary
models.

3.1 Quality Prediction Evaluation

In order to compare the obtained predictions with the real fire behavior, it is
necessary to define metrics in order to determine the quality of the simulations
what enables the capacity of ranking them. There exist several metrics to com-
pare real and predicted values [17] and each one weights the events involved
differently. The event notation used to define those error functions is depicted
in Fig. 1.

Fig. 1. Events involved in metrics related to forecast verification.

The cells around the map that have not been burnt by neither the real fire
nor the predicted map are considered Correct Negatives (CN). Those cells that
have been burnt in both maps are called Hits. The cells that are only present in
the real fire and are not burnt by the predicted fire are called Misses. Finally, in
the opposite case, the cells that the simulator predicts as burnt area but the real
fire does not actually reach, are called False Alarms (FA). Besides these factors,
some equations take into account the real map (RealCell), the simulated or
predicted map (SimCell), the ignition map (ICell) or the total number of cells
of the terrain (TotalCell). This notation may vary but the meaning remains the
same.

Up until now, we have been using the symmetric difference between maps as
error function. The values given by this error function are positive, but not in a
closed interval, with the best value being 0 without an upper limit. We use the
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concept of UCell (all cells belonging to both real fire and simulated fire) and
InterCell (cells belonging to both real fire and simulated fire) as factors in the
equation. To better understand and to simplify the equations, the initial fire is
considered a point and, therefore, it can be removed from the original equations
what simplifies the translation of Eq. 1 to the notation previously described.

Error =
(UCell − ICell) − (InterCell − ICell)

RealCell − ICell
=

=
(Hits + Misses + FA) − (Hits)

RealCell
= (1)

=
Misses + FA

RealCell

In fact, both real and simulated maps can also be transformed as a combi-
nation of Hits, Misses, and FA events as is shown in Eq. 2

RealCell = Hits + Misses

SimCell = Hits + FA (2)

Equation 1 equally penalizes the misses and the false alarms. Another metric
that was used to rank individuals was the Critical Source Index (CSI), which
gives us the rate of hits achieved from 0 to 1, with 1 being the perfect match
between maps. It also weight misses and false alarms in the same way.

Error =
InterCell

UCell
=

Hits

Hits + Misses + FA
(3)

The fact of equally penalizing both factors is not suitable in our field because
it is much more important to minimize the misses than to reduce the false
alarms. The consequences of misses can cause severe damage, both to the envi-
ronment and in human lives, while the false positives may represent an extra
effort in fire-fighting resources.

The main problem of these metrics when applied to the Two-Stage method-
ology is concentrated into the Calibration stage. In this part of the methodology,
we evaluate several scenarios, then we rank them using the error function, and
finally, we select the best parameter set to perform the prediction. We have
detected that when dealing with large forest fires at paneuroepan level, the indi-
viduals with less spread, tend to provide the best error values. Analyzing the
shape of the other individuals, we observe that potential good predictions were
discarded from the calibration process due to the high penalty generated by the
false alarms. In order to solve this undesired effect, we changed Eq. 1 in order to
minimize the effect of false alarms. The new error function is shown in Eq. 4.

Error =
(UCell−ICell)−(InterCell−ICell)

RealCell−ICell + (UCell−ICell)−(InterCell−ICell)
SimCell−ICell

2
=

=
Misses+FA

Real + Misses+FA
Sim

2
(4)
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The latest equation has shown better behavior in the Calibration stage than
the other metrics. In those cases where the difference between the predicted burnt
area and the real burnt are is the same in terms of magnitude but opposite
according to the event related (misses or false alarms), the individuals that
provide overestimated predictions have a better error than those individuals
that underestimated the fire evolution. Therefore, the new error function was
incorporated to the Dynamic Data-Driven Forest Fire Simulation System (DDD-
FFSS) describe below.

3.2 Coupling Models to the DDD-FFSS

As it was previously introduced, we rely on DDD-FFSS to perform forest fire
spread predictions. This system encapsulates the Two-Stage prediction scheme
with the possibility of coupling/uncoupling complementary models to better con-
sider available environmental conditions (wind, humidity,...). The basic scheme
of the Two-Stage approach is depicted in Fig. 2 (2ST-BASIC). It is well known
that one of the parameters that most affect fores fire propagation is the wind,
for that reason, the efforts has initially been concentrated on this parameter.
The complementary models included in DDD-FFSS are: a wind field model to
consider the effect of the terrain on wind speed and wind direction and, a meteo-
rological model whose output has been post-processed to deliver a meteorological
wind speed and wind direction at the pinpointed centroid of the fire. Since the
objective of this work is to test the DDD-FFSS approach at European level,
it is unrealistic to consider that the data injected in the Calibration stage will
only come from meteorological stations. In fact, the data fitted into the steering
loop is provided by a metereological model but it also can be improved with
real data obtained from meteorological stations and sensors. This information
can be directly fitted into the Calibration stage of the forest fire spread predic-
tion system. However, during the prediction stage such values are not available
beforehand. So, it is necessary to introduce a meteorological model that can
provide the expected values for the meteorological wind speed and wind direc-
tion used at the prediction stage (see Fig. 3, 2ST-MM). The last enhancement
included in the system was to consider the influence of the topography on the
wind components as it is shown in Fig. 4 (2ST-MM-WF). In this case, the infor-
mation related to wind speed and wind direction used at the Calibration stage
is introduced to the wind field model before running all forest fire spread simu-
lations. In the Prediction stage, the meteorological data is provided by a certain
meteorological model and then introduced to the wind field model to provide
the corresponding wind field.

These prediction schemes have been tested at European level using fire cases
from the EFFIS repository. In the following section, we show the results obtained
in terms of quality improvement for a particular study case.

4 Experimental Study

The Mediterranean area is one of the European regions most affected for forest
fires during high risk seasons. As we have previously mentioned, we rely on
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Fig. 2. 2ST-BASIC prediction scheme

Fig. 3. 2ST-MM prediction scheme

EFFIS and JRC (Joint Research Centre) data sources to fit the dynamic data-
driven prediction system described in the previous section. Therefore, we have
selected as study case one event stored in the database of EFFIS. In particular,
we have retrieved the information of a past fire that took place in Greece during
the summer season of 2011 in the region of Arkadia, one of the seven prefectures
of the Peloponnese peninsula in Greece. The forest fire began on the 26th of
August and the total burnt area was 1,761 ha. The experimental results shown
in this section were obtained using a computing platform, which consists of two
PowerEdge C6145 nodes, each one including 4 AMD OpteronTM6376 with 16
cores each (128 cores).

In Fig. 5(a), the images provided by the MODIS system are shown for three
different time instants:
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Fig. 4. 2ST-MM-WF prediction scheme

– t0: August 26th at 09:43am obtained from the Terra satellite.
– t1: August 26th at 11:27am obtained from the Aqua satellite.
– t2: August 27th at 08:49am obtained from the Terra satellite.

The corresponding burnt areas (shapes) once the images have been processed,
are shown in Fig. 5(b). These shapes are the information available at EFFIS.
From these shapes, we obtain the real fire perimeters as are shown in Fig. 6.

In order to simplify the initial tests, the forecast meteorological data used for
the simulations are the wind components (wind speed and wind direction), dew
point and temperature of the pinpointing centroid of the observed fire. These
meteorological data is provided with an frequency of 3 h, for that reason, the
injection time step within the forest fire spread simulator has been set to 3 h. The
prediction time horizons have been set according to the exact time the MODIS
images have been obtained to be as fair as possible to the reality. In order to
compare the prediction results in terms of quality when applying the DDD-FFSS
coupling different complementary models, the system has been set to the three
following configurations: 2ST-BASIC, 2ST-MM and 2ST-MM-WF. Keeping in
mind that any configuration of the DDD-FFSS always implies the execution
of the Calibration stage and then, the execution of the Prediction stage, it is
necessary to describe how both stages use the available data perimeters. For
calibration purposes, we used as initial perimeter perimeter1 from Fig. 6 and,
as a reference perimeter, perimeter2 from Fig. 6. So, the simulations involved
in the Calibration stage have been set to a time horizon around 2 h. In the
case of the Prediction stage, the perimeter to be predicted is perimeter3 from
Fig. 6 and, the initial perimeter is perimeter2. Therefore, the time horizon for
the simulation at this stage has been set to 22 h. All these data inputs have
been harmonized to fit a simulation grid map with a basic cell of 100 m× 100 m
square.
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(a) MODIS images

(b) Vectorial shapes as a result of MODIS images

Fig. 5. MODIS images and their corresponding extracting shapes

Fig. 6. Fire perimeters corresponding to Arkadia fire

The obtained results are shown in Fig. 7. As it can be observed, the 2ST-
BASIC configuration is the one that provides the best error at the Calibration
stage. Despite seeming this result contradictory to the claim of coupling models
to obtain enhanced predictions, it is necessary to highlight that the prediction
error in this case is the worst. To understand this, it is noteworthy that the
interval between the first and second perimeters is around two hours, and there
is only a single meteorological data sample in this interval. This lack of knowledge
has a direct impact on the quality of the calibration. Figure 8 shows an example
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Fig. 7. Calibration and prediction errors for every prediction scheme

Fig. 8. Calibration stage perimeters for each prediction scheme

of the best calibrated perimeter for each scheme. All three methods under-predict
the fire behavior, and there are some possible causes for this fact. The measured
wind could be less than the reality, and the schemes could not tune the other
parameters to minimize this effect. This fact arise another potential problem
related to the fuel models used. It is possible that the fuel model conversion from
the European cover uses to the standard fire models resulted in low-propagation
types. The main reason to support this idea was the behavior of the 2ST-BASIC
scheme. Although not sensitive to sudden changes, this method usually finds
calibrated winds that make the fire spreading quite close to the real fire, although
the final shape can differ due to its uniform conditions.



DDDAS Forest Fire Framework 65

Fig. 9. Prediction stage perimeters for each prediction scheme

As it has been mentioned, this situation changes when we analyze the pre-
diction stage that lasts around 22 h. In this case, the best prediction errors are
the ones given by the 2ST-MM and 2ST-WF-MM schemes. The dynamic injec-
tion of meteorological data seems to be positive to the system and to provide
good prediction shapes, as we can see in Fig. 9. Although in numerical terms
the 2ST-MM is the best scheme, the 2ST-WF-MM gives back better perimeters
and better covers the real burnt area. The 2ST-BASIC scheme uses the tuned
weather values obtained in the calibration stage, which present a high wind speed
value. This causes to excessively over-predict the real fire behavior.

5 Conclusions

Natural hazards, such as forest fire, are phenomena that require complex mod-
els to predict their evolution. In the particular case of forest fire, propagation
models require input parameters that in some cases present a high degree of
uncertainty. So, a Dynamic-Data Driven system was introduced to calibrate the
input parameters based on the observation of the actual evolution of the fire.
Moreover, some parameters are dynamic and present a temporal evolution that
require the coupling of complementary models such as meteorological models to
the Dynamic Data-Driven Forest Fire Framework. Finally it must be considered
that all the input parameters must be introduced to the model at the same res-
olution what in some cases require the coupling of complementary models such
as wind field models. The coupled Dynamic Data-Driven Forest Fire Framework
has been used on the context of the European Forest Fire Information System
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to analyse the potential improvement in forest fire spread prediction and it has
demonstrate a quite significant improvement. In this context, a new error equa-
tion has been proposed to evaluate the prediction quality for large forest fires
taking into account the factor of overestimated/underestimated predictions com-
pared to the real forest fire spread.
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Abstract. Many cities face tremendous water-related challenges in this Century
of the City. Urban areas are particularly susceptible not only to excesses and
shortages of water but also to impaired water quality. Even moderate rainfall can
quickly fill and overflow urban water courses. To addresses these challenges, we
will over the coming 4 years synergistically integrate advances in computing
and cyber-infrastructure, environmental modeling, geoscience, and information
science to develop integrative solutions for urban water challenges that will
change the way municipalities and stakeholders plan and manage their actions,
resources and civil infrastructure for sustainable cities. We will develop a system
empowered by distributed computing and cyber-infrastructure for integrative
sensing, high-resolution modeling and uncertainty-assessed prediction of water
quantity and quality for a large urban area. The resulting system will enable
multi-scale and multi-dimensional risk-based decision making related to threats
and risks associated with urban water to a wide spectrum of users and stake-
holders, and advance general understanding of urban sustainability and asso-
ciated challenges through environmental, social and economic response of a
large city as an uncertain dynamic system to extreme precipitation, urbanization
and climate change. This paper details this vision by providing a blueprint for
the development of iSPUW: Integrated Sensing and Prediction of Urban Water
for sustainable cities.

1 Introduction

Many cities face tremendous water-related challenges in this Century of the City [1].
Urban areas are particularly susceptible not only to excesses and shortages of water but
also to impaired water quality. Even moderate rainfall can quickly fill and overflow
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urban water courses. Flash washoff of large impervious areas can quickly contaminate
storm water. Urban water challenges are exacerbated by the fact that they tend to be
approached in isolation rather than in concert [2–5].

With urbanization and climate change, water-related hazards and risks play an
increasingly large role in people’s lives and the economy. The Intergovernmental Panel
on Climate Change (IPCC) reports [6] that it is likely that the number of heavy
precipitation events over land has increased, that, over most of the mid-latitude land
masses, extreme precipitation events will very likely be more intense and more frequent
in a warmer world, and that there is high confidence that, as the climate warms, extreme
precipitation rates (e.g. on daily time scales) will increase faster than the time average.
Given these increased risks, cities must develop and implement strategies to adapt to
the “new normal” of extremes. To make informed short- and long-term decisions in
proactive response to water-related hazards and risks, the municipalities, the industries
and the residents need impact-specific warning and planning information that is time-
and location-specific, accurate and uncertainty-quantified.

The importance of accurate high-resolution precipitation information in urban
hydrology and hydraulics is well recognized [7]. Currently, many cities rely on rain
gauge-based flash flood warning systems for water-related emergency management and
hire consultants for sustainability studies. While there are a number of models and
modeling tools available, such as the US Army Corps of Engineers (USACE)
Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) and
River Analysis System (HEC-RAS) and the US Environmental Protection Agency’s
(EPA) Storm Water Management Model (SWMM), most cities do not have the
expertise or resources to use them effectively. Also, modeling and analysis practices are
often compartmentalized. Assessing flooding risks, for example, is generally handled
separately from assessing long-term impact of urbanization and/or climate change.
Because such analyses and studies are not widely shared by the professional com-
munity, it is difficult to build and expand shareable knowledge base and cyberinfras-
tructure to address urban sustainability challenges very effectively.

To addresses these challenges, over the coming 4 years we will leverage the
synergistic integration of advances in computing and cyber-infrastructure, environ-
mental modeling, geoscience, and information science to develop integrative solutions
for urban water challenges that will change the way municipalities and stakeholders
plan and manage their actions, resources and civil infrastructure for sustainable cities.
We will develop a prototype system empowered by distributed computing and
cyber-infrastructure for integrative sensing, high-resolution modeling and
uncertainty-assessed prediction of water quantity and quality for a large urban area. We
anticipate that the resulting system will enable multi-scale and multi-dimensional
risk-based decision making related to threats and risks associated with urban water to a
wide spectrum of users and stakeholders, and advance general understanding of urban
sustainability and associated challenges through environmental, social and economic
response of a large city as an uncertain dynamic system to extreme precipitation,
urbanization and climate change. Specifically, we will (1) develop a cyber-based
solution that integrates advanced sensing, modeling and prediction, both in terms of
quantity and quality, of urban water, (2) support its early adoption by a spectrum of
users and stakeholders, and (3) educate a new generation of future sustainability
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scientists and engineers. This paper details this vision by providing a blueprint for the
future construction of iSPUW.

2 Vision

Our vision is to synergistically integrate cloud computing, crowdsourcing, advanced
environmental sensing, computer modeling, data fusion and assimilation, causal
inference and decision support to develop a prototype system for advanced sensing,
high-resolution modeling and uncertainty-assessed prediction of water quantity and
quality for a large urban area. Figure 1 depicts our system and the encompassing
activities; they are collectively referred to herein as Integrated Sensing and Prediction
of Urban Water for sustainable cities, or iSPUW.

2.1 Precipitation Sensing

Currently, a network of CASA X-band radars, referred to as the Dallas-Fort Worth
Metroplex (DFW) Urban Demonstration Network, is being deployed in the area
(Fig. 2). So far, four radars have been installed at UT Arlington, University of North
Texas, Midlothian and Addison. Four radars will be added later this year for a planned
8-radar network in Phase 1. The radar quantitative precipitation estimates (QPE) from
the network is KDP-based (R = 18.15 KDP0.791 where R and KDP denote the rainrate
in mm/hr and specific differential phase in deg/km, respectively, applicable for southern
OK and North TX) [8–10]. This data will be used to provide real-time feeds for very
high-resolution precipitation information to the modules described in the sections
below.

Fig. 1. Integrative sensing and prediction of urban water for sustainable cities (iSPUW).
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2.2 Water Flow and Water Quality Sensing

While real-time streamflow data are available for most major cities, their spatial
sparsity does not permit effective decoupling of flow from various urban runoff or point
sources. We will deploy a wireless sensor network to measure both water level and
quality. Each measurement location will comprise a cellular-enabled wireless sensor
node. Approximately 25 or more such nodes will be deployed in the study areas in
DFW. The complete selection of the study areas will be determined by the joint
demonstration projects with the stakeholders but will include the Sycamore Creek and
Forest Park-Berry Catchments in Fort Worth. The proposed sensor nodes leverage the
latest generation of IP-enabled cellular modules to enable bi-directional communica-
tions with cloud-based services.

Designed for smart-meter applications, these modules are modified to permit
extreme network configurability and ease of deployment. Embedded intelligence will
permit each node to adjust its sampling frequencies to capture and predict events of
interest (such as sudden rises in the hydrograph), rather than sampling at even intervals.
This will significantly reduce power consumption at each node, enabling long-term
(years) deployments on battery power. The sensor node technology has been vetted in
the past year though a pilot deployment in an urban watershed in southeast Michigan
[11]. These sensors will complement the existing precipitation and flow sensors
deployed and operated by the cities (see Fig. 3).

2.3 Soil Moisture Sensing

To evaluate high-resolution hydrologic modeling and to resolve the urban water cycle,
accurate sensing of soil moisture is critical. In-situ soil moisture measurement has
advanced significantly in the last decade. Among the many available techniques, the
Time Domain Reflectometry (TDR) moisture sensors have proven to be the most
reliable [12]. TDR sensors utilize guided electromagnetic waves to measure dielectric
constant and electrical conductivity of soils which are directly related soil moisture and

Fig. 2. DFW Urban Demonstration Network of eight CASA X-band radars.
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density. We have developed a new strip type of TDR sensor to sense moisture dis-
tribution profile along the sensor length (US patent 20090273352). This sensor is
capable of sensing wetting front migration in soil during a rainfall event. We will install
strip-type TDR sensors using two different types of data acquisition: stand-alone and
wireless sensor network.

2.4 Crowd Sourcing of Water Observations

To improve the accuracy and effective resolution of model prediction over a large area
via calibration and validation, large-sample on-the-ground observations are necessary.
We will crowd-source hydrologic and hydraulic observations by developing applica-
tions for cell phones and computers, and by deploying staff gauges and similar rugged
devices for water level and other observations that can be made quickly and easily at
strategic locations.

The observations targeted by the former are those of water level and
presence/absence of ponded water at the time and location of reporting. Figure 4 shows
two examples. The information gathered in this way will be generally qualitative in
nature and limited to those times of the day and locations where people are active.

2.5 Data Fusion for Quantitative Precipitation Information

We will explore multisensor extension of conditional bias-penalized kriging [13] for
improved estimation of heavy-to-extreme precipitation from multiple sources. We will
exploit the fact that, in CBPK or its generalization of Fisher-like optimal linear esti-
mation [14, 15], the additional quadratic penalty for Type-II conditional bias provides
natural regularization. In addition to real-time QPE, high-quality, high-resolution,
multi-year historical QPE are necessary for applications that require long-term simu-
lations, such as verification of model-simulated streamflow following long-term

Fig. 3. Locations of High Water Warning System (HWWS) in the study areas.
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changes in land cover conditions, which is a requisite for making long-range projec-
tions. We will apply data fusion described above to produce a multi-year
high-resolution precipitation reanalysis data set for DFW that will support a wide
spectrum of applications by the research and operational communities.

2.6 Water Flow and Quality Modeling

The NWS Hydrology Laboratory Research Distributed Hydrologic Model (HLRDHM)
[16] will be used for hydrologic modeling over a large area. The EPA’s Storm Water
Management Model (SWMM) [17] will be used for hydraulic and water quality
modeling. HLRDHM will be used to provide a large-area view of flooding threats and
risks in real-time prediction and long-term sustainability studies. Figure 5 shows an
example of HLRDHM simulation at 1-min 250-m resolution of surface runoff (left)
forced by the CASA QPE at 1-min 500-m resolution (right). In the real-time mode, the
HLRDHM results will allow time-critical initial assessment of flooding threats over a
large area for adaptive delineation of the hydraulic modeling domain as part of the
intelligent system design.

Fig. 4. Example crowd sourcing of water levels (Left, from http://i.bnet.com/blogs/
crowdhydrology.jpg) and water level, flow rate and reporting (Right, from https://itunes.apple.
com/us/app/creek-watch/id398420434?mt=8)

Fig. 5. Example of HLRDHM-simulated surface runoff forced by CASA QPE.
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While HLRDHM operating at a high resolution is computationally only modestly
expensive, it may become expensive if the model domain needs to be expanded to
incorporate inflow from the upstream contributing areas. SWMM solves coupled 1-D
flow through the channels and storm drains, and 2-D surface flow due to surcharge and
overbank flow. For those areas identified as having increased flooding or water quality
threats, SWMM will be used to dynamically delineate inundation extent and to predict
water quality. However, 2-D simulation of SWMM is computationally expensive.
Since SWMM and its family of models have been developed and used primarily for
design or post analysis, inadequate attention has been paid to computational challenges
associated with real-time applications and long-term continuous simulations. With
high-resolution QPE, the computational challenges are greater.

2.7 Data Assimilation, Parameter Optimization and Uncertainty Analysis

To estimate the model dynamically-consistent, up-to-date state of the uncertain system,
we will use advanced DA techniques to fuse all available information, i.e., the
hydrologic and water quality observations from the cellular-enabled wireless sensor
nodes, those from the HWWSs, the crowd-sourced observations, and the model pre-
dictions. It is well known that such DA-aided updating of model ICs significantly
improves prediction accuracy over short lead times and hence the credibility of the
inundation maps and other products. For this purpose, we will consider ensemble
Kalman filter (EnKF) [18], and maximum likelihood ensemble filter (MLEF) [19].

Many of the parameters used in the hydrologic, hydraulic and water quality models
are derived from a wide range of physiographic and biochemical data of varying degree
of accuracy. Some are prescribed based on a priori knowledge. As such, the model
parameters are subject to varying degrees of uncertainty. Estimation of the parameters
and their refinement, or model calibration, generally requires considerable effort by
experts as well as significant computing resources. For this reason, calibration is
usually carried out only intermittently. Given the a priori estimates of the parameters,
we will optimize a limited number high-impact parameters globally by adjusting them
up or down while keeping the spatial patterns unchanged. Such an approach, which
keeps the inverse problem reasonably well-posed, has been used successfully in
hydrologic modeling [20].

2.8 Ensemble Prediction

Even with improved sensing and advanced modeling and DA, the model results will
always be subject to varying levels of uncertainty. Without reliable quantification of
this uncertainty, risk-based decision making is not possible. Hence, predictions, e.g., of
the inundation extent should be accompanied by an estimate of uncertainty. Ensemble
forecasting has been fast gaining popularity and acceptance as the methodology of
choice in operational hydrologic forecasting. We will prototype an ensemble prediction
system for urban water (see Fig. 6). An important distinction of our work from
ensemble streamflow forecasting is that, in our system, complex statistical post
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processing is not viable due to lack of historical data and to nonstationarities arising
from climate change and urbanization. For that, We will consider parsimonious
stochastic error models for the ensemble post processor [13].

2.9 Causal Inferences

Causal inference or causal relationship discovery explores the causes of the phenomena
of interest such as flooding and flash flooding to improve prediction and our abilities to
response to natural hazards. The causal relationship among different hydrologic
quantities, such as QPE, soil moisture, streamflow, etc., reveals the internal links
among different factors that may contribute to modeling and prediction. Unlike generic
causality studies in which the discovery of causal relations may suffice, modeling and
prediction of extreme hydrological conditions demand not only the construction of a
causal graph to reveal the contributing factors, but also the provision of the lead time of
each cause to its effect, where the lead time refers to the time difference between the
occurrence of lead and effect. The most commonly used computational algorithms for
causality discovery can be categorized as regression [22, 23] or Bayesian approaches
[24, 25]. No existing approaches incorporate lead time estimation in causal relationship
discovery.

To explore the causal relationships among different hydrometeorological, hydro-
logic, hydraulic and water quality observations of the urban water cycle, we will use a
new approach, referred to herein as mutual information causal (MI-Causal), for causal
relationship discovery in point or spatial time series data. The MI-Causal approach
embodies the advantages of the existing approaches and overcomes their limitations.
For example, the traditional applications of mutual information verify causal Markov
conditions and estimate Markov blankets without being able to determine the direction
of causality. The proposed MI-Causal approach, on the other hand, investigates dif-
ferent causes for individual point or spatial time series data and discovers how the
information will be transferred, if applicable, to its effect. As a result, we can create a
causal graph without a large number of independency tests and causal relation
calculations.

As an example of our preliminary work, we applied MI-Causal to discover the
causality relationships among the 32 hydrologic variables within 90 days in the 30-yr
hydrologic model simulation output produced by NOAA/NWS. The simulation period

Fig. 6. Schematic of enable prediction system for urban water. Adapted from [21].

iSPUW: A Vision for Integrated Sensing 75



covers Jan 2, 1979, through Dec 31, 2008, with spatio-temporal resolution of * 4 km
and 1 h. The 32 hydrologic variables include soil moisture (soilm) at four different
depths, soil temperature (soilt), liquid water storage (liqw), snowfall (snow), and
others. Figure 7 shows the causal relationships among the 32 variables and the lead
time from causes to effects. Note the reasonable discovery of causality in the graph. For
example, the water content in the top soil layer (smliq1 and soilm) is affected by rain
and the amount of water it had on the previous day. Rain also causally affects the
subsurface flow (subflow) and the upper zone tension water content (uztwc). Snow
does not have as much effect as rain because snow is present only for one to two days a
year on average in the study area. The causal relationship of soil temperature at four
different layers is also consistent with what one may expect. The temperature of the top
soil layer is affected by potential evaporation (pevap), air temperature (tem) and soilt1
itself. We will explore data-enabled discovery via causal inference to advance under-
standing of the urban water cycle, identify model deficiencies and improve prediction
of high-impact events. This task is expected to yield a causal inference-based assess-
ment and prediction tool that will provide additional input for decision support inde-
pendent of the numerical model output (see Fig. 1). We will comparatively assess the
information content and evaluate the skill of the two predictions for a possible com-
bined use in decision support.

3 Conclusions

This paper has laid out a vision for iSPUW, a system for integrative sensing,
high-resolution modeling and uncertainty-assessed prediction of water quantity and
quality for a large urban area. By synergistically integrating advances in computing and
cyber-infrastructure, environmental modeling, geoscience, and information science,
iSPUW is expected to allow impact-specific multi-scale and multi-dimensional
risk-based decision making related to threats and risks associated with urban water
to a wide spectrum of users and stakeholders, and advance general understanding of

Fig. 7. Causal relationship graph for NOAA/NWS 30-yr hydrologic model simulation output.
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urban sustainability and associated challenges through environmental, social and
economic response of a large city as an uncertain dynamic system to extreme pre-
cipitation, urbanization and climate change. We anticipate that this study will provide a
blueprint for the integrated capabilities for sensing, modeling, prediction and decision
support necessary for municipalities and stakeholder to plan and manage their actions,
resources and civil infrastructure from water-related hazards and unintended conse-
quences for sustainable cities.
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Abstract. India is frequently affected by coastal flooding due to storm surges
which has a significant impact on human life. The quantitative analysis of
coastal flooding depends on accurate simulation of storm surges and its inun-
dation. The analysis is imperative in coastal risk evaluation in terms of rise of
water levels and its extent of inundation. In this study, risk analysis is made at
the smallest geographical scale, particularly, for Andhra Pradesh which is one of
the maritime states along the east coast of India often caused by coastal flooding.
The ADCIRC model is used for calculating maximum possible total water
elevation and associated inundation considering the non-linear interaction with
the local tide as well. The simulations also include the risk assessment in the
climate change scenario based on the IPCC reports. A detailed analysis of
additional coastal regions which are prone to inundation in response to climate
change is also made.

Keywords: Tropical cyclone � Storm surges � Risk analysis � Coastal
inundation

1 Introduction

Quantitative risk analysis of consequences of a natural disaster like a tropical cyclone is
extremely important for planning, preparedness and mitigation processes by the coastal
authorities. The acceptability of the risk analysis depends on the judicious decisions
made based on some risks that can be prevented at all costs and some can be disre-
garded because of low consequence, low frequency, or both. East coast of India
experiences more number of cyclones compared to that of west coast of India. Most of
the coastal regions along the east coast are more exposed to larger coastal vulnerability
in terms of inundation due to storm surges. There are some coastal stretches, partic-
ularly river deltaic and other low-lying regions along the coast are known for higher
risk. Identification of these regions are primary concern for many reasons that also
includes for long-term planning of coastal development.

In Climate Change 2007 [1], the Fourth Assessment Report of the United Nations
Intergovernmental Panel on Climate Change (IPCC), a high probability of major
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changes in tropical cyclone activity across the various ocean basins is highlighted. The
Indian Ocean including the Arabian Sea and the Bay of Bengal are of particular
concern because of the high population density along their low-lying coastline and
deltas. These coastal populations are vulnerable to the negative impact of these pro-
jected extreme events. Using IPCC 2007 report, Thomas et al. [2] studied the future
projections based on theory and high-resolution dynamical models consistently indicate
that greenhouse warming will cause the globally averaged intensity of tropical cyclones
to shift towards stronger storms, with intensity increases of 2–11 % by 2100. The
tropical Indian Ocean is characterized by surface warming trends that are more sta-
tistically significant, compared to model-simulated internal variability, than those in
many other tropical basins including in the Northeast Pacific and North Atlantic. This
raises the possibility that tropical cyclone trends resulting from global warming could
emerge in the Indian Ocean as well although these basins so far have been experiencing
some of the intense tropical cyclones in the recent past like Mala (2006), Gonu (2007),
Sidr (2007), Nargis (2008), Giri (2010), Phet (2010), Thane (2011), Phailin (2013)
without any apparent increase in the frequency of the tropical storms itself.

In addition to this, there is a possibility of increase in size and duration/life cycle of
the storm that would definitely affect the surge generation potential and hence changes
the coastal inundation scenario. It is therefore interesting to study coastal vulnerability
assessment in response to climate change. In this paper, it is focussed on the coastal
risk analysis at smallest geographical scale associated with inland inundation due to
storm surges in all the coastal districts of Andhra Pradesh which is often affected by
tropical cyclones. Moreover, this region is particularly important for assessing coastal
inundation in the context of two major rivers systems (Krishna and Godavari) joining
the Bay of Bengal. It is expected larger extent of inundation through these river systems
whenever a cyclone impinging in these regions that would be of immense important.
Due to climate change, the water levels and the extent of inundation are recomputed
based on the projections made on the intensity and size of the storm. These simulations
would help for planning and policy making in view of the climate change.

2 Data Analysis and Methodology

The information of past cyclone data (1891–2013) that includes cyclone track along
with its intensity (strength of wind stress or pressure-drop) and size of the cyclone
(radius of maximum winds), surges and associated inundation are used from various
sources (India Meteorological Department, JTWC, etc.) for all the coastal districts of
Andhra Pradesh. This data is reconciled, to make a uniform data base for cyclones and
its surges. From the data base, we can identify the maximum pressure-drop prevailed
among all the cyclones that crossed each district during past more than 120 years.

The finite-element ADCIRC model [3] framework is configured for the coast with
very high resolution near the coast to compute storm surges and associated inundation.
The model uses onshore topography from the very high-horizontal resolution of 90 m
data from the Shuttle Radar Topography Mission (SRTM). The model bathymetry is
obtained from the General Bathymetric Chart of the Oceans (GEBCO) 30 s global
bathymetric grid. The model is applied with the maximum pressure-drop value for a set
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of synthetic tracks which are generated by composing actual tracks as well as from
theoretical ones, ensuring that each coastal district is covered. The model also incor-
porates the tides so that the non-linear interaction of tide and surge is comprehensively
taken care of. The water levels can be finally computed in the affected region by
making use of the precise onshore topography data. This information along with the
extent of inundation is vital for mitigation and planning of coastal risk management.

The model simulations are calibrated with observed surge data for each region of
the coast. Particularly, the extent of inundation is very large when a storm hits in the
river deltaic region as the surge waters penetrate longer distances through the river
causing more vulnerability. In order to study the climate change scenario, the cyclonic
wind stress is increased by 7 % (an average value) and of 11 % (extreme value). It is
also studied the effect of storm size in terms of enhancing the radius of maximum winds
from 20 % to 40 % on the development of surges and hence coastal inundation.

3 Results and Discussion

The analysis of the model comprises the geographic domain from 79oE to 88oE and
12oN to 19.5oN, covering the entire Andhra coast. The finite-element mesh is con-
structed using the software package, Surface Modeling System (SMS). The program
generates a grid with a low-resolution in the deeper region, and high-resolution when
approaching near the coast. The node-spacing varies between 200 m near the coast and
about 20 km in the open ocean. The distance from the coast to the off-shore is about
500 km, whilst, the north-south distance is about 750 km. The model mesh showing the
variable grid resolution is shown in Fig. 1a. The model domain extends up to 15 m
topographic line from the coast in order to estimate the landward inundation due to the
storm surges. An explicit scheme is used in time discretization with a time-step of 2 s.
The wind forcing is provided in terms of pressure drop and radius of maximum winds
as input. The wind stress of the cyclone is computed using the scheme described in
Jelesnianski and Taylor [4]. Minimum depth of 0.5 m is pre-set to delineate the wet and
dry elements with a horizontal eddy viscosity coefficient of 5 m2s−1.

The model is initially validated with the past cyclone data. From the reconciled data
base of past cyclones crossed along the coastal districts, it is identified the maximum
pressure-drop of 80 mb is prevailed among all the cyclones that crossed the region
during past more than 120 years. Using cyclone tracks information for each district,
synthesized tracks are computed for each district which is shown in Fig. 1b. The boxes
in the figure gives the coastline length for each coastal district. It may be noted that
Srikakulam district has the longest coastline of about 160 km. The experiments have
been carried out by shifting the synthesized track of a particular district by every 10 km
along the coast considering the maximum pressure drop and radius of maximum winds
as 80 mb and 30 km respectively. Using the ADCIRC model, the water levels and
associated inundation is computed for each track. Finally, a composite depiction of
maximum water levels and inundation is shown for each district as a combined
response of all the possible cyclone tracks crossing the region concerned without and
with climate change option.
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Fig. 1. a. Model mesh for Andhra coast with a resolution ranging from 200 m near the coast to
20 km near the open boundary. b. Synthesized cyclone tracks for each coastal district of Andhra
Pradesh.
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Figure 2a gives the model bathymetry and onshore topography of the region of
Krishna district using both the data sets of GEBCO and SRTM. The model computes
storm surges and associated inundation at each grid using the synthesized tracks. The
storm surge in the model is always referred to the mean sea level. After computation of
storm surges, the water levels at each grid are computed by subtracting local topog-
raphy. A total of 10 tracks have been used for this district and computed the
surges/water levels and associated extent of coastal inundation for each track. It is
depicted in the Fig. 2b, the composite scenario of water levels and extent of landward
inundation due to all possible cyclonic tracks crossing along the Krishna district in all
the cases including normal scenario (without climate change), and enhancing wind
forcing by 7 % and 11 % respectively in response to climate change. It is found, the
maximum water levels simulated along the Krishna River that results a larger extent of
inundation in all the scenarios. The maximum extent of inundation of about 50 km is
computed in the vicinity of the Krishna River. The total area of inundation is about
2750 km2. The model calculations suggest that many areas/regions covered with
additional water levels ranging from 0.5 m to 3.5 m just as a response of enhanced
forcing of 7 %. Similarly, additional water levels are also seen due to 11 % increase. It
is depicted in Fig. 2c the possible extent of coastal vulnerability in each possible
scenario. About 28 % of additional area of inundation is simulated which is subjected
to 7 % enhancement of wind stress. However, only about 13 % further inundation is
noticed due to extreme climate change scenario of 11 % enhancement of wind stress.
Since the high water levels cause more catastrophe in the region, the area covered with
more than a meter water level is calculated for each event of climate change scenario.
In case of extreme climate change scenario, about 75 % of the total inundated area is
exposed to above one meter water levels.

Similar experiments are carried out for Guntur district using synthetic cyclone
tracks. Figure 3a shows the model bathymetry and onshore topography of the district.
The composited maximum water level computed for normal scenario is about 6.2 m
with an area of inundation of about 2300 km2. Climate change scenario with 11 %
increase in wind stress provides an additional 5 % in the total water level which is
about 6.5 m (Fig. 3b). Most of the area of the district has got inundated in the vicinity
of Krishna River. The maximum extent of inundation computed for this area is about
40 km as shown in Fig. 3c. In terms of total area of inundation, climate change scenario
has an impact of about 16 % on this district which is little compared to that of Krishna
district.

As shown in the Fig. 4a, East Godavari district includes three main branches of
Godavari River which is connected to the open ocean. The length of the coastline
is *140 km. This district has many small river tributaries in addition to the Godavari
estuary joining the adjacent bay and hence it is expected larger extent of coastal
inundation. The maximum water level of about 8.5 m is concentrated along the banks
of Godavari River with an inundated area of about 1500 km2 (Fig. 4b). The composited
maximum water level is increased by 9 % with extreme climate change scenario.
Figure 4c depicts about 34 % additional area has got inundated for 7 % increase of
wind stress and 19 % due to extreme occurrence of 11 % wind intensification. The total
extent of inundation is about 40 km in all the cases.
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Fig. 2. a. Bathymetry and onshore topography b. Total depiction of maximum water level c.
Extent of coastal inundation for different scenarios for Krishna District
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Fig. 3. a. Bathymetry and onshore topography b. Total depiction of maximum water level c.
Extent of coastal inundation for different scenarios for Guntur District
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Fig. 4. a. Bathymetry and onshore topography b. Total depiction of maximum water level c.
Extent of coastal inundation for different scenarios for East Godavari District
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Fig. 5. a. Total depiction of maximum water level with peak surge locations for all possible
Cyclones crossing Krishna district due to enhancement of Rmax by 20 % & 40 % in no wind
enhancement due to climate change. b. Total depiction of extent of coastal inundation for all
possible Cyclones crossing Krishna district due to enhancement of Rmax by 20 % & 40 % in no
wind enhancement due to climate change
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The simulations are also made for all the other districts, however, the corresponding
figures are not shown. Our analysis of all the simulations due to wind stress
enhancement shows that the Krishna and East Godavari districts are the most affected
regions compared that of any other coastal districts of Andhra. The least affected
regions are Srikakulam and Visakhapatnam districts.

Further experiments are made to study the impact on the coastal vulnerability by
increasing the radius of maximum wind (Rmax) by 20 % and 40 % respectively. The
computations are only made for Krishna district for which the results are discussed.
Figure 5a describes total depiction of maximum water level with peak surge locations
for all possible cyclones crossing Krishna district due to an enhancement of Rmax by
20 % & 40 % respectively with no wind enhancement. Figure 5b gives the possible
extent of coastal vulnerability due to storm surges for the scenarios, viz., normal
scenario, 20 % and 40 % increase in Rmax as a response of climate change. When the
Rmax increases by 40 %, the maximum water level is not only shifts to the right but also
enhances by 30 % which is considered to be very high for causing additional
inundation.

4 Conclusions

ADCIRC model is used to demonstrate risk vulnerability due to storm surge generated
by any tropical cyclone crossing along the coastal regions of Andhra Pradesh. The
simulations are also made using storm intensity and its size as a response of future
climate change scenario. Computation of water levels and extent of inundation at the
smallest grid size of about 200 m are used for the assessment of coastal vulnerability of
each district. The experiments suggest that the maximum risk associated with higher
water levels are found along the banks of Krishna and Godavari rivers. In the possible
event of extreme climate change, an area of about 75 % is exposed to inundation with
more than one meter water level which is considered to be extremely alarming.
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Abstract. The development of an Environmental Science is strongly
connected with the long term observation of wild environmental sys-
tems, which are usually situated far from immediate reach. Environ-
mental systems have as basic elements ecosystems that are difficult to
delineate since their boundaries and dynamical regime change over time.
This paper discusses the concept of environmental probes and their use in
inaccessible regions, e.g., remote sites in the Amazon forest. The focus is
on their ability to track environmental systems for long periods and pro-
duce useful scientific data. A dynamic data scientific approach is essential
to our concept due to (a) the remote location of sensors and the many
years span of observation processes, (b) the necessary dynamical cre-
ation and adaptation of environmental models to uncover environmental
features, and (c) the partial substitution of human abilities concerning
maintenance and the identification of novelties.

1 Introduction

We introduced the concept of environmental probes in [5], where we described the
difficulties in delineating the concepts of environmental systems and of players.
In this paper we provide more details in the concepts and introduce ways of
implementing environmental probes.

The difficulties in studying environmental phenomena arise from several
sources. Some are intrinsic to environmental phenomena, others come from our
epistemological and discursive limitations. The former are of relevance here. Both
are crucial in environmental management. Little is to be found in the scientific
literature about the long term integrated observation of landscapes along the
lines proposed.

Natural phenomena are caused by a collection of “things” that interact and
interacting change the features we observe in them. The “things” giving rise to
environmental phenomena are ecosystems, which are the smallest environmental
standalone units. This means that pathways of mass and energy in ecosystems
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are almost closed, requiring only solar energy, and that changes in dynamical
behavior driven by signals and information do not severely depart from homeo-
static regime domains under non-exceptional natural stresses. Nevertheless, they
remain open and exchange mass, energy, and information with their surrounding
siblings. This concept of ecosystem [17, Preface], pioneered by G.E. Hutchinson
and H.T. Odum, requires the ability to identify a standalone unit in an ever
changing landscape to be of practical use.

This identification problem cannot be solved by traditional modeling and
theory construction alone since new interacting “things” may come and leave
the modeled landscape and maintain strong interactions with local components
for non-trivial periods [12]. External long range factors like large scale climate
changes, a fortiori not represented in the model, may impose non-neglectable
qualitative changes in dynamical regimes. An example where this behavior occurs
naturally is the flooded Amazon landscape. Annually, the river water level rises
and falls, causing flooding in extensive areas. In this region, there are two dis-
tinct ecosystems during the low water season and a hybrid aquatic-terrestrial
ecosystem during the flooding period. Aquatic and terrestrial systems are quite
different and their elements barely interact, with the possible exception of insects,
alligators, and similar species at the water border. However, during the Ama-
zon high water season plants may be partially or completely submersed for long
periods of time and a lot of interactions between aquatic and terrestrial species
happen that are not present or possible during the low water season [9]. More-
over, distinct species may be carried into a flooded ecosystem each year.

These characteristics of ecosystems indicate that no parameter indexed class
of models can be established for them in advance, nor will any model obtained
by parameter identification be representative for long periods of time, due to the
migration of components in and out of the ecosystem and the formation of new
connections. Hence, the modeling of environmental systems needs to encompass
active and concurrent acquisition of observations to identify newcomers, new
dynamical regimes, or new interactions that alter equations and parameter sets
to be estimated. This necessity fully integrates the steps of the knowledge pro-
ducing scientific process, which cycles from observation, to representation, to
assertion of truths or predictions, and back to collecting observations [13].

The dynamic data scientific (DDS) approach integrates simulation with
dynamically assimilated data, multiscale modeling, computation, in a two way
interaction between the model execution and the data acquisition methods [4].
DDS methods and object-orientation offer a natural framework to address this
problem, either as an intellectual paradigm or a development platform, allow-
ing the individual modeling of components at an organizational level and their
further assemblage into higher level models. We address problems related to the
conceptualization and realization of environmental probes based on this app-
roach.

The paper is organized as follows. In Sect. 2, we discuss the nature and the
characteristics of environmental systems considered important by ecologists and
environmentalists. In Sect. 3, we delineate environmental probes and describe
their functioning. In Sect. 4, we describe how the data driven scientific (DDS)
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framework is essential for creating new environmental models and probes for
regions that are in wild environments far from civilization. In Sect. 4, we discuss
DDS and provide some thoughts on future directions.

2 Environmental Systems

In this section, we advance an operational definition for environmental systems
and show how it pertains to the development of an environmental science. The
way ecologists and environmental scientists look at ecological and environmen-
tal phenomena is of special relevance to reason about environmental probes.
We highlight some aspects that are difficult to observe, e.g., the identification
of especies and novelties, indirect effects, plasticity, redundancy, preferences,
trophic channels, etc. that play essential roles in discussions concerning the mon-
itoring and managing of extreme landscapes.

In Sect. 2.1, we describe the different spheres in the relatively thin slab around
the Earth’s surface where life is confined. In Sect. 2.2, we describe the nature of
environmental systems and their characteristics known to be relevant to answer
ecological, environmental, and sustainability questions. In Sect. 2.3, we discuss
the observation of ecosystems and environments. We pay special attention to
points that may be hard in nearly inaccessible or untouched regions such as in
remote Amazon forest sites.

2.1 Spheres

Life on Earth is confined in a relatively thin slab 16 km thick embracing the
Earth’s non-gaseous surface. This slab is delimited inbound by the Earth’s
magma and outbound by the interplanetary void. Driven by solar energy, a
thermodynamic turmoil incessantly goes on in this slab maintaining every por-
tion of it far from equilibrium and hosting organized matter: the fifth state of
matter [5]. In this slab, a peculiar collection of chemical substances in distinct
physical states persists and evolves.

A substantial portion of the present characteristics and composition of the
collection of “things”, interactions, and processes in this slab that form the
Earthly environment is known to be a consequence of evolving and evolutionary
processes intrinsic to its living portion. The elements in this collection are usually
grouped in spheres named after the physical state of the majority of its elements:

– the pedosphere P (mostly solid or grained soil),
– the hydrosphere H (that may be saline or fresh),
– the cryosphere C (either solid or powdered),
– the atmosphere A (mostly gaseous, sometimes liquid), and
– the biosphere (formed by living matter).

These spheres are tightly intertwined. No matter how they are delimited,
there is no point in this Slab where they can be topologically disentangled. There-
fore, we consider as an environmental phenomenon what happens in any por-
tion of the Earthly environment that contains ecosystems and takes into account
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interactions between components of the biosphere (organisms and biomes) and
elements of the other spheres, highlighting the effects that biosphere elements
may have on phenomena in the other spheres. An environmental system is any
semi-formal delimitation of an environmental phenomena that includes ecosys-
tems and, therefore, trophical webs. This implies considering effects induced by
the less organized phases in the other spheres upon biosphere components of the
system. However, the exact delimitation of ecosystems or environmental systems
is a difficult task. The sound establishment of environmental systems can only
be achieved gradually [12].

As stated in Sect. 1, an ecosystem is the first entity in the hierarchy of biolog-
ical organization that is complete [17, Preface]. It can sustain itself based solely
on the input of solar energy, nevertheless allowing exchanges with surrounding
components and factors. To conform to this definition, it needs to embrace all
components (biological and physical), interactions, and processes necessary for
survival. For instance, it needs to have photosynthetic components, detritivore
and catabolic pathways restoring the basic nutrients, and any anabolic paths
needed to reconstruct its components. It is pointless to have all these compo-
nents if they do not interact and evolve supporting each other. Ecosystems are
the environmental counterpart of cells that are the first organizations able to
sustain life processes and reproduce. Contrary to cells, ecosystems have no well
defined, readily recognizable, boundary leaving clear what belongs and what
does not belong to the system. The pertinence of a component or process to an
ecosystem can only be determined through the evaluation of the strength and
quality of its interactions with other ecosystem elements.

2.2 Factors and Behavior

In this section, we discuss the nature and known relevant aspects of environmen-
tal systems.

The identification and study of ecosystems and environmental systems is a
difficult task due to several ingredients. The first ingredient is the strong depen-
dence of biological and ecological behavior on interactions and intercomponent
relations as much as on the interacting components proper. Ecological inter-
actions fall into three general classes: (1) classical (predator-prey), (2) mutu-
alistic, and (3) parasitic/parasitoid, but have an enormous grade of variation.
Relations concern the nature of interaction and are not easily classified. Those
more relevant to the identification of trophic networks are energy/mass related,
informational (driven mainly by biochemical signaling and genetic material),
and functional, although the “function” of any ecosystem component can only
be fully appreciated after understanding its behavior [18]. Interactions enchain
forming networks and paths that are often circular [7,19]. Circular paths tend
to be self correcting (homeostatic) within certain limits. They may nevertheless
break down producing violent oscillations and changes in ecosystem homeostatic
regimes when any intervening variable reaches values beyond the safe limits [7].

The second ingredient relates to the magnitudes of scales intrinsic to ecosys-
tems which extend from the molecular scale to large geographical areas and fro
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smaller than a second intervals to centuries. Ecological interactions connect com-
ponents at all scales, where processes have rather distinct characteristic times.
For instance, energy-capturing (photosynthetic) and many catabolic processes
occur both at sub-cellular and molecular scales and at supra-organismic scales
(prey-predator games).

The third ingredient is the diversity of “things” and interactions; what refers
both to the strength and the nature of interactions (what is exchanged and
how the exchange occurs). Components of a phenomenon as well as its interac-
tions can be classified into distinct types and associated with different behaviors
within the ecosystem at various scales. Ecological diversity generally implies that
different components and trophic chains have the same dynamical or functional
role in the ecosystem and that interactions of different kinds and strengths may
perform alike in ecosystems, favoring stability.

Living entities and ecosystems are open dynamical entities that are highly
sophisticated in their organization. Detecting boundaries and revealing organi-
zation are not the only nonstandard characteristics associated with ecosystem
observation. Due to the enormous importance of interactions in its behavior, cru-
cial aspects of ecosystems that affect its long term behavior cannot be directly
observed in short periods of time and need the intervention of models to be
perceived and observed or estimated. The following aspects require the explicit
use of models to be observed: indirect effects, interaction strength, phenotypic,
plasticity, food preferences, influence of traits, behavior modification of elements
at various levels of organization, and many more factors. These factors deter-
mine the length of trophic chains, the adaptability and flexibility of a trophic
network, the onset of trophic cascades, ecosystem storage capacity, biodiversity,
resilience potential, etc. The exactness and fidelity of their records are closely
intertwined with how well the model represents the phenomenon, requiring sev-
eral iterations to retract reality. Models in the present case are also the final
output of an environmental probe, or ecoscope.

2.3 Observation of Ecosystems and Environmental Systems

In this section, we discuss how to do long term observations of ecosystems within
an environmental system.

It would be clumsy to represent and understand ecosystems in their finest
level of detail: considering all molecules, even individuals, and tracking their fate.
Ecologists resort to aggregation directed by the biological organisation hierarchy
and to an account of possible interactions to address ecosystems and environ-
mental systems. Furthermore, the Amazon floodplains phenomenon [9] points to
the fact that measurable and quantifiable data alone are not enough to model
and foresee and ecosystem’s fate [12].

Ecosystems are usually represented by networks or webs that deploy ecosys-
tem components, the relations among them, and the possibilities of interaction
between any two components. Webs describe components and how they might
interact. Connections in an ecological network represent permissible interaction
channels and constrain the ecosystem’s dynamical behavior [14]. Interaction
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channels may convey mass, energy, or information (in the form of biochem-
ical signals and pollination) and are of utmost importance in understanding
ecosystems [20]. Whenever information is conveyed, the effect is generally much
stronger than just the stimuli.

Aggregation goes from individuals to collectivities. Substances, populations
and communities are aggregations respectively of molecules, organisms or pop-
ulations [8]. Organisms themselves vary in scale and organizational complexity
extending from unicellular organisms to large mammals. Each aggregation or
organization level has its own spatial and temporal scales. Although not frequent,
nodes of the same trophic web may represent elements at various aggregation-
levels, as when individuals interact with populations.

Often, more than one web (each one is a subnetwork) is needed to sensibly
represent all aspects and interactions relevant in a study. Their use reflects differ-
ent perspectives of study and affect how observations are collected. Depending on
the focus of observation, there are source, sink , and community food webs that
can be topological, energetic, or functional depending on what interactions are
represented. Many issues in the observation of ecosystems, e.g., the source, sink,
community, population, and individual approaches depend on human choices
about emphasis and observation procedures and are not attached intrinsically to
the nature of the ecosystem. Moreover, it is important to inspect an ecosystem
from several perspectives and aggregation levels to filter and compensate impacts
on the model caused by decisions of constrains in the observation process, as well
as to enlarge the model representativeness. This can only be achieved with long
term, continual monitoring of ecosystems.

To register conditions, resources and signals [3,8,15] the observation of envi-
ronmental systems needs to acquire:

– basic physico-chemical data (e.g., temperature, luminosity, (relative) humid-
ity, acidity, salinity, fluid flows, concentration of nutrients, pollutants, etc.);

– determine (dynamical) patterns (e.g., soil structure, floral and faunal distrib-
ution and maturity, trophic preferences etc.);

– and identify novelties arising from invaders, extinctions, and long range
changes in “external” conditions;

– changes in the trophic web.

Moreover, all of this data-gathering effort has to be accompanied by a thor-
ough evaluation of the indirect, dynamical characteristics [6,22,23], to unveil
several relevant aspects that cannot be directly observed because they depend
on how each directly observed component interacts with others.

3 Environmental Probes

In this section, we define an environmental probe. In Sect. 3.1, we relate the
probes to the Internet of Things (IoT) concept [2] and enlargen this concept to
accommodate computational objects and human beings. In Sect. 3.2, we discuss
tracking trophic changes and recognizing interactions, novelties, and imbalances.
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An environmental probe is a collection of interconnected sensors, actuators,
computational models, and human beings that produces data and observations
in natural or artificial milieus that forms a picture of an ecosystem or an envi-
ronmental system. Sensors are not tied to one specific computational model
and may rearrange or re-group dynamically. A computational model attached
to a group of sensors represents the behavior of an ecosystem dynamical entity:
an individual, a population, a community, or elements of other environmental
spheres interacting with the ecosystem, like rivers, lakes, soils, etc. When bound
to a model, sensors adjust parameters and simulations preventing the latter to
depart from observations in the long run. The ecosystem is represented by a
collection of interconnected computational models that interact by exchanging
signals, matter, and energy abstracted into data flows between computational
objects. The human beings provoke rearrangements, insert novelties, valuate
observations and create new perspectives. They eventually introducing new sen-
sors and classes of models and submodels in the probe.

Environmental probes should capture most (ideally all) features of ecosys-
tems and environmental systems. As discussed in Sect. 2, these features may
not be readily apparent and require models to be perceived. Analogously to
natural ecosystems, these secondarily observable aspects emerge from the inter-
actions and the collective execution of interconnected computational models and
sensors. Component models and connections need to change and adapt as new
ecological elements appear or disappear or as interactions between ecosystem
entities change, to better match simulations to aspects considered important by
the human components of the probe.

The concept advanced in this section tries to better delineate these character-
istics and show that current technologies make it possible to build environmen-
tal probes. For the sake of simplicity, we abstract from the energy and resource
dependence of sensors and actuators, since technological advances in batteries
and circuits may quickly void any assertion about those issues.

3.1 An Adaptive Network of Things

Internet of Things (IoT) is still a moving concept. This term first appeared in
1999 and is due to Kevin Ashton [1]. As presently stated this concept allow
all sensors to be connected to the Internet, to communicate without human
intervention, and to build useful databases automatically. If the IoT philosophy
is successful, many of the major hurdles of data gathering and mining will be
automated, freeing up humans to do things that computers are not good at.

An ecosystem is grounded on a collection of interacting organisms or orga-
nizations of organisms that use physical, chemical, and biological resources to
recreate and reorganize themselves. Therefore, using IoT as a basis to discuss
environmental probes, Things should include anything that can mimic, dupli-
cate, or implement organisms’ behavior and capabilities, and be attached to the
Internet. This includes the usual things in a Internet of Things (e.g., sensors,
actuators, communicators, RFID tags etc.), as well as autonomous transporters,
objects able to report about themselves, implementable Turing Machines, com-
municating processes, and so on.
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There are many factors in ecosystems that may change communication paths
within it. Things that previously interacted become isolated and stop commu-
nicating and vice versa due to displacements or modifications in their surround-
ings. Among these factors we find distance modifications, obstacles, temperature
changes, flooding, variegated displacements, and loss of power. In an environ-
mental probe there is not just information transfer and exchange between nodes,
as in a standard IoT, since energy and mass may also be transferred between
ecosystem nodes. In living systems, however, the existence of an interaction chan-
nel does not guarantee an interaction (mass or energy transfer) like in physical
and chemical phenomena since a game may mediate the interaction (e.g., during
predator-prey interactions). Hence, the network idea in the Internet component
of an IoT must be generalized to an organization represented as a whole-part
graph [10], where connections are computationally active. Whole-part graphs
may be roughly described as a tree where each fork is a hypergraph [11].

In the present context, an IoT is an organisation of information-capable nodes
that is reorganizable and can adapt to internal and external stimuli. Opera-
tionally, an environmental probe is such an IoT.

3.2 Monitoring Environments

Ecosystems are open systems with fuzzy, imprecise, and moving boundaries that
can only be delineated along intervals of time. They are living systems in the
sense that their inner relations change often, adapting to present conditions,
and a fraction of their components are substituted by equivalent ones over long
enough periods. In Subsect. 3.1, we described environmental probes as adaptive
IoTs in our extended sense. In this subsection, we discuss their behaviour and
operation by sketching the dynamical characteristics of environmental probes.
Ideally, an environmental probe must reproduce the state of ecosystems as accu-
rately as possible since the state of a system allows foreseeing its behavior in the
immediate future [16].

However, due to the necessity of tracking changes in interactions and in the
possibilities of interactions, the state of ecosystems and environmental systems
need to include its trophic web [12] that is mathematically represented by the
interaction graph of dynamical systems [14]. The state of an environmental probe
at a given moment, therefore, must include the current organization of its under-
lying IoT, which shall represent the ecosystem’s trophic web, together with all
observed values and features. Thus, the actual observation of an ecosystem by
the ecoscope is an organization composed of the present state of the underlying
IoT, together with the states of each of its sensor, actuator, and computational
nodes.

Changes in the relations of an ecosystem’s trophic web can be tracked by
changes in the organization of the probe’s underlying network. This is a conse-
quence of rearrangements of sensors in space and time and the ability to create
virtual subnetworks for communication and interaction among the environmen-
tal IoT nodes.
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Many components of real ecosystems are living entities and adapt to nearby
changes by changing their own organization. To track this, some portions of
the environmental IoT must adapt. Modern sensors can be remotely controlled
and reprogrammed to sense a different collection of aspects. Their flexibility is
limited. Computational objects that model both components and interactions
are quite flexible, as are the programming connections among them. Computa-
tional models can represent from individuals and populations to communities
and higher organizations by means of appropriate program schemas. They can
also intelligently alter themselves or be reprogrammed by humans when needed.

Therefore, the operation of an environmental probe may be summarized as
follows:

– Sensors provide data that is available at appropriate intervals, relocating and
regrouping themselves grounded on the observations made.

– Computational objects receive sensor data comparing observations with sim-
ulations based on previous observations taken as initial conditions.

Whenever simulations depart from observations, they correct themselves and
sensors in the following manner:

– They may reprogram sensors and reprioritize their associations.
– They adapt themselves by adjusting parameters, by altering their own instruc-

tions through the many technologies available, by creating and destroying
computational objects, by altering connections between computational object
and between those and sensors and actuators, and by calling for human assis-
tance.

– Humans may intervene in creative and unpredictable ways.

4 DDS and Future Directions

Natural phenomena are recognized though changes in attributes associated with
their interacting elements and interactions. The interdependent, ever changing
nature of environmental systems challenge our understanding of their normal
or unstressed behavior. Identifying homeostasis related states of ecological and
environmental phenomena is crucial and will greatly enhance and deepen our
understanding of environmental change and the associated rates. To accomplish
this, we need long term observations of wild environments that usually sit far
from human settlements where observational and scientific knowledge is normally
found.

Monitoring regions of difficult access, like remote sites in the Amazon region,
is of utmost importance for the establishment of an Environmental Science. This
kind of monitoring provides information about which changes are “acceptable”
and which lead to environmental change (good, bad, and noncommittal). The
probe sketched above is not a final solution. Maintenance of equipment, even
“self repairing” and resilient ones, and the ultimate recognition of novelties still
depend on human intervention and presence. The proposed probe can reduce
this dependence and lessen all sorts of costs associated with field excursions.
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Available robot and automatization technologies allow for remote inspection
and intervention to a certain level. The role of DDS methodologies and paradigms
extends far beyond the mere automation or telescoping of existing observation
procedures. It has the potential to transform a network of sensors, computational
objects, hybrid systems, and humans into a symbiotic whole able to automati-
cally repeat decisions and foresee the majority of environmental aspects known
to be relevant. The goal is to able to mimic the behavior of the environment to
an extent capable of supporting sustainable decisions.

In this sense, DDS methodologies allow us to build modeling machines that
leverage the role of human beings in this process to a meta-level. Science has
proceeded through a cycle of observation, representation (modeling), and assim-
ilation (reasoning and knowledge enhancement) since the scientific revolution
in 17th century, where observations were gathered either as passive recordings
of changes in nature or with (wet) experiments in laboratories. Observation
always required the construction of artifacts to collect observations and perform
experiments. The advent of computers largely widened this process by introduc-
ing a virtual (computational) environment where virtual artifacts can be easily
constructed and virtual experiments can be performed in formerly unthinkable
situations. The possibilities underlying this attributed a new role to models that
once simply represented observations in a comprehensible, synthetic, and manip-
ulable manner. Virtual experiments opened new ways to re-think observation and
re-engineer its methods, particularly with respect to what was formerly passive
recordings.

DDS methodologies and computational modeling techniques allow us to go
further in improving the scientific process. By intelligently introducing adapta-
tion and decision abilities in computational objects and sensors it is possible
to leverage the observation process by building probes that adapt their behav-
ior to what is being observed and then modelg it more accurately. Such probes
are even able to identify novelties to a certain extent. They allow for observ-
ing interactions for their strengths and other aspects of nature that are crucial
in understanding complex phenomena [21] that are not observable without the
intervention of (partial) models. This includes ecological and environmental phe-
nomena and phenomena at other scales that have living entities as components.

Combining DDS and environmental probes allows us to model an environ-
ment over a very long timeframe, predict future changes, and shepard its changes
to some degree. Unlike in a conventional DDS where we change physical models
to suit the data, here we are using DDS techniques to derive and modify the
environmental model over long periods of time based on the data collected to
date. Environments that are far from cities and people, such as in the Amazonal
regions, will be much better modeled using this technique.
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LNCC/MCT, Petrópolis, December 2009

12. Kritz, M.V.: Boundaries, interactions and environmental systems. Mecánica Com-
putacional XXIX, 2673–2687 (2010), http://www.cimec.org.ar/ojs/index.php/
mc/article/viewFile/3183/3110

13. Kritz, M.V., Dias, C.M., da Silva, J.M.: Modelos e Sustentabilidade nas Pais-
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Abstract. Spurred by needs related to research on the effects of climate
change on ecological systems, distributed facilities for ecological research
are of growing importance. While software infrastructure for low-level
networking services are well-established, experiments using these facili-
ties will demand real time data-driven workflows for monitoring, model
inference, and control of environmental processes. In this paper, we moti-
vate and present a middleware-based approach that enables construction
and deployment of workflows that assimilate real-time streaming data
and, if necessary, command and control streams. We demonstrate the
approach by developing and deploying a workflow for characterizing the
round-trip delays incurred by increasing levels of software infrastructure,
and using the workflow to assess time delay performance in laboratory,
campus, and remote scenarios.

