
Chapter 9
Curve Interpolation and Financial Curve
Construction

Pengfei Huang, Haiyan Wang, Ping Wu, and Yifei Li

Abstract In this chapter, first we introduce some commonly used curve
interpolation methods for interest rate curves. Then, we present a positivity-
preserving piecewise rational cubic interpolation function. It is constructed to
ensure positive values by adjusting the shape-control parameters. When it is applied
to the interest rate curve construction, this interpolation algorithm ensures positive
values. The market data has been reconstructed to restrict the fluctuation of the
interest rate curve when the market data changes sharply.

9.1 Introduction

Interest rate curves are the foundation of the pricing of interest rate derivatives, and
reflect the market’s expectation of future interest rate development [1]. The market
interest rate data is usually a set of discrete time sequences with different gaps, by
which one can construct an interest rate curve with various interpolation algorithms.
These algorithms should guarantee the interest rate curve satisfies continuity and
smoothness conditions and accurately reflects the current market.

The cubic spline interpolation method [2] proposed by McCulloch (1975) is a
popular choice for interest rate curve construction, and was developed by Fisher
et al. (1995) to ensure the smoothness and goodness of fit of the interest rate
curve [3]. However, the interest rate curve constructed by cubic spline interpolation
is not guaranteed to be positive and is not arbitrage free. Lu Jun and Han Xuli (2005)
proposed a rational cubic spline with cubic denominator and numerator which can
preserve the monotonicity of the inputs [4]. Tian Meng (2006) proposed a rational
cubic spline with cubic numerator and quadratic denominator which can guarantee
the positivity of the constructed curve [5]. Based on the existence of rational splines,
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in this paper we propose a rational cubic spline with a cubic denominator and
numerator that can ensure the constructed interest rate curve is positive.

9.2 Basic Interpolation Methods for Interest Rate Curves

The term structure of interest rates is fundamental to consistently value interest rate
instruments. The term structure can refer to different curves: the discount curve,
zero curve, or forward curve. However, we cannot obtain these curves directly from
market data; instead, we use discrete dates and market quotes, and a wide range of
models and numerical methods are employed to fit a continuous function to a set of
discretely observed quotes.

As a brief review, we provide the mathematical background and notation for the
term structure. There are three equivalent descriptions: the discount function d.t/,
the yield curve r.t/, and instantaneous forward rate curve f .t/.

d.t/ D e�r.t/t

is equivalent to

d.t/ D e� R t
0 f .u/du

where

f .t/ D @

@t
r.t/t:

9.2.1 Linear Interpolation

Suppose we have market quotes r1; r2; : : : ; rn at times t1; t2; : : : ; tn. The objective
is to determine rt for any time t 2 Œt1; tn�. A straightforward method is linear
interpolation. The interpolation can be linear on rates, discount factors, and the
transformation of discount factors. Some common approaches are as follows:

First, we can give a formula for the zero rates. We determine i for time t such that
t 2 Œti; tiC1�, and rt is calculated as the linear interpolation of ri and riC1:

rt D .tiC1 � t/

.tiC1 � ti/
ri C .t � ti/

.tiC1 � ti/
riC1:

For the instantaneous forward curve f .t/ D @
@t r.t/t, we have

f .t/ D .tiC1 � 2t/

.tiC1 � ti/
ri C .2t � ti/

.tiC1 � ti/
riC1:
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When it is linear on the discount factors, we can apply the linear interpolation on
the discount factors directly. Since the discount factors are defined as d.t/ D e�r.t/t,
we have a set of discount factors d1; d2; : : : ; dn corresponding to r1; r2; : : : ; rn. The
formula is

d.t/ D .tiC1 � t/

.tiC1 � ti/
di C .t � ti/

.tiC1 � ti/
diC1:

According to

r.t/ D � ln.d.t//

t

we have

r.t/ D �1

t
ln

�
.tiC1 � t/

.tiC1 � ti/
di C .t � ti/

.tiC1 � ti/
diC1

�

:

Then, the forward rate can be calculated as

f .t/ D .di � diC1/

..tiC1 � t/di C .t � ti/diC1/
: (9.1)

If discount factors are linear on the logarithmic rate, we can derive a formula
accordingly.

