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Abstract. A bilevel linear optimization problem with ambiguous lower-
level objective requires a decision making under uncertainty of rational
reaction. With the assumption that the ambiguous coefficient vector of the
follower lies in a convex polytope, we apply the maximin solution approach
and formulate it as a special kind of three-level programming problem.
According to its property that the optimal solution locates on an extreme
point, we adopt k-th best method to search the optimal solution equipped
with tests for possible optimality, local optimality and global optimality
of a solution. In this study, we propose an effective method to verify the
rational reaction of the follower which is essential to all steps of optimal-
ity test. Our approach uses a relatively small memory to avoid repetition
of possible optimality tests. The numerical experiments demonstrate our
proposed method significantly accelerates the optimality verification pro-
cess and eventually computes an optimal solution more efficiently.

Keywords: Bilevel linear optimization · Possibly optimal decision mak-
ing · Maximin solution

1 Introduction

Bilevel linear programming problem (BLP) is an extension of the linear program-
ming problem that consists of two levels of decision making stage [2]. It is known
as a sequential game in non-cooperative game theory or a so-called Stackelberg
game. In such game, the leader at the upper level chooses his strategy first, and
then the follower at the lower level makes his own decision taking the leader’s
decision into consideration as given. Its applications are found useful in many
research areas where the model used is a hierarchical optimization problem [6];
e.g., principal-agency problem in economics, optimal chemical equilibria, and
irrigation water resource management.

In the conventional BLP [2,3,6], each decision maker is assumed to have
complete information about the game. The leader and the follower can exactly
observe each other’s payoff function and strategy space. However, in realistic
scenarios, the accurate information of the counterpart is not easily observed and
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often contains ambiguity. For instance, the principal-agent problem between the
regulator and the electricity generating company in the monopoly market is
the case. The regulator as a policy maker wants to impose an optimal measure
for the environmental issue and the energy security policy. While the regulator
cannot have the complete information that describes the company motivation
for its profit maximizing, the regulator has to develop their policy based on
the indeterminate information of the company such as fuel price, demand for
electrical power and so on. For the regulator, these information are imprecise
and ambiguous due to the uncertainty, but are necessary to foresee the profit
which motivates the rational action of the company. This class of principal-agent
problem is much discussed in the area of contract theory [4]. Hence, the BLP
with ambiguous coefficients has attracted high attentions and has been recently
studied [1,5,16].

In our research [11], we propose another approach to solve the BLP problem
with an ambiguous follower’s objective function based on a maximin decision prin-
ciple under uncertainty, and a solution algorithm based on k-th best method. We
assume that the coefficients in the leader’s objective function are precise as well
as the coefficients in the constraints are crisp number. Although some research
[5,16] set the coefficient vector of leader as imprecise parameters, their models con-
structed best-case and worst-case scenario of the leader’s objective function which
eventually fixed the coefficient vector to develop the solution method. Thus, this
scenario construction is equivalent to assume that the leader’s objective function
is precise. On the contrary, the coefficients in the follower’s objective function are
the most concerned. We assume it to be ambiguous and can be represented by a
convex polytope. Since those coefficients often depend on the setting of follower’s
problem that are not known well by the leader and the objective function reflect-
ing the follower’s decision may be unclear to the leader, we think that the BLP
problem with an ambiguous follower’s objective function coefficients is one of the
crucial parts of the BLP problem with ambiguous coefficients.

In this paper, we provide an effective method to possibly conduct the opti-
mality test that helps verifying the possible rational action of the follower. This
optimality verification process is essential for both local and global optimality
test by the definition. It turns out that the acceleration of our k-th best method
is very promising. We have employed the numerical experiments in order to
observe the run time efficiency of our proposed methods.

The organization of this paper is as follows. In Section 2, we describe the
formulation of the problem. We also discuss some properties related to the for-
mulation. Our proposed solution methods and theoretical backgrounds are pro-
vided in Section 3. In Section 4, we show the numerical experiments. Finally,
conclusion and potential future works are discussed in Section 5.