Keywords: Closed loop · Real-time · Workflows · Ecology · Middle-
ware · Experiments · Design · Delay

1 Introduction

Evidence is strong and growing that the rate of climate change is such that
many ecosystems will not be able to adapt rapidly enough to survive if they are
not assisted by human intervention. If we can synthesize predictive performance
models for these systems from experiments, we can improve understanding of
how they will respond to climate change and develop a scientific basis for ecosys-
tem restoration, and more broadly, ecological engineering. Thus there is a need
for experimental platforms that will enable data-driven modeling of the effects
of climate on these systems.

Experiments of this type require the establishment of garden plots across
geographically-distributed climate gradients and the ability to manipulate envi-
ronmental processes, such as plant water availability, to provide a spectrum
of potential future climates. We have been developing a facility that com-
bines an array of gardens distributed over an elevation gradient with engineered
infrastructure for sensing, networking, computation, and actuation of key envi-
ronmental processes to support multiple, concurrent, long-term experiments.
c© Springer International Publishing Switzerland 2015
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In this paper, we describe on-going work at the intersection of scientific work-
flows and closed-loop real-time control. This work builds on foundational sensing,
computation, networking and actuation infrastructure to enable development
workflows for management of complex experiments. These workflows are neces-
sarily closed-loop since efficient sensing, learning, reasoning, and decision-making
will rely on the interplay of streaming data and evolving models.

We first present our middleware-based architecture for integration of modu-
lar algorithms into closed-loop workflows. We then describe a specific diagnostic
workflow for data-driven modeling of the delays associated with the distributed
infrastructure; such workflows can be used to monitor the performance of the
overall system and provide services to support delay-sensitive dynamic workflows
at the experiment application level. Finally, we use this workflow to characterize
the delay performance of our deployed infrastructure that incorporates process-
ing modules and cellular data links to remote garden sites.

2 Previous and Related Work

Different approaches to the development of scientific workflows [4] have been
explored [3,6–9], but they have not addressed the requirements of real-time,
closed-loop systems. A workflow is a data flow graph [12–14], with tasks and their
software implementations as nodes and their connectivity specified by directed
edges. The graph may reflect a simple processing chain or a more complex struc-
ture that supports closed-loop control. Graphical representations at this level
are well-established across many disciplines, and are used in many engineering
design and simulation tools that can support real-time and closed-loop work-
flows, e.g., Simulink, LabVIEW, and Ptolemy [11]. These tools, with their focus
on initial engineering design, are primarily desktop applications. However, our
approach is network-centric, with processing blocks executing on any Internet-
connected host that are interconnected via Java-based middleware. In our app-
roach, processing blocks can be designed and tested in simulation environments
prior to deployment. For example, Simulink can be used for algorithm design and
generation of C/C++ code that can be integrated into the real-time workflow
using Java/C++ interfaces.

3 Overview

The Southwest Experimental Garden Array (SEGA) is a facility that allows
researchers to study the ecological and evolutionary responses of individual
plants, species, and communities to a range of climate regimes. SEGA consists
of ten gardens, each of which can support multiple experiments, each consisting
of multiple plots. Each SEGA garden is instrumented with a network of wire-
less sensor/actuator nodes for sensing and control of environmental processes.
Each garden is also equipped with a central data logger that captures garden-
scale weather/climate data and a garden server; the garden servers, along with
the on-campus SEGA Real-Time Data Center (RTDC), form a network that
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supports experiments across multiple gardens. The RTDC provides a range of
services that support both experiments and SEGA operations, including real-
time data processing, generation of actuation commands, data validation and
quality assurance, streaming data visualization, and performance monitoring.

Streaming data middleware [2,10] connects the SEGA garden servers and the
RTDC, providing networking abstractions that hide lower-level networking layers
by offering services such as stream naming, publish/subscribe semantics, and
local persistent storage. The SEGA project uses DataTurbine [1], an open-source
middleware package written in Java, to stream data between garden servers and
the RTDC.

DataTurbine abstracts TCP/IP connections so that streams can be routed
to and from other Java programs regardless of their locations. Data can be
inserted into, or extracted from any instance of a DataTurbine Ring-Buffered
Network Bus —or simply RBNB—using a client program called a Source/Sink
that invokes DataTurbine methods via the DataTurbine API. Source/Sinks are
written in Java and can include code that implements arbitrary data process-
ing, including learning, reasoning, and decision-making. Source/Sinks can both
produce and/or consume data streams both to and from DataTurbine instances.
For this reason, here we refer to DataTurbine clients as processors.1

Each garden server executes a processor that gathers incoming data packets
from the garden’s sensor network and central data logger and inserts them into
a local DataTurbine instance. A processor running on the RTDC server uses a
request/response protocol [16] to fetch data and insert it into a local RBNB.
Other processors further parse and process the raw streaming data, e.g., trans-
forming them to engineering units or performing sensor fault detection.

4 Closed-Loop Control of Ecological Experiments

The middleware-based architecture and cyber-infrastructure described in the
previous section allows for the introduction of any number of modular processors
that are able to consume and/or produce RBNB data streams. Processors can
be composed into directed graphs to construct processing chains that implement
streaming data workflows. For example, a particular experiment may require the
fusion of in situ streaming data with external streams (e.g. models of insolation)
for inference of parameters or state. Perhaps more importantly, closed-loop real-
time control can be implemented. An example of one possible configuration of
a closed-loop workflow is illustrated by Fig. 1. The shaded block represents the
physical environment as well as the sensors and actuators that interact directly
with the physical system or, in this case, the garden plot environment. Signals
from the sensors are processed and fed to a model inference processor. The model
is used to synthesize a control system which can, in turn, make decisions and
send commands to actuators that manipulate the environment.
1 The authors thank J. Eberle, J.-P. Calbimonte, and A. Marjovi for helpful discussions

around this concept and for this label.
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The modeling processors can be viewed as comprising the second-highest
level of a layered architecture (Fig. 2) in the SEGA infrastructure. At the low-
est level is the garden plot; this is the physical environment being sensed and
manipulated via sensors and actuators at the second-lowest level. In the SEGA
implementation, the sensors generate data streams that are transported to the
RTDC via the layers shown in Fig. 2 and assimilated by a data-driven model of
the environmental system. This model then drives the synthesis and tuning of a
control algorithm which closes the loop by manipulating the in situ actuators.
Each logical entity in the workflow can be represented as a block in a data-
flow graph and implemented as a processor. Because of the layered model, a
researcher designing an experiment using the platform needs to only be familiar
with the highest level of abstraction.

Physical
Environment

Sensors

Actuators

Sensor
Signal 

Processing

Desired
Dynamic

State

System
Model

Control
System

Fig. 1. An example of a closed-loop workflow using interconnected processors

Using a block based approach to designing closed-loop workflows also enables
the rapid design and testing of the modular system within a simulated environ-
ment. Software such as Simulink can be used to interconnect multiple processor
designs in order to validate basic interactions used by the model. The interplay
of high-level algorithms can be tested using the simulated models and the results
can then be used as the basis for generating Java/C++ code for incorporation
into the real-time workflow.

A typical example of such a closed-loop workflow is control of plant water
availability in one experimental plot as a function of soil moisture observations at
another plot, perhaps in a different garden. An array of soil moisture sensors and
a solenoid controlling a irrigation system valve comprise the sensing/actuation
layer. The soil moisture observations are assimilated by a system identification
(or model calibration) processor that infers the parameters of a state space soil
moisture model [17]. This model is then used to estimate the system state and
tune a control algorithm that, using the sensed and processed data, determines
when to toggle the solenoid and closes the sense, learn, reason, decide loop.
This workflow is implemented as processors for sensor signal processing, system
identification, state estimation, and control.

At the highest abstraction level, the SEGA Web Portal is hosted on the
RTDC and provides a user interface that includes a set of tools for interact-
ing with experiment workflows. The SEGA web portal is a broker between the
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Fig. 2. A representation of the abstraction layers used in the SEGA cyber-
infrastructure

workflow and the user that allows the monitoring of system status, real-time
data visualization, and data export for exploratory data analysis.

The system is designed such that an arbitrary number of processors can
be plugged in and interconnected via the middleware. These processors might
implement modular algorithms that ingest data streams and generate commands
based on a set of parameters or they might simply sniff data and create a log
of potentially corrupted data points or even assess system performance across
networks. Any given processor has access to nearly any other entity within the
workflow and can therefore serve a wide variety of purposes. The Web Portal
facilities the relationship between processor and workflow.

The Web Portal’s interactions with the workflow are governed by a set of
support libraries. SEGA users have access to some of these support libraries
that are utilized when creating and designing new processors. This approach
further abstracts the users’ experience from the complexities of the underlying
workflow design. One such support library facilitates adding processors that read
and analyze incoming data and generate control commands that can be used to
trigger actuation events in the environmental plot.

4.1 SEGA Processor Construction Library

We have designed a Processor Construction Library (PCL) that supports rapid
creation of processors with parameters that can be exposed to the user via the
Web Portal, enabling on-line editing of parameters or operating modes. Modular
control algorithms implemented using the PCL can be added or removed from
the Web Portal on-the-fly. The web interface gives users with administrator
privileges the ability to upload Java class files to the RTDC server via a form
submission. The server then uses the system compiler to attempt to generate
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a compiled instance of the uploaded class file within the same virtual space
that is running other processors. The RTDC creates a parent class wrapper for
the uploaded file and attempts to assign the newly compiled instance as the
child class to determine if the processor can be safely inserted into the currently
running workflow. At this point, if everything has been successful, the RTDC
can verify that the uploaded processor class file meets all the system design
requirements. If the processor fails to pass any of these tests at any point during
the upload and compilation process, it will not be added to the workflow and
the user is informed as to why the processor failed the tests.

The PCL enables processors to interact directly with the middleware by
providing high-level convenience methods to flush and fetch streaming data to
and from DataTurbine instances without requiring the user to manually handle
DataTurbine connections. The PCL includes an environment that also abstracts
error-handling and thread-safe processes from the user. The high-level function
calls are made using the PCL API that provides access to streaming data, given
the RBNB stream names are known. For example, a workflow might consist
of a chain of processors that assimilate temperature measurements. The sensor
reading is inserted into the workflow as a raw value; in this case, there might
be a processor that converts the raw measurement into engineering units and
subsequently flushes this converted value into a DataTurbine instance, making
it available to other processors.

5 Case Study: Measuring Round-Trip Delays

Workflows facilitate monitoring and modeling the performance of the SEGA
cyber-system itself in addition to control of ecological experiments. Here we
describe the design and use of a workflow to measure round-trip network delays
that enables inference of a predictive model of the delays in closed-loop work-
flows. We employ a client/server model, where a client processor sends message
packets to a server processor, receives a response message, and records the inter-
vening time. The server processor simply listens for packets from the client and
generates response packets on a one-to-one basis.

In this case study, we were interested in the potential overhead effects of the
DataTurbine middleware and the use of processors. In the latter case, we wanted
to quantify delays associated with implementing algorithms using processors
built using the PCL. To estimate these effects, we used both ‘raw’ UDP and
TCP packet exchange as a reference system. In the following sections, we describe
three distinct modes of operation to characterize the corresponding delays.

In long-term ecological experimentation applications, the cyber-infrastucture
should detect, report and log system performance and events, and attempt to
improve performance or recover from failures. As part of this effort, we are
enabling the creation of processors that can monitor overall system performance
as well as the performance of the workflow they are part of. Although the case
study presented here employs stand-alone processors, we intend to make this
capability available in the PCL so that other processors in all experimental
workflows can monitor delays.
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Figure 5 provides a graphical representation of the network interactions that
occur in each of the available operational modes. These round-trip delay tests are
run on the operational SEGA hardware in an effort to estimate system perfor-
mance as accurately as possible. The following sections describe the operational
modes in more detail (Fig. 3).
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Server
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TCP/IP
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Fig. 3. (A) Raw-Packet exchange mode, (B) DataTurbine-Packet exchange mode, and
(C) DataTurbine with processor control packet exchange

5.1 UPD and TCP Raw-Packet Exchange

Raw-packet mode can operate using UDP or TCP and does not include either
DataTurbine middleware or processors that perform data processing algorithms
built on top of the PCL. A simple client processor on the garden server creates
either a UPD or TCP socket connection to a server processor running at the
data center. Packets containing a sequence number are echoed back to the client
processor by another processor across a network interface that is running in
server mode.

Internally, a packet generation thread creates message payloads containing
unique message sequence numbers and buffered to reach a desired packet payload
size. A custom object class is used to store the time when data is sent across the
socket connection. The object stores the sequence number, a timestamp of Java
system time, and a time-sent value. A user-defined time interval is used to run
a timer that continually creates packets that contain the sequence number.

The received packet thread monitors the socket for data packets from the
server and, when a packet is received, the client processor fetches the original
message and compares the time sent with time received to calculate the round-
trip delay for that particular message. Sent and received time measurements use
Java’s System.nanoTime() method which has a nanosecond resolution relative
to an arbitrary but fixed point in time [15].
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5.2 DataTurbine Packet Exchange

This mode uses DataTurbine instead of a basic UDP or TCP socket and there-
fore includes the overhead of the DataTurbine middleware. In DataTurbine, data
streams are called channels. The server processor establishes a DataTurbine con-
nection to the client and configures itself to listen for incoming data on one
channel while producing outgoing data on another. The processor then monitors
the client channel; when a new packet arrives it is repackaged and returned to
the client via the source channel.

The client processor also has source and sink channels but both connections
are made to the local instance of DataTurbine. The client uses two threads and
operates in a similar fashion to the raw packet mode client. The same time-
delay measurement object is created when a packet is sent. The packet itself is
constructed identically to the process described by the raw packet mode, but in
this mode the packet is flushed to the local DataTurbine instance. This is the
source channel that is being monitored by the server’s sink. The client locally
inserts packets and the server remotely fetches data on this channel when it
becomes available. This process is done to mimic the actual interactions between
garden server and data center in the SEGA cyber-infrastructure. When the server
returns the data packets, the client then runs the same check as the raw mode
and calculates the round trip delay.

5.3 DataTurbine with Processor Control Packet Exchange

This mode aims to mimic an experiment control workflow; however, minimal
computational processing is used to enable quantification of the delay cost of
using processors constructed using the PCL. The client runs exactly as it does
in the DataTurbine Implementation mode, but the server is slightly different in
this mode. A very simple server processor was built using the PCL that monitors
the client source channel and performs a simple arithmetic operation on the data.
The server still repackages the received packet and flushes it back to the client,
but this occurs after the arithmetic operation is performed.

5.4 Measuring the Effects of Locality

To test the effects of locality on round-trip delay (RTD), we conducted testing
under three scenarios:

LAN - A loop between a garden server and a development RTDC server in
our laboratory are connected via a common LAN provided using a single
Ethernet switch.

Campus - The garden server in our laboratory connects to a server at our
Real-time Data Center about 1 km away.

Remote - A garden server at a remote site about 10 Km from campus is linked
to the RTDC, requiring a cellular data link, the Internet and the campus
network.
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Identical Java-based software for the client and server is created and deployed
on both SEGA servers that are to be tested. The round-trip delay processor is
configured so that the same software package can be executed using the different
modes described in Sect. 5 as well as being run as either a server or client.

6 Numerical Results

In each of our tests, we transmitted 1000 64-byte packets at a rate of one per
second for each of the three scenarios and four modes described above. All tests
were performed back-to-back to minimize the effects processor loading and of the
diurnal variation of network congestion. Results of the RTD testing are summa-
rized in Table 1. To visualize the results, we also generated beanplots of the
round-trip time distribution, as seen in Fig. 4. Beanplots combine a distribution
with a scatterplot [19]. The distribution is drawn in a solid color and is overlaid
by individual observations represented as short horizontal lines. The thick hori-
zontal line indicates the mean of each distribution, while the dotted horizontal
line across each plot is the overall mean of the delays measured.

In the LAN and Campus scenarios, TCP/IP significantly improved perfor-
mance over UDP, with average RTD reduction of approximately 140 ms and a
considerable reduction of the frequency of extreme delay values. Also for the
LAN and Campus scenarios the RTD for TCP/IP was under 1 ms. The intro-
duction of the DataTurbine middleware gives rise to an increase in the average
delay of 6 to 8 ms. Again, in the LAN and Campus scenarios, the increased
computational burden of the processors (Experiment mode) appears to intro-
duce a further delay of about 1.5 to 5 ms. Finally, note that the remote data
connection involves the Internet, the cellular provider’s private network, and the
wireless link. The results are somewhat surprising: on average, UDP has better
average performance, but a broader distribution of outliers. The DataTurbine
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Fig. 4. A beanplot representation of network round-trip times across different SEGA
servers
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Table 1. Round trip delay measurements for raw packet, middleware-based delivery
using DataTurbine, and closed-loop experiment control.

Scenario Results (ms) Raw (UDP) Raw (TCP) DataTurbine Experiment

LAN Mean 144.4 0.958 16.69 22.59

Std. Dev 693.8 0.857 9.55 33.67

Campus Mean 142.2 0.905 15.97 21.83

Std. Dev 694.89 1.23 6.69 34.45

Remote Mean 330.7 221.4 184.9 186.4

Std. Dev 881.2 114.75 52.93 35.63

Real-Time Data Center

A B

Remote Garden Servers

8s 2s

1s

3s

Fig. 5. Example decision process to reroute packet traffic based on real-time delay
measurement.

and Experimental Control modes had better performance than Raw TCP/IP,
perhaps due to sub-hourly variations in traffic congestion.

7 Towards Operational Performance Monitoring

The round-trip delay measurement workflow could be executed periodically
across a set of servers, enabling other workflows that could analyze the results
and adjust decision-making processes. For example, if we know that garden server
A is experiencing major delays in communications with the RTDC but commu-
nication between garden server B and the RTDC are within the expected range
we can attempt to identify a faster route for packets destined for garden server
A. We might then perform delay tests between garden servers A and B. If these
tests show that redirecting traffic intended for garden server A through garden
server B from the RTDC would be faster than transmitting directly to garden
server A, we might choose to temporarily reroute traffic through garden server
B. This example is illustrated in Fig. 5.

8 Concluding Remarks

We have introduced an architecture and implementation to build and deploy
complex workflows that operate in real-time. These can be open- or closed-loop
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depending on the application-level need. In future work, we plan to further refine
the PCL so that processors can invoke complex algorithms implemented in lan-
guages familiar to scientists, such as Mathematica, Matlab, and R. We also plan
to explore supporting a simulation capability so that experimenters can develop,
test, and refine workflows before deploying them to ecological experiments.
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Objective Detection of Lagrangian Vortices
in Unsteady Velocity Data
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Abstract. Lagrangian Coherent Structures (LCSs) are special material surfaces
that delineate tracer patterns in unsteady flows. The recently developed varia-
tional theory of LCSs enables their objective (frame-invariant) detection in
numerical and experimental velocity data. Here we review the main results of
this variational theory for elliptic LCSs (i.e., perfectly coherent material vor-
tices) and show how such structures can be extracted from geophysical data sets.

Keywords: Lagrangian mixing � Invariant manifolds � Transport � Turbulence

1 Background

Fluid flows tend to display coherent structures in passive tracer fields they carry. The
centerpieces of such tracer patterns are well known in the case of steady, time-periodic
and quasi-periodic flows: fixed points, periodic orbits, invariant tori, as well as stable
and unstable manifolds [1]. These invariant structures are influential material points
and lines with distinguished asymptotic behavior. They form a skeleton of fluid particle
motion that creates a profound signature in tracer distributions over long enough time
intervals. We collectively refer to such key material objects in the flow as Lagrangian
coherent structures (LCSs).

Observational, experimental and numerical flow data, however, tend to be tem-
porally aperiodic and finite in time. None of the classic invariant objects mentioned
above is expected to exist in such flows. Yet signs of sustained material coherence are
ubiquitous in models and observations of turbulent flows. Geophysical examples
include stretching and folding of biological surfactants in the ocean reminiscent of
stable and unstable manifolds; mesoscale phytoplankton patterns reminiscent of
center-type regions filled with periodic orbits; and ring-type tracer patterns of volcanic
steam reminiscent of Kolmogorov-Arnold-Moser (KAM) invariant tori (see Fig. 1). All
this suggests that appropriately defined LCSs continue also exist in temporally aperi-
odic finite-time flow data. A mathematical challenge is to identify and extract such
structures in a systematic and self-consistent way, without any assumption on temporal
recurrence or asymptotic features.

Substantial progress has been made in the theory and computation of LCSs over the
past decade (see [2–5] for reviews). Here we focus on recent results on elliptic LCSs,
which provide an objective (frame-invariant) way of defining coherent Lagrangian
vortices in turbulent flows.
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2 Coherent Lagrangian Vortices in Two-Dimensional Flows

We consider a typical closed material curve in a two-dimensional unsteady flow. This
curve will generically stretch and fold, evolving into a closed but filamented shape. The
evolution of the enclosed fluid volume will then show no coherence, occupying an
irregular and elongated shape.

By contrast, elliptic-type coherent regions familiar from KAM theory [5] will be
observed inside exceptional closed curves. The time t0 position of such a closed curve,
denoted by c, translates and rotates under the flow but shows no smaller-scale fila-
mentation. We express this coherence property of the material line evolving from c
over a finite time interval ½t0; t1� by requiring the averaged Lagrangian strain to admit a
stationary value along the initial elliptic LCS position c [6]. Later positions of this LCS
at a general time s 2 ½t0; t� are the obtained by advecting c under the flow map Fs

t0 .

Specifically, we consider a closed curve c � R
2 at time t ¼ t0, which is mapped

forward by a flow map Ft
t0 : x0 7! xi of a two-dimensional unsteady velocity field

_x ¼ vðx; tÞ. Let c be parametrized as rðsÞ and let Ct
t0 ¼ ½DFt

t0 �TDFt
t0 denote the

Cauchy-Green strain tensor. In line with our discussion above, we seek positions of
elliptic LCSs as stationary curves of the material-line-averaged Lagrangian strain
functional computed over the time interval ½t0; t1�. In other words, the time t0 position
of the LCS is a closed curve c satisfying the variational principle

d
I
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0;Ct

t0ðrÞr0
D E

= r0; r0h i
r

ds ¼ 0: ð1Þ

The Euler-Lagrange equations arising from the variational problem (1) are com-
plicated, but turn out to be equivalent to a geodesic problem under a metric generated
by the deformation field [6]. Solving this geodesic problem gives that the curves
satisfying Eq. (1) are precisely the limit cycles of the planar direction field family.

g�k ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðxÞ � k2

k2ðxÞ � k1ðxÞ

s
n1ðxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k1ðxÞ

k2ðxÞ � k1ðxÞ

s
n2ðxÞ; ð2Þ

(a) (b) (c)

Fig. 1. (a) Spiral eddies in the Mediterranean Sea (Paul Scully-Power/NASA) (b) Phytoplankton
patch in the Agulhas leakage (Jeff Schmaltz/NASA) (c) Steam rings over Mount Etna (Tom
Pfeiffer/www.volcanodiscovery.com).
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where k[ 0 is a free parameter and 0\k1ðxÞ� k2ðxÞ are the eigenvalues of the
Cauchy-Green strain tensor field Ct1

t0 ðxÞ with corresponding orthonormal eigenvectors
niðxÞ.

The limit cycles of the direction field family (2) are therefore the initial positions of
elliptic LCSs. They tend to exist for k parameter values near one. As obtained in [6],
each such elliptic LCS remains remarkably coherent under advection. While it may
translate and rotate, any of its subsets is stretched in length precisely by the same factor
k over the time interval ½t0; t1�. In nested families of elliptic LCSs, the outermost limit
cycle serves as a coherent Lagrangian vortex boundary.

The limit cycles of (3) also turn out to be two-dimensional analogues of photon
spheres arising in general relativity [6]. As a consequence, elliptic LCSs necessarily
encircle metric singularities, which facilitate their automated detection in large-scale
velocity data [6, 7].

Figure 2 shows coherent Lagrangian vortices extracted from a two-dimensional
direct numerical simulation of Navier-Stokes turbulence [8]. The initial positions of the
vortices were located as outermost elliptic LCSs, i.e., outermost limit cycles of a
differential equation whose right-hand side is given by Eq. (1).

Figure 3 shows the application of the same analysis to the detection of coherent
Lagrangian eddies in the Agulhas leakage, a vortex shedding process in the South

Fig. 2. Coherent Lagrangian vortices in a 2D turbulence simulation [8]. Upper left: initial vortex
boundary positions detected as outermost limit cycles of (1). Upper right: final limit cycle
positions obtained by advecting their initial positions as material lines. Note the complete
absence of filamentation. Bottom: Time history of vortex #1 under advection.
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Atlantic originating from the southern tip of Africa [6]. The velocity field used in this
study was obtained from satellite altimetry under the geostrophic assumption. Seven
mesoscale Lagrangian eddies emerged as limit cycles of the direction field (1), with the
length of the extraction interval ½t0; t1� chosen as 3 months. These coloured material
patch-families translate and rotate in the northwest direction without noticeable
deformation for 3 months. Several of them remain materially coherent for substantially
longer.

3 Coherent Lagrangian Vortices in Three-Dimensional Flows

In three-dimensional flows, both surface-based and curve-based variational principles
have been developed to define and extract analogues of steady vortex tubes and vortex
rings in finite-time flows with general time-dependence.

A surface-based approach developed in [9] seeks coherent Lagrangian vortex
boundaries as outermost members of most shearing material tubes or material. Initial
positions of such material surfaces at time t0 turn out to be normal to the direction field

n�ðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1ðx0Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx0Þ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3ðx0Þ

p
s

n1ðx0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k3ðx0Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx0Þ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3ðx0Þ

p
s

n3ðx0Þ; ð3Þ

where kiðx0Þ; i ¼ 1; 2; 3 again denote the eigenvalues of the three-dimensional
Cauchy-Green strain tensor in increasing order, and niðx0Þ denote the corresponding
orthonormal eigenvectors.

Fig. 3. Families of coherent Lagrangian vortices computed from satellite-detected surface
velocities in the Agulhas leakage [6].
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Figure 4 shows a coherent Lagrangian vortex in the chaotically forced
Arnold-Beltrami-Childress (ABC) low. The boundary of this vortex was extracted in
[9] as a surface orthogonal to the direction field (3).

A more recent variational approach [10] seeks coherent material vortices in three
dimensions as smooth sets of curves satisfying an appropriate extension of the

Fig. 4. Left: Initial position of a coherent Lagrangian vortex ring (green) extracted from the
chaotically forced ABC flow [9]. Also shown for reference is a nearby closed material line
(red) encircling the vortex ring. Right: Evolution of the vortex ring and the reference material line
in the flow, showing the sharpness of the identification of the material ring as a coherent vortex
boundary (Color figure online).

Fig. 5. Coherent material vortex (blue) and its inner coherent core (red) in the SOSE data set.
Also shown is the sea surface obtain from the same model. (Image: Daniel Blazevski, reproduced
from [4]) (Color figure online).
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curve-based variational principle (1). Figure 5 shows an application of this method to
the extraction of a three-dimensional Agulhas ring from the Southern Ocean State
Estimate data set [11].
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Abstract. A non-parametric perceptual organization for coherent flu-
ids is proposed, motivated by the observation that ignoring coherence
can be disastrous for inference. Detecting coherence features and estab-
lishing correspondence can be challenging for sparse measurements and
complex structures in fluid fields. Therefore, a non-parametric repre-
sentation using deformation (geometry) and amplitude (appearance) is
developed. It is first applied to Data Assimilation and Ensemble analysis
problems for coherent fluids, following which new methods for Principal
Modes, Random Fields, Variational Blending and Reduced Order Mod-
eling are introduced. Simple examples illustrating application suggest
broad utility in environmental inference, verification, representation and
modeling.

Keywords: Data assimilation · Uncertainty quantification · Reduced
modeling · Field alignment · Field coalescence · Principal Appearance
and Geometry modes · Coherent random fields

1 Introduction

Localized geophysical phenomena can often be visualized as dynamically
deformable objects. For example, hurricanes appear to be steered by the back-
ground even as they intensify or decay. Coherence in localized phenomena can be
represented by amplitude, scale and shape descriptors in addition to their posi-
tion. This includes lagrangian descriptors of flows, e.g., Lagrangian Coherent
Structures, but so are, for the inference problems studied in this paper, vortex
elements, tracer texture, filaments and contours.

The prediction and predictability of coherent fluids is of great interest and
accounting for coherence is critical in inference methodology. To see why, con-
sider the protytpical challenges shown in Fig. 1. The optimal estimate (red) from
sparse, noisy measurements (dots) and an imperfect prediction (green) with posi-
tion error is distorted instead of being coherent (Fig. 1(a)); a well-documented
problem [11]. In the unsupervised case (Fig. 1(b)), the ensemble mean of coher-
ent fields can be incoherent, and not an exemplar of the ensemble [8,14,15].
The principal modes (Fig. 1(c)) of a Gauss-Markov Random Field (GMRF) esti-
mated from the ensemble produces incoherent random realizations even at full
rank (Fig. 1(d)).
c© Springer International Publishing Switzerland 2015
S. Ravela and A. Sandu (Eds.): DyDESS 2014, LNCS 8964, pp. 121–133, 2015.
DOI: 10.1007/978-3-319-25138-7 12
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a b

c d

Fig. 1. Unaccounted coherence attributes can lead to incoherent estimates (top-left),
statistics (top-right), and reduced models (bottom-right) of coherent fields (Color figure
online).

It is easy to see why the estimates in Fig. 1 are poor. A simple translation
of the predicted feature X ◦ q ≡ X(p − q(p))1 with Taylor expansion X ◦ q ≈
X(p) − q0

∂X
∂p for a translation q(p) = q0 has covariance Cq = C + q20E[∂X

∂p
∂X
∂p

T
].

For non-zero perturbations, Cq has less information and sparse observations
cause further loss.

Augmenting feature information could solve the problem in an analysis-
synthesis paradigm. Preferred locations, scales, shapes and amplitudes with
embedded dynamical relationships can be detected. They can be adjusted by
assimilating measurements, then resynthesizing physical fields. For example,
Tagade et al. [16] detect position-amplitude features in chaotic solitons to enable
non-linear filtering. Features can also facilitate reduced models or serve as sam-
pling “hot spots.” We call this a Perceptual Organization for Coherent Fluids
(POCF), intended for verification, inference, and modeling.

However, POCF faces detection difficulties in multidimensional, sparsely
observed and noisy fields. It faces representational difficulties for complex shapes
and deformations. One way to resolve these problems is to account for coher-
ence without explicit feature detection. Since location, scale and shape can be
controlled through a deformation of a field, i.e. X(p − q(p)), a non-parametric
representation of vector-field q leads to a generalized error model for spatial
fields, to be sure both in amplitude and deformation.
1 Gridded spatial fields are interchanged as vectors by rasterizing.
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A variety of problems are amenable to non-parametric POCF. Among them,
data assimilation [7,11,13,15,17] ensemble statistics [8,9,15], random fields,
reduced modeling, downscaling, nowcasting [8,10] and mapping [8,10,12], and
forecast error [6] decomposition. Many others are emerging.

In this paper, solutions to two fundamental and four derived problems are
discussed. The first fundamental problem is supervised inference using distrib-
ution P (X, q|Y ) on sparse, noisy measurements Y to recover gridded fields X
and q respectively. Second, we recover the coherent ensemble mean X̄ using
P (X̄, {q}|{Xf}) by solving an N-body problem that we call Field Coales-
cence [8,9]. Solutions to these problems help solve others. In particular, we
develop Principal Appearance and Geometry modes (PAG), a Coherent Ran-
dom Field model (CRF), a new Reduced order Model by Alignment (ROMA),
and a Field-Alignment based Blending algorithm (FABle). Together, they lead
us towards a statistical theory of inference for coherent structures.

The remainder of this paper is organized as follows; Field Alignment is devel-
oped in Sect. 2, Field Coalescence in Sect. 3, and PAG and CRF in Sect. 4. FABle
and ROMA are presented in Sect. 5, with conclusions in Sect. 6.

2 Supervised Spatial Inference: Field Alignment

Consider, for simplicity, the deformation X ◦ q = X(p − q(p)) of gridded
scalar field X (vector fields are easily handled [7]) deformed by a dense vec-
tor field q. Also consider a second field Y related to the first field by the
linear observation operator Y = H(X ◦ q) + n. Both fields have uncertain-
ties. To solve for X and q, consider a Bayesian expansion of the posterior
P (X, q|Y ) ∝ P (Y |X, q)P (X|q)P (q) with three terms: the likelihood, the appear-
ance (or amplitude) prior conditioned on grid geometry, and the deformation
prior. Using a deformation prior in the form of differential [7] or turbulence [18]
motion constraints, the negative log likelihood of the posterior yields a quadratic
objective [15]:

J(X, q) :=
1
2
δXT {C(Xf ◦ q)}−1δX +

1
2
δY T R−1δY + Λ(q) (1)

The term δX ≡ [
X ◦ q − Xf ◦ q

]
and δY ≡ [Y − H(X ◦ q)], C is the amplitude

error covariance, Xf is the prior estimate, forecast or first guess, Λ a scalar
potential function on deformation, and R is the observation error covariance.
Solutions to J that directly depend on evaluating gradients of C−1 with respect
to deformation q in Eq. 1 are, however, not tractable. An ensemble to implicitly
represent C in reduced rank square-root form with iterated minimization [11]
or Expectation Maximization (EM) [15] can be used. In this iterative approach,
C is updated from the estimate of the deformation ensemble {q} at the current
iteration and held fixed when the objective is solved. Even so, the dimensionality
of this optimization problem remains large.

Another, simplified approach can be used. In this iterated alternating opti-
mization approach, setting X = Xf as the most recent amplitude estimate leads
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to Field Alignment (FA):

Jq(q|Xf ) =
1
2

[
Y − H(Xf ◦ q)

]T
R−1

[
Y − H(Xf ◦ q)

]
+ Λ(q) (2)

Using the solution q̂, define X̂f ≡ Xf ◦ q̂, δX ≡ X − X̂f , δY ≡ [Y − HX], we
solve the second objective:

Jx(X|q̂) =
1
2
δXT Ĉ−1δX +

1
2
δY T R−1δY (3)

Jq and Jx must be iteratively alternated [15], generalizing the earlier two-
step [7]. Like the two-step, this formulation is also amenable as a pre-processor
to current practice and applicable with or without an ensemble. Jq does not need
C and flow-dependent Ĉ can be constructed with the aligned amplitude field.
With an ensemble, the objective Jqs =

∑S
s=1 Jq(qs|Xf

s ) is solved with ensemble
member s. Similarly, amplitude Jxs can be constructed with Ĉ ≡ C({X̂f

s }).

Nominal Solution: We solve Jq and Jx via their Euler-Lagrange equations. Jq

can nominally be solved iteratively. The solution is initialized with Xf(0) = Xf

and q(0) = 0. At each iteration i, update Xf(i) = Xf(i) ◦ q(i−1), define Z(i) ≡
HT R−1(Y − HXf(i)) and q̃(i) ≡ L(i)q(i) then solve:

q̃(i)(r) = [∇Xf(i)
(r)]T Z(i)(r) ≡ f (i)(r) (4)

Here, L(i)q(i) = dΛ/dq(i), the gradient of the potential. Note that Eq. 4 is
evaluated for each component of q̃(i) at pixel or grid point r. The final solution
is q̂ =

∑
i q(i). The objective Jx (Eq. 3) becomes defined and we get:

X̂a = X̂f + ĈHT (HĈHT + R)−1(Y − HX̂f ) (5)

Deformation Scale Space and Scale Cascade: Ravela et al. [11,13] sug-
gested differential smoothness and non-divergence constraints to construct Λ.
For some choice of weights w1 and w2, Eq. 4 becomes:

Lq(i) ≡ w1∇2q(i) + w2∇
(
∇ · q(i)

)
= f (i) (6)

Ravela et al. [7] use a multiresolution framework for large deformations.
They extend FA to multivariate and vector fields [11], including dynamical bal-
ance [15]. The control of smoothness is important. Although weights could be
viewed as length scale D, e.g. w1∇2q(i) = ∇2(q(i)/D), however, neither the
deformation spectrum’s shape changes nor lower wavenumber deformations are
resolved. Largely, the rate of convergence adjusts [7]. Thus, Ravela [11] con-
trol smoothness in two ways. First, by padding the domain to resolve smaller
wave number deformations but without changing the order of the differential
constraint. This is generally computationally expensive. Second, by alternately
reformulating the constraint. Yang and Ravela [18] assume power-laws for defor-
mation spectra and represent them as a weighted sum of Gabor scale-space basis.
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Fig. 2. SCA uses a Gabor basis to recover dominant deformation modes. It provides
a more parsimonious explanation in contrast to classical differential constraints, see
Yang and Ravela [18]. The correct deformation is recovered (top plot, second row) in
contrast to naive diffeomorphic alignment [3,4] (top plot, first row). Stochastic opti-
mization (bottom plot) is performed from random initial deformations sampled from
the deformation prior using BFGS with sparse noisy observations.

Deformation modes are estimated sequentially by cascading from DC (transla-
tion) to higher wave number bases, and call it Scale-Cascaded Alignment (SCA).
SCA controls deformation by seeking the most parsimonious solution (see Fig. 2).
It can be iteratively solved for each basis in the cascade, or through an optimiza-
tion approach discussed next. Supporting examples are shown at http://stics.
mit.edu.

Deep Minima: Stochastic Optimization. Ravela et al. [15] also provide
a non-local stochastic minimization procedure for Jq. Since the instantaneous
deformation is of the form Lq = f , therefore, q = L−1f . A random f produces
a random deformation field with structure consistent with L. This leads to a
sampling approach, and the following algorithms are used. 1. Multiple starting
points: Solve Jq from multiple initial perturbations {q0} generated by sampling
q0 = L−1η for a random i.i.d. vector η. 2. MCMC: Generate a perturbation;
accept if it improves the objective or accept with a probability if it does not [15].
As shown in Fig. 2 (bottom panel), the multiple initialization with BFGS con-
verges to the correct solution in response to sparse, noisy measurements and
a large initial error (12 sigma away). A stochastic non-local SCA approach is
desirable. It is robust, capable of handling up to about 30% noise, whereas local
minima problems plague the local iterative approach [15].

3 Unsupervised Inference: Field Coalescence

The solution to the unsupervised problem for the mean from an ensemble, in
contrast to the supervised assimilation problem, is based on observations that the

http://stics.mit.edu
http://stics.mit.edu
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Fig. 3. Field Coalescence automatically to recover the mean (top-left). The recovered
coherent principal appearance modes (top right), and random coherent realizations
with just one leading appearance and geometry mode (bottom left), in contrast to
classical synthesis (bottom right).

statistics of coherent fields can become incoherent. Formulating this as inference
on P (X̄, {q}|{Xf}) [8], an objective is developed and solved using stochastic-
EM. Each ensemble member experiences a body force from the other in this
formulation, and the resulting N-body problem discovers the coherent mean
field as its solution [9].

In the ith EM iteration (i > 0) ensemble members are deformed X
f(i)
s =

X
f(i−1)
s ◦ q

(i−1)
s , also implicitly updating the ensemble covariance Ci. Omitting

subscript i for simplicity by writing Xf
s ≡ X

f(i)
s , qs ≡ q

(i)
s and C ≡ Ci, the

E-step forms an updated objective:

J(X̄, {qs}|{Xf
s }) =

S∑

s=1

(X̄ − Xf
s ◦ qs)T C−1(X̄ − Xf

s ◦ qs) + Λs(qs) (7)

The first normal equation that emerges is an expression for the amplitude
mean, X̄ = 1

S

∑
s Xf

s ◦ qs. Substituting it in the objective again produces a pure
alignment problem eliminating X̄. This problem is solved iteratively as discussed
for Jq, however, in the large sample limit the instantaneous deformation q

(j)
s of

ensemble member s in the inner iteration j of alignment (not EM) satisfies:

q̃(j)s (r) =
2
S

∑

t�=s

∇Xf(j)T
s (r) Z

(j)
ts (r) (8)

where Z
(j)
ts

.=
[
C−1(Xf(j)

t − X
f(j)
s )

]
, q̃

(j)
s

.= Lsq
(j)
s = dΛs/dq

(j)
s and X

f(j)
s

.=

X
f(j−1)
s ◦ q

(j−1)
s , j > 0 and q

(0)
s = 0. Note that the normalization becomes
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(S − 1)/S2 instead of 1/S in the small case. Naturally, both MCMC and stochas-
tic BFGS versions can also be used with SCA. Once Eq. 8 converges, q∗

s
.=

∑
j q

(j)
s

provides for q
(i)
s = q∗

s in the outer iteration. The next iteration of the E-step
commences. Naturally, X̄∗ = 1

S

∑S
s=1 X

f(N−1)
s ◦ qN

s results from the last outer
iteration N . In many practical situations, only one outer iteration is required,
but this is not generally true. Several may be required for C to converge to an
accurate representation of amplitude uncertainty.

Equation 8 shows that every ensemble member experiences a body force
from the others. In this way, all coalesce to a mean. Both synchronous and
asynchronous solutions exist. The coherent structures in Fig. 3 (top left) are
coalesced from Fig. 1 (top right) which contain foreground and background vari-
ability [8,15]. Also, see http://stics.mit.edu.

4 Coherent Random Fields

A natural application of Field Coalescence is to generate deformation statistics
that can be used to produce random field models for coherent structures without
explicit feature detection. Let’s assume that X = X̄+USη is the Karhunen Loeve
(KL) expansion representing a Gauss-Markov spatial process with covariance
C = US2UT , and η is i.i.d. sample from a Normal distribution with unit variance.
Such decompositions find ready use, for example, in the Proper Orthogonal
Decomposition or Empirical Orthogonal Functions. Data or model simulations
are often used to construct reduced models using few modes of U .

However, coherent structures do not necessarily distribute in amplitude as a
Gauss Markov process! The sampling problem on distribution P (X, q) is modeled
as X ◦ q ∼ P (X|q)P (q), decomposed here in what we call the Coherent Random
Field (CRF)

X ◦ q = (X̄ + UxxSxxηx) ◦ (q̄ + UqqSqqηq) (9)

Here, X̄ and q̄ are the appearance and geometry mean fields respectively, Uxx

and Uqq are their principal modes, Sxx and Sqq their spectra, and ηx and ηq are
amplitude and phase stochastic variables. We call these Principal Appearance

Fig. 4. Comparison of the distribution of coherent feature amplitude and positions.
PAG preserves the statistics better.

http://stics.mit.edu
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and Geometry modes (PAG). In Fig. 3, the coherent random fields are synthe-
sized from the coalesced ensemble (top right). Random realizations with even
just one leading PAG mode (bottom-left) is superior to either all or one leading
normal modes without. To confirm, we check the peak amplitude distribution
and peak amplitude’s position distribution in Fig. 4. As suspected, peaks distrib-
uted across the domain contain incorrect amplitudes in the classical approach.
PAG produces coherent features and reproduces the data statistics it was trained
from. The implication for reduced modeling of coherent structures is immediate.

5 Applications

We consider two applications in this section. The first uses FA and Coalescence
to construct a reduced forward model and its backward propagator, which we
use to solve the blending problem between two sources of data. The second appli-
cation uses PAG, FA and Coalescence to adapt classical reduced order modeling
(here, POD/EOF) to be dynamic and data-driven. Both are illustrated on simple
problems.

Fig. 5. FABle application two sources. The fields are superposed to show evolution of a
coherent structure. Source 1 (top left) and Source 2 (top right) predictions are blended
by weighted averaging (bottom left) and using FABle (bottom right).

5.1 Field Alignment-Based Blending (FABle): An Illustration

Applications of Nowcasting, for example for Aviation [8,10,15], seek 0–8 h storm
forecasts. One way is data-driven model. The apparent motion, growth and decay
of observed radar image time series of vertically integrated liquid in the recent
past, assuming some persistence timescale, is extrapolated from the current time
to the [0, 8]hr interval. Another way is to assimilate data to reinitialize a numer-
ical model (e.g., the High Resolution Rapid Refresh Rate model) for a 0 − 8
h forecast. Neither is perfect. The confidence in extrapolation decreases expo-
nentially over time and the confidence in HRRR appears to increase as the
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Algorithm 1. FABle: Field Alignment-based Blending Illustration
Input: X1 . . . XN , Y1 . . . YN , α, β1 . . . βN

Output X∗
1 . . . X∗

N

for i := 1 : N do X̂i = Xi

end for % Initialize Left Boundary
while .not. Converged do

for i := 1 : N − 1 do % Identify a Deformation-Growth/Decay model.
qi = argminJq(X̂i, X̂i+1); q#i = argminJq(X̂i+1, X̂i);
δX̂i = (X̂i+1 − X̂i ◦ qi) ◦ q#i

end for
λ = argminJq(X̂N , YN ); λN−1 = (λ ◦ q#N−1) % Assert right boundary point.

for i:=N:2 do λi−1 = (λi ◦ q#i−1); % Adjoint deformation error propagation.
end for
X̂1 = X1; % Assert left boundary point.
δq1 ← λ1 % Incremental deformation.
for i=1:N-1 do % Forward adjustment of coherent field.

qi ← qi + αδqi
X̂i+1 = (X̂i + δX̂i) ◦ qi
δqi+1 ← (1 − α)δqi ◦ qi %

end for
end while % Time/phase adjusted coherent fields
∀i Align X̂i → X̂N =: X̌i % Done partially in parallel
∀i Align Yi → YN =: Y̌i % Done partially in parallel
∀i Blend: X̌i ← βiX̌i + (1 − βi)Y̌i % Amplitude adjustment
∀i Restore time line: X∗

i ← X̌i ◦ q#N−1 ◦ . . . q#i �
...

�Xi, δXi

�

�
��
��
YN XN

�
...

Xi+1

�
qiq#i

�

X1, δX1

model equilibrates after initial assimilation shocks [8] and then saturates. From
a methodological perspective, the two forecasts are to be blended. At one end
point (left), radar extrapolation is preferred and at the right, HRRR. A weighted
average seems natural, preferring source 1 on the left and source 2 on the right.
It does not work (see Fig. 5), for obvious reasons of position error.

The Field Alignment-based blending (FABle) solves this as a two-point
boundary value problem (see Algorithm 1), matching Source 1 (radar) on the left
and Source 2 on the right. FA establishes a deformation, growth and decay model
going forward and backward (FA-adjoint) for Source 1. The error with Source-
2’s right boundary is back-propagated through Source-1 snapshots, “stretching
an accordion” without letting its left boundary budge. Forward adjustment of
coherent fields and backward error propagation continues iteratively to remove
misalignment. Both fields are coalesced to their right boundary, whence weighted
amplitude average corresponding fields can be correctly taken. The average is
“opened up” using FA-adjoint revealing a perfectly blended output (see Fig. 5,
bottom right). To be sure, no features are detected in this process. The ability to
propagate information across time for coherent fluid fields in this way has wide
application for time-dependent problems.
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5.2 Reduced Order Models by Alignment (ROMA): Compensating
for Model Error

FA, Coalescence and CRMs via PAG modes also enables robust reduced mod-
eling in a more classical sense. A popular approach is to use an offline model
to generate samples (snapshots, lagged forecasts, ensemble forecasts), and char-
acterize the dynamical regime with a reduced linear model that requires a few
(possibly stochastic) variables to represent system’s evolution. During runtime
(or online), predictions made by the propagated reduced variable are corrected
using data and the process repeats. The modes may or may not themselves slowly
adapt (Fig. 6).

Fig. 6. Using FA and Coalescence, a Reduced Order Model by Alignment (ROMA) is
constructed so that the principal modes can adapt to model error.

The problem, of course, is the presence of model error which, for a variety
of reasons, puts the coherent structure in the wrong place. In a simple tracer
transport problem, for example, velocity, timing, boundaries, and forcing errors
can be culprits. As our preceding discussion shows, state estimates can become
poor when the tracer is coherent. The reduced variable updates will lead to
incoherent realizations. Using FA on the full-state is meaningful to resolve this
problem [11], but when phase (position, scale, shape) error is systematic, i.e., has
a mean deformation component or a slow variation, a deformable reduced model
proposed herein may be more suitable. Using POD/EOF as an example, we show
dynamic data-driven model adaption; we call this Reduced Order Modeling by
Field Alignment (ROMA).

In the ROMA approach, the reduced variable consists of the reduced appear-
ance variable νx = Σxxηx and reduced geometry variable νq = Σqqηq (formula-
tion works with ηx and ηq), and the principal appearance and geometry statistics,
X̄, Uxx,Σxx and q̄, Uqq,Σqq respectively, with terms as in Sect. 4. These terms
are calculated by Coalescing snapshots offline.

During runtime, predicted coherent mean (due to coalescence) is used to solve
Jq (a partial state reconstruction can also be used). The incremental q̂ over itera-
tions deform the statistics, producing X̄ ← X̄ ◦ q̂, such that Uxx ← Orth(Uxx◦ q̂)
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Fig. 7. Automatic deformation of reduced models using PAG modes and Field Align-
ment demonstrates the ability to fix model errors for coherent fluids (Color figure
online).

where Uxx ◦ q̂ ≡ [Uxx(:, i) ◦ q̂]. That is, the incremental deformation is used to
deform the reduced basis and mean, with re-orthogonalization (Orth) to assert
the conditions on Uxx. The reduced model is adapted by the deformation com-
ponent upon convergence.

In Fig. 7, the reconstructions from reduced predictions from PAG modes are
shown (top-left). The sparse measurements (dots) are shown at the assimilation
time (top right) with truth (green). The automatically deformation adjusted
modes (only first mode is shown, bottom left) transforms the predictions to
have correct phase while the amplitude assimilation restores the amplitude. The
reduced model is now phase synchronized which offers exciting possibilities for
data driven corrections to flow errors. Without doing this, the assimilation and
subsequent predictions are simply incoherent.

6 Conclusion

A non-parametric perceptual organization of coherent fluids solves several infer-
ence problems in data assimilation, uncertainty quantification, and reduced mod-
eling better. Error between spatial fields is reduced in position and amplitude
subspaces without explicit detection of features. Thus, sparse observations or fea-
tures difficult to specify (e.g., fronts, complex storm shapes) can be accounted
for. A weakened covariance primarily plagues effective estimation for coherent
structures [11,13]. Equation 1 differs from prior work [5] that assumes C was
fixed to after alignment, thus ignoring the dependence of amplitude errors on
position errors. An ensemble approach with EM [11,15] addresses this problem
as well as incorrect independence or jointly Gaussian assumptions in work that
followed [2]. A two-step approximation enables an alignment preprocessor [11] in
ensemble and variational modes. Williams applies this to the WRF model [17],
and Jankov et al. to decomposing forecast errors [6]. The latter application is
not viable using other direct approaches. Iterative deformation-amplitude adjust-
ment [15] generalizes the two-step.

Ravela et al. use spectral resolution [11] to control deformation smoothness,
avoiding ad-hoc constraints [5], and use a multi-resolution solution [7] for large
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deformations. For multivariate/vector fields, FA incorporates balance constraints
[15]. Yang and Ravela’s [18] SCA automatically and parsimoniously recovers
dominant spectral modes without explicit parameterization. In contrast to [1], it
can be generally applied without learning. Together with a stochastic optimiza-
tion method [15] for FA/SCA, these characteristics distinguish FA and Coales-
cence from other image-based, large deformation kinematics approaches [3,4].
In addition to Field Coalescence [8,9,15], we propose CRF, PAG, FABle and
ROMA which, to the best of our knowledge, have not been reported.
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Abstract. We describe a method for prediction of rogue waves in
the one-dimensional Nonlinear Schrodinger and Modified Nonlinear
Schrodinger equations. This method is based on distinguishing the unsta-
ble wave groups likely to generate rogues out of a complex background
field. After a careful study of the evolution of isolated wave groups, we
then apply an automatic scale selection algorithm to pick out these indi-
vidual wave groups that will trigger the formation of rogue waves. We
demonstrate the skill of our scheme for Reduced Order Prediction of
Extremes (ROPE), predicting rogues well in advance of their formation
with low rates of false positives/negatives.

1 Introduction

Rogue or extreme waves are ocean waves whose height is abnormally large for a
particular sea state. Often described as an enormous “wall of water”, such waves
have caused catastrophic damage to ships and coastal structures. For example,
in 1978 the German super-tanker Munchen vanished, along with her 26 crew
members. Searches for the ship recovered little, but a lifeboat was recovered
whose attachment pins showed evidence of being subjected to a great force. As
this lifeboat was stowed 20 m above the water line, some have conjectured that
the Munchen may have been struck by an extremely large wave [12]. In this
work, we describe a reduced order method for reliably predicting these rogue
waves before they occur, which we term Reduced Order Prediction of Extremes
(ROPE).

The large, steep nature of these extreme waves, combined with recent evi-
dence that they can occur more likely than Gaussian statistics would suggest,
imply that nonlinear models are necessary to fully understand their dynamics.
Thus, we focus our attention on models that incorporate this nonlinearity while
remaining simple enough to be tractable. A high-fidelity approach for modeling
surface waves in deep water is to use the Navier-Stokes equations, assuming irro-
tational flow with neglible viscosity and surface tension. Neglecting these effects
is deemed reasonable due to the large scale of typical ocean waves (wavelength
O(100) meters). Enforcing a pressure and kinematic condition on the free surface
gives the following system:
c© Springer International Publishing Switzerland 2015
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∇2φ = 0, z ≤ η

∂2φ

∂t2
+ gη +

1
2
|∇φ|2 = 0, z = η

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
, z = η

in the above φ is the velocity potential, η(x, y) is the surface eleveation, and
z is the vertical coordinate. Although this system has been shown to faithfully
model the evolution of deep water waves well, it is complicated to investigate
numerically and anlytically. Thus, for simplification purposes here we consider
fields with no variation along the y direction. Even with this simplification, the
model remains quite complicated. Thus, we consider simplified envelope equa-
tions. These equations govern the evolution of the envelope u(x, t) of a slowly
modulated carrier wave and may be derived, for example, by a perturbation
approach. The simplest such envelope equation which incorporates nonlinear
dynamics is the nonlinear Schrodinger equation (NLS) [18], which reads (in
nondimensionalized form)

∂u

∂t
+

1
2

∂u

∂x
+

i

8
∂2u

∂x2
+

i

2
|u|2u = 0 (1)

u is the envelope of the modulated carrier wave–to leading order η = �[uei(x−t)].
By considering higher order terms, Dysthe derived the modified Nonlinear
Schrodinger Equation (MNLS) [8]:
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In simulations presented in this paper we consider (1) and (2) in a coordinate
frame moving with group velocity 1/2. That is, we neglect the (1/2)∂u/∂x term
in each equation. The reason for this is that in this moving coordinate frame,
localized groups of waves are roughly stationary, which makes visualization of the
evolution of these groups clearer. Although NLS and MNLS are not without their
limitations, they have shown reasonable agreement with laboratory experiments
of rogue waves [3,4] and MNLS has faithfully reproduced the appropriate k−2.5

spectrum observed in deep water [7]. Furthermore, these waves also admit inter-
mittently appearing large-amplitude, localized coherent structures and heavy
tailed statistics [9,14].

Here, we describe a simple, computationally cheap approach for predicting
rogue waves with a high degree of spatiotemporal skill. This work can be viewed
as an extension of our previous extreme event prediction scheme for the model
of Majda-McLaughlin-Tabak (MMT) [5], which is another one dimensional non-
linear dispersive wave equation where large amplitude coherent structures form
due to a soliton collapse mechanism [1,2,13]. We showed that MMT equation
posesses a type of localized energy instability, where only a small amount of
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highly localized energy is sufficient to initiate an extreme event. We then showed
how there was a most sensitive length scale for triggering extreme event, and pro-
jecting the field to a Gabor wavelet basis at this scale yielded a reliable predictor
of upcoming extreme events.

Although like MMT, the NLS and MNLS equations do admit extreme events,
there is no single critical length scale, meaning we have to considerably modify
our prior approach to predict extremes in this setting. For NLS and MNLS we
have successfully developed an extreme wave prediction scheme based on iden-
tifying, in a general wave field, structures that are likely to trigger an extreme
wave. These triggers are localized wave groups, whose isolated evolution we study
in detail in Sect. 2. In Sect. 3, we describe how we use existing scale selection algo-
rithms to detect the existence and characteristics of wave groups embedded in
irregular wave fields. Finally, we combine the results from Sects. 2 and 3 to cre-
ate a method to predict extreme waves before they occur. This ROPE (Reduced
Order Prediction of Extremes) approach reliably predicts extreme waves with
spatiotemporal skill while maintaining a low rate of false positives and false
negatives. Furthermore, although simulation is used to tune the ROPE scheme
the “live” implementation is far cheaper than performing any simulation, only
requiring the computation of a few integrals to project the field onto a carefully
chosen set of modes.

2 Evolution of Localized Wave Groups

We first consider solutions of NLS (1) and MNLS (2) using for initial data a sum
of complex exponentials with random phases with spectrum given by a Gaussian
function of wavenumber:

F (k) =
ε2

σ
√

2π
e− k2

2σ2

initial data for u are then given by

u(x, 0) =
N∑

k=−N

√
2ΔkF (kΔk)ei(kΔkx+θ)

where Lx is the width of the spatial domain, Δk = 2π/Lx, and θk are inde-
pendent random variables distributed uniformly between 0 and 2π. The use of
periodic boundary conditions in space is, of course, completely nonphysical. We
merely use them so boundary effects are not important, as is the case in the deep
ocean far from land. Furthermore, the phenomena we focus on occur on a much
smaller scale than the chosen domain size and results are insensitive to increases
in Lx. Numerically, we solve NLS and MNLS via a Fourier method in space and
a 4th order Runge-Kutta exponential time differencing scheme (ETDRK4) [6].
We performed detailed grid refinement studies and chose our spatiotemporal
resolution to ensure accuracy to four decimal places.
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The Benjamin Feir Index, ε
√

2/σ, provides a measure of how unstable a
particular wave field is with respect to nonlinear interactions–at larger BFI the
spectrum broadens (particularly BFI > 1), large amplitude coherent structures
are formed, and the statistics of the surface elevation are highly non-Gaussian
[9,15]. In this work, we consider ε = 0.05, σ = 0.1, which corresponds to a
moderately high BFI where some spectral broadening takes place. We choose
these values since very large BFI are rare in realistic ocean scenarios [16] and we
wish to demonstrate that our method posesses skill in regimes where extreme
waves are not ubiquitous.

Our key observation is the following: extreme waves are preceded by the for-
mation of particular types of localized wave groups (see Fig. 1). This localization
initiates dramatic energy transfers to smaller scales, creating an extreme wave.
Of course, not all wave groups initiate an extreme event. Certain wave groups do
focus, triggering an extreme wave, while others merely disperse, broadening and
decreasing in amplitude. We now precisely characterize the dynamics of these
wave groups as a function of their amplitude and length scale.

Fig. 1. A localized wave group (top) focuses energy to smaller scales, generating an
extreme event (bottom).

Specifically, we suppose u(x, 0) = Aexp
(−x2/2L2

)
. What is the value of the

next local maximum (in space and time) of |u|? We answer this question via
direct numerical simulation. For the NLS equation, for any length scale L there
is a critical value A∗ where, if A > A∗, the wave group focuses and increases
in amplitude. This increase, measured as a percentage increase growth in the
wave group amplitude, becomes more dramatic as the initial amplitude grows.
For example, if L = 1 a wave group with A = 0.8 grows negligibly, while a wave
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group with A = 1.5 doubles in amplitude. Due to the scale invariance of solutions
to NLS, this behavior remains qualitatively unchanged for differing values of L.

The MNLS equation, however, does not posses a scale invariance and dis-
plays considerable differences as L is changed. For larger L, the MNLS wave
group dynamics agree closely with NLS until the initial amplitude becomes large.
However, for small L (such as L = 1), we see that regardless of initial ampli-
tude the wave group does not increase in elevation (this fact has been confirmed
via numerical simulation using a much broader range of amplitudes than that
pictured in Fig. 2).

The differences in wave group evolution under NLS and MNLS are important,
however, here we emphasize the following: in each equation there is a family of
wave groups which evolve by dramatically transferring energy to smaller scales,
increasing in amplitude and creating a wave (or group thereof) of considerable
height. Furthermore, by performing an ensemble of simulations, we have cata-
logued the precise evolution of (A,L) pairs–we will use this data in Sect. 4 to
drive our predictive scheme.

3 Identification of Wave Groups (Scale Selection)

Given a particular (perhaps irregular) wave field, we would like to deter-
mine the location, length scale, and amplitude of the various wave groups
comprising that field. For example, let f(x) = A0 exp

(
−(x − x0)2/2L2

0

)
+

A1 exp
(
−(x − x1)2/2L2

1

)
. In this case the envelope f consists of 2 wave groups,

one centered at x0 with length scale L0 and amplitude A0 and another centered
at x1 with length scale L1 and amplitude A1 (assuming x0 and x1 are sufficiently
separated). To identify these wave groups algorithmically, we use the scale space
representation of |u|, an approach that goes back to the work of Witkin [17] and
Koenderink [10] (see also recent work by Lindeberg [11]). Given a function f , this
algorithm determines the most significant length scales by finding local minima
and maxima of scale-normalized derivatives sm, which are properly normalized
derivatives of the function f convolved with the heat kernel g(x,L). That is,

sm(x,L) = Lm/2 ∂m

∂xm
(f ∗ g)

where g(x,L) is the heat kernel:

g(x,L) =
1√
2πL

e− x2
2L

Note here that g is the heat kernel in space x and scale L. We briefly review a
simple example showing why the quantity sm is meaningful (from [11]). Consider
f(x) = cos(ωx). Recalling that g is the heat kernel, we have (for even m)

sm(x,L) = Lm/2 ∂m

∂xm
cos(ωx)e−ω2L/2

= Lm/2(−1)m/2 cos(ωx)e−ω2L/2
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Fig. 2. Growth of localized waves in NLS and MNLS for L = 1 (top left) and L = 10
(top right). Spatiotemporal solution of NLS with L = 1 for a small amplitude, dispersive
group (bottom left) and larger amplitude, focusing group (bottom right).

It is straightforward to show that the local maxima/minima of sm occur when
L = m/ω2 and x = nπ, where n is an integer. Thus the scale normalized deriv-
ative sm correctly picks the centers of the localized blobs, and the scale space
maxima occur at a value of L proportional to the square of the length scale 1/ω.

If f(x) = A exp
[
− x2

2L02

]
, sm again performs well as a wave group detector.

For m = 2, we have

s2(x,L) = −A
L0L(L2

0 + L − x2)
(L2

0 + L)5/2
e

− x2

2(L2
0+L)

For the f(x) = cos(ωx), example, local minima of s2 correspond to the peaks
of f and local maxima of s2 correspond to valleys of f . For the Gaussian case
it is straightforward to show that the unique local minimum of s2 occurs at
x = 0, L = 2L2

0. Thus, if we did not know that the length scale of f was L0, we
could compute s2 and find the value of x and L where the s2 attains its minimum.
Calling these values x∗, L∗, we would then say that f has a wave group of length
scale

√
L∗/2 centered at x = x∗. Values of s2 for the case f(x) = exp

[
− x2

2L2
0

]

with L0 = 10 are displayed in Fig. 3. Clearly s2 is able to pick out the correct
scale of 10.

