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Abstract. Recommender systems provide personalized information by
learning user preferences. Collaborative filtering (CF) is a common tech-
nique widely used in recommendation systems. User-based CF utilizes
neighbors of an active user to make recommendations; however, such
techniques cannot simultaneously achieve good values for accuracy and
coverage. In this study, we present a new model using covering-based
rough set theory to improve CF. In this model, relevant items of every
neighbor are regarded as comprising a common covering. All common
coverings comprise a covering for an active user in a domain, and cov-
ering reduction is used to remove redundant common coverings. Our
experimental results suggest that this new model could simultaneously
present improvements in accuracy and coverage. Furthermore, compar-
ing our model with the unreducted model using all neighbors, our model
utilizes fewer neighbors to generate almost the same results.

Keywords: Covering-based rough set · Recommender systems ·
Collaborative filtering · Covering reduction

1 Introduction

With the development of the internet and artificial intelligence (AI), the recom-
mender system (RS) has become very popular recently. The RS can advise users
when making decisions on the basis of personal preferences and help users dis-
cover items they might not find by themselves [1,2]. Collaborative filtering (CF)
is a significant component of the recommendation process [4], that is based on
the ways in which humans have made decisions throughout history [7,8]. User-
based CF uses information of the active user’s neighbors to make predictions
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and recommendations [3]. Accuracy and coverage are two crucial metrics for
evaluating the RS, but it is difficult to simultaneously achieve good values for
these metrics when using user-based CF to make recommendations.

Rough set theory was first presented by Pawlak in the early 1980s [5].
Covering-based rough set has been regarded as a meaningful extension of the
classical rough set to handle vague and imperfect knowledge better, which
extends the partition of rough set to a covering [13,14]. The notion of reduc-
tion for covering is one of the most important results in covering-based rough
set [17]. Currently, much of the literature has been focused on providing the
theory behind covering-based rough set [13–16], but there is little regrading
applications, especially for RSs.

In this study, covering-based rough set theory is first applied to the RS. We
present a new model called covering-based collaborative filtering (CBCF) that
uses the covering-based rough set to improve the user-based CF approach. The
covering reduction notion is included to extract the relative effective neighbors
from all neighbors, thus defining the active user’s reduct-neighbors. According
to these reduct-neighbors, we obtain predictions and recommendations more
efficiently.

The remainder of our paper is organized as follows. In Section 2, we review
the basic notions and knowledge of covering-based rough sets and covering reduc-
tions. In Section 3, we propose the covering-based rough set model for user-based
CF. Next, in Section 4, we present our experiments and compare our results with
a model that does not employ the covering reduction as well as a model using CF
with the same number of neighbors. Finally, in Section 5, we note our conclusions
and define areas for future work.

2 Background

2.1 Covering-Based Rough Set

In this subsection, we present the basic knowledge of covering and the covering
approximation space. More details can be found in [13,14].

Definition 1. Let U be the domain of discourse and C be a family of subsets of U .
If none of the subsets in C is empty, and ∪C = U, C is called a covering of U .

Definition 2. Let U be a non-empty set and C be a covering of U . We call the
ordered pair 〈U,C〉 a covering approximation space.

We note here the definition of covering is an extension of the definition of
partitions. Different lower and upper approximation operations would generate
different types of covering-based rough set. The covering-based rough set was
first presented by Zakowski [12], who extended Pawlak’s rough set theory from a
partition to a covering. Pomykala gave the notion of the second type of covering-
based rough set [6], while Tsang presented the third type [9], Zhu defined the
fourth [16] and fifth [15] types of covering-based rough set models, and Wang
studied the sixth type of covering-based approximations [10].
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2.2 Reduction Theory of Covering-Based Rough Set

The reduction of covering concept was presented by Zhu in [17]; Zhu also pre-
sented other covering reduction approaches in [15,18]. In [11], Yang initially
constructed a new reduction theory by redefining the approximation spaces and
the reductions of covering generalized rough set, which was applicable to all
types of covering generalized rough set. In our present study, we focus only on
one type of covering reduction algorithm, i.e., the one presented by Zhu in [18],
because this algorithm could remove redundant neighbors more efficiently. Defi-
nition 3 defines this type of covering reduction algorithm, which corresponds to
the definition of exclusion(C) in [18].

