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Abstract. In Interval AHP, our uncertain judgments are denoted as
interval weights by assuming a comparison as a ratio of the real val-
ues in the corresponding interval weights. Based on the same concept as
Interval AHP, this study denotes uncertain judgments as fuzzy weights
which are the extensions of the interval weights. In order to obtain the
interval weight for estimating a fuzzy weight, Interval AHP is modified
by focusing on the lower bounds of the interval weights similarly to the
viewpoint of belief function in evidence theory. It is reasonable to max-
imize the lower bound since it represents the weight surely assigned to
one of the alternatives. The sum of the lower bounds of all alternatives is
considered as a membership value and then the fuzzy weight is estimated.
The more consistent comparisons are given as a result of the higher-level
sets of fuzzy weights in a decision maker’s mind.

Keywords: Interval AHP · Fuzzy weight · Interval weight ·Membership
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1 Introduction

AHP (Analytic Hierarchy Process) is a useful tool to extract a decision maker’s
preference from his/her intuitive judgments [9]. When a decision maker gives the
comparisons of all pairs of alternatives, his/her preferences are obtained as the
weights of alternatives. It is easy for a decision maker to give his/her intuitive
judgments as pairwise comparisons since s/he focuses on comparing a pair of
alternatives without caring for the other alternatives. As a result, an alternative
is compared several times and the given comparisons are seldom consistent each
other.

The inconsistency of the given comparisons is well-known and discussed a lot
in AHP. One of the ways to treat inconsistency is to introduce the consistency
index and distinguish whether the given comparisons are too inconsistent [1,8].
On the other hand, Interval AHP [10,11] takes the comparisons possibly into
consideration, instead of distinguishing them. It is based on the idea that a
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decision maker does not perceive a precise weight of an alternative but a range
of its weight in his/her mind. In Interval AHP, a comparison is considered as a
part of the rational decision so that the interval weights are obtained so as to
include the given comparisons. In short, AHP and Interval AHP induce plausible
and possible preferences from the given judgments, respectively.

Based on the same idea as Interval AHP, this paper assumes that our judg-
ments are uncertain and obtains the possible preferences reflecting the uncer-
tainty. Instead of the interval weights, such uncertain judgments are denoted as
the fuzzy weights. Therefore, the method to estimate the fuzzy weights from the
given crisp comparisons is proposed. In some fuzzy approaches in AHP [2,4,7], a
fuzzy or interval comparison matrix is used. From the viewpoint of uncertainty,
several models of Interval AHP have been proposed [6]. This paper modifies
Interval AHP by focusing on the lower bound of an interval weight since it rep-
resents the weight surely assigned to an alternative similarly to the viewpoint of
belief function in evidence theory [5]. The left weight is considered as ignorance
since it is common of some alternatives and possible to be assigned to more than
two alternatives. The upper bound of an interval weight includes such a weight
as possibly assigned to an alternative. It is reasonable to assign the weight to one
of the alternatives as much as possible so that the lower bounds are maximized.
Then, the sum of the lower bounds of all alternatives is considered as a member-
ship value of a fuzzy weight in a decision maker’s mind. The more consistent the
given comparisons are, the higher the membership value becomes. The decision
maker gives the comparisons based on this certain level sets of the fuzzy weights
of alternatives.

The given comparison is represented as the ratio of the weights of the cor-
responding alternatives. In Interval AHP, the inclusion relation between a com-
parison and the interval ration of its corresponding interval weights are used
to obtain the interval weights. In the proposed model, the relation between a
comparison and a ratio of weights is reconsidered. It assumes that the weight of
an alternative is estimated by the corresponding comparisons and the weights of
the other alternatives. The interval weight of an alternative is estimated by the
other alternatives and the relation between the weight and its estimations are
used to obtain the interval weights. Since the proposed model is based on the
lower bound, the estimations by the lower bounds of the others are used. Such
lower bounds of estimations are compared to the upper bound of an interval
weight so that the interval weight and its estimations are common.

In order to estimate fuzzy weights from their certain level sets which are inter-
val weights focusing on their lower bounds, it assumes some membership values,
i.e., the sums of the lower bounds from 0 to 1, in addition. The relation between
an interval weight and its estimations are modified depending on whether the
membership value is higher than the certain level or not. In the higher case, the
weight is forced to be assigned to one of the alternatives so that a weight and its
estimations may not be common and the deficiency is minimized. While, in the
lower case, they are always common so that their differences can be minimized.
In each case, the interval weights are obtained based on the proposed model as
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the respective level sets of the fuzzy weight. Then, the fuzzy weight is estimated
such interval weights as its representative level sets.