Finally, we demonstrate the scale-selection algorithm on a wave field gener-
ated as a sum of complex exponentials with Fourier coefficients of random phase
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Fig. 3. Left: Gaussian function with length scale L = 10. Right: −min(0, s(2)) as func-
tion of space and scale. Notice that a local maximum occurs at L = 10, identifying the
appropriate length scale.

and Gaussian amplitude. To identify the wave groups, we identify local minima
of s(2). For each local minimum we compute the relative L2 error between the
field and the local Gaussian approximation. We treat a relative error of less than
0.3 as evidence that the field |u| can be well represented locally as a Gaussian
wave group. In Fig. 4, we display an example field |u| along with the identified
wave groups, showing the successful performance of the scale selection algorithm
in identifying wave groups.

The computational cost involved with this algorithm is small. If N is the
number of spatial grid points in the domain, computing the scale space repre-
sentation requires convolution and subsequent computation of second derivatives
in space. The convolution requiires O(N log N) work via FFT and the differen-
tiation is O(N). This process must be repeated for a variety of values of L. For
the simulations performed in this work, 50 points distributed between L = 0 and
L = 25 are sufficient.

4 Reduced Order Prediction of Extremes

We now combine the ideas from Sects. 2 and 3 to create a scheme to predict
extreme waves in advance. This relatively simple procedure is as follows: given
a wave field u(x, t) at a particular time, we use the automated scale selection
algorithm to identify coherent wave groups, as well as their amplitude and length
scale. In Sect. 2, we performed an exhaustive set of simulations where, given a
wave group with a particular amplitude and length scale, we determined whether
or not this group will increase in amplitude, and, if so, what its maximal focused
amplitude will be. That is, we have numerically constructed the map F (A,L),
where A is the amplitude of the group, L is its length scale, and F is its maximal
future amplitude. After we identify wave groups in the irregular field, we then use
the controlled numerical experiments from Sect. 2 to determine how large these
groups will grow via a simple table lookup. If the predicted maximal amplitude
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Fig. 4. Wave field generated by a Gaussian spectrum with random phases (blue) and
the identified wave groups (red, dashed) (Color figure online).

is greater than the particular rogue wave threshold (twice the significant wave
height) for a particular sea state, then we predict that a rogue wave is imminent.

We have tested this scheme on 50 simulations of MNLS using a Gaussian
spectrum. Each simulation spanned 500 nondimensionalized time units and 128π
nondimensionalized spatial units. For these simulations, a rogue wave occurs
when |u| exceeds 0.2 (significant wave height is 0.1). In this ensemble of simula-
tions there were 123 distinct rogue waves, all of which were predicted in advance
by our scheme. The average advance warning time was 105 time units, which
corresponds to approximately 16 temporal wave periods. With a typical ocean
wave period of 8–10 s, this would correspond to a warning time on the order of
minutes in dimensional time. We do mention that there were 27 instances were
we predicted a rogue wave and one did not occur, yielding a false positive rate
of 18 %. An example simulation result alongside the output of the predictive
scheme is displayed in Fig. 5.

As a final note, we mention that although the procedure described above
is computationally inexpensive, the computational cost could be driven down
further. In the ensemble of simulations discussed above, we computed the joint
density of A and L for each of the wave groups (Fig. 6). Based on our numerical
study of Sect. 2, we can partition each of these groups into stable groups unlikely
to cause a rogue wave, and those that we predict would in fact trigger rogues.
On the right of Fig. 6 we then plot the probability density of the length scales of
these unstable wave groups. We see that, for the chosen spectrum, there is a crit-
ical scale that is the most likely length scale where rogue waves will be triggered
(roughly L = 9). Rather than performing the scale selection algorithm, we could
merely project the field onto a set of Gabor wavelets, fixing the length scale at
this critical scale L = 9, and use this coefficient as a measure of the likelihood of
an upcoming rogue wave. Such an approach may be less precise, but we success-
fully used a similar scheme previously to predict extreme events in the model
of Majda-McLaughlin-Tabak (MMT) [5]. This approach would serve to simplify
the scheme and reduce the computational cost. Although in one-dimension the
cost of the automated scale selection algorithm is extremely minimal, these cost
savings could become meaningful in two-dimensional settings.
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Fig. 5. Left: squared modulus of the amplitude (squaring is to accentuate the extreme
waves). Right: red sections denote spatiotemporal regions where rogue wave is occur-
ring. Blue dots denote rogue wave predictions (Color figure online).
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Fig. 6. Left: Joint (A,L) density for the wave groups identified in MNLS simulations.
Right: density function for the length scales of the rogue inducing groups

5 Discussion

We have described a scheme to predict rogue waves in the NLS and MNLS equa-
tions, which are one dimensional nonlinear dispersive waves governing the evolu-
tion of the envelope of a modulated carrier wave on the surface of deep water. Our
scheme is intuitive, computationally cheap, and reliable, successfully predicting
all rogue waves in the cases considered with a low rate of false positives.

Such a scheme could be quite valuable, as predicting rogue waves in the
vicinity of a vessel or structure could allow those in the wave’s path to at least
take some action to prepare for the oncoming impact. Thus, we are now working
to extend our scheme to more realistic ocean settings, which involves two major
modifications to the scenario presented here. First, two-dimensional models must
be used. Secondly, we must account for the fact that in a realistic setting only
noisy, incomplete data regarding the ocean surface would be available via mea-
surements. Thus, we are currently investigating filtering schemes to estimate the
wave group properties which serve as inputs to our predictive scheme.
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Abstract. In this work, we consider systems that are subjected to inter-
mittent instabilities due to external, correlated stochastic excitation.
These intermittent instabilities, though rare, give rise to heavy-tailed
probability distribution functions (pdf). By making appropriate assump-
tions on the form of these instabilities, we formulate a method for the
analytical approximation of the pdf of the system response. This method
relies on conditioning the pdf of the response on the occurrence of an
instability and the separate analysis of the two states of the system, the
unstable and stable state. In the stable regime we employ steady state
assumptions, which lead to the derivation of the conditional response
pdf using standard methods. The unstable regime is inherently transient
and in order to analyze this regime we characterize the statistics under
the assumption of an exponential growth phase and a subsequent decay
phase until the system is brought back to the stable attractor. We illus-
trate our method to a prototype intermittent system, a complex mode in
a turbulent signal, and show that the analytic results compare favorably
with direct Monte Carlo simulations for a broad range of parameters.

1 Introduction

A wide range of dynamical systems describing physical and technological
processes are characterized by intermittency. This intermittent response is usu-
ally formulated through the interplay of stochastic excitation, which can trigger
internal system instabilities, deterministic restoring forces and dissipation terms.
It is often the case that, despite the high dimensionality of the stable attractor,
an extreme response of short duration is due to an intermittent instability occur-
ring over a single mode. This scenario does not exclude the case of having more
than one intermittent mode, as long as the extreme responses of these modes are
statistically independent. For this case, it may be possible to analytically approx-
imate the probabilistic structure of these modes and understand the effect of the
unstable dynamics on the heavy-tails.

Instabilities of this kind are common in dynamical systems with uncertainty.
Popular examples are modes in turbulent fluid flows and nonlinear water waves
subjected to nonlinear energy exchanges that occur in an intermittent fashion

c© Springer International Publishing Switzerland 2015
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and result in intermittent responses [1–7]. Recently, it has been shown that these
properly designed single mode models can describe intermittent responses, even
in very complex systems characterized by high dimensional attractors [8–10].

In all of these systems, the complexity of the unstable dynamics is often
combined with stochasticity introduced by persistent instabilities that lead to
chaotic dynamics as well as by the random characteristics of external excitations.
The structure of the stochasticity introduced by these factors plays an impor-
tant role on the dynamics of the system response. In particular, for a typical
case the stochastic excitation is colored noise. Due to the possibility of large
excursions by the correlated stochastic excitation from its mean value into an
“unsafe-region”, where hidden instabilities are triggered, extreme events can be
particularly severe. Therefore, it is essential to develop analytical methods that
capture the effects of the correlation in the excitation processes for intermittent
modes. However, analytical modeling in this case is particularly difficult since
standard methods that describe the pdf of the response are not available.

In this work, our goal is the development of a method that will allow for the
analytical approximation of the pdf of modes associated with intermittent insta-
bilities and extreme responses due to parametric excitation by colored noise,
using an analytic approach that provides a direct link between dynamics and
response statistics. The results presented have important significance in the con-
text of reduced order modeling of complex systems with intermittent instabili-
ties, in particular for extreme event detection and prediction (e.g. oceanic rouge
waves [9]). In addition, it also offer a method for the inverse estimation of system
parameters in a data driven context, for dynamical systems featuring heavy-
tailed distributions arising from instabilities.

2 Problem Setup and Method

Let (Θ,B,P) be a probability space, where Θ is the sample space with θ ∈ Θ
denoting an elementary event of the sample space, B the associated σ-algebra of
the sample space, and P a probability measure. We are interested in describing
the statistical characteristics of modes subjected to intermittent instabilities and
thus consider a general dynamical system

ẋ = G(x, t), x ∈ IRn. (1)

The presented analysis will rely on the following assumptions related to the
form of the extreme events:

A1 The instabilities are rare enough so that they can be considered statistically
independent and have finite duration.

A2 During an extreme event the influenced modes have decoupled dynamics.
Moreover, for each one of these modes, during the growth phase, the insta-
bility is the governing mechanism.

A3 After each extreme event there is a relaxation phase that brings the system
back to its stable stochastic attractor.
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Under these assumptions we may express each intermittent mode, denoted by
u(t; θ) ∈ IR, where θ ∈ Θ, as a dynamical system of the form

u̇ + α(t; θ)u + εζ(u,v) = εξ(t; θ), (2)

where ε > 0 is a small quantity and ζ(u,v) is a nonlinear function with zero
linearization with respect to u, which may also depend on other system variables
v ∈ IRn−1. Since ε is a small quantity, we can assume that the nonlinear term
is important only in the stable regime. The stochastic processes α and ξ are
assumed stationary with known statistical characteristics. For α we will make
the additional assumption that its statistical mean is positive i.e. ᾱ > 0 so that
the above system has a stable attractor.

The objective of this work is to derive analytical approximations for the pdf
of the system response, taking into account intermittent instabilities that arise
due to the effect of the stochastic process α. In particular, these instabilities are
triggered when α < 0, and force the system to depart from the stable attractor.
Therefore, the system has two regimes where the underlying dynamics behave
differently: the stable regime where α > 0 and the unstable regime that is trig-
gered when α < 0 (Fig. 1). Motivated by this behavior, we quantify the system’s
response by conditioning the pdf of the response on stable regimes and unstable
events,

P[u] = P[u | stable regime]P[stable regime]+
P[u | unstable regime]P[unstable regime], (3)

thereby separating the two regions of interest so they can be individually stud-
ied. The method we employ relies on the derivation of the pdf for each of the
terms in (3) and then the reconstruction of the full distribution of the system.
Essentially, we decouple the response pdf into two parts: a probability density
function with rapidly decaying tails (typically Gaussian) and a heavy tail distri-
bution with very low probability close to zero.

Fig. 1. An intermittent system. Green lines denote the envelope in the stable regime,
blue and red lines correspond to the growth and decay phase of an instability, respec-
tively (Color figure online).
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2.1 Stochastic Description of the Stable Regime

During the stable regime we have by definition α > 0 and therefore the consid-
ered mode is stable. Note that this condition is also true during the relaxation
(decay) phase after an extreme event, when the system has entered a regime
where α > 0. To this end, we cannot directly relate the duration of being on the
stable attractor with the probability P[α > 0], but a correction should be made,
which we present in Sect. 2.3. Here we focus on characterizing the probability
density function of the system under the assumption that it has relaxed to the
stable attractor and moreover we have α > 0.

As a first-order estimate of the stable dynamics we approximate the original
dynamical system for the intermittent mode by the stable system

u̇ + ᾱ|α>0u + εζ(u,v) = εξ(t; θ), (4)

where ᾱ|α>0 denotes the conditional average of the process α given that this is
positive. The determination of the statistical structure of the stable attractor
for (4) can be done with a variety of analytical and numerical methods, such
as the Fokker-Planck equation if the process ξ is white noise (see e.g. [11,12])
or the joint response-excitation equations otherwise [13,14]. Using one of these
methods we can obtain the the conditionally stable pdf P[u | stable regime].

2.2 Stochastic Description of the Growth Phase

In contrast to the stable regime, the unstable regime is far more complicated due
to its inherently transient nature. In addition, the unstable regime consists of
two distinct phases: a growth phase where α < 0 and a decay phase where α > 0.
We first consider the growth phase, where we rely on assumption A2, according
to which the dominant mechanism is the term related to the instability. Under
this assumption, to first-order, the growth phase is governed by the system

u̇ + α(t; θ)u = 0 =⇒ u(t; θ) = u0e
ΛT , (5)

where u0 is a random initial condition described by the probability measure in
the stable regime, T is the random duration of the upcrossing event α < 0, and
Λ is the growth exponent, which for each extreme event can be approximated by

Λ � − 1
T

∫

T

α(t; θ) dt � −α(t; θ), (6)

due to the rapid nature of the growth phase. Therefore, during the growth phase
we have

P[u > u∗ | α < 0] =

P[u0e
ΛT > u∗ | α < 0] = P[u0e

ΛT > u∗ | α < 0, u0]P[u0]. (7)

The right hand side of (7) is a derived distribution depending on the proba-
bilistic structure of Λ and T . The initial value u0 is a random variable with
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statistical characteristics corresponding to the stable regime of the system,
i.e. by P[u | stable regime]. Hence, to determine the required pdf we seek
P[α, T | α < 0], i.e. the joint pdf for the value of α (given that this is negative)
and the duration of the time interval over which α is negative. This distribu-
tion involves only the excitation process α, and for the Gaussian case it can
be approximated analytically (see Sect. 3). Alternatively, one can compute this
distribution using numerically generated random realizations that respect the
statistical characteristics of the process.

2.3 Stochastic Description of the Decay Phase

The decay phase is also an inherently transient stage. It occurs right after the
growth phase of an instability, when α has an upcrossing of the zero level, and
is therefore characterized by positive values of α, with the effect of driving the
system back to the stable attractor. To provide a statistical description for the
relaxation phase, we first note the strong connection between the growth and
decay phase. In particular, as shown in Fig. 1, for each extreme event there is a
one-to-one correspondence for the values of the intermittent variable u between
the growth phase and the decay phase. By focusing on an individual extreme
event, we note that the probability of u exceeding a certain threshold during the
growth phase is equal with the probability of u exceeding the same threshold
during the decay phase. Thus over the total instability have

P[u > u∗ | unstable regime] =
P[u > u∗ | instability − decay] = P[u > u∗ | instability − growth], (8)

where the conditional distribution for the growth phase is given by (7).

2.4 Probability of the Stable and the Unstable Regime

In the final step we determine the relative duration of the stable and unstable
regimes. This ratio will define the probability of a stable event and an unstable
event. The probability of having an instability is simply P [α < 0], however, due
to the decay phase the duration of an instability will be longer than the duration
of the event α < 0. To determine the typical duration of the decay phase, we
first note that during the growth phase we have

up = u0e
−ᾱ|α<0Tα<0 , (9)

where Tα<0 is the duration for which α < 0, and up is the peak value of u during
the instability. Similarly, for the decay phase we utilize system (4) and obtain

u0 = upe
−ᾱ|α>0Tdecay . (10)

Combining (9) and (10) we have Tα<0/Tdecay = −ᾱ|α>0/ᾱ|α<0, which expresses
the typical ratio between the growth and the decay phase. Thus, the total dura-
tion of an unstable event is given by the sum of the duration of these two phases

Tinst =
(

1 − ᾱ|α<0

ᾱ|α>0

)
Tα<0. (11)
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Using this result, we can express the total probability of being in an unstable
regime by

P[unstable regime] =
(

1 − ᾱ|α<0

ᾱ|α>0

)
P[α < 0]. (12)

Note that since we have assumed in A1 that instabilities are sufficiently rare
so that instabilities do not overlap and that instabilities are statistical inde-
pendent, we have P[unstable regime] < 1. Hence P[stable regime] = 1 −
P[unstable regime], where P[unstable regime] is given in (12).

3 Instabilities Driven by Gaussian Processes

Here we recall relevant statistical properties associated with a Gaussian stochas-
tic parametric excitation.

The zero level of the stochastic process α defines the boundary of the two
states for our system. For convenience, let α(t; θ) = m + kγ(t; θ), where γ is
also an ergodic and stationary Gaussian process, but with zero mean and unit
variance, so that α has mean m and variance k2. Thus the threshold of a rare
event in terms of γ is given by the parameter η ≡ −m/k. We assume that second
order properties, such as the power spectrum, of γ are known. In such a case,
the correlation of the process is given by Rγ(τ) =

∫ ∞
−∞ Sγ(ω)eiωτ dω.

Since γ is a stationary Gaussian process, the probability that the stochastic
process is in the two states P[α < 0] and P[α > 0] are, respectively, P[γ < η] =
Φ(η) and P[γ > η] = 1 − Φ(η) (where φ(·) denotes the standard normal pdf and
Φ(·) the standard normal cumulative pdf).

3.1 Average Time Below and Above the Zero Level

Here we determine the average length of the intervals that α spends above and
below the zero level. For the case α < 0, that is γ < η, the expected number of
upcrossings of this threshold per unit time is given by Rice’s formula [15,16]

N+(η) =
∫ ∞

0

ufγγ̇(η, u) du =
1
2π

√
−R′′

γ(0) exp(−η2/2), (13)

where N+(η) is the average number of upcrossings of level η per unit time, which
is equivalent to the average number of downcrossings N−(η). The expected num-
ber of crossings is finite if and only if γ has a finite second spectral moment [16].

The average length of the interval that γ spends below the threshold η can
then be determined by noting that this probability is given by the product of the
number of downcrossings of the threshold per unit time and the average length
of the intervals for which γ is below the threshold η [17]. Thus using (13) we
have

T̄α<0(η) =
P[γ < η]
N−(η)

=
2π exp(η2/2)√

−R′′
γ(0)

Φ(η). (14)
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3.2 Distribution of Time Below the Zero Level

In general, it is not possible to derive an exact analytical expression for the
distribution of time intervals given γ < η, in other words the distribution of
the length of time between a downcrossing and an upcrossing. However, the
asymptotic expression in the limit η → −∞ is given by [17] (henceforth we
denote T̄α<0 by T̄ for clarity)

PT (t) =
πt

2T̄ 2
exp

(−πt2/4T̄ 2
)
, (15)

which is a Rayleigh distribution with scale parameter
√

2T̄ 2/π, and T̄ is given
by (14).

4 Application: Intermittently Unstable Complex Mode

Here we present an example application of the method formulated in Sect. 2,
to that of a complex scalar Langevin equation that models a single mode in a
turbulent signal, where multiplicative stochastic damping γ and colored additive
noise b, both specified as Ornstein-Uhlenbeck (OU) processes, replace interac-
tions between various modes. The nonlinear system is given by

du(t)
dt

= (−γ(t) + iω)u(t) + b(t) + f(t) + σẆ (t), (16)

db(t)
dt

= (−γb + iωb)(b(t) − b̂) + σbẆb(t), (17)

dγ(t)
dt

= −dγ(γ(t) − γ̂) + σγẆγ(t), (18)

where u(t) ∈ C physically describes a resolved mode in a turbulent signal and f
is a prescribed deterministic forcing. The process γ models intermittency due to
the (hidden) nonlinear interactions between u(t) and other unobserved modes.
In other words, intermittency in u(t) is primarily due to the action of γ, with
u(t) switching between stable and unstable regimes when γ switches signs.

The nonlinear system (17) was introduced for filtering of multiscale turbu-
lent signals with hidden instabilities [18,19], and has since been used for various
applications [8,10,20–22]. The system features rich dynamics that closely mim-
ics turbulent signals in various regimes of the turbulent spectrum. The three
physically relevant regimes are described by [20] (reproduced for completeness):

R1 A regime where the dynamics are dominated by frequent, short-lasting tran-
sient instabilities; characteristic of the turbulent energy transfer range.

R2 Here the dynamics are characterized by large-amplitude intermittent insta-
bilities followed by a relaxation phase; representative of modes in the dissi-
pative range.

R3 A regime described by dynamics where transient instabilities are very rare,
and fluctuations in rapidly decorrelate; corresponding to the laminar modes.
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We apply the method described in Sect. 2, to approximate the pdf for the
dynamics of u(t) in the special case with no additive noise b = 0 and no external
forcing f = 0. This is the simplest case that incorporates intermittency, driven
by the state of OU process γ. The system we consider is given by

du(t)
dt

= (−γ(t) + iω)u(t) + σẆ (t), (19)

dγ(t)
dt

= −dγ(γ(t) − γ̂) + σγẆγ(t), (20)

In this case, the dynamics of u(t) are such that it oscillates at a fixed frequency
ω. For this system, we derive the system response pdf and compare the analytical
result for the three regimes R1–R3.

4.1 Probability Distribution in the Stable Regime

Here we derive approximation of the pdf for u(t) given that we are in the sta-
ble regime and, moreover, that we have statistical stationarity. In the stable
regime, following Sect. 2.1, we replace γ by the conditional average γ̄|γ>0 =
γ̂ +kφ(η)/(1 − Φ(η)). Thus the governing equation in the stable regime becomes

du(t)
dt

= (−γ̄|γ>0 + iω)u(t) + σẆ (t), (21)

Since this is a Gaussian system, we can fully describe the pdf for u(t) in this
regime by its stationary mean u(t) = 0, and stationary variance

Var(u(t)) = Var(u0)e
−2γ̄|γ>0t +

σ2

2γ̄|γ>0
(1 − e−2γ̄|γ>0t) → σ2

2γ̄|γ>0
, as t → ∞. (22)

Therefore, we have the following pdf for the real part of u(t) in the stable regime

P[Re(u) = x | stable] =

√
2γ̄|γ>0

πσ2
exp

(
−2γ̄|γ>0

σ2
x2

)
. (23)

4.2 Probability Distribution in the Unstable Regime

In the unstable regime we describe the pdf in terms of the envelope, treating the
system response as a narrow band process. The envelope of u(t) is given by

d|u|2
dt

= 2Re
[
du

dt
u∗

]
=⇒ d|u|2

dt
= −2γ(t)|u|2 + σ2. (24)

Following assumption A2 we ignore σ2, which does not have a large probabilistic
impact on the instability strength, and therefore substituting the representation
|u| = eΛT into (24) we get Λ � −γ. Now since P[Λ] = P[−γ | γ < 0] we have

PΛ(λ) =
1

Φ(η)
Pγ(−λ) =

1
kΦ(η)

φ

(
−λ + γ̂

k

)
, λ > 0 (25)
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To proceed, we set U = u0 exp(ΛT ) (for clarity denote Tγ<0 by T ) and
Y = Λ, then from a change of variables

PUY (u, y) = PΛT (λ, t)|det[∂(λ, t)/∂(u, y)]|. (26)

Next, we assume that T and Λ are independent, which gives

PUY (u, y) =
PΛ(λ)PT (t)
u0λ exp(λt)

=
1
uy

PΛ(y)PT

(
log(u/u0)

y

)
, u > u0, y > 0. (27)

Taking the marginal density gives

PU (u) =
1
u

∫ ∞

0

1
y
PΛ(y)PT

(
log(u/u0)

y

)
dy. (28)

Hence, using (25) and (15) we have the following pdf for the envelope in the
unstable regime

P[u | γ < 0, u0] =

π log(u/u0)
2kT̄ 2Φ(η)u

∫ ∞

0

1
y2

φ

(
−y + γ̂

k

)
exp

(
− π

4T̄ 2y2
log(u/u0)2

)
dy, u > u0.

(29)

In addition, using (11), the average length of an extreme event is given by

Tdecay

Tα<0
= −

γ̂ − k φ(η)
Φ(η)

γ̂ + k φ(η)
1−Φ(η)

≡ μ =⇒ Tinst = (1 − μ)Tα<0. (30)

Finally, to construct the full distribution for the envelope of u(t) in the unsta-
ble regime, we need to incorporate the distribution of the initial point of the
instability, which is described by the envelope of u(t) in the stable regime. Since
the conditionally stable regime is described by a stationary Gaussian process the
envelope pdf can be easily derived [12], which for the current case we have

P[u0] =
4γ̄|γ>0

σ2
u0 exp

(
−2γ̄|γ>0

σ2
u2
0

)
. (31)

We note that the oscillatory character during an instability has be taken into
account. However, to avoid the additional integral that would result, we refer to
the narrow band approximation made. This will give approximately u = |u| cos ϕ,
where ϕ is a uniform random variable distributed between 0 and 2π. The proba-
bility density function for z = cos ϕ is given by P[z] = 1/(π

√
1 − z2), z ∈ [−1, 1],

which we approximate by P[z] = 1
2 (δ(z + 1) + δ(z − 1)). This approximation

allows us to formulate the pdf for Re(u) in terms of its envelope:

P[Re(u) = x | γ < 0] =
1
2
P[u = |x| | γ < 0]. (32)

We show in Sect. 4.4 that this approximation compares favorably with direct
numerical simulations.
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4.3 Summary of Analytical Results for the Complex Mode

Combining (23), (29), (31), and (30) into the Bayes’ decomposition (3) and
utilizing the approximation (32) gives the following heavy-tailed, symmetric pdf
for the complex mode, for x ∈ IR,

P[Re(u) = x] =
(
1 − (1 − μ)Φ(η)

)
√

2γ̄|γ>0

πσ2
exp

(
−2γ̄|γ>0

σ2
x2

)
+ (1 − μ)

√
2πγ̄|γ>0

2σ2kT̄ 2

∫ |x|

0

∫ ∞

0

log(|x|/u0)

y2(|x|/u0)
exp

(
− (y + γ̂)2

2k2
− π

4T̄ 2y2
log(|x|/u0)

2 − 2γ̄|γ>0

σ2
u2
0

)
dy du0. (33)

4.4 Comparisons with Direct Monte Carlo Simulations

Here we compare the analytic results (33) with direct Monte Carlo simulations
for the three regimes R1–R3. In Fig. 2, the results for Regime 1 are presented
alongside a sample realization. As previously mentioned, this regime is char-
acterized by frequent short-lasting instabilities. Despite the weak violation of
assumption A1, the analytical results are still able to capture the the heavy tails
of the response. However, due to the frequency of these short-lasting instabil-
ities and the fact that our analytic results neglects phase information in the
conditionally unstable pdf, a cusp is observed near the mean state. In contrasts,
in Regime 2 (see Fig. 3), we have large-amplitude instabilities that occur less
frequently. Therefore, the analytical results in this regime are able to capture
the response extremely accurately even near the mean state, despite no phase
information. Again, this is due to the fact that this regime is characterized by
less frequent large-amplitude instabilities, which push the conditionally unsta-
ble pdf further towards larger magnitude responses, and hence impact the pdf
of the conditionally stable regime less severely than in Regime 1. In Fig. 4 we
present the results for Regime 3 for completeness, even though this regime is
nearly Gaussian, since in the laminar regime intermittent events are extremely
rare.

Fig. 2. Regime 1: Sample path (left) and analytic pdf (33) compared with results from
Monte Carlo simulations (right), for: ω = 1.78, σ = 0.5, γ̂ = 1.2, dγ = 10, σγ = 10.
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Fig. 3. Regime 2: Sample path (left) and analytic pdf (33) compared with results from
Monte Carlo simulations (right), for: ω = 1.78, σ = 0.1, γ̂ = 0.55, dγ = 0.5, σγ = 0.5.

Fig. 4. Regime 3: Sample path (left) and analytic pdf (33) compared with results from
Monte Carlo simulations (right), for: ω = 1.78, σ = 0.25, γ̂ = 8.1, dγ = 0.25, σγ = 1.

5 Conclusions

We have formulated a general method to analytically approximate the pdf of inter-
mittently unstable systems excited by correlated stochastic noise. The method
developed in this paper relies on conditioning the system response on stable
regimes and unstable events according to Bayes’ rule, and then reconstruction
of the full probabilistic response after analysis of the conditional pdf in the two
regimes. Thus, we have demonstrated how the system’s response can be decom-
posed into a statistically stationary part and an essentially transient part. And
have shown that this decomposition provides a direct link between the charac-
ter of the intermittent instabilities and the form of the heavy-tail statistics of the
response. We then provide an application of the formulated method to a proto-
type intermittently unstable system: a complex mode that represents intermittent
modes of a turbulent system, where we show that the analytic results compare
favorably with Monte Carlo simulations for a broad range of parameters.
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Abstract. We develop a stochastic representation of a scalar function
defined on a high-dimensional space conditional on marginal statistics
of the function at a finite set of localities and a high-dimensional corre-
lation structure. The representation leverages a particular structure of
the functional dependence that exhibits scale separation. In the process,
we construct a polynomial chaos representation for the scalar quantity
of interest (QoI) whose coefficients are themselves random. The intrin-
sic randomness of the polynomial chaos expansion (PCE) reflects local
uncertainty and captures dependence on a subset (say S1) of the parame-
ters, while randomness in the PCE coefficients captures a global struc-
ture of the uncertainty and dependence on the remaining parameters
(say S2) in the high-dimensional space (let S = S1 ∪ S2). This construc-
tion is demonstrated by predicting wellbore signatures in the Gulf of
Mexico (GoM) where 100 tabulated data values are available at several
thousand wellbore locations throughout the GoM. Reservoir simulators
describing the physics of multiphase flow in porous media are used to
calculate the PCE representations at the sites where data is available.
In this context, random parameters describing the subsurface define the
parameter set S1. A Gaussian process model is then developed for each
coefficient in these representations, construed as a function on S2 over
which an intrinsic diffusion metric is defined.

1 Introduction

We address the problem of conditional density regression of a stochastic process
q(x, y, θ) based on available marginal densities of qi(xi, yi

, θi) at highly sparse
locations i = 1, 2, ..n. Here x ∈ R

3 refers to spatial locations, and y and θ are,
respectively, deterministic and stochastic inputs to underlying physical process.
Our interest is in estimating the marginal density of q(s, y

s
, θs) at location “s”

with partial or no data on y
s

and marginal densities at n highly sparse locations.
c© Springer International Publishing Switzerland 2015
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Methods for simulating conditional Gaussian and non-Gaussian process have
been proposed in the literature using series expansions [12,13] or density regres-
sion techniques using Dirichlet process [3,10].

In this paper, stochastic processes of interest describe wellbore signatures in
the Gulf of Mexico (GoM) and exhibit different character of statistical fluctua-
tions at different spatial scales. These wellbore signatures are governed by micro
(reservoir) scale, meso (field) scale and macro (GoM) scale processes. Our objec-
tive is to develop methods for density regression which leverage this multiscale
dependence on available information. Such a hierarchical model will enhance
our understanding of the role different scales of uncertainty play in reducing
predictability as well as the value of reducing each of these uncertainties and
the worth of associated information. We achieve this density regression, using a
polynomial chaos representation in conjunction with a Gaussian process (GP)
representation of the PCE coefficients. The GP representation itself is carried
out relative to a diffusion metric which learned from the data.

2 Motivation and Challenges

The recent Deepwater Horizon oil spill highlighted the uncertainty associated
with predictions of wellbore signatures due to anthropogenic events in hydrocar-
bon production. During this event attempts were made to control and cease the
blowout. Scarcity of data as well as uncertainty in leakage and seepage mecha-
nisms made associated predictions challenging. Several investigations have been
conducted to model the blowout and estimate the damage. It took almost two
months to get reliable wellbore signatures which were used to estimate the degree
of contamination in the GoM [9]. To address challenges associated with these
events, a ROM to rapidly estimate wellbore signatures or Quantity of Interests
(QoI) based on database of wellbore data over the GoM is developed. This ROM
serves as rapid risk assessment tool in case of anthropogenic events such as Deep-
water Horizon oil spill, anomaly detection tool by doing hypothesis testing with
normal conditions and also a prior model for the sites with limited data.

A repository of wellbore data from the Gulf of Mexico is curated by the
Bureau of Ocean and Energy Management (BOEM) and can be queried online
(http://www.boem.gov). The data pertains both to reservoirs that are no longer
in production and to currently producing reservoirs. Figure 1 shows a spatial
distribution of one of such available databases. This data is sparse and features
different types of uncertainty at reservoir, field and GoM scales. Our interest is
to develop a ROM to estimate a QoI at sites where partial or no data has been
collected. As a first step, the QoI is computed at sites where data is available
by evaluating a reservoir simulation code that takes as input a subset of the
data with predominantly local influence, such as permeability. Typically, mea-
surements are taken from multiple wellbores within a reservoir and a model for
permeability as a stochastic process is constructed using geostatistical meth-
ods. We rely on a Karhunen-Loéve construction for that purpose which diag-
onalizes an assumed covariance function leading to an optimal representation

http://www.boem.gov
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Fig. 1. Spatial location of boreholes over the Gulf of Mexico, and location of study
areas in the GoM; Source of data [5]

of the permeability field in terms of uncorrelated random variables. These sto-
chastic interpolation schemes lead to uncertain QoI within each reservoir site.
Although permeability data with higher resolution is available to private oper-
ators throughout the Gulf of Mexico, publicly available data is limited to the
BOEM data set which provides a single permeability value, averaged along the
length of the wellbore. Such uncertainty levels associated with the measured
data, coupled with sparsity of the data makes our task of density regression
quite challenging.

3 Summary of the Methodology

For a number of operational reasons, we focus our attention on a QoI that
consists of cumulative production after one day. Uncertainty associated with
permeability values renders the QoI at each site random. To represent these
random quantities, PCE of QoI are constructed at all sites where data is avail-
able by carrying out numerical reservoir simulations with permeability fields
described as lognormal stochastic processess. The PCE represents the QoI, q, as
a multidimensional polynomial in the input random variables [4,14] with deter-
ministic coefficients. We augment this standard construction by interpolating
the PCE coefficients using GP over a parameter space defined by the content
of the database. Gaussian Process (GP) regression [2,6–8,11] is a supervised
learning algorithm. Interpolation using GP makes PCE coefficients random at
all locations where no data was collected, including spatial locations where only
partial data is available. This leads to a stochastic expansion (PCE) with ran-
dom coefficients. If some of the data is not available at a spatial site of interest,
this data is itself interpolated using GP over the spatial domain, thus adding
another level of uncertainty in the model leading to a stochastic expansion with
three levels of uncertainty. Denoting the number of sites where data is available
by R we thus have,
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q(r, ξ
r
) =

∑

j

qj(r)Ψj(ξr), r = 1, 2, 3, ...R, (1)

where ξr are iid R
d-valued Gaussian random variables (d is equal to the number

of random variables used to describe the lognormal process for the permeability
over each reservoir), and ψi are multidimensional Hermite polynomials. The
zeroth order polynomial is equal to 1, signifying that the zeroth order coefficient
is the average of q. We will assume in the sequel that the fine scale uncertainty,
described by the random variables ξr are identical across all reservoirs. At site
“s”, knowing {qj(s)}, then we can estimate of q(s) as

q(s, ξ
r
) =

∑

j

qj(s)Ψj(ξr). (2)

To get {qj(s)}, an interpolatory model is constructed over the parameter set S2.
Since S2 is not observed at site “s”, its content is interpolated over GoM with
respect to the parameters in the set S1 and with respect to geospatial references
(referred to as set D2. This interpolation task is denoted symbolically by,

Ŝ2(s, S1,D2) = Ig(s, S1|S1,D2), (3)

where Ig is an interpolation operator, which in our case is the Gaussian process
regression. This leads to a PCE representation of entries in Ŝ2,

Ŝ2(s, ξg) =
∑

j

S2j(s)Ψj(ξg), (4)

where ξ
g

are new Gaussian random variables that reflect fundamental uncer-
tainty that controls variability at the scale of the Gulf. These random variables
are assumed to be independent of the set ξ

r
. The PCE coefficients qj(s) are thus

interpolated as function of the interpolated Ŝ2 and the PCE coefficients obtained
at all the observed reservoir sites qj(r). This is expressed as,

q̂j(D̂s2(s, ξg), qj(r)) = Kg

(
qj(s)|D̂s2(s, ξg), qj(r)

)
(5)

where Kg is an interpolation operator, which in this case is again given as
Gaussian process regression over parameter space. This can be described in the
following PCE,

q̂j

(
Ds2(s, ξg), ξf

)
=

∑

i

qij

(
Ds2

(
s, ξ

g

))
Ψi(ξf ) (6)

in which a new set of, ξ
f
, “fundamental” random variables is introduced. Putting

all the representations together leads to

q̂
(
s, ξ

r
, ξ

f
, ξ

g

)
=

∑

i,j

qij

(
∑

k

Ds2k
(s) Ψk(ξg)

)
Ψi(ξr) Ψj(ξf ), (7)
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where the parentheses on the right hand side refer to functional dependence
which can further be unfolded yielding the following expression,

q̂
(
s, ξ

r
, ξ

f
, ξ

g

)
=

∑

i,j,k

qijk Ψk(ξg) Ψi(ξr) Ψj(ξf ). (8)

This model has three levels of uncertainty, which arise from three different phys-
ical scales. The first level of uncertainty is in the reservoir model because of
the lack of detailed information of the microscale features such as permeability.
This uncertainty can be reduced by having detailed information of microscale
features, i.e. by having more wellbores inside the reservoir. The second level of
uncertainty is due to the uncertainty of local geological features such as ini-
tial pressure, which can be reduced by having an understanding of geology and
variability of the parameter set D2 in local scale, i.e. inside the field where the
reservoir “s” is located. The third level of uncertainty is attributed to geological
fluctuations across the GoM, which can be reduced by detailed information of
the geology of the entire GoM.

If we know S2 at site “s” the above model reduces to

q̂
(
s, ξ

r
, ξ

g

)
=

∑

i,j

qij(s)Ψi(ξr)Ψj(ξf ). (9)

4 Numerical Simulations

In order to show the capability of the developed procedure, simulations are car-
ried at a few locations in the GoM. Figure 1 shows location of lease blocks used
in this in GoM which are located in Green Canyon (GC) and Mississippi Canyon
(MC). The lease blocks are identified as MC109, MC281, MC778, GC339 and
GC608, and serve to demonstrate the predictive value of our ROM methodolo-
gies. More specifically, we will demonstrate how, given data from various wells
located in MC109, MC281, MC778 and GC339 we can anticipate flows at some
arbitrary well, “s” in GC608. The credibility of our predictions will depend on
the type of information available within MC109, MC281, MC778, GC339 as well
as on the information available for well “s” in GC608. Information about “s”
consists of spatial coordinates, but could also include additional geological, geo-
physical and subset of parameters of D2. Fields MC109, MC778, MC281, GC339,
GC608 have 13, 14, 9, 28 and 1 sands identified in the BOEM dataset. Each sand
is assumed to have one reservoir with the parameters listed in BOEM database.

4.1 PCE of QoI

Since BOEM data do not have detailed enough information to carry out numeri-
cal simulation of the reservoir, additional assumptions are made to enable numer-
ical reservoir simulation. Thus each reservoir is assumed to be bounded by a cube
with dimensions specified by the area of the reservoir and average thickness (both
available in the BOEM dataset), which is consistent with our stated QoI which
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is related to flow rates at early times. Since BOEM data consists of only aver-
age permeability along each wellbore, the permeability field is assumed to be
log-normal process with mean specified from the BOEM dataset and assumed
coefficient of variation and correlation length. With these assumptions, numeri-
cal reservoir simulations are carried out at each of the 65 reservoirs to get PCE
representations of the QoI at these reservoirs. Figure 2(a) shows probability den-
sity functions for all 65 reservoirs and Fig. 2(b) shows the combined pdf of QoI
obtained by collecting samples of QoI from pdf’s of QoI at all 65 reservoirs. This
pdf is considered as describing a prior model. Our aim is to improve on this
estimate of wellbore signatures as we specialize it to a spatial location in the
GoM. It is clear in subfigure (a) of this figure that reducing the uncertainty at
each reservoir has a limited effect since that would result in a collection of delta
functions whose scatter reflects uncertainty about the geology of the GoM.
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Fig. 2. (a) Probability density functions of flow rate on day one (q) in bbl for all 65
reservoirs (b) Combined pdf of flow rate on day one in bbl for all 65 reservoirs.

4.2 Diffusion Metric

In the above analysis, a Euclidean metric was adopted between points in set
S2. This precludes any intrinsic structure whereby S2 may be embedded in a
manifold within this Euclidean space. Given the fact that the large dataset we
are dealing with is the result of a number of complex physical phenomena tak-
ing place at different scales in time and space, we do expect a certain hidden
structure to emerge in response to these interactions. We thus compute a diffu-
sion metric that defines the shortest path between points within S2 as the path
traversed by a Markov chain wandering on S2 with constrained jumps sizes. We
thus introduce the kernel,

k(x, y) = e− ||x−y||2
α , (10)

which defined the diffusion matrix in the form,

Li,j = k(xi, xj). (11)
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The normalized graph Laplacian, which acts as a transition matrix is then con-
structed using

M = D−1L, (12)

where
D =

∑

l

L(xi, xj). (13)

An eigen decomposition of M then leads to a representation of M in the form,

M t
i,j =

∑

l

λt
lψl(xi)φl(xj). (14)

The distance between any two points on the manifold can then be evaluated
using Euclidean distance between so called diffusion coordinates {ψi}. A map
from the diffusion coordinates to the Euclidean distance is thus given in the
form,

Dt(xi, xj)2 =
∑

l

λ2t
l (ψl(xi) − ψl(xj))2. (15)

4.3 Prediction of QoI

Assuming we have only partial information of attributes regarding well “s” in
GC608, QoI at this site is predicted by using PCE coefficients from reservoirs in
MC109, MC281, MC778 and GC339. GP of PCE coefficients is performed over
the subset of S2 parameter space, since these parameters are used in numerical
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Fig. 3. QoI: Flow rate on day one in bbl; Solid green line indicates pdf of QoI at
prediction location obtained from available data at that location; Dashed red line
indicates predicted pdf of QoI using Gaussian Process regression over parameter space;
Dotted and dashed black line indicates pdf of QoI from Preliminary Estimate (a) With
known parameters at target site (b) With unknown parameters at target site (Color
figure online).
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Fig. 4. QoI: Flow rate on day one in bbl; Solid green line indicates pdf of QoI at
prediction location obtained from available data at that location; Dashed red line
indicates predicted pdf of QoI using Gaussian Process regression over parameter space;
Dotted and dashed black line indicates pdf of QoI from Preliminary Estimate. S2 has
dimension 36 (Color figure online).

Table 1. List of parameters included in the construction of the diffusion metric.

Spatial references X Spatial references Y RKB Elevation

Bore hole total measured depth True vertical depth Surface North/South
distance

Surface East/West distance Bottom North/South
distance

Bottom East/West
distance

Depth of water Surface longitude Bottom longitude

Surface latitude Bottom latitude Discovered BOE

Subsea Depth Total average net
thickness

Total area

Total volume Oil average net
thickness

Oil total area

Oil total volume Gas average net
thickness

Gas total area

Gas total volume Porosity Water saturation

Initial pressure Initial temperature Sand pressure gradient

Sand temperature gradient Initial solution gas-oil
ratio

Gas specific gravity

Oil API gravity Initial gas formation
volume factor

Initial oil formation
volume factor

reservoir simulations. In one case we use as members of S2 the five parameters
given by porosity, water saturation, initial pressure, thickness of the reservoir
and area of the reservoir. In a second instance we use a subset consisting of 36
parameters. If these parameters are known at well “s” they are used directly
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Fig. 5. QoI: Flow rate on day one in bbl; Solid green line indicates pdf of QoI at predic-
tion location obtained from available data at that location; Dashed red line indicates
predicted pdf of QoI using Gaussian Process regression over diffusion parameter space;
Dotted and dashed black line indicates pdf of QoI from Preliminary Estimate. S2 has
dimension 36 (Color figure online).

for interpolation, otherwise they are interpolated over spatial reference and used
for the interpolation of PCE coefficients. Figure 3 shows predicted pdf for the
cases both with known and unknown parameters, for the case where S2 is five-
dimensional.

Figure 3 shows that predicted QoI using proposed stochastic interpolation
methodology is better than the preliminary estimates obtained by pooling avail-
able data into a single pdf. Also, predictions are close to actual QoI if few
parameters are available directly at the target site.

Figure 4 shows the pdf then the size of S2 is increased to 36 (thus using a GP
in 36 dimensional space). Figure 5 shows the results obtained by constructing
the GP in 36 dimensions using the diffusion metric instead of the euclidean
metric used in Fig. 4. The diffusion metric is constructed according to standard
procedures for diffusion on a graph constructed by the data [1]. The diffusion
metric is adapted to the data and discovers nonlinear intrinsic structure that is
clearly relevant to the present case as demonstrated by the improvement in the
match of the pdf. In the present problem, the diffusion map in 36 dimensional
parameter space shown in Table 1 was computed. Connectivity between one data
point and any another data point was defined by a Gaussian kernel with σ = 1.
Based on the eigenvalues decay of the corresponding normalized graph laplacian,
the dimension is reduced to 15.

5 Conclusions

A procedure has been developed for conditional density regression which produced
a reduced order model useful for interpolating wellbore signatures over the Gulf
of Mexico. These are useful for rapid risk assessment in case of anthropogenic
events such as Deepwater Horizon oil spill. The construction uses polynomial
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chaos expansion in conjunction with a Gaussian process regression and a database
of wellbore data over the GoM. The final model has three levels of uncertainties
which are arising from three different physical scales. Despite these uncertainties
the proposed model has the potential to provide improved probabilistic estimates
of wellbore signatures at unobserved sites. This is demonstrated by carrying out
numerical simulations in Mississippi Canyon and Green Canyon within the Gulf
of Mexico.
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Abstract. The expressive power of Gaussian process (GP) models
comes at a cost of poor scalability in the size of the data. To improve
their scalability, this paper presents an overview of our recent progress in
scaling up GP models for large spatiotemporally correlated data through
parallelization on clusters of machines, online learning, and nonmyopic
active sensing/learning.

1 Introduction

Gaussian process (GP) models are a rich class of Bayesian non-parametric mod-
els that can perform probabilistic regression by providing Gaussian predictive
distributions with formal measures of predictive uncertainty. Unfortunately, the
expressive power of a full-rank GP (FGP) model comes at a cost of poor scalabil-
ity (i.e., cubic time) in the data size, which hinders its practical use for large data
generated from environmental sensing and monitoring applications. To boost its
scalability, two research trends are prevalent:

Model Approximation. To improve the time efficiency of training with all
the given data, structural assumptions have been imposed on the FGP model to
yield two different classes of sparse GP approximation methods: (a) Low-rank
approximate representations [7,27,31] of the FGP model are especially suitable
for modeling smoothly-varying environmental phenomena with high spatiotem-
poral correlation (i.e., long length-scales) and they utilize all the data for predic-
tions like FGP; and (b) localized regression and covariance tapering methods (e.g.,
local GPs [6,25] and compactly supported covariance functions [11]) are capable
of modeling highly-varying phenomena with low correlation (i.e., short length-
scales) but they use only local data for predictions, hence predicting poorly in
areas with sparse data. Recent sparse GP approximation methods [3,28,30] have
attempted to unify the best of both worlds.

c© Springer International Publishing Switzerland 2015
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Data/Information Gathering. Alternatively, the GP model can be trained
with considerably less but highly informative data that are actively (as opposed
to passively) gathered by optimizing some active sensing/learning1 criterion
defined using mean-square error, entropy, or mutual information [1,16,18,19].
This is particularly desirable in environmental sensing applications and tasks
constrained by some sampling budget.

This paper presents an overview of our recent progress in scaling up GP mod-
els for large spatiotemporally correlated data along the two research directions
discussed above. The specific contributions of our three recent works [3,12,32]
include:

Parallel GP Models. Though existing sparse GP approximation meth-
ods utilizing low-rank representations (i.e., including the unified approaches)
[7,27,28,30,31] have improved the scalability of GP models to linear time in
the data size, they remain computationally impractical for performing real-
time predictions necessary in many time-critical environmental sensing and
monitoring applications and decision support systems (e.g., precision agricul-
ture [19], sensing and monitoring of ocean, freshwater, and traffic phenomena
[1,2,4,5,10,17,18,20,21,26], GIS) that need to process and analyze huge quan-
tities of data collected over short time durations (e.g., in traffic, meteorology,
surveillance). To resolve this, our first work considers exploiting clusters of par-
allel machines to achieve efficient predictions in real time. The local GPs method
[6] appears most straightforward to be “embarrassingly” parallelized but they
suffer from discontinuities in predictions on the boundaries of different local GPs.
The work of [25] rectifies this problem by imposing continuity constraints along
the boundaries in a centralized manner. But, its use is restricted strictly to data
with 1D and 2D input features.

Different from the parallel local GPs method, our proposed parallel GP mod-
els [3] (Sect. 3), which exploit low-rank approximate representations for distrib-
uting the computational load among parallel machines to achieve time efficiency
and scalability, do not suffer from boundary effects, work with multi-dimensional
input features, and exploit all the data for predictions but do not incur the cubic
time cost of FGP model. We theoretically guarantee the predictive performances
of our parallel GP models to be equivalent to that of some centralized sparse
GP approximation methods and implement them using the message passing
interface (MPI) framework to run in a cluster of 20 computing nodes for empir-
ically evaluating their predictive performances, time efficiency, scalability, and
speedups on a dataset featuring a real-world traffic phenomenon. Interestingly,
our parallel GP models can be adapted to GP-based decentralized data fusion
algorithms to be run on a network of mobile sensors for cooperative perception
of spatiotemporally varying environmental phenomena, as detailed in [4,5].

Online GP Model. When the data is expected to be streaming in over a
(possibly indefinitely) long period of time, it is computationally impractical to

1 Active sensing/learning in machine learning is also known as adaptive sampling in
oceanography and control [17].
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repeatedly use existing offline sparse GP approximation methods [7,27,28,30,31]
or online FGP model [9] for training at each time step because they incur, respec-
tively, linear and quadratic time in the data size per time step. Our next work
proposes a novel online sparse GP approximation method [22,32] (Sect. 4) that,
in contrast to existing works mentioned above, is capable of achieving constant
time and memory (i.e., independent of data size) per time step. We provide a
theoretical guarantee on its predictive performance to be equivalent to that of
the offline sparse partially independent training conditional (PITC) approxima-
tion method. Our proposed method [32] generalizes the sparse online GP model
of [9] by relaxing its conditional independence assumption significantly, hence
potentially improving the predictive performance. We empirically demonstrate
the practical feasibility of using our generalized online sparse GP model through
a real-world persistent mobile robot localization experiment.

Nonmyopic Active Sensing/Learning. Its objective is to derive an opti-
mal sequential policy that plans the most informative locations to be observed
for minimizing the predictive uncertainty of the unobserved areas of a spatially
varying environmental phenomenon given a sampling budget (e.g., number of
deployed sensors, energy consumption). To achieve this, many existing active
sensing algorithms [1,4,5,16,18–20] have assumed the spatial correlation struc-
ture of the phenomenon modeled by GP (specifically, the parameters defining it)
to be known, which is often violated in real-world applications. The predictive
performance of the GP model in fact depends on how informative the gathered
observations are for both parameter estimation and spatial prediction given the
true parameters. Interestingly, as revealed in [23], policies that are efficient for
parameter estimation are not necessarily efficient for spatial prediction with
respect to the true model parameters. Thus, active sensing/learning involves a
potential trade-off between sampling the most informative locations for spatial
prediction given the current, possibly incomplete knowledge of the parameters
(i.e., exploitation) vs. observing locations that gain more information about the
parameters (i.e., exploration). To address this trade-off, one principled approach
is to frame active sensing as a sequential decision problem that jointly optimizes
the above exploration-exploitation trade-off while maintaining a Bayesian belief
over the model parameters. Solving this problem then results in an induced pol-
icy that is guaranteed to be optimal in the expected active sensing performance
[12]. Unfortunately, such a nonmyopic Bayes-optimal active learning (BAL) pol-
icy cannot be derived exactly due to an uncountable set of candidate observa-
tions and unknown model parameters. As a result, existing works advocate using
greedy policies [24] or performing exploration and exploitation separately [15] to
sidestep the difficulty of solving for the exact BAL policy. But, these algorithms
are sub-optimal in the presence of budget constraints due to their imbalance
between exploration and exploitation [12].

Our final work proposes a novel nonmyopic active sensing/learning algo-
rithm [12,13] (Sect. 5) that can still preserve and exploit the principled Bayesian
sequential decision problem framework for jointly optimizing the exploration-
exploitation trade-off and hence does not incur the limitations of existing works.
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In particular, although the exact BAL policy cannot be derived, we show that
it is in fact possible to solve for a nonmyopic ε-Bayes-optimal active learning
(ε-BAL) policy given an arbitrary loss bound ε. To meet real-time requirement
in time-critical applications, we then propose an asymptotically ε-optimal any-
time algorithm based on ε-BAL with performance guarantee. We empirically
demonstrate using a dataset featuring a real-world traffic phenomenon that,
with limited budget, our approach outperforms state-of-the-art algorithms.

2 Modeling Environmental Phenomena with Gaussian
Processes

The GP2 can be used to model an environmental phenomenon as follows: The
phenomenon is defined to vary as a realization of a GP. Let X be a set of sam-
pling units representing the domain of the phenomenon such that each sampling
unit x ∈ X denotes a d-dimensional feature vector and is associated with a real-
ized (random) measurement zx (Zx) if x is observed (unobserved). Let {Zx}x∈X
denote a GP, that is, every finite subset of {Zx}x∈X has a multivariate Gaussian
distribution. The GP is fully specified by its prior mean μx � E[Zx] and covari-
ance σxx′|λ � cov[Zx, Zx′ |λ] for all locations x, x′ ∈ X , the latter of which char-
acterizes the spatial correlation structure of the phenomenon and can be defined
using a covariance function parameterized by λ. When λ is known and a set zD
of realized measurements is observed for some set D ⊂ X of sampling units, the
FGP model can exploit these observations to predict the unobserved measure-
ment for any sampling unit x ∈ X \D as well as provide its predictive uncertainty
using a Gaussian predictive distribution p(zx|x,D, zD, λ) = N (μx|D,λ, σxx|D,λ)
with the following posterior mean and variance, respectively:

μx|D,λ � μx+ΣxD|λΣ−1
DD|λ (zD − μD) and σxx|D,λ � σxx|λ−ΣxD|λΣ−1

DD|λΣDx|λ
(1)

where, with a slight abuse of notation, zD is to be perceived as a column vector,
μD is a column vector with prior mean components μx′ for all x′ ∈ D, ΣxD|λ
is a row vector with prior covariance components σxx′|λ for all x′ ∈ D, ΣDx|λ
is the transpose of ΣxD|λ, and ΣDD|λ is a matrix with components σx′x′′|λ for
all x′, x′′ ∈ D. When λ is not known, a probabilistic belief bD(λ) � p(λ|zD) is
maintained over all possible λ and updated using Bayes’ rule to the posterior
belief bD∪{x}(λ) ∝ p(zx|x,D, zD, λ) bD(λ) given a new measurement zx. Then,
using belief bD, the predictive distribution is obtained by marginalizing out λ:
p(zx|x,D, zD) =

∑
λ∈Λ p(zx|x,D, zD, λ) bD(λ).

2 GP regression in machine learning is equivalent to the data assimilation scheme
called objective analysis or optimal interpolation or 3DVAR in oceanography and
meteorology [2,17] when the domain is reduced to a finite set of grid points and all
observations are at the grid points. It is also equivalent to kriging in geostatistics [8].



Recent Advances in Scaling Up Gaussian Process Predictive Models 171

3 Parallel GP Models

In this section, we will present a class of parallel GP models (pPITC and pPIC)
that distributes the computational load among parallel machines to achieve effi-
cient and scalable approximate GP prediction by exploiting the notion of a sup-
port set. The key idea of the parallel partially independent training conditional
(pPITC) approximation of FGP model is as follows: After distributing the data
evenly among N machines (Step 1), each machine encapsulates its local data,
based on a common prior support set S ⊂ X where |S| � |D|, into a local sum-
mary that is communicated to the master3 (Step 2). The master assimilates the
local summaries into a global summary (Step 3), which is then sent back to the
N machines to be used for predictions distributed among them (Step 4). These
steps are detailed below. For simplicity, we omit the use of the known GP model
parameters λ in our notations.

Step 1: Distribute data among N machines.
The data (D, yD) is partitioned evenly into N blocks, each of which is assigned
to a machine, as defined below:

Definition 1 (Local Data). The local data of machine n is defined as a tuple
(Dn, yDn

) where Dn ⊆ D, Dn

⋂ Di = ∅ and |Dn| = |Di| = |D|/N for i �= n.

Step 2: Each machine constructs and sends local summary to master.

Definition 2 (Local Summary). Given a common support set S ⊂ X known
to all N machines and the local data (Dn, yDn

), the local summary of machine
n is defined as a tuple (ẏn

S , Σ̇n
SS) where ẏn

S � ΣSDn
Σ−1

DnDn|S (yDn
− μDn

) and

Σ̇n
SS � ΣSDn

Σ−1
DnDn|SΣDnS such that μDn

is defined in a similar manner as μD
in (1) and ΣDnDn|S is a matrix with posterior covariance components σxx′|S for
all x, x′ ∈ Dn, each of which is defined in a similar way as (1).

Remark. Since the local summary is independent of the outputs yS , they need
not be observed. So, the support set S does not have to be a subset of D and
can be selected prior to data collection. Predictive performances of pPITC and
pPIC are sensitive to the selection of S. An informative support set S can be
selected from domain X using an iterative greedy active selection procedure [16]
prior to observing data.

Step 3: Master constructs and sends global summary to N machines.

Definition 3 (Global Summary). Given a common support set S ⊂ X known
to all N machines and the local summary (ẏn

S , Σ̇n
SS) of every machine n =

1, . . . , N , the global summary is defined as a tuple (ÿS , Σ̈SS) where ÿS �
∑N

n=1 ẏn
S

and Σ̈SS � ΣSS +
∑N

n=1 Σ̇n
SS .

3 One of the N machines can be assigned to be the master.
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Step 4: Distribute predictions among N machines.
To predict the unobserved measurement for any set U of sampling units, U is par-
titioned evenly into disjoint subsets U1, . . . ,UN to be assigned to the respective
machines 1, . . . , N . So, |Un| = |U|/N for n = 1, . . . , N .

Definition 4 (pPITC). Given a common support set S ⊂ X known to all
N machines and the global summary (ÿS , Σ̈SS), each machine m computes
a predictive Gaussian distribution N (μ̂x, σ̂xx) of the unobserved measurement
for all sampling units x ∈ Un where μ̂x � μx + ΣxSΣ̈−1

SS ÿS and σ̂xx �
σxx − ΣxS

(
Σ−1

SS − Σ̈−1
SS

)
ΣSx.

Theorem 1. Let a common support set S ⊂ X be known to all N machines.
Let N (μPITC

x|D , σPITC
xx|D ) be the predictive Gaussian distribution computed by the

centralized PITC approximation of FGP model [27] for all sampling units x ∈ U
where

μPITC
x|D � μx + ΓxD (ΓDD + Λ)−1 (yD − μD) and σPITC

xx|D � σxx − ΓxD (ΓDD + Λ)−1 ΓDx

(2)

such that ΓBB′ � ΣBSΣ−1
SSΣSB′ for all B,B′ ⊂ X and Λ is a block-diagonal

matrix constructed from the N diagonal blocks of ΣDD|S , each of which is a
matrix ΣDnDn|S for n = 1, . . . , N where D =

⋃N
n=1 Dn. Then, μ̂x = μPITC

x|D and
σ̂xx = σPITC

xx|D .

Remark. Since PITC generalizes the Bayesian Committee Machine (BCM) of
[29], pPITC generalizes parallel BCM [14], the latter of which assumes the sup-
port set S to be U [27]. As a result, parallel BCM does not scale well with large
U . Similarly, since PITC reduces to the fully independent training conditional
(FITC) approximation method when Λ is a diagonal matrix constructed from
σx′x′|S for all x′ ∈ D (i.e., N = |D|), pPITC generalizes parallel FITC.

Though pPITC scales very well with large data [3], it can predict poorly
due to (a) loss of information caused by summarizing the realized measurements
and correlation structure of the original data; and (b) sparse coverage of U by
the support set. We propose a novel parallel partially independent conditional
(pPIC) approximation of FGP model that combines the best of both worlds,
that is, the predictive power of FGP and time efficiency of pPITC. pPIC is
based on the following intuition: A machine can exploit its local data to improve
the predictions of unobserved measurements that are highly correlated with its
data. At the same time, pPIC can preserve the time efficiency of pPITC by
exploiting its idea of encapsulating information into local and global summaries.
The predictive Gaussian distribution computed by pPIC on each machine is (a)
more complicated mathematically because, to avoid exploiting the local data
twice, its contribution to the summary information has to be removed, and (b)
proven to be equivalent to that of the centralized PIC approximation of FGP
model [30]. Interested readers are referred to [3] for more details.
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Remark 1. The above equivalence results imply that the computational
load of the centralized PITC and PIC approximations of FGP can be dis-
tributed among N parallel machines, hence improving the time efficiency
and scalability of approximate GP prediction. Supposing |U| < |D| and
|S| < |D| for simplicity, the O(|S|2|D| + |D|(|D|/N)2) time incurred by PITC
and O(|S|2|D| + |D|(|D|/N)2 + N |D|) time incurred by PIC can, respectively,
be reduced to O(|S|2(|S| + N + |U|/N) + (|D|/N)3) incurred by pPITC and
O(|S|2(|S| + N + |U|/N) + (|D|/N)3 + |D|) time incurred by pPIC, the latter
of which scale better with increasing data size |D|. The speedups of pPITC and
pPIC over their centralized counterparts (a) deviate further from ideal speedup
with more machines N due to their additional O(|S|2N) time, and (b) grow
with increasing data size |D| because, unlike the additional O(|S|2|D|) time of
PITC and PIC that increase with more data, they do not have corresponding
O(|S|2|D|/M) terms.

Remark 2. The equivalence results also shed some light on the underlying prop-
erties of pPITC and pPIC based on the structural assumptions of PITC and
PIC, respectively: pPITC assumes that YD1 , . . . , YDM

, YU1 , . . . , YUM
are condi-

tionally independent given YS . In contrast, pPIC can predict the unobserved
measurements YU better since it imposes a less restrictive assumption of con-
ditional independence between YD1

⋃U1 , . . . , YDM

⋃UM
given YS . Experimental

results on two real-world datasets [3] show that pPIC achieves predictive accu-
racy comparable to FGP and significantly better than pPITC, thus justifying
the practicality of such an assumption.

Remark 3. Predictive performances of pPITC and pPIC are improved by
increasing size of S at the expense of greater time, space, and communication
complexity [3].

Experiments and Discussion. This section empirically evaluates the pre-
dictive performances, time efficiency, scalability, and speedups of our proposed
parallel GPs against their centralized counterparts and FGP on a dataset of size
|D| = 41850 featuring a real-world traffic phenomenon, which contains traffic
speeds (km/h) along 775 road segments of an urban road network (including
highways, arterials, slip roads, etc.) during the morning peak hours on April 20,
2011. The traffic speeds are the measurements. The mean speed is 49.5 km/h and
the standard deviation is 21.7 km/h. Each sampling unit (i.e., road segment) is
specified by a 5-dimensional vector of features: length, number of lanes, speed
limit, direction, and time. The time dimension comprises 54 five-minute time
slots. This spatiotemporal traffic phenomenon is modeled using a relational GP
(previously developed in [5]) whose correlation structure can exploit both the
road segment features and road network topology information. 10% of the data
is randomly selected as test data for predictions (i.e., as U). Our experimental
platform is a cluster of 20 computing nodes connected via gigabit links: Each
node runs a Linux system with Intel� Xeon� CPU E5520 at 2.27 GHz and
20 GB memory. More details of our experimental setup can be found in [3].
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Fig. 1. Performance of parallel GP models with varying number N = 4, 8, 12, 16, 20
of machines, data size |D| = 32000, and support set size |S| = 2048. The ideal speedup
of a parallel algorithm is defined to be the number N of machines running it.

