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Abstract. We propose a new theory of implicative fuzzy associative
memory. This memory is modeled by a fuzzy preorder relation. We give
a necessary and sufficient condition on input data that guarantees an
effective composition of a fuzzy associative memory, which is moreover,
insensitivity to a certain type of noise.
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1 Introduction

In this contribution, we are focused on knowledge integration in uncertain envi-
ronments and especially on data storage in the form of fuzzy associative mem-
ory (FAM) and retrieval. The latter is considered even in the case of damaged,
incomplete or noisy requests.

The first attempt to construct a fuzzy associative memory (FAM) has been
made by Kosko - [4]. This approach presented FAM as a single-layer feedforward
neural net containing nonlinear matrix-vector product. This approach was later
extended with the purpose to increase the storage capacity (e.g. [2]). Significant
progress was achieved by the introduction of the so called learning implication
rules [1,3], that afterwards led to implicative fuzzy associative memory (IFAM)
with implicative fuzzy learning. Theoretical background of IFAM were discussed
in [12].

In our contribution, we give a new theoretical justification of IFAM that is
based on the notion of a fuzzy preorder relation. This enables us to discover
conditions on input data that guarantee that IFAM works properly. We con-
structively characterize all types of noise that do not influence the successful
retrieval.

2 Preliminaries

2.1 Implicative Fuzzy Associative Memory

In this Section, we explain background of the theory of fuzzy associative memo-
ries and their implicative forms. We choose database {(x1,y1), . . . , (xp,yp)} of
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input-output objects (images, patterns, signals, texts, etc.) and assume that they
can be represented by couples of normal fuzzy sets so that a particular fuzzy set
xk, k = 1, . . . , p, is a mapping xk : X → [0, 1], and similarly, yk : Y → [0, 1]
where X = {u1, . . . , un}, Y = {v1, . . . , vm}.

A model of FAM is associated with a couple (W, θ), consisted of a fuzzy
relation W : X × Y → [0, 1] and a bias vector θ ∈ [0, 1]m. A model of FAM
connects every input xk of a corresponding database with the related to it output
yk, k = 1, . . . , p. The connection can be realized by a sup−t composition1 ◦, so
that

yk = W ◦ xk ∨ θ, k = 1, . . . , p, (1)

or by a one level fuzzy neural network endowed with Pedrycz’s neurons. The
first one is represented by the following expression

yk
i =

n∨

j=1

(wij t xk
j ) ∨ θi, i = 1, . . . ,m, (2)

where xk
j = xk(uj), yk

i = y(vi) and wij = W (ui, vj). The second one is a com-
putation model which realizes (2). In the language of fuzzy neural networks, we
say that W = (wij) is a synaptic weight matrix and p is a number of constituent
input-output patterns.

In practice, the crisp equality in (1) changes to

yk ≈ W ◦ xk, k = 1, . . . , p, (3)

where the right-hand side is supposed to be close to yk. Moreover, FAM is
supposed to be tolerant to a particular input noise.

In [12], a model (W, θ) of implicative fuzzy associative memory (IFAM) has
been proposed where

wij =
p∧

k=1

(xk
j → yk

i ), (4)

θi =
p∧

k=1

xk
i ,

and → is an adjoint implication with respect to the chosen continuous t-norm.
One important case of IFAM is specified by identical input-output patterns.

This memory is called an autoassociative fuzzy implicative memory (AFIM),
and it is aimed at memorizing patterns as well as error correction or removing
of noise.

For a given input x, AFIM returns output y in accordance with (2). If x is
close to some pattern xk, then y is close to the same pattern xk. In the ideal
case, patterns from {x1, . . . ,xp} are eigen vectors of an AFIM model.

1 t is a t-norm, i.e. a binary operation on [0, 1], which is commutative, associative,
monotone and has 1 as a neutral element.
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One of the main benefits of AFIM is its error correction ability. By this we
mean that if an input x is close to some pattern xk, then the output y is equal
to the same pattern xk.

