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Abstract. Clustering analysis is well-used in data mining to group a
set of observations into clusters according to their similarity, thus, the
(dis)similarity measure between observations becomes a key feature for
clustering analysis. However, classical clustering analysis algorithms can-
not deal with observation contains both data and vague concepts by
using traditional distance measures. In this paper, we proposed a novel
(dis)similarity measure based on a prototype theory interpreted knowl-
edge representation framework named label semantics. The new proposed
measure is used to extend classical K-means algorithm for clustering data
instances and the vague concepts represented by logical expressions of
linguistic labels. The effectiveness of proposed measure is verified by
experimental results on an image clustering problem, this measure can
also be extended to cluster data and vague concepts represented by other
granularities.
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1 Introduction

Clustering analysis (or clustering) is a main task of exploratory data mining, and
a common technique for statistical data analysis [11]. Cluster analysis groups a
set of observations (data) into several “clusters”, and observations in the same
“cluster” are considered as “similar” observations and they are “dissimilar” to
those belong to other clusters. Besides, conceptual clustering is another type of
clustering analysis for unsupervised classification, in which the observations are
grouped according to their fitness to descriptive concepts, but not simple similar-
ity measures. To our knowledge, these two types of clustering are rarely studied
together though there are actual needs for grouping data and concepts [4].

Clustering algorithms are widely used in several fields, including machine
learning, pattern recognition, image analysis, bioinformatics and so on. There
are many successful classical cluster algorithms, such as K-means, fuzzy C-means
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and rough C-means [1] for similarity based clustering, and hierarchical cluster-
ing algorithms for connectivity based clustering. Yet these classical clustering
algorithms using classical distance measures (e.g. Euclidian and Mahalanobis
distance) cannot cluster vague concepts, and their clustering results are heavily
depend on the distance measure between observations. Thus, in past decade,
many clustering algorithms using customized distance measure are proposed
in literature, for example, belief K-modes method (BKM) proposed by Hariz
et al. [2] and possibilistic K-modes method (PKM) proposed by Ammar and
Elouediare [3] are effective methods for clustering numerical data described by
categorical attributes (labels), where the distance measure between objects is
defined by the total mismatches of the corresponding attribute.

However, these clustering algorithms are restricted to numerical or discrete
data. However, in order to simulate the knowledge generation process, we hope
to deal with clustering some high-level knowledge, vague concepts or linguistic
expressions. For example, we have two sets of observations, including a set of
data of human heights in meters

hight = {1.0, 1.3, 1.4, 1.6, 1.7, 1.9, 2.0}
and a set of descriptive vague concepts concepts = {short,medium, tall} in
which elements are defined by a set of prototypical elements. Given the numbers
of cluster centers k = 3, these observations can be clustered into three follow-
ing clusters: {short, 1.0, 1.3, 1.4}, {medium, 1.6, 1.7}, {tall, 1.9, 2.0}. In order to
accomplish the above purpose, we need a suitable distance measure for measuring
the dissimilarity between numerical data and descriptive vague concepts. Label
semantics [5] can be used to construct distance measure between numerical data
and descriptive concepts, where descriptive concepts are represented by a set of
linguistic labels, Zhang and Qin [4] proposed such a distance measure based on
fuzzy set interpreted label semantics, where linguistic labels are represented by
fuzzy membership functions defined on a universe of discourse containing data
to be described. The prototype theory based interpretation of label semantics is
proposed by Lawry and Tang [6], where linguistic labels are represented by a set
of prototypical data. Based on this interpretation, in this paper, we proposed a
novel distance measure which makes it possible to cluster a set of observations
including numerical data, descriptive concepts and linguistic expressions, and
it’s effectiveness is verified by applying it to the classical K-means clustering
algorithm.

This paper is structured as the following. Section 2 gives a general introduc-
tion of label semantics. In Section 3, we propose the new distance measure based
on prototype theory. Section 4 gives the extended K-means based on the new
measure and Section 5 gives the experimental results and compared to previous
research. Section 6 gives the final conclusion and discussions.

2 Label Semantics Framework

Label semantics [5] is a random set framework for modeling with words, which
encodes the semantic meaning of linguistic labels according to how they are
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used by a population of individuals to convey information. Otherwise, it can
also be regarded as a simulation of knowledge generation process, in order to
acquire knowledge, an intelligent has to identify which label or logical expression
is appropriate to describe a value or an observation, thus, the appropriateness
of using a subset of labels to describe a certain object is named appropriateness
degrees in label semantics framework.

