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Preface

Modern data science is related to massive data sets (BigData), machine learning,
and cloud computing. There are multiple ways of understanding data science: (1)
BigData with small cloud computational power, which requires very fast algorithms;
(2) relatively small data sets with large cloud computational power, which we can
compute by distributing data to the cloud without a very efficient algorithm; (3)
BigData and with big cloud, which requires both techniques of algorithms and
architectural infrastructures (new computing models); and (4) small data sets with
small cloud, which just requires the standard methods.

This book contains state-of-the-art knowledge for researchers in data science.
It also presents various problems in BigData and data science. We first introduce
important statistical and computational methods for data analysis. For example, we
discuss the principal component analysis for the dimension reduction of massive
data sets. Then, we introduce graph theoretical methods such as GraphCut, the
Laplacian matrix, and Google PageRank for data search and classification. We also
discuss efficient algorithms, the hardness of problems involving various types of
BigData, and geometric data structures. This book is particularly interested in the
discussion of incomplete data sets and partial connectedness among data points
or data sets. The second part of the book focuses on special topics, which cover
topological analysis and machine learning, business and financial data recovery, and
massive data classification and predication for high-dimensional data sets. Another
purpose of this book is to challenge the major ongoing and unsolved problems in
data science and provide some prospective solutions to these problems.

This book is a concise and quick introduction to the hottest topic in mathematics,
computer science, and information technology today: data science. Data science
first emerged in mathematics and computer science out of the research need for
the numerous applications of BigData in the information technology, business, and
medical industries. This book has two main objectives. The first objective of this
book is to cover necessary knowledge in statistics, graph theory, algorithms, and
computational science. There is also specific focus on the internal connectivity of
incomplete data sets, which could be one of the central topics of future data science,
unlike the existing method of data processing where data modeling is at the center.

vii



viii Preface

The second focus of this book discusses major ongoing and unsolved problems in
data science and provides some prospective solutions for these problems.

The book also collects some research papers from the talks given at the Interna-
tional Congress of Mathematics (ICM) 2014 Satellite Conference on Mathematical
Foundation of Modern Data Sciences Computing, Logic, and Education, Dalian
Maritime University, Dalian, China, which took place from July 27 to August 1,
2014. We are grateful to the Seoul ICM 2014 organization committee and National
Science Foundation of China for their support. Many thanks go to Professor
Reinhard Klette at the University of Auckland and Professor Wen Gao at Beijing
University for giving excellent invited talks. Special thanks to Professors Shi-Qiang
Wang (Beijing Normal University), Steven G. Krantz (Washington University),
Shmuel Weinberger (University of Chicago), and Hanan Samet (University of Mary-
land) for their support. Special thanks also go to Dalian University of Technology,
Dalian Maritime University, Southeast University of China, and University of the
District of Columbia for their support to this conference.

This book has three parts. The first part contains the basics in data science; the
second part mainly deals with computing, leaning, and problems in data science; the
third part is selected topics. Chapter 1: Introduction (L. Chen); Chap. 2: Overview of
Basic Methods for Data Science (L. Chen); Chap. 3: Relationship and Connectivity
of Incomplete Data Collection (L. Chen); Chap. 4: Machine Leaning for Data
Science (L. Chen); Chap. 5: Images, Videos, and BigData (L. Chen); Chap. 6:
Topological Data Analysis (L. Chen); Chap. 7: Monte Carlo Methods and Their
Applications in Big Data Analysis (H. Ji and Y. Li); Chap. 8: Feature Extraction
via Vector Bundle Learning (R. Liu and Z. Su); Chap. 9: Curve Interpolation and
Positivity-Preserving Financial Curve Construction (P. Huang, H. Wang, P. Wu, and
Y. Li); Chap. 10: Advanced Methods in Variational Learning (J. Spencer and K.
Chen); Chap. 11: On-line Strategies of Groups Evacuation from a Convex Region
in the Plane (B. Jiang, Y. Liu, and H. Zhang); and Chap. 12: A New Computational
Model of Bigdata (B. Zhu).

Washington, DC, USA Li M. Chen
Dalian, China Zhixun Su

Bo Jiang
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Chapter 1
Introduction: Data Science and BigData
Computing

Li M. Chen

Abstract What is Data Science? Data contains science. It is much different from
the angle of classical mathematics that uses mathematical models to fit the data.
Today, we are supposed to find rules and properties in the data set, even among
different data sets. In this chapter, we will explain data science and its relationship
to BigData, cloud computing and data mining. We also discuss current research
problems in data science and provide concerns relating to a baseline of the data
science industry.

1.1 Data Mining and Cloud Computing: The Prelude
of BigData and Data Science

Since its creation, the Internet has infiltrated every aspect of a human’s life.
Every business has also adopted the Internet and World Wide Web for day-to-
day operations. Data mining is the analysis of knowledge discovery over the
Internet, in databases and/or in data storage such as data warehouses [12]. It is
the process of analyzing data, searching for specific objects, or finding rules
among data. For instance, data mining includes finding rules for customers who
purchase one item and whether they will purchase another associated item. This
is called the association rule, which is a major new development in data mining.
Most data mining technologies are still statistical and artificial intelligence (AI)
based approaches. From problem-solving point of view, anomaly detection, such
as outlier or change findings, and association rule learning are two specific tasks
in data mining in addition to the common tasks of pattern recognition. Pattern
recognition usually means clustering, classification, modeling, and interpretation
or summarization. Pattern recognition usually overlaps with artificial intelligence.
Even it is very broad, AI mainly contains the research aspects related to searching,
knowledge representation, reasoning, planning, learning, and decision making.
Despite the differences in the names of terminologies, reasoning, planning, learning,
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4 L.M. Chen

and decision making will use pattern recognition technologies such as clustering,
classification, and modeling. For instance learning a line or curve, we usually use
regression technique that is a simple modeling method.

Cloud computing is the mechanism used in the organization of multiple com-
puters and data sources that are randomly arranged in different locations with
a variety of connections between them. It maximizes the flexibility of parallel
computational power. Cloud computing provides computing related services to
individual companies or users with multiple resources as utilities such as water,
electricity, and phone services. Users do not have to build and maintain their own
computing infrastructures such as databases, high performance computers, high
speed Internet routers, and security systems.

Briefly, data mining on cloud computing can be viewed as the early stages of
BigData processing. Data science is the new field of exploration that will be able to
solve current and future problems related to BigData. BigData and data science
provide many opportunities for scientists, engineers, and IT businesses. It also
provides tremendous opportunities to mathematicians and computer scientists to
discover new mathematics and algorithms. In this chapter, we will attempt to outline
the different aspects of BigData and data science that may interest mathematicians
or computer scientists. Data Mining and cloud computing have become precursors
to BigData and data science.

In 2012, the United States federal government announced a so-called Big Data
Research and Development Initiative. Its purpose is to improve “the ability to extract
knowledge and insights from large and complex collections of digital data.”

1.2 BigData Era

BigData technology is about data sets from many sources and collections of
different formats of data. It also has the properties of massive storage and requires
fast analysis through a large number of computing devices including cloud com-
puters. It may yield revolutionary breakthroughs in science and industry. BigData
is a phenomenon in current problems regarding data sets. The characteristics of
BigData are: (1) large data volume, (2) use of cloud computing technology, (3) high
level security, (4) potential business values, and (5) many different data sources.
People used 3V to describe the characteristics of BigData: Volume, Variety, and
Velocity [3].

Modern BigData computing is also called the petabyte age. A Petabyte (PB) is
1MB � 1GB. For instance, if Google gives each person 1 GB for space storage
and there are 1 billion people in the world who will use Google’s service, the data
volume would be 1G � 1G D 1000PB.

One software tool for BigData is called Apache Hadoop, which is an open-
source software framework that supports data-intensive distributed applications and
enables applications to work with thousands of computation-independent computers
and petabytes of data. Hadoop was derived from Google’s MapReduce and the
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Google File System (GFS) [8, 11, 24]. MapReduce is a technological framework
for processing parallelize-able problems across huge data sets using a large number
of computers (nodes). In the meantime, MapReduce can take advantage of the
locality of data, processing data near the storage in order to reduce distance
transmission costs. A more sophisticated software system for BigData called Spark
was developed by UC Berkeley. The Spark system is a Java programming based
open source system for cloud computing. It makes data analytics fast than Hadoop.
(https://amplab.cs.berkeley.edu/projects/spark-lightning-fast-cluster-computing/).

MapReduce consists of two major steps: “Map” and “Reduce.” They are similar
to the original Fork and Join operations in distributed systems, but they can consider
a large number of computers that can be constructed based on the Internet cloud. In
the Map-step, the master computer (a node) first divides the input into smaller sub-
problems and then distributes them to worker computers (worker nodes). A worker
node may also be a sub-master node to distribute the sub-problem into even smaller
problems that will form a multi-level structure of a task tree. The worker node can
solve the sub-problem and report the results back to its upper level master node. In
the Reduce-step, the master node will collect the results from the worker nodes and
then combine the answers in an output (solution) of the original problem.

Data science is a new terminology in BigData. How to make a Petabyte
problem parallelize-able is the key to using Hadoop. What is Data Science? Data
contains science. However, data science has a different approach than that of
classical mathematics, which uses mathematical models to fit data and to extract
information. In data science, some mathematical and statistical tools are required to
find fundamental principles behind the data.

These fundamental principles include finding rules and properties of a data set,
among different data sets, and the relationship of connectivity between data sets. The
new research would be more likely to include partial and incomplete connectivity,
which is also a hot topic in the current research of social networks. Previously
developed technology such as numerical analysis, graph theory, uncertainty, and
cellular automata will also play some role.

However, developing new mathematics is more likely the primary focus for the
scientists. A good example is in face recognition and trying to find a person in a
database with 10 million pictures when the pictures are randomly taken. Finding a
best match for the new picture requires tremendous calculations.

It is related to the person’s orientation in each picture. Let’s assume that we have
100 computers but they are not available all the time. One can build a tree structures
with these 100 computers. When a computer is available, it will get task from its
father node. When it is not available, it will return its job to its father node.

Not every problem with a massive data set can easily be split into sub-problems.
It depends on the connections of its graph representation. For instance, for an
NP-hard problem, such as the traveling salesman problem, the sub-problem with
less nodes does not help much in solving the whole problem. However, for a sorting
problem, a solution of sub-problems would be helpful. If a merge-sort algorithm is
used, Map-step can give a sub-problem to its worker nodes. The “reduce” step only
requires linear time to merge them.

https://amplab.cs.berkeley.edu/projects/spark-lightning-fast-cluster-computing/
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Table 1.1 Four paradigms of science [14, 17, 18]

Paradigm Nature Form of science When

First Experimental Describing natural Pre-Renaissance before 1600

phenomena

Second Theoretical Modelling and Pre-computers before 1950

generalization

Third Computational Simulation of complex Pre-BigData before 2000

phenomena

Fourth Exploratory, Statistical exploration, Now

data-intensive data mining

Science and knowledge development is reliant on real-world data observations
and collections. Kuhn and later Gray summarized four paradigms of science
developments where BigData is at the fourth paradigm [14, 17, 18] (Table 1.1).

1.3 The Meaning of Data Sciences

The term data science was first coined in 2001 by Cleveland [7] as an extension
of statistics focusing on data analysis. Data science has a close relationship to data
mining in artificial intelligence and statistics, which was evidenced by the title of the
first international journal on the topic published by Columbia University: Journal of
Data Science: an international journal devoted to applications of statistical methods
at large.

Data science was meant to consist of statistical applications for large data sets
or extended data analysis methods kerneled by statistics [13]. This is still somewhat
true. However, beginning in 2014, data science emerged into the spotlight in science
and engineering. The reason was that BigData, initialed by industry for its ability
to process data sets containing thousands of terabytes, required data science for
extracting meaningful information from Internet based storage. Dhar [9] explained
that the purpose of data science is to extract knowledge from data. It results in
slightly better understanding of the data than from data mining since knowledge
could be science, and therefore, not limited to the rules of the data set.

Dhar stated that “Data science might therefore imply a focus involving data and,
by extension, statistics, or the systematic study of the organization, properties, and
analysis of data and its role in inference, including our confidence in the inference.”

What does extraction mean? Using John Tukey’s quote, “The combination of
some data and an aching desire for an answer does not ensure that a reasonable
answer can be extracted from a given body of data.” For example, one may have
1000 gigabytes of data but only a few kilobytes are useful to answer a question.
Today, the key method for data science is still machine learning. A good example
to explain how machine learning works is that for an online data analysis, when
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a discovery is found, we need to collect new samples and run the experiment to
confirm or adjust the answer we get. This is called learning.