Definition 3. Let C be a covering of a domain U and K ∈ C. If there exists
another element K′ of C such that K ⊂ K ′, we say that K is reducible in C;
Otherwise, K is irreducible. When we remove all reducible elements from C, the
new irreducible covering is called reduct of C and denoted by reduct(C).

3 Covering-Based Rough Set Model for User-Based
Collaborative Filtering

3.1 Purpose

For user-based CF, if fewer users in the top of a similarity list are selected as
neighbors of an active user, high-accuracy items could be recommended for the
active user; however, the types of recommendations will be decreased, even in
just making the most popular items as recommendations. If more types of items
are to be recommended, more users should be selected as neighbors of the active
user, but the accuracy will decrease as the number of neighbors grows. Therefore,
it is difficult for CF to simultaneously obtain good values for metrics of accuracy
and coverage. To solve this problem, the relative effective neighbors should be
selected from all neighbors such that the recommendations not only maintain
good values of accuracy but also obtain satisfactory values of coverage.

3.2 Model Constructions

In this subsection, we present detailed information and the steps comprising
CBCF, which does not use any user demographic data. In short, CBCF needs
the following information:

The users set U : U = {u1, u2...uE}, where E is the number of users.

The items set S: S = {s1, s2...sI}, where I is the number of items.

The rating function f : U × S → R, rx,i = f(x, i) represents the rating score
of user x for item i. Here,

rx,i =

{
γ, the rating score,
�, no rating score.
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Furthermore, θ is set as the threshold for rating score, and items with rx,i ≥ θ
are defined as items relevant to user x.

The item’s attributes set A: A = {α1, α2...αP }, where αn is an attribute of
the item and P is the number of attributes.

Input: — The query of the active user in the following form:

[α1 = v1] ∧ [α2 = v2] ∧ ... ∧ [αm = vm],

where vm is a value of αm.

Output: — A set of recommended items Rec ⊂ S

Step 1: Set Rec = ∅.

Step 2: Use the rating information and cosine-based similarity approach to
compute the similarity between the active user and remaining users. The top K
% of users in the similarity list, which are defined as L, are selected as neighbors
of the active user. Here, we have

sim(x, y) =

∑
i∈Sxy

rx,iry,i√∑
i∈Sxy

r2x,i

√∑
i∈Sxy

r2y,i

, (1)

where sim(x, y) indicates the similarity between users x and y and Sxy is the
set of all items rated by both users x and y.

Step 3: The decision class X consists of all items that fit the active user’s
query options. Otherwise, some options will be rejected as minimally as possible
until an adequate decision class X is obtained.

Step 4: Setting decision class X as the domain, and for each neighbor j ∈ L,
relevant items of the neighbor j in domain X are a common covering Cj , where

Cj = {i ∈ X|rj,i ≥ θ}. (2)

Here, we define C∗ = X −∪Cj ; then, C = {C1, C2...Cn, C∗} is a covering for the
active user in domain X. If the set ∪Cj is empty, the domain is enlarged from
X to S.

Step 5: On the basis of covering reduction in the covering-based rough set,
redundant neighbors are removed from covering C of the active user to obtain
reduct(C). The active user’s reduct-neighbors, which are defined as L∗, consist
of all users in reduct(C), and the relevant items of L∗ comprise the candidates
D for the active user.



Applying Covering-Based Rough Set Theory to User-Based CF 283

Step 6: Depending on the ratings of L∗, scores are predicted for D using the
adjusted weighted sum approach, i.e.,

Px,i = r̄x + k
∑
y∈U∗

sim(x, y) ∗ (ry,i − r̄y), (3)

where U∗ represents the neighbors in L∗ who have rated item i. Then, the average
rating r̄x of user x is defined as

r̄x =

∑
i∈Sx

rx,i

card(Sx)
, where Sx = {i ∈ S|rx,i �= �}.