Definition 1. (Label expression). Given a finite set of labels LA = {L1, ..., Ln},
the set of label expression LE is generated by logical expression of labels in LA
as below:

– For ∀L ∈ LA, we have L ∈ LE

– For ∀(θ, ϕ) ∈ LA2, we have (θ ∨ ϕ, θ ∧ ϕ,¬θ) ∈ LE

For set of labels S ⊆ LA, an observation in the universe of discourse x ∈ Ω when
an individual in a population I ∈ V makes an assertion of the form “x is θ”,
which provides information about “what label is appropriate for describing obser-
vation x”, this information is named label description of x, it is a random set
from a population V to the power set of LA, denoted by Dx, the associated
distribution of Dx is referred to mass assignment, denoted by mx as follow:

Definition 2. (Mass Assignment). Mass assignment is agent’s subjective belief
in a population V that the subset S contains all and only appropriate label(s) for
describing object x:

∀S ⊆ LA, mx(S) = P (I ∈ V : DI
x = S) (1)

Thus, the mass assignment mx can be also regarded as a mass function defined
as mx : P (LA) → [0, 1] where P (LA) is the power set of LA and

∑

S⊆LA

mx(S) = 1

Furthermore, to evaluate the how appropriate a single label L ∈ LA is for
describing a certain observation x ∈ Ω, the appropriateness degree is defined
as follows:

Definition 3. (Appropriateness Degree). Appropriateness degree is a function
defined as μ : LA × Ω → [0, 1] satisfying:

∀x ∈ Ω, ∀L ∈ LA, μL(x) =
∑

S⊆LA:L∈S

mx(S) (2)

Example 1. Given a finite set of labels for human age description: LAAge =
{young,middle-aged, old} and a population of 10 individuals, Suppose 4 of 10
individuals consider that “young” is appropriated label for describing age 42, and
other 6 support that both “young” and “middle-aged” are appropriate labels,
according to Definition 2, the mass assignment for age 42 is:

m42 = {middle − aged} : 0.4, {young,middle − aged} : 0.6
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Based on Definition 3, appropriateness degrees of each label for describing age
42 are:

μyoung(42) = 0.6 μmiddle−aged(42) = 0.4 + 0.6 = 1

After defining the appropriateness degree evaluation method of single label,
we may also interest in evaluating the appropriateness degree of a logical expres-
sion θ ∈ LE, for this propose, it is necessary to identify what information is
provided by a logical expression θ regarding the appropriateness of labels, thus,
the λ function is defined to transform the information provided by a logical
expression as below:

Definition 4. (λ-Function). λ-function is a mapping from linguistic expression
to the power set of labels: λ : LE → P (LA), which is defined as follow, for
∀(θ, ϕ) ∈ LE2:

– ∀Li ∈ LA, λ(Li) = {F ⊆ LA : Li ∈ F}
– λ(θ ∧ ϕ) = λ(θ) ∩ λ(θ)
– λ(θ ∨ ϕ) = λ(θ) ∪ λ(θ)
– λ(¬θ) = λ(θ)

Label semantics theory is a powerful tool for modeling with words, which has
been well applied in machine learning and data mining, further details on using
label semantics for data mining are available in [6].

3 Distance Measure Based on Logical Expressions

3.1 Prototype Theory Interpretation of Label Semantics

The proposed distance measure deals with labels and linguistic expressions inter-
preted by the prototype theory interpretation of label semantics framework.
The label semantics framework is a random set framework for modeling with
vagueness, where a set of labels is used by individuals vary across a popula-
tion, such a theory cannot result in a truth-functional calculation [6]. In order
to generate a functional calculus for appropriateness degrees, Lawry and Tang
[6] have proposed an interpretation based on prototype theory. In this inter-
pretation, each label Li ∈ LA is represented by a set of prototypical elements
Pi ∈ Ω, given a classical distance function d(·) define on the universe of dis-
course: d : Ω2 → [0,∞), and δ is a probability density function which is defined
on [0,∞), in our experiment, we consider d as the Euclidean distance. The
appropriateness degree μLi

(x) of describing a data x ∈ Ω by using a certain
label Li ∈ LA can be calculated as below:

∀Li ∈ LA, ∀x ∈ Ω, μLi
(x) =

∫ ∞

d(x,Pi)

δ(t)dt (3)

where d(x, Pi) = min{d(x, y) : ∀y ∈ Pi}. More details on the prototype theory
interpretation of label semantics can be found in [6,9].
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Fig. 1. Illustration of distance between two data points.