Why do we need a new term, data science, when we have statistics and data
mining already? The size of the data sets should not be the only justification
for requiring a new name. Dhar tried to answer this question with the following:
“The short answer is data science is different from statistics and other exist-
ing disciplines in several important ways. To start, the raw material, the ‘data’
part of data science, is increasingly heterogeneous and unstructured-text, images,
video-often emanating from networks with complex relationships between their
entities.” The data are not in the traditional formats. New data science must be
capable to work on multiple types of data in integration, interpretation, and sense
making. The software tools for data mining or data science may from difference
discipline areas such as science, engineering, sociology, and even linguistics [9].

Another important distinction to statistics and traditional artificial intelligence
is in the relationship among data sets or extracted data sets. This is related to
integration, but not exactly the same. It can be used for integration, but when
multiple data sets are extracted, rules and meanings are interpreted. The traditional
method is to integrate immediately. However, an alternate method is to keep the data
sets with their relations before integration. In such a way, different researchers can
apply different integration technologies. It is important to note that relations are the
foundation of integration.

Jeff Leek presented an opinion that states “the key word in ‘Data Science’ is not
Data, it is Science.” (http://simplystatistics.org) It is very true to some extent since
any type of science relating to data is useful when the data are used to answer a
question. However, without the changing of data size, there is no need to have a
new term of data science. Traditional statistics may be sufficient to answer these
questions.

We can summarize that Data Science is the science about the data especially
about the massive data sets with veracity in their forms.

1.4 Problems Related to Data Science

To solve problems in the BigData era, we must consider using existing massive
computational power such as cloud computing in many different ways. What can
the new science discover in such a framework setting? What about other aspects
including new mathematics that could be developed to fit the needs of the times. In
this section, we list some of the problems and research aspects people are currently
focusing on. Even though we do not have a very precise definition of data science,
we could say that data science is about the study of:

1. The science of data;
2. Extracting knowledge from massive data;
3. Data and data set relations;

http://simplystatistics.org
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4. BigData processing; and
5. Visualization of massive data and human–computer interaction.

When dealing with extracting knowledge from data, “machine learning,” the
purpose is to discover patterns in data sets that have particular importance to data
science. However the new problem is much harder when we consider a very large
data set since there may only be a few kilobytes of data that are actually related to
the model we are looking for among a few hundred gigabytes of data. The smart
selection is not only sampling but also smart searching among data that is stored in
different location, databases, or Internet.

The smart search is an online or simultaneous, synchronized and unsynchronized,
immediate update of information when multiple machines are searching for an
object or rule at the same time. This objective or target may also change. For
instance, we have 10,000 machines running for such a search for a virus pattern,
when one machine has determined the first component of the pattern, other machines
will be assigned a new job for searching for other patterns. The correlation is the
key for fast search results. What is the science about this particular problem? We
use algorithmic for fast resolution and communication, statistical for sampling and
testing, geometric to find the boundary of the pattern, algebraic for modification of
equations, and analysis for comprehensive decision making. All of these play a part.

In a search, multiple machines and multiple tasks are running in a collaborative
manner. Such a job has uncertainty based on where and when the first few tasks
are completed. The simpler example is to search for a genetic disease in a group
of people. We first need to search for a bad gene, a complete human genome will
contain 4 gigabytes of data. When we need to find such a gene among 10 million
people, this is now on the BigData scale. The 10 thousand machines will first begin
to run their own Map-reduce. If a bad gene is found in one section of the gene
profile, it will be announced to all other machines. All machines will then change
their jobs to find the details and do an analysis for the total combined parts of the
gene. Such a task is not one that existing technologies can solve automatically.

This is also related to when the machine is running for a long period of time. How
do we change our target to record the current results and predictions? It is obvious
that we need more sophisticated research to solve this problem. However, currently,
the focus is on one scale and multiple machines in BigData.

Some general problems in Data Science and BigData include:

P 1. Extracting knowledge and rules with the smart search.
P 2. Finding the relationship and connectivity of incomplete data collections

(searching by identifying the relations among BigData).
P 3. Cloud data computing and topological data analysis.
P 4. Algorithms for high dimensional data including manifold learning; fast algo-

rithms for MapReduce, for protecting user from providers in Networking,
security.

P 5. Applications on Massive Data recovery.
P 6. Advanced topics of data sciences in mathematics.



1 Introduction: Data Science and BigData Computing 9

Another difficult problem relates to data science is that different sets of data are
in different formats using different analysis models. After each calculations, how do
we merge the results together as a single outcome?

We can use two examples to explain these: (a) At Walmart, grocery sales analysis
can use decision trees to do predictions, but people can also purchase electronics in
the same visit. We sometimes cannot use the same model to both sales. The final sale
will then require a big sale portfolio function. (b) For data reconstruction, one part
requires cubic spline and the other requires Gaussian normal distribution functions
for the fitting. How do we merge them into a smooth function?

1.5 Mathematical Problems in Data Science

A data set is called a cloud if its data points are randomly arranged, but they are
dense and usually have a lot of data points. In data processing, there are only two
primarily data formats: random cloud data and array-based data. Random cloud data
(also called scattered data) are stored in the vector form, and array-based data are
images in 2D, 3D, or higher dimensional arrays.

Mathematically, let M be a cloud data set that is a set of data points in m-
dimensional space or M could be the points in arrays. Data science should be able
to solve the problems described below. Some of the problems were listed in [5].

Question 1. How do we find the orientation of the data set? We can use the
principal component analysis to get the primary eigenvectors. We can
continue to ask the problem related to BigData as follows: When data
sets are stored in different databases or locations, how do we estimate the
answer as we combine the answers from paretical results? We will discuss
the methods in Chap. 2.

Question 2. How do we classify M into different classes? The best method is
k-means if there is no time limit. We can also use neural networks and
supporting vector machines to separate the data set. When M is stored in
different computers with large volume, the efficiency and merge of results
might yield some new problems. Machine learning is playing a major
role in classification problems. We will discuss most important machine
learning methods in Chap. 4. We also discuss them in Chaps. 2 and 5.

Question 3. How do we find the partition of the space using the data set? Even
though the Voronoi diagram is the best choice, however, new algorithms
that adapt to the big data sets need to put into a consideration.

Question 4. If some categorization of sample data is given, then in some instances
we know the data classification of a subset of M. We can use k-nearest
neighbor (k-NN) to find the classification for unknown data points. See
Chaps. 2 and 4. Some problems will be related to Monte Carlo method in
Chap. 7.

Question 5. How do we store the data points so that later we can retrieve the data
points? We can use quadtree or R-tree to store the data and we can save
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a lot of space [5]. An introduction is given in Chaps. 3 and 5. This data
format has particular importance in networking especially wireless data
communication and computing. More research has been done recently.

Question 6. If most of the data does not occupy the entire space, can we find
a subspace to hold the data and not waste the remaining space? This
problem is related to dimension reduction [15] and manifold learning
[5, 22]. In this area, mathematicians can find great deals of new problems
to do research with. We will explore the related problems in Chaps. 6 and
8 in this book.

Question 7. How do we find the topological structure of the data sets? A
technology called persistent homology analysis was proposed to solve
this problem [5]. The topological structure of the data sets is now one
of the major areas where mathematicians and computer scientists have
put considerable attention. The geometric structure of massive data or
BigData will be critical in data analysis. We predict there will be much
more new findings in theory and practice. We will have Chap. 7 and part
of Chap. 3 that are also related to this topic.

Question 8. When the cloud data is dense enough to fill an entire space, we call
the image M. We will use image processing methods to solve the related
problem [19, 21, 23, 25]. In image processing especially today, video
object search is a main concern. Videos generate big data. The search
algorithm must be efficient for some surveillance cameras. The mean
shift method is one of the most successful methods. We will discuss it
in Chap. 5.

Question 9. Image Segmentation is still fundamental in most of the image pro-
cessing problems where classic and modern mathematics have contributed
significantly in the past. However, the modern BigData requests more
efficient and parallelized algorithms we still lack of. In Chap. 5, we
will review popular image segmentation method as well as specialized
techniques including variational methods and graph-cut methods. We will
also discuss the cloud computing technology in application of image
segmentation in Chap. 5. In Chap. 10, a detailed method combining
machine learning and variational method will be presented.

Question 10. For Smart Search we discussed in the above section, beyond the
algorithm design and implementation in cloud computing environment.
Some research in statistics can also be interesting. For instance, the smart
search method with the consideration on tread-offs among time complex-
ity, space-need, and accuracy of the results. In some occasions, one might
must choose probabilistic method to avoid exponential time complexity.
In this case, statistical and experiential studies may be necessary.

Question 11. The NetFlix Problem is also called the matrix completion problem
[4]. It is to find a way to fill all elements in a huge matrix n�N when some
entries are known. This is also related to data recovery and reconstruction.
A popular method to solve this problem is to assume a low-rank vector
space then to generate the instance of the vectors in the matrix. The
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best result is at the level of rN log N [10, 20] where r is the rank of
the (assumed) space and N is the number of columns of the big matrix.
The NetFlix company wanted to find the missing data of a matrix M that
records movie watching review. n is the number of different movies, and
N represented the number of customers who watched the movie. Each
element of the matrix could be just binary or the rating value given by a
customer. We will discuss the related problem in Chap. 6. But will focus
on geometric method. In a NetFlix competition, a team used the SVD
method and Neural Networks won.

Question 12. Subspace clustering is a special data segmentation problem [2, 15].
Mathematically, there is an equivalence between this problem and the
NetFlix Problem (in high rank space) [10]. This is because that we can
cluster the vectors into subspace that is in low-rank and use the method
in Question 11. We can state this problem as follows: There are N
samples (vectors). Can we find k-subspaces with (possibly different) low-
dimensions to hold all data samples? A good survey is [22]. The existing
method still uses matrix decomposition techniques such as SVD and PCA.
With restricting the rank of each subspace to at most r, a good result is
attained at krNlog2N for the requirement of elements in the matrix. These
methods assumed that there is no noise. This is because a little noise will
change the rank of the matrix in a significant way. When the rank is high,
these methods will not take advantages.

This is also related to motion detection in video images we will discuss
it in Chap. 5. An algorithm related to search method is discussed in Chap. 6
where the noise is allowed.

Subspace clustering is to learn the subspaces from samples in Rn. Then, assign
each vector to its proper subspace. The components with small differences of two
vectors should be treated as they have the same value on these components. So it
is possible to do the reduction in dimensions for a subset of samples. If we can
cluster all samples to subspace, then the union of the subspaces will be enough to
represent the data sets. This is essentially a search problem. However, if we search
every possible combination, the algorithm will be exponential.

Many problems in financial industry such as interest rate reconstruction and
online learning for market data analysis are BigData related [1]. This book will
discuss financial data analysis and reconstruction in Chap. 9.

1.6 Mathematics, Data Science, and Data Scientists
in Industry

Mathematics studies numbers, shapes, and inferences. Data consists of numbers.
A set of data has a shape, and the result is obtained by inferences. With such a
prospective, data science is a division of mathematics. However, data science is
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not a theory. It is used for massive data processing. It is also used in industrialized
mathematics with regard to fast algorithm design [6], data collection and storage,
Internet communications, integration of intermediate results, or any combination of
the above.

Many mathematicians will find jobs in the data science industry in the very near
future. The following is a list of hints for young graduates on how to become a
successful data scientist. If you have or would like to have any of the following
traits on the list, it is most likely that you could potentially be a very good data
scientist, even without a degree from the newly created advanced degree programs
in data science.

These traits are:

1. Have knowledge in BigData. MapReduce, Hadoop, and Spark as well as other
tools;

2. Be able to acquire data with different file formats like XML, CSV and SAS,
SPSS;

3. Understand and be able to use image and video formats such as principle of
image compression;

4. Be able to use tools and techniques for sampling and filtering data, along with
data transformation; (Chap. 4)

5. Understand and use basic techniques of pattern recognition and data mining;
6. Understand and use basic techniques in statistical computing including some

tools such as SAS or R;
7. Be able to analyze data using Hadoop or Spark;
8. Understand basic and some advanced techniques in machine learning tech-

niques. Be able to use some tools such as CAT or Apache Mahout; and
9. Some hybrid learning technologies such as neural networks, genetic algorithms

and fuzzy logic will be a plus.
10. Understand some basic algorithmic design technologies such as divide-and-

conquer, greedy, and dynamical programming.
11. Understand computational methods such as curve fitting will be useful for

special industry.

