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Abstract. We used interval-valued data to predict stock returns rather
than just point valued data. Specifically, we used these interval values in
the classical capital asset pricing model to estimate the beta coefficient
that represents the risk in the portfolios management analysis. We also
use the method to obtain a point valued of asset returns from the interval-
valued data to measure the sensitivity of the asset return and the market
return. Finally, AIC criterion indicated that this approach can provide
us better results than use the close price for prediction.
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1 Introduction

Capital asset pricing model provides a piece of information of asset return related
to the market return via its systematic risk. In general, asset returns of any
interested asset and market returns are calculated from a single-valued data.
Most of the papers in financial econometrics use only closed price taking into
account for calculation but in the real world stock price is moving up and down
within the range of highest price and lowest price. So, in this paper we intend
to use all the points in the range of high and low to improve the results in
our calculations. We also put an assumption of a normal distribution on these
interval-valued data.

An enormous number of research on CAPM model with single-valued data
could be found in much financial research topic, the reader is referred to, e.g.,
William F. Sharpe [1] and John Lintner [2] only a single-valued of interest was
considered. Many various technics were applied to the original CAPM model that
we can found in the work from Autchariyapanitkul et al. [3], the authors used
quantile regression under asymmetric Laplace distribution (ALD) to quantify
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the beta of the asset returns in CAPM model. The results showed that this
method can capture the stylized facts in financial data to explain the return of
stocks under quantile, especially under the middle quantile levels. In Barnes and
Hughes [4], the beta risk is significant in both tails of the conditional distribution
of returns. In Chen et al. [5], the authors used a couple of methods to obtain
the time-varying market betas in CAPM to analyze stock in the Dow Jones
Industrial for several quantiles. The results indicated that smooth transition
quantile method performed better than others methods.

Interval-valued data has become popular in many research fields especially
in the context of financial portfolio analysis. Most of the financial data are usu-
ally affected by imprecision, uncertainty, inaccuracy and incompleteness, etc. The
uncertainty in the data may be captured with interval-valued data. There are sev-
eral existing research in the literature for investigating this issue. see Billard [6],
Carvalho [7], Cattaneo [8], Diamond [9], Gil [10], Körner [11], Manski [12], Neto
[14]. However, In these research papers are lacking in a foundation and theoretical
background to support this idea.

The connection between the classical linear regression and the interval-valued
data that share the important properties could be found for the work by Sun and
Li [15]. In their paper, they provided a theoretical support framework between
the classical one and the interval-valued linear regression such as least squares
estimation, asymptotic properties, variances estimation, etc. However, in their
paper only one of an explanatory variable can use to described the responding
variable. In this paper, we intend to apply the concept of the interval-valued
data to the CAPM model. We replace a single value of market returns and asset
returns with the range of high and low historical data into the model.

The rest of the paper is organized as follows. Section 2 gives a basics knowl-
edge of a linear regression model for interval-valued data. In Section 3 discusses
the empirical discovering and the solutions of the forecasting problem. The last
section gives the conclusion and extension of the paper.

2 A Review of Real Interval-Valued Data

Now, take a close look at financial data (Di). Suppose, we have a range
of any numbers between a minimum and maximum prices given by Di =
[min, . . . ,max] = [Low, ...,High], where the minimum price is the “lowest price”,
and the maximum price is the “highest price”. Certainly, this range contains
the point that we called “close price”. In many research papers, they are
usually using the close price for calculations. A close price is a number that
takes any values in the range of Di between the lowest and the highest prices,
Di = [Low,...Close,...,High]. The close price could be either the lowest price or
the highest price.

In this paper, we try to find the better value for calculations rather than a
close price that is the best-represented point in the range of Di to improving our
predictions. We considered a normal distribution on this interval-valued data.
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3 An Interval-Valued Data in a Linear Regression Model

Suppose we can observe an i.i.d random paired intervals variables xi = [xi, xi]
and yi = [yi, yi], i = 1, 2, . . . , n where xi, yi are the maximum values of xi and
xi, yi are the minimum values of yi. Additionally, we can rewrite the value of
xi, yi in the form of intervals as

xi = [xm
i − xr

i , x
m
i + xr

i ], (1a)
yi = [ym

i − yr
i , y

m
i + yr

i ], i = 1, 2, . . . , n, (1b)

where xm
i , ym

i is the mid-points of xi and yi and xr
i , y

r
i is the radii of xi and yi,

satisfying xr
i , y

r
i ≥ 0. Suppose, we consider the following linear regression model

given by
yi = axi + b + εi, i = 1, 2, · · · , n. (2)