In the proposed contribution, we analyze the AFIM retrieval mechanism with
respect to two goals: (a) to have patterns from {x1, . . . ,xp} as eigen vectors of
that fuzzy relation W , which constitutes a model of AFIM; (b) to correct a cer-
tain type of noise. We find a necessary and sufficient condition on input patterns
that guarantees that the goal (a) is fulfilled and moreover, we characterize a
noise that can be successfully removed by the retrieval procedure.

Our technical platform is more general than that in [12]: we replace [0, 1] by
an arbitrary complete residuated lattice L and consider initial objects as fuzzy
sets with values in L. This allows us to utilize many known facts about fuzzy
sets and fuzzy relations of particular types.

2.2 Algebraic Background

In this Section, we will step aside from the terminology of associative memories
and introduce an algebraic background of the technique proposed below.

Let L = 〈L,∨,∧, ∗,→, 0, 1〉 be a fixed, complete, integral, residuated, com-
mutative l-monoid (a complete residuated lattice). We remind the main charac-
teristics of this structure: 〈L,∨,∧, 0, 1〉 is a complete bounded lattice, 〈L, ∗,→, 1〉
is a residuated, commutative monoid.

Let X be a non-empty set, LX a class of fuzzy sets on X and LX×X a class
of fuzzy relations on X. Fuzzy sets and fuzzy relations are identified with their
membership functions, i.e. elements from LX and LX×X , respectively. A fuzzy
set A is normal if there exists xA ∈ X such that A(xA) = 1. The (ordinary) set
Core(A) = {x ∈ X | A(x) = 1} is the core of the normal fuzzy set A. Fuzzy
sets A ∈ LX and B ∈ LX are equal (A = B), if for all x ∈ X, A(x) = B(x). A
fuzzy set A ∈ LX is less than or equal to a fuzzy set B ∈ LX (A ≤ B), if for all
x ∈ X, A(x) ≤ B(x).

The lattice operations ∨ and ∧ induce the union and intersection of fuzzy
sets, respectively. The binary operation ∗ of L is used below for set-relation
composition of the type sup-*, which is usually denoted by ◦ so that

(A ◦ R)(y) =
∨

x∈X

(A(x) ∗ R(x, y)).

Let us remind that the ◦ composition was introduced by L. Zadeh [15] in the
form max−min.

3 Fuzzy Preorders and Their Eigen Sets

In this Section, we introduce theoretical results which will be used below in the
discussed application. The results are formulated in the language of residuated
lattices. We will first recall basic facts about fuzzy preorder relations as they
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were presented in [5]. Then we will characterize eigen sets of fuzzy preorder
relations and how they can be reconstructed.

Our interest to fuzzy preorder relations came from the analysis of the expres-
sion (4) – a representation of a fuzzy relation in a model of AFM. In the particular
case of autoassociative fuzzy implicative memory, expression (4) changes to

wij =
p∧

k=1

(xk
j → xk

i ).

This is a representation of the Valverde (fuzzy) preorder (see Remark 1 below).

3.1 Fuzzy Preorders and their Upper and Lower Sets

The text in this Section is an adapted version of [8].
A binary fuzzy relation on X is a ∗-fuzzy preorder of X, if it is reflexive and

∗-transitive. The fuzzy preorder Q∗ ∈ LX×X , where

Q∗(x, y) =
∧

i∈I

(Ai(x) → Ai(y)), (5)

is generated by an arbitrary family of fuzzy sets (Ai)i∈I of X.

Remark 1. The fuzzy preorder Q∗ (5) is often called the Valverde order on X
determined by a family of fuzzy sets (Ai)i∈I of X (see [14] for details).

If Q is a fuzzy preorder on X, then the fuzzy set A ∈ LX such that

A(x) ∗ Q(x, y) ≤ A(y) (A(y) ∗ Q(x, y) ≤ A(x)), x, y ∈ X,

is called an upper set (a lower set) of Q (see [5]). Denote Qt(x) = Q(t, x)
(Qt(x) = Q(x, t)), x ∈ X, and see that Qt (Qt) is an upper set (lower set) of Q.
The fuzzy set Qt (Qt) is called a principal upper set (lower set).

