
Chapter 7
Monte Carlo Methods and Their Applications
in Big Data Analysis

Hao Ji and Yaohang Li

Abstract Due to recent emergence of many big data problems, Monte Carlo
methods tend to become powerful tools for analyzing big data sets. In this
chapter, we first review the fundamental principles of Monte Carlo methods. Then,
we describe several popular variance reduction techniques, including stratified
sampling, control variates, antithetic variates, and importance sampling, to improve
Monte Carlo sampling efficiency. Finally, application examples of estimation of
sum, Monte Carlo linear solver, image recovery, matrix multiplication, and low-
rank approximation are shown as case studies to demonstrate the effectiveness of
Monte Carlo methods in data analysis.

7.1 Introduction

Numerical methods known as Monte Carlo methods can be loosely defined in
general terms to be any methods that rely on random sampling to estimate the
solutions. Monte Carlo methods are often applied to problems which are either too
complicated to be described by a mathematical model or whose parameter space is
too large to be explored systematically.

Recent years have witnessed dramatic increase of data in many fields of
science and engineering [1], due to the advancement of sensors, mobile devices,
biotechnology, digital communication, and internet applications. These massive,
continuously growing, complex, and diverse data sets are often referred to as the
“big data.” Analyzing big data demands cost-effective and innovative forms of
information processing for enhanced insight and decision making. While many
traditional, deterministic data analysis methods have great difficulties to scale to
the massive big data sets, Monte Carlo methods, which are based on random
sampling techniques, become important and powerful tools for big data applications.
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Particularly, for certain big data sets beyond the computational capability of the
most powerful supercomputers, Monte Carlo data analysis methods using random
sampling are the only viable approaches.

This article starts with a basic description of the principles of Monte Carlo
methods. It then discusses the variance reduction techniques, including stratified
sampling, control variates, antithetic variates, and importance sampling, to design
“smart” Monte Carlo. Examples of Monte Carlo methods on estimating sum
of a large array, solving linear systems, multiplying matrix products, recovering
missing matrix, and approximating low-rank matrices. Although in order to keep
the presentation simple, these application examples are presented in a relatively
small scale, the underlying Monte Carlo techniques can be effectively extended to
big data sets.

7.2 The Basic of Monte Carlo

Monte Carlo methods provide approximate solutions to a variety of mathematical
problems by random sampling. Let us take the numerical integration as an example,
which constitutes a broad family of algorithms in numerical analysis. Suppose we
want to calculate a one-dimensional definite numerical integral, I D R b

a f .x/ dx.
A common numerical integral method is to divide the one-dimensional interval into
N subintervals and then to sum the area corresponding to each subinterval using
either rectangular, trapezoidal, or Simpson’s rules (Fig. 7.1a) [2]. Similarly, for two-
dimensional intervals, the number of 2D subintervals becomes N2 (Fig. 7.1b). In
general, for d-dimensional integration problems, the d-dimensional space needs to
be divided into Nd subintervals. For a not very high dimensional problem with
d D 20 and N D 100, the total number of subintervals that need to be evaluated
goes up to 1040, which is unapproachable by most numerical integration algorithms.
Mathematically, this is referred to as the “curse of dimensionality.”
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Fig. 7.1 Numerical integration using deterministic methods. (a) 1D integral. (b) 2D integral
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In contrast, Monte Carlo methods estimate the integral by statistical sampling
techniques [3]. Let us consider a one-dimensional integral I0�1 D R 1

0
f .x/ dx, which

can be easily extended to a more general integral of I D R b
a f .x/ dx. Suppose that

the random variables x1; x2; � � � ; xN are drawn independently from the probability
density function p.x/. A function F may be defined as

F D
NX

iD1

f .xi/ p .xi/ :

The expectation value of F becomes

E .F/ D
Z 1

0

f .x/ p .x/ dx:

The crude Monte Carlo integration method assumes that the probability density
function p.x/ is uniform, i.e., the random samples f .x1/; f .x2/; � � � ; f .xN/ are equally
important, and then

E .F/ D
Z b

a
f .x/ dx:

Correspondingly, the variance of F becomes

Var .F/ D 1

N

Z 1

0

.f .x/ � E.F//2 dx D 1

N
�2;

where �2 is the inherent variance of the integrant function f .x/. Clearly, we can find
that the standard deviation of the estimator � is �N�1=2. This means that as N ! 1,
the distribution of F narrows around its mean at the rate of O

�
N�1=2

�
.