Figure 1 shows that, with N = 20 machines and data size |D| = 32000, pPITC
and pPIC incur 2–4 orders of magnitude less time than FGP while achieving com-
parable predictive performances (respectively, root mean square error (RMSE)
differences of less than 0.2 km/h and 0.05 km/h). Specifically, pPITC and pPIC
incur only 1–2 min while FGP incurs more than 3.5 h. Also, the speedups of
pPITC and pPIC over their centralized counterparts deviate further from ideal
speedup with more machines, as explained earlier. We have in fact proposed
another parallel GP model in [3] called pICF that exploits parallel incomplete
Cholesky factorization. For implementation details of pICF and more extensive
experimental results, interested readers are referred to [3].

4 Generalized Online Sparse GP (GOSGP)
Approximation

The key idea of our GOSGP approximation method [32] is to summarize
the newly gathered data at regular time intervals/slices, assimilate the sum-
mary information of the new data with that of all the previously gathered
data/observations, and then exploit the resulting assimilated summary infor-
mation to compute a Gaussian predictive distribution of the unobserved mea-
surement for any sampling unit. For simplicity, we omit the use of the known
GP model parameters λ in our notations. Let x1:t−1 � {x1, . . . , xt−1} denote a
set of sampling units from time steps 1 to t−1, each time slice n span time steps
(n − 1)τ + 1 to nτ for some user-defined slice size τ ∈ Z

+, and the number of
time slices available thus far up until time step t be denoted by N (i.e., Nτ < t).

Definition 5 (Slice Summary). Given a support set S ⊂ X , a subset Dn �
x(n−1)τ+1:nτ ∈ x1:t−1 of sampling units associated with time slice n, and the
column vector zDn

= z(n−1)τ+1:nτ of corresponding realized measurements, the
slice summary of time slice n is defined as a tuple (μn

s©, Σn
s©) for n = 1, . . . , N

where μn
s© � ΣSDn

Σ−1
DnDn|S(zDn

− μDn
) and Σn

s© � ΣSDn
Σ−1

DnDn|SΣDnS .
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Definition 6 (Assimilated Summary). Given (μn
s©, Σn

s©), the assimilated
summary (μn

a©, Σn
a©) of time slices 1 to n is updated from the assimilated sum-

mary (μn−1
a© , Σn−1

a© ) of time slices 1 to n − 1 using μn
a© � μn−1

a© + μn
s© and

Σn
a© � Σn−1

a© + Σn
s© for n = 1, . . . , N where μ0

a© � 0 and Σ0
a© � ΣSS .

Remark 1. After constructing and assimilating (μn
s©, Σn

s©) with (μn−1
a© , Σn−1

a© )
to form (μn

a©, Σn
a©), Dn = x(n−1)τ+1:nτ , zDn

= z(n−1)τ+1:nτ , and (μn
s©, Σn

s©)
(Definition 5) are no longer needed and can be removed from memory. As a
result, at time step t where Nτ + 1 ≤ t ≤ (N + 1)τ , only (μN

a©, ΣN
a©), xNτ+1:t−1,

and zNτ+1:t−1 have to be kept in memory, thus requiring only constant memory
(i.e., independent of t).

Remark 2. The slice summaries are constructed and assimilated at a regular time
interval of τ , specifically, at time steps Nτ + 1 for N ∈ Z

+.

Theorem 2. Given S ⊂ X and (μN
a©, ΣN

a©), our GOSGP approximation method
computes a Gaussian predictive distribution p(zt|xt, μ

N
a©, ΣN

a©) = N (μ̃xt
, σ̃xtxt

) of
the measurement for any xt ∈ X at time step t (i.e., Nτ + 1 ≤ t ≤ (N + 1)τ)
where

μ̃xt � μxt + ΣxtS
(

ΣN
a©
)−1

μN
a© and σ̃xtxt � σxtxt − ΣxtS

(

Σ−1
SS −

(

ΣN
a©
)−1
)

ΣSxt .

If t = Nτ + 1, μ̃xt = μPITC
xt|x1:t−1andσ̃xtxt = σPITC

xtxt|x1:t−1 . (3)

Remark 1. Theorem 2 implies that our GOSGP approximation method [32] is
in fact equivalent to an online learning formulation/variant of the offline PITC
[27]. Supposing τ < |S|, the O(t|S|2) time incurred by offline PITC can then be
reduced to O(τ |S|2) time (i.e., time independent of t) incurred by GOSGP [32]
at time steps t = Nτ + 1 for N ∈ Z

+ when slice summaries are constructed and
assimilated. Otherwise, GOSGP [32] only incurs O(|S|2) time per time step.

Remark 2. The above equivalence result allows the structural property of
GOSGP [32] to be elucidated using that of offline PITC: The measurements
ZD1 , . . . , ZDN

, Zxt
between different time slices are assumed to be conditionally

independent given ZS . Such an assumption enables the data gathered during
each time slice to be summarized independently of that in other time slices.
Increasing slice size τ (i.e., less frequent assimilations of larger slice summaries)
relaxes this conditional independence assumption (hence, potentially improv-
ing the predictive performance), but incurs more time at time steps when slice
summaries are constructed and assimilated (see Remark 1).

Remark 3. Since offline PITC generalizes offline FITC, our GOSGP approxima-
tion method [32] generalizes the online learning variant of FITC (i.e., τ = 1) [9].

When Nτ + 1 < t ≤ (N + 1)τ (i.e., before the next slice summary of time
slice N + 1 is constructed and assimilated), the most recent observations (i.e.,
D′ � xNτ+1:t−1 and zD′ = zNτ+1:t−1), which are often highly informative, are
not used to update μ̃xt

and σ̃xtxt
(3). This may hurt the predictive perfor-

mance when τ is large. To resolve this, we exploit incremental update formulas
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Fig. 2. (a) Pioneer 3-DX mobile robot trajectory of about 280 m in SMART FM IRG
office/lab generated by AMCL package in ROS, along which (b) 561 relative light
(%) observations/data are gathered at locations denoted by small colored circles. (c)
Graphs of incurred time (s) per time step vs. number of time steps comparing different
GP localization algorithms.

of Gaussian posterior mean and variance [32] to update μ̃xt
and σ̃xtxt

with the
most recent observations, thereby yielding a Gaussian predictive distribution
p(zt|xt, μ

N
a©, ΣN

a©,D′, zD′) = N (μ̃xt|D′ , σ̃xtxt|D′) where

μ̃xt|D′ � μ̃xt
+ Σ̃xtD′Σ̃−1

D′D′ (zD′ − μ̃D′) and σ̃xtxt|D′ � σ̃xtxt
− Σ̃xtD′Σ̃−1

D′D′Σ̃D′xt

(4)
such that μ̃D′ is a column vector with mean components μ̃x (i.e., defined similarly
to (3)) for all x ∈ D′, Σ̃xtD′ is a row vector with covariance components σ̃xtx

(i.e., defined similarly to (3)) for all x ∈ D′, Σ̃D′xt
is the transpose of Σ̃xtD′ ,

and Σ̃D′D′ is a matrix with covariance components σ̃xx′ (i.e., defined similarly
to (3)) for all x, x′ ∈ D′.

Theorem 3. Computing (4) incurs O(τ |S|2) time at time steps t = Nτ +1 for
N ∈ Z

+ and O(|S|2) time otherwise. It requires O(|S|2) memory at each time
step.

So, GOSGP [32] incurs constant time and memory (i.e., independent of t) per
time step.

Experiments and Discussion. In contrast to existing localization algorithms
that train the GP observation model of a Bayes filter offline, GOSGP [32] is
used to learn it online for persistent robot localization and the resulting algo-
rithm is called GP-Localize [32]. The adaptive Monte Carlo localization (AMCL)
package in ROS is run on a Pioneer 3-DX mobile robot mounted with a SICK
LMS200 laser rangefinder to determine its trajectory (Fig. 2(a)) and the 561
locations at which the relative light measurements are taken using a weather
board (Fig. 2(b)); these locations are assumed to be ground truth. For empirical
evaluation of GP-Localize with other real-world datasets, refer to [32].

The localization error (i.e., distance between the robot’s estimated and true
locations) and scalability of GP-Localize are compared to that of two sparse GP
localization algorithms [32]: (a) The Subset of Data (SoD)-Truncate method uses
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|S| = 10 most recent observations (i.e., compared to |D′| < τ = 10 most recent
observations considered by GOSGP [32] besides the assimilated summary) as
training data at each time step while (b) the SoD-Even method uses |S| = 40
observations (i.e., compared to the support set of |S| = 40 possibly unobserved
locations selected prior to localization and exploited by GOSGP [32]) evenly
distributed over the time of localization. The scalability of GP-Localize is further
compared to that of GP localization algorithms employing full GP (FGP) and
offline PITC. GP-Localize, SoD-Truncate, and SoD-Even achieve, respectively,
localization errors of 2.1 m, 5.4 m, and 4.6 m averaged over all 561 time steps
and 3 runs. Figure 2(c) shows the time incurred by GP-Localize, SoD-Truncate,
SoD-Even, FGP, and offline PITC at each time step. GP-Localize is clearly much
more scalable (i.e., constant time) than FGP and offline PITC. Though it incurs
slightly more time than SoD-Truncate and SoD-Even, it can localize significantly
better.

5 Nonmyopic ε-Bayes-Optimal Active Sensing/Learning

Problem Formulation. To cast active sensing as a Bayesian sequential deci-
sion problem, we define a sequential active sensing policy π � {πn}N

n=1 that
is structured to sequentially decide the next location πn(zD) ∈ X \ D to be
observed at each stage n based on the current observations zD over a finite
planning horizon of N stages (i.e., sampling budget). To measure the predic-
tive uncertainty over unobserved areas of the phenomenon, we use the entropy
criterion and define the value under a policy π to be the joint entropy of its
selected observations when starting with some prior observations zD0 and fol-
lowing π thereafter [12]. The work of [19] has established that minimizing the
posterior joint entropy (i.e., predictive uncertainty) remaining in unobserved
locations of the phenomenon is equivalent to maximizing the joint entropy of
π. Thus, solving the active sensing problem entails choosing a sequential BAL
policy π∗

n(zD) = arg maxx∈X\D Q∗
n(zD, x) induced from the following N -stage

Bellman equations, as formally derived in [12]:

V ∗
n (zD) � max

x∈X\D
Q∗

n(zD, x)

Q∗
n(zD, x) � E [− log p(Zx|x,D, zD)] + E

[
V ∗

n+1(zD ∪ {Zx}) |x,D, zD
] (5)

for stage n = 1, . . . , N where p(zx|x,D, zD) is defined in Sect. 2 and the second
expectation term is omitted from right-hand side expression of Q∗

N at stage N .
Unfortunately, since the BAL policy π∗ cannot be derived exactly, we instead
consider solving for an ε-BAL policy πε whose joint entropy approximates that
of π∗ within ε > 0.

ε-BAL Policy. The key idea of our nonmyopic ε-BAL policy πε is to approx-
imate the expectation terms in (5) at every stage using truncated sampling.
Specifically, given realized measurements zD, a finite set of τ -truncated, i.i.d.
observations {zi

x}S
i=1 [12] is generated and exploited for approximating V ∗

n (5)
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Fig. 3. (a) Traffic phenomenon (i.e., speeds (km/h) of road segments) over an urban
road network, graphs of (b) root mean square prediction error (RMSPE) of APGD, IE,
and 〈α, ε〉-BAL policies with horizon length N ′ = 3, 4, 5 and (c) total online processing
cost of 〈α, ε〉-BAL policies with N ′ = 3, 4, 5 vs. budget of N segments, and (d–f) road
segments observed (shaded in black) by respective APGD, IE, and 〈α, ε〉-BAL policies
(N ′ = 5) with N = 60.

through the following Bellman equations:

V ε
n(zD) � max

x∈X\D
Qε

n(zD, x)

Qε
n(zD, x) � 1

S

S∑

i=1

− log p
(
zi

x|x,D, zD
)

+ V ε
n+1

(
zD ∪ {

zi
x

}) (6)

for stage n = 1, . . . , N . The use of truncation is motivated by a technical
necessity for theoretically guaranteeing the expected active sensing performance
(specifically, ε-Bayes-optimality) of πε relative to that of π∗ [12].

Anytime ε-BAL (〈α, ε〉-BAL) Algorithm. Although πε can be derived
exactly, the cost of deriving it is exponential in the length N of planning horizon
since it has to compute the values V ε

n(zD) (6) for all (S|X |)N possible states
(n, zD). To ease this computational burden, we propose an anytime algorithm
based on ε-BAL that can produce a good policy fast and improve its approxima-
tion quality over time. The key intuition behind our anytime ε-BAL algorithm
(〈α, ε〉-BAL) is to focus the simulation of greedy exploration paths through the
most uncertain regions of the state space (i.e., in terms of the values V ε

n(zD))
instead of evaluating the entire state space like πε. Interested readers are referred
to [12] for more details.

Experiments and Discussion. This section evaluates the active sensing per-
formance and time efficiency of our 〈α, ε〉-BAL policy π〈α,ε〉 empirically under
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using a real-world dataset of a large-scale traffic phenomenon (i.e., speeds of road
segments) over an urban road network; refer to [12] for additional experimental
results on a simulated spatial phenomenon. Figure 3(a) shows the urban road
network X comprising 775 road segments in Tampines area, Singapore during
lunch hours on June 20, 2011. Each road segment x ∈ X is specified by a 4D vec-
tor of features: length, number of lanes, speed limit, and direction. More details
of our experimental setup can be found in [12].

The performance of our 〈α, ε〉-BAL policies with planning horizon length
N ′ = 3, 4, 5 are compared to that of APGD and IE policies [15] by running each
of them on a mobile robotic probe to direct its active sensing along a path of
adjacent road segments according to the road network topology. Figure 3 shows
results of the tested policies averaged over 5 independent runs: It can be observed
from Fig. 3(b) that our 〈α, ε〉-BAL policies outperform APGD and IE policies
due to their nonmyopic exploration behavior. Figure 3(c) shows that 〈α, ε〉-BAL
incurs < 4.5 h given a budget of N = 240 road segments, which can be afforded
by modern computing power. To illustrate the behavior of each policy, Fig. 3
(d–f) show, respectively, the road segments observed (shaded in black) by the
mobile probe running APGD, IE, and 〈α, ε〉-BAL policies with N ′ = 5 given
a budget of N = 60. Interestingly, Fig. 3(d–e) show that both APGD and IE
cause the probe to move away from the slip roads and highways to low-speed
segments whose measurements vary much more smoothly; this is expected due to
their myopic exploration behavior. In contrast, 〈α, ε〉-BAL nonmyopically plans
the probe’s path and direct it to observe the more informative slip roads and
highways with highly varying traffic measurements (Fig. 3(f)) to achieve better
performance.
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27. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate
Gaussian process regression. JMLR 6, 1939–1959 (2005)

28. Sang, H., Huang, J.Z.: A full scale approximation of covariance functions for large
spatial data sets. J. R. Stat. Soc. B 74(1), 111–132 (2012)

29. Schwaighofer, A., Tresp, V.: Transductive and inductive methods for approximate
Gaussian process regression. In: Proceedings of NIPS, pp. 953–960 (2002)

30. Snelson, E.: Local and global sparse Gaussian process approximations. In: Pro-
ceedings of AISTATS (2007)

31. Wikle, C.K.: Low-rank representations for spatial processes. In: Gelfand, A.E.,
Diggle, P., Guttorp, P., Fuentes, M. (eds.) Handbook of Spatial Statistics, pp.
107–118. Chapman and Hall, Boca Raton (2010)

32. Xu, N., Low, K.H., Chen, J., Lim, K.K., Özgül, E.B.: GP-Localize: persistent
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Abstract. This paper presents contaminant source localization and
characterization in a sensor-rich multi-story building with a large-scale
domain. Bayesian framework infers the posterior distribution of source
location and characteristics from the sensor network with the model
uncertainty and inaccurate prior knowledge. A Markov Chain Monte
Carlo method with a Metropolis-Hastings algorithm provides samples
extracted from the posterior distribution. A computationally efficient
Gaussian process emulator allows Markove Chain Monte Carlo sampling
to use a physics-based model with tractable computational cost and time.
The posterior distribution obtained by the proposed method through
hypothetical contaminant release in a four-story building with total 156
subzones and sensors approaches true values of parameters of interest
closely and shows the efficacy for parameter inference in a large-scale
domain.

Keywords: Bayesian inference · Gaussian process emulator · Multizone
model · CONTAM · Source localization and characterization · Sensor-
rich multi-story building

1 Introduction

Modern building environments require proper evacuation plan to ensure occu-
pants’ safety against release of hazardous contaminant [1]. Deliberate release by
terrorist organizations as well as accidental release causes significant influences
on serious health conditions including death [2]. Therefore, it is necessary to per-
form source localization and characterization rapidly by using sensor networks
that monitors contaminant concentration. As the building environments gets
more complex, the detection and interpretation of the contaminant information
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to localize and characterize the contaminant source requires heavier computa-
tional cost and time.

Multizone model focuses on the average characteristics of airflows and con-
taminant dispersion rather than their detailed distributions, then it needs much
less computing load than computational fluid dynamics [3]. Multizone model
considers a building as a network of zones with homogeneous air properties
and contaminant concentration. Airflows pass through the paths representing
doors, windows, and cracks, with their own leakage characteristics among zones.
Although multizone model doesn’t provide the accurate source location, due
to the computational efficiency and the capability of modeling an entire large
building, multizone model has been adopted for contaminant source characteri-
zation [4]. In this paper, a multizone model available with CONTAM [5] is used
to simulate the contaminant fate and transport for a sensor-rich multi-story
building.

Gaussian process emulator (GPE) for approximating dynamic simulators has
emerged recently to predict behavior of complex system. It is impractical to per-
form simulation many times repeatedly due to computational cost and time
when plentiful prediction samples and results are needed. Because structural
complexity, aerodynamic characteristics, model uncertainty, and sensor mea-
surement noise requires a number of simulation runs to obtain knowledge to
infer unknown parameters accurately, it stands to reason that GPE is adopted
for efficient computation of contaminant concentration in sensor-rich multi-story
buildings.

Bayesian framework infers the posterior distribution of source location and
characteristics based on sensor measurement data considering model uncertainty,
inaccurate prior knowledge, and sensor measurement noise. Markov Chain Monte
Carlo sampling is adopted to extract samples from the posterior distribution by
using the Metropolis-Hastings algorithm. GPE accelerates sampling procedure
by approximating the multizone model in CONTAM simulator.

Rest of the paper is organized as follows. Airflow model is briefly presented in
Sect. 2. Problem formulation with a Bayesian framework is described in Sect. 3.
Section 4 provides a Gaussian Process-enabled MCMC approach for source local-
ization and characterization in a sensor-rich multi-story building. In Sect. 5, con-
taminant source location and characteristics is inferred through a hypothetical
contaminant release in a four-story building with 156 subzones. The paper is
concluded in Sect. 6.

2 Airflow Models

Multizone model calculates the airflow and contaminant concentration between
the zones i and j of buildings through the flow path ij. Let Pi and Pj denote
the total pressures in zone i and j respectively, and ΔPij = Pi − Pj denotes the
pressure drop across the path ij. A power-law function provides Fij , through
the flow path ij can be represented as [7].

Fij = cij · sgn(ΔPij)|ΔPij |nij (1)
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where cij is flow coefficient, nij is flow exponent, sgn(ΔPij) is a sign function
of ΔPij , sgn(ΔPij)=0 for same total pressures of zones i and j. For each zone
j, the steady state air mass balance equation is established for the multizone
model.

∑

i

Fij + Fj =
∑

i

(cij · sgn(ΔPij)|ΔPij |nij ) + Fj = 0 (2)

where Fj is the air mass sources in the zone j. Contaminant steady state mass
balance for a species α is similarly obtained by

∑

i

FijCαi
+

∑

i

FjiCαj
+ Sj = 0 (3)

where Sj is the contaminant source in the zone j, Cαi
and Cαj

are the contam-
inant concentration in zone i and zone j, respectively.

3 Problem Formulation with Bayesian Framework

This section describes contaminant source localization and characterization
problem in the Bayesian framework [6]. A multizone model T is represented as

yj = T (x, θ), (4)

where x is a set of deterministic inputs (rooms, flow path, wind conditions, etc.),
yj is the transient contaminant concentration in the jth zone, and θ is a set of
unknown parameters of interest.

A contaminant source model used in the paper is an exponentially decaying
model. The contaminant source model equation is expressed as

S(t) = g0e
−kt, (5)

where S(t) is the transient contaminant concentration of a source, g0 is an initial
concentration, and k is an exponential decaying constant. Z is denoted as the
zone including an active source. The method assumes the sources be active in
a single zone. Finally, a set of unknown parameters for source localization and
characterization is represented as θ = [Z, g0, k].

Let θ̂ be the set of ’true’ but unknown source location and characteristics.
The simulator output is assumed to deviate from the ’true’ system response even
on specification of θ̂ due to the existence of smodel uncertainty. This deviation
is modeled as

ζj = T (x, θ̂) + δj , (6)

where {ζj(t); t ∈ R
+} is the ’true’ system response, while {δj(t); t ∈ R} is a

discrepancy function.
Let the building be equipped with sensors in M zones that detect and measure

the contaminant concentration for jth zone at ith time instance in given by

yej
(ti) = ζj(ti) + εj(ti), (7)
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where εj(ti) denotes the sensor measurement uncertainty. Using Ye, θ̂, and δ can
be inferred through the Bayes theorem as

p(θ̂, δ|Ye) ∝ p(Ye|θ̂, δ)p(θ̂, δ), (8)

where p(θ̂, δ) is the prior, p(Ye|θ̂, δ) is the likelihood, and p(θ̂, δ|Ye) is the posterior
probability distribution. Using the probability distribution of ε and marginaliza-
tion of δ, the posterior probability distribution is given by [6]

p(θ̂|Yej
, σ2

δ , λ) ∝ |σj |− 1
2

M∏

j=1

exp(−1
2
dT

j Σ−1
j dj)p(θ̂), (9)

where dj = {yej
(ti) − T (x, θ̂; ti); i = 1, . . . , N ; j = 1, . . . , M}, σ2

δ = {σ2
δj

; j =
1, . . . , M}, λ = {λj ; j = 1, . . . , M}, and Σj = Σδj + Σεj . Solution of Eq. (9)
requires sampling from the posterior distribution using MCMC method with the
Metropolis-Hastings algorithm. GPE provides tractable MCMC sampling from
the multizone model in the CONTAM simulator.

4 Gaussian Process-Enabled MCMC Approach
for Source Localization and Characterization

This section provide details of composing GPEs [6,8] for the multizone model
T (x, ·) in CONTAM simulator. Composed GPEs replace computationally expen-
sive simulator and provide efficacy to calculate posterior probability for Bayesian
inference about source localization and characterization with MCMC sampling
using a Metropolis-Hastings algorithm [9,10].

4.1 Gaussian Process Emulator

The multizone model can be treated as a random function with a probability
distribution using a q-dimensional Gaussian process

p(T (x, ·)|B,Σ, λ) ∼ Nq(m(·), c(·, ·)Σ), (10)

where m(·) is mean, c(·, ·)Σ is a covariance structure, and B,Σ, and λ are hyper-
parameters of the Gaussian process. The mean, covariance, and correlation func-
tions of the Gaussian process are modeled as

m(θ1) = BT h(θ1)
cov(T (x, θ1), T (x, θ2)) = c(θ1, θ2)Σ

c(θ1, θ2) = exp(−(θ1 − θ2)T Λ(θ1 − θ2)),

(11)

where h(·) = [h1(·), h2(·), . . . , hm(·)]T is a vector of m regression functions, while
B ∈ R

m×q is a matrix of regression coefficients with each column given by
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β = [β1, β2, . . . , βm]T , Σ is a q × q positive definite matrix, and Λ is a diagonal
matrix with length-scales λ = [λ1, λ2, . . . , λd].

A set of n simulation runs at design points S = [θ1, θ2, . . . , θn] ⊂ Θ is used
to compose an emulator. Let D ∈ R

n×q define a n × q matrix of simulator
outputs at design points. An emulator is defined as posterior distribution of
the random function T (x, ·) given a set of simulation runs D. Conditional on
hyper-parameters B,Σ, and λ, probability distribution of D is given as

p(D|B,Σ, λ) ∼ MN n,q(HB,A,Σ), (12)

where MNn,q is a matrix normal distribution, HT = [h(θ1), h(θ2), . . . , h(θn)] ∈
R

m×n and A = [c(θi, θj)] ∈ R
n×n is a correlation matrix for a design set.

Standard Normal theory in addition to some matrix calculus manipulations
hence leads to the following conditional posterior distribution for the simulator

p(T (x, ·)|B,Σ, λ,D) ∼ Nq(m∗(·), c∗(·, ·)Σ), (13)

where
m∗(θ) = BT h(θ) + (D − HB)T A−1r(θ)

c∗(θ1, θ2) = c(θ1, θ2) − rT (θ1)A−1r(θ2),
(14)

where rT (·) = [c(·, θ1), c(·, θ2), . . . , c(·, θn)] ∈ R
n.

First, marginalization of B gives

p(T (x, ·)|Σ, λ,D) ∼ Nq(m∗∗(·), c∗∗(·, ·)Σ;n − m), (15)

where
m∗∗(θ) = B̂T h(θ) + (D − HB̂)T A−1r(θ)

c∗∗(θ1, θ2) = c∗(θ1, θ2) + [h(θ1) − HT A−1r(θ1)]T

(HT A−1H)−1[h(θ2) − HT A−1r(θ2)].

(16)

Here, B̂ is a generalized least square estimate of B given by

B̂ = (HT A−1H)−1HT A−1D. (17)

Second, marginalization of Σ gives

p(T (x, ·)|λ,D) ∼ Tq(m∗∗(·), c∗∗(·, ·)Σ̂;n − m), (18)

where Tq is a Students T process, while Σ̂ is generalized least square estimator
of Σ, which is given by

Σ̂ =
(D − HB̂)T A−1(D − HB̂)

n − m
(19)

Finally, marginalization of λ should be performed. However, analytical solu-
tion for the resultant integration is not available and requires use of sampling
techniques [8]. The literature suggests fixing the values of length-scales using a
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Maximum A Posteriori (MAP) estimate. Posterior distribution of λ is obtained
by marginalization of B and Σ, which gives

p(λ|D) ∝ p(λ)|A|−q
2 |HT A−1H|−q

2 |DT QD|−(n−m)
2 , (20)

where
Q = A−1(1 − H(HT A−1H)−1HT A−1)

p(λ) =
∏d

i=1
(1 + λ2

i )
−1

(21)

p(λ) is defined as the product of squared reciprocal function [8]. Let λ̂ be a MAP
of λ obtained by maximizing Eq. (20) with respect to λ and λ̂ = [λ̂1, λ̂2, . . . , λ̂d].
In the paper, a Genetic Algorithm(GA) [11] is used to estimate λ̂ by maximizing
Eq. (20) with avoidance of local optima as much as possible.

According to the MAP of λ, variables related with c(·, ·) are updated.

cλ̂(θi, θj) = exp(−(θi − θj)T λ̂(θi − θj))

Aλ̂ = [cλ̂(θi, θj)] ∈ R
n×n

rT
λ̂

= [cλ̂(·, θ1), cλ̂(·, θ2), . . . , cλ̂(·, θn)] ∈ R
n

(22)

Other hyper-parameters are updated by estimated correlation function.

B̂λ̂ = (HT Aλ̂
−1H)−1HT Aλ̂

−1D
Σ̂λ̂ = (n − m)−1(D − HB̂λ̂)T Aλ̂

−1(D − HB̂λ̂)
(23)

The mean and correlation are updated by updated hyper-parameters.

m∗∗∗(θ) = B̂T
λ̂
h(θ) + (D − HB̂λ̂)T Aλ̂

−1rλ̂(θ)

c∗∗∗(θi, θj) = cλ̂(θi, θj) − rT
λ̂
(θi)Aλ̂

−1rλ̂(θj) + [h(θi) − HT Aλ̂
−1rλ̂(θi)]T

(HT Aλ̂
−1H)−1[h(θj) − HT Aλ̂

−1rλ̂(θj)]

(24)

Finally, the posterior distribution of simulator T (x, ·) conditional on proba-
bility distribution of D is follows as

p(T (x, ·)|D) ∼ Tq(m∗∗∗(·), c∗∗∗(·, ·)Σ̂λ̂;n − m). (25)

For the emulator, the mean m∗∗∗(·) works as an interpolator providing predic-
tions at an unsampled θ, while c∗∗∗(·, ·) provide estimate of uncertainty in the
predictions.

4.2 MCMC Sampling for GPE-Based Bayesian Inference

Consider a building with total Nz zones. For a given number of zones, a mul-
tizone model in CONTAM simulator provides averaged transient contaminant
concentration in each zone. Each transient response of simulator is distinguished
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Fig. 1. The GPE sample points of the CONTAM simulation results (10 sample
points for every thirty-second) and the interpolated concentration values of GPE-based
Bayesian inference (27 interpolated points for every ten-second) (Color figure online).

by the zone in which source is active, Za ∈ Nz and the zone in which conta-
minant concentration is measured, Zm ∈ Nz. Separate GPEs εZa,Zm

(x, ·) are
composed for each possible combination of (Za, Zm).

To compose GPEs εZa,Zm
(x, θ) for contaminant source characterization,

an initial set of design points S = [θ1, θ2, . . . , θn] is selected using Halton
sequences [12]. Halton sequences are of low discrepancy, albeit deterministic sam-
pling that uses a prime number as its base. It is a kind of quasi-random number
sequence for variable number of samples [13]. The Halton sequence of g0 is based
on 2 and that of k is based on 3 without loss of generality. Total thirty design
points (i.e. n=30) are selected by two sequences paired with each other. At each
design point, contaminant concentration D at ten temporal locations (i.e. q=10)
in the interval of thirty-second starting from ten seconds after the source acti-
vation time using the multizone model in the CONTAM simulator. Conditional
on D, the MAP of length-scales λ̂ are estimated by maximizing Eq. (20) through
GA. Conditional on λ̂, B̂λ̂ and Σ̂λ̂ are estimated. These estimate compose each
GPE εZa,Zm

(x, θ) for the multizone model of contaminant transport and fate.
The contaminant concentration of each GPE is calculated as m∗∗∗(θ) for any
θ ∈ Θ at the ten temporal locations which are used to compose GPEs. Based on
the estimated values, contaminant concentrations of any time can obtained by
interpolation methods (i.e., cubic spline interpolation method). Figure 1 depicts
the example of sample points (blue circles) of the multizone model of CONTAM
simulator to compose GPEs and the interpolated concentration (blue crosses)
obtained from the composed GPE.

Location of an active source is assumed to be completely unknown with prior
given by uniform distribution among Nz zones,

p(Z) =
1

Nz
. (26)
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Let g0 and k are assumed to be completely unknown with the range of possible
values as only available information. Let g0 ∈ Ig and k ∈ Ik be the ranges of g0
and k. Thus,

p(g0, k) =
1

IgIk
. (27)

Let the sensors be placed in O ⊂ {Z;Z = 1, . . . , No} zones, where No represents
total number of sensors, while the observations are collected at time instances
TO = {ti}. The observations are used in the Bayesian inference of the posterior
distribution of unknown parameters given by Eq. (9), with prior defined using
p(Z) and p(g0, k).

In the MCMC implementation of the Bayesian inference, an appropriate GPE
εZa,Zm

(x, ·) replaces a computationally expensive multizone model in CONTAM
simulator. MCMC method can be implemented to sample from the probability
distribution of a Markov chain φ using the Metropolis-Hastings algorithms. Nini

is the number of samples for burn-in period and Nsmp is the number of samples
for posterior distribution estimation.

A set of Markov chain φ is represented as φ = {φi} = {Z, g0, k}. The range
of each unknown parameter is normalized into [0,1]. First, three parameters of
the chain are initialized as

φ ≡ φ0 = {φi
0} ∼ U(0, 1), (28)

where U is an uniform distribution and i ∈ {1, 2, 3}. A chain candidate φ∗ is
sequentially generated from the current chain φk and variation Δ = {Δi} =
{Δz,Δg0 ,Δk} as

{Δi} ∼ U(−1, 1)

φ∗ = {φi
∗} ≡ {φi

k + Δi}.
(29)

The zone in which source is active is assigned as

Za = round(φ1
∗Nz), (30)

where round(x) rounds off x to the nearest integer. Other parameters are
denoted as

θ = {φ2
∗, φ

3
∗}, (31)

For all Zm ∈ O, the emulator εZa,Zm
(x, θ) is used to predict contaminant concen-

tration at time instances TO. Thus, the posterior probability p(φ∗) using Ye and
GPE prediction of contaminant concentration in Eq. (9). Acceptance probability
is defined as

A(φ∗, φk) = min
{

1,
p(φ∗)
p(φk)

}
(32)

Next chain φk+1 is determined by the acceptance probability A(φ∗, φk) and
uniformly sampled variable u from [0,1] as

φk+1 =
{

φ∗ if u < A(φ∗, φk)
φk otherwise, (33)



190 J.-H. Seok et al.

Fig. 2. A plan of the four-story target building. (a) First floor plan. (b) Upper (2–4)
floor plan.

During an initial burn-in period, Eq. (29–33) are repeated by Nini times and
then all chains except for φNini

are removed. After the initial burn-out period,
with φNini

as the initial chain, Eq. (29–33) are repeated by Nsmp times. All
chains φk, Nini ≤ k < Nsmp are outputs of MCMC sampling and Bayesian
inference. These chains are utilized to calculate the posterior distribution of
unknown parameters Z, g0, and k.

5 Simulation Results

Contaminant source localization and characterization is performed in a four-story
building represent in Fig. 2 [14]. Based on the reference map and instructions
in the CONTAM simulator, walls, windows, doors, and fans are implemented.
Meanwhile, for the sake of convenience, air handling system and operation time
scheduling are ignored. It is assumed that the air handling system is not oper-
ated and airflow path is not dependent on time of day. In the case of the multi-
zone model, each zone is regarded as a well-mixed zone. Well-mixed means that a
zone is characterized by a discrete set of state variables. For instance, temperature,
pressure, and contaminant concentration is not varied within each zone spatially.
Thus, long and narrow corridors are divided into many subzones for more accurate
simulation [15]. Elevator, front stairs, and rear stairs are defined as phantom
zones that are shared with all floors. On the contrary, other zones belong to
only one of four floors. Components of the target building implemented by the
CONTAM simulator are illustrated in Fig. 3. A released contaminant compound
is carbon monoxide (CO). It is assumed that atmospheric pressure is 101.3kPa and



A Gaussian Process-Enabled MCMC Approach 191

Rest
Room

Corridor1

Meeting
Room

Mech

Guest101

Guest102

Guest103Guest104

Guest105

Employ 
Lounge

Laundry

Elevator

Exercise
Room

Front
Office

FrontStorage1

FrontStairs

RearStairs RearStorage1

Front 
Lounge

Guest201

Guest202

Guest203

Guest204

Guest205

Guest206

Guest207

Guest208

Guest209

Guest210

Guest211

Guest212

Guest213Guest214

Guest215

Guest216

Guest217

Guest218

Guest219

Elevator

Corridor2

Guest220

Guest221

Guest222

Guest223

Guest224

FrontStorage2

FrontStairs

RearStairs RearStorage2

Guest301

Guest302

Guest303

Guest304

Guest305

Guest306

Guest307

Guest308

Guest309

Guest310

Guest311

Guest312

Guest313Guest314

Guest315

Guest316

Guest317

Guest318

Guest319

Elevator

Corridor3

Guest320

Guest321

Guest322

Guest323

Guest324

FrontStorage3

FrontStairs

RearStairs RearStorage3

Guest401

Guest402

Guest403

Guest404

Guest405

Guest406

Guest407

Guest408

Guest409

Guest410

Guest411

Guest412

Guest413Guest414

Guest415

Guest416

Guest417

Guest418

Guest419

Elevator

Corridor4

Guest420

Guest421

Guest422

Guest423

Guest424

FrontStorage4

FrontStairs

RearStairs RearStorage4

Fig. 3. Rooms, partitioned corridors and wind pressure applied to windows of the
target building implemented by the CONTAM simulator

atmospheric temperature is 23◦C. Total 156 subzones over four floors are finally
defined and used to perform simulation. One of the 156 subzones is selected as
the location of the active sources. The range of initial concentration Ig is defined
as [0.5, 1], and the exponential decaying constant Ik is defined as [0.8, 1.2]. The
number of burnout samples is 10000, and total number of samples is 20000. Sensor
measurement uncertainty is assumed to be 1 %. The number of generated GPE is
156 × 30 = 4680.

Contaminant source localization and characterization is performed by six
hypothetical contaminant release cases. Each test case has a single active conta-
minant source and has the different zone where the contaminant source is acti-
vated, respectively. The zones with the active source are Zone1, Zone33, Zone62,
Zone98, Zone128, and Zone156, respectively. Figure 4 shows the final posterior
distribution of contaminant location and characteristics of each test case. First,
the posterior probability distribution of the location of contaminant active source
is inferred. For the six test cases, the method exactly infers the zone where the
contaminant source is activated with probability one. The posterior probability
distribution of the initial concentration and the exponential decaying constant
are also inferred. The posterior probabilities near the ’true’ initial concentration
and ’true’ exponential decaying constant are high enough to match closely. In
Fig. 4, blue and red vertical lines represent ’true’ initial concentration and ’true’
exponential decaying constant, respectively.
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Fig. 4. The contaminant localization and characterization results for six hypothetical
contaminant release cases, respectively. Active contaminant source is located (a) in
Zone1. (b) in Zone33. (c) in Zone62. (d) in Zone98. (e) in Zone128. (f) in Zone156.

6 Conclusion

The paper focuses on contaminant source localization and characterization in
a sensor-rich multi-story building with dozens of rooms using gaussian process-
enabled MCMC approaches with a Bayesian inference architecture. The multi-
zone model in CONTAM simulator is used to extract contaminant concentration
considering the given deterministic inputs about the target building. A compu-
tationally efficient GPE allows a physics-based model in a large-scale problem
domain for source location and characterization through Bayesian inference with
tractable computational cost and time. The required number of simulation to
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infer unknown parameters of interest is clearly less than the required number of
MCMC samples. MCMC sampling to infer the posterior distribution of source
localization and characterization from the sensor network with the model uncer-
tainty and inaccurate prior knowledge is archived by a Metropolis-Hasting algo-
rithm, a Bayesian framework, and separate GPEs. The posterior distribution
obtained by the proposed method through hypothetical contaminant release in
a four-story building with total 156 subzones and sensors closely matches the
true value of parameters of interest with fewer simulations exploiting physics-
based model. The combination of GPE and MCMC implementation shows the
efficacy for parameter inference in a large-scale domain.

Acknowledgement. This work was supported in part by Microsoft Research Asia
Accelerating Urban Informatics with Azure Program, and in part by the KI Project
via KI for Design of Complex Systems.
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Abstract. In this paper, we present an efficient means for both mod-
eling phenomena in a mobile sensor context and determining where the
sensors should travel to collect meaningful information. Our approach
is based on offline-online model reduction, which is performed via a
snapshot-weighted proper orthogonal decomposition/discrete empirical
interpolation. That is, through collected observations, we construct and
reduce empirical dynamical systems that characterize the evolution of
the phenomena and determine those locations that can be visited and
sensed to improve the model quality. To showcase the effectiveness of our
contributions, we apply them to the tasks of estimating the concentration
and location of plumes in two-dimensional environments.

1 Introduction

Reliable forecasting of natural phenomena typically requires extensive sensor
observations of the environment; these observations form the foundation for
empirically-derived models that can predict the progression of the events [1–3].
However, without spatially and temporally dense measurements, stark differ-
ences between the estimated states of the models and the underlying states of
the events can materialize.

An increasingly popular means of addressing this concern is to pair the sensors
with mobile agents that can adapt to the environment. While augmenting sen-
sors in this way can permit quick responses to fleeting and unanticipated events,
it is crucial that the sensors are targeted to information-rich locations. To aid in
this task, a number of schemes have been proposed [4–10]. For example, Choi and
How [4,5] proposed a mutual-information-based targeted observation scheme that
attempts to position the sensing agents so that the forecast uncertainty of their
model is minimized. In [6,7], Leonard et al. employed an objective analysis app-
roach to determine both if their agents were optimally sampling the environment
and how to adjust their locations if they were not. Additionally, Yilmaz et al. [8]
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relied on techniques like error subspace statistical estimation to rank various spa-
tial locations according to their potential information contribution.

In this paper, we propose a means for determining areas that could bene-
fit from increased sensory inclusion. More specifically, we consider an adaptive
proper orthogonal decomposition/discrete empirical interpolation approach for
creating empirical dynamical systems from collected observations of the environ-
ment (see Sect. 2). When properly constructed, an advantage of these dynamical
systems is that they should permit the efficient simulation of many types of
phenomena. They also should allow the interpolation and extrapolation of the
observations to times and places not examined. Additionally, due to the adap-
tive nature of the approach, the systems should generalize somewhat to changes
in the background processes generating the phenomena and thus yield more
accurate results than pure proper orthogonal decomposition.

There are numerous applications for such a methodology. To evaluate the
capabilities of our contributions, we specialize them for describing the evolution
of two-dimensional particulate plumes as they interact with both wind currents
and the buffers formed by buildings (see Sect. 3). For this problem, our aim is to
discern both the initial conditions and distributions of the plumes and thus their
possible trajectories, based upon scant stores of observations. We also want to
track the dominant modes of the plumes. Upon addressing both of these aspects,
it can be determined where learning-beneficial observations might occur that can
be incorporated to yield insight into the phenomena.

2 Methodology

The approach we employ for dynamical system learning and reduction relies
on an offline-online splitting paradigm. In the offline phase, we sample various
spatially-varying quantities about the phenomena and construct an initial sys-
tem, which results in possible trajectories in which the phenomena could evolve.
To keep the system relevant, in the online phase we assume that the sensor
platforms will be traveling through the domain and collecting additional obser-
vations. As more observations are gathered, the dynamical system is iteratively
revised, increasing its accuracy.

For what follows, we will have the phenomena be characterized by dynamical
systems with time-dependent solutions. That is, we assume the phenomena are
governed by parabolic partial differential equations, which have the form u̇ =
g(t, u;α) after being spatially discretized. Here, g : R+ × Rn × Rm is a smooth
function for some time index t∈R+, a variable u∈Rn, and an input parameter
α∈Rm. The evolution of the phenomena can be considered as a mapping from
the phase space to itself, which is parameterized by time. By definition, the
state variable u(t;α) ∈ Rn is a flow that yields an orbit in Rn as t varies over
a monotonically increasing domain for a fixed initial condition u(0;α) and fixed
input parameter α. The orbit contains a sequence of states, or state vectors, that
follow from the initial condition.

In general, the latent partial differential equations defining the phenomena
may possess redundant degrees of freedom. Since each of these irrelevant degrees
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of freedom increases the evaluation time, it is prudent to form accurate, abridged
representations. We illustrate how this may be done via the Galerkin projection
and a non-linear interpolation (see Sect. 2.1). Since the projection requires a
factorization of the observed motions, we also describe how this can be performed
in the context of an adaptive basis formulation (see Sect. 2.2).

2.1 Model Projection and Interpolation

The Galerkin projection can provide a lower-dimensional approximation by pro-
jecting the full system onto a linear subspace. For any linear subspace, there
exists an orthonormal matrix Φk ∈Rn×k whose columns form a complete basis
associated with it. Any state u(t;α)∈Rn can be projected onto a subspace by
the mapping vk =Φ�

k u(t;α), where vk ∈Rk is the state variable in the subspace
coordinate system. Assuming that a vector field gk(t, u) in the subspace is con-
structed by gk(t, u;α) = Φ�

k g(t, Φku;α), then a model of the simplified system
can be obtained: v̇k =Φ�

k g(t, Φkvk;α), v0=Φ�
k u(0;α).

It is important to note that the Galerkin projection has a low computational
complexity only when a heavily abridged version of the analytical formula of
the reduced vector field Φ�

k g(t, Φkvk;α) exists. This is particularly crucial when
the vector field is a linear, or possibly polynomial, function of the state variable
vk ∈ Rk. Otherwise, an investigator will need to compute the state variable in
the original system Φkv, evaluate the non-linear vector field at each element, and
then project the function onto the subspace. This three-part process can be more
expensive to perform than evaluating the corresponding full-resolution models.

To preempt this wasteful computation, either the empirical interpolation
method [11] or discrete empirical interpolation method [12] can be employed.
These methods approximate the original model by constructing surrogates of
the non-linear terms for the system of equations using a data-fitting approach.
In particular, they work by splitting the original vector field into linear and non-
linear parts: g(t, u;α)=g1(t;α)u+g2(t, u;α). Using the Galerkin projection, the
reduced vector field can be written as v̇k = Φ�

k g1(t;α)Φkvk +Φ�
k g2(t, Φkvk;α),

where Φ�
k g1(t;α)Φk is the linear operator and Φ�

k g2(t, Φkvk;α) is the non-linear
term of the vector field. Unless the non-linear term can be analytically simplified,
its computational complexity can still depend on the dimensionality of the state
variable. An effective way to sidestep this difficulty is to approximate the non-
linear term by embedding it in a lower-dimensional subspace. Considering that
u(t;α) is a smooth function, we can define a non-linear snapshot g2(t, u(t;α);α).
Then, the reduced vector field, restricted on (t;α) and u=u(t;α), can be calcu-
lated as Φ�

k g(t, u(t;α);α)=Φ�
k g1(t;α)Φkvk+Φ�

k Ψm(Q�Ψm)−1Q�g2(t, u(t;α);α).
Here Ψm ∈ Rn×m is a matrix denoting a collateral basis on a pre-computed,
non-linear snapshot ensemble while Q� ∈Rn×d is an index matrix to project a
vector of dimension n onto its d elements. The matrix Q� can be computed by
an offline, greedy algorithm and we refer to [12] for more details. Notice that
Φ�

k Ψm(Q�Ψm)−1 is calculated only once and Q�g2(t, u(t;α);α) is solely evalu-
ated on d elements of g2(t, u(t;α);α), which makes it very efficient when d � n.
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The Galerkin projection and its empirical interpolation extensions can be
used to construct efficient dynamical models of the reactive behaviors. How-
ever, the outputs of these models might not approximate the original motions
with a high degree of accuracy unless the subspace is approximately invari-
ant with respect to the solution u(t;α). A subspace S∗ is said to be invari-
ant of u(t;α) if u(0;α) ∈ S∗ and the solution orbit given by u(t;α) lies in S∗,
(ΦkΦ�

k )∗u(t;α) = u(t;α), where (ΦkΦ�
k )∗ ∈ Rn×n is a projection operator cor-

responding to S∗. In this case, the governing equations of the reduced and full
models must be identical, which requires that (ΦkΦ�

k )∗g(t, u;α)=g(t, u;α). That
is, an invariant projection operator must not only preserve the state vector, but
also preserve the vector field and hence its dynamics. Since an invariant sub-
space is uniquely determined by its basis, we will need a means of constructing
empirical eigenfunctions from motion data ensembles.

2.2 Empirical Basis Computation

An offline-online splitting scheme is used here for model reduction. If we let
p be the observation size, in the offline stage, {(ti;αi)}p

i=1 are sampled in the
parameter space. The corresponding solutions with their derivatives could then
be used to induce a subspace, where the real solution approximately resides.
Here, we are focused on forming a reduced model in the k-dimensional Lagrange
subspace span({ui}p

i=1) [13].
One means of doing this is by the standard proper orthogonal decomposition

method, which creates a global reduced model from all of the snapshots in the
observation ensemble. More specifically, proper orthogonal decomposition [14]
finds a basis Φk that solves minΦk∈{A∈Rn×r:A�A=Ir×r}‖(In×n−ΦkΦ�

k )X‖2, where
X ∈Rn×p is a snapshot matrix and each column represents a solution snapshot
for the parameters (ti;αi). A closed-form solution to this minimization problem
can be uncovered via a singular-value decomposition of the snapshot matrix.

Global reduction through proper orthogonal decomposition lends itself well to
many applications. However, if a solution varies greatly with parameter changes,
a relatively high-dimensional reduced space is needed to characterize the phe-
nomena. The issue is further compounded when considering phenomena that
undergo significant changes over time. Moreover, unless the reduced model of
the phenomena has a significantly lower dimension, it is possible that the time
needed to evaluate the reduced model will be on par with that of the full model.

To overcome these issues, we will compute adaptive reduced bases that can
tolerate some parameter variation [18]. Letting u∗ be the solution correspond-
ing to the input parameter (α∗), we will assume that it is approximated by a
linear combination u∗ ≈ ∑p

i=1 ai(α∗)ui of all of the solution snapshots in the
ensemble. Here, the non-negative interpolation coefficient ai(α∗) is a function of
the parameter space and has at most unit magnitude. The projection of u∗ onto
a subspace is specified by a linear combination of the ui:

∑p
i=1 ηiaiui, where

|ηi|<ε for some ε and ηi =0 if ai =0.
Through this weighting scheme, we can define a weighted snapshot matrix

for the input parameter α∗: X(α∗) = [a1(α∗)u1, . . . , ap(α∗)up]. Using singular
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value decomposition, we could obtain reduced bases. However, it is not the most
efficient approach: when the trajectories show high temporal variation over a long
period, it will be necessary to maintain a large snapshot matrix. We instead
construct the online bases from the first few modes returned by the proper
orthogonal decomposition of some pre-computed trajectories [15], rather than
the original snapshots.

By locally measuring various quantities of interest and learning reduced mod-
els, it becomes possible to estimate these quantities at times and spaces not
observed. But, the quality of this estimation is highly dependent on where and
when the observations are collected. In the worst case, if all of our sensor plat-
forms are located in a region with sparse measurements, the inverse problem is
ill-conditioned and the results will be determined by the stochastic measurement
noise.

To help the mobile sensor platforms capture meaningful information, we will
have them travel to locations that correspond to the dominant adaptive basis
modes over some interval; the dominant modes are taken to be the eigenvectors
with the largest corresponding eigenvalues [10]. In doing so, we can ensure that
the Frobenius-normed error for the various quantities is minimized.

3 Plume Dynamics Estimation and Tracking

With this methodology in hand, we can now transition to assaying its virtues. In
what follows, we flesh out our experimental protocols and report our discoveries
for an application: plume monitoring.

Aside from the difficulties faced in understanding and exploiting information
from the fume signatures, there were several factors that provoked us to tackle
this problem. One of the principal motivators was Biowatch [16], a pathogen
counter-terrorism program implemented in cities across the United States. While
able to ostensibly function as a sound early warning system for airborne infec-
tious agents in some situations, the methodology applied by BioWatch has fail-
ings that curtail its overall effectiveness in general. For starters, it relies on a
relatively low number of survey stations and the transport of air particle samples
to laboratories at daily intervals; despite this kind of monitoring being adequate
for static events with a few temporal constraints, it is not in a rapid-response
contexts. Moreover, one of the missing elements in programs like BioWatch is
information sharing in an automated and meaningful way: even with scores of
data available, identifying the underlying process producing the data is difficult.

In light of these concerns, we reiterate that, in our minds, one of the best
methods for achieving wide coverage zones of detection are small mobile devices
that can be networked and dispersed over a variety of domains. However, for
these devices to be truly practical, they should be married with models, like the
one we gave above, that are flexible enough to describe many events that can
arise and anticipate how they might unfold.

As an analogue to the kinds of circumstances that might be encountered in
the BioWatch program, we consider the transport of hypothetical contaminants
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through urban and suburban scenes. For what is to come, we will be taking
the contaminants to adhere to the standard advection-diffusion equation, with
homogeneous Dirichlet conditions ascribed to the inflow boundary and homoge-
neous Neumann conditions given to outflow boundary. Within this context, we
will be examining the case where a Gaussian source releases a constant plume.
The plume will be advected under the action of a velocity field, specified by dis-
cretizing and solving the incompressible Navier-Stokes equations, and dispersed
due to diffusion.

3.1 Experimental Results

For our experiments, we consider the case of an urban setting where we have one
or more plumes that are driven by hidden, fluctuating background wind veloc-
ity fields; the plume evolution is governed by the advection-diffusion protocols
outlined above. To provide a reasonable challenge, neither the location nor the
extent of the sources driving the phenomenon is given to our framework. As the
simulations progress, our modeling strategy is able to identify and update the
particulate magnitudes and other associated attributes. To drive the platforms
to their locations, we use the path planning framework of [17].

For now, the wind velocity is calculated by effectively solving the Navier-
Stokes equation over a two-dimensional, discretized spatial domain; once found,
it is assumed to be a known quantity that is continuously revised. To further
specify the problem, velocity boundary conditions are set on the left and right
sides of the domain, while free-slip constraints are enforced on the remaining
borders. Additionally, no-slip conditions are applied to all of the structure in
the environment. The mobile sensors are assumed to have little effect on the
progression of the plume at the scales we consider and therefore are ignored
entirely.

As part of appraising our mobile sensor scheme and framing the results that it
returns, we contemplate four alternatives. In the first, we consider a uniform ran-
dom placement of the sensors throughout the environment, which offers a lower
bound on the solution reconstruction quality. The second entails building mod-
els from varying numbers of observations and permanently affixing the sensors to
structures near the global modes of the phenomenon. In this case, however, the
models are constructed using the same data-based dynamics reduction technique
used by our mobile sensor framework, which should yield comparable performance
than many of the statistical schemes considered in the literature. The third alter-
native perfectly aggregates information from the whole domain and repositions
the sensors every few iterations so that they record informative content. Lastly,
we consider the situation where we have the mobile sensors construct a model of
the plume using a non-adaptive proper orthogonal decomposition.

Some of our findings for these trials are spread across Figs. 1 and 2; our metric
for comparison is the relative sum of squares error in the simulated concentration
plume as a function of time. Overall, it is clear from the plots in Figs. 1(c) and
2(c) that our adaptive scheme has the least amount of discrepancies, regardless
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Fig. 1. (a) Plots of the horizontal and vertical velocities at the start of the simulation.
(b) Plot of the plume concentration at different times. The gray squares correspond to
the simulated sensor platforms at the moment they arrive at the dominant adaptive
proper orthogonal decomposition modes. The black regions correspond to buildings.
(c) Plots of the relative sensor error for the five test cases.
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Fig. 2. (a) Plots of the horizontal and vertical velocities at the start of the simulation.
(b) Plot of the plume concentration at different times. The gray squares correspond to
the simulated sensor platforms at the moment they arrive at the dominant adaptive
proper orthogonal decomposition modes. The black regions correspond to buildings.
(c) Plots of the relative sensor error for the five test cases.
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of the number of sensors that are used. This realization, however, is not sur-
prising: in situations with widespread, continuously changing events, it can be
particularly tricky to ensure sufficient coverage with static sensors.

To briefly comment on the outcomes themselves, for the first scheme, the rel-
ative errors are near unity, which is to be expected since randomly distributed
sensors cannot hope to capture the nuances of such desultory phenomena. More-
over, adding sensors beyond a certain level fails to markedly enhance the models’
prognostic capabilities. This can be explained by the fact that the remaining sen-
sors are often relegated to non-informative sites. In the second approach, there
are still fairly large amounts of inaccuracies due to the deviations in the wind
patterns over time. For the third, the error drops dramatically, given that it
is able to perfectly exploit signatures from the environment. Nevertheless, its
performance is nowhere near that of our framework, unless the transitions occur
very frequently. The fourth case with the non-adaptive proper orthogonal decom-
position yields somewhat comparable performance. However, since the adaptive
version is able to intelligently weight the observations in the offline stage, its error
does not fluctuate as much. As well, error from the adaptive model never equals
or exceeds that of the model produced by proper orthogonal decomposition.

Something else worth noting is that when a few mobile platforms are
employed, the relative error can increase over time. This is due to the fact that
there are dominant modes that have meaningful information but are unable to be
visited since the platforms are collecting measurements at higher-energy modes.
As the number of platforms increases, better coverage of the domain can be
achieved, which permits the inclusion of information from these other modes.
However, accounting for more than ten modes has a negligible impact on the
model quality.

4 Conclusions

We have proposed a dynamic, data-driven application system for measuring and
simulating plume concentration and estimating the origin of the plume. In order
to assimilate incomplete and noisy state observations about the phenomena, an
offline-online dynamical system learning scheme is used. In the offline stage,
we build a database by sampling possible plume source regions and solving the
governing equation to obtain possible trajectories for the plume concentration.
We then use an adaptive reduced modeling approach to find a few dominant
modes. In the online state, estimations of the concentration are restricted to
the subspace of the adaptive modes to best match partial observations. Our
simulation results verify the utility of our modeling scheme in the context of a
mobile planning framework.
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Abstract. The ensemble Kalman filter (EnKF) recursively integrates
field data into simulation models to obtain a better characterization of
the model’s state and parameters. These are generally estimated follow-
ing a state-parameters joint augmentation strategy. In this study, we intro-
duce a new smoothing-based joint EnKF scheme, in which we introduce
a one-step-ahead smoothing of the state before updating the parameters.
Numerical experiments are performed with a two-dimensional synthetic
subsurface contaminant transport model. The improved performance of
the proposed joint EnKF scheme compared to the standard joint EnKF
compensates for the modest increase in the computational cost.

1 Introduction

Quantifying and addressing uncertainties in hydrological modeling, including
surface and subsurface water flow, contaminant transport, and reservoir engi-
neering, is important to obtain meaningful and useful outputs. This is driven
by the uncertain and stochastic nature of hydrological systems. To reduce the
modeling uncertainties, sequential data assimilation techniques such as ensem-
ble Kalman filtering methods (EnKFs) were largely utilized. These provide an
effective and robust estimation framework for state-parameters estimation with
reasonable computational requirements [2,4,7,10].

EnKFs are sequential Monte Carlo techniques that aim at estimating the
assumingly Gaussian probability distribution of the state and parameters of a
dynamical system following a Bayesian filtering formulation. The EnKF is non-
intrusive and is relatively simple to implement, even with complex nonlinear
models, requiring only an observational operator that maps the state variables
from the model space into the observation space. The standard EnKF approach
for state-parameter estimation is based on the joint estimation technique which
concurrently estimates the state and the parameters by simply augmenting the
filter state vector with unknown parameters, assuming constant dynamics for
the parameters [7]. This technique is very popular in groundwater flow and con-
tamination data assimilation problems for estimating for instance the flow field,
c© Springer International Publishing Switzerland 2015
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hydraulic head, contaminant concentration and spatially variable permeability
and porosity parameters [3,4,6].

In this study, we introduce a new EnKF-based state-parameter estima-
tion scheme, the one-step-ahead Joint-EnKF (Joint-EnKFOSA), following the
one-step-ahead smoothing formulation of the Bayesian filtering problem. This
reverses the order of the measurement-update step that usually follows the model
forecast step. More precisely, starting from an analysis ensemble of the state and
parameters at a given time, the new algorithm uses the current observation to: (1)
update the parameter ensemble, (2) compute a one step-ahead smoothed state
ensemble, and (3) update the state distribution after integrating the smoothed
ensemble and the updated parameters with the model. The proposed Joint-
EnKFOSA algorithm exploits the observations in both the state smoothing and
analysis steps. This is shown to be beneficial in terms of estimation accuracy
as compared to the standard Joint-EnKF using a subsurface contaminant trans-
port model and estimating the contaminant concentration and the conductivity
parameter fields.

2 Problem Formulation

Consider a discrete-time state-parameter dynamical system:
{
xn+1 = Mn (xn, θ) + ηn,
yn = Hnxn + εn,

(1)

in which xn ∈ IRNx and yn ∈ IRNy respectively denote the system state and the
observation at time tn, and θ ∈ IRNθ is the parameter vector. Mn is a nonlinear
operator integrating the state from time tn to tn+1, while Hn denotes a linear
observational operator at time tn. The model process noise, η = {ηn}n∈IN, and
the observation process noise, ε = {εn}n∈IN, are assumed to be statistically inde-
pendent, jointly independent and independent of x0 and θ, which, in turn, are
assumed independent. Also let ηn ∼ N (0,Qn) and εn ∼ N (0,Rn). Througouht
this paper, y0:n

def= {y0,y1, · · · ,yn}, and p(xn) and p(xn|y0:l) respectively stand
for probability density function (pdf) with respect to the Lebesgue measure of
xn and the pdf of xn conditional on y0:l; the other pdfs are defined similarly.

We focus on the state-parameter filtering problem, say, the estimation, at
each time, tn, of the state, xn, and the parameters, θ, from the historic of the
observations, y0:n. One solution to this problem is given by the a posteriori mean
(AM),

IEp(xn|y0:n)[xn] =
∫

xnp(xn, θ|y0:n)dxndθ, (2)

IEp(θ|y0:n)[θ] =
∫

θp(xn, θ|y0:n)dxndθ, (3)

which minimizes the a posteriori mean squared error. However, in practice, ana-
lytical computation of (2) and (3) are very often not available owing to the
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nonlinear character of the model operator, Mn(xn, θ), in addition to the very
large state and parameter dimensions, Nx and Nθ, respectively. To overcome this
problem, the Joint-EnKF, and latter the dual EnKF (Dual-EnKF) [7] have been
proposed as efficient algorithms providing good approximations of (2) and (3)
at reasonable computational cost. At each assimilation cycle, these algorithms
involve a forecast step by the model followed by an update step with incoming
observations.

3 Smoothing-Based Joint-EnKF

We start from the standard Joint-EnKF and consider the augmented state zn =[
xT

n θT
]T , but introduce a different structure to the algorithm. More specifically,

when moving from the analysis pdf, p(zn−1|y0:n−1) to p(zn|y0:n), our algorithm
involves the one-step-ahead smoothing pdf, p(zn−1|y0:n), instead of the forecast
pdf, p(zn|y0:n−1), as in the Joint-EnKF. The idea of using the one-step-ahead
smoothing pdf in the filtering algorithm is not entirely new (e.g. [8]), and was
used to derive several particle filters (PFs) and Kalman filters (KFs) in low-
dimensional state-space systems (see also [9] and references theirein).

3.1 The One-Step-Ahead Smoothing-Based Filtering Algorithm

The analysis pdf, p(xn, θ|y0:n), can be computed from p(xn−1, θ|y0:n−1) in two
steps as follows:

• Smoothing step: p(xn−1, θ|y0:n) is first computed using the likelihood
p(yn|xn−1, θ) as,

p(xn−1, θ|y0:n) ∝ p(yn|xn−1, θ)p(xn−1, θ|y0:n−1), (4)

with
p(yn|xn−1, θ) =

∫
p(yn|xn)p(xn|xn−1, θ)dxn. (5)

• Analysis step: Only the analysis pdf of xn, p(xn|y0:n), needs to be com-
puted from p(xn−1, θ|y0:n) as the analysis pdf of θ has already been com-
puted in the smoothing step. Indeed, using the a posteriori transition pdf,
p(xn|xn−1, θ,yn), we obtain:

p(xn|y0:n) =
∫

p(xn|xn−1, θ,yn)p(xn−1, θ|y0:n)dxn−1dθ, (6)

with
p(xn|xn−1, θ,yn) ∝ p(yn|xn)p(xn|xn−1, θ). (7)
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3.2 Practical Implementation

As the standard Joint-EnKF, the Joint-EnKFOSA is based on the transformation
of the state-parameter system (1) into a classical state-space system with the
augmented state, zn: {

zn+1 = M̃n (zn) + η̃n,

yn = H̃nzn + εn,
(8)

in which M̃n (zn) =
[Mn(zn)

θ

]
, η̃n =

[
ηT

n 0
]T , H̃n = [Hn 0], with 0 the zero

matrix with appropriate dimensions.
It is practically not possible to derive the analytical solution of (4)–(7) in

system (8) because of the nonlinear character of the model M(., .). We thus resort
to a Monte Carlo ensemble-based approximation under the Gaussian assumption
of p(xn−1, θ|y0:n) and p(xn|y0:n) for all n. Let, from now on, for an ensemble
{r(m)}Ne

m=1, r̂ denote its empirical mean and Sr denote a matrix with Ne-columns
whose mth column is defined as

(
r(m) − r̂

)
.