These are modified from http://www.thedevmasters.com/big-data-data-science/.
People who understand and use some of the above technologies will be able

to find a job in data science industry. Some companies have already started to
have data science training lessons. For example, http://www.thedevmasters.com/
big-data-data-science/. Some companies have service for image-based recognition
and object tracking.

The general purpose computing system (the service providers) for cloud comput-
ing and BigData are mainly three: (1) Amazon’s AWS system, (2) Google’s Cloud,
and (3) Microsoft’s Azure.

http://www.thedevmasters.com/big-data-data-science/
http://www.thedevmasters.com/big-data-data-science/
http://www.thedevmasters.com/big-data-data-science/
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1.7 Remark: Discussion on the Future Problems
in Data Science

If data science is about the science of the data and not only about the data itself,
the relationship among data or data sets must be a factor. Finding the connection
of data and data sets is also the primary concern of data science. Science is about
knowledge, so data science is about the knowledge of data (extraction) among data
points or among the subsets of data collections (data relations).

The best example of data science is still the Google search page ranking (Mike
Loukides), where “Google’s breakthrough was realizing that a search engine could
use input other than the text on the page. Google’s PageRank algorithm was among
the first to use data outside of the page itself, in particular, the number of links
pointing to a page. Tracking links made Google searches much more useful, and
PageRank has been a key ingredient to the company’s success.”

What is data science? Mike Loukides said : “The future belongs to the companies
and people that turn data into products.”

Data Science is a composite of a number of pre-existing disciplines. It is a young
profession and academic discipline. The term was first coined in 2001. Its popularity
has exploded since 2010, pushed by the need for teams of people to analyze the big
data that corporations and governments are collecting. The Google search engine
is a classic example of the power of data science. Other online algorithms can be
found in [16, 21].

Data science is a discipline that incorporates varying degrees of data engineering,
scientific method, math, statistics, advanced computing, visualization, hacker mind-
set, and domain expertise. A practitioner of Data Science is called a Data Scientist.
Data Scientists solve complex data analysis problems.

In this book, we mainly introduce the existing methods for data science and
BigData. We also list multiple problems that still challenge us today. Finally, we
point out some of the future problems with this topic.

This book will focus on the problems in data science. That is especially written
for mathematicians from computer scientists’ point of view.

In the satellite conference on Mathematical Foundation of Modern Data Sciences
of ICM 2014 (International Congress of Mathematicians, Seoul, Korea, 2014), we
organized a Panel discussion on the problems where mathematicians could play the
central role. Now, we list some of the problems suggested and discussed:

S 1 Can one use numerical algebra and PDE to be the edge descriptor of
objects in image segmentation? What is the relationship to the existing
level-set method? This problem is suggested by Bo Yu at Dalian Tech
Univ.

S 2 Tian Liu at Peking University raised the issue of computing models.
What is a better computational model for BigData and what differs it
from traditional model? Li Chen added that Robert Soare at University
of Chicago said that Internet computing is the Oracle Turing Machine,
should we agree?
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S 3 Bo Jiang at Dalian Maritime University pointed out if we compute the
problem of the shortest path when we have three million data points. How
do we perform the algorithm? This problem may need to do analysis for
the convex Hull problem in high dimension. Reinhard Klette added that
3D convex Hull is critical. Binhai Zhu added the topological relationship
of data points including Voronoi diagrams in case we have massive data
points. How do we solve the problem using multiple computers or cloud
computing?

S 4 XiaoDong Liu would like to see a theory that establishes a theory in
mathematics for human learning & understanding for data science, current
fuzzy set theory can be improved.

S 5 Reinhard Klette suggested to establish a unified theory for randomness,
theory, and practices not only about the detail or particular technology,
but also for unification the three categories. How will cloud computing be
taken part in this unification?

S 6 Jijun Liu liked an idea that says “BigData is the inversion problem
(Wienan E).” Can we use 1000 computers to solve a problem in PDE
inversion with much better accuracy? He mentioned regularization theory
for solving problems with lack of data and instability. (Refer to the book
entitled, “The Mathematical Sciences in 2025.”)

S 7 Zhixun Su added a question: What is the regular part of the data? Can we
learn the regularization rules? Other discussions include: Can we combine
geometry part method and statistical method? Can we mixed statistics
with geometry for manifold learning optimization from different way such
as manifold learning for local metric?

S 8 Lizhuang Ma and Bo Yu would consider QQ.com users and the sparse
matrix for very large number of users. Can we use spline, multi-spline,
or NURBS to solve these problems? Other questions such as patterns of
data and similarity of data internal connection were discussed when using
these techniques.

S 9 Renhong Wang observed a phenomena: Can we develop a technology that
adds a dimension, so we can easily get any secrete data? For instance,
a circle in 2D is secure in holding data inside of the circle, but if we
add a dimension, then we can easily get the thing from the circle and
its internal part.
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Chapter 2
Overview of Basic Methods for Data Science

Li M. Chen

Abstract Data science utilizes all mathematics and computer sciences. In this
chapter, we give a brief review of the most fundamental concepts in data science:
graph search algorithms, statistical methods especially principal component analysis
(PCA), algorithms and data structures, and data mining and pattern recognition.
This chapter will provide an overview for machine learning in relation to other
mathematical tools. We will first introduce graphs and graph algorithms, which will
be used as the foundation of a branch of artificial intelligence called search. The
other three branches of artificial intelligence are learning, planning, and knowledge
representation. Classification, also related to machine learning, is at the center of
pattern recognition, which we will discuss in Chap. 4. Statistical methods especially
PCA and regression will also be discussed. Finally, we introduce concepts of data
structures and algorithm design including online search and matching.

2.1 “Hardware” and “Software” of Data Science

Data storage, data communication, security, and computing machinery can be
considered as the “hardware” in data science. Artificial intelligence (AI), statistical
methods, algorithm design, and possible new mathematical methodologies can be
viewed as the “software” of data science.

Existing methods play a primary role in data science today. There are three
aspects that are important to modern data related problems. We want to give brief
statements on each of them. For mathematicians, these are part of the motivation
for why we are interested in data science problems and how we start to tackle these
problems. For some researchers, the motivation is figuring out what we should do
to find the new method to solve a challenging problem.
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2.1.1 Searching and Optimization

Search is one of the most important tasks in AI [34]. General search, in fact, is not
a topic of AI, but it belongs to algorithm design and usually relates to graph search.
For instance, finding a special object in a graph or finding the best path. When the
area in which we are searching is very large, this type of algorithm is not feasible,
meaning that we can not complete the search in an allotted time frame. AI search
will look for a best or near best way to limit some of the unnecessary paths that
unlikely contains the object or target we are looking for.

For instance, A� search is a type of search based on the so-called breadth first
search method in graph theory, which finds the best possible direction to look for
the answer.

2.1.2 Decision Making

Everyday, we need to make many decisions. What time should I leave the house for
work? What I am going to eat for lunch? Can I come home earlier to avoid traffic?
Decision making usually refers to statistical methods and discrete (algorithmic)
methods.

Everyone knows the regression method to find a line that best fits sample data
in 2D. We usually use the least square method to find such a line, which is a
statistical method. Another method is called neural networks that employs the
least square method too. It uses multiple layers where each layer performs linear
transformation like operations. The process also adds some nonlinear procedures
and automated adjustments of parameters based on the least squares.

The decision tree method is a typical algorithmic method [12]. It does not look at
the decision for the whole data set. It makes a decision at each individual step. For
instance, John has a meeting in the morning, so he leaves home 30 min earlier than
usual. We will set up a rule such as “if someone has a meeting in the morning, then
he or she needs to leave home 30 min early.” When John meets heavy traffic, he will
choose to use a toll-road. We then have another if-then rule.

The decision tree method preforms a set of “IF-THEN” statements. The decision
is made based on each condition that has occurred. The structure of the method or
algorithm is like a binary tree where each node will test if the condition is met. Then,
the algorithm will direct John to go left or right in the child node.

2.1.3 Classification

Classification is the placement of certain samples into categories [34, 39]. If the
categories are predefined, then we call it supervised classification. Otherwise,
we call it unsupervised classification.
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The problem of classification is everywhere. For instance, to measure if a person
is overweight, we use something called BMI, which is a function of weight and
height. When f .W;H/ D .W=H2/ � 703, where W D (Weight in Pounds), H D
(Height in inches). If the value is above the average, we say the person is overweight.
Otherwise, the person is normal. Using this method, people are categorized into two
classes: (1) normal and (2) overweight. If we are only interested in people who has
the same hight, say 72 inches. So the formula will be f .W/ D .W=.72�72//�703.
The new function that determines the classification is linear. Therefore we call it the
linear classifier. Assume the clip-level for the normal class is under 25, so everyone
who has BMI less than 25 is healthy (with height = 72 inches). This is also called a
supervised classification (since we have predefined a clip-level value).

In another example, we have a picture that we want to separate into different
objects. However, we do not know how many objects are in the picture. We can only
use the intensity of the image to do the classification. The pixels (picture elements)
similar in color or gray scale will be treated as the same object if they are close to
each other. This classification is an unsupervised classification.

2.1.4 Learning

For some problems, it is hard to generate rules before we start to process the data
such as a function. We generate the model dynamically, meaning that we need to use
the samples to obtain the parameters of a classification system. This method usually
refers to a learning method. Let us assume that we have satellite data sets from
a GPS system. We want to classify the geographical areas into cities, forests, and
water. The volume of data is so big that we ask some experts to select 1000 points
(locations) and then identify those points as city, forest, or water. Then, we recollect
the GPS image data from the database to retrieve the values of the image intensity
(with different bandwidths so they have a total of seven bands for seven pictures).
We now have data for these 1000 points < F; v >. Note that the decision about
these 1000 data points is made by experts. We also have the location of the data as
well. So we have .x; y; f1; :::; f7; v/ where v is a value for city, forest, or water. We
call this data set the samples S. In order to make a learning system, we split S into
two sets: the training set Str and the testing set Ste. We usually request Str \ Ste D ;.
However, in statistical learning methods, the researcher usually intends to make Str

and Ste overlap for more profound analysis.
We use the training set to find the model for the data and then use the testing set

to test the model system we used to see if it is correct. Using the simple example
of linear system classification, we can use Str to find a linear function for finding
the PMI of a city population. (This is not a global solution, so we decided to find
the parameter or coefficients of the linear equation, such as c1 and c2.) Then, we
want to see if this linear model works or not. We can use Ste to test and find the
correctness of the testing data samples.
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We could also randomly reselect Str and Ste to test this set. If we are satisfied, we
can use this model. If not, we can select another method. This way is called machine
learning [34].

In this chapter, we review basic methods for data science.

2.2 Graph-Theoretic Methods

The graph in mathematics is a general structure for discrete objects. Theoretically,
every computerized data storage or data processing mechanism can be deduced into
an operational process of graphs. A graph G consists of two sets V and E, where V
is the set of vertices and E is the set of pairs of vertices called edges. An edge is said
to be incident to the vertices if it joins [3, 12, 17].

2.2.1 Review of Graphs

Graph G D .V;E/ is called a simple graph if every pair of vertices has at most one
edge that is incident to these two vertices and there is no loop .a; a/ 2 E for any
a 2 V .

In this book, assume that G D .V;E/ is an undirected graph, which means that if
.a; b/ 2 E, then .b; a/ 2 E or .a; b/ D .b; a/. a and b are also called ends, endpoints,
or end vertices of edge .a; b/. It is possible for a vertex in a graph to not belong to
any edge. V and E are usually finite, and the order of a graph is jVj, which is the
number of vertices. The size of a graph is linear to maxfjVj C jEjg, meaning that it
requires this much memory to store the graph.

The degree of a vertex is the number of edges that incident with (or link to) it.
A loop is an edge that links to the same vertex. A weighted graph means that
we assign a number on each edge that may indicate the distance between the two
vertices.

If .p; q/ is in E, then p is said to be adjacent to q. Let p0; p1; : : : ; pn�1; pn be nC1
vertices in V . If .pi�1; pi/ is in E for all i D 1; : : : ; n, then fp0; p1; : : : ; pn�1; png is
called a path. If p0; p1; : : : ; pn�1; pn are distinct vertices, then the path is called a
simple path.

A simple path fp0; p1; : : : ; pn�1; png is closed if .p0; pn/ is an edge in E. A closed
path is also called a cycle. Two vertices p and q are connected if there is a path
fp0; p1; : : : ; pn�1; png where p0 D p and pn D q. G is also called connected if
every pair of vertices in G is connected. In this book, it is always assumed that G is
connected (unless otherwise specified).