2 Problem Formulation

Briefly we introduce our model setting for BLP with ambiguous objective func-
tion of the follower as well as the definitions and properties in this model. Our
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model focus on the maximin decision criteria for the leader’s decision when he
cannot observe the follower’s objective function precisely. We assume the leader
just ambiguously knows follower’s objective coefficient vector to some extent.
This uncertainty is represented by the convex polytope Γ . Moreover, the strate-
gic effect from the sequential decision is incorporated to the model as a two-step
rational decision in the constraints. This problem can be written as follows:

maximize
x

cT1 x + cT2 y,

subject to x ≥ 0,
y is determined by the follower so as to
maximize

y
c̃T3 y, ∃c̃3 ∈ Γ = {c3 | Gc3 ≤ g},

subject to A1x + A2y ≤ b,
y ≥ 0,

(1)

where x ∈ Rp and y ∈ Rq are the decision variable vectors of the leader and the
follower, respectively, c1 ∈ Rp, c2 ∈ Rq, b ∈ Rm, A1 ∈ Rm×p, and A2 ∈ Rm×q

are constant vectors and matrices while c̃3 is the ambiguous coefficient vector,
and Γ ⊆ Rq is a polytope defined by a matrix G ∈ Rl×q and a vector g ∈ Rl.

We assume the feasible solution set S = {(x,y) | A1x + A2y ≤ b, x ≥
0, y ≥ 0} is bounded and nonempty. The strategy set of the leader and the
follower in the feasible region S are defined respectively by X(S) = {x ≥ 0 |
∃y ≥ 0; A1x + A2y ≤ b}, and S(x) = {y ≥ 0 | A2y ≤ b − A1x}. Moreover,
we assume that the possible range of ambiguous coefficient vector c̃3 is known
in a bounded convex polyhedron defined by Γ = {c ∈ Rq | Gc ≤ g} where
G ∈ Rr×q and g ∈ Rr. When the leader knows exactly the coefficient vector
of the follower’s objective function, he can understand the follower’s rational
reaction set, Opt(c3,x) =

{
y ∈ S(x) | cT3 y = maxz∈S(x) cT3 z

}
. In the case of

ambiguous coefficient vector c̃3, the leader cannot know the follower’s rational
response exactly, but he can explore the follower’s rational response in a larger
region. Under the assumption that c̃3 ∈ Γ , we define the follower’s possible
reaction set by ΠS(x) =

⋃

c3∈Γ

Opt(c3,x).

According to the above situation, we further assume that the leader will
consider the worst effect of the follower’s response to his strategy, and rational-
ize his solution by adopting maximin criteria. Immediately, linear programming
problem (1) is formulated as

(OP )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize
x

cT1 x + cT2 y

subject to x ≥ 0
y, c3 solves,

(SP (x))

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize
y,c3

cT2 y

subject to
cT3 y = max

z≥0
{cT3 z | A2z ≤ b − A1x}

Gc3 ≤ g
A1x + A2y ≤ b
y ≥ 0
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The upper level problem is a maximization problem for the leader to decide
his decision variable x. The lower level is a minimization problem to obtain the
optimal y and c3 which affect on the leader’s objective function value at worst.
We note that a maximization problem is included in the lower level problem
which represents rationality of the follower. Thus, the problem (OP) can be seen
as a three-level programming problem. Let us define the inducible region set as
IR = {(x,y) | (x,y) ∈ S, y ∈ ΠS(x)}. The problem (OP ) is rewritten as
follows: {

maximize
x,y

cT1 x + cT2 y,

subject to (x,y) ∈ IR.
(2)

3 Proposed Solution Methods

In this section we introduce a solution framework based on k-th best method.
It consists of the vertex enumeration process and the optimality test process for
possible optimality, local optimality and global optimality. The vertex enumer-
ation is done partly and terminates when the global optimal solution is verified.
In addition, we revisit some fundamental ideas of optimality and propose an
effective method to reduce computation time for optimality test which conse-
quently improve the overall algorithm efficiency. The basic idea of k-th best
method, optimality definitions and test processes are explored in the following
subsections.

3.1 K-th Best Method

The k-th best method is a vertex enumeration algorithm. It is a search algorithm
starting from the first best solution and sequentially suggests the second best
and so on, if the former solution does not satisfy to the optimality conditions.
This method is useful when the optimal solution occurs at the vertex; i.e., the
extreme point of the feasible region. The following theorem enhances k-th best
method applicable to solve our model.

Theorem 1. [11] The optimal solution of problem (OP ) is located on a vertex
of feasible region, S.