Smoothing. Based on Eqs. (4) and (5), the smoothing ensemble at time tn−1,

{xs,(m)
n−1 , θ

(m)
|n }Ne

m=1
, can be computed from the analysis ensemble, {xa,(m)

n−1 ,

θ
(m)
|n−1

}Ne
m=1, as follows:

yf,(m)
n = Hn

(
Mn−1(x

a,(m)
n−1 , θ

(m)
|n−1) + u(m)

n−1

)
+ v(m)

n , (9)

xs,(m)
n−1 = xa,(m)

n−1 + Pxa
n−1,yf

n
P−1

yf
n
(yn − yf,(m)

n )
︸ ︷︷ ︸

ν
(m)
n

, (10)

θ
(m)
|n = θ

(m)
|n−1 + Pθ|n−1,yf

n
× ν(m)

n , (11)

with u(m)
n−1 ∼ N (0,Qn−1), v

(m)
n ∼ N (0,Rn), Pxa

n−1,yf
n

= 1
Ne−1Sxa

n−1
ST
yf

n
, Pyf

n
=

1
Ne−1Syf

n
ST
yf

n
and Pθ|n−1,yf

n
= 1

Ne−1Sθ|n−1S
T
yf

n
.

Analysis. Following Eq. (6), the analysis ensemble, {xa,(m)
n }Ne

m=1, can be

obtained from the smoothing ensemble, {xs,(m)
n−1 , θ

(m)
|n }Ne

m=1
, once the a posteri-

ori transition pdf, p(xn|xn−1, θ,yn), is computed. Furthermore, following (7),
this pdf is Gaussian with a covariance Q̃n−1 = Qn−1 − K̃nHnQn−1 with
K̃n = Qn−1HT

n [HnQn−1HT
n + Rn]−1. The computation cost of K̃n and Q̃n−1

can be prohibitive for very large dimensions. One way to avoid the use of (7) is
to assume that xn and yn are independent conditionally on (xn−1, θ), similarly
to [11,12], i.e.,

p(xn|xn−1, θ,yn) = p(xn|xn−1, θ). (12)
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In our Gaussian framework, this means that the “gain”, K̃n, associated with yn,
vanishes (= 0), case in which, one can see that the covariance, Q̃n−1, reduces to
that of p(xn|xn−1, θ), namely, Qn−1. Similarly, the mean of p(xn|xn−1, θ,yn)
reduces to that of p(xn|xn−1, θ), namely, Mn−1(xn−1, θ). Finally, using the

assumption (12) in (6), on can easily verify that {xa,(m)
n }Ne

m=1 can be obtained

from {xs,(m)
n−1 , θ

(m)
|n }Ne

m=1
as,

xa,(m)
n = Mn−1(x

s,(m)
n−1 , θ

(m)
|n ) + u(m)

n−1; u(m)
n−1 ∼ N (0,Qn−1). (13)

The updated Joint-EnKFOSA updates both the state ensemble members,
xs,(m)

n−1 , and the parameters ensemble members, θ
(m)
|n are then integrated forward

in time by the model to obtain the analysis members of the state at time tn,
xa,(m)

n . This may explain the superior performance of the proposed scheme com-
pared to the standard Joint-EnKF in our numerical experiments, which involves
xa,(m)

n−1 rather than xs,(m)
n−1 in the computation of xa,(m)

n .
The Joint-EnKFOSA exhibits some similarities with the Dual-EnKF [1,7] in

the sense that it separately updates the state and the parameters, but using
the future observation to update the state. The proposed filtering scheme can
be (in theory) further generalized to a L-step-ahead smoothing based filtering
scheme, with L > 1 is an arbitrary fixed lag, or in other words, to a fully fixed-
lag smoothing algorithm (some literature on fixed-lag smoothing can be found
for example in [13–15] and references theirein). This may however significantly
increase the computational cost, since it requires L times additional computa-
tions of the forecast model and Kalman-type update.

4 Subsurface Contaminant Transport Experiments

4.1 Experimental Setup

We consider a steady-state groundwater flow system inside a rectangular domain
of total aquifer area of 0.1125 km2. North and south boundaries are assumed
impermeable, whereas the east and west boundaries are assigned constant
hydraulic heads equal to 18 and 12 m-water, respectively. Pure water conditions
are assumed in the aquifer except for an elongated Cs−137 plume of concentra-
tion 10 mg/l located near the west boundary. Cs−137 is a radioactive isotope
of Caesium with a half-life of 30.17 years, and generally used in gauges for mea-
suring liquid flows and the thickness of materials. We simulate the migration of
the radioactive plume across the domain towards the east boundary for 50-years
period. Figure 1 below shows three snapshots of the polluted domain in time.
We assume linear sorption conditions in a medium textured soil type aquifer.

We conduct twin-experiments in which we perform a reference (or truth)
contaminant transport simulation and use a perturbed forecast model to repro-
duce the reference solution while assimilating perturbed observations extracted
from the reference run. We consider a monitoring network of 15 wells distributed
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Fig. 1. Reference contaminant spatial maps of the domain after 0, 25 and 50 years.
Blue squares shown on the left panel correspond to observation wells that are installed
for measuring the concentration of the groundwater (Color figure online).

uniformly in the domain as shown in the left panel of Fig. 1. For updating the
concentration and conductivity ensembles, we assume that concentration data
is available every 6 month (i.e., total of 100 EnKF updates). We sample the
initial state ensemble assuming Gaussian conditions by selecting the mean of
the reference run and perturbing around it. The initial conductivity ensemble is
generated using a sequential Gaussian simulation toolbox [5]. To perform data
assimilation in a realistic settings, we perturb the model’s porosity, radioactive
decay and sorption.

4.2 Assimilation Results

In this section, we present assimilation results from the standard and the pro-
posed smoothing-based joint-EnKFs. We set the ensemble size, Ne, in both filters
to 100 and impose a 10% measurement error on the pseudo concentration obser-
vations.

Fig. 2. Time evolution of the root-mean-square errors (RMSE) as they result from the
joint-EnKF and the Joint-EnKFOSA over time. Shown in the left panel are estimates
of the contaminant state, whereas the right panel plots the hydraulic conductivity
estimates.

To assess the performance of the filters, we first examine the time evolu-
tion of the root-mean-squared-errors (RMSE) for both the contaminant concen-
tration and the hydraulic conductivity. As shown in Fig. 2, the RMSE of the
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contaminant estimates decreases gradually in time for both filters. The average
RMSE evaluated over the whole 50 years-period is 0.0812 and 0.0682 mg/l for the
joint-EnKF and the proposed Joint-EnKFOSA, respectively. This indicates that
the proposed algorithm is more accurate, providing around 16% improvement
over the standard joint-EnKF. Concerning the estimates of the 2D conductiv-
ity field, the Joint-EnKFOSA algorithm significantly outperforms the standard
joint-EnKF, recovering much more accurate parameter field by the end of the
50 years assimilation interval. Compared to the true conductivity field (Fig. 3,
south-left panel), the Joint-EnKFOSA conductivity estimate is about 23% more
accurate than the standard Joint-EnKF.

We have also analyzed the spatial patterns of the estimated fields. As shown
in Fig. 3, the standard Joint-EnKF provides poor estimates of the final conta-
minant concentration, exhibiting some overshooting in the right region of the
domain. In contrast, the Joint-EnKFOSA better delineates these polluted areas
and provides spatial patterns in better agreement with the reference solution,
especially in the northeast part of the aquifer. With regard to the parameter
field, the proposed filter exhibits better representation of the high conductivity
and low conductivity areas in the western and central parts of the domain.

Fig. 3. Reference and analysis ensemble mean maps after 50 years. Shown in the top
row of subplots are the contaminant concentration maps from the reference, joint-EnKF
and Joint-EnKFOSA runs. The reference and recovered conductivity fields are shown
in the subplots of the bottom row.

5 Conclusion

In this study, we presented a smoothing-based joint ensemble Kalman filter for
state-parameter estimation problem. While sharing with the standard Joint-
EnKF the idea of concatenating the state and parameters in the same vector, the
new filter reverses the order of the time-update step (forecast by the model) and
the measurement-update step (correction by the incoming observations). This
enables more updates to the state by incoming observations, which should result
in improved estimated without any significant increase in the computational
cost. This is confirmed through numerical synthetic assimilation experiments
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based on a subsurface contaminant transport model, clearly demonstrating the
efficiency of the proposed scheme. This indeed resulted in significant better state
and parameters estimates compared to the standard Joint-EnKF.
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Abstract. This paper studies a direct approach to smoothing by sam-
pling the posterior distribution in four dimensional data assimilation.
The methodology is based on a hybrid Monte Carlo approach and can
be applied to non-linear models, non-linear observation operators, and
non-Gaussian probability distributions. The generated ensemble is used
to construct both the analysis state (the minimum variance estimator)
and the analysis error covariance matrix. Numerical tests performed with
the Lorenz-96 model and with both linear and quadratic observation
operators illustrate the usefulness and performance of the approach.

1 Introduction

Predicting the behavior of complex dynamical systems such as the atmosphere
requires incorporating information from periodic observations to decrease the
uncertainty in the forecast. Data assimilation (DA) combines information from
a numerical model, prior knowledge, and observations, all with associated errors,
in order to obtain an improved estimate of the true state of the system. Two
approaches have gained widespread popularity in data assimilation: variational
and ensemble-based methods. The variational approach requires the develop-
ment of the adjoint of the tangent linear numerical model, which is an extremely
challenging task for real applications. An estimate of the uncertainty in the
analysis is not immediately available in variational schemes [3]. Ensemble-based
schemes, like the Ensemble Kalman Filter (EnKF), use an ensemble of states to
represent the probability density (PDF) of the state of the system. The com-
putations performed in ensemble schemes are proportional to the size of the
state space of the ensemble. The dimension of ensemble space is always much
smaller than the dimension of the model state space, which is typically 106−109

for atmospheric models, and this leads to considerable sampling errors. Hybrid
data assimilation schemes couple the variational solution with an ensemble of
states to estimate posterior uncertainty. Hybrid approaches are a promising new
direction as they can, in principle, combine the advantages of both families of
methods and alleviate their disadvantages [2,5,12].

c© Springer International Publishing Switzerland 2015
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This work presents a sampling approach to four-dimensional data assimila-
tion. Specifically, the method samples directly from the posterior distribution
associated with four dimensional variational (4D-Var) data assimilation. The
posterior ensemble allows to generate an analysis state based on a minimum
variance estimation, and to estimate consistently the statistics of the analysis
error, e.g., the analysis error covariance matrix.

The paper is organized as follows. Section 2 reviews the Bayesian formulation
of variational data assimilation. Numerical experiments and results are discussed
in Sect. 3. Conclusions and future directions are given in Sect. 4.

2 Data Assimilation

Data assimilation is the process of combining the information contained in the
prior knowledge, the model, and the observations, in order to produce an optimal
(in some sense) estimate of the state of a complex, and usually high-dimensional,
system such as the atmosphere. The variational approach to data assimilation,
rooted in control theory, finds a maximum aposteriori (MAP) estimate of the
true state [9]. We present the variational approach to data assimilation from the
Bayesian point of view which will serve our goal of sampling from the posterior
PDF. The numerical model is assumed to be perfect throughout this study.

2.1 Variational Data Assimilation

The background (prior) probability density Pb(x) encapsulates the knowledge
of the system prior to taking any observations. It describes the uncertainty with
which one knows the true state xtrue at a specific time point prior to collecting
any new observations. The conditional probability distribution of observations
given the state of the system is referred to as the likelihood PDF and denoted
by P(y|x). From Bayes’s theorem [9]:

Pa(x) = P(x|y) =
P(y|x)Pb(x)

P(y)
, (1)

where P(x|y) refers to the probability distribution of the state of the system
after incorporating the information from the observations. This simply refers to
the analysis PDF or posterior. The denominator is the marginal density of the
observations and acts as a scaling factor. Equation (1) can be rewritten as

Pa(x) = P(x|y) ∝ P(y|x)Pb(x). (2)

Under the common assumptions that background and the observation errors are
normally distributed, that is Pb(x) = N (xb,B), and (H(x)−y) ∼ N (0,R), the
prior and the likelihood PDFs can be written as follows:

Pb(x) = (2π)− nvar
2 |B|− 1

2 exp
(

−1
2
(x − xb)TB−1(x − xb)

)
,

∝ exp
(

−1
2
(x − xb)TB−1(x − xb)

)
, (3)
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P(y|x) = (2π)− m
2 |R|− 1

2 exp
(

−1
2
(H(x) − y)TR−1(H(x) − y)

)
,

∝ exp
(

−1
2
(H(x) − y)TR−1(H(x) − y)

)
. (4)

Here H is the observation operator that maps the state space of the system to
observation space, and nvar is the dimension of model state space. The normality
assumptions are sometimes difficult to justify, especially with highly non-linear
models, however they are widely used due to their convenience. In this case, we
can use the continuous Bayes’ rule to get the posterior as follows:

Pa(x) ∝ exp
(

−1
2
(x − xb)TB−1(x − xb)

)

× exp
(

−1
2
(H(x) − y)TR−1(H(x) − y)

)
,

= exp (−J (x)), (5a)

J (x) =
1
2
(x − xb)TB−1(x − xb) +

1
2
(H(x) − y)TR−1(H(x) − y). (5b)

The posterior (5) is Gaussian only if the observation operator is linear. Usually
the observations lie in a space of much lower dimension than the state space of
the system, that is m � nvar.

In the four dimensional variational (4D-Var) formulation, several observa-
tions at different time instances are assimilated simultaneously. Given a back-
ground state xb(t0), and a set of observations yk = y(tk); k = 0, 1, . . . ,nobs, and
assuming that observation errors are independent of each other and of the error
in state of the system, the posterior is given by:

Pa(x(t0)) = Pa(x0) ∝ exp (−J (x0)) , (6a)

J (x0) =
1
2
(x0 − xb

0)
TB−1

0 (x0 − xb
0) (6b)

+
1
2

nobs∑

k=0

(H(xk) − yk)TR−1
k (H(xk) − yk) ,

where B0 represents the background error covariance matrix at the initial time
t0, and xk = Mt0→tk(x0) is the model state propagated forward in time by
the forward model M. The model solution operator M represents, for exam-
ple, a discrete approximation of the partial differential equations that governs
the evolution of the dynamical system (e.g. atmospheric or oceanic processes).
While the forward model M propagates the state of the system to future times,
perturbations (small errors δx ) of the state of the system evolve according to
the tangent linear model

δxk = M0,k(x0) · δx0, k = 1, . . . ,nobs , (7)

where, M0,k = (Mt0→tk(x))x. This tangent linear model is useful in sensitivity
analysis.
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The 4D-Var formulation [9] computes the maximum a posteriori estimate,
i.e., obtains the analysis xa

0 as the argument which minimizes the cost function
J (x0). The gradient is:

∇x0J (x0) = B−1(x0 − xb
0) +

nobs∑

k=0

MT
0,kH

T
kR

−1(H(xk) − yk) , (8)

where MT
0,k is the adjoint of the tangent linear model and HT

k is the adjoint
of the observation operator. This strategy incorporates time by assimilating all
observations available in the time window simultaneously. This method requires
the development of both tangent linear model and adjoint which is in many cases
a challenging task.

2.2 Sampling from the Posterior Distribution

The 4D-Var formulation does not automatically provide a statistically consis-
tent description of the posterior uncertainty [3], e.g., it does not include a
mechanism to estimate the analysis error covariance matrix. Different hybrid
approaches [10,11] are based on using an ensemble of simulations, to complement
the variational approach and to provide analysis error estimates. These methods
require additional work and may suffer from inconsistency since the analysis xa

0

and the analysis covariance matrix are obtained by different algorithms. Sandu
et al. have considered approaches based on subspace error decompositions [3,14].
These approaches also require additional computational effort.

Direct sampling from the posterior distribution can be a powerful and efficient
strategy, that is capable of dealing with the high-dimensionality of the state
space.

Implicit particle filter [4] is a sequential Monte Carlo sampling algorithm
for data assimilation that samples from the posterior PDF by targeting the
sampling procedure to the high density areas in the posterior to keep the number
of particles manageable independently from the dimension of the state space. An
optimization step per particle is required, to locate high density areas, followed
by a solution of a set of algebraic equations to generate the target ensemble.
Another sequential data assimilation scheme [15] that uses the Gaussian mixture
models, was developed to account for non-Gaussian statistics. Ensemble Kalman
smoother (EnKS) [7,8] is an extension to the ensemble Kalman filter that is
capable of producing an analysis state of a weakly nonlinear system by taking
the observations at a later time instance into account. However, most of the
available strategies tend to fail in presence of high non-linearities or when the
Gaussianity assumptions do not hold.

Our main goal is to produce an efficient, robust, and easy to implement
sampling scheme for four dimensional data assimilation that is not limited to the
Gaussian cases, and can deal efficiently with nonlinear observations as well as
linear observations. A detailed comparison of these strategies with our sampling
scheme will be given in a future work.
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In our previous work [1] we proposed the use of Hybrid Monte Carlo (HMC)
sampling strategy and employed it to build a nonlinear, non-Gaussian version
of the ensemble Kalman filter. In this paper we extend this approach to the
four dimensional data assimilation case, where several observations in a given
assimilation window are used simultaneously, and the posterior is of the form (6).
The resulting algorithm can be thought of as a sampling smoother in this case.

Consider a set of observations y0,y1, . . . ,ynobs , over the assimilation window
[t0, tf ], and an ensemble of nens states, {xb

0(e)}e=1,2,...,nens sampled from the
background PDF of the beginning of the assimilation window. The ensemble of
states are obtained, in the forecast step of the smoother, by propagating the
analysis ensemble obtained in the previous assimilation window forward in time
to t0, the beginning of the current window.

In the analysis step we apply a modified version of the HMC sampling strat-
egy presented in [1] to obtain an ensembles of states {xa

0(e)}e=1,2,...,nens sampled
from the posterior PDF Pa(x0). This ensemble is used to calculate the best esti-
mate of the initial condition of the system (e.g. the mean (xa

0) of the ensemble),
and to estimate the analysis error covariance matrix A,

xa
0 =

1
nens

nens∑

e=1

xa
0(e) , (9a)

Xa = [xa
0(1) − xa

0, . . . ,x
a
0(nens) − xa

0] , (9b)

A0 =
1

nens − 1

(
Xa (Xa)T

)
(9c)

The forecast and analysis steps are repeated sequentially as one cycles through
subsequent assimilation windows.

Given J (x) as in (6b), the sampling procedure is summarized in Algorithm 1.
The details of each step in the algorithm can be found in [1].

3 Numerical Experiments

In this study we test our sampling scheme using the 40-variables Lorenz-96
model [13]:

dxi

dt
= xi−1 (xi+1 − xi−2) − xi + F , (10)

where x = (x1, x2, . . . , x40)T ∈ R
40 is the state vector, and the forcing F = 8.

We use two observation operators, one linear and one quadratic. Only each
second component of the state vector is observed. For the linear operator,
H(x) = Hx = (x1, x3, . . . , xnvar)

T , while in the case of a quadratic operator,
H(x) =

(
x2
1, x2

3, . . . , x2
nvar

)T . The number of ensemble members is nens = 100.
The synthetic observations used are created by perturbing the reference trajec-
tory with normal noise at uncertainty level of 5%. The level of background error
is set to 8%. Each assimilation window is of length 0.5, with nobs = 5 equidis-
tant observations time-points. For convenience, no observations are taken at the
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Algorithm 1. Sampling smoother algorithm
1: set e ← 1
2: Draw a a normal synthetic momentum pe.
3: Solve the Hamiltonian system to generate a proposal state with J (x) as in (6b).
4: Accept/Reject the proposal.
5: if e = nens then
6: Stop.
7: else if Proposal state rejected then
8: Goto step (2)
9: else

10: e ← e + 1
11: Goto step (2)
12: end if

beginning of each window. The infinite dimensional integrator, as given in [1],
with step-size set to 0.01 is used. The number of steps between successive selec-
tions in the generated chain is set to 10. Two versions of the background error
covariance matrix B0 are used, a modelled (fixed) version and a hybrid version.
The hybrid version we used is a simple linear combination (11) of the mod-
elled and the ensemble-based (flow-dependent forecast error covariance matrix
(obtained from the forecast ensemble)

Bhybrid
0 = γ × Bmodelled

0 + (1 − γ) × Bensemble
0 . (11)

Setting γ = 1, ignores the error-of-the day update to the background error covari-
ances. Choosing γ = 0, simply means we use the flow-dependent background
error covariance matrix obtained from the ensemble and ignore the modelled
one. For γ ∈ (0, 1), a hybrid version of the background error covariance matrix
is obtained. For simplicity, and since we trust the modelled B0, we chose and
empirical weight of γ = 0.75.

3.1 Numerical Results

In what follows, we compare the results of the proposed sampling scheme with
the standard 4D-Var solution. The root-mean-square error (RMSE) is used to
compare the sampling analysis and the 4D-Var solution, relative to the reference
solution, on each window. The analysis error, and the hybrid background error,
covariance matrices at the beginning of the four assimilation windows, are also
viewed and discussed.

The RMSE is given by

RMSE =

√√√√ 1
nvar

nvar∑

i=1

(xi − xtrue
i )2, (12)

where xtrue is the reference solution, and x is the DA analysis (both propagated
forward in time over the window). RMSEs are calculated over each window by
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Fig. 1. Data assimilation results over four consecutive windows. RMSE results for
HMC smoother, and 4D-Var, solutions are shown.

propagating the states, x, and, xtrue using the full model and applying (12) along
the trajectories. Figure 1 shows the RMSE (on a logarithmic scale) of the aver-
age of the ensemble generated by the HMC sampling scheme along with the
conventional 4D-Var analysis and the forecast (no assimilation). The forecast
trajectory here is generated by propagating the forecast state, generated by the
HMC sampling algorithm, available at the beginning of each assimilation window
along this window only. Using hybrid version of the background error covariance
matrix, for linear observations (Fig. 1a,b), and quadratic observations (Fig. 1c,d),
enhances the performance of both 4D-Var and the sampling algorithm. For exam-
ple, the average RMSE for the HMC analysis on the last assimilation window
reduces from 1.458 × 10−1 to 1.394 × 10−1 for linear observations, and reduces
from 1.559×10−1 to 1.001×10−1 for quadratic observations. Also, the RMSE of
the 4D-Var solution reduces from 1.363×10−1 to 1.249×10−1 for linear observa-
tions, and reduces from 1.239× 10−1 to 8.492× 10−2 for quadratic observations.
Figures 2 and 3 show the contour plots of the hybrid (updated) background error
covariance matrices throughout the four assimilation windows for both cases of
the observation operator, the linear and the quadratic, consecutively.

As mentioned before, the analysis error covariance matrix is calculated from
the analysis ensemble of the HMC sampling scheme and is not generally available
in variational schemes. Figures 4, 5, 6 and 7 show contour plots of the analysis
error covariance matrix obtained at the beginning of each of the four assimilation
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Fig. 2. Contour plots of the hybrid background error covariance matrix B0 for each of
the four windows. Observations are Linear.

Fig. 3. Contour plots of the background error covariance matrix B0 for each of the
four windows. Quadratic observations, and hybrid B0 are used.

windows. The results show that the developed sampling scheme is capable of
generating analysis state that competes with the 4D-Var solution. Also, the
forecast ensemble, generated by propagating the analysis ensemble members
forward in time, yields a flow-dependent background error covariance matrix
that enhances the performance of both 4D-Var and HMC sampling scheme.
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Fig. 4. Contour plots of the analysis error covariance matrices for each of the four
windows. Linear observations, and fixed B0 are used.

Fig. 5. Contour plots of the analysis error covariance matrices for each of the four
windows. Linear observations, and hybrid B0 are used.

3.2 Computational Cost

We performed the 4D-Var optimization using Poblano toolbox [6]. The optimiza-
tion required 54 gradient evaluations and 200 function evaluations in case of
linear observations. Hundred gradient evaluations and 341 function evaluations
with quadratic observations. Each function and gradient evaluation requires one
forward model and one adjoint model run respectively. One adjoint model run
costs approximately 2.5 times the cost of the forward model. The total cost of
optimization for linear and quadratic observation operators are ≈ 335 and 600
forward model runs respectively. For the sampling scheme, 2 adjoint calls, per
time-step, are needed by the Hamiltonian time integrator to generate a proposal
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Fig. 6. Contour plots of the analysis error covariance matrices for each of the four
windows. Quadratic observations, and fixed B0 are used.

Fig. 7. Contour plots of the analysis error covariance matrices for each of the four
windows. Quadratic observations, and hybrid B0 are used.

state. In this experiment, the number of time steps is 10. The total number of
adjoint evaluations per proposal is 20. The cost to generate each ensemble mem-
ber is ≈ 50 forward model runs for both linear and quadratic observations. An
ensemble of 30 members, for example, would cost a total of ≈ 1500 (less than 3
times the cost of 4D-Var for quadratic observations).

4 Conclusion and Future Work

In this paper we have successfully applied hybrid Monte Carlo sampling to build
a smoother for four-dimensional data assimilation. This methodology can be
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viewed as an alternative to 4D-Var data assimilation: while the variational app-
roach provides a maximum a posteriori estimate, the sampling approach dis-
cussed herein provides a minimum variance estimate. The results show that
the minimum variance analysis obtained from the sampled states is at least as
good as the conventional 4D-Var analysis. Propagating the analysis ensemble
forward in time generates an ensemble of forecasts, that makes it easy to build
a background error covariance matrix at the beginning of the next assimilation
window. Unlike the hybrid approaches, the analysis covariance is consistent with
the analysis state as they are produced by the same data assimilation procedure.
The computational cost of the sampling scheme, compared to 4D-Var, suggests
that it can be efficiently applied to practical models.

In future, we will apply this scheme to a large-scale imperfect model with
non-Gaussianity assumptions.
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Abstract. The demand for tractable non-Gaussian Bayesian estimation
has increased the popularity of kernel and mixture density representa-
tions. Here, using Gaussian Mixture Models (GMM), we posit that the
reduction of total variance also remains an important objective in non-
linear filtering, particularly in the presence of bias. We propose multi-
objective estimation as an essential ingredient in data assimilation.

Using Ensemble Learning, two relatively weak estimators, namely the
EnKF and Mixture Ensemble Filter (MEnF), are combined to produce a
strong one. The Boosted-MEnF (B-MEnF) stacks MEnF and EnKF to
mitigate bias and uses cascade generalization to reduce variance. In the
Lorenz-63 model, it lowers mixture complexity without resampling and
reduces posterior variance without increasing estimation error.

Our MEnF is a purely ensemble-based GMM filter with a reduced
dimensionality burden and without ad-hoc ensemble-mixture member
associations. It is expressed as a compact ensemble transform which
enables efficient fixed-interval and fixed-lag smoothers (MEnS) as well
as the B-MEnF/S.

Keywords: Data assimilation · Gaussian mixture models · Ensemble
learning · Multi-objective assimilation · Non-linear filtering and smooth-
ing · Non-Gaussian estimation

1 Introduction

Bayesian estimation is of interest to solve inference problems from models and
data. In environmental state and parameter estimation, for example, fixed-
point, fixed-interval or fixed lag problems are solved using sequential filters
and smoothers. This includes classical schemes such as Kalman [10] filters and
smoothers, and contemporary approaches including the Ensemble Kalman filter
(EnKF) and smoother [7,16], Particle filter and smoother [2], and many popular
variants [4] in between.

Sequential Bayesian state estimation can be viewed in three parts: (a) A
prediction step which uses a model to propagate the state forward in time; (b)
a filtering procedure where the current model state is updated recursively using
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experimental observations up to the current time; and (c) a smoothing step which
uses the current observations to update the model state at previous times.

However, many challenges to representation and reduction of uncertainty
remain in sequential Bayesian estimation. One important issue is the tractability
of inference in high-dimensional numerical models. Another is the emergence of
non-Gaussian uncertainties in nonlinear processes, for example, as multimodal
or heavy tailed distributions. To compound matters, grossly inadequate envi-
ronmental observations decidedly complicate inference from data and models in
many applications.

Current sequential Bayesian estimation practice offers two primary alter-
natives. On the one hand are rank-reduced, localized or multiscale ensemble
Kalman filters and variants. These methods ease linearization issues and the use
of Gaussian prior and likelihood yields direct state update equations. Recogniz-
ing the operational use of ensemble forecasts and the methods by which they are
generated, the direct adjustment of individual ensemble members, often incorpo-
rating balance, appears to be beneficial. Nevertheless, the Gaussian assumption
can be problematic, for example, for localized phenomena [15,17].

On the other hand, non-parametric Bayesian inference, notably the Parti-
cle Filter [2], can be attractive for non-Gaussian estimation but tractability
in higher dimensions is challenging. The Environmental Systems Science com-
munity recognizes that efficient high-dimensional non-Gaussian estimation is
essential in many applications. Emerging approaches to overcome these issues
include kernel [11,14] and mixture density representations [1,8,18–20] in both
information-theoretic [14] and classical estimation formulations.

The conceptual simplicity with which Gaussian Mixture Models (GMM) [13]
apply to non-Gaussian estimation makes them potentially attractive for data
assimilation [1]. In time dependent filtering, for example, it was proposed that
propagated mixture element parameters be corrected with data [1]. However,
identifying optimal mixture parameters and efficiently propagating and updating
them remains problematic in high-dimensional systems. Recent approaches [19]
dovetail efficient ensemble propagatation with mixture parameter updates to
partially advance the methodology. Fully ensemble-based approaches [5,8,18]
have the potential to advance further but remain hamstrung by ad-hoc ensemble-
mixture association rules and ad-hoc balanced sampling rules. Clarity is lacking.

Another problem with GMM-based filtering is more insidious. Mixture modes
are statistically estimated from ensemble members dispersed in the state space.
The total variance includes the variance of the means which becomes significant
as the number of mixture members increases. Current GMM-based filters have
no representation for it. So, when model error manifests as a bias relative to
the GMM modes, convergence can be extremely slow. Simple experiments show
that beyond a very small bias, GMM performance is worse than the ensemble
Kalman filter. In such a case, minimizing overall variance cannot be ignored,
especially if estimating estimation uncertainty is also important. We posit that,
in general, non-Gaussian estimation cannot lose sight of minimizing variance,
particularly when our confidence in real-world models is low.
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In this paper, we examine the role of mixture representations in the context
of high-dimensional non-Gaussian Bayesian state estimation. We first present a
Mixture Ensemble Filter (MEnF) which neither requires explicit moment repre-
sentation nor relies on ad-hoc rules for association. Akin to the Ensemble Kalman
Filter, MEnF is a compact ensemble transform which immediately enables a mix-
ture ensemble smoother (MEnS).

We then formulate a Boosted Mixture Ensemble Filter (B-MEnF) that
enables multi-objective, non-Gaussian Bayesian Estimation. Multiple weak esti-
mators are combined to produce a strong one that simultaneously targets non-
Gaussian estimation and overall variance reduction. In particular, we stack [21] a
GMM with an EnKF estimator to overcome bias issues and use cascade general-
ization of the coupled estimator [9] to improve variance reduction. The posterior
in B-MenF has lower complexity and smaller variance at the same level of esti-
mation error than either GMM or EnKF, requiring no re-sampling in Lorenz
63 model experiments. B-MEnF is also expressible as a compact transform that
enables efficient smoothing.

The remainder of this paper is organized as follows. The mixture ensemble
filter and smoother results are discussed in Sect. 2. GMM is examined critically
in Sect. 3, and the stacked-cascade ensemble filter is presented in Sect. 4. Finally,
the paper is summarized and concluded in Sect. 5.

2 The Mixture Ensemble Framework

Consider a dynamical system xt+Δt = f(xt,ut), where xt,xt+Δt ∈ Rn is an n-
dimensional discrete state vector and f(·, ·) is a possibly non-linear model with
parameters ut as inputs. For simplicity, the model is illustrated without “process
noise”, utilizing instead the epistemic uncertainties of the initial conditions as
the primary source of uncertainty. Measurements yt′ ∈ Rm are assumed to be
related by a linear or linearized observation equation yt′ = Hx̂t′ + vt′ where
x̂t′ is the true but unknown state vector, H is a measurement process, and
vt′ ∼ N (0,R) the (additive) Gaussian measurement uncertainty.

We are interested in both the filtering and smoothing problems, namely to
quantify the distributions p(xt | y0:t) and p(x0:t | y0:t) respectively, and to
seek to estimate their modes. For a Markov process, data can be assimilated
sequentially, and the recursive nature of the estimation process allows us to
consider the Bayesian “update” process at a single time instance, i.e.

p(x | y) ∝ p(y | x)p(x). (1)

Non-Gaussian priors are modeled as mixtures of Gaussians as defined by [13]

p(x; θ) =
M∑

m=1

αm N (x;µm,Pm). (2)

Here the parameter θ includes M , the number of mixture components, αm =
p(zm) are the mixture weights representing the probability of a mixture element
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zm, and N (x;µm,Pm) are multivariate normal distributions with means µm

and covariances Pm. The mixture weights are constrained by
∑M

m=1 αm = 1.
Any ensemble member xe has a finite probability of belonging to every other
mixture element in a GMM. This fact is modeled through a weight vector,

ωem =
N (xe;µm,Pm)αm∑M
j=1 N (xe;µj ,P j)αj

(3)

The GMM parameters are typically estimated using Maximum Likelihood Esti-
mation (MLE)1 via the Expectation Maximization (EM) [13]. The EM algorithm
consists of two alternating steps: an expectation (E) step and a maximization
(M) step. They are repeated until convergence for αm, µm and Pm is obtained.
In the E-step, ωem is computed while in the M-step, the optimal mixture para-
meters are estimated using ωem. To calculate the mixture parameters, we first
define Nm =

∑N
e=1 ωem for an ensemble of size N , then write

αm =
Nm

N
; µm =

∑N
e=1 ωemxe

Nm
; Pm =

∑N
e=1 ωem (xe − µm) (xe − µm)T

Nm
(4)

The EM algorithm assumes that the number of mixture components M is known
which is seldom the case. Therefore, the number of mixture components M is
estimated by using an information criterion. While several exist, the Bayesian
Information Criterion (BIC) is used here. EM algorithm is run for different values
of M , and the model with lowest best information criterion is chosen.

In time-dependent GMM-filtering, a measurement update follows density
estimation. The mixture update can be synthesized by solving two inference
problems. The first for “state” p(x|y) that yields the posterior means μa

m and
covariances P a

m. Using K(P f
m) as a Kalman gain, we get:

µa
m = µf

m + K(P f
m)

(
y − Hµf

m

)
; (P a

m)−1 =
(
(P f

m)−1 + HTR−1H
)

(5)
The second step is parameter estimation αa

m = p(zm|y) ∝ ∑
e p(y|xe)

p(xe|zm)αf
m which yields the mixture weight update as a convolution of two

Gaussians:

αa
m =

N
(
y;Hµf

m,HP f
j H

T + R
)

αf
m

∑M
j=1 N

(
y;Hµf

j ,HP f
j H

T + R
)

αf
j

(6)

The parametric posterior distribution is sampled to produce a new ensemble
and the filtering process repeats with a new density estimation step. This is the
nominal approach which we call the GMM filter.

2.1 Application Example

We perform an identical twin experiment on a Lorenz-63 system [12]. The Lorenz
model is a type of classic chaotic dynamical system consisting of three coupled,
1 MAP problem can also be solved.
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ordinary, differential equations in three dimensions. It is a simplified model for
atmospheric convection [12].

dx

dt
= σ(y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz (7)

Here σ is the Prandl number, ρ the Raleigh number and β a geometric factor.
Typical values for the parameters are σ = 10, ρ = 28 and β = 8/3. Equation 7
are integrated using an adaptive Runge Kutta 45 scheme with convergence error
of 10−7. The system is integrated forward for T = 100 time units from a random
initial condition to remove transients. An ensemble is then initialized with 1000
members and a very small offset of 0.0001 and variance 0.01. Measurements are
obtained over a long time interval of ΔT = 2.5 time units. The typical model
timestep is automatically determined but of O(0.01).

The Lorenz system exhibits two chaotic attractors causing the statistics of
particle trajectories to be bimodal at very long timescales. Even at the integra-
tion time scale used here, the distribution of ensemble members is non-Gaussian
(see Fig. 1). The measurement errors are constructed as being normally distrib-
uted with variance 2.0 in each dimension.

Fig. 1. A comparison of EnKF, GMM and stacked-cascade Mixture Ensemble filter(B-
MEnF) shows that B-MEnF forecast ensemble is less dispersed, and its posterior vari-
ance is smaller as assimilation continues. BMenF identifies two closely spaced posterior
modes and GMM returns multiple, of which only one has significant weight.

Figure 1 presents the filter results in a 2D X-Z projection for EnKF (left
column), GMM (middle column) at the first assimilation (top) step and after
nine assimilation cycles (bottom). The right column shows the result of B-MEnF
that is developed later in Sect. 4. The predicted point cloud is shown in light
gray and the posterior point cloud is depicted by dark points. The probability
contours are indicated by solid lines. The truth is marked by a red star.

Initially, a Gaussian model works as well as the mixture model but, as the
attractor structure becomes highly non-Gaussian, the EnKF forecast ensemble
members are far more dispersed, suggesting that the GMM better constrains
the uncertainty over time. Here, we regularize EM by a convex combination
of the two smallest eigen values of the forecast error covariance; this provides
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reasonable GMM clusters. We note that there is a marked sensitivity to the
regularization parameter. As the posterior ensemble point cluster depicts, filter-
ing with Gaussian measurement noise leaves (see Eq. 4) one dominant posterior
mode. Figure 2 quantitatively shows that the GMM is with lower variance and
complexity even if the estimation error (using MAP estimate) is comparable to
EnKF.

Fig. 2. BIC (top-left), total variance (bottom-left), estimation error (bottom-right),
and prediction error (top-right) of all methods. Noise variance marked as gray stripe.

The GMM approach is promising and, if dimensionality issues are reduced,
it will be a practical advance. This is possible using an ensemble approach. In so
doing, other issues are also addressed. For example, as figure Fig. 1 shows, the
posterior mixture can suffer from degeneracy; many posterior mixture elements
reduce to negligible weight. This can get “cleaned up” at the next density estima-
tion but is still an inappropriate analysis. The mixture ensemble reformulation
presented in the next section easily solves such problems.

2.2 Compact Mixture Ensemble Transform: MEnF/S

Several attempts have been made at ensemble formulations. Bengtsson et al. [3]
propose clustering and individual Kalman updates based on cluster membership.
Smith [18] uses EM with BIC but projects the GMM onto an approximate pos-
terior Gaussian distribution. Dovera and Rossa [5] sample an index according to
the posterior mixture weight and update the corresponding ensemble member
using EnKF. Frei and Kunsch [8] extend this scheme by using balanced sampling
to determine the ensemble member for update. Although dimensionality issues
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could be reduced by these methods, the tussle for managing ensemble members’
associations with mixture elements is evident.

The tussle is not necessary, as we show here. The mixture filter can be
expressed as a compact ensemble transform that needs no ad hoc association
rules, and the posterior ensemble can be resampled using effective sample size
measures [2] akin to the particle filter.

In the density estimation step that preceds filtering, EM can be made
tractable by noting that Sm = 1√

Nm
W 1

2m ◦ Ãm is a reduced-rank square-root of

Pm = SmST
m. Here W 1

2m(i, e) =
√

wem, Ãm is the matrix of ensemble perturba-
tions from mixture m’s mean, and ◦ denotes the Schur product. EM Gaussian
evaluations and updates can be carried out in square-root form.

For the measurement update, there are two equations. The first is a solution
to p(x|y) using the ensemble mean as a constraint, so that:

xa
e ≡ xe +

M∑

m=1

{K(Pm) (dem − Hωemxe)} (8)

Here dem = ωemy without perturbed observations and dem = αmye with per-
turbed observations. This is different from Tagade’s earlier proposal [14]. It has
not been shown before.

The second equation is for the posterior weights, obtained by solving for
wa

em = p(zm|xe,y) ∝ p(y|xe)p(xe|zm)p(zm) analogously to Eq. 3. It can also
be evaluated without explicitly constituting covariances. The posterior ensemble
and weights can be evaluated for effective sample size [2] and resampled to avoid
sample degeneracy.

Of course, posterior moments (via reduced-rank square-root forms) can also
be occasionally sampled to avoid sample impoverishment and so can other prac-
tical approaches, e.g., breeding. Interestingly, however, no deviation in inference
methodology ensues. After a forward numerical integration, the EM algorithm
always identifies a new distribution from the ensemble pattern that emerges. In
this way, the GMM-filter shares the advantages of a particle filter but exploiting
the parametric GMM form enables direct ensemble adjustment without running
into dimensionality issues. This is significant and in a form that has not hitherto
been shown.

Even more interestingly, the ensemble update is a compact transform:

Aa = Af
M∑

m=1

Ξm ◦ (WN
m )T = AfΞ (9)

Af is the forecast ensemble, Aa is the estimated ensemble and WN
m (1 : N, e) =

wem. The compact matrix Ξ in ensemble size N ×N in the sense of Evensen [7] is
a nonlinear transformation of the prediction. We call this the Mixture Ensemble
Filter (MEnF) that has not hitherto been shown in this form.

As a compact ensemble transform, MEnF immediately enables the derivation
of a fast mixture ensemble smoother (MEnS) akin to EnKS [7]. The smoother
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Fig. 3. Bi-modal example depicts worsening GMM estimation error with bias because
it does not account for the variance of the means; see text.

analysis As
k at time step k, nominally expressed as As

k = Aa
k

∏L
i=k+1 Ξ(i) in a

window L ahead of k. In fixed interval smoothing, L extends to the interval
endpoint and in fixed-lag, up to some lead time ahead. We point out that, as
Ravela and McLaughlin [16] showed, the smoothing equation can be reformulated
via recursion so that fixed interval estimation is of order O(L) for interval L via
a forward-backward pass, and fixed-lag estimation is of order O(1) via a first-
in-first out queue. For limitations in space, the smoother form is not further
explored. The compact transform form of MEnF/S has other advantages that
subsequent sections will develop.

3 The Importance of Variance Reduction

Despite these advances in GMM filtering, there are fundamental unsolved issues.
The Lorenz example was constructed with a very small bias where it was always
reasonable to expect a dominant mixture mode in the vicinity of truth. How-
ever, if this identification is not possible, a fundamental problem of mixture
models becomes obvious. When the observations are noisy, the dominant mix-
ture mode estimated by filtering (see Eq. 4) can “chatter” between measurement
intervals thus slowing convergence. Similarly, a misalignment between the mix-
ture’s modes and truth is a bias that can arise due to an imperfect model, an
impoverished ensemble, incorrect EM regularization, sensitivity of GMM density
estimation, or a large ensemble dispersion, among other factors. Although it is
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beyond the scope of this paper to probe each of these bias-inducing factors, it
is easy to study bias’ net effect on GMM estimation, described in the following
synthetic experiment.

Consider a bimodal prior with mean at zero. The modes are positioned at
μm = ±6σ with a variance of σ2

m = 1 each of weight αm = 0.5, see Fig. 3(a).
Imagine now a measurement of truth somewhere in between (dotted line). When
the truth is aligned with one of the modes, the bias is zero and when the mea-
surement lies in between the two mixture modes, we define the bias as 100%.

In this simple problem, consider the truth to be stationary and use a trivial
forward model ẋ = 0, and a measurement with noise variance σ2

r = 1. For
comparison, we also run a Kalman filter with a prior variance equal to the total
variance of the GMM, σ2 =

∑
m αm((μm − μ)2 + σ2

m). Once a measurement
is obtained, a posterior distribution is calculated. Because truth is stationary2,
we expect some convergence in the estimated mean and covariance for each
filter. We track the estimation error over five filtering iterations in each trial and
repeatedly conduct a large number of trials to acquire statistics.

With increasing bias, the GMM on average performs far worse than the
EnKF. Figure 3(c) shows the average normalized RMS estimation error com-
paring the Kalman estimate’s posterior mean, the GMM’s dominant mode, and
its mean, respectively, with truth. Figure 3(d) shows that the convergence to an
80% reduction in error is also much slower.

The reason for this is quite simple. Even if the best posterior mode has
slightly lower variance than the EnKF, the estimation error increases because
the total variance, which includes the variance of the means, is not accounted
for (see Fig. 3(b)). As a result, the filter converges slower under bias and with a
larger estimation error. On the other hand, the EnKF has a larger initial Kalman
gain and therefore rapidly reduces overall variance to the asymptotic estimation
error. Thus, the total error is smaller. Clearly, as the modes fragment, GMM
filter loses track of the total variance. This is particularly damning when model
errors are present, a situation that is almost always the case in the real world.
For a system with low bias, however, the GMM performance is impressive in
the accuracy with which it tracks the non-Gaussian nature of the uncertainty,
as seen in the Lorenz example.

Can non-Gaussian Bayesian estimation also minimize total variance? In the
next section, we show how multiple objectives can be accomplished through
Ensemble Learning.

4 Ensemble Learning with a Stacked Cascade

One way to incorporate global variance reduction in the GMM approach is to
build a hierarchical mixture model where each GMM targets variance at a differ-
ent scale. Finally, the outputs of the individual estimators are combined. Here,
2 Note that this problem is not the same as a Wiener filtering problem.
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we use a simple version of this general idea. Our approach starts with an ensem-
ble propagated to the filtering step where density estimation is about to be
performed.

We assume that the different estimators used during a measurement update
are based on differences in prior probability density (mass) functions. Each such
estimator is weak in some way, meaning that it performs poorly on the applied
model. For example, EnKF cannot represent non-Gaussian predictions while the
GMM does not account for the variance of the means. Ensemble Learning, here
referring to an ensemble of estimators, offers a possible approach to produce
better estimators by combining weaker ones.

A variety of methods including bagging, boosting, cascading, stacking and
Bayesian model averaging, among others, are feasible in principle but cannot
fully be discussed in this paper. Here, we select two techniques: stacking [21] or
stacked generalization, and cascaded generalization [9]. The base estimators are
the GMM and EnKF where the latter may trivially be thought of as a GMM
with only one mixture. The resulting combined estimator B-MEnF, combining
the two using the “stacked cascade”, outperforms either one. We discuss this
approach in the following section and illustrate it on a Lorenz-63 example.

4.1 Stacked Regression and Cascaded Generalization

From a machine learning perspective, estimators can be viewed as (possibly non-
linear) regression machines. This framework, though unusual within data assim-
ilation, is nevertheless useful. Multiple regression machines form an ensemble
of regression machines (ERM), each of which produces an estimate. The pur-
pose of “Learning” is to combine them in a meaningful way. In this paper, we
will only consider two such machines, Mg for the GMM and Me for the EnKF
respectively, each represented by a compact ensemble transform.

By interpreting the ensemble of numerical model predictions as training data,
a bootstrap sample can typically be extracted along with measurements, per-
turbed if needed, to “train” the regression machines in the ERM ( i.e., estimate
their parameters). We then apply each machine to the full ensemble, the test
data, and combine individual outputs to produce a composite posterior ensemble.

The architecture for combining the two machines used here is shown in Fig. 4.
This is an iterative process where stacking is used at each stage [21] to combine
the outputs followed by a cascaded generalization [9] on new machines trained
from the outputs. During stacking, the “meta learner” combines the outputs by
selecting the regression machine with the lower error with respect to perturbed
measurements (the truth is unknown) [6]; a higher posterior can also be used.
Cascading can be terminated when the model complexity of the estimated GMM
on posterior ensemble no longer improves. Typically, two to three cascade itera-
tions are needed. Note that each stacking stage can also be written as a compact
ensemble transform. Cascading is, therefore, a product of ensemble transforms.
Thus, smoother form B-MEnS is enabled akin to MEnS.
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Fig. 4. The Stacked-cascade approach is shown for a single iteration. Stacked general-
ization consists of Me and Mg which are combined by picking the posterior ensemble
member with lower error. A cascade of stacked machines are used with perturbed
observations in training and testing, and with a bootstrap ensemble for training.

The motivation for stacked generalization and cascaded generalization stems
from the fact that the former is a bias reducing approach (multiple probability-
models to reduce overall estimation bias) and the cascade reduces variance. These
ideas have been applied to a variety of problems though, to the best of our
knowledge, their use in data assimilation application is new. It is argued that
the combination of bootstrap sampling with perturbed measurements prevents
overfitting; this is a common approach in many randomized learning problems.
Neverthless, some caution must be exercised in this regard.

In Fig. 1, we compare the results of the three filters: EnKF, GMM and stacked
cascade. All three estimators produce comparable estimates (when the most
probable ensemble member is compared to truth), with the GMM tracking the
attractor structure slightly better than EnKF.

Without any resampling whatsoever, B-MEnF produces posterior GMMs of
lower complexity, lower variance, and lower dispersion than EnKF or GMM
alone. The lower variance is the best so far and with explicit representation of
non-Gaussianity. In the Lorenz-63 example (Fig. 1), the posterior GMM has two
elements.

5 Conclusions

Whilst mixture approaches seem promising for non-Gaussian estimation, they
actually perform worse than EnKF in the presence of bias. The absence of a total
variance objective is the culprit. The proposed MEnF reduces dimensionality
issues and mitigates sampling problems. The compact mixture ensemble trans-
form directly enables smoothing, a new standard for nonlinear, non-Gaussian fil-
tering and smoothing. Furthermore, it allows constructing B-MEnF/S. B-MenF,
a stacked-cascade ensemble learner, reduces uncertainty better than either GMM
or EnKF alone and, in experiments here, it needed no resampling. We posit that
Ensemble Learning (analogous to multi-model ensembles) can be an efficient
way to deal with model error and bias in non-Gaussian systems, even in high
dimensions. In ongoing work, we study the generalization of data assimilation
to model errors using ensemble learning.
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Abstract. This study develops a hybrid ensemble-variational approach
for solving data assimilation problems. The method, called TR-4D-
EnKF, is based on a trust region framework and consists of three com-
putational steps. First an ensemble of model runs is propagated forward
in time and snapshots of the state are stored. Next, a sequence of basis
vectors is built and a low-dimensional representation of the data assim-
ilation system is obtained by projecting the model state onto the space
spanned by the ensemble deviations from the mean. Finally, the low-
dimensional optimization problem is solved in the reduced-space using
a trust region approach; the size of the trust region is updated accord-
ing to the relative decrease of the reduced order surrogate cost function.
The analysis state is projected back onto the full space, and the process
is repeated with the current analysis serving as a new background.
A heuristic approach based on the trust region size is proposed in order
to adjust the background error statistics from one iteration to the next.
Experimental simulations are carried out using the Lorenz 96 model.
The results show that TR-4D-EnKF is an efficient computational app-
roach, and is more accurate than the current state of the art 4D-EnKF
implementations such as the POD-4D-EnKF and the Iterative Subspace
Minimization methods.

Keywords: Trust region · 4D-EnKF · Hybrid methods

1 Introduction

Data assimilation [SC11] is the process of estimating the true state xtrue
M ∈ Rn

of a dynamical system at the current time tM given a history of prior evolution
and noisy observations of the state at times tk

yk = Hk

(
xtrue
k

)
+ εk ∈ Rm×1, 0 ≤ k ≤ M. (1)

Here n is the number of components in the model state, m is the number of
observed components from xtrue, Hk : Rn → Rm is the observation operator,
c© Springer International Publishing Switzerland 2015
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εk ∈ Rm×1 is the error associated to the k-th observation time, and M is the
number of observation times. Typically, observational errors are assumed to be
normal distributed εk ∼ N (0m,Rk) where 0m is the m-th dimensional vector
whose components are all zeros, and Rk ∈ Rm×m is the data error covariance
matrix at the assimilation time tk.

A dynamical model encapsulating our knowledge of the physical laws approx-
imates the evolution of the dynamical system. The evolution of the model state
x is given by

xk+1 = Mtk→tk+1 (xk) , 0 ≤ k ≤ M − 1, (2)

where M represents a nonlinear model solution operator (e.g., which simulates
the evolution of the ocean or the atmosphere).

Two families of methods, statistical filters and variational, are widely used to
solve data assimilation problems. Representative methods of those classes are the
Ensemble Kalman Filter (EnKF) and the Four-Dimensional Variational Method
(4D-Var), respectively. In EnKF an ensemble of model runs is propagated in
time; when data is available the filtering step generates an analysis ensemble
whose empirical mean is an estimator for xtrue. Strong constraint 4D-Var seeks
an analysis initial state such that the corresponding forecast best fits the obser-
vations within the assimilation window. It is well-accepted that both methods
face specific challenges in practical applications where n ∼ 109. For instance,
ensemble-based filters suffer from statistical sampling errors, while variational
methods require adjoint models which are labor-intensive to develop and com-
putationally expensive to run.

Hybrid methods have been proposed in order to combine the strengths
of EnKF and 4D-Var methods. The theoretical similarities between the two
approaches have been used to construct look-ahead assimilation techniques
[SH13]. Other hybrid approaches are based on model reduction and/or space
reduction [CNF11]. In this paper, we focus on the reduced-space approach where
a subspace of the state space is identified, the variational problem is solved in
this subspace, then the analysis is projected back onto the model space. The
new solution can be treated as a new background and the process is repeated.

In this work we formulate a hybrid data assimilation algorithm in the context
of derivative-free optimization. A rigorous Trust Region (TR) framework is pro-
posed where the TR radius in the model space is linked with the spread of the
ensemble members and with the quality of the solutions found in the reduced-
space. The new method is named TR-4D-EnkF. The remainder of the paper
is organized as follows. Section 2 reviews the current state of the art ensemble-
based approaches to data assimilation. Section 3 develops the novel derivative
free TR-4D-EnkF method. Numerical results using the Lorenz-96 are reported
in Sect. 4, and conclusions are presented in Sect. 5.

2 Four-Dimensional Ensemble-Based Approaches to Data
Assimilation

EnKF [Eve09a] is one of the most widely used methods in data assimilation due
to its simple formulation and ease of implementation. Normality assumptions are
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made on both the background and data errors [Eve09b]. The method contains
two steps, the forecast and the analysis.

The prior (background) distribution is approximated by an ensemble of N +1
model state samples

X0 =
[
xb(1)
0 , xb(2)

0 , . . . , xb(N+1)
0

]
∈ Rn×(N+1), (3)

with the empirical moments

x0 =
1

N + 1
·
N+1∑

i=1

xb(i)
0 ∈ Rn×1, (4a)

S0 =
1
N

· δX0 · δX0
T ∈ Rn×n, (4b)

where xb(i)
0 is the i-th ensemble member and the columns of matrix δX0 ∈

Rn×(N+1) are given by δx(i)
0 = xb(i)

0 − x0, for 1 ≤ i ≤ N + 1. Prior any mea-
surement, the background state xb

0 ≈ x0 provides the best estimation to xtrue
0 .

In the forecast step the background ensemble (3) is obtained by an ensemble
of model runs that propagate each model state to the current time tk.

In the analysis step a posterior (analysis) ensemble is constructed by making
use of the observation yk and by applying the Kalman filter to each background
ensemble member:

xa(i)
k = xb(i)

k + K
[
ys(i)
k + ε

s(i)
k − Hk · xb(i)

k

]
, 1 ≤ i ≤ N + 1 , (5)

where H′
k = Hk ∈ Rm×n is a linearized observation operator at time tk, ys(i)

k ∼
N (yk,Rk) are the observations yk with added synthetic noise ε

s(i)
k ∼

N (0m ,Rk), and the Kalman gain matrix is K = Sk · HT
k

[
Hk · Sk · HT

k

+ Rk

]−1 ∈ Rn×m. The ensemble members are further propagated in time

xb(i)
k+1 := Mtk→tk+1

(
xa(i)
k

)
, (6)

to obtain the background ensemble for the forecast step. EnKF can provide
flow-dependent error estimates of the background errors using a Monte Carlo
approach [NSA12,NRSA14], but it does not have the ability to assimilate the
observation data available at distributed times.

4D-Var considers cost functions of the form

J (x0) =
1
2

∥∥x0 − xb
0

∥∥2
B−1

0︸ ︷︷ ︸
J b(x)

+
1
2

M∑

k=0

‖yk − H (xk)‖2R−1
k

︸ ︷︷ ︸
J o(x)

, (7)

where J b(x) and J o(x) are known as the background and observation cost
functions, respectively. The cost function (7) is the negative logarithms of the



242 E.D. Nino and A. Sandu

a posteriori probability density when all the data and background errors are
normally distributed. The maximum likelihood estimate of the initial state is
then obtained by minimizing the cost function, i.e., the analysis step is computed
by solving the optimization problem

xa
0 = arg min

x0

J (x0) subject to (2). (8)

The formulation of (7) allows 4D-Var to assimilate data which appears at dif-
ferent observation times.

The computation of the gradient (7) with respect to the control variable x0 ∈
Rn×1 requires one forward and one adjoint model integration. The construction
of an adjoint model for real, large forecast models is an extremely labor-intensive
process. In order to avoid the implementation of adjoint models four dimensional
ensemble Kalman filter methods (4D-EnKF) [ZZ11] have been recently proposed.
They naturally propagate flow dependent background covariance matrices via
ensembles. Numerical experiments show robust performance with a small number
of ensemble members [YMW+13,THL+13]. Moreover, the solution (8) can be
treated as the new background state in (7), which provides a better solution
[CCF+13].

4D-EnKF based methods are defined as follows. The initial ensemble (3) is
propagated in time and M + 1 snapshots of each background ensemble member
state at time moments t0, t1, . . . , tM along the trajectory are stored

Xs =

⎡

⎢⎢⎢⎢⎣

xb(1)
0 xb(2)

0 . . . xb(N+1)
0

xb(1)
1 xb(2)

1 . . . xb(N+1)
1

...
...

. . .
...

xb(1)
M xb(2)

M . . . xb(N+1)
M

⎤

⎥⎥⎥⎥⎦
∈ R(n·(M+1))×(N+1) . (9)

Each entry of the background ensemble matrix Xs is an n-dimensional vector
xb(i)
k which represents the state of ensemble member i at time tk. The i-th column

of Xs contains all the snapshots of the i-th ensemble member, and the k-th row
of blocks corresponds to all ensemble member states at tk.

Consider now a trajectory of the model. The state xk at tk is approximated
by a linear combination of the anomalies (deviations from the mean)

xk = xk +
N∑

i=1

αi ·
(
xb(i)
k − xk

)

︸ ︷︷ ︸
ψ

(i)
k

= xk + Ψk · α , (10)

where xk = 1
N+1 ·∑N+1

i=1 xb(i)
k ∈ Rn×1, Ψk =

[
ψ

(1)
k ,ψ

(2)
k , . . . ,ψ

(N)
k

]
∈ Rn×N and

the time-independent weight vector α = [α1, α2, . . . , αN ]T ∈ RN×1, contains the
coordinates of xk in the ensemble space.
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By replacing (10) in (7) and linearizing the observation operator Hk ≈ Hk,
the 4D-Var cost function (7) can be written in the ensemble space as follows:

Jens(α) =
1
2

∥∥db − Ψ0 · α
∥∥2
B−1

0
+

1
2

M∑

k=0

‖do
k − Qk · α‖2R−1

k
(11)

where db = xb
0 − x0 ∈ Rn×1 and do

k = yk − Hk · xk ∈ Rm×1 are the innovation
vectors on the background and observations, respectively, and Qk = Hk · Ψk ∈
Rm×N .

The optimal solution in the ensemble space

α∗ = arg min
α

Jens(α) ∈ RN×1 , (12)

provides an approximation of the analysis trajectory started from (8) through
the relation

xa
k = xb

k + Ψk · α∗ ∈ Rn×1 . (13)

The derivatives of (11) are

∇αJens(α) =

[
ΨT

0 · B−1
0 · Ψ0 +

M∑

k=0

QT
k · Rk · Qk

]
· α (14a)

−
[
ΨT

0 · B−1
0 · db +

M∑

k=0

QT
k · R−1

k · dk

]
∈ RN×1 ,

∇2
α,αJens(α) = ΨT

0 · B−1
0 · Ψ0 +

M∑

k=0

QT
k · Rk · Qk ∈ RN×N , (14b)

and the solution of the quadratic minimization problem (12) is

α∗ = ∇2
α,αJens(α)−1 ·

[
Ψ0

T · B−1
0 · db +

M∑

k=0

QT
k · R−1

k · dk

]
. (15)

Since xa
k in (13) represents an approximated solution rather than an exact

solution, the initial analysis xa
0 is only recovered and propagated in time in order

to obtain an approximation of the optimal trajectory of (7).
Equivalent bases for the range of Ψk can be utilized to formulate the subspace

approximation (10). For instance, the proper orthogonal decomposition (POD)
[TXD08] is widely used to obtain a basis that captures most of the variance of
the snapshot (9). Consider the matrix of snapshots deviations

δXs =
1√
N

[
Ψ0

T ,Ψ1
T , . . . ,ΨM

T
]T ∈ R(n·(M+1))×N ,

and its singular value decomposition (SVD) δXs = U · Σ · V ∈ R(n·(M+1))×N ,
where U ∈ R(n·(M+1))×(n·(M+1)) and V ∈ RN×N are the right and left singular
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vectors, respectively, and Σ = diag{σ1, σ2, . . . , σN} ∈ R(n·(M+1))×N is a diago-
nal matrix whose diagonal entries are the singular values with σ1 ≥ σ2 ≥ . . . ≥
σN . Since δXsT · δXs = V · Σ2 · VT ∈ RN×N , the POD basis vectors can be
computed as Φk = Ψk · V · Σ−1/2 ∈ Rn×N and therefore, equivalent to (12), xk

can be expressed as follows:

xk = xk +
r∑

i=1

βi ·
(

Ψk · vi√
σi

)
= xk + Φr

k · β , (16)

where we have chosen the columns of Σ to be orthonormal, Φr
k holds the first

r basis vectors, β = [β1, β2, . . . , βr]
T ∈ Rr×1 is the vector of weights to be

determined, and r can be computed as follows

r = arg min
p

{
p, I(p) :

∑p
i=1 σi∑N
i=1 σi

> γ : γ ∈ (0, 1)

}
. (17)

Note that, the parameter γ provides how much variance we want to retain
in the POD bases. POD bases reduce the Eq. (11) to

J POD
ens (β) =

1
2

· N · ‖β‖2 +
1
2

·
M∑

k=0

‖dk − Zk · β‖2R−1
k

, (18)

whose first and second derivatives are

∇βJ POD
ens (β) =

[
N · Ir×r +

M∑

k=0

ZT
k · R−1

k · Zk

]
· β

−
M∑

k=0

ZT
k · R−1

k · dk ∈ Rr×1 , (19a)

∇2
β,βJ POD

ens (β) = N · Ir×r +
M∑

k=0

ZT
k · R−1

k · Zk ∈ Rr×r , (19b)

where Zk = Hk · Φk and Ir×r is the identity matrix of dimension r × r. Thus,
an equivalent problem to (12) is

β∗ = arg min
β

J POD
ens (β) ∈ Rr×1 , (20)

whose solution reads:

β∗ = ∇2
β,βJ POD

ens (β)−1 ·
[

M∑

k=0

Z(k)T · R−1
k · dk

]
. (21)

The optimal solution of the POD-4D-EnKF provides an approximation of the
analysis (8). The process can be continued in an iterative fashion in order to
improve the analysis; the solution of one iteration becomes the new background
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state for the next iteration. The idea of using a sequence of minimizations of
the surrogates (11) or (18) in order to approach the minimum of (7) has been
explored in the derivative-free optimization literature [CSV09]. For instance,
the Iterative Subspace Minimization (ISM) method makes use of this strategy
[GLS13].