3.2 Distance between Vague Concepts

During the decision making process, an individual has to identify which label or
logical expression can actually be used to describe an observation. The proto-
type theory interpretation of label semantics generates a functional calculus of
appropriateness degree, thus, we can propose a measure based on appropriate-
ness degrees to calculate dissimilarities between two observations of labels and
logical expressions.

Definition 5. (Distance Between Data Points). Given two observations in a
universe Ω, and N labels Li ∈ LA, i ∈ [1, |LA|] and i ∈ Z, for each label
Li ∈ LA, let there is a set Pi ⊆ Ω corresponding to prototypical elements for
which Li is certainly an appropriate description [6]. The distance between two
observations (data points) is defined as a function define as D(x1, x2) : Ω2 →
[0,∞):

D(x1, x2) =
N∑

i=1

|μLi
(x1) − μLi

(x2)| (4)

where μLi
(xj) is the appropriateness degree of describing data point xj using

label Li, as defined in Definition 3. Given a single label L which is represented
by a set of prototypical elements P ∈ Ω, an illustration of distance between two
data points is shown in Fig. 1, where the distance is defined as the integral of the
density function δ from d(x1, L) to d(x2, L). Further more, the above distance
measure has these following properties:

Theorem 1. (Symmetric). Given (x1, x2) ∈ Ω2, the distance between two data
points is symmetric

D(x1, x2) = D(x2, x1)



Label Semantics Approach for Clustering Data and Vague Concepts 241

Proof. According to Definition 1, for each (x1, x2) ∈ Ω2 we have

D(x1, x2) =
∑N

i=1 | ∫ d(x2,Pi)

d(x1,Pi)
δ(t)dt| =

∑N
i=1 | ∫ d(x1,Pi)

d(x2,Pi)
δ(t)dt| = D(x2, x1)

The proof is completed. The proof of this theorem is very intuitive as the distance
is defined by the area between a range, it is symmetric as the area keeps the
same from either the left to the right or from the right to the left.

Theorem 2. (Triangular inequality). Given (x1, x2, x3) ∈ Ω3, we have

D(x1, x3) ≤ D(x1, x2) + D(x2, x3)

Proof. According to Definition 1, for each (x1, x2, x3) ∈ Ω3 we have

D(x1, x3) =
∑N

i=1 | ∫ d(x3,Pi)

d(x1,Pi)
δ(t)dt| =

∑N
i=1 | ∫ d(x2,Pi)

d(x1,Pi)
δ(t)dt +

∫ d(x3,Pi)

d(x2,Pi)
δ(t)dt|

D(x1, x2) + D(x1, x2) =
∑N

i=1 | ∫ d(x2,Pi)

d(x1,Pi)
δ(t)dt| + | ∫ d(x3,Pi)

d(x2,Pi)
δ(t)dt|

According to the triangular inequality in the real number space where ∀(a, b) ∈
R

2, |a + b| ≤ |a| + |b|, as a result, for ∀(x1, x2, x3) ∈ Ω3 and ∀Pi ⊆ Ω we have:

| ∫ d(x2,Pi)

d(x1,Pi)
δ(t)dt +

∫ d(x3,Pi)

d(x2,Pi)
δ(t)dt| ≤ | ∫ d(x2,Pi)

d(x1,Pi)
δ(t)dt| + | ∫ d(x3,Pi)

d(x2,Pi)
δ(t)dt|

As a result, for ∀(x1, x2, x3) ∈ Ω3:

D(x1, x3) ≤ D(x1, x2) + D(x2, x3)

In conclusion, the distance between data points follows the triangular inequality.

Above definitions construct a functional calculus for measuring dissimilarity
between two data points referring to labels which are represented by sets of
prototypes defining on the universe of discourse. One step further, we consider
how can we measure the dissimilarity between a certain label and a data point
in the same universe.

Definition 6. (Distance between point and label). Given a data point x ∈ Ω and
a certain label Li ∈ LA represented by a set of prototypical elements Pi ⊆ Ω,
the distance between point and label is defined as below:

D(x,Li) = min{D(x, y), ∀y ∈ Pi} (5)

where D(x, y) is the distance between points as defined in Definition 1.