This paper is organized as follows. In the next section, as the modification
of Interval AHP, the lower bound based Interval AHP which focuses on the
lower bounds is proposed. Then, in section 3, the fuzzy weights are estimated
from some representative interval weights by the proposed model as their level
sets. Section 4 shows two numerical examples and discusses the results. The last
section is the conclusion.

2 Lower Bound Based Interval AHP

A decision maker gives the pairwise comparisons on n alternatives as follows.

A =

⎡
⎢⎣

1 · · · a1n

... aij

...
an1 · · · 1

⎤
⎥⎦ , (1)

where aij is his/her intuitive judgment on the importance ratio of alternative i
to that of alternative j. The comparisons are identical and reciprocal as aii = 1
and aij = 1/aji. The comparisons are consistent if and only if

aij = ailalj ,∀i, j, l. (2)

However, (2) is seldom satisfied since an alternative is compared to the other
(n − 1) alternatives.

In AHP, the weights of alternatives are obtained from (1) by eigenvector
method Aw = λw, where w = (w1, . . . , wn)T is the eigenvector correspond-
ing to principal eigenvalue. The weights are normalized such that

∑
i wi = 1.

The weight is assigned to one of the alternatives without ignorance so that the
plausible preferences are obtained by AHP.

In Interval AHP, the interval weight Wi = [wL
i , wR

i ] which includes the given
comparisons is obtained by the following LP problem [10,11]. It is assumed that
the given comparisons are inconsistent since the weights of alternatives in a
decision maker’s mind are uncertain. A decision maker may use a real value in
interval weight Wi in giving comparison aij , where j > i.

min
∑

i(w
R
i − wL

i ),
s.t.

∑
i�=j wR

i + wL
j ≥ 1,∀j,∑

i�=j wL
i + wR

j ≤ 1,∀j,

wL
i

wR
j

≤ aij ≤ wR
i

wL
j

,∀i, j, j > i,

wL
i ≥ ε,∀i,

(3)

where the first two kinds of constraints are for the normalization of intervals based
on interval probability [3,12]. They are the interval counterparts of the ordinal
crisp probability. When the weights are real values as wR

i = wL
i = wi,∀i, two
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inequalities are replaced into
∑

i wi = 1. The redundancy of the intervals to make
the sum of any real values in the intervals be 1 is excluded. For instance, the 1st
inequality for j requires wL

j not to be too small. The next inequalities for aij are
the inclusion constraints. They require the obtained interval weights to include
the given comparisons as

aij ∈ Wi

Wj
=

[wL
i , wR

i ]
[wL

j , wR
j ]

=

[
wL

i

wR
j

,
wR

i

wL
j

]
, (4)

where the fraction of intervals is defined as its maximum range. By minimizing
the widths of the interval weights, both bounds in the right side of (4) become
the closest to the give comparison in the left side. In other words, the primal
objective is to minimize uncertainty of the interval weight. If the comparisons are
perfectly consistent as in (2), the weights are obtained as real values wR

i = wL
i ,∀i

and they equal to those by eigenvector or geometric mean method in AHP. On
the other hand, the more inconsistent the given comparisons are, the wider the
obtained interval weights become. The lower bound of the interval weight is
considered as the weight surely assigned to one of the alternatives. While, its
upper bound includes the possibly assigned weight in addition and such weight is
a common weight of some alternatives. As the surely assigned weight decreases,
the ignorance which is the possibly assigned weight increases.

In the same concept as Interval AHP, this paper assumes that our judgments
are often uncertain and then they are represented as fuzzy weights of alternatives,
instead of interval weights. The fuzzy weight can be considered as a set of interval
weights. In order to estimate a fuzzy weight, some representative interval weights
are used. The core interval weights, based on which a decision maker gives the
comparisons, are obtained as follows. We revisit Interval AHP by focusing on the
lower bound of interval weight. It is reasonable to focus more on the weight surely
assigned to one of the alternatives than the weight assigned to more than two
alternatives. Interval AHP by (3) is modified so as to be suitable for fuzzy weight
estimation and we name the proposed model lower bound based Interval AHP. In
Interval AHP, the inclusion relation as in (4) is considered based on the relation
between the given comparison and the corresponding weights as aij = wi

wj
. In

the proposed lower bound based Interval AHP, based on the same relation, the
weight of an alternative is estimated by the weight of the other alternative as
wi = aijwj . In case of the crisp weights, there are n−1 estimations of the weight
of alternative i as w′

i = aijwj ,∀j �= i. When the weights are extended to interval
Wi = [wL

i , wR
i ], its estimations are intervals W ′

i = [aijw
L
j , aijw

R
j ],∀j �= i. Since

the proposed model is based on the lower bound of the interval weight, the
estimations by the lower bounds aijw