Thus we proposed a solution procedure based on the k-th best method by
checking the feasibility in the descending sequence of leader’s objective function
value. The following is the linear problem which ignores the lower-level problem.

max{cT1 x + cT2 y | (x,y) ∈ S} (3)

(x1,y1), · · · , (xN ,yN ) denote the N ordered basic feasible solutions satisfying

cT1 xk + cT2 yk ≥ cT1 xk+1 + cT2 yk+1, k = 1, · · · , N − 1 (4)
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According to the fact that there exists an optimal solution at an extreme point,
solving problem (OP ) is to find k∗ which is the smallest index of extreme points
in set IR.

k∗ = min{k ∈ {1, · · · , N} | (xk,yk) ∈ IR} (5)

Based on this method, we fix x = xk and then justify whether yk is the
optimal solution for problem (SP (x)). If so, we can conclude (xk,yk) ∈ IR.
Because we assume S is bounded, we have a finite number of basic feasible
solutions (BFS). Therefore, this procedure stops in a finite number of iterations.
The procedure is written as follows:

[Algorithm 1]. The solution procedure for the problem (OP ) based on k-th
best algorithm

Step 1. k = 1. Solve problem (3) by simplex method, and get the solution
(x1,y1). Set M = {(x1,y1)}, T = ∅.

Step 2. Fix x = xk. Justify whether yk is the optimal solution of (SP (xk)) or
not. If it is the optimal solution of (SP (xk)), the solution is also the optimal
solution of problem (OP ) and terminate the procedure with the optimal
solution (xk,yk). Otherwise, go to step 3.

Step 3. Generate Mk, a set of adjacent extreme points of (xk,yk), which
satisfies cT1 x + cT2 y ≤ cT1 xk + cT2 yk. Then, T = T ∪ {(xk,yk)}, M = (M ∪
Mk) \ T.

Step 4. k = k + 1. Choose (xk,yk) ∈ arg maxx,y{cT1 x + cT2 y | (x,y) ∈ M},
and go to step 2.

Step 1, 3 and 4 of Algorithm 1 is the usual vertex enumeration process. On
the other hand, step 2 is the optimality verification process of yk to problem
(SP (xk)), feasibility, local and global optimality. We set up these tests to avoid
computational loads for the global optimality test and to aim at detecting incon-
sistent solutions to each optimality definition:

Definition 1. Possible, local and global optimality
Possible: y ∈ ΠS(xk).
Local: yk s.t. 	 ∃ y ∈ N(yk) ∩ ΠS(xk) and cT2 y < cT2 yk,

where N(yk) is a set of all adjacent basic feasible solutions of yk.
Global: yk s.t. 	 ∃ y ∈ ΠS(xk) and cT2 y < cT2 yk.

Those specific details of each optimality definition and test procedures are dis-
cussed in the next subsections.

3.2 Rational Reactions and Possible Optimality Test

As the leader needs to speculate the act of follower yk, it is necessary to check
whether that yk is a rational choice and a possible reactions of the follower, so-
called, possible optimality or the feasibility of rational response. The feasibility
of yk is verified if there is a vector c3 ∈ G to advocate it as a rational reaction of



94 P. Sariddichainunta and M. Inuiguchi

the follower in problem (SP (xk)). This is equivalent to that yk is the member
of possibly optimal solution set, noted by yk ∈ ΠS(x).

As shown by [9], the possibly optimal solution set equals to a weakly efficient
solution set of a multiple objective linear programming problem. Since a weakly
efficient solution set is connected and polyhedral [15], ΠS(x) is then connected
and polyhedral. However, ΠS(x) is not a convex set, problem (SP (x)) cannot
be solved easily even when x is determined. Given (x,y) ∈ S, the feasibility of
a solution y can be tested by the possibly optimal test proposed by [8]. The
characterization of possible optimality test is described in the next theorem.

Theorem 2. [11] The necessity and sufficient condition for y ∈ S(x) to be a
possible reaction, i.e., y ∈ ΠS(x), is given by the consistency of the following
system of linear inequalities:

m̃∑

i=1

uiāi ∈ Γ, ui ≥ 0, ∀i = 1, 2, . . . , m̃, (6)

where āT
i is a row vector of

[
A2

−E

]
corresponding to the i-th active constraint of

A2y ≤ b − A1x and y ≥ 0, where E is an identity matrix and m̃ is the total
number of active constraints.