Now, let us extend the Monte Carlo integration method to a d-dimensional
integral Id D R 1

0
� � � R 1

0
f .x/ dx, the expectation of Fd D PN

iD1 f .xi/=N on uniformly
distributed random variable vectors x1; x2; � � � ; xN becomes

E .Fd/ D
Z 1

0

� � �
Z 1

0

f .x/ dx D Id:

The variance of the estimator Fd is �2
d =N, where �2

d is the inherent variance of the
integrant function f .x/. If an integral function f .x/ is given, �2

d is a constant and
therefore, similar to one-dimensional integral, the convergence rate of Monte Carlo
is O

�
N�1=2

�
, which is independent of dimensionality.

In summary, compared to the deterministic numerical integration methods,
whose convergence rate is O.N�˛=d/, where ˛ is the algorithm related constant
and d is the dimension, Monte Carlo integration method yields a convergence
rate of O.N�1=2/ [4], which can somehow avoid the “curse of dimensionality.”
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Moreover, computations on each random samples are independent, which can be
carried out in an embarrassingly parallel minor to harness the power of large-scale
parallel and distributed computing architectures [5, 6]. On the other hand, the main
disadvantage of Monte Carlo is that the convergence of Monte Carlo methods is
very slow, roughly for every one digit of accuracy usually requiring 100 times more
computations.

7.3 Variance Reduction

Crude Monte Carlo treats all random samples are equally important. In reality, we
can often gain additional knowledge from the application domain, which can be
taken advantage to come up with better estimators. Variance reduction is a procedure
of deriving an alternative estimator to obtain a smaller variance than the crude
Monte Carlo estimator and improve the precision of the Monte Carlo estimates
for a given number of samples. In practical applications, a good estimator leading
to million times more accurate than a bad one is not rarely seen. In this section,
we describe some of the popular variance reduction techniques [3, 4], including
stratified sampling, control variates, antithetic variates, and importance sampling.
These variance reduction methods, if appropriately used, can significantly improve
the efficiency of Monte Carlo methods in processing and analyzing big data sets.

7.3.1 Stratified Sampling

The inherent variance of the integral function f .x/ may vary significantly in different
regions. The fundamental idea of stratified sampling is to apply more samples in
the region with large variability and vice versa. Using the one-dimensional integral
in interval Œ0; 1� as an example, stratified sampling is to partition the interval Œ0; 1�

into several disjoint subinterval ranges, i.e., Œ0; ˛1/ ; Œ˛1; ˛2/ ; � � � ; Œ˛k�1; ˛k/ ; Œ˛k; 1�.
Then a Monte Carlo estimator F˛i�1;˛i is applied to each range Œ˛i�1; ˛i/ separately
so that

F˛i�1;˛i D
niX

jD1

.˛i � ˛i�1/
1

ni
f .xj/;

where xj is a random sample in Œ˛i�1; ˛i/ and ni is the total number of samples.
Clearly,

E .F˛i�1;˛i/ D
Z ˛i

˛i�1

f .x/dx:
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The overall stratified sampling estimator Fstratified is the combination of all estimators
in different subinterval ranges

Fstratified D
kC1X

iD1

F˛i�1;˛i ;

which is an unbiased estimator of the integral. The variance of the stratified sampling
estimator becomes

Var
�
Fstratified

� D
kC1X

iD1

�
˛i � ˛i�1/

� 1

ni
�2

˛i�1;˛i
;

where �2
˛i�1;˛i

is the variance of the integrant function f .x/ in subinterval Œ˛i�1; ˛i/.