Specifically, when there is only one label L ∈ LA, |LA| = 1 which can be
used to describe elements in Ω,we have:

D(x,L) = 1 − μL(x) (6)
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Where μL(x) is the appropriateness degree of describing data point x using label
L, thus, the distance D(x,L) can be interpreted as the probability of “label L
can not be used to describe data x”. Furthermore, the distance between two sets
of labels can be defined by:

Definition 7. (Distance between set of labels). Given two sets of labels
(S1, S2) ∈ LA2, each label Li ∈ LA can be represented by a set of prototypi-
cal elements Pi ∈ Ω, we have:

D(S1, S2) =

∑
Li∈S1

∑
Lj∈S2

min{D(x, y), ∀(x, y) ∈ Pi × Pj}
|S1| · |S2| (7)

where |S1| and |S2| are cardinalities of sets S1 and S2. D(x, y) is the distance
between points as defined by Definition 1. Based on the properties of distance
between data points, it is obviously that the distance between set of labels is
also symmetric and satisfies the triangular inequality.

The above distance measure is one dimensional, for an object with more than
one feature to be described by labels. The distance measure between set of labels
can be extended into multi-dimensional as shown in Definition 8.

Definition 8. (Distance between multi-dimensional set of labels). The set of
n-dimensional labels MLA(n) is a combination of descriptive labels of n dif-
ferent features MLA(n) = LA1 × LA2 × ... × LAn, where LAi is the set of
descriptive labels for describing the ith feature. For two multi-dimensional labels
(ML1,ML2) ∈ MLA(n)2 where:

– ML1 = (L11, L12, ..., L1n), L1i ∈ LAi

– ML2 = (L21, L22, ..., L2n), L2i ∈ LAi

we have:

D(ML1,ML2) =

√√√√
n∑

i=1

D(L1i, L2i)2 (8)

In Definition 4, the λ-function provides an application from logical expres-
sions to set of labels, utilizing this function and distance measure between set of
labels, we can define the distance between logical expressions intuitively:

Definition 9. (Distance between logical expressions). Given two logical expres-
sions (θ, ϕ) ∈ LE, the distance between θ and ϕ is:

D(θ, ϕ) = D(Sθ∧¬ϕ,Sϕ) + D(Sϕ∧¬θ,Sθ) (9)

D(θ, λ) is the distance between label sets as defined in Definition 7, where label
sets S

θ∧¬ϕ,Sϕ,Sϕ∧¬θ,Sθ are defined as follow:

– S
θ = {S|S ∈ λ(θ)}

– S
ϕ = {S|S ∈ λ(ϕ)}

– S
θ∧¬ϕ = {S|S ∈ λ(θ) ∩ λ(ϕ))}

– S
ϕ∧¬θ = {S|S ∈ λ(ϕ) ∩ λ(θ))}
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specifically, when |(Sθ∧¬ϕ)| = 0,

D(θ, ϕ) = D(Sϕ∧¬θ,Sθ) (10)

and when |(Sϕ∧¬θ)| = 0,

D(θ, ϕ) = D(Sθ∧¬ϕ,Sϕ) (11)

4 Clustering Mixed Objects

First proposed by MacQueen [7] in 1967, the K-means is regarded as the simplest
yet effective technique for clustering analysis. The classical K-means algorithm
using Euclidean distance cannot cluster vague concepts (e.g. linguistic descrip-
tions). Based on the above distance measure, classical K-means algorithm can
be extended for clustering mixed objects, including data points, labels which
are represented by sets of prototypical elements, as defined in Section 3.1 and
linguistic expressions.

The main objective of K-means clustering is to minimize the sum of squared
distance between objects in each cluster and their mean, given objects

(x1, x2...xN ) ∈ ΩN

and k clusters, and let mj as the mean of objects in cluster j, we define x ∈ j
if mj = {m| min||x,mj ||, ∀j ∈ [1, k], j ∈ N}, which is also equivalent to
minimizing the following objective function:

S =
k∑

j=1

∑

x∈k

||x,mj ||2 (12)

With the same objective, given an unlabeled data set of mixed objects
(obj1, ..., objN ) ∈ (Ω

⋃
LE)N the extended K-means algorithm for clustering

mixed objects can be described as pseudo-codes in Table 1.

Table 1. Pseudo-code of extended K-means algorithm for clustering mixed objects.