The test result of the method following to theorem 2 can be reused for other
BFSs that have the same set of basic variables. Intuitively, the information
required for (6) are just the active normal vectors of binding constraints and
Gc3 ≤ g. The former can be represented by a set of non-basic variables, and the
latter is a necessary condition. To all the other iterations, any extreme points
with the same set of basic/non-basic variables correspond to the same active
constraints. We thus can identify whether the current BFS belongs to the pos-
sibly optimal solution set by considering the set of basic/non-basic variables of
each solution.

Corollary 1. Let I be a set of basic variables for a BFS. Every extreme point in
the lower-level problem (SP (x)) represented by this set I retain the same result
of possibly optimal test.

Furthermore, some partial information from the test method by theorem 2
can be reused to avoid the repetition of solving the same linear programming.
The solution of positive ui preserves the feasibility of other y of which BFS con-
tains all non-basic variables corresponding to those positive ui. In other words,
if one BFS has been tested and become a member of ΠS(x), the solution of
positive ui generates a subset of non-basic variables that correspond to nor-
mal vectors of a cone for c3. Another BFS with such a subset included in its
non-basic variable set is also possibly optimal since the same c3 maintains the
possible optimality for this BFS.

Corollary 2. Let J be a set of non-basic variables such that it has a correspond-
ing vector u > 0 satisfies (6). The BFS that has all of those non-basic variables
corresponding to positive ui is also a possibly optimal solution.
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Subsequently, we found a simple method to test a single non-basic variables
that always generate its corresponding positive ui. The idea is based on the fact
that ui is a positive coefficient extending the normal vector of active constraint
to relocate in the convex polyhedron Γ . The requirement is nothing but to find
an appropriate scalar value of that normal vector enhancing its feasibility in Γ .

Corollary 3. There is a positive coefficient ui for a normal vector āi in matrix
A2 such that uiGāi = uiĝ ≤ g if and only if there is no such gt < 0 < ĝt for
t = 1, . . . , q in g and ĝ, and there is ui such that r

′ ≤ ui ≤ r
′′

where

r
′
= max

{
gt

ĝt
> 0 | gt, ĝt < 0

}
and r

′′
= min

{
gt

ĝt
> 0 | gt, ĝt > 0

}
.

According to corollary 2 and 3, we can adopt the results of non-basic variable
with respect to ui to immediately verify possible optimality of other BFS which
have those corresponding non-basic variables. The repetitive computations of solv-
ing LP for (6) to check possible optimality are avoidable. Indeed, we reuse the test
results that passed the possibly optimal test according to Theorem 2. It requires
some memory space only linear order with the upper bound of all possible full-rank
combinations in the lower-level problem. The usage of memory storage provide a
quick guide for evaluation of unchecked BFSs, and accelerate possible optimality
verification in total.

3.3 Local Optimality Test

Local optimal solution is a solution with the property that there is no neighbor
BFS which is possibly optimal and improves the objective value of the lower-
level problem (SP (x)). We define it on the BFS so that the implementation is
readily to operate the simplex algorithm. The procedure of local optimality tests
is written as follows:

[Algorithm 2]. Local optimality for problem (SP (xk)).

Step 2-(a). Apply simplex method to confirm the existence of a solution satis-
fying equation (6). If it exists, we know yk ∈ ΠS(xk) and go to step 2-(b).
If it does not exist, go to step 3.

Step 2-(b). For each adjacent basic solution y of the current basic solution
corresponding to yk, we check cT2 y < cT2 yk and y ∈ ΠS(xk) by the same
way as in step 2-(a). If such an adjacent solution is founded, yk is not locally
optimal and go to step 3. Otherwise, proceed to the global optimality test,
i.e., step 2-(c).

Step 2-(c). Test the global optimality of yk to problem (SP (xk)). If the global
optimality is verified, we found that (xk,yk) is the optimal solution to prob-
lem (OP ). Otherwise, go to step 3.