The Trust Region (TR) framework can be employed in order to exploit the
information brought by the derivatives of the ensemble cost functions (11) and
(18) and to provide descent directions. One of the most attractive features of TR
methods is that they are provably globally convergent under general assumptions
[CGT00a,CGT00b,CGT00c]. This work develops a TR-based approach which
performs a sequence of optimizations in ensemble spaces. The ensemble based
partial solutions are linked to the full space solutions at each iteration. The
background error statistics of the estimates obtained at each iteration are linked
to the TR radius size and the spread of the underlying ensemble. The new
method enjoys all these properties and is presented in the next section.

3 The TR-4D-EnKF Method

In this section we develop a Trust Region 4D-EnKF (TR-4D-EnKF) approach
to data assimilation. The method uses two nested loops. Outer iterations are
related to forming and running an ensemble of full-size models and generating
a basis. Inner iterations are related to computing search directions in the low
dimensional space and minimizing the reduced cost function (7). For simplicity
of notation we avoid the use of indices that denote outer iteration numbers and
refer to the current and next iterations only.

The initial solution in the model space is given by the initial approximation
of the background x[current]

0 = xb
0 , from which the initial ensemble (3) is built.

We initialize the vector of weights to α = 0N .
In order to solve the numerical optimization problem (8) we build a quadratic

model for the cost function (7) optimization process. The standard approach
makes use of the full space gradient, and possibly Hessian, of (7). We seek to
avoid the implementation of a full adjoint model to compute exact derivatives.
The idea is to approximate the derivatives of J (x) by the ensemble space deriv-
atives (14a) and Hessian (14b). The resulting quadratic model is:

Q(sα) = Jens(α) + sα
T∇αJens(α) +

1
2
sα

T∇2
α,αJens(α)sα . (22)

The optimal step sα
∗ in the ensemble space is given by the solution of the

constrained optimization sub-problem

sα
∗ = arg min

sα

Q(sα) , (23a)

subject to ‖Ψ0 · (α + sα) ‖ ≤ Δ. (23b)

The trust region constraint (23b) is formulated such as to use the trust region
radius Δ from the full model space.
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The solution of (23a) and (23b) provide the following trial point in the ensem-
ble space αtrial = α+ sα

∗ which corresponds to the following state in the model
space

xtrial
0 = xcurrent

0 + Ψ0 ·
αtrial

︷ ︸︸ ︷
(α + sα

∗)︸ ︷︷ ︸
δx∗

. (24)

Then, M + 1 snapshots of the full model solution started from xtrial
0 (24) are

stored. The following ratio is computed:

ρ =
J (xcurrent) − J (xtrial

)

Q (0N ) − Q (sα
∗)

=
J (xcurrent) − J (xtrial

)

Jens (α) − Jens (αtrial)
. (25)

Based on the ρ value, the next updates are made for the solution

(
xcurrent ,α

)
:=

{
(xcurrent ,α) for ρ ≤ η,(
xtrial ,αtrial

)
otherwise,

(26)

and for the TR radius size

Δ :=

⎧
⎪⎨

⎪⎩

Δ · γdec for ρ < θ1,

Δ for θ1 ≤ ρ < θ2or ρ > 1,

min (Δ · γinc, Δmax) for θ2 ≤ ρ ≤ 1.

(27)

The new solutions in the model and ensemble space are utilized and a new
optimization problem in (23a) is solved. This process is repeated until a max-
imum number of inner iterations is reached or a full step is taken. Next, the
current solution becomes the new background xb

0 := xcurrent
0 , a new ensemble of

full model solutions is generated, snapshots are taken, a new set of basis vectors
is built, and the overall process is repeated.

The uncertainty associated with the new background is changed after the
inner iterations since a partial assimilation of observations has been carried out.
As an analogy, in the EnKF the spread of the ensemble members around the
background is decreased after the analysis step. Consequently, before generating
a new ensemble, we want to adjust the spread of the background errors. This is
done according to the heuristic formula

B0 := λB(Δ) · B0 , (28)

where λB (Δ) is a function of the current TR radius size. Note that the TR radius
is large when the decrease of the current (quadratic) model is a good predictor
of the full model function decrease. In our context, if the dynamics of the full
(nonlinear) model is well represented by the ensemble, the prediction done using
the quadratic model Q(sα) is close to the actual reduction of the cost function
J (x) and the TR radius is increased. In this case, we want the λB (Δ) value to
be small in order to decrease the uncertainty of the new ensemble around xb

0 .
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Vice-versa, a small TR radius indicates that the current set of basis vectors does
not represent well the dynamics of the model. The current assimilation step is
not expected to decrease uncertainty; to keep the same uncertainty level for the
next ensemble generation we need λB (Δ) ≈ 1. Both cases are captured by the
following heuristic function

λB (Δ) =
Δmax

Δmax + Δ
, (29)

which provides an inverse relation between the TR radius and the spread of the
ensemble members. Other functions can be considered as well.

Now we are ready to test our implementation and compare it with other
4D-EnKF implementations discussed in Sect. 2.

4 Numerical Experiments

In this section we study the accuracy and performance of the TR-4D-EnKF
approach. The proposed implementation is compared with the 4D-EnKF imple-
mentations discussed in Sect. 2 (POD, SVD and ISM), using the Lorenz-96 model
[CSV13]:

dxi

dt
=

⎧
⎪⎨

⎪⎩

(x2 − xn) · xn − x1 + ϕ for i = 1 ,

(xi+1 − xi−2) · xi−1 − xi + ϕ for 2 ≤ i ≤ n − 1,

(x1 − xn−2) · xn−1 − xn + ϕ for i = n,

(30)

All the methods are coded in MATLAB. The metrics used in the tests are the
CPU time (which is reported per iteration), the cost function value (7), and the
root mean square error. The experimental setting is described below.

– One time unit of the Lorenz-96 model corresponds to 1.5 days of the
atmosphere.

– Snapshots are taken every 1.5 days over 150 days.
– The true (reference) initial solution xtrue

0 is computed numerically.
– Errors in the initial background follow the distribution N (0, 0.05 · I), where

I ∈ Rn×n is the identity matrix in the model space.
– The number of ensemble members is equal to N = 40.
– Three model resolutions n are considered: small (n = 103), medium (n = 104),

and large (n = 105). In all the cases, the full model space is observed.
– Observations are taken every day over 100 days (100 time units) At each

observation time, the error on the measurements is 1 %.
– The number of outer loops for the ISM and TR-4D-EnKF is equal to 100.
– The initial parameters for the TR-4D-EnKF are γinc = 1.01, γdec = 0.99,

Δmax = 20, Δ0 = 0.1, η = 0.1, θ1 = 0.25 and θ2 = 0.75.

Table 1 the accuracy and the computational effort for several 4D-EnKF
implementations applied to the Lorenz-96 model are shown in. All data assimila-
tion methods provide improvements over the background case. POD-4D-EnKF
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Table 1. Cost function values, RMSE, and CPU times for different 4D-EnKF imple-
mentations applied to the Lorenz-96 model. After 100 of outer iterations, the proposed
TR implementation provides the most accurate results within a reasonable computa-
tional time per iteration.

n 4D-EnKF method J (x) RMSE CPU time/iter.

103 Background 2.2250 × 107 6.6623 N/A

POD 4.2737 × 106 2.9072 21.97 s

ISM 2.7937 × 105 0.6782 15.83 s

TR 6.6009 × 104 0.1860 16.33 s

104 Background 1.8497 × 108 19.2080 N/A

POD 5.4845 × 107 10.4290 29.17 s

ISM 1.3560 × 107 5.1129 22.20 s

TR 1.5994 × 106 1.4928 32.48 s

105 Background 1.7709 × 109 59.4288 N/A

POD 3.3592 × 108 25.7407 127.74 s

ISM 1.4964 × 108 17.0213 133.46 s

TR 3.5433 × 107 7.8282 206.46 s
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Fig. 1. Snapshots of the 4D-EnKF implementations POD, SVD, ISM, and TR for the
model resolution n = 105. The x50 and x10 components are plot for each method (- -)
and the true solution (–).
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performs a single outer iteration and its analysis improves the RMSE over the
background by ∼56%. The ISM method takes a more complex approach and
adjusts the set of POD-basis vectors at each outer iteration. On average the
ISM analyses after 100 of iterations improve the RMSE by ∼80% over the back-
ground. The TR-4D-EnKF implementation provides a more accurate solution
with the same number of outer iterations. On average, the proposed implemen-
tation improves the RMSE over the background trajectory by 92%. The TR-
4D-EnKF analysis provides the best fit to the reference solution as can been
in Fig. 1 for n = 105. The TR-4D-EnKF compute solutions within a reasonable
computational time; it is about as expensive as ISM for the small case and about
50 % more expensive than ISM for the largest case. This is acceptable in view of
the higher accuracy allowed by the method.

5 Conclusions

This paper develops TR-4D-EnKF, an ensemble-based 4D-Var data assimila-
tion method based on the trust region framework. The proposed implementation
projects the model space onto the space spanned by the deviations of the ensem-
ble members from the mean, as is typically done in 4D-EnKF implementations.
Small optimization problems are solved in the ensemble space. At each outer
iteration a new ensemble-based surrogate model of the 4D-Var cost function is
constructed, and the convergence is controlled by the trust region method. The
trust region radius connects the optimal solution found in the ensemble space
with the corresponding solution in the full model space. Moreover, the evolution
of error statistics throughout iterations are captured by an empirical relation
that uses the changes in trust region radius as a proxy for uncertainty decrease.
Experimental results shows that the proposed implementation provides more
accurate results than some of the best 4D-EnKF implementations available in
the literature within a reasonable computational effort.
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Abstract. Nonlinear data assimilation is high on the agenda in all fields
of the geosciences as with ever increasing model resolution and inclusion
of more physical (biological etc.) processes, and more complex observa-
tion operators the data-assimilation problem becomes more and more
nonlinear. The suitability of particle filters to solve the nonlinear data
assimilation problem in high-dimensional geophysical problems will be
discussed. Several existing and new schemes will be presented and it is
shown that at least one of them, the Equivalent-Weights Particle Filter,
does indeed beat the curse of dimensionality and provides a way forward
to solve the problem of nonlinear data assimilation in high-dimensional
systems.

1 Introduction

There is a growing need for nonlinear data-assimilation methods for high dimen-
sional systems. This is evidenced by the inclusion of more and more nonlinear
processes in the systems at hand. Also more and more indirect observations are
being utilised, leading quite often to highly nonlinear relations between model
space and observation space.

Several nonlinear data-assimilation methods based on Metropolis-Hastings
have been generated, including Langevin-sampling, Hybrid Monte-Carlo, and
more efficient extensions, but all have in common that they are extremely inef-
ficient: one first has to generate large numbers of samples to converge to the
correct posterior probability density function (pdf), and then several samples
have to be generated for each independent sample of the posterior. The for-
mer problem can be eliminated by using techniques from inverse modelling, like
the commonly used variational schemes, e.g. 4Dvar, but the latter remains an
unresolved issue.

Particle filters are another branch of nonlinear data assimilation methods, but
have long been though of as very inefficient too because of the so-called curse
of dimensionality, in which it is claimed that the number of particles needed to
generate a few samples from the high-probability areas of the posterior grows
exponentially with the dimension of the state vector (Snyder et al. 2008; Van
Leeuwen 2009). This is due to the highly peaked likelihood in high-dimensions,
leading to particle weights varying widely, with a few particles having much

c© Springer International Publishing Switzerland 2015
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higher weight than all the others. Even the so-called ’optimal proposal density’
particle filters suffer from this problem. It should be noticed that it is not the
dimension of the state space that is the problem, but the dimension of the
observation space. The higher this last dimension, the more peeked the likelihood
is, and the more unlikely it is for the majority of particles to end up close to all
of them (see Ades and Van Leeuwen 2013).

However, it has recently been shown that this problem can easily be avoided
by construction by leading the particles towards the observations and at the
same time forcing them into position in state space such that they have weights
very close to each other (Van Leeuwen 2009; 2010, Ades and Van Leeuwen 2013;
2015a; 2015b).

In this short paper we will discuss several existing and new particle filter
variants and discuss their relative merits and problems. A very simple numerical
example will be used to show that at least one particle filter exists that does beat
the curse of dimensionality, the so-called Equivalent-Weights Particle Filter. The
paper is closed with a summary and discussion of possible future directions in
nonlinear filtering.

2 The Standard Particle Filter

Starting from Bayes Theorem:

p(x|y) =
p(y|x)
p(y)

p(x) (1)

in which x ∈ �d is the state vector and y ∈ �M is the observation vector, we
introduce a representation of the prior p(x) as a sum of particles:

p(x) =
1
N

N∑

i=1

δ(x − xi) (2)

to find for the posterior:

p(x|y) =
N∑

i=1

wiδ(x − xi) (3)

in which we introduced the likelihood weights

wi =
1
N

p(y|xi)∑N
j=1 p(y|xj)

(4)

To derive this we used the expansion

p(y) =
∫

p(y|x)p(x) dx (5)
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These weights measure how close each particle is to all observations. The issue
in high-dimensional systems, or rather high-dimensional observation spaces, is
that independent observations lead to very highly peaked likelihoods. A simple
example will illustrate this nicely. Suppose we have two particles, and both
are very close to all observations. We assume that the observation errors are
independent Gaussian distributed and that the first particle is 0.1 standard
deviations away from all observations, and the other particle is 0.2 standard
deviations from all observations. This is of course highly artificial, but it will
illustrate the point. The weight of particle one will be

w1 ∝ exp
[
−1

2
(y − H(x1))R−1(y − H(x1))

]
= exp(−0.005M) (6)

in which M is the number of independent observations, and we explored the
independence of the observations. Similarly, the weight of particle two will be

w2 ∝ exp
[
−1

2
(y − H(x2))R−1(y − H(x2))

]
= exp(−0.02M) (7)

The ratio of these two weights is

w2

w1
= exp(−0.015M) (8)

Assuming the number of independent observations to be 1000, a moderate num-
ber for the geosciences, we find that this ratio is about 10−7! Hence we see that
even though the two particles are both doing extremely well, the likelihood is so
strongly peaked that one particle has negligible weight compared to the other.
Clearly something is needed to save the particle filter, and that is the so-called
proposal density. This is explained in detail in e.g. Doucet et al. (2001), see
also Van Leeuwen (2009) and will not be repeated here. The basic idea is that
instead of drawing samples directly from the prior p(x), we draw the samples
from another density q(x|y) where we explicitly include a dependence on the
observations. We can always do this as long as we adapt the weights, as follows:

p(x|y) =
p(y|x)
p(y)

p(x) =
p(y|x)
p(y)

p(x)
q(x|y)

q(x|y) (9)

Using a particle representation for q(x|y), so drawing particles from q instead of
from the prior, we find:

p(x|y) =
N∑

i=1

p(y|xi)
Np(y)

p(xi)
q(xi|y)

δ(x − xi) =
N∑

i=1

wiδ(x − xi) (10)

in which the weights now become:

wi =
p(y|xi)

N
∑

j p(y|xj)
p(xi)

q(xi|y)
(11)
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These weights consist of a likelihood part, as before, and a part related to the use
of the proposal density. The usefulness of the proposal is that we can choose q
such that the particles are closer to the observations, so that the likelihood part
of the weights are more equal, while at the same time ensuring that p/q does
not spoil this gain in efficiency. The different particle filter variants differ in the
proposal density used. In the following we will discuss a few recent developments
in generating efficient proposal densities.

3 The Implicit Particle Filter

The implicit particle filter was introduced by Chorin and Tu (2009) and has been
further detailed in Chorin et al. (2010). It works as follows. Define a function
F (x) as minus the logarithm of the posterior pdf:

F (x) = − log(p(x|y, xm
i )) (12)

in which x can be either a state vector at a certain time, or an evolution of the
system over a time window x = (x1, . . . , xn)T . xm

i is the starting point of the
particle i at the start of the time window starting at time m, and m can be equal
to n − 1. Define the minimum of F (x) as

φF = min(F (x)) (13)

The basic idea in the implicit particle filter is to draw samples from a pdf g(ξ)
from which it is easy to draw, e.g. a multivariate Gaussian. Define G(ξ) as

p(ξ) ∝ exp(−G(ξ)) (14)

and denote
φG = min(G(ξ)) (15)

The relation between the samples ξi and the samples of the posterior pdf xi is
defined by the solution of

Fi(x) − φFi
= G(ξi) − φGi

(16)

where we emphasise that φF and φG can depend on the particle index i.
The weight of the particle i using proposal density g(ξ) is given by:

wi =
p(xi|y)
q(xi|y)

=
p(xi|y)
g(ξi|y)

|J(ξi)| (17)

in which

J(ξ) = det
(

∂x

∂ξ

)
(18)

Using the expression for the posterior and the relation between x and ξ we find
for the weights:

wi =
p(xi|y)

q(xi|y)
∝ exp(−Fi(x)))

exp(−Fi(x) + φFi − φGi)
|J(ξi)| = exp(−φFi + φGi) |J(ξi)| (19)
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Several proposal densities have been explored in the literature. Here we focus
on the so-called random map method (Morzfelt et al. 2012) which takes ξ to be
Gaussian distributed N(0, I), so φG = 0, and writing

xi = argmin(Fi(x)) + λ(ξi)ξi (20)

in which λ(xi) a scalar function of ξi. In case Fi(x) is quadratic in x λ is scalar
constant and the Jacobian |J(ξ)| is constant over the particles, so can be dropped,
leading to:

wi = exp(−φFi
) (21)

This is typically the case when observations and model errors are Gaussian
distributed and H is linear for a filter, and for a smoother with the additional
constraint that the model is linear.

To summarise the procedure is, for each particle:

(1) Calculate argmin(Fi(x)) (not necessary, but typically done for efficiency)
(2) Draw ξi from g(ξ)
(3) Solve for the corresponding xi, from Fi(x) − φFi

= G(ξi) − φGi

(4) Evaluate the weight wi.

In can be shown that this method is very similar to the so-called optimal
proposal density when observations are present every time step (see e.g. Ades
and Van Leeuwen 2013). Assuming Gaussian observation errors and a linear
observation operator H(x) it is easy to show that the weights are equal to:

wi ∝ exp
[
−1

2
(yn − Hf(xn−1

i ))T (HQHT + R)T (yn − Hf(xn−1
i ))

]
(22)

in which n is the time index. Ades and Van Leeuwen (2013) show that these
minus the logarithm of these weights are non-central χ2 distributed with variance
proportional to the number of independent observations M . Hence, for high-
dimensional observation systems the implicit particle filter is expected to be
degenerate, which is confirmed by our experiments presented later.

Another potential issue is that the Jacobian |J(ξ)| has to be nonzero, which
means that Fi(x) has to be unimodal, at last close to the position of the state
that produces the maximum weight for each particle.

4 The Equivalent-Weights Particle Filter

The Equivalent-Weights Particle filter introduced in Van Leeuwen (2010) and
investigated in detail in Ades and Van Leeuwen (2013; 2015a; 2015b) works as
follows.

First, we calculate the state for which Fi(x) is minimal, in which Fi(x) is
defined as before as:

Fi(x) = − log(p(x|y, xm
i ) (23)



256 P.J. van Leeuwen

in which xm
i is the starting point of the particle i at the start of the time window

starting at time m, and m can be equal to n − 1.
After we have done this for each particle we rank the particles in acceding

order of min(Fi(x)). We choose the number of particles we’d like to keep in the
ensemble, let’s say 80%. We then set a target weight as the value of wtarget =
exp[−min(Fi(x))] for that particle that ranks as the 80% particle in the ranking.
For instance, if we have 100 particles we rank them and set the target weight as
the value of exp[−min(Fi(x))] for the 80th particle in the ranking.

The next step is to solve for each particle xi for which its weight
exp[−min(Fi(x)) is larger than the target weight (or min(Fi(x)) is smaller than
− log(wtarget)) as:

Fi(x) = − log(wtarget) (24)

This is the case for 80% of the particles by this construction. The other 20% of
the particles cannot reach this target weight: no matter how we move them in
state space their weight will be smaller than the target weight. These particles
will come back via a resampling step later.

Then we add to each particle a small random perturbation and recalculate
the weight for each particle. Since the perturbation is small the weights will not
change much, meaning that 80% of the particles will all have very similar, or
equivalent, weights. For details see Ades and Van Leeuwen (2015a).

Finally a resampling step is performed in which N particles are drawn from
the weighted ensemble of 80% of the particles. This is the whole scheme, which
can be summarised as:

(1) Calculate argmin(Fi(x))
(2) Determine wtarget

(3) Solve for x∗
i from Fi(x) = − log(wtarget)

(4) Draw ηi from mixture density with small amplitude and write xi = x∗
i + ηi.

(5) Evaluate final weight.

This scheme is not degenerate by construction, as has been shown in e.g.
Ades and Van Leeuwen (2015a) who used this scheme in a 65,000 dimensional
barotropic vorticity model.

5 Another Non-degenerate Scheme

Using the scheme above we can easily derive new variants of the EWPF that are
not degenerate by construction. We present one example here. The comparison
of the two methods discussed above shows that the number of calculations is
identical. The implicit particle filter (IPF) first draws the random vector ξ before
solving an equation for xi, while the EWPF first solves for x∗ and than adds η.
The advantage of the IPF is that the draw is simply done for a Gaussian, but
the disadvantage is that the weights are degenerate.

Would it be possible in the EWPF to draw η from a Gaussian before solving
for x∗ (= xn

i in that case)? This would mean to replace the procedure above
with:
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(1) Calculate argmin(Fi(x))
(2) Determine wtarget

(3) Draw ξi from g(ξ) ∝ exp(−G(ξ))
(4) Solve for x∗

i from Fi(x) = − log(wtarget) + G(ξi)
(5) Evaluate weight.

(Note that step 4 is easily done with the existing software for the Equivalent-
Weights Particle Filter by simply replacing − log(wtarget) with − log(wtarget) +
G(ξi).) The weights will become:

wi =
p(xi|y)
q(xi|y)

∝ exp(−Fi(xi)))
exp(−G(ξi))

|J(ξi)| (25)

=
exp(−Fi(xi)))

exp(−Fi(xi) + log(wtarget))
|J(ξi)|

= exp(−wtarget) |J(ξi)|

If Fi(x) is a quadratic function of xi, as we usually assume via Gaussian errors
in observations, H linear, and Gaussian model errors, the Jacobian is constant
and drops out, and the weights are all equal again!

Finally, the difference between this scheme and the IPF is that we have a
small extra step to calculate wtarget that ensures that all φFi

are equal to avoid
degeneracy.

This is one of the ways to avoid degeneracy in particle filtering, and no doubt
many more will be developed over the coming years.

6 A Simple Numerical Example

To test the ideas the standard particle filter, Equivalent-Weights Particle Filter
and the Implicit Particle Filter are comparer on a simple model given by:

x1 = x0 + η (26)

The distribution of x0 is taken as independent Gaussian for simplicity. The state
vector is d-dimensional and we will investigate the performance of the filters
when d increases. Finally, the model errors are also independent Gaussian. The
state x1 is observed as

y = x1 + ε (27)

in which the observation errors are also taken independent and Gaussian.
While this system is completely Gaussian, so linear, so the traditional linear

data-assimilation methods can be used, we will explore the particle filter perfor-
mance here. The idea is that if the particle filters fail in this simple linear case
it is unlikely they will perform better in a nonlinear setting.
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Several experiments were performed with different values for initial, model,
and observational errors. Here we report on the following experimental settings,
mentioning that other settings give similar results: the initial mean is 0 for each
variable, the initial variance is 1 for each variable, the model variance is 0.01,
and the observation error variance is 0.16. The number of ensemble members
or particles is 10 in all experiments. We set the number of particles kept in the
equivalent-weights procedure equal to 80%.

Fig. 1. Effective ensemble size for SIR (blue), EWPF (red), and IPF (green) as function
of the power of the state dimension, so 100 to 104 (Color figure online).

Figure 1 shows the effective ensemble size, defined as

Neft =
1∑
w2

i

(28)

for the standard particle filter with proposal density equal to the prior, the
Equivalent-Weights Particle Filter (EWPF) and the Implicit Particle Filter
(IPF), which is equal to a particle filter using the so-called Optimal Proposal
density. The results shown are averages over 1000 experiments. We can clearly
see that apart from a state dimension of 1, all filters are degenerate, except for
the EWPF, in which we find constant effective ensemble sizes of 8 out of 10,
identical to the percentage of particles kept in the equivalent-weights procedure.

Figure 2 shows the root-mean-square error (RMSE) of the ensemble mean
from the truth for each method, averaged over state space. The results shown
are again averages over 1000 experiments. One would expect that the RMSE is
slightly smaller that the observation error, which is 0.4 in this case. Only the
EWPF is able to do this, all other methods fail and return a RMSE close to that
of the prior. This is consistent with the effective ensemble size results above.
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Fig. 2. State-space averaged root-mean-square error of ensemble mean for SIR (blue),
EWPF (red), and IPF (green) as function of the power of the state dimension, so 100

to 104 (Color figure online).

One might wonder why the IPF does not do much better than the stan-
dard particle filter. The reason is simply More realistic high-dimensional that
the members are moved to better positions but the filter is degenerate, so the
mean only consist of the best particle, which does depend on the initial particle
position, so the RMSE will converge to that of the prior. Note that, for this
specific case in which the prior at time zero is a Gaussian one could take the
drawing from that Gaussian into the sampling via the proposal q, in which case
all samples would have equal weight as this system is linear. In that case the IPF
reduces to the Ensemble Kalman Smoother (Evensen and Van Leeuwen 2000).
The point here is that, in general, the prior at time zero is non-Gaussian as it
arises from a sequential application of the algorithm so the starting point at time
zero is a number of particles with unknown distribution.

7 More Realistic High-Dimensional Applications

We have applied the EWPF to several high-dimensional problems. Ades and
Van Leeuwen (2015a) applied the method to a 65,000 dimensional barotropic
vorticity model and found that the particle filter is indeed not degenerate, and
quite robust. For instance, Fig. 3 shows how the histogram from 32 particles
captures the main features of the histogram generated using 512 particles.

In this experiment only half of the state was observed, and of the observed
part only every other point. The pdfs shown in Fig. 3 are for a point in the
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Fig. 3. Marginal posterior pdf of an unobserved point using 32 and 512 particles. The
green cross denotes the truth value for the vorticity at this point. Note the similarity
between the main features of the pdf (Color figure online).

Fig. 4. Rank histogram showing how the truth ranks in the ensemble. For a proper
ensemble the rank histogram should be flat. This is indeed the case for the atmospheric
surface pressure and the oceanic and atmospheric surface meridional velocity fields,
but the ocean temperature in the first ocean layer shows signs of an under-dispersive
ensemble.

middle of the unobserved half, where nonlinearities can grow and non-Gaussian
pdfs are common.

Finally we show first results from an application of the EWPF to the climate
model HadCM3, with about 2 million state variables. In this experiment only the
Sea-Surface Temperature (SST) was observed every day. The initial results are
encouraging, although not all problems have been solved. Figure 4 shows rank
histograms of atmospheric surface pressure, the oceanic and atmospheric velocity
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fields, and the ocean temperature in the first layer (which is different from the
SST). Is shows that for several of the model variables the rank histograms are
flat, indicating a proper ensemble, for others the rank histograms are U-shaped,
indicating an under-dispersive ensemble. Ideally all marginal histograms would
be flat, but it will be clear that this is hard to achieve in general. The main point
here is, however, that, again, the EWPF is not degenerate and can be fine-tuned
further.

8 Conclusions

High-dimensional spaces poses a few counter intuitive features. One of those
directly related to nonlinear filtering in these spaces is that the likelihood is
extremely narrow when the number of independent observations is large. A sim-
ple example with only 1000 independent observations showed catastrophic filter
collapse when the proposal density is taken equal to the prior. New develop-
ments like the implicit particle filter try to avoid that problem by exploring the
so-called optimal proposal density. It has been shown theoretically that this fil-
ter and its variants also suffer from ensemble collapse in Ades and Van Leeuwen
(2013), and that finding is confirmed in an very simple experiment in this paper.
The only particle filter that is insensitive to the dimension of the state or, rather,
of the observation space is the Equivalent-Weights Particle Filter, which avoids
ensemble collapse by construction. The simple experiment has confirmed this,
as have more realistic systems, such as the barotropic vorticity equation model
and the climate model HadCM3.

We have also shown that it is easy to combine the EWPF scheme with
other schemes like the IPF and formulate other non-degenerate schemes. One
undesirable feature of the EWPF is that one has to set the percentage of particles
kept in the equivalent weight step, and the results do depend on this (see e.g.
Ades and Van Leeuwen 2013). Ideally one would get rid of this step and manages
to find non-degenerate particles without resampling. There is room for good ideas
to explore these methods further.
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Abstract. We apply the recently proposed hybrid particle-ensemble
Kalman filter to assimilate Lagrangian data into a non-linear, high-
dimensional quasi-geostrophic ocean model. Effectively the hybrid fil-
ter applies a particle filter to the highly nonlinear, low-dimensional
Lagrangian instrument variables while applying an ensemble Kalman
type update to the high-dimensional Eulerian flow field. We present some
initial results from this hybrid filter and compare those to results from
a standard ensemble Kalman filter and an ensemble run without assim-
ilation.

1 Introduction

Monitoring the behavior of oceans relies heavily on Lagrangian instruments –
drifters, gliders, and floats – because they not only provide the most effective
source of subsurface information, but also provide vast spatio-temporal coverage
both on- and sub-surface. Drifters and floats are passive instruments and thus
their trajectories are purely Lagrangian. Data from drifters1 comes in the form
of a time series of locations sampled from these trajectories. Drifters’ Lagrangian
paths can exhibit very nonlinear behavior even if the dynamics governing the
underlying flow are linear [1]. Furthermore, realistic ocean models are high-
dimensional and this poses a great challenge to nonlinear filters [19]. Recently the
authors developed a hybrid particle-ensemble Kalman filter designed to assimi-
late nonlinear Lagrangian data into (potentially) high-dimensional Eulerian flow
models [18]. In this paper, we describe the first application of this hybrid filter
to a high-dimensional flow field.

Much progress has been made over the last dozen years in assimilating
Lagrangian data into ocean models. There are two prevailing approaches: con-
verting the path data into local velocity data [9,10], or appending the dynamics
of drifter advection to the state and assimilating trajectory data directly [6,8].
The latter approach is typically referred to as the augmented state space approach
1 We will use the term drifter going forward to refer to any Lagrangian instrument.
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to Lagrangian data assimilation (LaDA) and the hybrid filter we will describe is
designed for this strategy. Both particle filters (PF) and ensemble Kalman filters
(EnKF) have been used for LaDA. Particle filters have successfully assimilated
data from Lagrangian paths which travel near unstable fixed points [20], but
only in a low-dimensional setting. The ensemble Kalman filter has been applied
to a high-dimensional flow setting [16], but has only proved effective with rela-
tively frequent (near linear) observations. A hybrid grid-particle filter designed
for LaDA in [14,15] inspired the strategy we followed by applying different fil-
tering approaches to different parts of the state space.

The hybrid particle-ensemble Kalman filter begins with a relatively small
ensemble of flow members. Each flow member is assigned a large ensemble of
drifters (as opposed to one member per flow in a typical EnKF). This partic-
ular set up is motivated by two reasons: (i) flow evolution is computationally
expensive relative to drifter evolution but the nonlinearities are less prominent
compared with drifter dynamics, and (ii) a cloud of drifters can naturally explore
possible nonlinear paths whereas a single drifter member will only explore a sin-
gle path that may diverge from the true path due to nonlinearity.

An essential step in any particle filtering algorithm is the resampling needed
when the weights of many particles become too small, which happens very fre-
quently in high-dimensional systems – this is the well-known curse of dimen-
sionality. In the hybrid filter when resampling is needed, we apply an ensemble
Kalman type update to the flow variables and a particle filter type update to the
drifter variables. Furthermore, strategies developed for the EnKF, like localiza-
tion, can readily be applied in the hybrid PF-EnKF filter. Details of the hybrid
filter will be described in the next section. Then we will present an application of
the hybrid filter to the quasi-geostrophic model and follow it with a discussion.

2 Hybrid Filter

In this section, we will give an overview of the hybrid filter. Since the main focus
of this work is on application of this filter to a nonlinear high-dimensional quasi-
geostrophic model, we refer the reader to [18] where we introduced and discussed
it in much greater detail. We will also outline some refinements to the approach
that we foresee as being needed to make it sufficiently robust for operational
applications.

We begin by combining the drifter location (Lagrangian components) xD

and flow field (typically the solution of a PDE defined over a grid – Eulerian
components) xF by writing the whole state as x = [xF ,xD]T . The evolution of
the state is then described by

dxF

dt
= fE(xF ) ,

dxD

dt
= fL(xF ,xD) , (1)

with fL and fE being the forward time operators in the models describing the
Lagrangian and Eulerian components, respectively. We will assimilate observa-
tions of the drifter position, so taking observation noise to be Gaussian, we write
the observation y at time t as
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y = Hx(t) + ε = xD(t) + ε, ε ∼ N (0,R) (2)

where H = [0 I] is the observation operator and R is the noise covariance.
At any given time, the filtering distribution is described by a set of states

and weights {xF,f
i ,xD,f

i,j , wf
i,j}j=1,...,M

i=1,...,Ne
where Ne is the number of flow ensemble

members and M is the number of drifter members for each flow member yielding
a total number of M·Ne particles. A pictorial representation of this decomposition
is given in Fig. 1. A description of just the flow distribution can be obtained by
marginalizing over the drifter variables. That is, we define w̃f

i =
∑

j wf
i,j and

we have flow the distribution represented by a weighted ensemble, {xF,f
i , w̃f

i }.
The superscript f refers to states/weights from the forecast/prior distribution
(likewise the superscript a will represent analysis/posterior).

Fig. 1. Above is a visualization of the partition of ensemble members. In this example,
there are four flow members and each flow member has seven drifter members. The
size of each dot represents the relative weight of that particle.

To begin the process, samples are chosen empirically from the initial prior
distribution and weights are set to wf

i,j = 1/(MNe). In the case that the effective
sample size Neff of the ensemble, approximated by Neff =

∑
i,j 1/w2

i,j , remains
above a user-defined threshold, Neff > N thresh

eff , our filter proceeds similar in
fashion to a Rao-Blackwellized PF [5]. That is, all states evolve forward in time
to the next observation instance according to Eq. 1 and retain their old weights
to form the prior {xF,f

i ,xD,f
i,j , wf

i,j}. Then the observation is compared to each
particle under the likelihood p(y|x) to update the weights as

wa
i,j =

p(y|xD,f
i,j )wf

i,j∑
i,j p(y|xD,f

i,j )wf
i,j

. (3)

Next we set xa = xf , yielding a drifter analysis/posterior distribution
{xD,a

i,j , wa
i,j}, and after marginalizing, a flow analysis/posterior {xF,a

i , w̃a
i }.
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The states in the analysis are then pushed forward to the next observation
instance and the process just described is repeated.

At an observation instance where Neff falls beneath N thresh
eff , we proceed with

an update/resampling step and this is where our algorithm differs from a typi-
cal PF – it treats the drifter and flow ensemble updates separately. The drifter
variables are updated/resampled by using the current observation to update the
weights to wa

i,j . Then drifter states are resampled via a bootstrap and noise
consistent with the observation covariance is added to spread out the samples.
The current observation is used in a different manner to update the flow ensem-
ble. First, we take the weighted flow prior (recall the state has been evolved to
the current time, but each particle retains its prior weight) {xF,f

j , w̃f
j }. At this

point we apply a perturbed-observation EnKF update on the flow variables. To
describe this, we let AF,f be an NF ×Ne matrix (where NF is the number of flow
variables) with the ith column comprised of xF,f

i . We also let ÃD,f be a 2 × Ne

matrix comprised of averaged drifter states x̄D,f
i corresponding to the respective

xF,f
i flow member, e.g. from the “averaged” distribution {xF,f

i , x̄D,f
i , w̃i}. We

use this to calculate the sample covariance matrix P which for LaDA is typically
decomposed as

P =
[
PFF PFD

PT
FD PDD

]
. (4)

Now the flow variables are updated by

AF,a = AF,f + Pf
FD(Pf

DD + R)−1(Y − ÃD,f ) (5)

where Y is a 2 × Ne matrix of perturbed observations. (Note that details of
obtaining perturbed observations for weighted samples can be found in [18].)
Then we have weighted posterior flow members {xF,a

i , w̃f
i } and we resample

these with a Metropolis-Hastings implementation of a bootstrapping algorithm
and set w̃a

i = 1/Ne. Now we have {xF,a
i ,xD,a

i,j , 1/(MNe)} and the algorithm
moves forward employing either a PF weight update or EnKF resampling step
as needed.

Note that the update/resampling step effectively culls low weight flow ensem-
ble members and retains multiple copies of high weight flow ensemble members.
Also note that these replicate flow members will only remain the same until the
next EnKF update. At that point, each will get a different correction according
to Eq. 5 as each has its own ensemble of drifters and its own perturbed obser-
vation. In Sect. 3.2, we present some encouraging results that this approach is
adequate as a first implementation of the hybrid PF-EnKF to a high dimensional
problem. That said, we suspect this approach underestimates the covariance in
the flow variables. Thus we are currently investigating function space sampling
techniques to perturb the bootstrapped ensemble flow members.

3 Application to a High Dimensional Model

In this section, we will discuss the application of the hybrid filter, introduced
above, to the Lagrangian data assimilation problem in a high dimensional fluid
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flow problem. In particular, we will consider a nonlinear quasi-geostrophic model
(QG) with a constant wind forcing in a rectangular basin over a flat bottom.
The observations are that of a passive Lagrangian drifter in this flow. We per-
form identical twin type numerical experiments with the hybrid PF-EnKF filter,
and also the usual perturbed observation ensemble Kalman filter. We compare
the outcomes of these filters to that of a free run of the QG model without
assimilation of these observations.

3.1 QG Model and Observational Setup

The quasi-geostrophic model we consider describes the dynamics of the changes
in surface height η(x, y, t) of a shallow layer of water over a flat bottom. The time
evolution of η is given by the following equation, [11] for (x, y) ∈ [0, 2L] × [0, L],
with L = 2000 km in our numerical results:

[
∂

∂t
− ∂η

∂y

∂

∂x
+

∂η

∂x

∂

∂y

]
Δη = F (x, y, t) . (6)

Here the right hand side is the wind forcing which we choose to be F (x, y, t) =
α cos(πy/L), Δ is the two-dimensional Laplacian, and we use no-slip boundary
conditions. The velocity components (u, v) and the vorticity ω are given by
following:

u(x, y, t) = −∂η

∂y
, v(x, y, t) =

∂η

∂x
, ω = Δη . (7)

The quasi-geostrophic Eq. (6) can be thought of as the equation for conser-
vation of vorticity in the case when the forcing is absent: F = 0. Thus, instead
of considering the surface height η as the dynamical variable, we can consider
the vorticity ω as the dynamical variable, obtaining the height by inverting the
Laplacian: η = Δ−1ω and then obtaining the velocity using Eq. (7).

We solve the above Eq. (6) using a 3rd order upwind advection scheme along
with a predictor-corrector (Heun) method for time-stepping, with variable step
size that is fixed by using a CFL condition2. The basic parameters of the model
and the forcing are chosen so that the basic flow consists of a classic double
gyre solution of the QG equations, as illustrated in Fig. 2. As we can see, the
Lagrangian trajectories are quite chaotic, a fact that will be of importance later
when discussing the results of the filtering estimates.

The Lagrangian dynamics is given by the following equations for the position
(xd, yd) of the drifter:

dxd

dt
= u(xd, yd, t) = −∂η

∂y
(xd, yd, t) ,

dyd
dt

= v(xd, yd, t) =
∂η

∂x
(xd, yd, t) .

(8)

The observations are that of the position of the drifter (xd, yd). We will use the
augmented state consisting of the flow variables (vorticity ω) and the drifter
2 We use a modified version of the codes due to Guillaume Roullet. [13].
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Fig. 2. The basic double gyre solution used in this work. A few typical Lagrangian
trajectories are shown as well.

position (xd, yd). Thus the observation operator is just a projection onto the
drifter variables.

We use a regular rectangular grid for solving Eq. (6), with grid spacing of
δ = 40 km in both x- and y-directions, whereas the basin size is set to be 4000×
2000 km. Thus numerically, the dimension of the flow state space xF is 5000
but since we assimilate data from only a single drifter trajectory, the drifter
state space xD is two-dimensional. In the next section, we now describe the
comparative results of the hybrid and ensemble Kalman filters with free run of
the above model.

3.2 Numerical Results

The identical twin experiments we perform consist of the following setup. We first
choose a “random” initial condition for the vorticity field and the drifter location
and generate a solution of the QG equations along with a drifter trajectory. We
call this the “truth” or the “true trajectory.”

For assimilation, we generate an ensemble of vorticity fields along with an
ensemble of drifter initial conditions by choosing states of the system at various
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times in its evolution. This is done mainly to ensure that each of the ensemble
members has a smooth vorticity field, which can be inverted without numeri-
cal instabilities to get the height field. For the hybrid filter, the flow ensemble
consists of Ne = 50 members whereas the drifter ensemble consists of M = 50
members for each flow member. For the EnKF, we choose an ensemble size of
Ne = 50. We also run this same ensemble forward in time without assimilation
and this is called a “free run.” The specific results we present are for the case
in which the time between observations is chosen to be Tobs = 0.25 days, with a
total of 50 observations assimilated.

We note that for the flow resampling step of the hybrid filter, currently we are
using bootstrap resampling scheme that involves reproducing the particles with
probabilities proportional to their weights. [12] This effectively reproduces most
of the high weight particles multiple times while effectively discarding the low
weight particles. As mentioned at the end of previous section, a careful examina-
tion of effects of different sampling schemes for the flow resampling, in particular
those suited to high or infinite dimensional sampling, [2–4,7,17] is certainly an
area of future work, and we feel that it will lead to further improvements of the
hybrid filter.

In Fig. 3, we show the mean of the three ensembles obtained from the free run
(top right), from EnKF (bottom left), and from hybrid method (bottom right),
as compared to the truth (top left), at the end of the assimilation window, i.e., at
t = 12.5 days. We see that even the fairly short drifter trajectory (shown in the
inset) contains useful information about the velocity field. This can be seen from
the following observation: the mean of the free run ensemble does not have the
vortices near the middle left of the domain while the EnKF and hybrid ensembles
show the presence of these vortices. We also see that indeed the assimilation has
improved the estimation of the velocity and height fields quite substantially.

We also quantify these conclusions by plotting the root mean square error
between the truth and the means of these three ensembles – Fig. 4 shows these
errors. We see that there is a gradual decrease in the error as more observations
are assimilated and the hybrid filter performs well in estimating the velocity
field. The free run is certainly very inefficient in estimating the drifter position,
clearly because of highly chaotic nature of the drifter trajectories even in this
simple flow field.

4 Discussion

Continuing the work in [18], we have presented the application of a hybrid
particle-ensemble Kalman filter for assimilating Lagrangian data into ocean
models. Note that the hybrid filter developed in [18] was only applied to a low-
dimensional flow in that work so that resulting distributions could be compared
to a bench mark very-large-sample particle filter.

Lagrangian data assimilation is a challenging problem because of the fol-
lowing two reasons, each of which creates difficulties for some of the possible
assimilation methods: (1) Lagrangian data are obtained from highly nonlinear
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Fig. 3. The comparison of the velocity and height fields at the end of the assimilation
window, i.e., after 12.5 days, as given by the free run, the EnKF, and the hybrid filter

drifter trajectories, and Kalman filter based techniques such as the ensemble
Kalman filter may fail because of this reason; (2) The fluid flow models into
which this data are assimilated are high dimensional, creating difficulties for the
use of particle filter based methods.

We presented the hybrid method which applies the EnKF to the high dimen-
sional part of the phase space consisting of the fluid flow variables (e.g. the vor-
ticity field in the quasi-geostrophic model we used), while it applies the particle
filter to the low dimensional but highly nonlinear drifter dynamics. We illus-
trated the application of this method in a moderately high-dimensional quasi-
geostrophic model consisting of 5000 variables.

The results, even though preliminary in nature, are promising as can be seen
from Figs. 3 and 4. With a judicious choice of parameters, the hybrid filter can
outperform the EnKF and certainly does well in comparison to a free run of
the model without assimilation. We also pointed out the questions that need
to be investigated further, including the role of high-dimensional function space
sampling methods and the effect of choice of various parameters in the hybrid
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Fig. 4. The RMS errors in the velocity field, drifter position, and vorticity field, as
compared to the truth, for the free run, EnKF, and the hybrid filter. Notice the log
scale for the position errors, which are essentially exponential for the free run.

filter. Furthermore, although this approach was developed for purely Lagrangian
instruments, we think it could prove effective for assimilating data from semi-
Lagrangian instruments such as gliders. We envision that uncertainty reflected
by variance in the Eulerian field could be used as on-the-fly guidance for choosing
future way points during a glider assimilation/control study.
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Abstract. The Ionosphere-Thermosphere environment undergoes con-
stant and sometimes dramatic changes due to solar and geomagnetic
activity. Furthermore, given that this environment has a significant effect
on space infrastructure, such as satellites, it is important to understand
the potential changes caused by space weather events.

This work presents the implementation of the ensemble Kalman fil-
ter assimilation technique to improve the nowcast and forecast of the
thermosphere environment. Specifically, the assimilation tries to adjust
F10.7, a solar radio flux parameter at 10.7 cm wavelength that acts as a
proxy for solar activity.

The results show that during high solar activity, the measured
F10.7 index is able to account for the variability in the ionosphere-
thermosphere, hence the correction provided by the assimilation is small.
On the other hand, during low solar activity, F10.7 is unable to account
for variability in the ionosphere-thermosphere, and the correction pro-
vided by the assimilation drastically improves the nowcast/forecast.

1 Introduction

The Ionosphere-Thermosphere environment is host to vast majority of space
infrastructure, and is the dominant effect on drag exerted by a number of satel-
lites. Hence understand and correctly specifying this upper atmospheric envi-
ronment is critical for the safekeeping of the space infrastructure.

There are a number of model that simulate the ionosphere-thermosphere.
These include the Mass-Spectrometer-Incoherent-Scatter (MSIS) [7], and empiri-
cal based model, the NCAR Thermosphere-Ionosphere-Electrodynamics General
Circulation Model (TIE-GCM) [2,18], and the Global Ionosphere-Thermosphere
Model (GITM) [19] to name a few. Although these models include most of the
relevant physics, their forecast error can be significant without proper prior cal-
ibration and/or initial conditions.

Data assimilation are methods that combine information from a model, obser-
vational data, and corresponding error statistics, to provide an enhanced approx-
imation of the true state of the system [1,11]. Assimilation methods are widely
c© Springer International Publishing Switzerland 2015
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used in geophysical sciences, including atmospheric sciences, space weather, and
climate and ocean sciences to name a few. Additionally, assimilation methods are
increasingly being implemented in heliophysical and upper atmospheric sciences.
The TIE-GCM has been used to assimilate electron density profiles [12], and
to derive neutral mass density from CHAMP and GRACE satellites [13] More
recently Morozov et al., [14] used GITM to assimilate CHAMP and GRACE
data for the estimation of model state variables and parameters.

In this work, we present the implementation of the ensemble Kalman filter to
the GITM model in order to better approximate the ionosphere-thermosphere
density. One of the main drivers for the variability within the ionosphere-
thermosphere is the Sun, whose influence is included in the form of the F10.7

solar radio flux parameter. In order to improve the forecast in GITM, the assim-
ilation is performed by correcting the model variables as well as estimating an
appropriate F10.7 parameter value. Given that F10.7 is a time-varying index, the
estimation is meant to involve a correction to the parameter that can change
from one time period to another. The assimilation is performed using derived
neutral density from CHAMP and GRACE, where a data denial experiment is
performed to validate the results. A couple of experiments are performed, one
during solar maximum and the other during solar minimum. Although a couple
of studies have also tuned the F10.7 parameter value in TIE-GCM [13] as well as
GITM [14], both studies concentrate on Solar maximum time periods, where the
Sun exerts a dominant influence upon the ionosphere-thermosphere. The main
objective is to understand how the assimilation performs during different solar
activity, that is, during solar maximum and solar minimum. The main difference
is that in solar maximum, the Sun is the main driver for the variability within
the ionosphere-thermosphere, while during solar minimum, internal processes
within Earth ionosphere-thermosphere are responsible for their variability. The
following sections describe the GITM model, assimilation algorithm, observa-
tions, experiment setup and results, and finally conclusions and future work.

2 Ionosphere-Thermosphere Model and Assimilation
Method

2.1 Ionosphere-Thermosphere Model

The Global Ionosphere-Thermosphere Model (GITM) [19] is a physics based
model that solves the full Navier-Stokes equations for density, velocity, and tem-
perature for a number of neutral and charged components. The model explicitly
solves for the neutral densities of O, O2, N(2D), N(2T ), N(4S), N2, NO, H,
and He; and the ion species O+(4S), O+(2D), O+(2P ), O+

2 , N+, N+
2 , NO+,

H+, and He+. It also contains chemistry between species of ions and neutrals,
ions and electrons, and neutral and neutrals. In addition, GITM self-consistently
solves for the neutral, ion, and electron temperature; the bulk horizontal neutral
winds; the vertical velocity of the individual species; and the ion and electron
velocities. To account for solar activity GITM can use F10.7 as a proxy or direct
EUV spectrum measurements.
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Fig. 1. F10.7

Some of the more important features of GITM are: adjustable resolution; non-
uniform grid in the altitude and latitude coordinates; the dynamics equations are
solved without the assumption of hydrostatic equilibrium; the advection is solved
for explicitly, so the time-step in GITM is approximately 2–4 s; the chemistry is
solved for explicitly, so there are no approximations of local chemical equilibrium;
the ability to choose different models of electric fields and particle precipitation
patterns; the ability to start from MSIS [6,15] and IRI [16] solutions; and the
ability to use a realistic (or ideal) magnetic field determined at the time of the
model run.

The main parameter of interest is F10.7, which solar radio flux at 10.7 cm
wavelength measuring the noise level generated by the Sun at the Earth’s orbit,
used as a proxy in GITM for solar activity. Figure 1 shows the F10.7 solar radio
flux index from 1980 up to approximately 2011, where the 11-year solar cycle is
clearly visible in the high and low activity peaks.

2.2 Ensemble Kalman Filter

The ensemble Kalman Filter (EnKF) [3,4] is a Monte Carlo approximation to
Kalman filtering [10] for non-linear models, and has gained wide acceptance in
data assimilation applications. The EnKF uses an ensemble of model simula-
tions or forecasts to calculate the model mean and error covariance matrix. The
ensemble is updated using the Kalman filter equations to reflect information
provided by the observations, and is evolved using the forecast model between
assimilation cycles. For more details on the EnKF algorithm see [4,8].
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For a vector of m measurements yo and an ensemble of N forecasts xf
i , i =

1, . . . , N the EnKF analysis equations are given by:

xa
i = xf

i + K
(
yo
i − Hxf

i

)
, i = 1, . . . , N, (1)

K = PfHT
(
HPfHT + R

)−1
. (2)

where K ∈ R
n×m is referred to as the Kalman gain matrix; xa

i ∈ R
n is the analy-

sis; Pf ∈ R
n×n is the forecast covariance matrix; R ∈ R

m×m is the observations
covariance matrix; H ∈ R

m×n is the linear observation operator that maps from
state space to observations space; and yo

i ∈ R
m is a perturbed observations

vector. For more details on the EnKF algorithm see [4,8].
For our particular problem, the GITM state variables and F10.7 are both

estimated using the EnKF. So the state vector xf
i is composed of the GITM

state variables and the F10.7 parameter appended at the end. Specifically, since
F10.7 is a measured quantity, the EnKF assimilation will estimate a correction
to the parameter. The correction of F10.7 is to estimate the appropriate coupling
between the observed F10.7 and the model. For a given observed F10.7 index
poF10.7, the model F10.7 parameter is given by

pmF10.7 = poF10.7 + δpF10.7

where δpF10.7 is the “correction” provided by the EnKF data assimilation.
Given that the EnKF uses an ensemble of model forecast to estimate the

model covariance matrix, artificial cross-correlation terms will be present in this
matrix. These spurious cross-correlations terms can introduce significant noise
into the analysis, ultimately leading to an incorrect analysis [5]. To address this
problem, the estimation of the GITM variables and F10.7 parameter are done
using a local variant of the EnKF, specifically the Local Ensemble Transform
Kalman Filter (LETKF) [9]. The LETKF uses the same basic equations as the
EnKF but it assimilates each model grid-point by defining an appropriate spa-
tial local region. The localization is regularizing the model covariance matrix to
reduce the introduction of noise into the updated model state and parameters.
More details refer to the article by Hunt et al. [9]. For our problem, a small
local grid-point state vector is formed, composed of the corresponding GITM
variables, as well as the F10.7 parameter. In the end, each model grid-point will
have estimated a correction to the F10.7 parameter, and a global correction is
obtained by averaging all of the grid-point corrections. Additionally, we imple-
ment an inflation technique for the F10.7 parameter equal to 45% of the initial
parameter spread used to generate the ensemble. That is, the parameters are
inflated by

p̂F10.7,i = p̄F10.7 + λ (pF10.7,i − p̄F10.7) ,

where pF10.7,i is the F10.7 parameter value for ensemble i, p̄F10.7 is the ensemble
average parameter value, p̂F10.7,i is the inflated parameter value for ensemble i,
and λ is the inflation factor equal to 45% of the standard deviation of the initial
parameter spread used in the ensemble.
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Fig. 2. Derived total neutral density from CHAMP (left plot) and GRACE (right
plot) satellites for October 21 2010 from 00:00 to 03:00 UTC. The shading shows the
day/night state of the globe at the time of observations.

3 Assimilation Experiments

3.1 Total Neutral Density Observations

The observational data used the assimilation in GITM is derived total neutral
density measurements from Challenging Minisatellite Payload (CHAMP) [17]
and Gravity Recovery and Climate Experiment (GRACE) satellites [22]. The
satellites of both missions contain very accurate accelerometers, which can be
used to infer drag and therefore provide an estimate of the total neutral density
along the satellite track [20,21]. Both CHAMP are GRACE are polar-orbiting
satellites with an orbital period of about 90 min, slowly precessing through dif-
ferent solar local times over the course of 133 days. Figure 2 shows the CHAMP
and GRACE derived total neutral density for October 21, 2002 from 00:00–03:00
UTC. The neutral density is highest during the dayside of the globe, and lowest
during the nightside of the globe. All CHAMP and GRACE data is available at
www.impact.lanl.gov.

3.2 Model and Assimilation Setup

There are two GITM data assimilation experiments (DAE):

– DAE1: valid for October 21–24, 2002, during solar maximum (see Fig. 1)
– DAE2: valid for August 28–31, 2009, during solar minimum

In order to get a realistic simulation of the ionosphere-thermosphere, GITM
is provided with Hemispheric Power index, obtained from the NOAA Space
Weather Prediction Center website, http://www.swpc.noaa.gov, and the Solar
conditions from NASA OMNI website, http://omniweb.gsfc.nasa.gov/, valid for
the corresponding time periods. All GITM simulations are done on a 5◦×5◦ grid,
with 50 vertical levels on a stretched grid that goes from 100 km to approximately
600 km for solar maximum and 500 km for solar minimum. Additionally, all sim-
ulations use MSIS model solution as their initial condition, and are spunned up

www.impact.lanl.gov
http://www.swpc.noaa.gov
http://omniweb.gsfc.nasa.gov/
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for two days to establish the correct dynamics and a consistent solution for the
Navier-Stokes equations.

The ensemble for each assimilation experiment is generated by perturbing
both the initial condition and the F10.7 parameter. The F10.7 is perturbed using
a Latin Hypercube sampling strategy with a normal distribution, where the
average and standard deviation used is the time average and standard deviation
for each corresponding time period. For DAE1 the average is 163.62 and standard
deviation of 15.0, while for DAE2 the average is 97.7 and standard deviation
3.0. Each EnKF assimilation experiment uses an ensemble of 20 members. The
assimilation is performed every 30 min, for the whole time period.

An important aspect of the localized EnKF assimilation scheme is the size
of the local region around each model grid-point. After some testing, it was
determined that a local region in the shape of a three dimensional ellipsoid was
most appropriate, with a longitude axis of ∼ 1000 km, a latitudinal axis of
∼ 750 km and altitudinal axis of ∼ 50 km.

To validate the results of the assimilation experiments, a data denial setup
is used, where observations from GRACE are assimilated and the analysis com-
pared with observations from CHAMP. In this way, the analysis is not unfairly
compared with observations that have been already been assimilated, and pro-
vides a more valid comparison with a set of independent unassimilated set of
observations.

3.3 Assimilation Results

For DAE1, the time period is during solar maximum, which means that the
Sun is the main driving force for the variability observed in the ionosphere-
thermosphere. During these time periods, the GITM model includes a good
representation of the effects of the Sun, and provides an accurate estimate for the
ionosphere-thermosphere. The results show that simulated GITM, without any
data assimilation, provides a good approximation to CHAMP neutral density
data. The right plot of Fig. 3 shows the comparison of neutral density from
CHAMP (green line) with GITM (red line) and assimilated GITM (blue line)
for October 21–24, 2002. As seen in Fig. 3, the improvement provided by the
assimilation is not significant, indicating that the physics within the model for
this time period are well represented. Evidence of the performance of GITM
is further seen in the left plot of Fig. 3, where the measured F10.7 (red line)
is compared against assimilated F10.7 (blue line). The assimilated F10.7 is seen
oscillating very closely to the measured F10.7, indicating that not much correction
is needed for this parameter to have GITM match the observed density from
GRACE.

For DAE2, the time period is during solar minimum when the Sun does not
have a significant influence in the variability of the ionosphere-thermosphere.
During solar minimum, more complex internal processes dominate how the
ionosphere-thermosphere changes, and are more difficult to model since they
are not completely well understood. In these cases, the assimilation can make a
dramatic improvement to GITM through the correction of the F10.7 parameter.



280 H.C. Godinez et al.

Fig. 3. Left plot: observed F10.7 (red line) for October 21–24, 2002, used in the unassim-
ilated GITM simulation, compared with analysis F10.7 from the assimilation experiment
(blue line) using GRACE total neutral density for the same time period. Right plot:
total neutral density for CHAMP (green line) for October 21–24, 2002, compared with
corresponding density from unassimilated GITM (read line) and assimilated GITM
(blue line) using GRACE total neutral density observations for the same time period
(Color figure online).

Fig. 4. Left plot: observed F10.7 (red line) for August 28–30, 2009, used in the unassimi-
lated GITM simulation, compared with analysis F10.7 from the assimilation experiment
(blue line) using GRACE total neutral density for the same time period. Right plot:
total neutral density for CHAMP (green line) for August 28–30, 2009, compared with
corresponding density from unassimilated GITM (read line) and assimilated GITM
(blue line) using GRACE total neutral density observations for the same time period
(Color figure online).

The improvement is shown in the right plot of Fig. 4, where the total neutral
density from CHAMP (green line) is compared with GITM (red line) and assim-
ilated GITM (blue line) for August 21–24, 2009. Recall that the assimilation is
performed using GRACE observations, and is validated using CHAMP observa-
tions. From Fig. 4, it can be seen how the assimilation provides a solution that
converges towards the observed density as time progresses. This time lag, or
assimilation spin up, is mainly caused by the convergence rate for the correction
of F10.7, as seen in the left plot of Fig. 4.
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4 Conclusions

In this work the implementation of the ensemble Kalman filter data assimi-
lation method to the Global Ionosphere-Thermosphere model to improve the
nowcast/forecast. One of the main drivers responsible for most of the variability
in the Ionosphere-thermosphere is the Sun, whose contribution is included in
the model through F10.7 solar radio flux index. Hence, in order to get the cor-
rect thermosphere environment, the assimilation corrects the model variables,
as well as estimate an appropriate F10.7 parameter value to reduce the forecast
error. The assimilation is done using derived total neutral density measurements
from Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and
Climate Experiment (GRACE) satellites. A data denial experiment is utilized,
where observational data from GRACE is used in the assimilation, and the result-
ing analysis is compared with observational data from CHAMP. Two separate
data assimilation experiments are performed, one for October 21–24, 2002 and
another for August 28–30, 2009. The first data assimilation experiment takes
place during solar maximum, which is when there is significant solar activity
during a solar 11-year cycle. The second experiment takes place during solar
minimum, which is a time period of low solar activity in the solar cycle.

For the first assimilation experiment, the results show that during solar
maximum the GITM model provides a reasonable estimate of the ionosphere-
thermosphere. Given that the physics during solar maximum are fairly under-
stood and well represented in the GITM model, the assimilation can only provide
a small correction to the model. Additionally, during solar maximum, the Sun
dominates most of the relevant physics and variations within the ionosphere-
thermosphere. On the other hand, for the second assimilation experiment, the
results show that during solar minimum the GITM model is unable to give
a reasonable estimate of the ionosphere-thermosphere. This is due to the fact
that during solar minimum, internal processes dominate the variability within
the ionosphere-thermosphere. These are complex processes that are yet not well
understood, hence their influence is not well represented in the GITM model.
Hence, for this time period, the assimilation makes a significant improvement in
the GITM model through the F10.7 parameter, even though the parameter is a
proxy for solar activity.

The assimilation has proven to be an important tool to improve the forecast
of the ionosphere-thermosphere. Future work will include expanding the data
sources to include observational data from other satellites and ground stations.
Additionally, other model parameter within GITM will be explored for correc-
tion, such as EUV spectrum parameter, cooling and heating rate coefficients,
and solar absorption rate parameters.
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Abstract. This work describes the implementation and evaluation of an
Ensemble Adjustment Kalman Filter (EAKF) with a global atmospheric zoom
model (version 5) of the Laboratoire de Météorologie Dynamique (LMDZ5, Z
stands for zoom). An interface has been developed to use Data Assimilation
Research Testbed (DART), a community EAKF system, with LMDZ5 model.
The NCEP PREBUFR real observation data have been assimilated to evaluate
the performance of newly developed LMDZ5-DART system. It has been
demonstrated with the help of a numerical experiment that LMDZ5-DART
system successfully assimilates real observations. A one month LMDZ5-DART
analysis has been created using assimilation of NCEP PREBUFR observation
data, and the assimilated fields are compared with NCEP CDAS reanalysis.
Results show that LMDZ5-DART produces remarkably similar reanalysis to
NCEP products. This is therefore a very encouraging result towards a long-term
goal of creating a high quality analysis over the Indian subcontinent from the
assimilation of local satellite products.

