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Abstract. In this report, the ordinal sum theorem of semigroups is applied to 
construct logical operations for several fuzzy logics. The generalized form of 
ordinal sum for fuzzy logics on [0, 1] is defined in order to uniformly express 
several families of logical operations. Then, the conditions in ordinal sums for 
various properties of logical operations are presented: for examples, the mono-
tonicity, the location of the unit element, the left/right-continuity, or and/or-
likeness. Finally, some examples to construct pseudo-uninorms by the proposed 
method are illustrated. 
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1 Introduction 

The concept of ordinal sums has been originated by Climescu [3], and then has been 
generalized by Clifford [1], [2] to a method for constructing a new semigroup from a 
given linearly-ordered system of semigroups. In the history of the research on fuzzy 
logical connectives as t-norms, t-conorms, and uninorms, the ordinal sum has been 
often appeared as representations of such operations [4]-[14]. 

In this paper, the authors challenge to reform the ordinal sum on [0,1] to a more 
general scheme as a common platform to construct fuzzy logical connectives in the 
broader sense: including non-commutative ones besides t-norms, t-conorms and un-
inorms. The results of this work would be useful for obtaining an associative opera-
tion suitable for human thinking/evaluation, in several applications such as informa-
tion aggregation in diagnoses systems, construction of metrics based on fuzzy rela-
tion, constraint satisfaction in multicriteria decision making, and so on.  

2 Origin of Ordinal Sum Theorem 

Climescu [3] has introduced the original concept of ordinal sums which is a method to 
construct a new semigroup from a family of semigroups. According to Schweizer et 
al. [13], his definition of an ordinal sum is expressed as follows. 
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Ordinal Sum Theorem by Climescu [3] and Schweizer et al. [13] 
Let ( , )A F  and ( , )B F  be semigroups. If the sets A  and B  are disjoint and if 

H  is the mapping defined on ( ) ( )A B A B    by 

 

( , ), , ,
, , ,

( , )
, , ,
( , ), , ,

F x y x A y A
x x A y B

H x y
y x B y A
G x y x B y B

 
     
  

 (1) 

then ( , )A B H  is a semigroup.  
 

On the other hand, Clifford [1], [2] has introduced a more generalized definition of 
the same concept, and has named it an ordinal sum. The following theorem is the 
reformatted version by Klement et al. 

Ordinal Sum Theorem by Clifford [1], [2], and Klement et al. [11] 
Let ( , )A   with A    be a linearly ordered set and ( ) AG   with 

( , )G X     be a family of semigroups. Assume that for all , A    with 

   the sets X  and X  are either disjoint or that { }X X x    , where 

x  is both the unit element of G  and the annihilator of G , and where for each 

A   with      we have { }X x  . Put AX X  and define the 

binary operation  on X  by 

 

if ( , ) ,
if ( , ) and ,

if ( , ) and .

x y x y X X
x y x x y X X

y x y X X

  

 

 

 

 

   
    
   

 (2) 

Then ( , )G X   is a semigroup. The semigroup G  is commutative if and only if 

for each A   the semigroup G  is commutative. 

Here, G  is called the ordinal sum of ( ) AG  , and each G  is called a summand. 

3 A Generalization of Ordinal Sums on the Unit Interval [0, 1] 

In this research work, let us restrict the linearly ordered set A, mentioned in Section 2, 
to be finite. One of the main ideas proposed here is to give an indexing independently 
from ordering to the set of summands ( ) AG   by introducing a bijection as a cor-
respondence between them. 



 Construction of Associative Functions for Several Fuzzy Logics  45 

Definition 1.  Consider a permutation   on {1,2, , }A n  , i.e. a bijection 

:{1,2, } {1,2, }n n   , then define a linear order   in the family of sets 

{1,2, , }{ }i i nX    as follows:  

 
.

( ) ( )
def

i jX X i j      , {1, 2, , }for i j n   .  (3) 

Example 1.  If 6n  , and a permutation   is given as  

 1 2 3 4 5 6 1 6 2 5 3 4
,

1 3 5 6 4 2 1 2 3 4 5 6


   
    
   

 

then we get the linear order in {1,2, ,6}{ }i iX    as 1 6 2 5 3 4X X X X X X     . 

This permutation   works to locate an element iX  with index i  at the ( )i -th 
position.  

Hereafter, we treat the case that 1 [0,1]n
iiX X


   and ( 1,2, )iX i n   are 

disjoint each another, in order to apply the ordinal sum theorem for constructing vari-
ous logical connectives defined in [0,1] .  
 
Definition 2.  Let 1,2, ,{ }i i nI I    be a partition by a finite number of non-empty 

subintervals of [0,1] , i.e. 1 [0,1]n
ii I


  and ( )i jI I i j     hold. Also, we 

denote infi ia I , supi ib I . 
 