The degenerate BFS causes a serious concern in the verification process since
it deters the pivoting process to move to another BFS which improves the objec-
tive value in the preferable direction, −c2. It usually occurs when the columns
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are reduced; in this model the leader’s decision variables are eliminated in the
lower-level problem. To reach a BFS in the preferable direction, we effectively
operate the depth-first search in the BFS search space for local as well as global
optimality test and expect for fast detection of non-optimal yk, [14].

3.4 Global Optimality Test

Following to the definition of global optimality, it is necessary to check all feasible
solutions of problem (SP (xk)) to assure the maximin decision criteria. In this
section, we adopt three algorithms for the global optimality test: the two step k-
th best method [13], the enumeration of adjacent possibly optimal solutions [11]
and the inner approximation method [7]. The first method is intuitive from the
definition and the second method is developed following to the fact that possibly
optimal solutions are connected [10]. On the other hand, the third method is
an algorithm to approximate the global optimality which somewhat generates
unstable results due to zero-rounding errors would probably occur.

First, the two step k-th best method for the global optimality test is a direct
implementation, according to the global optimality definition, to find out that no
other better solutions than yk is a possible reaction of the follower. It sequentially
enumerates all extreme points in S(x). The computation could be costly if there
are many extreme points to visit. The Algorithm 3A is a basis of comparison in
the numerical experiments.

[Algorithm 3A]. Two step k-th best method

Step (a). l = 1 and y[1] = argmin
y∈S(xk)

cT2 y. E = ∅, T = {y[1]}.

Step (b). Check y[l] ∈ ΠS(xk). If so, evaluate cT2 y[l] = cT2 yk. yk is global
optimal solution for (SP (xk)) when the equality is true, and terminate algo-
rithm. If it is not equal, we conclude yk is not global optimal solution, and
go back to Algorithm 1.

Step (c). Let set A contain all adjacent BFS ŷ such that cT2 ŷ ≥ cT2 y[l].
E = E ∪ {y[l]}, T = T ∪ (A \ E).

Step (d). l = l + 1, y[l] = argmin
y

{cT2 y|y ∈ A}, and go to step (b).

Next, the adjacent enumeration of possibly optimal solution is implemented
by using a valid inequality to restrict the feasible region of problem (SP (xk))
which we really concern. It eliminates the non-interesting area where cT2 y ≥
cT2 yk holds. We then obtain Sk(x) = S(x) ∩ {y | cT2 y < cT2 yk}, and the global
optimality condition of yk becomes Sk(x) ∩ ΠS(x) = ∅. We set ε = 10−4 for
Sk

ε (x) = S(x) ∩ {y | cT2 y ≤ cT2 yk − ε}, instead of Sk(x).

[Algorithm 3B]. Enumeration of adjacent possibly optimal solutions

Step (a). Initialize the unchecked basic feasible solution set U and checked basic
feasible solution set is E as empty sets. Choose a vector ĉ3 ∈ Γ , and solve
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maxy∈Sk
ε (x) ĉT3 y. If it is infeasible, we terminate the algorithm concluding

that yk is a global optimal solution of problem (SP (xk)). Otherwise, let ŷ
be the obtained solution and go to step (b).

Step (b). Check the membership of ŷ to ΠS(x) by testing the consistency of
(6) with respect to ŷ. If ŷ ∈ ΠS(x), we terminate the algorithm concluding
that yk is not a global optimal solution of problem (SP (xk)). Otherwise,
update E = E ∪ {ŷ} and go to step (c).

Step (c). Generate all adjacent basic feasible solutions which are members of
ΠSk

ε (x). Let D be the set of those solutions. Update U = U ∪ (D \ E). If
U = ∅, we terminate the algorithm concluding that yk is a global optimal
solution of problem (SP (xk)).

Step (d). Select a basic feasible solution ŷ from U and update U = U \ {ŷ}.
Go back to step (b).
Finally, the inner approximation method exerts the polyhedral annexation

technique [7]. It has been developed for the reverse convex optimization, and then
applied to BLP which possesses the similar structure. This method transforms
BLP into the quotient space which has lower dimensions, depending mainly on
the number of independence constraints of the lower-level problem. It does not
directly evolve all the problem Sk(x) at once, but gradually approximate the
solution from partially a necessary interior set.