Analogously, it is easy to interpret the meaning of xi, yi by the distance of
centers and radii as the following equations

xi = xm
i + δxi

, δxi
∈ N(0, (k0Δxi)2) (3a)

yi = ym
i + δyi

, δyi
∈ N(0, (k0Δyi)2), (3b)

where xm
i , ym

i are the centers of xi and yi, respectively. Then, Δxi =
xi−xi

2 ,Δyi =
yi−yi

2 are the radii of xi and yi, respectively and xm
i = xi+xi

2 , ym
i =

yi+yi

2 are the mid-point of xi and yi, respectively.Thus, given the linear regression
for the interval valued data we have

ym
i + δyi

= axm
i + aδxi

+ b (4a)
ym
i = axm

i + b + (aδxi
− δyi

), (4b)

where (aδxi
− δyi

) ∼ N(0, σ2) ≡ N(0, k2
0a

2Δx2
i + Δy2

i ). Assume that aδxi
− δyi

is an independence. Thus, we can estimate parameters a, b, k0 by the maximum
likelihood function given by

max
a,b,k0

L(a, b, k0|([xi, xi], [yi, yi]), i = 1, . . . , n)

= max
a,b,k0

n∏

i=1

(
1√

2πk2
0(a2Δx2

i + Δy2
i )

exp
[
−1

2
(ym

i − axm
i − b)2

k2
0(a2Δx2

i + Δy2
i )

])
(5)

This approach was already developed in Sun and Li [15]. And soften the
criticisms of lack of theory, Manski has a whole book (see, Manski [12],[13]),
this is finance not pure mathematics here. The proof of success is better fit not
theorems.

3.1 Goodness of Fit in Linear Regression Model for an
Interval-valued Data

In the deterministic linear regression model, we use variance to describe variation
of the variable interested and so that as we knew the ratio a2V ar(X)

V ar(Y ) ∈ [0, 1] can be
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explained as an indication of goodness-of-fit. In this paper, we used the concept
of the chi-squared test (χ2) of the goodness of fit. Recall that σxi

= k0Δxi and
σyi

= k0Δyi given the simple linear regression we have

yi = axi + b (6a)
ym
i + δyi

= axm
i + aδxi

(6b)
ym
i − axm

i − b = aδxi
− δyi

, (6c)

where δxi
, δyi

∼ N(0, σ2). Thus, we have a2σ2
xi

+ σ2
yi

, by replacing k2
0(a

2Δx2
i +

Δy2
i ) to above equation 6. The empirical χ2−test is obtained by estimated this

following equation

χ2
cal =

n∑

i=1

(ym
i − axm

i − b)2

k2
0(a2Δx2

i + Δy2
i )

, (7)

where the degree of freedom is n − 2.

4 An Application to the Stock Market

We consider the following financial model that is so called Capital Asset Pricing
Model (CAPM). Only two sets of interval-valued data are used to explain the
relationship of the asset. The fitted model is based on the least square estimation.

4.1 Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) is a linear relationship that was cre-
ated by William F. Sharpe [1] and John Lintner [2]. The CAPM use to calculate a
sensitivity of the expected return on the asset to expected return on the market.
The combination of a linear function of the security market line:

E(RA) − RF = β0 + β1E(RM − RF ), (8)

where E(RA) explains the expected return of the asset, RM represents the
expected market portfolio return, β0 is the intercept and RF is the risk-free
rate. E(RM − RF ) is the expected risk premium, and β1 is the equity beta,
denoting market risk. To measure the systematic risk of each stock via the beta
takes form:

β1 =
cov(RA, RM )

σ2
M

, (9)

where σ2
M represents the variance of the expected market return. Given that,

the CAPM predicts portfolio’s expected return should be about its risk and the
market returns.
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4.2 Beta Estimation with Interval Data

From the deterministic model in equation (8), we calculate the β
coefficient through the likelihood by equation (5) instead. Suppose
we have observed the realization interval stock return [RAi, RAi] =
[(ra1, ra1), . . . , [ran, ran)], i = 1, 2, . . . , n and return from market [RM i, RM i] =
[(rm1, rm1), . . . , (rmn, rmn)], i = 1, 2, . . . , n over the past N years. These obser-
vations will be assumed an independent random. From likelihood for an interval
values we have

max
a,b,k0

L(a, b, k0|([RMi, RMi], [RAi, RAi]), i = 1, . . . , n)