9.2.2 Cubic Spline Interpolation

As well as considering the same set of assumptions as in linear interpolation, spline
interpolation requires a separate cubic polynomial for each interval. The aim is to
determine the coefficients and the value of the rate at time t:

r.t/ D ai C bi.t � ti/ C ci.t � ti/
2 C di.t � ti/

3; t 2 Œti; tiC1�:

In order to determine the set of coefficients fai; bi; ci; di; i D 1; 2; : : : ; n � 1g,
constraints on the value, the first derivative, and the second derivatives at ti should
be satisfied.

First, the value of the piecewise polynomial should be identical at the knots (ti),
which gives the following system of equations:

ri D ai;

riC1 D ai C bi.tiC1 � ti/ C ci.tiC1 � ti/
2 C di.tiC1 � ti/

3:
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Since

f .t/ D @

@t
r.t/t D @r.t/

@t
C r.t/;

and

@r.t/

@t
D bi C 2ci.t � ti/ C 3di.t � ti/

2; t 2 Œti; tiC1�;

the piecewise polynomial should be differentiable to guarantee the continuity of the
instantaneous forward rate curve f .t/. Thus, we have

biC1 D bi C 2ci.tiC1 � ti/ C 3di.tiC1 � ti/
2; i D 1; 2; : : : ; n � 2:

Combining the 2.n � 2/ conditions above, we now have 3n � 4 equations for 4n � 4

parameters. We still need another n constraints to obtain all of the parameters. We
can use the so-called natural cubic splines to do this based on the second derivatives:

@2r.t/

@t2
D 2ci C 6di.t � ti/; t 2 Œti; tiC1�:

These cubic splines are chosen so that the second derivatives of the functions at the
knots are continuous and the second derivatives of the end points equal zero, which
gives n linear equations in the system:

ciC1 D ci C 3di.tiC1 � ti/; i D 1; 2; : : : ; n � 2;

c1 D 0;

cn�1 C 3dn�1.tn � tn�1/ D 0:

These splines guarantee the continuity and smoothness of the curve.

9.2.3 Monotone and Convex Splines

A simple observation is that the cubic splines in the last subsection could unex-
pectedly generate negative forward rates. The monotone convex spline method is
introduced to build a continuous, smooth curve that ensures positive forward rates
between the observations. Thus, the curve is arbitrage free. First, we calculate
the forward rates f d

i ; i D 1; 2; : : : ; n from the market quotes r1; r2; : : : ; rn at times
t1; t2; : : : ; tn, assuming forward rates are constant in each interval and are continu-
ously compounded [6].
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Various methods can be applied to fit a curve to the term structure of the interest
rate; goodness of fit and smoothness of the curves are two measures of success. All
such methods have strengths and weaknesses, and their selection depends on the
specific requirement of the application.

In the following, we propose a rational cubic interpolation method for positive
forward rates, which we call positivity preservation.

9.3 Rational Cubic Interpolation Method
for Positivity Preservation

Let a D �1 < �2 < : : : < �n D b be a set of time knots, � D ���i
�iC1��i

, hi D �iC1 � �i,
and f .�i/ D fi.i D 1; 2; : : : ; n/ be the input data at time knot �i. Define the rational
cubic spline interpolation function in the ith interval Œ�i; �iC1� as

Si.�/ D Pi.�/

Qi.�/
; i D 1; 2; : : : ; n � 1; (9.2)

where

Pi.�/ D .1 � �/3fi C �.1 � �/2A C �2.1 � �/B C �3fiC1 (9.3)