This reveals the rationale of stratified sampling, which is to minimize
1

ni
�2

˛i�1;˛i

in each subinterval. If stratification is well carried out, the variance of stratified
sampling will be less than that of crude Monte Carlo.

7.3.2 Control Variates

If there is another estimator which is positively correlated to the one to be evaluated
and can be easily calculated with known expectation, it can be used as a control
variate. For example, in the Monte Carlo integration example, the original integral
I0�1 D R 1

0
f .x/dx can be rewritten into a summation of two parts

I0�1 D
Z 1

0

g.x/dx C
Z 1

0

.f .x/ � g.x// dx;

where g.x/ is a simple function that can be either integrated theoretically or easily
calculated and absorbs most of the variation of f .x/ by mimicking f .x/ as shown in
Fig. 7.2, we only need to estimate the difference between f .x/ � g.x/, which will
result in variance reduction of the estimator.

7.3.3 Antithetic Variates

Contrast to the control variates method based on a strongly positively correlated
estimator with F, the antithetic variates method takes advantage of an estimator F0
that is strongly negatively correlated with F. Suppose that F is an unbiased estimator
of a quantity, E.F/ D E.F0/, and Cov.F; F0/ < 0. Then, the antithetic estimator
Fantitheticc D .F C F0/=2 is also an unbiased estimator of this quantity. The sampling
variance of Fantitheticc becomes
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Fig. 7.2 Control variates approach. If g.x/ can be estimated theoretically, the sampling errors are
limited to the area of f .x/ � g.x/

Var .Fantitheticc/ D Var .F/

v
C Var .F0/

4
C Cov .F; F0/

2
:

Here Cov.F; F0/ < 0 due to negative correlation between F and F0, which leads to
overall smaller variance in Fantitheticc than that of F and F0.

7.3.4 Importance Sampling

The importance sampling technology is often used in statistical resampling, which
reduces variance by emphasizing the sampling on regions of interest. For example,
by introducing a new proposal function g.x/, the original integral I0�1 D R 1

0
f .x/dx

can be rewritten as

I0�1 D
Z 1

0

f .x/

g.x/
g.x/dx D

Z 1

0

f .x/

g.x/
dG.x/;

where G.x/ is a cumulative density function (CDF). f .x/=g.x/ is called the
likelihood ratio. With random samples drawn from a proposal distribution whose
CDF is G.x/ instead of sampling from a uniform distribution, the variance of the
importance sampling estimator Fimportance sampling becomes

Var
�
Fimportance sampling

� D
Z 1

0

�
f .x/

g.x/
� E.F/

�2

dG.x/:

A good likelihood ratio can result in a significant variance reduction.
In practice, assume that we know nothing about the target distribution at the

very beginning, we may have to start from uniform sampling. However, after initial
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sampling, we have a better understanding of the target distribution, which results
in a better proposal function. The resampling can be guided by the new proposal
function and leads to a better approximation of the target distribution.

7.4 Examples of Monte Carlo Methods in Data Science

In this section, we present several application examples as case studies of using
Monte Carlo methods for data analysis. Variance reduction techniques are applied
to build “smart” Monte Carlo estimators to enhance sampling efficiency.

7.4.1 Case Study 1: Estimation of Sum

In many practical data analysis applications, we are often required to estimate the
sum of a large data set. However, due to many reasons, we are not allowed to visit
every element in the data set but want to get a good estimation. The following is an
application example to estimate the overall salary expense in a company.

Consider a big, global company having 7140 employees falling in the following
categories, 78 managers, 4020 engineers, 2008 salesmen, and 1034 technicians.
Now we want to estimate the overall expense in employee salaries in this company.
Due to cost as technical difficulty, we are only allowed to use 100 samples.