There are three algorithms that are important to data science mentioned in this
book [12]. These algorithms are: (1) The breadth first search algorithm, (2) The
shortest path algorithm, and (3) The minimum spanning tree algorithm.
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The maximum flow and minimum cut algorithms are also related to this topic.
The data structures that refer to these two techniques are queues and stacks made by
adjacency lists.

2.2.2 Breadth First Search and Depth First Search

Breadth first search is a fast search approach to get a connected component on a
graph. It begins at a vertex p and searches for all adjacent vertices. Then, it “inserts”
all adjacent points (neighbors) into a queue. “Removing” a vertex from the queue,
the algorithm calls the point p and then repeatedly finds p’s neighbors until the queue
is empty. Marking all the vertices we visited, the marked vertices form a connected
component. This technique was introduced in [12].

Algorithm 2.1. Breadth first search technique for all point-connected components
Step 1: Let p0 be a node in G. Set

L.p0/ � and QUEUE QUEUE [ p0
i.e., labeling p0 and p0 is sent a queue QUEUE.

Step 2: If QUEUE is empty, go to Step 4; otherwise,
p0  QUEUE (top of QUEUE). Then,
L.p0/ 0.

Step 3: For each p with an edge linking to p0 ,
do
QUEUE QUEUE [ p and L.p/ �. Then, go to Step 2.

Step 4: S D fp W L.p/ D 0g is a connected part.

Step 5: If p is an un-visited vertex, then let p0 D p. Repeat Step 1.
Otherwise Stop.

Breadth first search only visits a new node twice: once when the node is inserted
into the queue and once when the node is removed from the queue. Therefore, this
algorithm is a linear time algorithm and uses a fast search approach. Depth first
search is similar to breadth first search. Depth first search will find new nodes
continuously until no more new nodes can be found. When the algorithm runs
through a complete iteration, it saves all visited nodes in a stack. Since we only go
with a path to try and find the “deepest” node, there are other branches we may have
missed in the first try. Therefore, the algorithm returns to each visited node in the
order it was pushed in stack (first in, last out). We check other branches by popping
out nodes. After all nodes are popped out, this algorithm will have found all the
nodes in a component. This algorithm will visit all edges at most twice. Therefore,
it is also a linear algorithm on the edges.
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2.2.3 Dijkstra’s Algorithm for the Shortest Path

Finding the shortest path in the weighted graphs is a popular topic in graph theory.
Two of the most important algorithms are Dijkstra’s algorithm and the Bellman–
Ford algorithm [12]. Dijkstra’s algorithm is faster but cannot take negative edges.

The idea of the shortest path algorithm consists of the following. Beginning at the
vertex, this is the departing node. Then, we record the distance from the departing
node to all of its neighbors. The record may not be the shortest path involving these
notes, but we update the record and update the values on the nodes, a process called
relaxation. After that, we extend the notes by one more edge, do a relaxation, and
continue to repeat these two steps until we have reached every node in the graph.

The algorithmic technique used in this problem is called dynamic programming.
Even though there may be an exponential number of paths from one vertex to
another, if we are only interested in the shortest path, we only need to care about the
length we travel. We do not have to pass a certain vertex. There are only n.n� 1/=2
pairs of vertices. If we update the minimum distance while we calculate, this is
called dynamic programming.

Algorithm 2.2. Dijkstra’s algorithm for the shortest path
Step 1: Let T D V . Choose the source point a

L.a/ D 0; L.x/ D1 for all x 2 T � fag.
Step 2: Find all neighbors v of a node u with the value of L at L.v/ D L.u/C w.u; v/.

T  T � fvg
Step 3: For each x adjacent to v, do

L.x/ D maxfL.x/;minfL.v/;L.x/C w.x; v/gg
Step 4: Repeat steps 2–3 until T is empty.

2.2.4 Minimum Spanning Tree

The minimum spanning tree is to find a tree in a connected weighted graph G such
that the tree contains all vertices of G and the total weights are at the minimum.

Kruskal’s algorithm can be used to find the minimum spanning tree. In this
method, a technique called the greedy algorithm is used. The methodology is to
pick up the best one (the shortest edge currently available) in each stage to find an
ultimate solution.

In Kruskal’s algorithm, the tree T initially contains all vertices but no edges.
Because of this, it starts as an iterative process, adding an edge to T under the
condition that the edge has the minimum weight. We continue to add a minimum
edge to T as long as it does not allow for a cycle to appear in T . When T has jGj � 1
edges, the process stops.
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Algorithm 2.3. Kruskal’s Algorithm for finding a minimum spanning tree T

Step 1 Sort the edges based on the weights of the edges from smallest to largest.
Step 2 Set initial tree T to be empty.
Step 3 Select an edge from the sorted edge list and add it to T if such an added

edge does not generate a cycle.
Step 4 T would be the minimal spanning tree if jVj � 1 edges are added to T .

The principle where we always make a minimum or maximum selection is called
the greedy method. In artificial intelligence, the greedy method is constantly applied
in applications [34]. In most cases, the method may not obtain an optimal solution
but rather an approximation. However, for the minimum spanning tree, the greedy
method would reach the optimal solution.

2.3 Statistical Methods

For a set of sample data points in 2D, the method of principal component analysis
(PCA) can be used to find the major direction of the data. This is essential to data
processing. The method is also related to regression analysis and other methods in

ways to explain PCA, the best one is through statistics.
For a set of sample points, x1; x2 � � � ; xn, the mean is the average value of the xis

Nx D 1

n

nX

iD1
xi:

We may use a random variable X to represent this data set.
Variance is the measure of how data points differ from each other in a whole. The

sample variance of the data set or the random variable X is defined as

Var.X/ D 1

n

nX

iD1
.xi � Nx/2:

The square root of the variance is called the standard deviation �X , i.e.
Var.X/ D �2X . Note that people sometimes use n � 1 instead of n in the formula for
an unbiased estimate of the population variance.

For simplicity, let X D fx1; x2 � � � ; xng and Y D fx1; x2 � � � ; xng. The covariance
of X and Y is defined as

Cov.X;Y/ D 1

n

nX

iD1
..xi � Nx/.yi � Ny//:

numerical analysis and statistical computing [9, 24, 31]. Even though there are many
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We also can define the correlation of X and Y as follows:

Cor.X;Y/ D Cov.X;Y/

�X � �Y
:

Now, let’s introduce the PCA, an essential technique in data science. Given a
set of 2D points, .x1; y1/; � � � ; .xn; yn/, we can treat X as a random variable of the
first component and Y as the second component of the 2D vector. We define the
covariance matrix as the following.

The geometric direction of a set of vector data points can be determined through
PCA. The largest eigenvalue of the matrix indicates the major axis by calculating
the corresponding eigenvector.

M.X;Y/ D
�

Cov.X;X/ Cov.X;Y/
Cov.X;Y/ Cov.Y;Y/

�
(2.1)

PCA can be applied to find the major axis of the data in 2D. See Fig. 2.1.
In general, this method can be extended to analyze data in m dimensional space.

Assume we have m random variables in Xi and n samples for each variable. In other
words, we have N sample points pi D .x1; x2; � � � ; xm/, i D 1; : : : ;N. We can extend
the covariance matrix to be m�m. Therefore, we will have m eigenvalues, �1,. . . , �m.
We assume that �1 �; : : : ;� �m. The eigenvector Vi of �i indicates the i-th principal
component. This means that most of the sample data is along the side of vector Vi,
compared to vector Vj, if j > i.

For data storage purposes, we can determine that most of the data is covered by
the first few principal components. We can use linear transformation to attach this to
the original data and store the transformed data in a much lower dimension to save
space. This is why PCA is one of the most effective methods in many applications
in BigData and data science today.

a b

Fig. 2.1 Principal component analysis: (a) original data points, and (b) eigenvectors of the
covariance matrix
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2.4 Classification, Clustering, and Pattern Recognition

Classification usually refers to the supervised classification. In this method, we
want to know the categories of data points. We usually collect some samples whose
classifications are known. It is also called pattern recognition meaning that we want
to put a new sample into its pattern category.

Clustering is called unsupervised classification. It is a process where we do
not know the pattern. This means that we can only partition the data into several
categories [28, 34, 39].

In this section, we introduce the most popular classification methods: k-Nearest
Neighbor Method (kNN), and k-Means Method. The methods discussed in this
section will be used in image data analysis in Chap. 5 [23, 26, 27, 32, 37].

2.4.1 k-Nearest Neighbor Method

The kNN method is a supervised classification method. It is often used in pattern
recognition.

Let us take a sample subset of data points S D fx1; � � � ; xng. For each xi we know
its classification. If x is a new data point, the shortest distance d.x; xi/, i D 1; : : : ; n,
indicates the class containing xi that should include x. This is also called the nearest
neighbor method.

kNN is a generalization of the nearest neighbor method. We find the k nearest
neighbors in S for x of x in S, then we determine that x will be contained in the class
that also contains most of those neighbors [22, 34, 39].

2.4.2 k-Means Method

The k-means method is an unsupervised classification method. Given a set of
vectors, if we want to classify the data set into two categories, we can find two
centers such that the total summation of the distances of each data point to its center
will be minimum.

In Fig. 2.2, we first select two initial vectors as the “centers”(called sites) of
the two categories. Second, for each element P in the set, we put it into one of
the categories and record the distance from the center. Third, we update the two
center locations such that the total summation of the distance becomes smaller.
The algorithm will halt if there is no improvement when we move the two centers.

The k-means algorithm can be explained below: Based on the initial k sites,
partition the space using the Voronoi diagram. Then, we can move the center to
the geometric centroid of the new partition before we recalculate the results. This
is an iterated process. The only problem is with the local minimum, meaning that
this algorithm may converge to the local minimum for best result. In other words,
the algorithm will stop after a local minimum is attained [39].
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C1
C2

C2

C1

Fig. 2.2 The k mean algorithm

We present the k-means algorithm below:

Algorithm 2.4. The k-means algorithm
Input: For a set of data points X D fx1; � � � ; xng, each xi is an m-dimensional real

vector.
Output: k-means tries to find P D fc1; c2; � � � ; ckg, where each ci is a vector.

Then, all the data points will be partitioned into k subsets of X, where Si associated
with ci and satisfies the following:

min
kX

iD1

X

xj2Si

��xj � ci

��2 : (2.2)

Step 1 Randomly select k vectors c1; c2; � � � ; ck as the initial centers.
Step 2 For each data point xi, calculate the distance d.xi; cj/, setting xi as St if

d.xi; ct/ is the smallest.
Step 3 Calculate the new geometric center of Sj by

cj D 1

jSjj
X

xi2Si

xi

Step 4 Repeat Step 2 until the total square of the distances in (2.1) can no longer
be improved.

2.5 Numerical Methods and Data Reconstruction in Science
and Engineering

The most popular problem in data reconstruction is fitting a curve or a surface such
as Bezier polynomials and B-Splines. Data fitting has two meanings: interpolation
and approximation. Interpolation means fitting the data exactly on the sample values
while approximation means setting a fitted function near the sample values. Other
methods include data reconstruction from projection, such as CT scans in medical
imaging, and discrete fitting, which can be found in [8, 20].
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The most useful feature in data reconstruction is finding the missing data
elements of massive data collections in data science. IT is especially important to
fill the gaps in financial marketing data. For instance, during holidays we do not
have actual New York stock exchange information. However, the industry is not on
vacation. Therefore, the data information could be restored by filling in the predicted
information. This technique has been used for a long time. See Chap. 9.

In this section, we will not do a comprehensive review of numerical and
computational methods for data fitting. We will only discuss a principle of data
fitting using the least squares method. For more information on the numerical
method, we recommend the book Numerical Recipes and [8, 31].

Assume we have n sample data points in .xi; yi/. These points are on a straight
line, but the sampling process may have some observation errors. Based on the
equation of a line (2.2), we have:

yi D aC bxi , i D 1; � � � ; n (2.3)

However, since there are observation or sampling errors, this equation may not
always hold true for all sample points. In other words, ei D yi � .a C bxi/ is not
always zero. What we can do is find a and b such that the summation of the square
of errors (.ei/

2) is minimized. So, it is called the least squares method .