L
j ,∀j �= i are used. The relation between

the interval weight of alternative i, Wi, and its estimation, W ′
i , by the other

alternative j �= i is as follows.

aijw
L
j ≤ wR

i ,∀j �= i, (5)

which are satisfied if the interval weight and its estimation have at least a value
in common.
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By replacing the inclusion relation (4) in (3) into the estimation (5) and max-
imizing the lower bound wL

i , the lower bound based Interval AHP is formulated
as the following LP problem.

α = max
∑

i wL
i ,

s.t.
∑

i�=j wR
i + wL

j ≥ 1,∀j,∑
i�=j wL

i + wR
j ≤ 1,∀j,

aijw
L
j ≤ wR

i ,∀i, j, j �= i,

(6)

where the optimal objective function value α represents the weight surely
assigned to one of the alternatives and the left weight 1 − α may be assigned to
some alternatives. The lower and upper bounds of the interval weight, wL

i and
wR

i , represent the weights surely and possibly assigned to alternative i, respec-
tively. In this way, the possible preferences are obtained by lower bound based
Interval AHP.

Let us denote the maximum surplus of the upper bound of alternative i from
its estimations by the other alternatives ∀j �= i in (5) as pi. The surplus should
be minimized and (6) is rewritten as follows.

max (
∑

i wL
i − ε

∑
i pi),

s.t.
∑

i�=j wR
i + wL

j ≥ 1,∀j,∑
i�=j wL

i + wR
j ≤ 1,∀j,

0 ≤ wR
i − aijw

L
j ≤ pi,∀i, j, j �= i,

(7)

where ε is a small positive value so that the surplus of the interval weight from
its estimations is minimized secondarily.

When the given comparisons are perfectly consistent as in (2), the optimal
solutions of (7) are wi = wR

i = wL
i ,∀i and then α = 1. The more inconsistent

the comparisons are, the less α becomes.

3 Estimating Fuzzy Weight

The weight of alternative i in a decision maker’s mind is denoted as fuzzy weight
W̃i. Let us denote the membership function of fuzzy weight W̃i as μW̃i

. In this
section, the fuzzy weight is estimated by its α-level set obtained by (7) in the pre-
vious section. A decision maker gives the comparisons based on α-level sets of the
fuzzy weights in his/her mind. The sum of the weights of all alternatives surely
assigned to one of the alternatives represents a membership value of a fuzzy
weight. It means that α = μW̃i

(wL
i ) = μW̃i

(wR
i ),∀i, i.e., α-level sets of fuzzy

weights W̃i,∀i are intervals [wL
i , wR

i ],∀i by (7). They are core interval weights
to estimate the fuzzy weights. The fuzzy weight consists of some representative
interval weights which are their level sets. As far as μW̃i

is less than α =
∑

i wL
i

by (7), the relation between an interval weight and its estimations satisfy (5),
however, in the other cases the relation is not satisfied. Therefore, we assume βk
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and γk, where α = β0 < β1 < . . . < βm = 1 and α = γ0 > γ1 > . . . > γl ≥ 0,
respectively, for given m and l. As m and l increase, the more precise estimations
can be done.

First, let assume μW̃i
= βk, which requires that the weight surely assigned

to an alternative is more than βk. Because of α ≤ βk, they cannot satisfy (5).
The maximum deficiency of interval weight Wi from its estimations, qi, should
be minimized.

min
∑

i qi,

s.t. βk ≤ ∑
i wLβk

i ,

w
Lβk−1
i ≤ wLβk

i , wRβk

i ≤ w
Rβk−1
i ,∀i∑

i�=j wRβk

i + wLβk

j ≥ 1,∀j,∑
i�=j wLβk

i + wRβk

j ≤ 1,∀j,

−qi ≤ wRβk

i − wLβk

j aij ,∀i, j, j �= i,

qi ≥ 0,∀i,

(8)

where [wLβk

i , wRβk

i ],∀i are the variables and [wLβk−1
i , w

Rβk−1
i ],∀i are obtained

previously. By repeating solving (8) from k = 1 to m, sequentially m representa-
tive interval weights are obtained. They are higher-level sets of the fuzzy weight
than α-level one by (7).