Qi.�/ D .1 � �/3 C vi.1 � �/2� C ui.1 � �/�2 C �3: (9.4)

In Eq. (9.4) vi > 0 and ui > 0 are shape-control parameters, and di is the first
derivative of the function f .�/ at time knot � . To fulfill the condition S.x/ 2
C1Œa; b�, the interpolation function defined by Eq. (9.2) should satisfy the following
conditions:

8
ˆ̂
<

ˆ̂
:

Si.�i/ D fi
Si.�iC1/ D fiC1

S
0

i.�i/ D di

S
0

i.�iC1/ D diC1:

(9.5)

The terms A and B are given by

�
A D dihi C vifi
B D �diC1hi C uifiC1:

(9.6)

The first derivative at time knot �i, di, is unknown in the market and is estimated as
follows. We take two knots from both sides of �i (if one side does not have two, we
take more from the other side). Let ��j D �j � �i, assume the input data at the knots
is f.j/.j D 1; 2; 3; 4/, and define
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8
<

:

�0 D � P
4
jD1�j

�j D ˘4
kD1��k

��2
j ˘4

kD1
k¤j

.��k���j/
; j D 1; 2; 3; 4: (9.7)

Then, di can be estimated by

di D �0fi C
X

4
jD1�jf.j/: (9.8)

The accuracy of the estimation is O. max
1�j�4

j��4
j j/ [7], which is good. This will

improve the smoothness and help retain the monotonicity of the inputs to the interest
rate curve. However, as seen in Eq. (9.8), the estimation of the first derivative at knot
�i is achieved using four nearby points, so changes at knot �i affect the shape of
the curve considerably. The positivity-preserving property is analyzed as follows.
Since � D ���i

�iC1��i
and � 2 Œ�i; �iC1�, � is in the interval Œ0; 1�. Hence, a sufficient

condition for the positivity-preserving property of the interpolation function defined
by Eq. (9.2) is A > 0; B > 0, and the value range of the shape-control parameters
can be obtained as follows:

(
vi > max.� dihi

fi
; 0/;

ui > max.
diC1hi

fiC1
; 0/:

(9.9)

When vi and ui satisfy these conditions (9.9), the curve constructed with the rational
cubic spline interpolation method will always be positive and arbitrage free. The
error estimation of the rational cubic spline interpolation is analyzed as follows. It
is sufficient to only deal with the case where the knots are equally spaced. Without
loss of generality, we only consider the subintervals Œ�i; �iC1� .3 � i � n � 2/, and
when the knots are equally spaced let hi D h. By Eqs. (9.7) and (9.8), we get

�1 D 1

12h
; �2 D � 2

3h
; �3 D 2

3h
; �4 D � 1

12h
; �0 D 0; (9.10)

di D 1

12h
fi�2 � 2

3h
fi�1 C 2

3h
fiC1 � 1

12h
fiC2: (9.11)

Then, the numerator of the interpolation function in Eq. (9.3) can be transformed
into the following form:

Pi.�/ D l1fi�2 C l2fi�1 C l3fi C l4fiC1 C l5fiC2 C l6fiC3; (9.12)

where
8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

l1 D 1
12

�.1 � �/2

l2 D �.1 � �/Œ� 2
3
.1 � �/ � 1

12
��

l3 D .1 � �/Œ.1 � �/2 C �.1 � �/vi C 2
3
�2�

l4 D �Œ�.1 � �/ui C �2 C 2
3
.1 � �/2�

l5 D ��.1 � �/Œ 1
12

.1 � �/ C 2
3
��

l6 D 1
12

�2.1 � �/:

(9.13)



9 Curve Interpolation and Financial Curve Construction 165

When f .t/ 2 C1Œa; b� and S.t/ is the rational cubic interpolation function of f .t/ in
the subinterval Œ�i; �iC1�, using the Peano–Kernel Theorem gives