There exists the linear order relation among pairwise disjoint real subintervals ac-
cording to the real number order. Thus, the permutation   in Definition 1 gives the 
indexing as ( ) ( )i jI I i j    . In other words, the subinterval at k-th posi-

tion is indexed as 1( )kI  . 

 
Example 2.  If 4n  , and a partition I  and a permutation   are given as 

 {[0, 0.25], ]0.25, 0.5], ]0.5, 0.75], ]0.75,1]}I   and 

 
1 2 3 4 3 1 4 2
2 4 1 3 1 2 3 4


   

    
   

, 

respectively, then we have the following indexing for subintervals :  

 3 1 4 2[0, 0.25], ]0.25, 0.5], ]0.5, 0.75], ]0.75,1]I I I I    ; 

 3 1 4 2I I I I   . 
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Definition 3.  Let I   be a subset of 1,2, ,{ }i i nI I   . I   is called to be ascending 
ordered if i jI I  holds for , ( )i jI I I i j   . Similarly, I   is called to be des-

cending ordered if i jI I  holds for , ( )i jI I I j i   .  

 
Definition 4.  Two subsets I


 and I  of 1,2, ,{ }i i nI I    are defined as follows:  

    
. .

,
def def

i i n i n iI I I I I I I I   


. 

Example 3.  When 6n   and a permutation   is given as  

 
1 2 3 4 5 6 1 3 5 6 4 2

,
1 6 2 5 3 4 1 2 3 4 5 6


   

    
   

 

we obtain the indexing of 1,2, ,6{ }i iI I    as 1 3 5 6 4 2I I I I I I     , and we 

have  1 3 5 6, , ,I I I I I


 and  6 4 2, ,I I I I . Here, I


 is ascending ordered, and I  
descending ordered. 
 
Definition 5.  Assign each binary operation 2: [0,1]iH   [0,1]  to each direct 
product i iI I  of a subinterval iI I . Then, we define the binary operation 

2: [0,1] [0,1]H   as the following ordinal sum: 

 

( ) , if ( , )

( , ) if ( , )  and 

if ( , )  and .

i i
i i i i i i

i i i i

i j

i j

x a y aa b a H x y I I
b a b a

H x y x x y I I i j

y x y I I j i

   
       

   
   


 (4) 

4 Construction of Logical Connectives on [0, 1] 

4.1 Properties Required for Fuzzy Logical Connectives 

Conjunctive/disjunctive operations on [0,1] used in various fuzzy logic are defined by 
combining some of the following properties. 
 
Associativity:  
(A) ( ) ( )a b c a b c      
 
Commutativity:  
(C) a b b a    
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Existence of the unit element:  
(U1) 1 1a a a     
(U0) 0 0a a a     
(UE) a e e a a       ( ]0,1[ )e  
 
Boundary conditions:  
(Bmin) min( , )a b a b   
(Bmax) max( , )a b a b   
 
Monotonicity:  
(M) ,a b a c b c c a c b         
 
Left-continuity, right-continuity:  
(LC) 

0 0
lim , lim

x b x a
a x a b x b a b

   
       

(RC) 
0 0

lim , lim
x b x a

a x a b x b a b
   

       

 
And-like, or-like [6]:  
(AL) 0 1 1 0 0     
(OL) 0 1 1 0 1     
 

The definitions of already-known logical operations are expressed by the combina-
tions of the above-mentioned properties as follows.  
 
 t-Norms:    (A), (C), (U1), (M) 
 t-Conorms:   (A), (C), (U0), (M) 
 Uninorms:    (A), (C), (UE), (M) 
 
 Pseudo-t-norms [5]:  (A), (U1), (M) 
 Pseudo-t-conorms:  (A), (U0), (M) 
 Pseudo-uninorms [10]:   (A), (UE), (M) 
 
 t-Subnorms [8], [9]:   (A), (C), (Bmin), (M) 
 t-Subconorms:    (A), (C), (Bmax), (M) 
 

Here, the authors introduce the notion of pseudo-t-sub(co)norms as follows.  
 
 Pseudo-t-subnorms:   (A), (Bmin), (M) 
 Pseudo-t-subconorms:  (A), (Bmax), (M) 
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4.2 Realizations of the Properties in the Framework of Ordinal Sum 

We obtain the following theorems regarding to a binary operation 2: [0,1] [0,1]H   
defined in Definition 5. 
 
Theorem 1. (Clifford [1], [2]) 
(i) H  is associative if and only if all summands ( 1, , )iH i n   are associative.  
(ii) H  is commutative if and only if all summands ( 1, , )iH i n   are commuta-

tive.  
 