Given a finite set of mixed objects S = {obj1...objN} and a number of cluster k,
A set of randomly initialized centers K = {c1, ..., ck}, a threshold ε > 0, and counter p

While ||c(p) − c(p−1)|| > ε
p++

Step1. For each object obji ∈ S, determine the cluster obji ← c
(p−1)
i of each object, if:

D(obji, c
(p−1)
i ) = min{D(obji, c

(p−1)
t ) : t = 1, ..., k}

Step2. Calculate new clusters c
(p)
t , x = 1, ..., k, which satisfy:

∑
obj∈cluster t D(c

(p)
x , obj) = min{∑obj∈cluster t D(x, obj)}
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The new proposed distance measure is used both in Step 1 and 2 to calculate
distances between each two objects, thus, this algorithm can be used to cluster
mixed objects including numerical data and linguistic labels, necessarily, the
cluster centers of each cluster should be numerical data in implement.

5 Experimental Studies

5.1 Distance Variation

Given a continue universe of discourse [1, 20] of numerical data points defined
on R, and three labels L1, L2, L3 which can be represented respectively by three
sets of prototypical elements, P1 = {1}, P2 = {5, 5.5, 7} and P3 = {8, 8.5}. Given
fixed x1 = 7.5, when x2 varies from 0 to 20, the variation of distance D(x1, x2)
is shown illustratively in Fig. 2.

This illustration indicates that the distance D(x1, x2) varies rapidly when
the data point x2 is close to prototypes, in contrast, the variation becomes
more and more slowly when the data point x2 moves away from the prototypes.
This phoneme can be interpreted as when data points are close to a linguistic
concept, we can determine their dissimilarity according to the appropriateness
of describing these objects using this concept more precisely than these data
points are far away from this concept.

Universe of Discourse
0 2 4 6 8 10 12 14 16 18 20

D
(x

1
,x

2
)

0

0.5

1

1.5

2

2.5

Fig. 2. Illustration of variation of distance between two data points: x1 is fixed to 7.5
and x2 varies from 0 to 20.

5.2 Clustering Images and Labels

In order to validate the performance of the novel distance measure for clustering
images and vague concepts. We apply this measure in an extended K-means algo-
rithm as introduced in Section 4 for clustering images and linguistic labels. We
select 100 images from the Corel image data set[8] in 4 categories and 25 images
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in each category, each image is resized into 192 × 128, we chose 4 descriptive
linguistic labels to describe images, including “sunset”, “beach”, “garden” and
“polar bear”. In our experiment, each image is represented as a 3-dimensional
numerical data point according to its average HSV (Hue, Saturation, Value) [10]
feature, besides, each label is represented as a set of 5 images which are randomly
selected from the same category.

After designing labels and extracting image features, the data set of mixed
objects including images represented as numerical data points and labels (as
defined in Definition 8) represented as sets of 5 prototypical elements (images)
for which the label is certainly an appropriate description. In our experiment,
each label is represented by 5 images in same category, thus, the set which we
have to cluster is constructed by 80 images (20 images in each category) and 4
labels, we cluster this set of mixed objects into 4 clusters. In our experiment, the
4 cluster centers are 4 data points which are randomly selected from the compo-
nents of the 4 mutually different labels. Furthermore, a 20% cross-validation is
used to evaluate the performance of proposed algorithm, each time we randomly
change the 20 images (5 images of each label) which are considered as prototyp-
ical elements for representing labels, during the cross-validation process, each
image is used as a component of label only once. The average accuracy of five
times of experiment is regarded as the final experiment result, the comparison
of accuracy between this method and the existing method proposed by Zhang
and Qin [4], and their execution time to build the 4 clusters under the same
hardware condition are shown in Table 2.

Further more, the illustration of above result and its variation is shown in
Fig. 3.

Table 2. Performance of clustering mixed objects in terms of classification accuracy.

Sunset Beach Garden Polar-bear Execution time

Our Model 81% 94% 67% 87% 18.2s
Zhang and Qin [4] 72% 60% 64% 96% 6318.1s

Fig. 3. Illustration of experimental result and its variation.



246 H. Zhao and Z. Qin

6 Conclusion

In this paper we proposed a novel distance measure based on prototype the-
ory interpreted label semantics framework. This distance measure differs from
the other distance measure by focusing on the difference of logical meanings
which conveyed by the object. The new proposed distance measure is appli-
cated to extend classical K-means algorithm for clustering numerical data and
vague concepts which are in the form of linguistic labels. Experimental studies
on a image clustering problem validated the effectiveness of our new proposed
measure.

With a similar idea of measuring the dissimilarities according to the logical
meaning which the object conveys, the proposed measure is extendable to mea-
suring distances between any granularities, In future work, This measure can be
applied to other applications and clustering vague concepts represented by other
granularities.
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