RŒf � D f .t/ � S.t/ D
�iC3Z

�i�2

f
0

.�/RtŒ.t � �/0C�d�; (9.14)

where

RtŒ.t � �/0C� D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1 � l2Cl3Cl4Cl5Cl6
Qi.�/

; �i�2 < � < �i�1

1 � l3Cl4Cl5Cl6
Qi.�/

; �i�1 < � < �i

1 � l4Cl5Cl6
Qi.�/

; �i < � < t

� l4Cl5Cl6
Qi.�/

; t < � < �iC1

� l5Cl6
Qi.�/

; �iC1 < � < �iC2

� l6
Qi.�/

; �iC2 < � < �iC3:

(9.15)

From Eq. (9.14) we get the following result:

jRŒf �j D j
�iC3Z

�i�2

f
0

.t/RtŒ.t � �/0C�d� j � jf 0

.t/jŒ
�i�1Z

�i�2

j1 � l2 C l3 C l4 C l5 C l6
Qi.�/

jd�

C
�iZ

�i�1

j1 � l3 C l4 C l5 C l6
Qi.�/

jd� C
tZ

�i

j1 � l4 C l5 C l6
Qi.�/

jd�

C
�iC1Z

t

j � l4 C l5 C l6
Qi.�/

jd� C
�iC2Z

�iC1

j � l5 C l6
Qi.�/

jd�

C
�iC3Z

�iC2

j � l6
Qi.�/

jd�� � hjf 0

.t/jw.vi; ui; �/; (9.16)

where

w.vi; ui; �/ D 3C 1

Qi.�/
.jl2 C l3 C l4 C l5 C l6jCjl3 C l4 C l5 C l6jC2jl4 C l5 C l6jCjl5 C l6jCjl6j/:

(9.17)

For a given vi and ui, let ei D max
0<�<1

w.vi; ui; �/. This term is independent of the

subinterval Œ�i; �iC1�, and only dependent on the parameters vi and ui. The values
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Table 9.1 The values of ei

for vi D 0:001 with various
values of ui

vi ui e �

0.001 0.001 6.9862 0.7040

0.001 0.005 6.9862 0.7040

0.001 0.010 6.9863 0.7040

0.001 0.050 6.9865 0.7039

0.001 0.100 6.9867 0.7037

0.001 1.000 6.9901 0.7015

0.001 10.000 6.9972 0.6974

0.001 100.000 6.9997 0.6961

0.001 1000.000 7.0000 0.6959

Table 9.2 The values of ei

for ui D 0:001 with various
values of vi

vi ui e �

0.005 0.001 6.9849 0.7060

0.010 0.001 6.9833 0.7086

0.050 0.001 6.9720 0.7322

0.100 0.001 7.0000 0.9999

1.000 0.001 7.0000 1.0000

10.000 0.001 7.0000 0.9999

100.000 0.001 7.0000 0.9999

1000.000 0.001 7.000 0.9999

ei, for various vi and ui, are given in Tables 9.1 and 9.2. Based on the experimental
results in Tables 9.1 and 9.2, we can see the value of ei only changes slightly for
vi > 0 and ui > 0. This demonstrates that this interpolation method is stable.

9.4 Reconstruction of the Market Interest Rate Data

Table 9.3 details the USD market data from 04=01=2000. In Table 9.3, the first
column is the time from start to expiration, the second column is the expiration date,
the third column is the market rate, and the last column is the time in years (365
days=1 year). To restrict the fluctuation of the interest rate curve when the input
data changes sharply, we reconstruct the market data before applying the rational
cubic interpolation method. Let .�i; ri/ .i D 1; 2; : : : ; n/ be a given set of market
data, where �i are the time knots. We assume ri is the value corresponding to the
entire subinterval Œ�i1 ; �i� .i D 2; : : : ; n/. The reconstructed rate is fi at the point
�i .i D 2; : : : ; n � 1/:

fi D �i � �i�1

�iC1 � �i�1

riC1 C �iC1 � �i

�iC1 � �i�1

ri: (9.18)
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Table 9.3 USD market data in 2000