The simplest sampling method is the crude Monte Carlo using uniform sampling
without considering different categories. The main problem of uniform sampling is
ignoring the differences among categories, which will thus lead to a large estimation
variance 460; 871K ˙ 80; 712K. More importantly, the percentage of managers is
around 1 % in all employees. There is a high chance that the selected 100 samples
may miss the manager category. Stratified sampling can better address this problem.
We can calculate the number of samples falling into each category, specifically,
78=7140 � 100 D 1 sample in managers, 4020=7140 � 100 D 56 samples in
engineers, 2008=7140�100 D 28 samples in salesmen, and 1034=7140�100 D 15

samples in technicians. As a result, stratified sampling yields better estimation
.500; 112K ˙ 30; 147K/ than that of uniform sampling.

If we have additional information, we can construct even better stratified sam-
pling estimator. If we happen to know about the salary variation in each employee
category (for example, from previous years’ data), i.e., Managers .200K � 500K/,
Salesmen .40K � 120K/, Engineers .60K � 80K/, and Technicians .50K � 70K/,
we can take advantage of this information. We can find that the managers and
salesmen have large variances, which deserves more samples while the engineers
and technicians categories have small variances, where small number of samples
will work. By reassigning the number of samples in different categories, 32 samples
for Managers, 7 samples for Engineers, 59 samples for Salesmen, and 2 samples



132 H. Ji and Y. Li

for Technicians, the overall estimated result becomes 520; 066K ˙ 10; 113K, which
provides us more precise estimation than simple stratified sampling.

7.4.2 Case Study 2: Monte Carlo Linear Solver

Applying Monte Carlo sampling to estimate solutions in linear systems is originally
proposed by Ulam and von Neumann and later described by Forsythe and Leibler in
[7]. Considering a linear system of

x D Hx C b;

where H is an n � n non-singular matrix, b is the given constant vector, and x is the
vector of unknowns. The fundamental idea of the Monte Carlo solver is to construct
Markov chains by generating random walks to statistically sample the underlying
Neumann series

I C H C H2 C H3 C � � �
of the linear system [8]. The transition probabilities of the random walks are defined
by a transition matrix P satisfying the following transition conditions:

Pij � 0I
X

j

Pij � 1I

Hij ¤ 0 ! Pij ¤ 0;

and the termination probability Ti at row i is defined as

Ti D 1 �
X

j

Pij:

Then, a random walk starting at i0 and terminating after k steps is defined as

�k W r0 ! r1 ! r2 ! � � � ! rk

where the integers r0; r1; r2; � � � ; rk are the row indices of matrix H visited during
the random walk.

As noted in existing literature [9], if the necessary and sufficient condition for
the convergence of Monte Carlo solver holds, a random variable X.�k/ defined as

X .�k/ D Hr0r1Hr1r2 � � � Hrk�1rk

Pr0r1Pr1r2 � � � Prk�1rk

brk =Trk

is an unbiased estimator of component xr0 in the unknown vector x.
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Fig. 7.3 Comparison of
Monte Carlo linear solver
with different transition
matrices

101 102 103
10−2

10−1

100

101

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Number of Samples

Uniform
Original
MAO

Variance reductions have been commonly employed in the Monte Carlo algo-
rithms to improve the sampling efficiency. Let’s consider a simple linear with

H D
2

4
0:1 0:45 0:225

�0:15 0:1 �0:3

�0:18 0:36 0:1

3

5 and b D
2

4
0:225

1:35

0:72

3

5. Clearly, the exact solution is

b D
2

4
1

1

1

3

5 :

Figure 7.3 compares the convergence of Monte Carlo linear solvers using three
sampling schemes listed in Table 7.1 with different transition matrices in terms of
estimate value x1. One can find that even though all of these sampling schemes have
the same convergence rate of O.N�1=2/, the estimator based on Monte Carlo Almost
Optimal (MAO) scheme [10], which samples the matrix elements according to their
importance, yields significant smaller variance than the other two.

7.4.3 Case Study 3: Image Recovery

In this case study, we investigate the image processing technology of using a small
number of pixel samples to recover an incomplete or fuzzy image. The strategy of
Monte Carlo sampling plays a critical role for the quality of the recovered image.