Minimize E D ˙n
iD1.ei/

2 (2.4)

where E is the function of a and b so that E D E.a; b/. To get the minimum E.a; b/,
according to the extreme value theorem in calculus, the following two equations
must hold:

@E

@a
D @

@a
.˙.yi � .aC bxi//

2/ D @

@a
.˙ � 2.yi � .aC bxi//

@E

@b
D @

@b
.˙.yi � .aC bxi//

2/ D @

@b
.˙ � 2xi.yi � .aC bxi//:

Thus, we have a system of linear equations:

naC .˙xi/ � b D ˙yi

.˙xi/ � aC .˙x2i / � b D ˙.xi � yi/:

We can easily solve these equations. In Chap. 9, we give some detailed descriptions
of curve fitting and its application to financial industry.
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2.6 Algorithm Design and Computational Complexity

Algorithms are at the heart of computer science [12]. Everything related to data
processing can be viewed as a type of algorithm design. However, in some cases,
such as linear regression, the mathematical part of the algorithm dominates the
algorithm. Therefore, we do not really think of it as a typical algorithm, which
means that the procedure has some complexity and is not straightforward.

The Euclidean algorithm that is used to find the greatest common divisor (GCD)
is referred to as the first algorithm since the procedure is more important in yielding
the results than the mathematical formula derivation.

Many mathematical algorithms for data processing do not care for data structure
or the format of the data stored in computer memory or computer disks. This is
because we used to focus on the mathematical part of algorithm design. However,
in data science, as we have explained, data is stored in different forms and different
places. Data structure becomes the key to efficient processing.

2.6.1 Concepts of Data Structures and Databases

Data structures are fundamental to data science. It is the way different data types
are held in storage or memory for fast processing. The simplest data structure is
the array. We will first introduce the concept of the queue, stack, linked list, and
tree. Then, we will focus on complex data structures such as quadtrees, octrees, and
R-trees. Those data structures are often used in geometric data storage and massive
data collections.

Databases are special systems that hold a large amount of data. A database system
such as Oracle or MySQL contains functions that can be called to store and obtain
data samples in the system. A data structure will be implemented in a database
system. For instance, Oracle is a relational database. It means that a table or an
array is the basic data structure.

A record is a row of data in the array (or the table) that stores all information
about an individual. For instance, we store all information about a student at a
university in a record. The record contains the student’s name, ID number, email
address, etc. A column of the array (or the table) stores all information about a
property of the data set, such as the student ID number for all students at the
university.

A database system not only contains data, but also includes functions that can
retrieve the data. For example, if we only need 100 students midterm test scores, we
can get this data by asking the system. This is called a query. This query is based on
the relation of the table. (A relation in mathematics is an algebraic structure that is a
collection of select vectors.) Data science must be able to deal with different types
of database systems.
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Fig. 2.3 A linked list: (a) a node configuration, (b) an example of a linked list
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Fig. 2.4 An example of Quad-trees: (a) the original image, and (b) the quad-tree representation
of (a). [7, 9]

2.6.2 Queues, Stacks, and Linked Lists

Queues, Stacks, and Linked Lists are efficient data structures to data science.
To understand these data structures is essential to process massive data. A queue
is a special data arrangement where the first entry is removed first; a stack performs
differently in that the last data entry is removed first. A linked list is a collection of
nodes that contains data and a pointer to the next node. See Fig. 2.3.

A tree is similar to a linked list. A node in a tree may contain two or more
pointers. A binary tree is a tree where each node only has two pointers.

2.6.3 Quadtrees, Octrees, and R-trees

Quadtrees, Octrees, and R-trees are usually used for geometric data storage and
retrieval.

The quadtree is for 2D data sets or objects. The root of a quadtree contains a
4-subtree. If we partition a 2D square into 4 small, identical subsquares, then each
subtree will represent a subsquare. When storing a binary image, we can save space
when a subsquare contains no information (it is blank) [20, 30, 33].

The quadtree method partitions a 2D space into four equal quadrants, subquad-
rants, and so on. We stop at a node called a leaf if all the elements represented by
the node have the same value. We continue decomposing if this is not the case. See
Fig. 2.4 [9].
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Fig. 2.5 R-Trees: (a) original data, (b) data points contained in rectangular boxes, and (c) tree
hierarchy of boxes

The depth or height of the tree is at most log2 n if we are dealing with an n � n
region. We can save space since one leaf may represent many pixels in real images.

The octree uses the same principle as the quadtree, but it is used for 3D data
storage. This is because we can split a 3D cube into 8 subcubes. Therefore, octrees
are used for spatial data representation [36].

Each node in an octree represents a cubic region. We subdivide it into eight
octants that will be represented by eight subnodes. When the values of the subregion
are the same. The corresponding node will be a leaf. Otherwise, we keep dividing
the region.

R-trees are mainly used in query and search for the geometric data analysis. The
idea is to use a rectangle to cover all data points in a 2D space and then use smaller
subrectangles to cover the points inside the parent rectangle. The subrectangles in
the same level can overlap each other. See Fig. 2.5. The dimensions of each rectangle
are not fixed. This allows the most flexibility in the partition of data in a space.

A popular problem in data science is as follows: Given a point location, find all
of the rectangles or leaves that contain a chosen point [13, 42]. The idea of R-trees
is to use the bounding rectangular boxes to decide whether or not we need to search
inside the subtree. Therefore, most of the nodes in the tree are never read during
a search. There are many applications that use R-trees in wireless networking. For
instance, in queries for wireless broadcast systems, we need to quickly find a group
of users in a heavy rain area to tell them that there may be a possibility of flooding.
This is especially useful in social network systems. Social networking categorizes
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individuals into specific groups . Let us take a social network, such as facebook, that
does not usually contain location parameters for users. When a local social event
needs to find attendees in a hurry, they can ask facebook to send messages to local
members. R-tree is the best way to identify the people to send this message.

2.6.4 NP-Hard Problems and Approximation of Solutions

Some problems are easy to solve such as sorting and searching problems. However,
for other problems, even though we can find algorithms to solve the problem, there
is no quick or fast algorithm to complete the task. Many of these require exponential
time. If we want to have a precise answer, we may need to spend 100 years to solve
this using a single machine. Cloud computing provides us the possibility of solving
a difficult problem in a relatively short period of time. For instance, in RSA public
cryptography, we should use the string (called key) with 2024 bits for encryption.
This is because in distributed computing, a host computer links with thousands of
other computers, which can break the encryption code if the key is shorter than
a certain length. Both Bigdata and data science must consider security problems.
However, this is not the main topic of this book.

Roughly speaking, an NP-hard problem would take years to run for a data set
with a large input size. A problem is said to be an NP-problem if we can check
the answer quickly, e.g. within O.n/ time. Many problems are found to have such
a property. For instance, the traveling salesmen problem has this property. This
problem involves finding a route for a traveler who plans to visit one city in each of
the 50 United States exactly once. The question is, is there a route such that the total
distance travelled is smaller than a given number K?

If we know the sequence of the list of 50 cites, then we can easily check to see
if the answer is correct. If we do not know the answer, then we may need to spend
10 years in finding it [1, 12].

It was proven that the traveling salesmen problem is the hardest of the
NP-problems, called an NP-complete problem. It means that if the traveling
salesmen problem can be solved in polynomial time, then all NP-problems can
be solved in polynomial time with regular computers. There is a famous unsolved
problem in mathematics and computer science called the P D‹NP problem. Here,
P means that the problem can be solved in polynomial time by regular computers
(for example, a Turing machine) and NP means that the problem can be solved in
polynomial time by a non-deterministic Turing machine. NP-hard problems mean
the problems that are harder than NP-complete problems [12, 21, 25].

Some data science problems are NP-hard. For these problems that are difficult to
solve, we may need to find an approximation of the solution. In [40], there are many
methods that can be used in finding a near best answer for NP-hard problems.
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2.7 Online Searching and Matching

Searching and matching are two basic tasks over the Internet. Search is used to find
an object in a set or space. For instance, if we are searching for a number in an
integer set, we know the binary search method is the fastest for a sorted array of
integers. Matching is usually try to fine a substring in a text that matches a given
pattern that is also a string. Today, the image especially the face image matching is
very popular. We will discuss the image problems in Chap. 5 [9, 11, 15, 16, 20].

2.7.1 Google Search

Google search is an excellent example for online search using mathematical
algorithms [4, 9, 29]. We say that the algorithm is a mathematical algorithm since it
uses some deep knowledge of mathematics not only the complexity from computer
science point of view.

Google search (also called PageRank) seeks to establish a link graph and then
calculates the importance of each web node (page). To explain this method, we start
with the adjacency matrix of the page link graph, which is a directed graph. This
matrix, shown in Fig. 2.6, is as follows [9]:

M =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 0
1 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 1 0 0

⎤
⎥⎥⎥⎥⎦

Page 1 Page 2

Page 3

Page 4 Page 5

Page 1

Link to
Page 2

Page 3

Page 4

Fig. 2.6 Example of a Web link graph [9]
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Its weight graph with the distribution of the average contribution to each of outgoing
nodes is shown below. For instance, the first page “Page 1” gives 1=3 of the
contributions to each of its pointed neighbors: Page2, Page3, and Page4. We have
the weight matrix:

W D

2

666664

0 1
3
1
3
1
3
0

1
2
0 1

2
0 0

1 0 0 0 0

0 0 0 0 1

0 1
2
1
2
0 0

3

777775

The transpose of W will be the matrix we are interested in, denoted by MPR. Such
a representation is very intuitive.

On the other hand, Page and Brin have used the following formula to rank the
importance of each web page [4] called the PageRank of a page A:

PR.A/ D .1 � d/

N
C d.PR.T1/=C.T1/C : : :C PR.Tn/=C.Tn//; (2.5)

where N is the total number of pages considered, PR.Ti/ is the PageRank of page
Ti (which links to page A), C.Ti/ is the number of links going out of page Ti, and
d 2 Œ0; 1� is a damping factor which is usually set to 0.85.

A simple algorithm runs the above formula in an iterative manner. It stops when
an error limit is met.

It is astonishing when we check the relationship between the matrix MPR

and PR.A/. Let vector x D .1=N; � � � ; 1=N/. xT be the transpose of x. We will then
get another vector MPRxT and so on for Mk

PRxT . We know that Mk
PRxT will converge

to a vector when k is big enough. Then

MkC1
PR xT D MPRŒ.MPR/

kxT � D .MPR/
kxT :

Therefore, in such a case, y D .MPR/
kxT is the eigenvector of MPR. After we add the

dumping factor to the matrix, we have

G D
2

4
.1�d/

N
� � �
.1�d/

N

3

5C d �MPR: (2.6)

The eigenvector of G will be approximately

2

4
PR.A1/
� � �

PR.AN/

3

5 :



34 L.M. Chen

2.7.2 Matching

Matching usually means searching for an object that may contain several elements
in a set. The set may hold a structure, meaning that the elements in the set have
relations and connections. Finding a substring in a DNA sequence is a good
example. More profound research in finding a protein structure is a geometric
problem.

The most useful matching technique today is still string matching, it is to find a
certain substring from a big text file. A fast algorithm called the KMP algorithm is
often used [12].

If the set is a random set, then the search will be trivial since we can only compare
the elements from the set one by one. When the set contains a structure, such as an
order, the search may use properties of the structure. In space, the set could be a
topological structure such as components, a geometric structure such as distance
metrics, or an algebraic relation such as rules.

Matching could also mean that we can find a partial or best match. For instance,
finger print matching [20, 39].

2.7.3 High Dimensional Search

Recent research shows great interest in high dimensional search. This search is
usually related to the nearest neighbor method. The fast algorithm is based on
preexisting data structures. To find a new data point in a set of points, usually in
the form of an n-dimensional vector, we want to find the point that is closest to
the new point. The R-tree data structure was previously implemented in order to
perform a fast search. This application is important in wireless networking. For
instance, we have a number of wireless tower stations that cover cellular phone user
communication. When a new phone user joins in the area, we need to locate the
new phone and appoint a station to communicate with it. To search the cell phone
without calculating its distance from all the stations, we will need a special data
structure. The most popular today is the R-tree.

Another hot research topic due to the need of BigData applications is called
subspace recovery. The following is an interesting question that has recently
received much attention:

Thinking about a simple problem, there are 100 sample points on a 2D plane.
We want to find a line that contains most of these sample points. Is this problem
NP hard? The decision problem can be described as follows: Is there a line that
contains at least 50 points? What about a curve instead of a line? This problem is
highly related to manifold learning where we try to determine a cloud point set that
represents a manifold such as a curve. The data points are not only 50–100, but
they are also 50–100 GB. How do we use cloud computing technology to solve this
problem?
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The general version of this problem is called robust subspace recovery, which
relates to dimension reduction [14, 18]: Given a collection of m points in Rn, if many
but not necessarily all of these points are contained in a d-dimensional subspace T ,
can we find m? The points contained in T are called inliers and the remaining points
are outliers. This problem has received considerable attention in computer science
and statistics [14, 35, 38, 41]. However, efficient algorithms from computer science
are not robust to adversarial outliers, and the estimators from robust statistics are
difficult to compute in higher dimensions [2].