In case of m = 1, (8) is reduced to the following problem where β1 = μW̃i
= 1

indicates crisp weights as wi = wLβ1
i = wRβ1

i ,∀i. The weight is surely assigned
to one of the alternatives so that there is no ignorance which is possibly assigned
weight to an alternative.

min
∑

i qi,

s.t.
∑

i wi = 1,

wL
i ≤ wi ≤ wR

i ,∀i,

−qi ≤ wi − aijwj ,∀i, j, j �= i,

qi ≥ 0,∀i,

(9)

where wL
i = wLβ0

i ,∀i and wR
i = wRβ0

i ,∀i are the optimal solutions of (7). The
weight is forced to be assigned to one of the alternatives without ignorance,
instead of allowing some estimations of an alternative to be more than its crisp
weight. The crisp weights wi,∀i make their estimations be the closest to them
and be included in α-level set of the fuzzy weights denoted as interval weights
Wi,∀i by (7).

Next, let assume μW̃i
= γk, which requires that the weight surely assigned to

one of the alternatives is at most γk. Because of α ≥ γk, (5) is satisfied and an
interval weight and its estimations are always common. Since the upper bound
of the interval weight of an alternative is always more than the estimations by
the lower bounds of the others, the constraint of the sum of the lower bounds
is added into (7). The problem to obtained interval weights [wLγk

i , wRγk

i ],∀i, is
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formulated as follows.

max (
∑

i wLγk

i − ε
∑

i pi),

s.t.
∑

i wLγk

i ≤ γk,

ε ≤ wLγk

i ≤ w
Lγk−1
i , w

Rγk−1
i ≤ wRγk

i ,∀i∑
i�=j wRγk

i + wLγk

j ≥ 1,∀j,∑
i�=j wLγk

i + wRγk

j ≤ 1,∀j,

0 ≤ wRγk

i − wLγk

j aij ≤ pi,∀i, j, j �= i,

(10)

where pi,∀i are the surpluses of the weights from their estimations and in the
same way as (8), [wLγk−1

i , w
Rγk−1
i ],∀i are obtained previously. By repeating solv-

ing (10) from k = 1 to l, sequentially l representative interval weights are
obtained and they are lower-level sets of the fuzzy weight than its α-level set.

In case of γl = 0, the lower bounds of 0-level sets of the fuzzy weights are 0
as wLγl

i = wL0
i = 0,∀i. As a result, the estimations are also 0, as ajiw

L0
i = 0,∀i,

whatever aij is. In order not to ignore and to reflect the given comparison aij to
the weight of alternative i, its lower bound is assumed as wLγl

i = wL0
i = ε,∀i,

where ε is a small positive number so that γl = nε. Then, in case of l = 1, (10) is
reduced to the following problem to obtain the upper bounds = wRγ1

i = wR0
i ,∀i.

min
∑

i wR0
i − ε

∑
i ri,

s.t. wR
i ≤ wR0

i ,∀i∑
i�=j wR0

i + ε ≥ 1,∀j,∑
i�=j ε + wR0

j ≤ 1,∀j,

0 ≤ wR0
i − εaij ≤ pi,∀i, j, j �= i,

(11)

where wLγ1
i = wL0

i ,∀i are replaced into ε and the obtained interval weights
[ε, wR0

i ],∀i should include α-level sets of the fuzzy weights [wL
i , wR

i ],∀i by (7).
The weight surely assigned to an alternative is reduced to nε ≤ α and the
ignorance is increased to 1 − nε.

For simplicity, assuming m = l = 1, the membership function of fuzzy weight
W̃i is illustrated as in Figure 1. It is estimated by three representative interval
weights such as its 0-level set [ε, wR0

i ], its α-level set [wL
i , wR

i ] as a core interval
weight, and its 1-level set wi as follows.

μW̃i
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

wL
i

x, 0 < x ≤ wL
i

1 − α

wi − wL
i

(x − wL
i ) + α, wL

i ≤ x ≤ wi

α − 1
wR

i − wi
(x − wi) + 1, wi ≤ x ≤ wR

i

−α

wR0
i − wR

i

(x − wR
i ) + α, wR

i ≤ x ≤ wR0
i

0, wR0
i ≤ x

. (12)



72 T. Entani and M. Inuiguchi

Fig. 1. Membership function of fuzzy weight of alternative i

The interval weights by any level-sets of the fuzzy weights by (12) are normal-
ized so that they are interval probabilities and satisfy the 1st and 2nd constraints
in (3). For instance, the 1st constraint in case of α ≤ β ≤ 1 is verified as fol-
lows. Assume interval weights [wLβ

i , wRβ
i ],∀i, where μW̃i

(wLβ
i ) = μW̃i

(wRβ
i ) = β.