We use an aerial image chosen from the USC-SIPI Image Database [11] as an
example. The image recovery method is based on a matrix completion algorithm
by optimizing the constrained nuclear norm of the matrix [12]. Two sets of pixel
samples (12:19 % samples in each) are used—one is generated by uniform sampling
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Table 7.1 Uniform, original, and MAO sampling scheme with different transition
matrices

Sampling scheme Pij P

Uniform sampling
1

n C 1

2

6
4

0:25 0:25 0:25

0:25 0:25 0:25

0:25 0:25 0:25

3

7
5

Original (Ulam and von Neumann)
ˇ
ˇHij

ˇ
ˇ

2

6
4

0:1 0:45 0:225

0:15 0:1 0:3

0:18 0:36 0:1

3

7
5

MAO (Monte Carlo Almost Optimal) ˇ
ˇHij

ˇ
ˇ

P
k jHikj

2

6
4

0:129032 0:580645 0:290323

0:272727 0:181818 0:545455

0:28125 0:5625 0:15625

3

7
5

and the other by importance sampling. The importance sampling process consists of
two stages:

(1) initial uniform sampling is performed with 3:05 % pixel samples to learn the
rough pixel distribution in the image to produce a proposal function; and

(2) importance sampling is performed based on the proposal function created in (1)
to generate the rest 9:14 % samples.

As shown in Fig. 7.4, the pixel samples generated by the importance sampling
scheme lead to a recovered image in significantly higher quality than the one by
using uniform samples.

7.4.4 Case Study 4: Matrix Multiplication

In this case study, we investigate the Monte Carlo methods of approximating the
product of large matrices. Let A be an m � n matrix and B be an n � p matrix, where
m,n, and p are large. The Monte Carlo sampling algorithm to fast approximate the
product matrix C D AB using s samples is described as follows [13]:

(1) Generate s random integers ik between 1 and n with probability pik , for k D
1; � � � ; s;

(2) Set M.k/ D A.ik/=
p

spik and N.k/ D B.ik/=
p

sp.ik/ , for k D 1; � � � ; s;
(3) Compute the matrix product of MN.

The fundamental idea of the Monte Carlo sampling algorithm is to con-

struct a discrete random variable X with probability p

 

X D A.k/B.k/

pk

!

D pk for

k D 1; � � � ; n, where A.k/ and B.k/ represent the kth column of A and the kth row of
B, respectively. The expectation of X is
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Fig. 7.4 Comparison of
image recovery from pixel
samples generated by uniform
sampling and importance
sampling

E.X/ D
nX

kD1

A.k/B.k/

pk
pk D

nX

kD1

A.k/B.k/;

which is identical to matrix C. Therefore, matrix C can be fast approximated from

the product of MN, where MN D 1

s

Ps
kD1

A.ik/B.ik/

pik

is an estimator. The variance on

each element in MN is [13]

Var
�
.MN/ij

� D
nX

kD1

A2
ikA2

kj

s2pk
� 1

s2
.AB/2

ij :
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To improve the accuracy of approximating matrix–matrix multiplication, impor-
tance sampling can be effectively applied by using the optimal probabilities

pk D
ˇ
ˇA.k/

ˇ
ˇ
ˇ
ˇB.k/

ˇ
ˇ

Pn
jD1

ˇ
ˇA.j/

ˇ
ˇ
ˇ
ˇB.j/

ˇ
ˇ ;

where the expectation of approximation error can be theoretically minimized
[13, 14].