Time length Expiration date Market interest r (%) Time length �

7 day 13-Jan-00 5.53125 0.019

1 month 7-Feb-00 5.81250 0.088

3 months 6-Apr-00 6.03125 0.249

6 months 6-Jul-00 6.21875 0.499

12 months 8-Jan-01 6.59375 1.008

2 yr 7-Jan-02 6.8950 2.005

3 yr 6-Jan-03 7.0250 3.003

4 yr 6-Jan-04 7.0850 4.003

5 yr 6-Jan-05 7.1350 5.005

6 yr 6-Jan-06 7.1750 6.005

7 yr 8-Jan-07 7.2250 7.011

8 yr 7-Jan-08 7.2650 8.008

9 yr 6-Jan-09 7.2950 9.008

10 yr 6-Jan-10 7.3350 10.008

12 yr 6-Jan-12 7.3850 12.008

15 yr 6-Jan-15 7.4350 15.011

20 yr 6-Jan-20 7.4450 20.014

25 yr 6-Jan-25 7.4450 25.019

30 yr 7-Jan-30 7.4350 30.025

We add the additional subintervals Œ�0; �1� and Œ�n; �nC1� at the start and end, where
�

�0 D �1 � .�2 � �1/

�nC1 D �n C .�n � �n�1/
(9.19)

and

rnC1 D rn C �n � �n�1

�n � �n�2

.rn � rn�1/: (9.20)

Then, the reconstructed market data fi .i D 1; 2; : : : ; n/ can be obtained from
Eq. (9.18) [6]. The results of applying the reconstruction algorithm to the market
data (from Table 9.3) are given in Table 9.4. The third column in Table 9.4 is the
reconstructed market data.

9.5 Analysis of the Interest Curve Constructed by Rational
Cubic Interpolation

The constructed interest rate curve, found by applying the rational cubic interpo-
lation method to the reconstructed market data, is given in Fig. 9.1. In general,
the term structure contains more short-term information, so the short term of the
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Table 9.4 USD market data
in 2000

Serial number Time length � Market rare f

1 0.019 0.05671875

2 0.088 0.05878125

3 0.249 0.06104699

4 0.499 0.06342268

5 1.008 0.06695567

6 2.005 0.06959967

7 3.003 0.07054970

8 4.003 0.07109975

9 5.005 0.07155020

10 6.005 0.07199925

11 7.011 0.07245090

12 8.008 0.07279977

13 9.008 0.07315000

14 10.008 0.07351667

15 12.008 0.07404988

16 15.011 0.07438751

17 20.014 0.07445000

18 25.019 0.07440000

19 30.025 0.07432500
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Fig. 9.1 Interest curve constructed by applying rational cubic interpolation to the reconstructed
market interest rate data
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Fig. 9.2 The interest curve constructed by rational cubic interpolation with and without the
reconstruction of market interest rate data

interest rate curve should focus on goodness of fit while the long term of the curve
requires smoothness [8]. The interest rate curve constructed by the rational cubic
interpolation method essentially satisfies these requirements. We now discuss the
stability of the interest rate curve; when rational cubic interpolation is applied to
the reconstructed market data the data in Table 9.3 changes from .7:011; 7:2250 %/

to .7:011; 11:0000 %/. The two interest rate curves in Fig. 9.2 are constructed by
the rational cubic interpolation method; the upper curve uses reconstructed market
data and the lower curve uses the original market data. It can be seen that the upper
curve, from reconstructed market data, has less volatility.

9.6 Conclusion

The rational cubic interpolation algorithm can ensure that the constructed interest
rate curve is positivity-preserving. The interpolation function is C1 continuous and
the constructed interest rate curve is stable and smooth. The algorithm to reconstruct
the data can restrict the fluctuations of the interest rate curve when the input data
jumps sharply.
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