The problem is finding a T dimensional space that contains most of the points or
a given ratio of inner points. How do we determine T in the fastest way? Does T
have some sort of boundary?

Geometric search, especially high dimensional search, is a hot topic related
to data science, along with incomplete data search, which is related to artificial
intelligence.

2.8 Remarks: Relationship Among Data Science, Database,
Networking, and Artificial Intelligence

In short, data science deals with massive data sets in different formats. The data
sets are stored in databases or obtained over the Internet. Data science mainly uses
statistical and artificial intelligence methods today. Fast algorithms and parallel
and distributed algorithms are important in applications. Today, in terms of cloud
computing technology, some software systems such as Hadoop and Spark are
available to use [15, 22, 28]. These are essentially developed based on the principle
of distributed computing. In the following chapters, we will study detailed methods
for incomplete relations among data sets and machine learning. We will also discuss
topological methods [5, 6, 10, 19] and advanced statistical methods, in Part II of this
book, and other advanced topics and problems in Part III.

References

1. A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Boston, 1974)

2. M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representa-
tion. Neural Comput. 15(6), 1373–1396 (2003)

3. B. Bollobas, Random Graphs (Academic, London, 1985)
4. S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine. Comput. Netw.

ISDN Syst. 30, 107–117 (1998)
5. G. Carlsson, A. Zomorodian, Theory of multidimensional persistence. Discret. Comput. Geom.

42(1), 71–93 (2009)
6. L. Cayton, Algorithms for manifold learning. Technical Report CS2008-0923, UCSD (2005)
7. L. Chen, Discrete Surfaces and Manifolds: A Theory of Digital-Discrete Geometry and

Topology (SP Computing, Rockville, 2004)
8. L. Chen, Digital Functions and Data Reconstruction (Springer, New York, 2013)



36 L.M. Chen

9. L.M. Chen, Digital and Discrete Geometry: Theory and Algorithms, NY Springer (2014)
10. L. Chen, Y. Rong, Digital topological method for computing genus and the Betti numbers.

Topol. Appl. 157(12), 1931–1936 (2010)
11. L. Chen, H. Zhu, W. Cui, Very fast region-connected segmentation for spatial data: case study,

in IEEE Conference on System, Man, and Cybernetics (2006). pp. 4001–4005
12. T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms (MIT Press, Cambridge,

1993)
13. M. Demirbas, H. Ferhatosmanoglu, Peer-to-peer spatial queries in sensor networks, in Third

International Conference on Peer-to-Peer Computing, Linkoping (2003)
14. D.L. Donoho, C. Grimes. Hessian Eigenmaps: new locally linear embedding techniques

for high-dimensional data. Technical Report TR-2003-08, Department of Statistics, Stanford
University (2003)

15. Afrati Foto and Jeffrey Ullman, (2009) Optimizing Joins in a Map-Reduce Environment.
Technical Report. Stanford InfoLab. (2009)

16. K. Fukunaga, L.D. Hostetler, The estimation of the gradient of a density function, with
applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

17. F. Harary, Graph Theory (Addison-Wesley, Reading, 1969)
18. M. Hardt, A. Moitra. Algorithms and hardness for robust subspace recovery, in COLT, pp. 354–

375 (2013)
19. R. Ghrist, Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)
20. R.C. Gonzalez, R. Wood, Digital Image Processing (Addison-Wesley, Reading, 1993)
21. J. Goodman, J. O’Rourke, Handbook of Discrete and Computational Geometry (CRC, Boca

Raton, 1997)
22. J. Han, M. Kamber, Data Mining: Concepts and Techniques (Morgan Kaufmann, San

Francisco, 2001)
23. H. Homann, Implementation of a 3D Thinning Algorithm (Oxford University, Wolf-son

Medical Vision Lab., Oxford, 2007)
24. F.V. Jensen, Bayesian Networks and Decision Graphs (Springer, New York, 2001)
25. T. Kanungo, D.M. Mount, N. Netanyahu, C. Piatko, R. Silverman, A.Y. Wu, A local search

approximation algorithm for k-means clustering. Comput. Geom. Theory Appl. 28, 89–112
(2004)

26. R. Klette, A. Rosenfeld, Digital Geometry, Geometric Methods for Digital Picture Analysis.
Computer Graphics and Geometric Modeling (Morgan Kaufmann, San Francisco, 2004)

27. T.C. Lee, R.L. Kashyap, C.N. Chu, Building skeleton models via 3-D medial surface/axis
thinning algorithms. Comput. Vis. Graphics Image Process. 56(6), 462–478 (1994)

28. T.M. Mitchell, Machine Learning (McGraw Hill, New York, 1997)
29. L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: bringing order to

the web. Technical Report. Stanford InfoLab. (1999)
30. T. Pavilidis, Algorithms for Graphics and Image Processing (Computer Science Press,

Rockville, 1982)
31. W.H. Press, et al., Numerical Recipes in C: The Art of Scientific Computing, 2nd edn.

(Cambridge University Press, Cambridge, 1993)
32. X. Ren, J. Malik, Learning a classification model for segmentation, in Proceedings of the IEEE

International Conference on Computer Vision, pp. 10–17 (2003)
33. A. Rosenfeld, and A.C. Kak, Digital Picture Processing, 2nd edn. (Academic, New York, 1982)
34. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edn. (Pearson, Boston,

2009)
35. L.K. Saul, S.T. Roweis, Think globally, fit locally: unsupervised learning of low dimensional

manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)
36. H. Samet, The Design and Analysis of Spatial Data Structures (Addison Wesley, Reading,

1990)
37. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 22(8), 888–905 (2000)



2 Overview of Basic Methods for Data Science 37

38. J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323 (2000)

39. S. Theodoridis, K. Koutroumbas, Pattern Recognition (Academic, Boston, 2003)
40. D.P. Williamson, D.B. Shmoys, The Design of Approximation Algorithms (Cambridge

University Press, Cambridge, 2011)
41. Z. Zhang, H. Zha, Principal manifolds and nonlinear dimension reduction via local tangent

space alignment. SIAM J. Sci. Comput. 26(1), 313–338 (2005)
42. B. Zheng, W.-C. Lee, D.L. Lee. Spatial queries in wireless broadcast systems. Wirel. Netw.

10(6), 723–736 (2004)



Chapter 3
Relationship and Connectivity of Incomplete
Data Collection

Li M. Chen

Abstract A basic problem in data science is to classify a massive data set into
different categories. In addition, when more new data samples are collected or
come from online sources, we want to know how to put the new data sample into
an appropriate category. This problem contains such information as classification,
learning, and reconstruction. As we discussed in Chap. 2, the problem is central to
several disciplinary areas including artificial intelligence, pattern recognition, and
statistics. It is obvious that this is still a main problem in data science but the size of
the data set has been changed to “BigData” and the ultimate goal of the process has
become online based in many cases.

In this chapter, we introduce a comprehensive method for this complex problem.
This method provides a unified framework for concurrent data science to solve the
related problem. The method begins by considering data relations and connectivity
among data points or data groups. These relations and connectivity are mostly
incomplete. Then, we build a model to analyze, classify, or reconstruct the data
or data sets, which is called the �-connectedness method.

The method is built on general graphs. It also has some relations to persistent
analysis that will be discussed in Chap. 6. Persistent analysis tries to find topological
structures in cloud data. Combining �-connectedness with persistent analysis can
result in the classification of data sets into geometrically meaningful components,
such as desired shapes or having characteristics of tracking and recognition.

3.1 Current Challenges of Problems in Data Science

To solve a problem related to a massive data set, we face the following challenges:
(1) methodology challenges, (2) efficiency challenges, and (3) display visualization
challenges.

Methodology Challenges If the data is in different forms from different resources,
we cannot use a single method to solve it. A unified method may not be practical for

L.M. Chen (�)
The University of the District of Columbia, Washington, DC, USA
e-mail: lchen@udc.edu

© Springer International Publishing Switzerland 2015
L.M. Chen et al., Mathematical Problems in Data Science,
DOI 10.1007/978-3-319-25127-1_3

39

mailto:lchen@udc.edu


40 L.M. Chen

solving a set of problems and may not even be practical for a single problem if input
data is from different places. Multiple methods for multiple data types or problems
are required, and a unified method for combined decision making may be selected
(even from a collection of methods pool).

Efficiency Challenges Algorithms for cloud computing, networking based and
MapReduce computing model. New algorithm design includes existing algorithm
modification for large volumes of data in fast processing requests. For instance,
k-mean is one of the best algorithms for unsupervised learning. However, k-mean is
an exponential algorithm in that the error-clip level is very small. How do we use a
modified k-mean with the approximation where part of the data is set to control a
small error or be a small scaling factor and part of the data is set to be on a bigger
scale.

DisplayVisualization Challenges How do we visualize the data and results for
interactive interpretation? We can instantly input the human decision before the
process is complete. However, what are the challenges? The human’s power of
imagination has been challenged. Interpretations include how we display the most
important parts of the data or display the data from different “angles” for different
users. In this book we mainly focus on methodology and efficiency challenges.

In general, the problems in current data science cannot be solved by classical
methods (without modification). This is because many of the methods in statistics,
pattern recognition, and artificial intelligence only work for local and relatively
small sets of data. On the other hand, algebraic methods, including mathematical
logic, can be used to find rules and formulas and topological geometric methods
can be used to find properties of shapes for data sets. However, these methods meet
difficulties in terms of effectiveness when the size of the data is very large.

How do we process a problem that is so large? For example, we can make a car
inside of a factory house, but how do we build an aircraft carrier in a house? In such
a case, what we want to do is build parts (big components) in different factories,
and then we want to assemble them in an open area. This example provides us
with a strategy. We could distribute the sub-problems to different machines or work
stations (the Map procedure in MapReduce), and then after each subproblem has
been solved, we can combine them into a whole. Now, when you combine the reduce
procedure in MapReduce, you need to connect them together, not only putting the
data together but also connecting them by melting electronic wires, plumbing, and
polishing. It is not a simple task to combine the discrete objects into one. Each
connection is measured by the connectedness of each feature (a parameter) similar
to electrical wiring or plumbing. Therefore, the total quality of assembling or joining
the components can be measured by the evaluation of weighted functions for all
parameters.

Example 3.1. A simple and practical example is if we have a very large volume of
data in 3D and would like to find the geometric structure of the data. Data that we
would like to split into 8 computers (octree structure), where each process is 1/8 of
the total, is similar to a large coconut. When data segmentation is down, each of
the eight parts has three layers: the shell, coconut-flesh, and juice. When we put the
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results together, what do we have? For simple answer, we can say that there are three
components, but for an accurate answer, the merge process requires much work by
gluing the boundary together to predict the topological structure of the data. The
ball of juice, the sphere of the shell, and a 3D manifold with a 3D hole.

There are still two problems: (1) How do we proceed when this data volume is
gray scale or color images? (2) How do we design the algorithm when the gluing
process must be implemented on different computers since a single computer cannot
hold the entire volume? A clue is that we can pass the seed point from one computer
to another. We will discuss the detailed algorithm later.

In this chapter, we introduce a systematic way for modeling this complex
problem. To summarize, connectivity and connectedness should be used in such
a case. This chapter will introduce a methodology for certain problems in similar
cases.

3.1.1 Relations and Connectedness

Relation usually attempts to answer the question about how two things are related,
such as similarity or difference. For instance, we say that two feature vectors that
usually describe two objects are similar if the distance (or difference) between the
two is small. Each individual sample or vector is treated the same. Classification is
usually done in a similar way. On the other hand, connectivity, or connectedness, is a
special relation that not only considers the difference or similarity of two individual,
but also seeks to find a path or channel between the two objects.

Connectivity is a type of profound relation that tries to determine whether
pair-wise relations are “linked.” Connectedness is a measure for the degree of
connectivity.

3.1.2 Multiple Scaling and Multiple Level Sampling

Multiple scaling and multiple level sampling are often used as a local importance
is found. For example: When we drive from Washington DC to Los Angeles, there
is no need to check the GPS every minute since we drive on a highway most of
the time. However, we do need directions leaving and entering a city and when
we stop for food. Multiple scaling and multiple level sampling are only needed in
some locations while driving. Most of the time we only care about the highway road
condition. We can put the GPS on sleep mode for the rest. This model is good for
auto drive control. We do not need to store too many video images while on the
highway. Therefore, we only need to analyze as necessary.