If Q is a fuzzy preorder on X, then Qop ∈ LX×X such that Qop(x, y) =
Q(y, x) is a fuzzy preorder on X as well. It follows that an upper set of Q is a
lower set of Qop and vice versa. For this reason, our results will be formulated
for upper sets of respective fuzzy preorders.

The necessary and sufficient condition that a family of fuzzy sets of X con-
stitutes a family of upper sets of some fuzzy preorder on X has been proven in
[5]. In Theorem 1 [8], given below, we characterize principal upper sets of a fuzzy
preorder on X. Let us remark that assumptions of Theorem 1 are different from
those in [5].

Theorem 1. Let I be an index set, (Ai)i∈I ⊆ LX a family of normal fuzzy sets
of X and (xi)i∈I ⊆ X a family of pairwise different core elements such that for
all i ∈ I, Ai(xi) = 1. Then the following statements are equivalent:

(i) There exists a fuzzy preorder Q on X such that for all i ∈ I, x ∈ X,
Ai(x) = Q(xi, x) (Ai is a principal upper set of Q).
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(ii) For all i ∈ I, x ∈ X, Ai(x) = Q∗(xi, x) (Ai is a principal upper set of Q∗)
where Q∗ is given by (5).

(iii) For all i, j ∈ I,
Ai(xj) ≤

∧

x∈X

(Aj(x) → Ai(x)). (6)

Corollary 1. Let (Ai)i∈I ⊆ LX be a family of normal fuzzy sets of X and
(xi)i∈I ⊆ X a family of pairwise different core elements such that for all i, j ∈ I,
(6) holds true. Then Q∗ is the coarsest fuzzy preorder on X such that every fuzzy
set Ai, i ∈ I, is a principal upper set of Q∗.

Remark 2. On the basis of Theorem 1 and its Corollary 1, we conclude that a
family of normal fuzzy sets (Ai)i∈I ⊆ LX with pairwise different core elements
(xi)i∈I ⊆ X, such that (6) is fulfilled, generates the coarsest fuzzy preorder Q∗

on X such that every family element Ai is a principal upper set of Q∗ that
corresponds to its core element xi.

3.2 Eigen Sets of Fuzzy Preorders and their “Skeletons”

In this Section, we show that if the assumptions of Theorem 1 are fulfilled, and
if the fuzzy preorder Q∗ on X is generated (in the sense of (5)) by normal fuzzy
sets (Ai)i∈I ⊆ LX with pairwise different core elements (xi)i∈I ⊆ X, then these
fuzzy sets are the eigen (fuzzy) sets of Q∗ (see [10]), i.e. they fulfill

Ai ◦ Q∗ = Ai, i ∈ I. (7)

Proposition 1. Let family (Ai)i∈I ⊆ LX , i ∈ I, of normal fuzzy sets of X
with pairwise different core elements (xi)i∈I ⊆ X fulfill (6) and generate fuzzy
preorder Q∗ in the sense of (5). Then every Ai, i ∈ I, is an eigen set of Q∗.

Proof. Let us choose and fix Ai, i ∈ I. By Theorem 1, Ai(x) = Q∗(xi, x). Then

Ai(x) ◦ Q∗(x, y) =
∨

x∈X

(Q∗(xi, x) ∗ Q∗(x, y)) ≤

Q∗(xi, y) = Ai(y).

On the other hand,

Ai(x) ◦ Q∗(x, y) =
∨

x∈X

(Q∗(xi, x) ∗ Q∗(x, y)) ≥

Q∗(xi, y) ∗ Q∗(y, y) = Q∗(xi, y) = Ai(y).

Corollary 2. Let the assumptions of Propositions 1 be fulfilled and fuzzy set
Āi ∈ LX , i ∈ I, be a “skeleton” of Ai, where

Āi(x) =

{
1, if x ∈ Core(Ai),
0, otherwise.

(8)

Then Ai can be reconstructed from Āi, i.e.