In the above, Px,i is the prediction of item i for user x, and multiplier k serves
as a normalizing factor and is selected as

k =
1∑

y∈U∗ sim(x, y)
. (4)

When all predictions are completed, the top N items in the prediction list defined
as DN are selected as the recommended items.

Step 7: Set Rec = DN ; output Rec.

3.3 Model Discussion

Reduction of covering is a core component of CBCF, which applies the notion
of covering reduction to select relative effective neighbors. To remove redundant
neighbors to the extent possible, decision class X is defined as the domain of the
active user; therefore, the covering of the active user can be small enough. Based
on the definition of reduction in covering-based rough set theory, for common
covering Ci, if there exists another common covering Cj for which Ci ⊂ Cj ,
Ci will be considered as reducible and therefore removable. In this model, Ci

denotes the relevant items of neighbor i, and Ci ⊂ Cj indicates that neighbor j
has more relevant items than neighbor i. In other words, neighbor j will be more
efficient than neighbor i in domain X for making recommendations; therefore,
neighbor i can be removed. Removing all reducible common coverings means
that all relative effective neighbors are selected from all neighbors such that this
model could just use the relative effective neighbors to make recommendations.

4 Experiments and Evaluation

4.1 Experimental Setup and Evaluation Metrics

For our experiments, we used the MovieLens [4] popular dataset, as it has often
been utilized to evaluate RSs. The ratings dataset consists of 1682 movies, 943
users and a total of 100,000 ratings on a scale of 1 to 5. Each user has rated
at least 20 movies, and for our study, movies rated above 3 were treated as the
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user’s relevant movies. Furthermore, the covering reduction algorithm defined
by Definition 3 was used for our experiments.

We also used the conventional leave-one-out procedure to evaluate the perfor-
mance of our model. Items that the active user has rated were treated as unrated
items, and our model predicted a rating score for every unrated item using infor-
mation obtained from the remaining users. We summed every attribute’s value
in the relevant movies dataset, and two attributes with the largest sums are
selected as query options of the active user.

To measure the performance of our new model, we use mean absolute error
(MAE), root mean square error (RMSE), coverage, precision, recall, and F1 as
evaluation metrics, all of which are popular metrics for evaluating RSs. More-
over, the reduction rate is defined as an evaluation metric, which measures the
capability of removing redundant neighbors from all neighbors and is given as

ReductionRate =
1

card(U)

∑
u∈U

card(Lu − L∗
u)

card(Lu)
, (5)

where Lu denotes neighbors of the user u, and L∗
u means the reduct-neighbors

of user u.

4.2 Comparing CBCF with the Un-reduction Model

We further define Un-CBCF to represent the model without the use of covering
reduction. In experiments of both CBCF and Un-CBCF, the top 50% users of the
similarity list were selected as the active user’s neighbors. To obtain precision,
recall, and F1, the number of recommendations were set as 2, 4, 6, 8, 10, and 12.

Table 1. Results of evaluation metrics between CBCF and Un-CBCF

MAE RMSE Reduction Rate Coverage

CBCF 0.681 0.853 0.795 81.002
Un-CBCF 0.658 0.817 - 88.929

Table 1 illustrates the results of our evaluation metrics between CBCF and
Un-CBCF, with values of MAE, RMSE and coverage of Un-CBCF being slightly
better than CBCF. For the reduction rate, which only applies to CBCF, on the
average, approximately 79.5% of neighbors are removed as redundant neighbors.
Given that there are 943 users in the MovieLens dataset and the top 50% users
of the similarity list were selected as neighbors, the number of neighbors for
Un-CBCF was 471, whereas after making the reduction, the average number of
reduct-neighbors for CBCF was only 97.
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Figures 1, 2, and 3 show the precision, recall, and F1 metrics, respectively. As
shown in the figure, precision had high values for both CBCF and Un-CBCF.
The recall and F1 values became higher as the number of recommendations
grew. Overall, the precision, recall, and F1 values were almost the same between
CBCF and Un-CBCF.