Let us consider a simple toy example where

A D

2

6
6
6
6
6
4

1:6254 8:5799 8:5596 5:4832 9:1047 1:3797

9:8717 4:5759 7:5434 1:1230 8:4098 8:3874

4:8246 3:9563 5:1322 1:0143 8:6938 7:7045

0:9104 545:3701 4:6611 769:1278 9:1947 4:4734

14:9880 6:4549 197:7756 5:2276 88:9237 7:4417

3

7
7
7
7
7
5

and

B D

2

6
6
6
6
6
6
6
4

5:5899 2:6152 7:8102 8:2298

5:9020 666:2519 2:6396 7:7184

7:3150 143:9785 9:0632 4:9668

2:1493 695:7888 3:2657 974:7106

1:3544 758:2126 2:7377 4:6348

9:1003 8:3607 6:7709 27:5470

3

7
7
7
7
7
7
7
5

Figure 7.5 compares the relative approximation error of the resulting product
matrix using uniform sampling and the one using important sampling with respect
to sample size in 1000 runs. One can clearly find that when optimal selection
probabilities are used, importance sampling outperforms uniform sampling with
better approximation of the matrix product.

7.4.5 Case Study 5: Low-Rank Approximation

Given a matrix A, it is often desirable to find a good low-rank approximation to
A in many data analysis applications. Denote u1; � � � ; un and v1; � � � ; vn as the left
and right singular vectors, respectively, �1; �2; � � � ; �n, are singular values in non-
increasing order, the matrix A can be expressed as

A D
nX

iD1

�iuiv
T
i
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Fig. 7.5 Comparison of
relative approximation error
in matrix–matrix
multiplication using uniform
sampling and importance
sampling with respect to
sample size in 1000 Monte
Carlo runs
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The best k-rank approximation [15] to a matrix A is formed as Ak D Pk
iD1 �iuiv

T
i

with minor error

min
rank.B/Dk

kA � Bk2 D kA � Akk2 D �kC1:

To handle the computational challenges involved in very big matrices, ran-
domized Singular Value Decomposition (SVD) algorithm with Gaussian sampling
[16–18] is widely used to approximate top-k singular values and singular vectors.
The rationale is to construct a small condensed subspace by sampling A, where
the dominant actions of A could be fast estimated from this small subspace with
relatively low computation cost and high confidence. The procedure of randomized
SVD is described as follows:

(1) Sample A with a standard Gaussian matrix ˝ so that Y D A˝;
(2) Construct a basis Q for the range of Y;
(3) Compute matrix multiplication of B D ATQ;
(4) Perform a deterministic SVD decomposition on B D UB˙BVT

B ;
(5) Assign uj D QvBj , �j D �Bj , and vj D uBj , j D 1; � � � ; k.

We consider an example of applying the randomized SVD algorithm to obtain
a low-rank approximation of an image while minimizing the approximation error.
The control variates approach is applied. First of all, the whole range space of matrix
A is sampled to approximate the largest r singular components and then derive an
approximate eAr such that eAr D Pr

iD1 �iuiv
T
i . If the approximation error is too high,

eAr is used as the control variate to sample the next dominating singular components.
This process is repeated until satisfactory approximation accuracy is achieved.
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Fig. 7.6 Low-rank approximation using randomized SVD with Gaussian sampling and control
variates strategy. (a) The original image. (b) Rank 10 with approximation error 14:3 %. (c) Rank
40 with approximation error 2:1 %. (d) Rank 100 with approximation error 0:9 %

Figure 7.6 shows the results of applying randomized SVD algorithm and control
variate to compute a low-rank approximation of the aerial image with less than 1 %
error. Figure 7.6a presents the original image. Figures 7.6b–d illustrate the adaptive
reconstructed images with increasing numbers of singular components. Finally with
100 singular components, a low-rank approximation of the original image with
0:9 % error is obtained.

7.5 Summary

Monte Carlo methods are powerful tools to analyze large data sets, particularly in the
big data era when the data growth outpaces the computer processing capability. We
review the basics of Monte Carlo methods and the popular techniques for variance
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reduction in this article. Several application examples using Monte Carlo for data
analysis are presented. The rule of thumb in Monte Carlo is, the more known
knowledge is incorporated into the estimator, the more uncertainty can be reduced
and the better data analysis accuracy can be obtained.
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