Āi ◦ Q∗ = Ai. (9)
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Proof. By Proposition 1, and the inequality Āi ≤ Ai, we have Āi◦Q∗ ≤ Ai◦Q∗ =
Ai. On the other hand,

(Āi ◦ Q∗)(y) =
∨

x∈X

(Āi(x) ∗ Q∗(x, y)) ≥ Q∗(xi, y) = Ai(y).

Corollary 3. Let the assumptions of Propositions 1 be fulfilled and fuzzy set
Ãi ∈ LX be “in between” Āi and Ai, i.e.

Āi ≤ Ãi ≤ Ai,

where i ∈ I. Then Ai can be reconstructed from Ãi, i.e.

Ãi ◦ Q∗ = Ai. (10)

Proof. The proof follows from the following chain of inequalities:

Ai = Ai ◦ Q∗ ≥ Ãi ◦ Q∗ ≥ Āi ◦ Q∗ = Ai.

The following proposition is important for the below considered applications.
It shows that under the assumptions of Propositions 1, every Ai, i ∈ I, is an eigen
set of another fuzzy preorder Qr, which is composed from all these constituent
fuzzy sets. By saying “composed”, we mean that opposite to Q∗, Qr does not
require any computation.

Proposition 2. Let family (Ai)i∈I ⊆ LX , i ∈ I, of normal fuzzy sets of X with
pairwise different core elements (xi)i∈I ⊆ X fulfill (6). Then every Ai, i ∈ I, is
an eigen set of the following fuzzy preorder

Qr(x, y) =

⎧
⎪⎨

⎪⎩

Ai(y), if x = xi,

1, if x = y,

0, otherwise .

(11)

4 Fuzzy Preorders and AFIM

In this Section, we will put a bridge between the theory, presented in Section 3,
and the theory of autoassociative fuzzy implicative memories (AFIM), presented
in Section 2. We will see that in the proposed below model of AFIM, a connecting
fuzzy relation (denoted above by W ) is a fuzzy preorder relation.

In details, we choose a residuated lattice with the support L = [0, 1] and a
database {x1, . . . ,xp} of initial objects that are represented by fuzzy sets or fuzzy
relations. In the first case, we have a database of signals, while in the second one,
we have 2D gray-scaled images. The second case can be easily reduced to the first
one - it is enough to represent an image as a sequence of rows. Below, we assume
that our objects are normal fuzzy sets identified with their membership functions,
i.e. they are elements of [0, 1]X , where X is a finite universe. The assumption
of normality does not put any restriction, because any given finite collection
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of fuzzy sets on a finite universe can be normalized. Because we illustrate the
proposed technique by images, we refer to the initial objects as to images.

In accordance with (5), we construct the fuzzy preorder relation Q∗, such
that

Q∗(i, j) =
p∧

k=1

(xk(i) → xk(j)).

We remark that this is the reverse fuzzy preorder with respect to that given by
(4). In the terminology of the theory of autoassociative memories, the results
from Section 3 show that under condition (6),

– each constituent input image xk, k = 1, . . . , p, can be retrieved, if the weight
matrix W is equal to Q∗ and the computation of the output is based on the
simpler version of (2), i.e.

yi =
n∨

j=1

(xk
j t wij), i = 1, . . . ,m, (12)

which does not involve bias θ;
– each constituent input image xk, k = 1, . . . , p, can be retrieved, if the weight

matrix W is equal to Qr (see (11)) with the subsequent computation of the
output by (12);

– each constituent input image xk, k = 1, . . . , p, can be fully reconstructed
from its binary “skeleton” (see (8) in Corollary 2).

Let us remark that from the second result, listed above, it follows that there
exists a weight matrix W which can be assembled from constituent input images
in accordance with (11) and by this, no computation is needed. This fact leads
to a tremendous saving of computational complexity.