Keywords: Data assimilation � Ensemble Kalman filter � LMDZ5 � DART �
Global reanalysis

1 Introduction

Data assimilation is a necessary prerequisite for current day numerical weather pre-
diction system. A typical weather forecast is subjected to various uncertainties in the
specification of the initial conditions. Modern methods of determining the model initial
conditions use data assimilation techniques to optimize observational data with a
short-range model forecast to produce an analysis. Data assimilation also is an
important tool to evaluate the forecast model by identifying quantities that are poorly
predicted and by estimating values for a model parameter that are consistent with the
local observations [1]. In global perspective, it is used to generate reanalysis products
or a best estimate of the atmospheric state by cycling the assimilation of observations in
global model over a given time period. A recent study of Raeder et al. [2] demonstrated
that data assimilation has the ability to improve the climate model development and
should thus become an integral part of that process as well. They used data assimilation
in detection of noise associated with polar filter and latitudes/longitudes, correction of
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short-term bias in model prognostic fields and in parameter estimation in a climate
model.

The EAKF is a variant of Ensemble Square Root Kalman Filter. Unlike 3D or 4D
variational methods; the ensemble kalman filter (EnKF) technique has advantage of
estimating flow dependent background error covariance, which enables advanced data
assimilation with a prediction model. Moreover, the EnKF methods are potentially
attractive for many reasons. They are very simple to code without any need of an
adjoint of the forecast model. In addition to ensemble of analyses, they also provide an
estimate of analysis error distribution. For geophysical data assimilation, recent results
have suggested that this method is competitive to variational system [3, 4].

In this work, description of an interface developed for using EAKF [5] with a
global atmospheric model LMDZ5 atmospheric has been presented. Now days, along
with in-situ measurements, data from many satellites e.g. INSAT 3D, KALPANA,
Megha-Tropique are available over India and the surrounding domain. The primary
goal of development of LMDZ5-DART system is to improve and understand various
features of ASM through assimilation of these observations. This requires one to
generate a high quality gridded atmospheric data for the Indian region. As a first step
towards this long-term goal, the main objectives of the current work are as follows.

To present the platform LMDZ5-DART that has been developed for studying ASM
using high quality data
To test both consistency and accuracy of this system by assimilating real obser-
vations in numerical experiments

The remaining text in the papers has been organized as follows; Sect. 2 describes
LMDZ5-DART system and interface development. In Sect. 3, a detailed description of
numerical experiments is provided. Section 4 presents the result of numerical experi-
ments with the real observations and finally the findings of this work are summarized in
Sect. 5 along with the scope for future work.

2 The LMDZ5-DART Atmospheric Data
Assimilation System

2.1 LMDZ5

The LMDZ5 is a grid point atmospheric general circulation model initially described
by Sadourny and Laval [6] and its physical parameterizations have been evaluated by
Le Treut and Li [7]. It is an atmospheric component in the earth system model of the
Institut Pierre Simon Laplace (IPSL), which participated in 4th and 5th assessment
report of IPCC [8]. The details of physical package and model performance on the
global scale are provided in Hourdin et al. [9]. This model has capability of archiving
stretched horizontal grid [10], which can be used to run this model at finer regional
scale as well [11]. The dynamical core uses a finite difference formulation of the
hydrostatic primitive equations in hybrid vertical coordinate system (sigma-pressure).
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The variables of the governing equations are staggered on longitude-latitude
Arakawa C grid as shown in Fig. 1.

2.2 Data Assimilation Research Test Bed (DART)

DART routines have been incorporated in LMDZ5 through an interface to implement
EAKF. The DART is an open-source community facility employing different (deter-
ministic and stochastic) EnKF for data assimilation [12]. It has been developed and
maintained at National Center for Atmospheric Research (NCAR) and it is widely used
for different weather and climate applications [2, 13, 14]. The modular structure of
DART facilitates the interfacing of new models with minimal code changes. The EnKF
data assimilation (also called ‘filter’) computes the sample covariance between model
state variables and prior estimate of the observation by using a set of model forecasts.
The ensemble of model state analyses is computed from covarinces using Bayes’s
theorem [15]. The basic ensemble assimilation algorithm is though useful for theo-
retical studies with low order models; but for large geophysical models, use of algo-
rithms is necessary for archiving a high quality performance of ensemble data
assimilation system. DART includes the latest advanced algorithms; two of the most
useful algorithms are describe below.

Covariance Inflation. Numerical models are associated with significant errors due to
their inability to resolve complex physical process that are involved in geophysical
phenomena. The model errors are shared with data assimilation along with many others
sources of error, e.g. sampling error from smaller ensembles, systematic observational
error, miss-specification of observational error covariance and error of observation
representativeness. These error sources result in a prior estimate with insufficient
variance and persistent loss of variance during assimilation of observation. A damped
adaptive inflation algorithm in DART is used to resolve this issue by inflating the
spread of ensemble periodically [16].

Localization. In large models, use of finite number of ensemble members to compute
sample covariance results in a non-negligible spurious correlation between widely
separated variables. Localization is a mechanism to ignore such spurious correlations.

Fig. 1. The representation of model variables on Arakawa C grid.
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DART can employ a user specified localization distance or modify this value based on
the local density of observations [17].

In the sequel, usefulness of the above-mentioned methods is discussed with real
data experiments.

2.3 Interface Development of LMDZ5 with DART

Implementation of DART in the LMDZ5 model requires developing and including a
set of interface routines in the latter to archive exchange of information with the former.
For the interface, a state vector is composed of subset of LMDZ5 prognostic variables
namely surface pressure (ps), temperature (T), wind component (U, V), specific
humidity (Q) and cloud liquid water (CLDLIQ). The other variables could also be
added in state vector by minor code modifications. The key sections of interface
routines are static model initialization, input/output (I/O) read-write, model interpola-
tion, vector to field & field to vector translation of model variables, find nearest state
variables to a given location and some other utility routines.

The static initialization of the model is the first call made to the model by any
DART compliant assimilation routine for runtime initialization of the model. It reads a
specified parameter for LMDZ5 model, sets the calendar type (the Gregorian calendar
is used with the LMDZ5 model), determines the state vector length and retrieves model
information (e.g. grid dimensions, vertical hybrid coefficients, time step etc.).

The I/O section has many sets of routines written using netCDF library to perform
read-write task of several netCDF files. It reads meta-data information and prognostic
state variables from LMDZ5 I/O files for each ensemble member and overwrites the
same files with updated prognostic state variables that are generated after assimilation.
The updated input files are used by LMDZ5 to advance each of the ensemble members
for next assimilation cycle. It also writes ensemble members, ensemble mean and
spread, adaptive inflation values and several other variables in netCDF files periodically.

Reformation of state vector is one of the key elements of this interface to exchange
information between 1D states vector in assimilation model and 2D and 3D fields
vectors of LMDZ5. Vector to field and field to vector translation routines are used to
carryout this task. This is done by two interfaces routine “dart_to_lmdz” and
“lmdz_to_dart” (Fig. 2), which allow interface of DART with LMDZ5 without mod-
ification of codes.

The model interpolation section applies the forward operator H (2D & 3D scalar
interpolation) to the model states to create an expected or prior observation at the
desired location. It supports interpolation in pressure, height and hybrid pressure
vertical coordinates. Interpolation at a given location is done directly to Arakawa C
grids at hybrid pressure levels where the model variables are distributed. The LMDZ5
grids (Arakawa C) have no staggered latitude grids points of meridional wind com-
ponent V at both poles but there can be observation of V in the proximity of pole. Here
maximum latitudes for V observations to be assimilated are defined as user specified
input. Similarly some observations are taken at the surface near to topography of
LMDZ5 model, which are approximations of the real topography. In the current ver-
sion, no interpolation is performed from model grid to observations that are below the
lowest model levels or at surface.
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Localization of observation impact requires some interface routines that compute
the distances both in horizontal and vertical state variables to the observation location
and find the state variables that are close to nearest given observation location. For
vertical distance computations all vertical coordinates are converted to a common
pressure coordinate. At higher vertical levels, the observation assimilation needs spe-
cial treatment. Strongly damping is used at top vertical levels of LMDZ5 where the
model variables are not free to adjust with assimilation of observations. This makes the
ensemble spread too small for the assimilation algorithm to work in the model top
levels. There are two mechanism adopted from DART/CAM interface [2] to sidestep
this problem. In the first mechanism, influence of observations on model points is
reduced as a function of distance above the user specified pressure level. Similar to
CAM interface [2], this pressure is usually set to 150 hPa, which turns the observation
influence falling to 0 by about 60 hPa. In 29-level vertical resolution of LMDZ5, these
correspond to model levels 19 and 23, counted from bottom. In second mechanism,
which is essentially a simplification of first mechanism, all the observations are
removed above a user specified pressure level.

A schematic representing the data flow in LMDZ5-DART system has been shown
in Fig. 2. Starting from given observations and ensemble of initial states, “filter”
assimilates the observation, updates the states variables and determines the model
advance time for next assimilation cycle. The analyses of the prognostic state variables
are done on their native model grid (Arakawa C-grid), which affects the successive
forecast. The LMDZ5 model is then used to forecast all ensemble members to next
available observation time. This update-forecast cycle continues until there are
observations to assimilate or the specified observation time is reached. The cycling of
LMDZ5-DART is run in a restart mode. For a single analysis time, there are multiple
analysis files. Since LMDZ5-DART is run in restart mode, each member should keep

Fig. 2. A schematic description of the LMDZ5-DART assimilation system [18].
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its own LMDZ5 restart file from the previous cycle. At the end of assimilation a set of
restart files for each ensemble member and diagnostics files are written.

3 Experimental Design

The aim of the numerical experiments is to evaluate the performance of
LMDZ5-DART system with assimilation of real observations. For the numerical
experiments presented here, the global resolution of LMDZ5 is setup at 2.5 × 2.5
degree in horizontal and 29 levels in vertical with model top level at 3 hPa. The lower
boundary conditions in the model are specified from AMIP (Atmospheric Model
Intercomparison Project), viz., sea surface temperature (SST), albedo, soil moisture,
snow cover. All experiments have been done using a 60-ensemble member of model
for one-month assimilation period (May 2009). The same lower boundary data are used
to realize all ensemble members throughout this study. Further details on the design of
experiments are given in what follows.

3.1 Observations

LMDZ5-DART system is tested with real observations from the NCEP PREBUFR
database, (http://rda.ucar.edu/datasets/ds090.0/) which constitute of data from
radiosondes, dropsondes, pibals, ship, buoy and satellite processed at National Envi-
ronmental Satellite, Data and Information Service (NESDIS). These datasets serve as
primary input to the climate data assimilation (CDAS) to produce the reanalysis data at
National Centre for Environmental Prediction (NCEP). For this study, a subset of these
data is included which comprises of observations of temperature and horizontal wind
velocity (U, V) with a view to simplify evaluation of performance of LMDZ-DART
system. However, the other model state variables such as surface pressure are also
undoubtedly influenced by the use of such observations in the system.

3.2 Assimilation Cycle and Quality Control of Observations

NCEP CDAS assimilate observations at every 6 h; hence, PREPBUFR data exist every
6 h for making available the analysis at 0000, 0600, 1200, 1800 UTC which include
observation data in the 6 h window centered at the respective analysis times. Here, in
this study the LMDZ5-DART forecast/assimilation cycle is chosen 6 h with assimi-
lation length of one month between 0000 UTC 1 May 2009 and 0000 UTC 1 June
2009. Appropriate limited quality controls have been performed for these observations.
The observations, more precisely, which have standard deviation of three from
model-derived expected observations, have been rejected. Also the observations are
limited above the level 150 hPa and below the top of the model.
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3.3 Generation of Initial Background Ensemble

The ensemble of initial conditions for data assimilation cycle experiments has been
generated by adding Gaussian noise to a single state taken from NCEP reanalysis at
0000 UTC 23 April 2009. Starting from each perturbed states, LMDZ5 has been
integrated up to 0000 UTC 1 May 2009 for spin-up to balance all model fields. This
choice of generating initial ensemble has a disadvantage in the sense that the initial
ensemble members may not be independent as perturbing a single state generates them.
On the other hand, it has the advantage because it is easier to create perturbed model
initial conditions in comparison to finding ensemble of initial conditions from clima-
tological archive. Figure 3 represents the ensemble mean and spread of LMDZ5
temperature and horizontal wind velocity states variables, which are calculated from
60-ensemble member. Here, the large spread in state variables represents the gross
estimate of variability of the LMDZ5 initial states. It can be seen that the LMDZ5
forecast is more uncertain in extra tropical region compare to tropics for all three state
variables (Fig. 3).

3.4 Verification Methods

The main challenge in verifying the performance of any data assimilation system by
ingesting real observations is that the true value of a verified variable is not known,
which further makes it difficult to obtain reliable estimates of statistics for analysis error.
The best method of determining the performance of experiments with real data is to
compare in the ‘observation-space’. Here we use observations as a proxy for true states
because we always have the observations, though far from perfect yet they are the best.
We compare the real observations with model-estimated ensemble mean at the obser-
vation locations. This is generated by first applying forward operators to the ensemble
members in model space and then computing the mean over all the members of

Fig. 3. Ensemble mean (first row) and ensemble spread (second row) at 500 hPa of initial
conditions for LMDZ5 temperature (first column) in K, horizontal wind components U (second
column) and V (Last column) in m/s.
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model-estimated observations. Following criteria has been used with LMDZ5-DART to
test the stable performance of assimilation system.

Spread. The spread of ensemble should not collapse. Insufficient spread leads to large
observation rejection ratio and filter divergence.

RMSE. RMSE (root-mean-square error) of ensemble should be relatively stable with
time. A low RMSE is desirable and is a much stronger result if most/all of the
observations are being assimilated successfully without rejection.

Bias. Bias of forecast and analysis ensemble means relative to observations should be
close to zero.

4 Results and Discussion

In this section the results on the LMDZ5-DART performance have been presented.
First the outcome of various sensitivity experiments done to tune this system is given.
The tuned system is verified with the radiosonde data and the findings are demon-
strated. Further in order to evaluate the potential of this system for generating
reanalysis relative to CDAS reanalysis data, comparison between the analysis gener-
ated by LMDZ5-DART and CDAS is done.

4.1 Adjustment of LMDZ5-DART Parameters

One of the most significant exercises in model set up is to assess its sensitivity to
various tunable parameters. A number of experiments with LMDZ5-DART were first
performed to find an optimal value of localization radius for delineating observation
impact, both in horizontal and vertical directions. Also the experiments have been
performed to evaluate the assimilation system performance with and without covari-
ance inflation.

For horizontal localization, three experiments were carried out respectively with
different localization radius of 2400 km (HLOC2400), 1800 km (HLOC1800) and
1200 km (HLOC1200). These experiments have been evaluated in terms RMSE of 6 h
forecasts (prior) relative to observed radiosondes temperature. Figure 4 shows that the
HLOC1200 experiment has lower RMSE for entire period of assimilation compared to
HLOC1800 and HLOC2400 experiments. A lower value of RMSE was also observed
at all vertical levels for HLOC1200 experiment as shown in Fig. 5. Similar experiments
were carried out to determine the optimum value of vertical localization distance (in
hPa). It was found that 1000 hPa in vertical produced better LMDZ5-DART results.
(Results not shown).

To test the performance of most advanced damped adaptive covariance inflation,
two experiments were performed with and without covariance inflation. The inflation
experiment was carried out with initial inflation factor 1 and standard deviation 0.6. In
this experiment the RMSE of the ensemble mean forecast relative to radiosonde
temperature has lower value in compare to the experiment without inflation as shown in
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Fig. 6. It can be seen that adaptive covariance inflation improve the 6 h forecast skills
by up to 13.5 % throughout the period. Without inflation, one can notice that the
ensemble spread gets reduced quickly due to rejecting of a large number of observa-
tions (Fig. 7). Clearly this leads to a bad performance of data assimilation system.
These results emphasize the advantage of using adaptive covariance inflation.

Fig. 4. Global RMSE of ensemble mean 6 h forecast relative to radiosonde temperature for May
2009 at 500 hPa. Circles represent the number of available observations and pluses represent
used observations at each assimilation time (Right Axis).
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Fig. 5. Global RMSE of ensemble mean 6 h forecasts relative to radiosonde temperature
averaged over different vertical bands indicated by shading.
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In accordance to the results of above discussed experiment, all the simulations of
LMDZ5-DART have been set with damped adaptive covariance inflation, 1200 km in
horizontal localization and 1000 hPa in vertical localization.

4.2 Verification Using Radiosonde Observations

A 6 h forecast and analysis (posterior) of LMDZ5-DART have been compared with
radiosonde temperatures represented as ensemble mean of forecast and analysis. Figure 8
shows the ensemble spreads or standard deviations (both prior and posterior) of expected

Fig. 6. Global RMSE of ensemble mean 6 h forecasts with inflation (black lines) and without
inflation (red lines) relative to radiosonde temperature (Color figure online).

Fig. 7. Global SPREAD of ensemble mean forecasts with inflation (black lines) and without
inflation (red lines). Circles represent the number of available observations and pluses represent
used observations at each assimilation period (Right Axis) (Color figure online).

Ensemble Adjustment Kalman Filter Data Assimilation 293



radiosonde temperatures across the 60 ensemble members. It shows that the spreads of
ensemble is stable and does not collapse. Also it can be seen that the number of rejected
observations is small and the ratio of rejected observations with respect to all observation
varies marginally in time. This demonstrates sufficient spread of ensemble to cover

Fig. 8. Global prior (black) and posterior (red) ensemble spread (Left Axis) of expected
radiosonde temperature for entire assimilation period (May 2009). Blue symbols show the
number of observations available (o) and used (+) at each assimilation time (Right Axis) (Color
figure online).

Fig. 9. Global RMSE (upper) and BIAS (lower) of prior (black) and posterior (red) ensemble
mean relative to radiosonde temperature for entire assimilation period (May 2009). Blue symbols
show the number of observations available (o) and used (+) at each assimilation time (Right
Axis) (Color figure online).
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(a)

(b)

(c)

Fig. 10. Global comparison of May 2009 mean (a) Temperature (b) wind component U and
(c) wind component V from LMDZ5-DART (middle, upper panel) assimilation system and from
LMDZ5 forecast (right, upper panel) with NCEP Reanalysis (left, upper panel) at 500 hPa. Left,
lower panels are difference from NCEP to LMDZ5-DART and right lower panels are difference
from NCEP to LMDZ5.
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observations. In Fig. 9 it is demonstrated that the predicted temperature is significantly
improved in terms of RMSE and BIAS relative to observation used in the assimilation. In
fact the RMSE of analysis (0.83) is reasonably close to the error range of radiosondes
temperature (on average 0.80) pointing to a low error in assimilation. Also the RMSE of
prior and posterior has limited variability as a function of time demonstrating a stable
performance of LMDZ5-DART assimilation system. Similar results have been obtained at
all vertical levels and for other model variables (figures not shown). These results furnish
the evidence that LMDZ5-DART system is working properly.

4.3 Verification Against NCEP Reanalysis

A comparison of LMDZ5-DART ensemble mean analysis and simple LMDZ5 forecast
with NCEP reanalysis averaged over May 2009 is shown in Fig. 10. One can see that
LMDZ5-DART temperature and wind component analysis is remarkably similar to
NCEP reanalysis whereas simple LMDZ5 forecast has poor performance. The
LMDZ5-DART analysis has a high degree of similarity both in magnitude and spatial
structure with NCEP product demonstrating a decent performance of LMDZ5-DART
system even though only a subset of NCEP observations were used in assimilation. The
similarity of analysis is distinctly visible in Northern Hemisphere where observation
data are dense, but notable differences could however be seen in the Southern Hemi-
sphere. These results are dependent both on the model and the density of the obser-
vation data for assimilation. Nonetheless, this comparison provides a confidence in
newly designed LMDZ5-DART system to create high quality reanalysis data compa-
rable to that from an operational center.

5 Summary and Future Plans

The LMDZ5-DART has been developed and successfully tested for analysis/forecast
cycle in assimilating the NCEP PREBUFR observations for an extended period. For
experimental setup with LMDZ5-DART, some tuning experiment were necessary to
evaluate advantage of using damped adaptive covariance inflation and determine the
optimums localization distance both in vertical and horizontal. It was found that
1200 km in horizontal and 1000 hPa in vertical localization distance resulted in a good
performance of LMDZ5-DART system. The adaptive inflation scheme was obviously
advantageous, providing better forecast and ensemble spread than no inflation experi-
ment. We also find that analysis created by this system is remarkably similar to NCEP
reanalysis although only subset of observations was used. LMDZ5 can now benefit
directly from many tools available in Data Assimilation Research Test bed. These
include detection of short-term model biases and some code errors, the ability to start
single as well as ensemble LMDZ5 forecast from analyses generated from
LMDZ5-DART that are compatible with LMDZ5 and have no foreign model biases.

Our future work will mainly focus on testing the different feature of LMDZ5-DART
data assimilation system, adding support of GPS RO and INSAT 3D data assimilation.
The current development adds to our efforts of improving forecast skills to accurately
predict different features of Indian summer monsoon in the medium range and extended
range.
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Abstract. Optimizing wells placement may help in better understand-
ing subsurface solute transport and detecting contaminant plumes. In
this work, we use the ensemble Kalman filter (EnKF) as a data assimi-
lation tool and propose a greedy observational design algorithm to opti-
mally select aquifer wells locations for updating the prior contaminant
ensemble. The algorithm is greedy in the sense that it operates sequen-
tially, without taking into account expected future gains. The selection
criteria is based on maximizing the information gain that the EnKF car-
ries during the update of the prior uncertainties. We test the efficiency of
this algorithm in a synthetic aquifer system where a contaminant plume
is set to migrate over a 30 years period across a heterogenous domain.

1 Introduction

In subsurface hydrology, field measurements of groundwater flow and contami-
nant transport play an essential role in constraining numerical prediction models.
These models are indeed highly uncertain and data may be used to improve our
knowledge of various modeling parameters such as permeability, biodegrada-
tion factors, and porosity. However, collecting such measurements (e.g. pressure,
concentration) from deep or shallow hydraulic wells is difficult and an expensive
process. It is therefore important to minimize extra costs of monitoring networks
by limiting the number of wells to some few “optimal” locations.

Optimal monitoring design can be divided into two categories; open and
closed loops. The first category (a.k.a batch design), involves evaluating all pos-
sible network designs concurrently without accounting for any result or feedback
from any other design. Such approach, although optimal, could be prohibitive
in large scale hydrologic systems where the dimension of the state can be of the
c© Springer International Publishing Switzerland 2015
S. Ravela and A. Sandu (Eds.): DyDESS 2014, LNCS 8964, pp. 301–309, 2015.
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order 108−1010 variables. The other category (a.k.a sequential design), evaluates
the networks in sequence, allowing a feedback from new data to be used to plan
for the upcoming designs [6,7]. With this formulation, a sub-optimal greedy app-
roach would take into account information from previous designs and optimize
the next observational network without paying attention to any expected future
gain as a consequence of the decision at hand [1,10]. This greedy approach can
be coupled with an ensemble Kalman filtering framework where observations are
used to constrain subsurface models as they become available [4].

The ensemble Kalman filter (EnKF) is a sequential Monte Carlo technique
that aims at estimating the probability distribution of the state of a dynamical
system following a Bayesian filtering formulation in a Gaussian framework. The
EnKF represents the first two moments of the state distribution by means of an
ensemble of state vectors, which are then approximated as the sample mean and
covariance of the ensemble [5]. The ensemble is first integrated forward in time
with the model for forecasting. A Kalman update, derived from the Bayes’ rule
under the Gaussian assumption, is then applied to update the forecast ensemble
with incoming observations. One way to optimize the wells placement would be
to select those that are most informative for the EnKF update steps.

To evaluate the contribution of an observation, we use the Kullback-Leibler
(KL) divergence criterion [8]. The KL divergence provides an intuitive indicator
of the information gain by reflecting the difference between two distributions [11].
Consequently, in an EnKF setting, the KL criterion can be computed from both
the posterior and prior distributions of the state ensemble, and hence decisions
on more informative observations are properly analyzed. Most of the Bayesian
approaches, arising from information theory, that discriminate between posterior
and prior statistics involve computing the expectation of the Fisher information
matrix [6,7,11].

Several previous studies considered the observations placement or “targeted
observations” as for instance in meteorology and signal processing. These studies
considered similar information-based criteria in order to achieve a reduction in
the ensemble forecast variance. For instance, Mujadmar et al. (2000) [9] discussed
the ability of the ensemble transform Kalman filter (ETKF) to provide quantita-
tive estimates of the reduction of operational analysis and forecast error variance
when deploying dropwindsondes. Choi et al. [2,3] presented an efficient backward
formulation of the sensor targeting problem using ensemble-based filtering. The
backward approach which was tested on a Lorenz-95 model is equivalent and
never slower than the forward approach.

In this study, we present a greedy algorithm to smartly select well locations,
which are meant to improve the prior distribution of the hydrologic contaminant
state. This algorithm is utilized in an ensemble assimilation framework before
updating model forecast ensemble. Well locations are selected by solving a dis-
crete optimization problem that maximizes the expected information gain from
the forecast ensemble statistics. The proposed approach make use of the Fisher’s
information gain not only at the analysis/update step of EnKF but rather over
long prediction periods. This procedure is novel because it reflects on the most
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informative well locations ahead of time thus making rapid placement decisions
and maximizing the economic benefit. We conduct numerical experiments fol-
lowing a contaminant detection problem and simulate the migration of a plume
in a heterogeneous two-dimensional aquifer domain. We look for the observa-
tion wells that yield the minimum posterior uncertainties over a 3 years forecast
period. We analyze the experimental results based on the time evolution of the
analysis ensemble variance at every point of the domain.

2 Greedy Approach for Well Placement

2.1 The Ensemble Kalman Filter (EnKF)

The EnKF simplifies the standard Bayesian filtering problem making use of
samples or ensemble members to approximate the Gaussian parts of the state’s
distribution [4]. Starting from an analysis ensemble xa,i

k−1 at a given time tk−1,
the forecast ensemble is obtained by integrating these members forward in time
with the dynamical model as:

xf,i
k = Mk

(
θ,xa,i

k−1,wk

)
, i = 1, 2, ..., Ne (1)

where Mk is the nonlinear subsurface model, θ is the vector of model parameters
and wk is the source term at time tk. Once new data, yk, becomes available, the
EnKF updates every ensemble member of Eq. (1) as follows:

xa,i
k = xf,i

k + Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1 (
yi
k − Hkx

f,i
k

)
. (2)

The matrices Hk and Rk denote the observational operator and the observation
error covariance at time tk, respectively. yi

k is the perturbed observation ensem-
ble. The mean forecast state and the sample error covariance matrix are denoted
by xf

k and Pf
k , respectively.

We consider here the operator Hk of size [Ny, Nx] consisting of ones and
zeros. Every row vector of this matrix has zeros in all entries except for one
observed variable location where the value is set to 1. The matrix Rk, on the
other hand, is of size [Ny, Ny] and is assumed diagonal. Each diagonal entry
carries the variance of the error for that specific observation.

The analysis error covariance matrix, Pa
k, which is not explicitly needed for

implementing the EnKF, matches that of the Kalman filter based on the forecast
ensemble covariance, i.e.,

Pa
k = Pf

k − Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1

HkP
f
k . (3)

2.2 Greedy Algorithm and Optimization

Assume at time tk−1, Ny wells have been placed and that we intend to place
one new well. Then, the question would be: Where to place this well?
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In practical terms, this question implies that a new row of zeros and 1 at one
location will be added to the observation operator Hk (so that its size becomes
[Ny + 1, Nx]) and the goal is to find the position, s, in that row that is equal 1.
The new position, s, should satisfy the following conditions:

(1) s ∈ IN, (2) 0 < s ≤ Nx, (3) s �= {�1, �2, ..., �Ny}.

The third condition means that the well should not be placed at an existing
well position. Ideally, after assimilating the observations, one would expect the
uncertainties in the prior estimates to shrink. Thus, using the Kullback-Leibler
(KL) divergence, one can choose s that maximizes the information gain, F(s),
at time tk as follows:

max
s

F(s) = max
s

tr
[
Pf

k − Pa
k

]
, (4)

using(3)
= max

s
tr

[
Pf

kH
T
k

(
HkP

f
kH

T
k + Rk

)−1

HkP
f
k

]
, (5)

where tr[·] denotes the trace of a matrix. This maximization problem is a 1D
problem retaining s which yields the largest reduction in the forecast variance
after the EnKF update. One should note here that at any specific time tk the
maximization problem in (4) is also equivalent to minimizing the trace of Pa

k.
A more challenging, yet more appropriate, objective would be to find the

location s at time tk so that we maximize the expected information gain not
only at time tk but also at subsequent future updates, i.e., at times tk+1, tk+2,
etc. The problem can then be written as:

min
s

U(s) = min
s

{
tr

[
Pa

k

]
+ tr

[
Pa

k+1

]
+ tr

[
Pa

k+2

]
+ · · ·

}
. (6)

One substantial difference between Eqs. (4) and (6) is that the latter does not
only depend on s but rather on s, yk, and yk+1. This is because the analysis
covariance at time tk+1, Pa

k+1, can only be obtained after assimilating yk at time
tk and then integrating the members xa,i

k to time tk+1. The same applies for the
analysis covariance Pa

k+2. Hence, evaluating U(s), referred to as expected utility
hereafter, requires Monte Carlo sampling of future observations as follows:

U(s) = E(yk,yk+1,...)

{

tr
[

Pa
k

]

+ tr
[

Pa
k+1

]

+ tr
[

Pa
k+2

]

+ · · ·
}

, (7)

≈ 1

Nm

Nm
∑

m=1

{

tr
[

Pa
k(s)
]

+ tr [Pa
k+1 (s,ym

k )] + tr [Pa
k+2 (s,ym

k ,ym
k+1)]

}

,

where Nm is the number of Monte Carlo samples. Here we sample the obser-
vations from a Gaussian distribution of the forecast ensemble statistics. It is
important to note here that these Monte Carlo runs are independent and thus,
one could easily implement them in parallel.

Once the expected utility, U(s), is computed, optimization is then performed
taking into account the three constraints introduced before. To avoid solving
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a discrete optimization problem, we propose to relax the first constraint such
that the observation operator would be a function of g(s) rather than simply s.
Such function is the nearest integer function (or the round function), commonly
denoted as:

g(s) ≡ �s�. (8)

The second constraint that deals with bounds is easy to handle, however, the
third non-equality constraint is tricky. One simple way to tackle this constraint
is to introduce a penalty term in the objective as follows:

min
s

U(s) + log (s − �j) . j = 1, 2, ..., Ny (9)

Since our objective is a single-variable function and given that the variable
is bounded within a bracket, i.e., s ∈ (0, Nx], we use a hybrid optimization
algorithm that utilizes a golden section search (Bisection-like method) with suc-
cessive parabolic interpolation (Secant-like method). Other stochastic optimiza-
tion techniques such as Simultaneous Perturbations Stochastic Approximation
(SPSA), can be also used. These techniques can be however less efficient and
involve tuning a number of parameters which is not an easy task for compli-
cated objectives. Gradient-based algorithms are not very appropriate for the
current objective as they require solving a complex adjoint system.

3 Subsurface Contaminant Transport Experiments

3.1 Experimental Setup

We consider a steady-state groundwater flow system inside a rectangular domain
of total aquifer area of 0.84 km2. North and south boundaries are assumed
impermeable, whereas the the east and west boundaries are assigned constant
hydraulic heads equal to 10 and 20 m-water, respectively. Pure water conditions
are assumed in the aquifer except for an elongated plume of concentration 100
mg/l located near the west boundary. We simulate the migration of the plume
across the domain towards the east boundary for 30-years period. Figure 1 below
shows three snapshots of the polluted domain in time. For simplification, we
ignore the reactive effects such as radioactive decay, biodegradation and use a
linear sorption instead.

We conduct twin-experiments in which we perform a reference (or truth) con-
taminant transport simulation and use a perturbed forecast model to reproduce
the reference solution while assimilating perturbed observations. We consider
a monitoring network of 3 wells distributed uniformly in the domain as shown
in the left panel of Fig. 1. For updating the prior contaminant ensembles, we
assume the concentration data is available on a yearly basis (i.e., total of 30
EnKF updates). In addition, we propose to install a new well every 3 years
starting from the fourth year. Thus by the end of the simulation, we will have a
total of 12 wells after adding additional 9. An illustration sketch for this scenario
is shown in Fig. 2.
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Fig. 1. Reference contaminant spatial maps of the domain after 0, 15 and 30 years.
Black squares shown on the left panel correspond to the fixed wells initially installed
for measuring the groundwater concentration.

For installing the wells, we present three different approaches. In the first
approach, we simply select some random locations in the domain. In the second
approach, we choose to maximize the information gain at the time of installation
only, i.e., by solving the optimization problem of Eq. (4). For the most general
approach, we focus on maximizing the expected information gain at the instal-
lation time plus two years in advance. In other words, we try to find the well
location that is most informative over a 3 years-period right before installing the
next well.

Fig. 2. A sketch illustrating the scenario considered in the study for data assimilation.
9 wells are added every 3 years on top of the initially installed 3 (shown in Fig. 1).

We sample the initial ensemble assuming Gaussian conditions by selecting the
mean of the reference run and perturbing around it. To perform data assimilation
in a realistic settings, we perturb the model’s porosity, hydraulic conductivity
and sorption. We also introduce uncertainties to the contaminant source term.

3.2 Assimilation Results

In this section, we present assimilation results from the proposed greedy algo-
rithm. The observational error variance is assumed to be known, which we set
as follows. We use the yearly snapshots of the reference run and evaluate the
total variance at each spatial point in the domain. We then take each diagonal
element of Rk to be equal to 10% of the calculated variance.

We first perform a convergence test and run the assimilation scenario
described in Fig. 2 using the second approach in which optimizing the well loca-
tion is carried only at the time of installation. As mentioned, we use for optimiza-
tion a hybrid Bisection-Secant algorithm and compare the output results with a
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Fig. 3. A contour plot for the objective function of Eq. (4). Optimal and converged
well locations at 4 different installation times are shown by circles and pentagrams,
respectively. The small white rectangles shown on the contour maps represent existing
well locations.

full enumeration run. In the enumeration run, we do not carry any optimization
but instead we evaluate the objective function at every cell in the domain. This
would help us visualize the objective function and find the global minimum;
i.e., the optimal location of the well. In this run, we use an ensemble of 100
contaminant realizations. In Fig. 3, we plot the contour maps of the objective
function after 4, 10, 16 and 22 years. The contour maps exhibit spatial patterns
similar to the snapshots of the migrating contaminant plume from the reference
run (Fig. 1) suggesting that the wells located closer to the plume are more infor-
mative than others. In terms of convergence, we see that the hybrid algorithm
works very well and retains reliable solutions that are close to the optimal ones.
On average, convergence occurs in less than 20 iterations.

Next, we run the third approach and use the greedy algorithm over a 3 years-
window, as in Eq. (6), to find the optimal well locations that maximize the
expected information gain over this time interval. We plot the analysis ensem-
ble variance at every point in the domain after 7, 13, 19 and 25 years. We
compare the results of the proposed greedy scheme to the output of two other
optimization-free runs. In the first run, we randomly place 9 observation wells in
the domain and in the other, we consider a fixed network of 12 wells (distributed
uniformly in the aquifer). We set Ne = 50 and utilize 30 Monte Carlo samples.

Constraining the model outputs with data reduces the uncertainties over
time. This is nicely observed in all 3 runs as shown in Fig. 4. The proposed
greedy algorithm yields the largest improvements. This is indeed due to the
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Fig. 4. Analysis ensemble variance shown from left to right after 7, 13, 19 and 25 years.
The top row of subplots are results from a run where a random placement of the 9 wells
is performed. Maps of the middle row are obtained from an assimilation run where the
number of wells is fixed and equal to 12. The bottom row maps are outputs of the
proposed greedy algorithm where the 9 wells are placed by solving the optimization
problem of Eq. (6). Random and converged well locations are shown by circles and
pentagrams, respectively.

optimal selection of the well locations that are more or less aligned around
the center of the migrating plume. The run with 12 fixed wells shows smaller
ensemble variance during the early assimilation period. This is expected because
initially the uncertainties are larger and more information is available for guiding
the system. Nevertheless, after around 15 years (mid simulation period), the
proposed algorithm is more accurate. When we randomly select the 9 wells, the
uncertainties in the ensemble statistics are the largest.

4 Conclusion

In this study, we tackled the optimal observational design problem in subsurface
hydrology in a Bayesian filtering context. We proposed a greedy optimization
approach to optimally select the observation wells. The approach is based on
maximizing the expected information gain over a given time interval. We pre-
sented this approach in a Bayesian framework using the well-known ensemble
Kalman filter (EnKF). We evaluated the expected information gain by discrim-
inating between the EnKF-based prior and posterior error covariances based on
the Kullback-Leibler divergence.

The numerical experiments were based on a synthetic subsurface contaminant
transport system. The experimental results clearly demonstrated the efficiency
of the proposed greedy approach resulting in a significant uncertainty reduction
as compared to random selection techniques.

For future work, one could improve on the inference method by evaluating the
KL divergence using non-Gaussian information, and turning to a full dynamic
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programming formulation to tackle the problem in a non-greedy fashion. The
proposed approach is a practical compromise that appears to work quite well,
on a relatively realistic and large-scale hydrological model. It is also well suited to
how filtering problems are tackled on dynamical systems of this size. Potential
further research will aim at incorporating more sophisticated optimal experi-
mental design methodologies, keeping in mind the computational burden and
the feasibility of implementation with realistic subsurface models.
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Abstract. The effects of data measurement on source parameter esti-
mation are studied. The concept of mutual information is applied to
find the optimal location for each sensor to improve accuracy of the
overall estimation process. For validation purposes, an advection - diffu-
sion simulation code, called SCIPUFF, is used as a modeling testbed to
study the effects of using dynamic data measurement. Bayesian inference
framework is utilized for model-data fusion using stationary and mobile
sensor networks, where in mobile sensors, the proposed approach is used
to locate data observation sensors. As our numerical simulations show,
using the proposed approach leads to a considerably better estimate of
parameters comparing with stationary sensors.

1 Introduction

With increasing number of instances of toxic material release, there is tremen-
dous interest in precise source characterization and generating accurate hazard
maps of toxic material dispersion for appropriate disaster management. There
is no doubt that proper sensor placement is intimately tied to the performance
of the source estimation and model uncertainty characterization.

Different strategies have been suggested to determine the optimal path of the
mobile sensors for source parameters characterization. Earlier works in this area
can be categorized as Chemotaxis [1], Anemotaxis [2], and Fluxotaxis [3].

In chemotaxis approach [1], mobile sensors follow the concentration gradient.
Therefore, the motion toward the largest concentration is the goal direction for
the chemotaxis. In anemotaxis strategy [2], mobile sensors always move upstream
while they locate inside the plume, hence the upstream is the goal direction for
mobile sensors. With fluxotaxis approach [3], the mobile sensors compute the
amount of dispersal material flux passing through virtual surfaces formed by
neighboring sensors. Where, each individual sensor independently calculates the
amount of local material flux relative to the current position of its neighbors.

Even though, each of the above approaches has its own advantage and appli-
cation, but the major drawback of aforementioned approaches lies in the possi-
bility of being trapped in local maxima and plateaus of the concentration field.

Recently, there have been numerous works focusing on application of infor-
mation theoretic concepts in optimal sensor placement [4–10]. For instance, an
c© Springer International Publishing Switzerland 2015
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information theoretic framework was developed in [4] for distributive control of
a set of mobile robots, where the key idea was to move mobile robots along gra-
dient of mutual information map to maximize information collection. The major
drawback of this work is that applied robots are susceptible to being trapped
in local optima, due to tracking gradient of mutual information. In another
research by Hoffmann et al. [7], a control approach for mobile sensor networks
was proposed to maximize the mutual information, where an iterative approach
was used at each time step to find optimal control signal. Applied particle filter
framework in this method makes it possible to use the proposed method in pres-
ence of nonlinear and non-Gaussian target state and sensor models. However,
using Monte Carlo integration for evaluation of mutual information could reduce
its computational performance.

The key idea of this paper is to determine the location of data monitoring
sensors over the spatial domain of interest such that the uncertainty involved
in parameter estimates is minimized. This has been achieved by maximizing
the mutual information between the model output and data measurements. As
it will be shown, proposed approach expedites the convergence of estimation
process and avoids possible local optimalities while finding mobile sensor loca-
tions by maximizing the mutual information, rather than moving along its gradi-
ent. Along proposed approach for optimal sensor placement, a Bayesian inference
based method is used for data assimilation process that allows us to apply our
method in presence of nonlinear dynamics and sensor model and non-Gaussian
uncertainties, without using any Monte Carlo sampling. As well, a set of recently
developed quadrature points, named as Conjugate Unscented Transform points
[11,12], are used to alleviate the computational complexities associated with eval-
uation of mutual information, uncertainty propagation, and estimation process.

Outline of this article is as follows: First, the proposed dynamic data monitor-
ing (DDM) method for optimal sensor placement is explained in Sect. 2. Mathe-
matical framework for uncertainty quantification and data assimilation are then
briefly described in Sects. 3 and 4, respectively. Finally, numerical simulations
and conclusion are presented in Sects. 5 and 6.

2 Dynamic Data Monitoring: Methodology

The major role of dynamic data monitoring is to determine the locations of a set
of mobile sensors such that measurements with more information content are
sought at each time step. Location of each mobile sensor at a given time can
be achieved by maximizing the mutual information between model predictions
and observed data. In the following, we first explain the concept of mutual
information and utilized mobile sensor models. Then, mathematical details for
optimal allocation of mobile sensors are presented.

Mutual Information as a Measure for Sensor Performance. Accord-
ing to information theory, the mutual information between parameter Θ and
measurement z can be written as, [13],
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I(Θ; z) =
∫

z

∫

Θ

p(Θ, z) ln
(

p(Θ, z)
p(Θ)p(z)

)
dΘdz (1)

Using Bayes’ rule, I ≡ I(Θ; z) can be written as:

I =
∫

z

∫

Θ

p(Θ|z)ln
(

p(Θ|z)p(z)
p(Θ)p(z)

)
dΘ

︸ ︷︷ ︸
DKL(p(Θ|z))||p(Θ)

p(z)dz = Ez[DKL (p(Θ|z)||p(Θ))] (2)

Hence, mutual information can be interpreted as the average Kullback-Leiber
distance between prior pdf p(Θ) and posterior pdf p(Θ|z). In other words, by
maximizing mutual information one inherently maximizes the difference between
entropies of prior and posterior distributions of Θ.

UAV Model. We consider a set of Unmanned Aerial Vehicles (UAV) for data
observation, where each of the UAVs is equipped with a chemical sensor to
measure the concentration of pollutant material. The dynamic model of each of
the UAVs is given as:

sv
k+1 = F (sv

k, uv
k), v = 1, 2, · · · , Nu (3)

where, Nu is total number of UAVs and k denotes kth time step. Initial condition
of vth UAV is assumed to be given as sv

0. s
v
k, consists of (x, y) components of

position and heading angle. In detail, UAVs are modeled as:

⎡

⎣
s1
s2
λ

⎤

⎦

k+1

=

⎡

⎣
s1
s2
λ

⎤

⎦

k

+

⎡

⎢⎣
uh

k cos(λk + πuλ
k

2 )
uh

k sin(λk + πuλ
k

2 )
πuλ

k

2

⎤

⎥⎦ , uk = [uh
k , uλ

k ]T (4)

where (s1, s2)k is (lon, lat) coordinate of each UAV on spatial domain and λk

represents the heading angle of UAV at time tk. In this manuscript, it is always
assumed that control signals uh

k and uλ
k take discrete values. In detail, uλ

k is
assumed to take one of the following discrete values:

uλ
k =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1, move toward south
0, move toward east
1, move toward north
2, move toward west
3, ss+1 = sk

(5)

2.1 Optimal Sensor Placement

Our objective is to find a sequence of control inputs U1:Nu = {u1:Nu
0 , · · · , u1:Nu

Nt−1}
such that it maximizes the mutual information between sequence of expected
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observational data and parameters Θ over the time t ∈ [t1, tNt
]. This can be

mathematically formulated as:

min
U1:Nu

J = min
U1:Nu

Nu∑

v=1

{
−I(Θ1, · · · , ΘNt ; z1, · · · , zNt |s1:Nu

1 , · · · , s1:Nu

Nt
)
}

(6)

constrained to

{
sv
k+1 = F (sv

k, uv
k), sv

0 v = 1, 2, · · · , Nu

sa
k �= sb

k, a, b = 1, 2, · · · , Nu, a �= b
(7)

where, zk and Θk are measurement data and uncertain parameter at time step tk,
respectively. Nt is the total number of time steps during the estimation process.
sv
0 represents the initial condition and uv

k denotes the applied control signal at
time tk for vth UAV.

Unfortunately, performing this optimization requires finding optimal control
signals for all the Nu UAVs over the time t ∈ [t1, tNt

] which is computation-
ally intractable. Hence, one needs to simplify the original problem and find the
approximate solution for optimal control signals of each UAV. To alleviate the
computational cost, one can approximate the original optimization problem as
the following:

min
U1:Nu

J(s1:Nu
0 ) = min

U1:Nu

Nt−1∑

k=0

(
Nu∑

v=1

{−I(Θk; zk|sv
k)
}
)

(8)

constrained to

{
sv
k+1 = F (sv

k, uv
k), sv

0 v = 1, 2, · · · , Nu

sa
k �= sb

k, a, b = 1, 2, · · · , Nu, a �= b
(9)

One should notice that Eq. (8) is a function of a sequence of control signals
U1:Nu = {u1:Nu

0 , u1:Nu
1 , · · · , u1:Nu

Nt−1} which are enforced on a set of Nu UAVs
during the time. Also, the cost function J is a function of initial position of
UAVs, i.e. J = J(s1:Nu

0 ). Hence, above optimization shall be performed for every
possible combination of initial positions of Nu UAVs.

2.2 Dynamic Programming

Dynamic programming [14] is used to find the optimal policy U1:Nu that mini-
mizes Eq. (8). Optimal policy U1:Nu is computed by backward optimization in
time, i.e. first finding the optimal control input u1:Nu

Nt−1, and then using u1:Nu

Nt−1 to
find optimal control signal u1:Nu

Nt−2. This procedure will be repeated recursively to
find the rest of control signals uv

ks.
Unfortunately, computational complexity of the dynamic programming

method grows exponentially with the number of UAVs. Hence, an enormous
computational effort is required to perform such minimization. A simpler alter-
native approach to overcome this drawback in minimizing Eq. (8) is to recursively
find sub-optimal policies for each one of the UAVs with slight modifications in
original cost function. The idea is to first find optimal position for the first UAV
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during the time. Then, sub-optimal policies for all other UAVs can be found by
minimizing the following modified cost function:

min
U={uv

0 ,uv
1 ,··· ,uv

Nt−1}
J(sv

0), constrained to =

{
sv
k+1 = F (sv

k, uv
k)

sv
0

(10)

where,

J(sv
0) =

Nt−1∑

k=0

⎧
⎨

⎩−I(Θk, zk|sv
k) + α

v−1∑

j=1

e−[sv
k−sj

k]
T W [sv

k−sj
k]

⎫
⎬

⎭ (11)

where, v = 2, 3, · · · , Nu and α > 0 and the positive definite diagonal matrix W
are penalty factors that determine the separation between neighboring UAVs.
Hence, the UAVs are forced to spread out over the spatial domain of interest,
thus avoiding redundancy in measurements.

2.3 Limited Lookahead Policy

Depending on the nature of phenomenon under study, evaluation of mutual infor-
mation map for all the future time steps can be computationally expensive. This
will result in computational complexity while finding optimal control policies
for the UAVs over the whole time period. Hence, using Eq. (11) restricts real
time applications of proposed algorithm. One way to avoid these computational
complexities is to approximate the true cost-to-go function Jk+1 in Eq. (11)
with some function that is a limited lookahead approximation of true cost-to-go
function Jk+1. For instance, Jk+1 in Eq. (11) can be approximated as:

Jk+1 �
k+1+l∑

i=k+1

⎧
⎨

⎩−I(Θi, zi|F (sv
i−1, u

v
i−1)) + α

v−1∑

j=1

e−[sv
i −sj

i ]
T W [sv

i −sj
i ]

⎫
⎬

⎭ (12)

where, v = 2, 3, · · · , Nu and l is the number of future time steps which are used
for approximation of true cost-to-go function Jk+1. As one can see, evaluation of
Eq. (11) requires knowledge of mutual information for all the time steps between
k + 1 and Nt − 1. While in limited lookahead method, Jk+1 is approximated by
a limited number of future time steps.

Limited lookahead policy has two major benefits with respect to original
dynamic programming algorithm. First, limited lookahead policy could result in
considerably less computational cost involved in finding sub-optimal control poli-
cies. The second, benefit of limited lookahead policy is that due to dependence
of optimal policies on future wind data, the optimal policies obtained using the
original cost function may be erroneous for distant future time steps. Hence,
using limited lookahead policy avoids erroneous optimal policies by approximat-
ing the true cost-to-go function with limited number of future time steps.

The only drawback of using limited lookahead policy is that it may result in
slower convergence of estimation process, especially if the UAVs are located far
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away from the mutual information map. To illustrate this more clearly, consider
the situation shown in Fig. 1. If initial position of UAV is far from the mutual
information map, given maximum speed of UAV and lookahead time step l = 3,
there will not be any information inside the range of UAV. Hence, UAV does not
move and proposed algorithm suggests that UAV should stay at the same posi-
tion. This deficiency can be overcome by minimizing the distance between the
UAV position and mutual information map, whenever the mutual information
inside the range of UAV is zero. This can be mathematically described as:
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m

)
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UAV position at t
0

Maximum range of 
UAV for l time steps

Fig. 1. Schematic layout of applied UAV sensor and mutual information maps at three
consecutive times. Red square shows initial position of UAV and black circle shows its
maximum range, given maximum speed of UAV and l = 3.

If
k+1+l∑
i=k+1

I(Θi, zi|F (sv
i−1, u

v
i−1)) = 0, then

J̃k+1(sv
k, uv

k) =
k+1+l∑

i=k+1

d(si
Imax

, F (sv
i−1, u

v
i−1)) + α

v−1∑

j=1

e−[sv
i −sj

i ]
T W [sv

i −sj
i ] (13)

where, d(si
Imax

, F (sv
i−1, u

v
i−1)) is the Euclidean distance between the spatial loca-

tion where mutual information obtains its maximum (denoted by si
Imax

) and
location of the UAV. Using above algorithm, utilized UAVs always move toward
the mutual information map, independent of their initial location or lookahead
time step l. Note that this property of proposed approach ensures faster detection
of the plume and consequently faster convergence of estimation process.

3 Uncertainty Quantification

Method of quadrature points is utilized to perform the task of uncertainty quan-
tification. In this method, a set of intelligently selected points will be propagated
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through the dynamical model and statistics of the output are then determined
by weighted average of model outputs.

To describe this in more detail, let x(lat, lon, z,Θ, t) ∈ R
n represent the

concentration of pollutant material at a given spatial point (lat, lon, z) and time
t. Note that x is a function of uncertain model parameter vector Θ ∈ R

m. The
parameter Θ contains parameters like source location, total mass of pollutant
material, etc. Θ is assumed to be time invariant and function of a random vector
ξ = [ξ1, ξ2, · · · , ξm]T ∈ R

m defined by a pdf p(ξ) over the support Ω.
Now, kth order moment of model output x, at a given point (lat, lon, z) on

the domain and a specific time t can be written as

E [xk] =
∫

ξ

xk(Θ)p(ξ)dξ �
M∑

q

wqx
k(Θ(ξq)), k = 1, 2, · · · (14)

where, M denotes total number of quadrature points and Θ(ξq) ∈ R
m×1 repre-

sents qth quadrature point, generated based on the applied quadrature scheme.
Similarly, kth order central moments of concentration can be evaluated by shift-
ing the quadrature points by the computed mean and then using Eq. (14).

Different types of quadrature rules like classical Gaussian quadrature rule
can be used to evaluate the integral in Eq. (14). The classic method of Gaussian
quadrature exactly integrates polynomials of 1-Dimension up to degree 2M + 1
with M + 1 quadrature points. Generally, in an n-dimensional parameter space,
the tensor product of 1-dimension quadrature points is used to generate quadra-
ture points. As a consequence of this, the number of quadrature points increases
exponentially as the number of input parameters increases.

Herein, we have utilized Conjugate Unscented Transform (CUT) recently
developed by Nagavenkat et al. [11,12], to overcome this drawback of regular
quadrature points. CUT approach can be considered as an extension to the con-
ventional Unscented Transformation method, by satisfying higher order moment
constraint equations. CUT points are efficient in terms of accuracy while inte-
grating polynomials and yet just employ a small fraction of the number of points
used by Gaussian quadrature scheme. Figure 2 represents the number of 8th order
quadrature points required by different quadrature schemes for a uniformly dis-
tributed random vector versus the dimensionality of the random vector. From
this figure, it is clear that the CUT methodology requires less number of quadra-
ture points comparing with other quadrature schemes.

4 Data Assimilation

Data assimilation can be described as finding posterior statistics of the parameter
vector Θ ∈ R

m, given a set of measurement data Z = {z1, z2, · · · , zN}, where
N denotes the total number of time steps where measurement data is available.
Using Bayes’ theorem, posterior distribution of Θ can be written as:

p(Θ|Z) =
p(Θ)p(Z|Θ)

p(Z)
, p(Z) =

∫

Θ

p(Z|Θ)p(Θ)dΘ = EΘ{p(Z|Θ)} (15)
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Fig. 2. Comparison of number of 8th order quadrature points required according to
different quadrature scheme versus dimension of random variable.

where, p(Θ) is the prior distribution of parameter Θ, p(Z|Θ) is the likelihood of
measurements given the parameter.

Now, one can compute the posterior statistics of Θ by multiplication of appro-
priate functions of Θ in Eq. (15) and integrating with respect to Θ [15]. For
instance, posterior mean of Θ, denoted by Θ̂+, can be computed as:

Θ̂+ = EΘ{Θ} =

∫
Θ

Θp(Θ)p(Z|Θ)dΘ

EΘ{p(Z|Θ)} =
EΘ{Θp(Z|Θ)}
EΘ{p(Z|Θ)} (16)

Posterior second order moment of Θ, denoted by Σ+, can also be computed as:

Σ+ =
∫

Θ

ΘΘT p(Θ|Z)dΘ =
EΘ{ΘΘT p(Z|Θ)}

EΘ{p(Z|Θ)} (17)

CUT quadrature points are used to compute the integrals in Eqs. (16) and (17).

5 Numerical Simulations

For numerical simulations, dispersion/advection of propane is simulated over
New York area. Domain of interest and corresponding wind field (at one specific
time) are shown in Fig. 3(a). Simulation time is considered to be 24 hrs., starting
from 00 : 00 of September 1st, 2013. North American Regional Reanalysis wind
data at pressure level 100 kpa (height � 100 m.) is used for simulation. Three
instantaneous mass releases are considered where their location is known and
the only uncertain parameters are their amount of mass release. It is assumed
that releases happen at the same time, i.e. all source releases happen at 00 : 00 of
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September 1st. All mass releases are assumed to be uniformly distributed
between 100 kg and 300 kg. Figure 3(a) illustrates source locations and the wind-
field (at t = 0 hrs.) over the two dimensional spatial domain.
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Fig. 3. a) Schematic layout of Propane release over New York region, source locations
are shown with purple circles, the wind-field (at t = 0 hr and pressure level = 100 kPa)
is shown over the two dimensional domain with blue vector field. Square markers show
applied 3 stationary sensors, while triangles represent 25 stationary sensors. b) Optimal
way-points for mobile sensors at different time steps obtained based on DDM approach.
Contour map represents the information map at the final time (Color figure online).

Second-order Closure Integrated PUFF (SCIPUFF) [16] model is being used
for numerical simulation of dispersion/advection phenomenon.

The sensor used for the measurements is a bar sensor similar to the one
used in [17], with slight differences. The number of bars ranges from zero to
fifteen. These bar readings indicate the concentration magnitude at the sensor
location at the instant; the sensor displays z = 0, · · · , 15, bars when the internal
continuous-valued concentration magnitude xint is between thresholds Tz and
Tz+1, where 0 ≤ Tz < Tz+1. The thresholds Tz’s are defined on a logarithmic
scale, i.e. Tz ∈ {0, 5 × 10−14, 10−13, 5 × 10−13, 10−12, · · · , 5 × 10−7}.

Probability density function of xint given the corresponding concentration x
is assumed to be Gaussian, i.e.

p(xint|x) = N (xint;x,R) =
1√
2πR

e− (xint−x)2

2R (18)

where, R(x̃) = σ2(x̃) = (ax̃ + b)2, a = 1 and b = 10−15 in our simulations. Also,
it is assumed that x̃ = Tz, where Tz is the sensor bar corresponding to xint.
Following Eq. (18), likelihood function, or simply probability of z conditioned
on x, is determined by the following integral

P (z|x) ∝
∫ Tz+1

Tz

p(xint|x)dxint,
∑

z

P (z|x) = 1 (19)
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Consequently, the mutual information in Eq. (2) will be written as:

I(Θ; z) =
Nz∑

z=0

M∑

q=1

wqΓ ln (Γ ) −
Nz∑

z=0

(
M∑

q=1

wqΓ

)
ln

(
M∑

q=1

wqΓ

)
(20)

where, Nz = 15 and

Γ ≡ Γ (Tz+1, Tz, Θ(ξq), R) =
1
2

{
erf
(

Tz+1 − x(Θ)√
2R

)
− erf

(
Tz − x(Θ)√

2R

)}

A set of 59 CUT8 quadrature points are used to quantify the uncertainty
involved in concentration of dispersal material. Also, a 6th order gPC expansion
is used to reconstruct distribution of parameters after each update. Simulation
of dispersion/advection has been performed using SCIPUFF numerical model,
where concentration of propane is recorded every 10 mins.

Performance of DDM approach is verified by comparing data assimilation
results obtained by mobile and stationary sensors. Three sensors are used for data
observation and a limited lookahead policy with l = 6 is used for finding location
of each mobile sensor during the time. We considered α = 5 and W = diag([1, 1])
in our simulation. Figure 3(b) illustrates positions of UAVs during the time over
the spatial domain. It can be observed from Fig. 3(b) that UAVs end up to the
locations where the mutual information map obtains its maximum.

Convergence behavior for mean estimate of parameter m3 using stationary
and mobile sensors, along with the minimum and maximum range of the estimate
are shown in Fig. 4. Figure 4(a) illustrates that using stationary sensors results
in poor estimates of the parameters. This is due to the inefficient placement of
sensors during data assimilation process. On the other hand, as Fig. 4(b) repre-
sents, DDM approach results in significantly better convergence and confidence
for estimate of m3.
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Fig. 4. m3 estimate during the time obtained using a) stationary, and b) mobile sensors



320 R. Madankan et al.

Table 1. Root Mean Square Error (RMSE) between mean estimate of source parame-
ters and their actual values while using different sensor networks/methods.

Sensor network/method RMSE

m1 m2 m3

3 stationary sensors 46.27 21.18 38.67

25 stationary sensors 14.49 19.42 33.86

3 mobile sensors / chemotaxis 16.11 11.97 14.32

3 mobile sensors / DDM 1.93 5.74 12.19

To summarize, Root Mean Square Error (RMSE) between mean estimate
of source parameters and their actual values while using different sensor net-
works and different methods is shown in Table 1. RMSE of estimation results by
using Chemotaxis approach is also shown in Table 1. It is clear from Table 1 that
the proposed DDM algorithm outperforms all the other alternative methods or
sensor networks, including Chemotaxis method. In other words, DDM approach
results in least amount of RMSE comparing to other sensor networks and chemo-
taxis algorithm. To highlight performance of proposed DDM approach, we have
also compared RMSE in parameter estimates obtained by DDM approach with
RMSE of source parameter estimates using 25 stationary sensors (shown with
triangle markers in Fig. 3(a)). As Table 1 represents, using DDM approach with
just 3 sensors results in lower value of RMSE in parameter estimates, compar-
ing with 25 stationary sensors. Hence, proposed DDM method provides more
accurate estimates while using less number of data observation sensors.

6 Conclusion

In this research, a new approach for optimal allocation of data monitoring sen-
sors is provided. The key idea of the presented method is to determine location of
data monitoring sensors such that the mutual information between model predic-
tions and measurement data is maximized, thereby giving a better reduction in
uncertainty. The main advantage of this approach is that it significantly increases
the accuracy of the estimation, while using fewer number of data observation
sensors. Further, a new set of quadrature points, known as CUT, are used to
alleviate the computational complexities involved in propagation of uncertainty
in dynamical systems. Numerical simulations demonstrate performance of the
proposed methodology, where the mobile sensors, when located based on DDM
approach, provide better estimates and significantly outperform the estimates
from stationary sensors or alternative methods like Chemotaxis approach.

Acknowledgement. This material is based upon work supported by the National
Science Foundation under award number CMMI- 1054759 and AFOSR grant number
FA9550-11-1-0012.
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Abstract. Optimal coordination of multiple sensors is crucial for effi-
cient atmospheric dispersion estimation. The proposed approach adap-
tively provides optimized trajectories with respect to sensor cooperation
and uncertainty reduction of the process estimate. To avoid the time-
consuming solution of a complex optimal control problem, estimation and
vehicle control are considered separate problems linked in a sequential
procedure. Based on a partial differential equation model, the Ensemble
Transform Kalman Filter is applied for data assimilation and generation
of observation targets offering maximum information gain. A centralized
model-predictive vehicle controller simultaneously provides optimal tar-
get allocation and collision-free path planning. Extending previous work,
continuous measuring is assumed, which attaches more significance to the
course of the trajectories. Local attraction points are introduced to draw
the sensors to regions of high uncertainty. Moreover, improved target
updates increase the sampling efficiency. A simulated test case illustrates
the approach in comparison to non-attracted trajectories.
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1 Introduction

Depending on the weather conditions, the dispersion of gaseous material in the
atmosphere easily turns into a large-scale highly dynamic process. In order to
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understand its characteristics and predict future impacts, fast and accurate state
estimation is required. The use of robotic systems for autonomous data gathering
has been increasingly considered in this context [8]. Sensor-equipped autonomous
vehicles are able to adapt their movement to a changing environment, which
is particularly beneficial when dealing with atmospheric dispersion. Employing
multiple mobile sensors permits to cover larger domains and optimal cooperation
among them increases the efficiency of the estimation procedure.

As the dispersion dimensions, in general, prohibit pattern-based sampling or
global exploration, immediate processing of the gathered data and adaptive sen-
sor motion planning is essential. Information obtained from the sensors and the
predictions of an underlying process model can be combined by a data assimi-
lation method to estimate the current process state. In this way, uncertainties
stemming from observation noise and model errors are reduced. Using a partial
differential equation (PDE) model, more accurate forecasts can be obtained since
the physics and the dynamic behavior of the dispersion process are considered.

Related approaches often avoid detailed PDE models and instead use sim-
ple models, such as Gaussian processes [15] or qualitative models [7]. They can
provide results in a very short time and are frequently used in distributed sys-
tems. However, as important characteristics of the process dynamics are not
considered, only inaccurate approximations can be obtained.

Adaptive observation strategies based on PDE models are commonly used
in large-scale systems, e.g. for numerical weather prediction. Examples are the
singular vector technique [3], the gradient method [5] or the Ensemble Trans-
form Kalman Filter (ETKF) [2,12]. Due to the huge system dimensions, though,
vehicle dynamics are not considered in these applications.

Only few publications focus on adaptive observation strategies combining
PDE models and vehicle dynamics. While [14,16] deal with parameter estima-
tion, [11,17] consider state estimation problems in conjunction with data assim-
ilation. All these approaches involve a sophisticated optimal control problem
subject to the process model, the covariance evolution, and the vehicle dynamics.
Solving such complex problems is hard and time-consuming, especially regarding
the real-time requirements of the application.