Theorem 2  
If I


 is ascending ordered, I  is descending ordered, iH  for ( ) ( )i n   satisfy 
the boundary condition (Bmin), iH  for ( ) ( )n i   satisfy the boundary condition 
(Bmax), and all summands including nH  are monotone-increasing (M), then H  is 
monotone-increasing (M). 
 

See Appendix for the detailed proof of Theorem 2.  
 
Theorem 3 
(i) If nI  is right-closed (i.e. there exists max nI ) and nH  satisfies (U1) (i.e. it 

has the unit element 1), then max n ne I b   is the unit element of H .  
(ii) If nI  is left-closed (i.e. there exists min nI ) and nH  satisfies (U0) (i.e. it has 

the unit element 0 ), then min n ne I a   is the unit element of H .  
(iii) If nH  satisfies (UE) (i.e. it has the unit element ]0,1[e ), then 

( )n n ne a e b a    is the unit element of H .  
 
Corollary of Theorem 3 
(i) If ( )n n   and nH  satisfies (U1) (i.e. it has the unit element 1), then H  

satisfies (U1). 
(ii) If ( ) 1n   and nH  satisfies (U0) (i.e. it has the unit element 0 ), then H  

satisfies (U0). 
 
Theorem 4 
(i) Let the subinterval including 0  be closed, and the other subintervals be left-

open and right-closed as ] , ]i i iI a b . Then, H  is left-continuous (LC) if and 
only if all summands ( 1, , )iH i n   are left-continuous (LC).  

(ii) Let the subinterval including 1  be closed, and the other subintervals be left-
closed and right-open as [ , [i i iI a b . Then, H  is right-continuous (RC) if and 
only if all summands ( 1, , )iH i n   are right-continuous (RC).  
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Theorem 5  
Suppose that the indices , {1,2, , }i j n   satisfy ( ) 1i   and ( )j n  . 
(i) If i j , then H  is and-like (AL).  
(ii) If j i , then H  is or-like (OL). 

5 Applications 

Example 4.  Let us consider the case to construct “a left-continuous t-norm.” We can 
obtain it by applying the following conditions to eq. (4):  

 
 Theorem 1 (i), (ii)   for associativity and commutativity,  
 Theorem 2   for monotonicity,  
 Corollary of Theorem 3 (i) for unit element 1e  , and  
 Theorem 4 (i)   for left-continuity. 
 

The above result is a finite version of Jenei’s method [8], [9], to construct a left-
continuous t-norm.  
 
Example 5.  Also, we can construct various kinds of pseudo-uninorms through apply-
ing the following conditions to eq. (4):   

 Theorem 1 (i)  for associativity,  
 Theorem 2  for monotonicity,  
 Theorem 3  for unit element [0, 1]e  , 
 Theorem 4  for left-continuity/right-continuity, and  
 Theorem 5  for and-likeness/or-likeness.   
Fig.1 (a) illustrates a case of left-continuous and-like pseudo-uninorms, where 

3n  , 
1 2 3 1 3 2
1 3 2 1 2 3


   

    
   

 and  [0, ], ] , ], ] ,1]I a a e e . All summands 

1T , 3̂T  and 2S  are associative, monotone increasing and left-continuous. Since 

(1) 1   and (2) 3  , Th.5(i) is applicable. Also, Th.3(i) is applicable because 3̂T  
is a pseudo-t-norm and 3 ( , ]I a e  is right-closed, thus 3maxe I  is the unit ele-
ment.  

Fig.1 (b) illustrates a case of right-continuous and-like pseudo-uninorms, where 

3n  , 
1 2 3
1 2 3


 

  
 

 and  [0, [, [ , [, [ ,1]I a a e e . All summands 1T , 2T  and 3Ŝ  

are associative, monotone increasing and right-continuous. Since (1) 1   and 

(3) 3  , Th.5(i) is applicable. Also, Th.3(ii) is applicable because 3Ŝ  is a pseudo-t-
conorm and 3 [ , )I a e  is left-closed, thus 3mine I  is the unit element.  
 



50 M.F. Kawaguchi and M. Kondo 

 
 
 
 
 
 
 
 
  0    a    e     1 

1T

2S

3̂T  

min

min

min 

max 

max

min 
x

y 
1 

0 

e 

a 

   

 
 
 
 
 
 
 
 
  0    a    e     1 

1T

3Ŝ

2T
min

min

min

min

min

min
x 

y
1

0

e

a

 
(a) left-continuous (LC) case     (b) right-continuous (RC) case 

 [0, ], ] , ], ] ,1]I a a e e         [0, [, [ , [, [ ,1]I a a e e  

1T : LC pseudo-t-subnorm      1T : RC pseudo-t-subnorm 

2S : LC pseudo-t-subconorm      2T : RC pseudo-t-subnorm 

3̂T : LC pseudo-t-norm      3Ŝ : RC pseudo-t-conorm 

Fig. 1. Examples of and-like pseudo-uninorms ( , )H x y  ( 3n  , e : unit element) 