For any type of applications, there is a consideration of the rough treatment
vs. the detailed treatment. The goal is to find the optimization of an outcome.
Multiple scaling and multiple level sampling can be used as learning and evaluation
techniques.
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3.1.3 Relationship and Connectivity Among Data

One of the most important aspects of data science is measuring the relationship of
two or more data sets. We can use the average values of data sets or shapes of data
sets as measures. We can also use the size of data sets.

Mathematically, each of these characteristics can be a component in a feature
vector of the data sets. The relationship should be described as a function C.A;B/
that is mainly the relationship measure of two feature vectors of set A and set B.
The general model of such a relationship measure is a weighted similarity measure
on vectors. The easiest method is to use the distance of these two vectors in the
similarity measure. For instance, the following formula is a similarity measure [42].

C.A;B/ D f .vA; vB/ D 1 � d.vA; vB/

maxfkvAk; kvB kg (3.1)

where vS is the feature vector of set S. Therefore, the smaller difference is the bigger
similarity.

The similarity is very general for relations. It is usually used in classifying
individual vectors into different categories, as we discussed in Chap. 2, as k-NN
and k-mean methods.

When we deal with a geometric problem, the location information is involved.
The relationship between data adds a significant dimension, which is connectivity.
To classify a set that considers if two data points are connected or near connected
is very different from treating them as individual points. They are no longer
independent events in terms of probability. For instance, in an image, two adjacent
points can be considered as belonging to an object if they have similar intensity
values. They may not be related if the two points are far away from each other even
if they have the same value.

3.2 Generalized �-Connectedness

In this section, we introduce a general model for the problems related to similarity
measures for a domain that is a metric space. A metric space can be a graph or a
Euclidean space. Here, we mainly present the method for graphs, which is called
the �-connectedness method [4, 6–8, 11, 14].

The �-connectedness method is a simple system < G; � >, where G D .V;E/ is
a graph and � is called a potential function. If < G; � > is an image, then G is a 2D
or 2D grid space and � is an intensity function of the image. For a color image, we
can use f D .red; green; blue/ to represent �.

If < G; � > represents the relationships among companies, then each vertex
would be a company and each edge would be the existing business transactions
between these two companies. In general, G can either be a directed or undirected
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graph, but we usually refer to G as an undirected graph. � can be a feature vector
that contains information on size, revenue, profit, etc. of the company.

From a management prospective, < G; � > could represent the individual
relationships. Suppose G is a directed graph. In this case, each vertex represents
a person, an edge (or arc in a directed graph) represents a supervisory relationship,
and � represents the duties and powers in a company. � may also be a vector in
which each component of the vector indicates a person’s responsibilities in a specific
aspect.
�-connectedness can also be defined as a multiple level complex system. When

decomposition is first completed, we can build a second �-connectedness on the
partitioned data domain [8, 14]. This is similar in some ways to the big-pixel
technology in modern image segmentation (see Chap. 5) [32, 39]. This process can
be iterative.

3.2.1 �-Connectedness on Undirected Graphs

�-connectedness can be defined on an undirected graph G D .V;E/ with an
associated (potential) function f W V ! Rm, where Rm is the m-dimensional real
space. Given a measure ˛�.x; y/ on each pair of adjacent points x; y based on the
values �.x/; �.y/, we define

˛�.x; y/ D
�
�.�.x/; �.y// if x and y are adjacent
0 otherwise

(3.2)

where � W Rm � Rm ! Œ0; 1� with �.u; v/ D �.v; u/ and �.u; u/ D 1. Note that
we can define �.u; u/ D c and �.u; v/ � c where c 2 Œ0; 1� for all u. ˛� is used to
measure “neighbor-connectivity.” The next step is to develop path-connectivity so
that �-connectedness on < G; � > can be defined in a general way.

In graph theory, a finite sequence x1; x2; : : : ; xn is called a path if .xi; xiC1/ 2 E.
A path is called a simple path if xi ¤ xj , i ¤ j excepting x1 D xn. The
path x1; x2; : : : ; xn�1; xn D x1 is called a cycle. The path-connectivity ˇ of a path
� D �.x1; xn/ D fx1; x2; : : : ; xng is defined as

ˇ�.�.x1; xn// D minf˛�.xi; xiC1/ji D 1; : : : ; n � 1g (3.3)

or

ˇ�.�.x1; xn// D
Y
f˛�.xi; xiC1/ji D 1; : : : ; n � 1g (3.4)

Finally, the degree of connectedness (connectivity) of two vertices x; y with respect
to � is defined as:

C�.x; y/ D maxfˇ.�.x; y//j� is a (simple) path:g (3.5)
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For a given � 2 Œ0; 1�, points p D .x; �.x// and q D .y; �.y// are said to be
�-connected if C�.x; y/ � �. In image processing, �.x/ is the intensity of a point x
and p D .x; �.x// defines a pixel. (Note: We usually avoid saying that x and y are
�-connected because it does not contain the information of �. We may say that two
pixels are �-connected, but generally not that two points are �-connected.)

If < G; � > is an image, then this equivalence relation can be used for
segmentation, i.e., partitioning the image into different objects. On the other hand,
if a potential function f is partially defined on G, then one can fit f to � such that
< G; � > is �-connected on G.

3.2.2 �-Connectedness on Directed Graphs

The only difference between a directed graph G D .V;A/ and an undirected graph
G D .V;E/ is that if .x; y/ 2 E, then .y; x/ 2 E, whereas if .x; y/ 2 A, then it may
or may not be true that .y; x/ 2 A. Therefore, for �-connectedness, there may be a
case that p can be �-connected to q but q cannot be �-connected to p. For example,
an irrigation system can be described on a directed graph. Suppose there are N
water reservoirs in the system. Then, let x be a reservoir and �.x/ be the amount
of energy/power of x. If .x; �.x// is �-connected to .y; �.y//, then reservoir x can
transfer water to reservoir y. It may not be the case that .y; �.y// can be �-connected
to .x; �.x//.

Similarly, define ˛� and ˇ� on < G D .V;A/; f >,

˛�.x; y/ D
�
�.�.x/; �.y// if arc (x, y) is in A
0 otherwise.

(3.6)

In a directed graph, a finite sequence x1; x2; : : : ; xn is called a strongly connected
path if .xi; xiC1/ 2 A for all i D 1; : : : ; n � 1. The sequence is called weakly
connected if .xi; xiC1/ 2 A or .xiC1; xi/ 2 A for all i. The path-connectivity of a
path � D �.x1; xn/ D fx1; x2; : : : ; xng is still defined as

ˇ�.�.x1; xn// D minf˛�.xi; xiC1/ji D 1; : : : ; n � 1g (3.7)

or

ˇ�.�.x1; xn// D
Y
f˛�.xi; xiC1/ji D 1; : : : ; n � 1g (3.8)

Thus, the degree of connectedness (connectivity) is defined as

C�.x; y/ D maxfˇ.�.x; y//j� is a (simple) pathg (3.9)
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where the path can be a strongly connected path or a weakly connected path. A
weakly connected path appears to be the same as a path in an undirected graph. In
directed graphs, a path usually means a strongly connected path.

We should note that having �-connectedness on undirected and directed graphs
applies to different categories of problems. The former mainly deals with the
similarities of two individuals on a “network.” The latter is for “sending,” “receiv-
ing,” and “finding.” In most applications, an acyclic directed graph is required for
simplifying analysis procedures. An acyclic graph means that there is no (strongly
connected) cycle in the graph [24].

3.2.3 Potential Function � and the Measure �

For �-connectedness, the potential function � and � are two key factors. If G is
a lattice or a �-net [23], � may be a polynomial function. For a color image, � is
the RGB D .r; g; b/ function. For a resource network, �.x/ can represent the utility
function or resource potentials of the nodes in multi-dimensions. For example, a city
that utilizes high electricity, generates more jobs, and has many universities can be
represented by the following utility vector

�.theCity/ D .highElectricity;moreJobs;manyUniversities; : : : : : :/:

Measure � may also vary depending on different situations. In previous work,
three kinds of � were used [4, 12]:

�1.u; v/ D
(
1 � ku�vk

kukCkvk ifkuk C kvk ¤ 0
1 otherwise

(3.10)

and

�2.u; v/ D 1 � ku � vk
H

; (3.11)

where H D maxfkukju 2 �.V/g. The third kind of � is defined by a so-called
gradual variation relation of a sequence of real (or rational) numbers A1 < A2 <
: : : < An. Here, � W V ! fA1;A2; : : : ;Ang for G D .V;E/ ( or G D .V;A/ ). Let
u D Ai and v D Aj, �.u; v/ D 1 if i D j � 1, j or j C 1; otherwise, �.u; v/ D 0.
Thus, �-connectedness based on gradual variation can be defined with the value of
� being “1.” The gradually varied function � plays a key role in �-connected fitting,
which will be discussed in detail later. Rosenfeld used a similar concept called the
“continuous” digital function for image processing [10, 33].
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3.3 �-Connected Decomposition and Image Segmentation

Partition a space based on a function on the space. A continuous or smooth looking
part of the function can be viewed as a partitioned region. This is usually called a
component or a connected region. In image processing, this is called a segmentation.

In mathematics, an example of contour maps is such a partition. The difference
is that an image is not a continuous function in most cases. Contour maps only use
clip-levels to separate functions, which is a hard cut (no tolerance).

Segmentation is a clustering method used in image processing [1, 18]. There are
many kinds of segmentation, e.g., measurement space clustering, region growing,
split-and-merge segmentation, edge detection, etc. Different types of data require
different segmentation methods. For gray-scale images, such as velocity profiles,
we can use region growing or edge detection. For texture images, such as waveform
profiles or seismic sections, we may need rule-based segmentation.

As we know, a digital image F is a mapping from a grid-space˙ to the real set R
(or Rn in general). Let S be a connected component of˙ . S is said to be uniform if F
on S (a sub-image) has properties of uniformity. For instance, a popular uniformity
measure is defined in terms of the maximum difference between any pixel value and
the mean value of S.

Segmentation partitions an image into connected subsets (segments) [18, 20–22].
Each segment is uniform, and no union of adjacent segments is uniform. The formal
definition of segmentation is then: In a digital image F, if there exists a non-empty
segmentation F1;F2; : : : ;Fm , satisfying:

(1) Fi \ Fj D ;, if i D 1; ::;m; j D 1; ::m; i ¤ j,
(2) [iD1;:::;mFi D F,
(3) each Fi is connected,
(4) each Fi is “uniform,” and
(5) if Fi and Fj are adjacent, then Fi [ Fj is not uniform,

then fF1;F2; : : : ;Fmg is called a segmentation of F. In this section, we describe two
geometrical segmentation methods, region growing and split-and-merge segmenta-
tion, and their relationship to �-connectedness. For more information about image
segmentation, see [26–28, 30].

3.3.1 �-Connected Region Growing Segmentation

In a gray-scale image, intensity is the uniformity measure. A region (or segment) in
an image may be viewed as a connected group of pixels, all with similar brightness.
The region growing method begins with a single pixel, and then examines its
neighbors to find a maximum sized connected region of similar pixels. In this
manner, regions grow from single pixels. We can also use a region or grouped set
of pixels as a seed instead of a single pixel. In this case, after selecting the partition
(group of pixels), a uniformity test is applied to the region to see if it qualifies
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as a partition. If the test fails, the region is subdivided into smaller regions. This
process is repeated until all regions are uniform. (The major advantage of using
small regions rather than single pixels is that it reduces the sensitivity to noise.)

Region growing could form an equivalence relation to partition the image.
�-connected segmentation is used to partition the image by searching each
�-connected component in the image. The fast algorithm design technique such
as depth-first-search or breadth-first-search can be used for implementation [9, 15].
This method has been applied in several different situations such as seismic layer
search [4, 12], ionogram scaling [43], and tracking hurricane centers [25]. Ionogram
scaling is a famous application of artificial intelligent in space data analysis [17, 44].

The algorithm is presented below using the breadth first search method. Breadth
first search is a fast search approach to get a connected component on a graph. First,
it starts at a vertex p and searches for all adjacent vertices. Then, it “inserts” all
adjacent points (neighbors) into a queue. It “removes” a vertex from the queue and
lets it be p before repeatedly finding p’s neighbors until the queue is empty. Marking
all of the vertices we visited, the marked vertices form a connected component.

We have also introduced this technology in Chap. 2 in the artificial intelligence
search subsection. To modify this idea and use it in �-connected search, we only
need to check if two adjacent points are �-adjacent. The modified algorithm is
shown below:

Algorithm 3.1. Breadth first search technique for �-connected components.
Step 1: Let p0 be a node in < G; � >. Set

L.p0/ � and QUEUE QUEUE [ p0
i.e., labeling p0 and p0 is sent a queue QUEUE.