This is why [4,6] utilize computationally efficient suboptimal sensor guidance
schemes based on the gradient of the mutual information rate and Lyapunov sta-
bility arguments, respectively. Although multiple sensor vehicles are employed,
the cooperation among them is either not explicitly addressed or cannot be con-
sidered optimal.

In previous work [13], a centralized adaptive observation strategy was pro-
posed that combines PDE-based process models and optimally cooperating
mobile sensors for online state estimation. Instead of solving a sophisticated
optimal control problem, state estimation and vehicle control are considered sep-
arate problems that are linked in a repeating sequential procedure: The process
estimate, based on a PDE model, is improved by assimilation of new sensor
data using an ETKF approach. Based on the estimate’s error covariance matrix,
measurement locations providing maximum information gain are determined and
are used by a model-predictive controller to guide the sensor vehicles based on
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a discrete-continuous linear optimization program. This results in a significant
gain of computational efficiency compared to solving a (nonlinear) optimal con-
trol problem incorporating process and vehicle dynamics. The focus was set on
application scenarios where measurements are expensive so that they are only
performed if one of the specified locations is reached by a sensor vehicle.

In contrast, this work adapts the strategy presented in [13] to exploit the
advantages of a sensor system able to measure at every time step. Now that infor-
mation is gathered en route, more importance is attached to the course of the
trajectories leading to the target locations. Introducing additional local attrac-
tion points draws the sensor vehicles to regions afflicted with high uncertainty.
Furthermore, a revised handling of target points accounts for the permanently
changing error covariance.

The rest of the paper is organized as follows. Sections 2 and 3 give a short
overview of the basic methodologies employed for state estimation and vehicle
control, respectively. In Sect. 4, the adaptive motion planning approach is sum-
marized. Testcases and evaluation results are presented in Sect. 5 followed by
concluding remarks in Sect. 6.

2 Model and State Estimation

2.1 Process Model

The aim of the proposed approach is to estimate the state of a dynamic transport
process that can be described by a PDE of the form

∂χ

∂t
= f(χ(t),∇χ(t),Δχ(t),w(t),∇w(t)), (1)

with the dispersing entity χ to be estimated and the underlying velocity field w.
Applying a spatial and temporal discretization scheme, an approximate solution
of the PDE can be found by solving an equation of the form

χf
i+1 = Mi[χ

f
i ] (2)

where Mi is the model operator obtained by the discretization scheme and χ is
the state vector, which contains values of χ at certain, discrete spatial positions.
With this formulation, the state vector at time ti+1 can be calculated from a
model forecast (superscript (·)f ) of the state vector at time ti. However, the
problem might be high-dimensional so that the solution of (2) becomes com-
putationally intractable especially regarding the real-time requirements of the
considered applications. Use of reduced order models [9] might be a possible
remedy in this context but is not investigated in this paper.

It is assumed that compared to the true process state, a Gaussian and unbi-
ased model error with known error covariance is made, introducing uncertainty
into the calculations.
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2.2 Observation Model and Data Assimilation

To alleviate the effects stemming from model uncertainty, the process is also
measured by a network of sensors. At every time step ti, all sensors take a mea-
surement. The resulting observation vector ψo

i can be described by the relation

ψo
i = Hi[χt

i ] + εi, (3)

with the true state χt
i and the unbiased and Gaussian observation error εi. The

observation operator Hi maps vectors from the state space onto the observation
space and depends on the measurement positions of the sensors.

To combine results obtained from simulation and from observations, a data
assimilation method has to be applied. Most of these methods rely on the for-
mulation that the updated or analysis state vector χa

i results from a linear
combination of the forecasted state vector and a weighted innovation due to the
observation:

χa
i = χf

i + Ki(ψo
i − Hi[χ

f
i ]). (4)

The weight matrix Ki can depend on the model and the observation error covari-
ance matrix as well as on the current estimate’s error covariance Pf

i which is
often calculated alongside with the mean estimate. As the estimate’s error covari-
ance matrix describes the quality of the state vector, it is especially important
for adaptive observations. In this work, the Ensemble Transform Kalman Filter
(ETKF) [2] is chosen as data assimilation scheme as it is especially suitable for
high-dimensional problems. Furthermore, it is able to calculate the analysis error
covariance matrix before the actual measurements are taken.

3 Cooperative Vehicle Control

The model-predictive control (MPC) approach employed in the proposed adap-
tive observation strategy simultaneously determines collision-free vehicle tra-
jectories as well as optimal target allocation respecting the vehicles’ physical
characteristics. It can be adapted to various multi-vehicle constellations and
task scenarios. Here, it is applied to guide a homogeneous team of sensor plat-
forms to a number of specified target locations while minimizing the distances
to attraction points in each vehicle’s local environment. Attraction points are
updated in every time step, whereas targets are recalculated at greater time
intervals, but may shift slowly in the meantime.

Core of the control approach is a discrete-time mixed-integer linear program
(MILP) formulation comprising the vehicles’ motion dynamics, distance con-
straints, and several logical expressions. For details on the modeling, the reader
is referred to [13]. An optimal control problem of the following form is set up
and is solved in a receding horizon fashion to compute optimal control inputs
for each vehicle:
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min
UN

|FxN |+
N−1∑

k=0

|G1u
k|+|G2δδδ

k|+|G3z
k|+|G4x

k| (5a)

s.t. xk+1 = Axk + B1u
k + B2δδδ

k + B3z
k (5b)

E2δδδ
k + E3z

k ≤ E1u
k + E4x

k + E5 . (5c)

In this problem formulation, x = [xc xb]T ,xc ∈ R
nc ,xb ∈ {0, 1}nb , is the

system state comprising the vehicle states, the target locations, and each vehicle’s
local attraction point. u = [uc ub]T ,uc ∈ R

mc ,ub ∈ {0, 1}mb , comprises the
vehicle control inputs. δδδ ∈ {0, 1}rb and z ∈ R

rc represent auxiliary binary and
continuous vectors, respectively, e.g. containing distances. The prediction time
step k = 0, . . . , N−1 relates to the global equidistant time steps ti ∈ N according
to xk = x(ti+k). As solution of problem (5), the sequence UN := {uk}N−1

k=0 of
control inputs is obtained. The first element of UN is applied to the real system,
then its new state is measured for computing updated control inputs at the next
time step ti+1. In this manner, the prediction horizon N is shifted over time.

The constraints (5b)–(5c) form a so called mixed logical dynamical (MLD)
system, which was proposed in [1] for modeling and controlling constrained lin-
ear systems containing interacting physical laws and logical rules. The objective
function (5a) can reflect a prioritization of different problem aspects. For the
proposed motion planning approach, these are the minimization of each vehi-
cle’s distance to its local attraction point, the minimization of distances to still
unprocessed target locations, a reward for visiting target locations as well as
the minimization of the required control effort. Problem (5) is a mixed-integer
linear constrained finite time optimal control (CFTOC) problem. It can easily
be transformed into a MILP at each time step of the MPC procedure. Therefore,
a numerically robust, efficient computation of control inputs can be performed.

The described control scheme is applied in a centralized manner for the global
system of vehicles and targets. Hence, globally optimal cooperative behavior
within the scope of the system model and the chosen prediction horizon N
is obtained. However, the efficiency of the centralized MPC approach strongly
depends on the size of the system model, i.e. the number of vehicles.

4 Adaptive Sensor Motion Strategy

In contrast to related approaches [4,6,11,14,16,17], the proposed adaptive obser-
vation strategy, in principle, treats state estimation and vehicle control as two
separate problems. However, to obtain a working and closed-loop solution, both
parts are coupled by information exchange. In short, target and attraction points
are calculated based on the error covariance matrix associated with the current
state estimate. They serve as input for the vehicle controller responsible for the
sensor trajectories. The measurement data obtained from the sensors is then
refed to update the state estimate and error covariance, and so on.

In detail, the following steps, which are also schematically depicted in Fig. 1,
are repeatedly processed:
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Fig. 1. Overview of the proposed adaptive observation strategy.

Determine Target Points. The error covariance matrix provided by the ETKF
is a suitable measure of the quality of a state estimate. Large entries indicate
high uncertainties, i.e. high deviations between true state and estimate. The
objective is to iteratively reduce the entries in the covariance matrix by taking
measurements at positions where the uncertainty is largest and, thus, the most
valuable information can be obtained.

In order to determine such a target point, the location corresponding to the
maximum value of the diagonal of the current error covariance matrix Pa

i is
chosen. Further target points are calculated iteratively as described above, but
considering the analysis error covariance matrix P̃a

i . The latter is obtained by
applying the ETKF pretending that observations are available at all previously
calculated target points, i.e. the observation matrix H̃k

i has to be determined
in every iteration k. Hereby, clusterization of target points in regions with high
uncertainty is avoided. The procedure is repeated until the number of target
points corresponds to the number of sensor vehicles.

The target points then serve as input for the model-predictive controller
guiding the sensor vehicles to obtain the corresponding measurement. A mea-
surement at the target point can be considered globally optimum in terms of
information gain at that very moment in time.

Determine Local Attraction Points. As the sensors are assumed to measure
at every time step, the vehicle trajectories leading to the global measurement
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targets are of importance and should maximize the information gain on the way.
For this purpose, local attraction points are introduced that intend to deviate
the trajectories into regions of high uncertainty without changing their general
orientation towards the target.

Attraction points are determined for each sensor vehicle individually. The
calculation equals that of the global targets, but is restricted to the sensor’s
local environment projected to the next time step assuming the vehicle keeps its
current velocity. The circular environment is further reduced to its front half as
shown in Fig. 2 in order to preserve the forward motion. In every time step, the
attraction points are updated based on the current error covariance matrix.

Fig. 2. Local region (gray) for the selection of attraction points based on a projection
of the vehicle’s position xk

v along its current velocity vector vk
v .

Control Vehicles and Process Measurements. The model-predictive controller
provides control inputs for the vehicles, such that each vehicle approaches one of
the global targets taking slight detours to stay close to their individual attraction
points. In every time step, the obtained measurement data is assimilated to
improve the process state estimate and update the error covariance matrix.

Update Target Points. When dealing with dynamic processes, target points
might have already lost their optimality by the time their calculation is com-
pleted. The information gain of a measurement there more and more decreases
over time. That is why different expiration criteria for target points were imple-
mented. Obviously, a target point is replaced as soon as a sensor vehicle has
been on the spot to take a measurement. Moreover, a target is discarded if it
has not been reached within a certain number of time steps or if the associated
uncertainty value is lower than 20 % of the current global uncertainty maximum.
In all three cases, a new target is generated applying the ETKF-based approach
described above. If a target point does not have to be recalculated because of
the above criteria, it is moved with the background wind velocity to account for
the advective nature of the dynamic process.
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Fig. 3. Unattracted trajectory (blue dashed line) vs. trajectory (black solid line) influ-
enced by attractor points (light blue, every third point is shown).

5 Results

5.1 Influence of Local Attraction Points

A simplified static test scenario is considered to illustrate the influence of local
attraction points on the vehicle trajectories. Two sensor vehicles modeled as
point masses with a maximum velocity of 0.015 and a maximum acceleration of
0.01 located on a two-dimensional domain at (-0.2,-0.4) and (0.5,0.2) are sup-
posed to reach two target points at (-0.25,0.25) and (0.5,-0.5). To avoid collisions
and redundant measurements, the minimum distance between two sensors is set
to 0.1. An MPC prediction horizon of N = 20 time steps is used, while Δt = 2.
The problem is solved twice - with and without the use of local attraction points.
In the scenario with attraction points, those are determined based on a steady
background function representing the error variance of the dynamic case.

The results obtained with the two approaches are depicted in Fig. 3. At first,
the sensor vehicles mainly try to minimize the distance to both target points
until they are close enough to head for the target points. The local attraction
points influence the trajectory as the sensors are pulled towards locations with
higher values of the background function. If the background function is supposed
to represent locations with high uncertainty, the use of the attracted trajectories
should produce a higher information gain.

5.2 Dynamic Test Case

The proposed observation strategy is now applied for state estimation of a
two-dimensional dispersion process governed by the source-free linear advection-
diffusion equation
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∂c

∂t
+ ∇ · (cw) − ∇ · (D∇c) = 0, (6)

where c represents the concentration to be estimated, D is the diffusion matrix,
which is assumed to be homogeneous and constant, and the velocity field w
is uniform with w1 = 0.005 in x-direction and a vanishing component in y-
direction. A finite element method with a characteristic Galerkin approach is
applied to discretize and solve (6). The number of grid nodes amounts to about
1000. Note that although the considered problem is kept simple for reasons of
clarity, the proposed approach can easily be extended to more sophisticated
scenarios, e.g. involving complex velocity fields including eddies.

Observations are obtained by the use of a so-called twin experiment, i.e. the
true solution is assumed to be known and it is simulated along with the esti-
mated solution. With this approach, observations can be easily obtained using
(3), where the measurement errors are assumed to be uncorrelated and to have
a constant variance of 0.01. The difference between the true solution and the
estimated solution resides amongst others in their initial condition. A combina-
tion of four Gaussian pulses is considered as initial condition. However, for the
true initial state and the ensemble generation, the parameters (width, height and
position of the pulses) are perturbed by adding numbers drawn from a Gaussian
distribution. In total, the ensemble consists of 40 state vectors and localization
is used to avoid spurious oscillations [10].

Again, two sensor vehicles with the same configuration as in the static sce-
nario, now starting at (0,0.5) and (0,-0.5), respectively, are considered. For com-
parison, first, the adaptive observation approach presented in [13] is applied, but
slightly modified assuming that the sensors measure at every time step. Then
the problem is tackled applying the new motion planning approach involving
local attraction points and improved target updates. After 60 time steps, the
results depicted in Fig. 4 are obtained.

While using the first approach the vehicles are heading to the middle of
the domain to minimize the distance to both target points, the vehicles are
attracted more to the boundaries using the proposed extended strategy. The
reason for this behavior is a higher uncertainty in the top and bottom area
as the uncertainty distribution initially is horseshoe-shaped. Instead of driving
through regions where only marginal information can be found, the trajectory
is planned to also reduce a high amount of local uncertainty on the way to the
target point. This leads to better quality estimates in shorter time.

Having a look on the error confirms this impression. As the true solution
is assumed to be known, the quality of the resulting state estimates can be
quantified considering their deviation from the true state. Thus, the error can
be calculated by forming the norm of the deviation vector. The mean error over
time is depicted in Fig. 5(a). Applying the new method with attraction points
reduces the error much faster than without attraction points. While the error
obtained from the simple strategy is around 0.05 at the final time t = 120, the
proposed strategy in the same time reduces the error to 0.032. The same applies
for the norm of the diagonal of the error covariance matrix, which is for the
proposed strategy one third less than for the compared strategy (cf. Fig. 5(b)).
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(a) True solution

(b) Solution without local attraction points

(c) Solution with proposed approach

Fig. 4. Concentration distribution at t = 120 and related sensor vehicle trajectories
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Fig. 5. Mean error and variance over time.

6 Conclusion

A new centralized adaptive observation strategy was presented that relies on a
PDE process model, adaptive ETKF-based generation of observation points, and
the cooperation of mobile sensors controlled by a MILP-based model-predictive
controller. The strategy is especially designed for sensor systems able to measure
at high repetition rates as it aims to maximize the uncertainty reduction along
the sensor trajectories. Furthermore, a flexible recalculation of target points
accounts for the fast evolution of the error covariance. Compared to sensor
motion planning without these new features, the proposed method provides esti-
mates of increased quality in shorter time.
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Abstract. This paper presents a path-planning paradigm for dis-
tributed control of multiple sensor platforms in a geophysical flow
well-approximated by a point-vortex model. We utilize Hamiltonian
dynamics to generate control vector fields for vehicle motion in N -vortex
flows using the concept of an active singularity whose strength is a tun-
able control input. We introduce active singularities that are virtual point
vortices possibly collocated with virtual point sources or sinks. We pro-
vide a principled method to stabilize relative equilibria of these virtual
vortices in the presence of the actual point vortices, which represent the
underlying geophysical flow. We illustrate how these relative equilibria
may be useful for vehicle path planning and sampling in a geophysical
flow. Preliminary results presented here are based on an adaptive control
design.

Keywords: Path planning · Vortex dynamics · Environmental sam-
pling · Cooperative control

1 Introduction

Distributed environmental sampling is an active field of research [2,14] due to
its many applications, including contaminant plume localization [23], biological
monitoring [18], and data assimilation in atmospheric and ocean sciences [5,
13]. Significant hardware and sensor improvements [19] as well as algorithmic
performance guarantees [9,10] have further encouraged interest. However, there
are open challenges about how mobile sensor platforms can most effectively
sample and interact with strong, circulating flows [3,10,11].

Coherent vortices (eddies) in the ocean persist on mesoscales (10 to 500 km)
and submesoscales (1 to 10 km) for weeks or even months and play an impor-
tant role in global transport and mixing processes [8]. For example, small-scale
(15 km) eddies appeared at the mouth of Monterey Bay during field experiments
of the second Autonomous Ocean Sampling Network (AOSN-II) and contributed
to the overall transport of cold water away from the southern part of the bay
[18]. However, the movement of these eddies could not be correlated with local
wind shear stress [18]. Understanding transport within these flow structures
c© Springer International Publishing Switzerland 2015
S. Ravela and A. Sandu (Eds.): DyDESS 2014, LNCS 8964, pp. 334–346, 2015.
DOI: 10.1007/978-3-319-25138-7 30
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is possible but requires in situ observations over a large spatiotemporal vol-
ume collected by fleets of autonomous vehicles [3,6,8,17]. Underwater gliders,
which are steered, buoyancy-driven, long-endurance vehicles, and drifters, which
are depth-controlled underwater platforms that passively drift, are deployed to
reduce uncertainties in estimates of ocean processes [14,16,20] and to sample
and track oceanographic features [2,18]. A steered sampling platform such as a
glider that travels within the flowfield of an eddy taking targeted observations
may be even more beneficial than passive drifter, even if the drifter has longer
endurance.

Difficulties in accessing platforms during relatively long ocean-sampling mis-
sions has encouraged research in distributed algorithms that can maximize vehi-
cle endurance, enhance vehicle autonomy, and reduce process uncertainty during
sampling. Hsieh et al. [6] show that steering vehicles to flow patterns such as
(almost) invariant sets can help maximize vehicle endurance. Frew et al. [4] con-
struct Lyapunov-based guidance vector fields for specifying sampling trajectories
that can be tracked by the onboard controller of an autonomous (aerial) vehicle.
Further, focusing measurements on targeted areas [6] and stabilizing multivehi-
cle formations have been shown to help maximize information collection [3] when
sampling geophysical flows that can be modeled using reduced-order methods
such as a point-vortex model.

This paper provides a theoretically-justified motion-planning framework
that accounts for environmental flow effects and vehicle-to-vehicle interactions
through the use of flow singularities. Flow singularities (point vortices, sources,
and sinks) are standard elements of a reduced-order potential flow model that
induce nearby fluid flow but are undefined (singular) at their centers. Distrib-
uted algorithms within this framework are designed to enhance autonomy and to
allow sampling platforms to exploit, whenever possible, the underlying motion
of their environment to maximize endurance in geophysical flows.

The study of vortex dynamics in this paper is an extension of the fundamental
point-vortex work of Chen et al. [1], who show that augmenting a point-vortex
system with dissipation stabilizes relative equilibria (regular patterns that are
fixed points in a reduced configuration space) of the unmodified point-vortex
dynamics [1]. The modification of the point-vortex dynamics to include dissi-
pation is suggestive of control action being applied to the point-vortex system.
Further, we observe that the modified vortex dynamics in [1] represent spiral
vortices (vortices collocated with a sources or sinks) in the presence of a sink
at the origin. These observations lead us to consider spiral vortices as basic
modeling elements of a virtual singularity system in which virtual vortices are
used to guide vehicle sampling trajectories. By manipulating the virtual vor-
tex strengths, we create active singularities to generate artificial vector fields
for vehicle guidance. The actual vortex dynamics (representing the geophysical
flow) and the virtual vortex dynamics are connected via a one-way influence of
actual vortices on the virtual ones.

A point-vortex system possesses Hamiltonian dynamics and exhibits con-
servation of certain physical properties that we exploit in Lyapunov analysis
to obtain analytical guarantees for this motion-planning paradigm. We provide
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Lyapunov stability analysis for the vortex dynamics of Chen et al. [1] based
on conserved quantities of the Hamiltonian system. We extend the dynamics of
Chen et al. [1] by showing how the location of the center of the relative equi-
librium can be prescribed. We derive the total Hamiltonian, which is conserved
by the virtual vortices in the actual-plus-virtual vortex dynamics, and use it
to provide Lyapunov analysis demonstrating asymptotic convergence of virtual
vortices to a relative equilibrium. The use of Lyapunov analysis to inform the
selection of a parameter update law is a common theme in adaptive control [22].
As a preliminary example of the efficacy of this motion planning framework, we
employ adaptive control to regulate the value of the total Hamiltonian.

The specific contributions of this paper are (1) Lyapunov analysis of the
nonlinear stability of a relative equilibrium in the dissipative point-vortex sys-
tem introduced by Chen et al. [1]; (2) a novel method for multivehicle motion
planning in the presence of point vortices based on distributed control of active
singularities; and (3) an adaptive control law for stabilizing lattice-shaped for-
mations of sampling platforms around the actual center of vorticity in a point
vortex flow. This work represents a framework in which multivehicle motion
planning is achieved in the presence of idealized flow field dynamics.

The outline of the paper is as follows. Section 2 explains point vortex dynam-
ics, summarizes the work of Chen et al. [1] on relative equilibrium configura-
tions, and provides Lyapunov analysis of their model. Section 3 introduces active
singularities for multivehicle motion planning and provides a Lyapunov analy-
sis of relative-equilibrium stabilization for virtual vortices. Section 4 presents a
Lyapunov-based, distributed control strategy for formations of virtual vortices
based on adaptive control of the singularity strength, including numerical sim-
ulation of motion planning in the presence of an actual vortex pair. Section 5
summarizes the paper and ongoing research.

2 Point-Vortex Dynamics and Relative Equilibria

In potential flow theory, an irrotational or point vortex is an idealized flow ele-
ment that models circulating flow [15]. Since the flow at the center of a point
vortex is undefined, it is called a flow singularity, much like a source or sink.
Let zα = xα+ iyα represent the position of vortex α ∈ {1, . . . , N} in the com-
plex plane and γα > 0 be its strength, which determines the magnitude of the
surrounding velocity field. The N -vortex system is Hamiltonian with [15]

γαẋα=
∂H
∂yα

= − 1
2π

N∑

β �=α

γαγβ
yα − yβ

|zα − zβ |2 (1)

γαẏα=− ∂H
∂xα

=
1
2π

N∑

β �=α

γαγβ
xα − xβ

|zα − zβ |2 , (2)

where the Hamiltonian H is
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H = − 1
4π

N∑

α=1

N∑

β �=α

γαγβ log |zα − zβ |. (3)

We elect to use complex variables for compactness and the overbar (·) to
denote complex conjugation. The selection of γk > 0 ensures all vortices have
the same signed circulation strength, preventing the possibility of vortex collapse.
The Hamiltonian dynamics (1) and (2) are equivalent to [12,15]

γαżα = −2i
∂H
∂zα

=
i

2π

N∑

β �=α

γαγβ
zα − zβ

|zα − zβ |2 , (4)

where the partial derivative operators are [21]

∂

∂zα
� 1

2

(
∂

∂xα
−i

∂

∂yα

)
and

∂

∂zα
� 1

2

(
∂

∂xα
+i

∂

∂yα

)
.

Let Γ =
∑N

α=1 γα denote the total vorticity. In addition to H, the N -vortex
system conserves the center of vorticity C = Γ−1

∑N
α=1 γαzα and the angular

impulse S =
∑N

α=1 γα|zα|2 [15]. Note, these quantities are analogous to the
center of mass and moment of inertia, respectively, in a point-mass system.
Point vortices have the following relations to other flow singularities: replacing
real circulation strength γα with an imaginary circulation strength iγα with
γα > 0 (resp. γα < 0) produces a sink (resp. source); a complex circulation
strength γα yields a spiral vortex [15].

Although the Hamiltonian dynamics of N vortices in the plane yield chaotic
trajectories [1], Chen et al. [1] show that adding dissipation stabilizes relative
equilibria, which are geometrical configurations of vortices not fixed in an inertial
frame [15]. Here we provide a Lyapunov analysis of the N -vortex dynamics with
dissipation, making use of the conservation of angular impulse S =

∑N
α=1 γα|zα|2

in the construction of a Lyapunov function. We utilize the dissipative vortex
dynamics for controlling the trajectories of actuated vortices in Sect. 4.

Chen et al. [1] show that relative-equilibrium configurations of the vortex
dynamics (4) are identical to the relative equilibria of the augmented system

żα =
i

2π

N∑

β �=α

γβ
zα−zβ

|zα−zβ |2 + μ

⎛

⎝1
2π

N∑

β �=α

γβ
zα−zβ

|zα−zβ |2 −ωzα

⎞

⎠, (5)

where μ>0 repesents a gain that governs the rate of convergence to the equilib-
rium configuration. Setting μ=0 in (5) yields the standard Hamiltonian vortex
dynamics [1]; the significance of including μ>0 is that the solutions of (5) con-
verge asymptotically to stable relative equilibria of (4), which are rotating vortex
configurations. Chen et al. refer to (5) as a phenomenological model; it repre-
sents dynamics that aggregate the particles into crystalline patterns [1]. Note
that when a relative equilibrium is attained, the dissipative term is zero and the
unmodified vortex dynamics are restored [1].
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Let R be a rotating reference frame with angular rate ω relative to inertial
frame I, and consider the coordinate change zα = ξα exp(iωt). By the chain
rule, ∂H

∂zα
= ∂H

∂ξα

exp(iωt) and (4) becomes

γαξ̇α = −2i
∂H
∂ξα

− iωγαξα. (6)

The equilibria in R yield the following conditions for relative equilibria in I:

∂H
∂ξα

+
ω

2
γαξα = 0, α = 1, . . . , N. (7)

Note, these conditions are invariant under transformation back to zα, i.e.,

∂H
∂zα

+
ω

2
γαzα =

∂H
∂zα

+
ω

2
∂S
∂zα

= 0. (8)

The key observation is that (5) may be written in terms of the angular
impulse S, which is conserved by the unmodified dynamics, i.e.,

γαżα = −2i
∂H
∂zα

−2μ

(
∂H
∂zα

+
ω

2
∂S
∂zα

)
. (9)

The dynamics (9) consist of a Hamiltonian term and a gradient term. The
gradient term suggests a Lyapunov function for asymptotic stability argu-
ments, provided collisions between vortices do not occur. Consider the candidate
Lyapunov function

V = H +
ω

2
S, (10)

whose dynamics along solutions of (9) are

V̇ =
∑

α

∂V

∂zα
żα +

∂V

∂zα
żα

=
∑

α

2ω

γα
Re

(
−i

∂H
∂zα

∂S
∂zα

)
− 4μ

γα

∣∣∣
∂H
∂z̄α

+
ω

2
∂S
∂z̄α

∣∣∣
2

.

By plugging in for H and S and making use of Im
(∑

α

∑
β �=α zβzα

)
= 0, the

first term vanishes, leaving

V̇ = −
∑

α

4μ

γα

∣∣∣
∂H
∂z̄α

+
ω

2
∂S
∂z̄α

∣∣∣
2

≤ 0.

This observation leads to the following proposition.

Proposition 1. Suppose γα >0 and zα(t) is a collision-free, bounded trajectory
of (9) for all α = 1, . . . , N . Then zα(t) asymptotically converges to a relative
equilibrium of the vortex dynamics given by (4).
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Proof. By assumption, zα(t) is collision-free and bounded. Hence, V is well-
defined for all time and there exists a compact set within which the trajectories
reside for all time. V̇ is negative semi-definite and zero only when (8) is satis-
fied ∀ α = 1, . . . , N . The invariance principle [7] stipulates that the trajectories
asymptotically converge to the largest invariant set for which condition (8) holds;
this set contains the rotating relative equilibria of (4). ��

3 Active Singularities for Motion Planning

The vortex dynamics with dissipation (5) are useful for stabilizing relative equi-
libria. We now exploit this property to create a novel motion-planning paradigm
based on virtual spiral vortices, which are singularities that add dissipation to a
point vortex system. Spiral vortices have complex circulation strength because
of the collocation of a vortex and a source or sink [15]. In this framework, vir-
tual vortices generate control vector fields that are added to the drift vector
field associated with the fluid flow. The control inputs to the system are the
singularity strengths.

Suppose the trajectories of P vehicles are generated by integrating their
dynamic interactions with N actual vortices and M virtual (spiral) vortices.
Let the actual vortices be located at zα for α∈{1, . . . , N}. Append the virtual
vortex locations zα for α ∈ {N +1, . . . , N +M} and vehicle locations zα for
α∈{N +M +1, . . . , N+M +P} to form the state vector zα ∈ C

N+M+P . Let Γβ

be the (possibly complex) circulation of vortex β =1, . . . , N+M . The dynamics
of the actual and virtual vortices in the active singularity system are

żα =
i

2π

N+M∑

β �=α

Γβaα,β
zα − zβ

|zα − zβ |2 , α = 1, . . . , N+M, (11)

where the sum is taken over N+M to account for all singularities in the system.
The interaction topology

aα,β =

{
0, if α=β or (α≤N and β>N)
1, otherwise

, (12)

enforces the natural dynamics between actual vortices, whereas each virtual
vortex evolves under the combined influence of the actual vortices and the other
virtual vortices. The vehicle dynamics żα for α = N +M +1, . . . , N +M +P
depend on the association between virtual vortices and vehicles. The association
may be one-to-one, multiple-to-one, involve a fixed virtual vortex, or be a mixed
variant of these strategies. In the remainder of this paper, we assume that virtual
vortices are collocated with vehicles under a one-to-one association.

View the complex circulations {ΓN+1, . . . ,ΓN+M} associated with the virtual
(spiral) vortices as control inputs; the problem is to characterize and stabilize
the desired solutions of (11). Note that because it is necessary to have more
than a single virtual vortex for controllability, the circulation strength Γβ of
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virtual vortex β only influences virtual vortex β indirectly. When Re{Γβ}=0 and
Im{Γβ} �=0, the active singularity β has radial flow only [15] (i.e., it is a source
for Im{Γβ} < 0 or a sink for Im{Γβ} > 0). When Re{Γβ} �= 0 and Im{Γβ} = 0, the
active singularity β represents an irrotational vortex. When Γβ =0, β behaves as
a passive (drifting) particle. Observe that if each vehicle is assigned to a virtual
vortex, (11) is identical to (5) with Γβ =γβ−iμγβ for spiral vortices and a fixed
sink of strength 2πμω|zα|2 at the origin. The sink at the origin serves only to
center the relative equilibrium at the origin.

In fact, one may control the center of vorticity C (correspondingly, the center
of the relative equilibrium) to be at a point C0 ∈ C away from the origin. Define
the shifted angular impulse

S ′ =
N∑

α=1

γα|zα − C0|2, (13)

and the modified Lyapunov function

V ′ =H+
ω

2
S ′. (14)

The following corollary to Proposition 1 represents a preliminary design consid-
eration for virtual vortex control.

Corollary 1. Suppose γα >0 and zα(t) is a collision-free, bounded trajectory of
(9) with S replaced by S ′ for all α = 1, . . . , N . Then zα(t) asymptotically con-
verges to a relative equilibrium of the vortex dynamics given by (4) and centered
at C0.

Proof. Substituting S ′ into (9) in place of S, using the Lyapunov function (14),
and following the approach of Proposition 1 shows that solutions converge to
the largest invariant set in which (8) is satisfied with S replaced by S ′. This
implies C = C0 because (after summing the invariance condition over all α),∑N

α=1 γα(zα−C0)=Γ(C−C0)=0. ��
Figure 1 illustrates the time evolution of virtual vortices from a random initial
arrangement to a rotating relative equilibrium centered at C0=200+200i.

We now consider the actual-plus-virtual vortex system. Suppose the actual
vortices interact according to their own natural dynamics (4) and the virtual
vortices have dynamics

γαżα = −2i
∂Hc

∂z̄α
− 2μ

(
∂Hc

∂z̄α
+

w

2
γαzα

)
, (15)

for α = N+1, . . . , N+M , where

Hc=− 1
2π

N∑

α

N+M∑

N+1
β �=α

γαγβ log|zα−zβ |− 1
4π

N+M∑

N+1
α

N+M∑

N+1
β �=α

γαγβ log|zα−zβ |.
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(a) t=1 sec (b) t=10 sec (c) t=20 sec (d) t=100 sec

Fig. 1. Simulating convergence to a relative equilibrium centered at C0 =200+200i

For μ=0, it can be shown that the virtual vortices conserve Hc even when inter-
acting with the actual vortices (omitted for brevity). In the active singularity
system, the dynamics (15) asymptotically stabilize relative equilibrium config-
urations of the virtual vortices in the presence of actual vortices, which are
themselves in relative equilibrium. The formulation (15) of the path-planning
problem gives rise to a Lyapunov-based control design in which one selects the
dissipative terms to asymptotically stabilize a desired vehicle configuration for
environmental sampling. In the following result, we make use of the conserved
quantity Hc to suggest a candidate Lyapunov function.

Define the candidate Lyapunov function

Vc =Hc+
ω

2
Sc, (16)

where the angular impulse of the virtual vortices Sc is

Sc =
N+M∑

α=N+1

γα|zα|2. (17)

The actual vortices contribute time-varying terms to the virtual vortex dynam-
ics. However, in the rotating frame R, the actual vortices appear fixed. Hence,
changing coordinates yields

V̇c =
N+M∑

α=N+1

−4μ

γα

∣∣∣
∂Hc

∂ξα
+

ω

2
∂Sc

∂ξα

∣∣∣
2

≤ 0,

leading to the following proposition.

Proposition 2. Suppose γα >0 and zα(t) is a collision-free, bounded trajectory
of the virtual vortex dynamics (15) for all α=N+1, . . . , N+M , in the presence of
actual point-vortices in relative equilibrium. Then zα(t) asymptotically converges
to a relative equilibrium configuration of the actual-plus-virtual vortex system.

Proof. Proceeding in the same manner as Proposition 1 and applying LaSalle’s
invariance principle [7] shows the virtual vortices converge to the largest invari-
ant set that satisfies condition (7) with H replaced by Hc, which is a relative
equilibrium configuration fixed in rotating frame R. ��
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(a)

(b) t=10 sec (c) t=25 sec

(d) t=50 sec (e) t=150 sec

Fig. 2. (a) Actual-plus-virtual vortex system in relative equilibrium in frame R; (b)–
(e) Simulation of weaker virtual vortices undergoing relative equilibrium stabilization
in the presence of an actual vortex pair (Color figure online)

Figure 2(a) illustrates the stabilization of relative equilibrium for M =20 vir-
tual vortices (blue) under the dynamics (15) in the presence of an actual vortex
pair (green). Observe that the virtual vortices surround the origin and natu-
rally separate into a rotating formation. The size and shape of the formation
depend on the virtual and actual vortex strengths γα and the initial conditions.
Figure 2(b), (c), (d) and (e) display simulation results of a set of weaker virtual
vortices achieving a different configuration. Note that during convergence to the
relative equilibrium, virtual vortices move along the flow streamlines while also
interacting with each other. This choice of circulation strength yields two sepa-
rate sampling groups located within the invariant regions of the flow generated
by the actual vortex pair.

4 Adaptive Control Design

The use of Lyapunov analysis to inform the selection of a parameter update law
is a common theme in adaptive control [22]. We employ this technique for the
selection of a circulation-strength update law in the following example applica-
tion of the path-planning methodology. Preliminary results show convergence to
a desired level set Hd

c of the controlled Hamiltonian Hc.
Consider the candidate Lyapunov function

V d
c =

1
2

(Hc−Hd
c

)2
. (18)
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Fig. 3. Formations of virtual vortices under adaptive circulation control (Color figure
online)

For simplicity of exposition and also to avoid virtual vortices having opposite
signed circulation strengths, we restrict γk = γ > 0 for this example. Along
trajectories of (15), the Lyapunov function (18) yields

V̇ d
c =

(
Hc−Hd

c

)
⎡

⎣
N+M∑

α=N+1

∂Hc

∂ξα
ξ̇α +

∂Hc

∂ξ̄α

˙̄ξα +
∂Hc

∂γ
γ̇

⎤

⎦

=
(
Hc−Hd

c

)
⎡

⎣
N+M∑

α=N+1

−4μ
γ

∣
∣
∣
∂Hc

∂ξ̄α

∣
∣
∣
2 − 2ω

γ

(
μRe
{

∂Hc

∂ξ̄α

∂Sc

∂ξα

}
+ Im

{
∂Hc

∂ξ̄α

∂Sc

∂ξα

})
+

∂Hc

∂γ
γ̇

⎤

⎦.

The following choice of adaptation rate γ̇ provides negative semi-definiteness of
V̇ d

c . In particular, choosing

γ̇ =
(

∂Hc

∂γ

)−1
[
−

N+M∑

α=N+1

(−4μ

γ

∣∣∣
∂Hc

∂ξ̄α

∣∣∣
2

−

2ω

γ

(
μRe

{
∂Hc

∂ξ̄α

∂Sc

∂ξα

}
+Im

{
∂Hc

∂ξ̄α

∂Sc

∂ξα

}))
−K

(Hc−Hd
c

)]
(19)

results in V̇ d
c ≤ −K

(Hc−Hd
c

)2, where V̇ d
c = 0 only when the invariance condi-

tion Hc−Hd
c ≡ 0 holds.

Choosing the circulation of the virtual vortices to have the same sign as the
actual vortices prevents the (∂Hc/∂γ)−1 term in (19) from becoming singular
as long as |zα−zβ |>1 for all pairs α, β due to the log(·) terms in ∂Hc/∂γ. If is γ
bounded, which remains to be shown, the invariance condition implies that Hc
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converges to Hd
c , but it enforces nothing else about the configuration. The virtual

vortices interact according to (15) in a rotating frame. A sufficient condition for
maintaining a constant Hc value is for the second term in (15) to vanish, since
the virtual vortices conserve Hc when μ = 0. Although μ �= 0, the second term
can still vanish if the rotating equilibrium condition is satisfied. In fact, virtual
vortices converge to relative equilibrium configurations rotating at angular rate
ω, as illustrated in the following numerical experiment.

Figure 3 displays a numerical simulation of the adaptive control algorithm
for M =20 virtual vortices in the presence of two actual vortices. Figure 3 shows
the desired Hd

c signal (blue) and actual Hc signal (red). Inset plots are snap-
shots of the virtual vortices (blue) in the presence of the actual vortices (green) in
frame R. Virtual vortices interact with each other and the actual vortices during
movement to the relative equilibrium. Additionally, the vortices form concentric
disk formations influenced by the physical flow environment. For the Hd

c values
chosen, the virtual vortex disk-like formations enclose the actual vortices, with
disk size controlled by the specified Hd

c value. The locations of the virtual vor-
tices in each configuration do not necessarily have exact symmetry, because the
configuration in Hd

c is not unique.

5 Conclusion

This paper describes a distributed motion-planning paradigm for sampling
applications in vortical flow environments. This paradigm enables theoreti-
cally justified control laws whose stability properties are ensured by virtue of
a Lyapunov-based design that leverages the underlying Hamiltonian structure
of the vortex dynamics. The approach employs fluid-like interactions between
physical and virtual vortices based on the Hamiltonian dynamics. Gradient
dynamics cause the virtual vortices to converge to relative equilibria configura-
tions. We provide an adaptive control to regulate a collection of virtual vortices.
Refinement and extension of this methodology to account for vehicle-specific con-
straints, time-varying and uncertain flows, track feasibility, and communication
delays are all subjects of ongoing work.
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Abstract. We present a novel stochastic optimization method to com-
pute energy–optimal paths, among all time–optimal paths, for vehicles
traveling in dynamic unsteady currents. The method defines a stochas-
tic class of instantaneous nominal vehicle speeds and then obtains the
energy–optimal paths within the class by minimizing the total time–
integrated energy usage while still satisfying the strong–constraint time–
optimal level set equation. This resulting stochastic level set equation is
solved using a dynamically orthogonal decomposition and the energy–
optimal paths are then selected for each arrival time, among all stochas-
tic time–optimal paths. The first application computes energy–optimal
paths for crossing a steady front. Results are validated using a semi–
analytical solution obtained by solving a dual nonlinear energy–time
optimization problem. The second application computes energy–optimal
paths for a realistic mission in the Middle Atlantic Bight and New Jersey
Shelf/Hudson Canyon region, using dynamic data–driven ocean field esti-
mates.

Keywords: Energy–optimal · Time–optimal · Dynamically orthogonal
equations · Level–set method · Autonomy · AUV · Dynamic data–driven

1 Introduction

Path planning refers to the navigation rules provided to autonomous mobile
agents operating in a dynamic environment while optimizing an objective cri-
terion. This criterion could be the travel time, energy utilized, quantity/quality
of data collected, safety or a combination of these [12,16]. In the recent years,
the growing usage of Autonomous Underwater Vehicles (AUVs) such as pro-
pelled vehicles and gliders in diverse applications (e.g. ocean exploration, secu-
rity, conservation, and research) has led to increased research in path planning
for underwater robotics [3,4,9,17,25,30]. As AUVs undertake complex tasks (e.g.
cooperative exploration and sampling [19]), they are required to operate for long
periods of time at sea by utilizing energy efficiently [4]. The dynamic environ-
ment in which these vehicles (and also other mobile agents such as land robots,
drones, airplanes etc.) navigate can be utilized to reduce their energy consump-
tion. In the case of AUVs, ocean currents can be comparable in magnitude to the
c© Springer International Publishing Switzerland 2015
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average operational speed of propelled vehicles, and up to 2–3 times the typical
speed of gliders [26,28,29]. As such, there is an opportunity to reduce the energy
consumption by intelligently utilizing favorable currents while avoiding adverse
currents. The availability of numerical ocean prediction systems enables agents
to plan their motion using a forecast of the ocean currents (within predictability
limits). Dynamic data–driven re–planning of these trajectories may be performed
by utilizing open–loop planning algorithms which have short run–times. Using
this as a motivation, our goal here is to develop a computationally efficient and
rigorous path planning algorithm that computes energy–optimal paths, among
all time–optimal paths, of a vehicle navigating between two points in a dynamic
flow field. We show that this computation can be posed as a stochastic PDE–
based design/optimization problem. In this paper, we focus on addressing the
question of how to evaluate such a solution, and whether an analytical (or semi–
analytical) benchmark exists for validation. We also illustrate the applicability
of such an algorithm for path planning utilizing real ocean forecasts.

Most path planning algorithms for AUVs find their roots in robotics,
e.g. [2,5]. The A∗ search algorithm, quite popular in robotic motion planning,
has been applied to AUVs [6] to find near–optimal paths. These paths have
been shown to utilize substantially lower energy compared to straight line paths
when ocean currents are comparable to vehicle speeds [10]. Rapidly Exploring
Random Trees (RRTs) [16], also popular in robotic path planning have been
used for AUVs to obtain minimum work [14] and minimum energy (linear nom-
inal relative speed) [24] paths. However, A∗ and RRTs do not work well for
strong flows [24]. First, they are not well suited to computing exact solutions
in strong dynamic flows [21,22]. Second, the heuristics reported are for a lin-
ear energy cost function and do not readily extend to nonlinear cost functions.
[1] discusses a genetic algorithm to optimize the paths parameterized in space
and time. They minimize an energy cost function which is a path integral of
the cube of vehicle speed. In [15], the paths are computed using nonlinear opti-
mization, where a weighted cost function accounts for the energy to overcome
drag (proportional to square of nominal relative speed) and provide acceleration
(proportional to rate of change of nominal relative speed). As the success of
this optimization depends heavily on the parameterization, it cannot be easily
generalized to all types of flows and domains. [32] discusses potential field tech-
niques for obstacle avoidance and [34] reports a swarm optimization approach to
minimize an energy cost function on the parameterized paths. Other algorithms
utilize Lagrangian Coherent Structures (LCS) of the flow to design near–optimal
navigation paths [13,35]. They illustrate that the optimal energy (quadratic nom-
inal speed)-time-weighted paths computed using a heuristic receding–horizon
nonlinear programming method are close to the ridges of the LCS. Other non-
linear optimization methods and evolutionary algorithms have also been used
to obtain near–optimal paths by approximately solving the governing optimal
control problem. We encourage the reader to refer to [23,31] for an in-depth
literature survey.

The present work is inspired from [21,22], where a modified level set
methodology for rigorous time–optimal path planning is described. We extend
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this methodology to develop a novel energy optimal path planning algorithm,
based on stochastic dynamically orthogonal level set equations [27]. In what fol-
lows, we state the problem and describe the new path planning method. We then
consider a test case of a vehicle crossing a canonical steady front for a range of
arrival times. We validate our results for a range of arrival times by compar-
ing them to those of a dual energy and time optimization albeit for a single
chosen arrival time. The latter is a semi–analytical solution for that front cross-
ing problem, providing the energy and time optimal path(s) for a single arrival
time. Finally, we apply our methodology to plan the time–dependent headings
and energy usages of a vehicle undertaking a mission in the Middle Atlantic
Bight region.

2 Problem Statement

Let Ω ⊆ R
n be an open set. Consider a vehicle navigating from a start point (xs)

to an end point (xf ) with a specified instantaneous nominal speed F (t) ≥ 0. The
environmental flow is denoted by v(x, t) : Ω×(0,∞) → R

n. The heading function
is chosen such that when navigated at a relative time–dependent non–negative
speed of F (t), the vehicle reaches xf in optimal time T (xf ;F (•)). Among all of
these, we seek the F (•) that minimizes the energy cost function E, i.e.,

min
F (•)

E(•) =

T (xf ;F (•))∫

0

p(t) dt (1a)

s. t.
∂φ(x, t)

∂t
= −F (t)|∇φ(x, t)| − v(x, t) · ∇φ(x, t)

in (x, t) ∈ Ω × (0,∞) (1b)
T (xf ;F (•)) = min

t
{t : φ(xf , t) ≤ 0} , (1c)

φ(x, 0) = |x − xs| , (1d)
p(t) = F (t)n , where n ≥ 1 . (1e)

Here, the scalar field φ(x, t) is a reachability–front tracking level–set function
[31]. For a given F (•), the viscosity solution of the level set Hamilton–Jacobi
equation (1b) with initial conditions (1d) and the subsequent solution to the
backtracking Eq. (2),

dx∗

dt
= −v(x∗, t) − F (t)

∇φ(x∗, t)
|∇φ(x∗, t)| , 0 ≤ t ≤ T (xf ;F (•)) (2)

yield a continuous–time history of the time–optimal vehicle heading angles, θ∗(t)
[21]. These headings guarantee time–optimality for the particular choice of the
speed function F (t) [31]. Then, among all such time–optimal paths which reach
the target at relative speed F (t), we seek to find the F (t) that minimizes the
energy required (1a). We reiterate that all of our paths are time–optimal: the
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optimization is on the total energy usage (1a). In contrast to multi–objective
optimization formulations [1,15,34], in our method, the time–optimality is a
strong constraint.

3 New Stochastic Dynamically Orthogonal Level Set
Equations for Energy-Based Path Planning

Considering the nominal speed F (t) as a random variable belonging to a stochas-
tic class, i.e., F (t) → F (t;ω), and a deterministic flow field v(x, t), we obtain a
stochastic Langevin form of the level set equation (1b):

∂φ(x, t;ω)
∂t

= −F (t;ω)|∇φ(x, t;ω)| − v(x, t) · ∇φ(x, t;ω) , (3)

where (x, t) ∈ Ω × (0,∞) and ω denotes a random event. For F (t;ω) ≥ 0,
we solve the SPDE (3) until the first time instant t such that φ(xf , t;ω) ≤ 0,
starting from deterministic initial conditions φ(x, 0;ω) = |x − xs| with bound-
ary condition ∂2φ(x,t;ω)

∂n2 |δΩ = 0, where n denotes the outward normal to ∂Ω.
Such a stochastic simulation yields the distribution of the minimum time–to–
reach T (xf ;F (•;ω)) for an externally forced distribution of F (•;ω). Then, the
distribution of energy utilized is computed from F (•;ω) and T (xf ;F (•;ω)) as

E(ω) =
T (xf ;F (•;ω))∫

0

p(t) dt. The function p(t) can assume any power law depen-

dence on F (t). The power function p(t) that has a linear dependence on F (t)
results in a constant drag optimal path (also known as fuel–optimal, e.g. [2]).
It yields a linear drag optimal path when p(t) ∝ F (t)2, and a quadratic drag
energy optimal path when p(t) ∝ F (t)3. Finally, for any choice of the time–to–
reach (a particular time or a range of time), the speed function F (•;ω) which
minimizes the energy cost, E(ω), can be obtained by a search procedure. As we
will see, the approach can operate on classes of stochastic functionals F (•;ω) if
these functionals can be efficiently represented by a reduced basis.

The most straightforward method to solve the SPDE (3) is through a Monte
Carlo (MC) approach. The deterministic level set PDE (1b) can be solved for
different realizations of F (t;ω) to yield a distribution of T (xf ;F (•;ω)). Unfortu-
nately, the MC solution is expensive and the computational cost increases with
number of realizations used. Since in (3), v(x, t) is the flow field velocity, and we
consider ocean applications, an efficient solution method for solving (3) would be
a methodology that exploits the nonlinearities of the flow, which tend to concen-
trate the scalar level set field, φ, responses into specific dynamic patterns. Such
a methodology is offered by the Dynamically Orthogonal (DO) decomposition
[27]. To the best of our knowledge, this approach has never been utilized to deter-
mine the stochastic viscosity solution of (3). A numerical challenge in obtaining
the DO level set equations is the presence of the non–polynomial nonlinearity,
γ ≡ |∇φ|. We have considered several approaches for handling this term. One
such approach [31] does not invoke a specific DO decomposition for γ, but evalu-
ates it using an explicit Monte Carlo computation. This is the method we present
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in this paper. In what follows, the arguments (x, t) are dropped for the brevity
of notation. The decompositions F = F̄ + zF̃ , φ = φ̄ + Yiφ̃i are first substituted
in (3). Enforcing the DO condition [27] then yields the following new equations
for the mean φ̄, stochastic coefficients Yi and modes φ̃i, in terms of the mean
(F̄ ), stochastic coefficients (z) and modes (F̃ ) of the nominal relative speed:

∂φ̄

∂t
= −(F̄E[γ] + E[zγ]F̃ ) − v · ∇φ̄ , (4)

dYi

dt
= −

〈
F̄ (γ − E[γ]) + F̃ (zγ − E[zγ]) + Ykv · ∇φ̃k, φ̃i

〉
, (5)

∂φ̃i

∂t
= −C−1

YiYj
(F̄E[Yjγ] + F̃E[zYjγ]) + v · ∇φ̃i

−
〈
−C−1

YiYj
(F̄E[Yjγ] + F̃E[zYjγ]) + v · ∇φ̃i, φ̃n

〉
φ̃n , (6)

where 〈•, •〉 denotes the inner product. We have also developed methods where
a DO decomposition is considered for the non–polynomial nonlinearity γ. These
methods along with their derivations are provided in [31]. We note that an
equivalent formulation is possible through bi–orthogonal methods [8].

Algorithm. Our algorithm for energy optimal path planning has 5 main steps.
(i) The first step is to obtain a comprehensive sampling of the stochastic class
F (t;ω). In the DO sense, we obtain a comprehensive sample of FDO(t; r), where
r denotes realizations. (ii) Next, the new stochastic DO level set Eqs. (4)–(6) are
solved using the chosen samples of FDO(t; r). (iii) The energy utilized by each
sample is computed as E(r) =

∫ T (xf ;FDO(t;r))

0
p(t) dt. (iv) For a given time–to–

reach, the sample F ∗
DO(t; r) that leads to the minimum energy usage is identified

using a sorting algorithm. This F ∗
DO(t; r) is energy optimal within the class of

FDO(t; r) that reach xf at a given time. (v) Finally, the sample class can be
enriched and the algorithm iterated until no further refinement is required. The
computational cost for direct Monte Carlo solution of the SPDE is O(MN),
where M is the number of samples and N is the total size of discrete computa-
tional domain utilized. Our DO algorithm has a computational cost of O(SN),
where S is the size of the DO–subspace, where S is often such that S  M .

4 Applications

We first consider a simulated steady front test case and use it as a benchmark
to test and validate our approach. Specifically, we compare our results to that
of a nonlinear dual optimization approach that seeks a minimum energy path
among time optimal paths for a fixed arrival time. We solve this problem using
the iterated constrained nonlinear optimization toolbox of MATLAB. Next, we
employ our methodology for path planning of a glider released from Buzzard’s
Bay (offshore from WHOI) to reach a target in the region of the Autonomous
Wide Aperture Cluster for Surveillance (AWACS) experiment just south of the
Hudson Canyon.
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4.1 Energy Optimal Crossing of an Idealized Steady Front

Considering the test case of crossing a steady front, we first solve the energy
optimal problem using a semi–analytical approach. This serves as a benchmark
to test our new methodology. The schematic of the flow and the relevant nota-
tion is depicted in Fig. 1. The goal is to determine the optimal speed function
F (t), varying within limits Fmin and Fmax (Fmin ≤ F (t) ≤ Fmax for all t),
that minimizes the energy utilized while still reaching the end point in optimal
time. In what follows, we provide arguments that allow us to formulate a dual
minimization problem whose solution gives the energy–optimal trajectory in the
sense defined in Sect. 2, but only for a specific arrival time.

Fig. 1. Parameters involved in optimal crossing of a simulated steady front: steady
front speed V and width d; start (circle), end (star), distances, vehicle nominal speed
and headings are marked. Adapted from [23].

To start the arguments, we first consider the motion from the start point
to the steady front. During this time, the vehicle remains unaffected by the
environment and the corresponding zero–level–set expands radially outward at
a rate equal to F (t), the nominal instantaneous relative speed. The motion (e.g.
the total displacement) achieved by any choice of the time series F (t) over this
period can be synthesized as the motion achieved by the mean nominal speed
F̄ (t) over the same time window. However, the energy consumed by the vehicle
varies as a power function of F (t), with n ≥ 1 (see Sect. 3). As a result, that
energy consumption will be different for each time series F (t).

It can then be shown that the energy consumption is minimum when the
mean speed is used over a given time interval. For instance, let us suppose that
a vehicle (say v) travels at speed Fmin for a total time of t1 and at speed Fmax

for time t2. The final position of this vehicle coincides with that of a different
vehicle (say m), traveling at a uniform speed F̄ = (Fmint1 +Fmaxt2)/(t1 + t2) for
time t1 + t2. The energy expended by v is Ev = Fn

mint1 + Fn
maxt2. On the other

hand, m utilizes a total energy equal to Em = F̄n(t1 + t2). Hölder’s inequality
can now be used to show that Em ≤ Ev [31]. In fact, it can be shown that the
above result holds for any number of engine speed switches (≥ 2) and any n ≥ 1.
We also note that similar arguments can be made for the vehicle motion beyond
the steady front to the end point.

To continue the arguments, we now consider the motion of the vehicle within
the uniform and steady front proper. Inside this region, only the motion of
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vehicle in the x–direction is affected. Even here, it can be shown that using a
single speed results in lower energy consumption, and that any time series F (t)
has an equivalent single time–mean speed [31]. Therefore, for a given travel time,
the energy optimal path is executed by a vehicle that moves at a constant speed
from the start point to the steady front at some to–be–determined point, then
another speed (same or different) for the time optimal motion in the steady front
and finally another speed from the steady front to the target. This completes
the arguments that allow us to setup our dual minimization problem, ‘energy–
optimality subject to time–optimality’.

Using the above arguments, we set the time–variation of the unknown optimal
relative speed to be the uniform speeds of F1, Fd, and F2 from start to the steady
front, within the steady front, and from the exit of the steady front to the end
point, respectively.

Let U denote the total effective velocity of the vehicle in the flow, as seen
by a ground observer. Within the steady front, the component of U in the x–
direction is Ux = Fd sin α+V and in the y–direction, Uy = Fd cos α. The direction
of resultant velocity and heading angle are related through the relation, tanβ =
Ux

Uy
= tan α + V

Fd
sec α. Outside the steady front, the relations are the same, but

with V = 0. Now, let X be the total downstream displacement of the vehicle,
i.e. in the x direction. We have, from simple trigonometry, X = y1 tan θ1 +
d tan β + y2 tan θ2. Finally, the total travel time T can be written as the sum of
travel times in each individual region, T = y1

F1 cos θ1
+ d

Fd cosα + y2
F2 cos θ2

. Now, we
want to determine the energy optimal path, for each arrival time such that they
are also time–optimal. Hence, assuming for now, a general energy cost over dt,
dE = p(t) dt = F (t)n dt where n ≥ 1, we obtain the total energy expended from
the start point to the end point: E = Fn−1

1
y1

cos θ1
+ Fn−1

d
d

cosα + Fn−1
2

y2
cos θ2

. For
a fixed time–to–reach the target, the double optimal energy–time problem is

min
F1,Fd,F2

E = Fn−1
1

y1
cos θ1

+ Fn−1
d

d

cos α
+ Fn−1

2

y2
cos θ2

(7)

s.t. X = y1 tan θ1 + d

(
tan α +

V

Fd
sec α

)
+ y2 tan θ2 (8)

T = min
θ1,α,θ2

y1
F1 cos θ1

+
d

Fd cos α
+

y2
F2 cos θ2

(9)

θ1, θ2, α ≥ 0 , Fmin ≤ F1, Fd, F2 ≤ Fmax , n ≥ 1 (10)

where X, T , Fmin, and Fmax are inputs to the optimization problem. We note
that the time constraint for the outer energy optimization is another inner opti-
mization. This completes the derivation of a dual minimization problem whose
solution provides the energy-optimal path in the sense defined in Sect. 2, but
again, only for a fixed single arrival time at a time. For y1 = 0.2167, d = 0.2,
y2 = 0.2167, V = 3, Fmin = 2, Fmax = 3,X = 0.6334, and fixing the single tar-
get T to be T = 0.26, we obtain the numerical solution of our dual optimization
problem as presented in Table 1. The results shown in column 1 are computed
using the iterative nonlinear optimization toolbox of MATLAB.

Now, we compare this ‘semi–analytical’ solution to that obtained by our new
stochastic DO level–set optimization scheme. To do so, we need to select an
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Table 1. Parameters of the energy optimal path that reaches the end point at time
T = 0.26.

Parameter Using NonLinear Using new stochastic DO

Optimization level-set optimization

θ1 23.5o 22.4o

θ2 23.5o 20.7o

β 65.8o 65.9o

F1 2.9 2.8

Fd 2.6 2.5

F2 2.9 3.0

Fig. 2. The start point is marked as a circle and the end point is marked as a star.
The initial flow on Aug 28, 00 UTC is shown on the color axis in cm/s.

adequate stochastic class of F (t;ω). First, we remark that all vehicles will reach
faster than a vehicle which travels throughout the distance at Fmin. Hence, the
total time required will at most be the time required by this slowest vehicle.
Let this be denoted as Tmax. The number of F (t;ω) samples (i.e. FDO(t; r),
see Sect. 3) required grows with the resolution in time axis in an exponential
manner, i.e., even if only two engine speed choices are allowed, and if the time
axis that ranges from 0 to Tmax is divided into n intervals, a total of 2n FDO(t; r)
samples are required for an exhaustive search (in the bang–bang control sense).
With the available computing resources and reasonable run–time, we choose to
resolve the time axis into n = 26 intervals. The energy optimal path planning is
then performed using our new stochastic DO level set equations with this choice
of FDO(t; r), i.e. an exhaustive sample space but only for those two speeds and
26 time–intervals (25 speed switches). The result of this stochastic DO level–
set optimization with the same parameters as above is presented in Tabel 1.
Critically, we note that our stochastic solution provides answers for a wide range
of arrival times (instead of the single fixed time T ).
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Fig. 3. (a) Path that reaches in the shortest time, 12.96 days, but consumes the highest
energy. (b) Path that takes 6 more days to reach the end point (18.78 days), but utilizes
40 % less energy. (c) Path that reaches in 16 days using a constant speed. (d) Path that
also takes 16 days but is energy optimal: it utilizes about 10 % less energy than the
path at constant speed. The energy utilized by the vehicle along the path is plotted
in color. Flow field at arrival time is shown in blue. All paths are time optimal for the
F (t) utilized (Color figure online).

4.2 Realistic Dynamic Data–Driven Ocean Simulation

In this section we explore the application of our approach in realistic dynamic
data–driven ocean simulations. The mission is to start just offshore of Buzzard’s
Bay near WHOI and reach a target in the AWACS region, as shown in Fig. 2.
A glider that can travel at relative horizontal velocities between F = 10 cm/s and
30 cm/s is assumed to be released on Aug 28, 2006 at 00 UTC. The flow data is
obtained from the MSEAS free–surface primitive–equation model utilized in an
implicit two–way nested computational domain set–up [11], with both tidal and
atmospheric forcings. These simulated ocean flows assimilate real ocean data and
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correspond to a reanalysis of the real–time AWACS and SW06 exercises (Aug.-
Sep. 2006) in the Middle Atlantic Bight and shelfbreak front region [7,18,20,33].

All gliders are assumed to follow the same yo–yo pattern in the vertical and
the effects of the small vertical ocean velocities are assumed to be accounted for
in the forward motions of the vehicles. We consider yo–yo patterns from the near
surface to either the local near bottom or 400 m depth, whichever is shallower
(for the mission considered, a large portion of the paths occurs on the shelf,
within about 20 to 100 m). The horizontal currents that a glider encounters
during its yo–yo motion are then the horizontal currents integrated along its
path. Of course, it is the path to–be–determined that specifies the currents that
are actually encountered.

The new stochastic DO level–set based energy optimal path planning method
is employed to determine the time–optimal level sets for the class of relative
glider speeds FDO(t; r) considered. Within that class, the evolution of the level
sets corresponding to the minimum energy is obtained by sorting and the energy–
optimal paths are computed by backtracking. We note that our method computes
a large set of energy optimal paths, for a range of arrival times. Only a few of
such paths are shown in Fig. 3, three of which are energy–optimal.

We first show the path that reaches the end point in shortest time on Fig. 3(a),
corresponding to the glider with relative horizontal speed of F = 30 cm/s. Based
on [21], the fastest glider indeed travels at the largest relative speed considered.
The second path selected on Fig. 3(b) is one that takes 18.78 days to complete,
but utilizes 40 % less energy. The third path on Fig. 3(c) is a constant speed path
that is not energy–optimal and reaches in 16 days. The fourth path in Fig. 3(d)
also takes 16 days but is the result of our stochastic optimization and utilizes
about 10 % less energy than the path at constant speed.

5 Conclusion

A novel method for energy optimal path planning based on new stochastic
dynamically orthogonal level set equations was introduced. It was first used
to obtain an energy optimal path among time–optimal paths for crossing a
steady front. We showed that the results agreed with those of a semi–analytical
path obtained by solving a dual nonlinear optimization problem that minimizes
energy and time. We also applied our methodology to realistic dynamic data–
driven ocean flows and obtained promising results that illustrate that open–loop
energy–time optimal paths can be computed quickly. This opens up the possibil-
ity to use our methodology for dynamic data–driven re–planning. Environment
uncertainty was considered in [19] and this can be utilized in the future. Future
studies can investigate the methodology in greater detail, providing derivations
and algorithms for handling non–polynomial nonlinearities. Capabilities will also
be illustrated in a wider range of idealized and realistic scenarios.
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