Their bounds are denoted by the 2nd and 3rd functions in (12) as follows.

β =
1 − α

wi − wL
i

(wLβ
i − wL

i ) + α ↔ wLβ
i =

1 − β

1 − α
wL

i +
β − α

1 − α
wi,∀i,

β =
α − 1

wR
i − wi

(wRβ
i − wi) + 1 ↔ wRβ

i =
1 − β

1 − α
wR

i +
β − α

1 − α
wi,∀i,

where [wL
i , wR

i ],∀i by (7) satisfy the 1st constraint in (3) so that
∑

i�=j wR
i +wL

j ≥
1,∀j and wi,∀i by (9) satisfy

∑
i wi = 1. The 1st constraint in (3) for β-level

sets of the fuzzy weights [wLβ
i , wRβ

i ],∀i is verified as follows.

∑
i�=j wRβ

i + wLβ
j

=
∑

i�=j

(
1 − β

1 − α
wR

i +
β − α

1 − α
wi

)
+

(
1 − β

1 − α
wL

j +
β − α

1 − α
wj

)

=
1 − β

1 − α
(
∑

i�=j wR
i + wL

j ) +
β − α

1 − α
(
∑

i wi) ≥ 1,∀j.

(13)

Similarly, the 2nd constraint in (3) for β-level sets is verified. In case of 0 < γ ≤ α,
in the same way, it is verified that γ-level sets of the fuzzy weights satisfy the 1st
and 2nd constraints in (3). Therefore, any-level sets of the fuzzy weights which
are denoted as interval weights are normalized from the viewpoint of interval
probability.
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In general, the membership function of fuzzy weight W̃i is denoted by the
representative interval weights by (8) and (10) as follows.

μW̃i
(x) =⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γk − γk−1

w
Lγk−1
i − wLγk

i

(x − wLγk

i ) + γk, wLγk

i ≤ x ≤ w
Lγk−1
i , k = l, . . . , 1

βk − βk−1

wLβk

i − w
Lβk−1
i

(x − w
Lβk−1
i ) + βk−1, w

Lβk−1
i ≤ x ≤ wLβk

i , k = 1, . . . , m

βk−1 − βk

w
Rβk−1
i − wRβk

i

(x − wRβk

i ) + βk, wRβk

i ≤ x ≤ w
Rβk−1
i , k = m, . . . , 1

γk − γk−1

wRγk

i − w
Rγk−1
i

(x − w
Rγk−1
i ) + γk−1, w

Rγk−1
i ≤ x ≤ wRγk

i , k = 1, . . . , l

0, wRγl

i ≤ x

.

(14)
The fuzzy weights denoted as in Figure 1 are obtained from a crisp compari-

son matrix A in (1) reflecting the uncertainty in A. They reflect the possibilities
of the given information with membership values. When a rigid order of alterna-
tives is needed, the interval weight by a high-level set of a fuzzy weight is used
and a crisp weight is found as a focal point in case of 1-level set. While, when
the possibility of an alternative is a concern, the low-level set is useful.

4 Numerical Examples

Two decision makers A and B give the pairwise comparison matrices on 4 alter-
natives as shown in Table 1. By (7), the core interval weights for fuzzy weight
estimation are obtained and they are shown next to each matrix. The weight
is assigned to each alternative as much as possible. The sum of lower bounds
of the interval weights by decision maker B, αB = 0.929, is more than that by
decision maker A, αA = 0.813, so that B gives the comparisons based on higher
membership value than A. These interval weights are assumed as 0.813-level
sets and 0.929-level sets of their fuzzy weights, respectively. For comparison, the
interval weights by (3), where the widths are minimized, are shown at the right
column of Table 1. Their sums of the lower bounds are shown at the 1st rows
and they are less than those by (7). It mentions that the more weight is surely
assigned to one of the alternatives by the proposed (7) than (3). Since the lower
bound is more suitable to represent a membership value than the width, Interval
AHP is modified by focusing on the lower bounds of the interval weights and
the proposed model is used to estimate a fuzzy weight.