Fig. 1. Precision for the CBCF and Un-CBCF versus the number of recommendations

Fig. 2. Recall for the CBCF and Un-CBCF versus the number of recommendations

From these comparative results for CBCF and Un-CBCF, we conclude that
our new CBCF model required an average of 97 reduct-neighbors to obtain
almost the same results as the Un-CBCF model, which used 471 neighbors;
therefore, our new CBCF model would be much more efficient in a RS.

4.3 Comparing CBCF with the Classic CF Model

To further illustrate the performance of our new model, we compared results
with the classic CF approach. From the results of reduction in CBCF, on the
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Fig. 3. F1 for the CBCF and Un-CBCF versus the number of recommendations

average, 97 reduct-neighbors were used to make prediction, so in this experiment,
the top 97 users of the similarity list were selected as the active user’s neighbors
for CF.

Table 2. Results of evaluation metrics between CBCF and CF

MAE RMSE Coverage

CBCF 0.681 0.853 81.002
CF 0.675 0.851 50.026

Table 2 shows the results of evaluation metrics for CBCF and CF. As illus-
trated in the table, values of MAE and RMSE for CF were satisfactory, meaning
that the predicted scores were close to the original scores; however, coverage was
not good enough, indicating that CF recommended 50% of the items which the
active user had not rated. For our new CBCF model, coverage was improved to
81% with the values of MAE and RMSE satisfying. Figures 4, 5, and 6 illus-
trate the precision, recall, and F1 measures for CBCF versus CF, respectively.
From the figures, we note that CBCF was better than CF in terms of precision,
decreasing as the number of recommendation grew; however, the values of recall
and F1 increased as the number of recommendations grew. Overall, all values
were almost the same between CBCF and CF.

Comparative results between CBCF and CF reveal that our new CBCF
model could overcome the disadvantage of CF and obtain sufficiently good values
of coverage and accuracy.
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Fig. 4. Precision for CBCF and CF versus the number of recommendations

Fig. 5. Recall for CBCF and CF versus the number of recommendations

Fig. 6. F1 for CBCF and CF versus the number of recommendations
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5 Conclusions and Future Work

CF is the most commonly used and studied technology for making recommenda-
tions in RSs. User-based CF has been the most popular recommendation method
to date. Generally, we use accuracy and coverage to evaluate the RS, but for
user-based CF, if we obtain a high level of accuracy, coverage tends to be unsat-
isfactory, meaning the RS could only recommend a small set of items. On the
contrary, if coverage is outstanding, accuracy tends to decrease, causing the RS
to recommend items inexactly, thus causing users to potentially stop using the
RS. It is difficult for user-based CF to simultaneously provide satisfying accuracy
and coverage.

Therefore, in this study, we presented a new CBCF model based on covering-
based rough sets to improve user-based CF, which treats relevant items of every
neighbor as a common covering for the active user, and then utilizes covering
reduction theory to remove redundant neighbors. The reduct-neighbors are used
to predict the score for each candidate, and our approach selects the top N
candidates as recommendations. Results of our experiments illustrate that CBCF
was able to utilize fewer neighbors to produce almost the same results compared
with the model using all neighbors. Moreover, unlike user-based CF, CBCF
was able to simultaneously obtain satisfactory accuracy and coverage; therefore,
CBCF could be used in practice in the effective operation of RSs.

In our future work, we plan to use upper and lower approximation operators
of a covering in covering-based rough set to generate candidates for a RS, because
the upper and lower approximation operations are the same between reduction
and un-reduction for a covering. We can only utilize reduct-neighbors to obtain
the same candidates generated by upper and lower approximation operations,
so that accuracy and coverage of the model could be more satisfactory.
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