The global optimality is to verify whether S̄k(x) ⊆ intW̄ (x), where S̄k(x) =
{u | ĀNu ≤ b̃, u ≥ 0} ∩ {u | cT2 (y0 + ξu) < cT2 yk} and W̄ (x) = {u |
cT3 (y0 + ξu) ≤ max

z∈S(x)
cT3 z, ∀c3 ∈ Γ}. In practice, we construct Pj = {u ≥ 0 |

tTu ≤ 1, ∀t ∈ Vj} for Vj ⊂ R
q , and observe whether P1 ⊂ P2 ⊂ · · · ⊂ W̄ (x).

tj is the normal vector of simplex Pj . It provides the recession direction uj that
updates Pj+1 when there is t ∈ Vj such that ν(t) ≥ 1. The initial simplex P1 =
co{0, μ1e1, μ

2e2, · · · , μqeq} is constructed by μi the solution of the following
problem: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maximize
v,τ

τ

subject to A2(−GTv + y0 + ξτuj) ≤ b − A1x
−GTv + y0 + ξτuj ≥ 0
gTv ≤ 0
v ≥ 0, τ ≥ 0

(7)

[Algorithm 3C]. Inner approximation method

Initalization: Solve y0 = argmin
y∈S(x)

cT2 y and apply possible optimality test.

If feasible, yk is not global optimal. Go back to algorithm 1.
If not, we construct S̄k

ε (x), W̄ (x) and solve for μi, i = 1, · · · , q.
If μiei ∩ S̄k

ε (x) 	= ∅, then yk is global optimal and go back to algorithm 1.
If pass the above requirements, we find t0 from μi. Set j ← 1 to initialize
N1 = {0}, V1 = ∅, Λ1 = Rq

+.
Step (a). For every λ ∈ Nj , compute ν(λ). ν(λ) = max

λ
{(t0 − λ)Tu | u ∈

S̄k
ε (x)}. Remove λ from Nj such that ν(λ) < 1. If Vj and Nj are both

empty, then yk is global optimal. Terminate the algorithm.
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Step (b). Set Vj ← Vj ∪ Nj . Find λj ∈ arg max
λ

{ν(λ) | λ ∈ Vj} and uj ∈
arg max

u
{(t0 − λj)Tu | u ∈ S̄k

ε (x)}
Step (c). Check uj ∈ ∂W̄ (x). If uj ∈ ∂W̄ (x), yk is not global optimal. Go

back to algorithm 1. If uj 	∈ ∂W̄ (x), solve θj which is the optimal value of
(7).

Step (d). Use a cutting hyperplane, Λj+1 = Λj ∩ {λ | (t0 − λ)Tuj ≤ 1
θj }.

For all extreme points in Λj+1, there are some new extreme points generated
by the cut. Put them into Nj+1, and separate the others to Vj+1.
Update j ← j + 1 and go back to Step (a).

4 Numerical Experiments

We evaluate the performance of our proposed method on randomly generated
problems in the following way. m-p-q-r is the parameter of our generated prob-
lems. m is the number of constraints of feasible set S. p and q are the numbers of
decision variables of the leader and of the follower respectively. r is the number
of constraints in Γ .

4.1 Problem Generation

To generate a set of feasible region S, we derive m tangent hyperplanes from the
surface of a unit hypersphere in the positive coordinate plane [12]. r1 ∈ Rp+q is

a uniform random vector for the hypersphere equation, rT
1

|r1|

(
x
y

)
≤ 1. |r1| means

the norm of uniformly random vector r. After that, we perturb these hyperplane
by using a random vector r2 ∈ Rp+q of which each element randomizes between
[1, 3]. The coordinate is converted as a direct multiplication, (x̂, ŷ) = r2⊗ (x,y).
Now we have a convex set S as a feasible region defined by m tangent hyperplanes
of a random ellipsoid.

The coefficient vectors c1 ∈ Rp, c2 ∈ Rq is a random vector whose ele-
ments are uniformly random in [1, 4]. The set Γ defined by q constraints is also
generated similarly to S. The further process is that we move the center of a
hypersphere out of the origin and add another q parallel tangent hyperplanes to
create a new convex polytope without the axes.

4.2 Numerical Results

The numerical experiments are set up to compare the effect before and after
implementing the reuse of possible optimality test results for each global opti-
mality test method. The base line algorithms are described in subsection global
optimality: Algorithm (3A), (3B) and (3C). The programs are developed in
Microsoft Visual C/C++ 2013 and run the experiments in a desktop computer
(OS: Windows 8.1, CPU:3.4 GHz, RAM:8GB). The epsilon value 10−4 is used.