= max
a,b,k0

n∏

i=1

(
1√

2πk2
0(a2ΔRm2

i + ΔRa2
i )

exp
[
−1

2
(Ram

i − aRmm
i − b)2

k2
0(a2ΔRm2

i + ΔRa2
i )

])

(10)

4.3 Empirical Results

Our data contains 259 weekly interval-valued returns in total during 2010-
2015 are obtained from Yahoo. We compute the log returns on the following
stock, namely, Chesapeake Energy Corporation (CHK)and Microsoft Corpora-
tion (MSFT). Due to significant capitalization and high turnover volume.

In this paper, we use Treasury bills as a proxy. From Autchariyapanitkul et
al. [3] and Mukherji [16] suggested that Treasury bills are better proxies for the
risk-free rate, only related to the U.S. market.

Table 1 and Table 2 report the estimated results from equation (5). For
example, the simple linear regression model for the asset returns (Y) and the
market returns (X) for interval valued data for CHK is written to be

RA = −0.0021 + 0.9873RM . (11)

From the above linear equation, the return of a stock is likely to increase
less than the return from the market. A non-parametric chi-square test is used

Table 1. Estimated parameter results for CHK

Interval-Valued data Point-Valued data

parameters values std. Dev. values std. Dev.

β0 –0.0021 0.0233 –0.0191 0.0055
β1 0.9873 0.0914 0.7226 0.0713
k 0.4472 0.0845 - -
MSE - - 0.036
LL 525.7021 - 361.1400 -
χ2 259.00 - - -
AIC –1045.04 - –716.28 -
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Table 2. Estimated parameter results for MSFT

Interval-Valued data Point-Valued data

parameters values std. Dev. values std. Dev.

β0 –0.0004 0.0015 –0.0088 0.0035
β1 1.0086 0.0220 0.8489 0.0005
k 0.4017 0.0170 - -
MSE - - 0.0025 -
LL 692.3808 - 478.9365 -
χ2 259.00 - - -
AIC –1378.76 - –951.87 -
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Fig. 1. Securities characteristic line for point valued data
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Fig. 2. Securities characteristic line for interval valued data

to validate the method of interval-valued data. The theoretical χ2
n−2 gives the

value of CHK, χ2
n−2 = 303.2984 compare with the empirical value χ2

emp = 259.00
confirm that the market returns can be used to explain the asset returns. The
model selection criteria Akaike information criterion (AIC) was employed to
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compare these two techniques. The AIC of interval-valued data gives a value of
–1051.4402 is smaller than the AIC of pointed-valued data, which indicate that
the results from the interval-valued method is more prefer than the deterministic
one.

The relationship between market return and asset return are plotted in
Figure 1 and Figure 2 for pointed-valued data and interval-valued data, respec-
tively.

The rectangular are the high and low interval-valued data, and the straight
line is the securities characteristic line, the slope of this straight line represent
the systematic risk beta. All investments and portfolio of investments must lie
along a straight line in the return beta space.

5 Conclusions and Extension

The systematic risk has played as the critical role of financial measurement in
capital asset pricing model. Academic and practitioners attempt to estimate its
underlying value accurately. Fortunately, there have been the novel approaches
to evaluating the beta with interval-valued data. We used every price range of
real world data to obtained the single value of the systematic risk same as the
results from the conventional CAMP model.

In this paper, we use our approach to an interval-valued data in CAPM for
only one stock in S&P500 for a demonstration. With this, a method can be used
to investigate the linear relationship between the expected asset returns and its
asymmetric market risk by including all of the levels of prices in the range of
an interval-valued data. The results clearly show that the beta can measure
the responsiveness to the asset returns and market returns. However, only a
systematic risk is calculated through the model, and we neglect the unsystematic
risk under CAPM assumption. CAPM concludes that the expected return of a
security or a portfolio equals the rate on a risk-free security plus a risk premium.

By AIC criterion, it should be noticed that the estimation by using interval-
valued data more reasonable than just used the single valued in the calculations.
Not only one explanatory variable can be used to explain the outcome variable
but with this method also allowed us to use more than one covariate in the
model.

For future research, we are interested to use this method to the time series
models such as ARMA, GARCH model. Additionally, we can use this method to
the model with more than one explanatory variables such as Fama and French
(1993). A three-factor model can be extended the CAPM by putting size and
value factors in the classical one.
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