Moreover, from Corollary 3 we deduce a complete characterization of a noise
Nk that can be “added to” (actually, subtracted from) a constituent input image
xk without any corruption of the output. In details,

Nk(t) =

{
nk(t), if t �∈ Corexk,

0, otherwise,
(13)

where for t �∈ Corexk, the value nk(t) fulfills the requirement 0 ≤ nk(t) ≤ xk(t),
k = 1, . . . , p.

Below, we demonstrate how the presented above theory works in the case of
some benchmark input images.

5 Illustration

The aim of this Section is to give illustrations to the theoretical results of this
paper. We used gray scaled images with the range [0, 1], where 0 (1) represents
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the black (white) color. We chose two different sets of images, both were artifi-
cially created from available databases. The sets contain 2D images of 20 × 20
and 32 × 32 pixels, respectively. All images are represented by vectors that
are comprised by successive rows. Each image corresponds to a fuzzy set on
{1, . . . , 20} × {1, . . . , 20} or {1, . . . , 32} × {1, . . . , 32} with values in [0, 1].

5.1 Experiments with Abstract Images

We have created three databases A, B, and C of 2D images of 20 × 20 pixels,
where condition (6) is/is not fulfilled, details are below.

– Database A - contains three images (see figure 1) such that (6) is fulfilled.
– Database B - contains four images (see figure 2) such that (6) is not fulfilled

with the non-separability degree as follows:

DB =
∧

x∈X

(Aj(x) → Ai(x)) → Ai(xj). (14)

.
– Database C - contains eight images (see figure 3) such that (6) is not

fulfilled, and the corresponding non-separability degree DC is less than DB .

Fig. 1. Database A contains three images such that (6) is fulfilled.

Fig. 2. Database B contains four images such that (6) is not fulfilled with the degree
DB .

For each database of images, we computed he corresponding fuzzy preorder Q∗

and its reduction Qr.
In Fig. 4, we demonstrate the influence of condition (6) on the quality of

retrieval by the AFIM mechanism, where the computation of the output is based
on (12) and the weight matrix W is equal to Q∗ or Qr. For this purpose we choose
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Fig. 3. Database C contains eight images such that (6) is not fulfilled with the degree
DC such that DC ≤ DB .

Fig. 4. Top left Third image from database A. Top right Binary “skeleton” of the
third image from database A. Bottom left Output image retrieved from the binary
“skeleton” of the third image and database A - identical with the third image. Bottom
right Output image retrieved from the third image and database C - different from
the third input image.

the third image from database A as an input and retrieve it from each of three
databases A, B and C.

In Fig. 4, we see that if the weight matrix W is computed (comprised) from
database A as fuzzy preorder Q∗ (Qr), then the output coincides with the iden-
tical to it input. Moreover, any image from database A can be retrieved from
its binary “skeleton”. If W is computed from database C as fuzzy preorder Q∗,
then the output differs from the input, i.e. images from database C cannot be
retrieved precisely.
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Fig. 5. Left Third image from database A with 70% density of eroded noise. Right
The output, retrieved by AFIM with the weight matrix Qr. Eroded noise has been
completely removed by the AFIM retrieval.

In Fig. 5, we demonstrate how eroded noise (13) can be removed by the
AFIM retrieval. We added 70% dense erosion to the third image from database
A and process the obtained eroded image by the AFIM with the weight matrix
W that corresponds to fuzzy preorder Qr, computed from database A. In the
right-hand side of Fig. 5, we show the output, retrieved by IFAM with the weight
matrix Qr. This output coincides with the original (non-eroded) third image.

6 Conclusion

A new theory of implicative fuzzy associative memory has been proposed. We
showed that

1. every database pattern can be successfully retrieved,
– if all database patterns are well separated, the weight matrix W corre-

sponds to a certain fuzzy preorder relation and the computation of the
output is based on a composition with W , which does not involve bias θ;

– if additionally to the above conditions, the weight matrix W corresponds
to a certain reduction of the fuzzy preorder relation.

2. the weight matrix W does not require computation, if the above mentioned
conditions are fulfilled.

We discovered a necessary and sufficient condition that guarantees insensitivity
to a certain type of noise. The latter is precisely characterized.
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