The numerical experiments aim to compare the improvement of efficiency in
each method. We measure the CPU run time used in achieving the global optimal
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Table 1. Results of experiment (CPU time (s))

Case 5-5-8-20 10-5-8-20 15-5-8-20

Method A B C A B C A B C

1st 22% 19% 35% 8% 12% 13% 2% 3% 10%
Mean 0.090 0.097 0.067 2.450 2.261 1.866 29.442 23.472 20.438
S.D. 0.105 0.118 0.072 2.735 3.141 3.208 33.671 29.527 26.081
Min 0 0 0 0 0 0 0 0 0
Max 0.562 0.609 0.375 10.125 13.954 27.877 136.775 128.009 113.227

Median 0.054 0.062 0.046 1.062 0.843 0.656 15.423 11.329 10.079

Method A′ B′ C′ A′ B′ C′ A′ B′ C′

1st 63% 41% 73% 31% 50% 49% 14% 48% 32%
Mean 0.050 0.059 0.050 1.571 1.583 1.673 23.967 21.785 20.235
S.D. 0.049 0.058 0.053 1.753 2.058 3.028 28.876 28.503 26.332
Min 0 0 0 0 0 0 0 0.015 0
Max 0.250 0.250 0.328 6.672 8.891 26.798 113.742 124.228 113.899

Median 0.031 0.046 0.031 0.758 0.625 0.586 10.782 9.774 9.649

Ratio 55% 44% 43% 67% 50% 45% 73% 52% 45%

solution. 100 problems are generated for 3 cases: 5-5-8-20, 10-5-8-20, and 15-5-8-
20 to observe the efficiency varied by the number of constraints which represents
the size of problem. Algorithm (3A), (3B), and (3C) without the reuse strategy
are represented by A, B, and C, otherwise denoted by A′, B′ and C ′.

Table 1 reports the statistics of CPU run time in seconds. The row of 1st is
the proportion of problem sets which the method can finish at the lowest CPU
run time among 6 methods. It is derived from the number of problems it can
finish first over the number of all problems. The sum of those percentage of
each method in the same problem set dose not equal to one because there are
some problems that more than one method finish at the same time. The ratio
at the bottom of the table is a proxy represents the average rate of efficiency
improvement in each problem set. It depicts how our proposed method for pos-
sible optimality test has saved time from the duplication of possible optimality
test. It is calculated by the frequency of reusing test results over the frequency
of test inquiries. The higher scale of ratio, the more efficiency gained.

The result in Table 1 illustrates an empirical evidence for the validity of our
proposed method which save some computational time in the possible optimality
test process. When the problem size increases, the ratio in column A (the two step
k-th best method) also positively changes as the larger problem size encounters
with more inquiries of the possible optimality test, especially for the two step k-th
best method. Although the ratio for method B and C are not very large because
these methods are designed to check fewer BFSs at the lower-level problem.
However, the proportion is still notable.

Considering before and after implement our reuse strategy, method C (the
inner approximation) seems to be the fastest finisher following by B and A
according to the mean run time. In general, the computational time of method
A′ and B′ come closed to the computational time of method C ′ when deploy
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the reuse strategy. Only the case 10-5-8-20, it seems that method B′ win over
method C ′, but the difference is not statistically significant as the dependent
sample t-test is applied with the result: t-value 0.412 and two-sided probability
0.367. Following to the percentage of the 1st row, method B′ has beaten method
C ′ for the problem set 10-5-8-20 and 15-5-8-20. The result implies that the reuse
strategy effectively improve computational time of method B in many types of
problems. The further investigation in problem structure is required.

5 Conclusion

After we introduced the minimax decision model and solution method for bilivel
linear programming with ambiguous lower-level objective function, we explained
some theoretical background to support our effective method for the possible
optimality test. The efficiency improvement in each setting in the numerical
result is because the utilization of memory follows by our theoretical observations
in possible optimality test.

The future work could be in several directions. For example, the improvement
for local search in both local and global optimality tests are at our concern. The
comparison with the commercial package that can solve BLP as a complementary
optimization problem is also of interest.
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