 
 
 
 
 
 
 
 
  0    e    a     1 

3̂T

1S  

2S  

max

max

max 

max 

max

max
x

y 
1 

0 

a 

e 

   

 
 
 
 
 
 
 
 
  0    e    a     1 

2T

1S

3Ŝ

max

min

min

max

max

max
x 

y
1

0

a

e

 
(a) left-continuous (LC) case    (b) right-continuous (RC) case 

 [0, ], ] , ], ] ,1]I e e a a        [0, [, [ , [, [ ,1]I e e a a  

1S : LC pseudo-t-subconorm      1S : RC pseudo-t-subconorm 

2S : LC pseudo-t-subconorm      2T : RC pseudo-t-subnorm 

3̂T : LC pseudo-t-norm      3Ŝ : RC pseudo-t-conorm 

Fig. 2. Examples of or-like pseudo-uninorms ( , )H x y  ( 3n  , e : unit element) 
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Fig. 2 (a) illustrates a case of left-continuous or-like pseudo-uninorms, where 

3n  , 
1 2 3 3 2 1
3 2 1 1 2 3


   

    
   

 and  [0, ], ] , ], ] ,1]I e e a a . All summands 

3̂T , 2S  and 1S  are associative, monotone increasing and left-continuous. Since 
(3) 1   and (1) 3  , Th. 5(ii) is applicable. Also, Th. 3(i) is applicable because 

3̂T  is a pseudo-t-norm and 3 [0, ]I e  is right-closed, thus 3maxe I  is the unit 
element.  

Fig. 2 (b) illustrates a case of right-continuous or-like pseudo-uninorms, where 

3n  , 
1 2 3 2 3 1
3 1 2 1 2 3


   

    
   

 and  [0, [, [ , [, [ ,1]I e e a a . All summands 

2T , 3Ŝ  and 1S  are associative, monotone increasing and right-continuous. Since 
(2) 1   and (1) 3  , Th. 5(ii) is applicable. Also, Th. 3(ii) is applicable because 

3Ŝ  is a pseudo-t-conorm and 3 [ , )I e a  is left-closed, thus 3mine I  is the unit 
element.  

6 Concluding Remarks 

In this paper, the authors proposed a general method to construct various fuzzy logical 
connectives on [0, 1]  by the ordinal sum scheme which generates a new semigroup 
from a system of semigroups. Through our proposed method, we can generate various 
fuzzy logical connectives as t-norms, t-conorms, uninorms, and also non- commuta-
tive ones such as pseudo-t-norms, pseudo-t-conorms, pseudo-uninorms, by combining 
the conditions corresponding to the required properties, and by choosing adequate 
summands from already-known operations.  
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Appendix 

Proof of Theorem 2 
 
(a) ( ( ) ( ))ix I i n    
Let us consider a partition of [0,1]  as follows: 

 
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) ( ) ,

j i j j j
j i i j n n j n n j n

i j j i

I I I I I
               

 

       . 

Then we have  

 

1 ( ) ( )

( ) ( ) ( )

( ) ( ) ,

( ) ( ) ,

min( , ) if

( ) , if

( , ) min( , ) if

min( , ) if

max( , ) if .

j
j i

i i
i i i i i
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n j n i j

j
n j n j i

y x y y I
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H x y x x y y I
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 

  

  
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       

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
  










 

Since iH  satisfies (Bmin) and (M), min( , ) ( , ) min( , )i i ix a a H x y x b    for any 

iy I . Besides min, max and iH  satisfy (M). Thus, ( , )H x y  is monotone increas-
ing w.r.t. [0,1]y  .  
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(b) nx I  
Let us consider a partition of [0,1]  as follows: 

1 ( ) ( ) ( ) ( )
j n j

j n n j n
I I I

      
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Then we have  
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





 

Since min( , ) ( , ) max( , )n n n nx a a H x y b x b     for any ny I  and min, max 
and nH  satisfy (M), ( , )H x y  is monotone increasing w.r.t. [0,1]y  . 
 

(c) ( ( ) ( ))ix I n i    
Let us consider a partition of [0,1]  as follows: 
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j n j n n j i i j n
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Then we have 
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

 

Since iH  satisfies (Bmax) and (M), max( , ) ( , ) max( , )i i ix a H x y b x b    for any 

iy I . Besides min, max and iH  satisfy (M). Thus, ( , )H x y  is monotone increas-
ing w.r.t. [0,1]y  .  

From (a), (b) and (c), for any [0,1]x  , ( , )H x y  is monotone increasing w.r.t. 
[0,1]y  . The similar discussion is valid for the case w.r.t. x . Therefore, H  is mo-

notone increasing.                     □ 
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