In addition, the representative interval weights by βA1 = 0.9, βA2 = 1,
γA1 = 0.5, and γA2 = nε = 0.004 for decision maker A and those by βB1 = 1,
γB1 = 0.5, and γB2 = 0.004 for decision maker B are obtained by (8) and (10).
Then, the fuzzy weights by decision makers A and B are estimated by (14) and
illustrated as in Figures 2 and 3, respectively. It is noted that the numbers of
representatives, m and l, are arbitrary and the more they are, the more pre-
cisely a fuzzy weight is estimated. For instance, we can obtain 11 representative
interval weights assuming membership values, β or γ, as 0, 0.1, ..., 0.9, and 1.0.
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Table 1. Two comparison matrices

A1 A2 A3 A4 αA=0.813 by (7) 0.785 by (3)

A1 1 1/3 7 1/7 [0.037, 0.224] [0.025, 0.230]
A2 3 1 6 4 [0.671, 0.671] [0.689, 0.689]
A3 1/7 1/6 1 3 [0.032, 0.219] [0.033, 0.115]
A4 7 1/4 1/3 1 [0.073, 0.260] [0.038, 0.172]

B1 B2 B3 B4 αB=0.929 by (7) 0.914 by (3)

B1 1 7 1 9 [0.463, 0.534] [0.444, 0.444]
B2 1/7 1 1/7 1/9 [0.015, 0.066] [0.015, 0.063]
B3 1 7 1 3 [0.392, 0.463] [0.406, 0.444]
B4 1/9 9 1/3 1 [0.059, 0.131] [0.049, 0.135]

Fig. 2. Fuzzy weights by decision maker A

As for the fuzzy weights from the crisp comparisons by decision maker A,
alternative A2 is apparently better than the other alternatives regardless of
levels. Among the other alternatives, alternative A4 is a little better than alter-
natives A1 and A3 at 0.813-level. As higher the level becomes to 0.9 or 1, it
becomes more apparent that A4 is better than them. The common weight of
some alternatives is assigned more to alternative A4 than to alternatives A1
and A3. It may be because decision maker A potentially evaluates alternative
A4 better but s/he is not very sure of it. While, at 0-level, where the weight is
assigned to more than two alternatives, the possible weight of alternatives A3
increases, instead of the decrease of the weight surely assigned to alternative A2,
because alternatives A2 and A3 are similar and substitutes in a sense.

As for the fuzzy weights from the crisp comparisons by decision maker B,
at 0.929-level alternative B1 is better than B3, however, at 1-level their weights
are the same. The weight surely assigned to B1 does not increase when the
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Fig. 3. Fuzzy weights by decision maker B

membership value is higher than 0.929. Most of the left weight, 0.069 of 0.071,
is assigned to B3 at 1-level since decision maker B may not know alternative B3
well. S/he is sure of the weight of alternatives B1, B2 and B4 so that they are
assigned little weight at 1-level sets of their fuzzy weights.

5 Conclusion

Based on the idea that the decision maker’s judgments are uncertain, the fuzzy
weights have been obtained from the given crisp comparisons. This paper pro-
posed the lower bound based Interval AHP which obtains the interval weights
of alternatives from the given crisp comparisons for fuzzy weight estimation. In
the proposed model, the lower bound of an interval weight is focused on. It is
reasonable to maximize the lower bound since it represents the weight surely
assigned to one of the alternatives and an alternative is assigned the weight as
much as possible. The left weight is considered as ignorance and it is common of
some alternatives. The upper bound includes such a weight as possibly assigned
to the alternative, in addition to the lower bound. For fuzzy weight estimation,
the sum of the lower bounds of all alternatives is considered as a membership
value of a fuzzy weight in a decision maker’s mind. In other words, it is consid-
ered that the decision maker gives comparisons based on the certain level set
of the fuzzy weight in his/her mind. The comparisons are more consistent each
other when a decision maker gives them based on the higher membership values
of his/her fuzzy weights. The sums of the lower bounds are assumed to some
values from 0 to 1 so as to estimate a fuzzy weight. The relation between an
interval weight and its estimations are modified depending on whether the value
is higher than the certain level or not. For the higher-level set of the fuzzy weight,
whose extreme case is a crisp weight, the maximum deficiency of a weight from
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its estimations is minimized, while for its lower-level set, where some weights
are assigned to more than two alternatives, the maximum surplus of a weight
from its estimations is minimized. Then, the fuzzy weight is estimated by the
representative interval weights by the proposed lower bound based Interval AHP
as its level sets.
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