Step 2: If QUEUE is empty, then go to Step 4; otherwise,
p0  QUEUE (top of QUEUE). Then,
L.p0/ 0:

Step 3: For each p with an edge linking to p0 , if
L.p/ ¤ 0;L.p/ ¤ �, and C.p; p0/ � �, then
QUEUE QUEUE [ p and L.p/ �. Then, go to Step 2.

Step 4: Stop. S D fp W L.p/ D 0g is one �-connected part.

We can easily tell that this algorithm is an optimum time algorithm.

Proposition 3.1. Algorithm 3.1 uses breadth first search for �-connected compo-
nents and is a linear time algorithm.

3.3.2 �-Connected Split-and-Merge Segmentation

For 2D images, split-and-merge segmentation uses a quadtree partition of an image
and, hence, is sometimes called quadtree segmentation. In this section, we only
present the principle of the segmentation method. A detailed implementation will
be discussed in Chap. 5.
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This algorithm begins with tree nodes (representing square regions of the image)
at some intermediate level of the quad-tree. If a square is found to be non-uniform,
then it is replaced by its four son-squares (split). Conversely, if four son-squares are
segmented and a region in a son-square can merge with a region in another son-
square in terms of adjacency and uniformity, they will be merged until no more
pairs of regions can be merged. These four son-squares are replaced by a single
square (merge), called a segmented square. This process continues recursively until
no further splits or merges are needed.

This advanced segmentation was first designed by Horowitz and Pavlidis in [19].
In their traditional split-and-merge segmentation, the uniformity is measured by the
mean of the merged region which is a statistical measure. Horowitz and Pavlidis
thought the algorithm should be a fast algorithm. The optimum algorithm for the
split-and-merge method was due to a special data structure made by Chen in [4].
The algorithm arrived at O.n log n/.

In �-connected split-and-merge segmentation, we merge two regions into one if
the merged region is �-connected for any possible path in the region. Such a region
is called a normal �-connected set [4, 12]. This is because if we use one-path �-
connectedness, there is no need to use a quadtree since it is an equivalence relation.
Split-and-merge segmentation only preserves reflexivity and symmetry and is not a
mathematical partition or equivalence classification.

Let us present this algorithm with �-connectedness as measures in the follow-
ing [4, 12].

Algorithm 3.2. The split-and-merge technique for �-normal-connectedness.
Step 1: Let ˙2 be a .2l � 2l/ array. L ˙2. Let L be a set.

Step 2: If region L is already homogeneous, i.e. L is �-normal-connected set,
NOMERGE NOMERGE [ L and go to Step 3; otherwise,
divide L into four subsquares L11,L12,L21, and L22;
then NOSPLIT  NOSPLIT [ fL11;L12;L21;L22g.

Step 3: If there exists four regions which are four son-squares of some
region Ls
in NOMERGE, namely L11;L12;L21, and L22,
they will be combined by the merging approach. It tests any two
�-normal-connected subset, which are neighbors
and belong to different regions in L11;L12;L21, and L22, merge
these subsets if their union is a �-normal-connected subset of L.
NOMERGE NOMERGE � fL11;L12;L21;L22g. Otherwise,
if there are no such four regions, then stop when NOSPLIT is empty,
choose a region from NOSPLIT , send it to L, and go to Step 2.

Proposition 3.2. Algorithm 3.2 using quadtrees for normal �-connected compo-
nents is a log-linear O.n log n/ time algorithm.

The region growing method was referred to as the component labeling method
in Rosenfeld and Kak [18, 29, 34]. The technique was only used for binary images.
If we set � D 1, then �-connected segmentation will obtain the same results as the
component labeling method.
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For split-and-merge segmentation, the �-connectedness method is good for
certain situations. As we described in Sect. 3.3, the �-connected split-and-merge
segmentation finds the part in which a pixel must be �-connected with all of its
neighbors. In other words, this part must be “continuous.” Rosenfeld discussed the
topic of “continuous” in digital pictures [33] where he treated the continuity as the
difference not to be greater than 1. We can see that �-connectedness in this case is
more general. For more discussion, see [6, 10].

3.4 �-Connectedness for Data Reconstruction

Data reconstruction means to fill missing data points based on some data samples.
Data fitting is one of the mathematical treatments. In computer science, data
recovery is probably more general comparing to data reconstruction, but it mainly
refers to damaged or corrupted data. Data recovery can also mean to recovery a
subset of data from a database. Netflix problem discussed in Chap. 1 was relatively
a new problem in data recovery.

Interpolation and approximation are two basic data fitting methods. If all of
the original points remain the same value after fitting, it is called interpolation;
otherwise, it is called approximation. In mathematics, there are many fitting
algorithms such as B-spline, Bezier polynomial, etc. [31]. When the entire data set
for a region was obtained, we can modify some points, which have unusual values
compared to their neighbors. This is called smoothing. Using convolution filters to
eliminate high frequency points is a typical smoothing method [18].

Segmentation and fitting are two procedures that are opposites to each other.
Segmentation finds the (connected) component in which each element has the same
“property,” so each component can be represented by an element in the component.
Fittings find the (whole) distribution function based on given “representative”
(sample) points. In the fitting process, if there is no sample point which was picked
for a component, then the component will not appear after the fitting.

The NetFlix matrix completion problem (see Chap. 2) is a fitting problem. When
a continuity of elements in the matrix is assumed, this is very reasonable assumption
when we deal with a similar group of people with or without a partition that
is needed. Such a problem will turn into data reconstruction, that is similar to
data fitting especially for some undetermined models. There is no need to have
O.Nr log N/ limitations for the method developed. According to discrete harmonic
functions and gradually varied fittings, we can always find a solution to fill the
matrix when several entries are given. See [10]. Therefore, the NetFlix matrix
completion problem could be solved in other ways. On the other hand, holes (zero
elements) in the matrix might be real not a noise or missing data. In this case, we
may need to use topological method to compute this problem. We will discuss it in
Chap. 6.
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3.4.1 �-Connected Fitting

Generally, a �-connected fitting can be described as follows: Given an undirected
graph G D .V;E/ or a directed graph G D .V;A/ and a subset J of V , if �J W J ! Rm

is known, then �-connected fitting is to find an extension/approximation � of �J

such that � W V ! Rm is �-connected on G (meaning that < G; � > has only one
�-connected component) for a certain � [11, 13].

With the concept of �-connected fitting defined, the questions to ask are whether
or not the �-connected fitting exists and how to determine the �-connected fitting
function?

We will discuss more about the existence of the function in the next subsection.
Using the same strategy as the proof of the theorem on gradually varied fill given in
[3], we arrive at:

Theorem 3.1. Let G be a simple undirected graph or an acyclic directed graph.
Assume that � is given by (3.9) or (3.10). The necessary and sufficient condition
under which there exists a �-connected interpolation is that for any two vertices x
and y in J, every shortest path between x and y in G is �-connectable.

In the theorem, �-connectable for a path � means that there is a valuation to each
vertex a, a 2 G � J, on the path such that ˇ�.�/ is not less than �. For the proof of
this theorem, refer to [10].

The digitized method called gradually varied fitting is a special type of �-
connected fitting. Let D be a connected subset in V and J � D. If given fJ W J !
fA1;A2; : : : ;Amg, is there an extension of fJ , fD W D! fA1;A2; : : : ;Amg such that for
all p 2 J, fJ.p/ D fD.p/? This is called the gradually varied interpolation problem.
The existence theorem is stated below [3, 10]:

Theorem 3.2. The necessary and sufficient condition under which there exists a
gradually varied interpolation is that for any two points p and q in J, the length of
the shortest path between p and q in D is not less than the level-difference between
p and q.

3.4.2 Intelligent Data Fitting

In some situations, if there are outlier points in the sampled data, traditional fitting
methods may generate faulty results. In such a case, an advanced technique, called
robust fitting (or regression), can be used if we assume that the data comes from
the same object. If the data comes from different classes/objects, for example one
data point is sampled in a sandstone layer and the other is sampled from a coal
layer, fitting will damage the original information. What is more, in geophysical
data processing, if we want to reconstruct a set of data between two points with the
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same depth and suppose there is a fault between these two points, the fitting will
finally erase the fault. For this reason, a more intelligent data fitting technique is
needed [13, 35, 37, 38].

Chen et al. described an intelligent data fitting method to reconstruct a velocity
volume in [13]. The key idea is to perform a �-connected segmentation first, then fit
the data.

It is not very hard to implement �-connected segmentation and to find its
applications. �-connected fitting, such as gradually varied fitting, has its own
theorems, but it is more theoretical in nature.

There are some mathematical issues regarding �-connected fitting: (1) �-
connected approximation if there is no �-connected interpolation with respect to
guiding points, (2) optimum fitting, and (3) � value determination.

First, the �-connected interpolation or gradually varied interpolation may not
always exist. An approximation method can be used to get a �-connected fitting
in terms of optimal uniform approximation [5]. For least squared fittings, since
it relates to derivatives, more tools and knowledge to deal with this problem are
required.

Second, the �-connected fitting may not be unique and as we can expect, the
question then becomes, which fitting is best?

Basically, different answers derive from different criteria. More research on this
issue will be pursued in the near future.

An alternative way to solve this problem is to perform a �-connected fitting first
because it can handle the irregular domain easily. Then, we can use a standard fitting
method for the secondary process. For instance, we can first generate a gradually
varied surface, then use the B-spline method to fit the surface when a smooth surface
is required.

Third, calculating the value of � in either segmentation or fitting is a critical
issue. For segmentation, the selection of � depends on how many segments we want
to separate. In Sect. 3.5, we will discuss the maximum-connectivity spanning tree
method, which can be used to find the value of �. Since the process of finding the
maximum-connectivity spanning tree is time consuming, one may use a histogram
or an experimental test to solve the problem.

A binary “finding” method can be used to test the value of �. First, test for
� D 0:5. If � is too big, then � D 0:25 will be tried. If this � is too small, then
� D 0:75 will be tried, and so on. Similarly, for �-connected fitting, the same
method may also be used.

3.4.3 �-Connected Fitting with Smoothness

A typical �-connected fitting method can only reconstruct “continuous” surfaces or
functions. If we want to fit a smooth surface or a surface with a certain order of
smoothness, we need to consider the derivatives in the fitting algorithm.
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In this section, we only present the simplest algorithm that will make a first order
smooth function. For other cases, see [10, 11].

As we know, the advantage of �-connected fitting is fitting a surface without a
mathematical formula. It is usually needed for a data fitting such as B-spline. In
addition, the domain is not required to be regular, for example, a rectangle.

It is important that we assume that there is a way to calculate gradients using
< D; f >. In addition, we need an iteration process so we can determine what is the
most fitted “fitting.”

If D is two dimensional (it does not necessarily have to be a 2D domain), we
know fJ W J ! R and df

dv W D! R. Then, the idea of an algorithm can be developed
as follows. For a specific problem, we know how to calculate gradients based on the
discrete values on D. For example, for a rectangular area, we can use the difference
method to get derivatives.

Because at the beginning of the fitting only some of the f values are available,
the gradient calculation is not finalized. An iteration process is designed for the
approximation. It is easy to see that if the domain has its triangulation, we can
perform a similar calculation.

Algorithm 3.3. �-connected fitting with complete first-order gradients. Given fJ W
J ! R, J � D and df

dv W D! R, and we want to get f D fD.

Step 1 Check if fJ satisfies the �-connected interpolation condition. We can
assume that df

dv is �-connected. Start at a point p in J, get a point q from its
neighborhood Np. (Np D N.p;B/, where B contains all adjacent vertices
of p.)

Step 2 Obtain all f .q/ such that fJ[fqg satisfies the �-connected interpolation
condition. Put all of f .q/’s into a set F.q/.

Step 3 Select an f0 in F.q/ such that the gradient on q (which is only based
on the existing set fJ[fqg) is the closest to df

dv at point q. According
to Theorem 3.2, F.q/ can be determined. For instance, we can use the
difference analysis method to get the gradient from the values of the
points [10, 11]. Searching for the best combination from all possible
combinations for q, select a new neighbor of p. Repeat the process from
Step 2 until all neighbors are fitted.

Step 4 Select the new guiding point p sequentially or randomly. Select a neighbor
of p and go to Step 2, repeat until all points are fitted in D.

Step 5 For all points that have new values, calculate the gradients. It should be
different from the first time the gradients were calculated since all values
of f are now known. Find the best f .p/ 2 F.p/ such that the “actual” df

dv

(based on f ) is the closest to the “ideal” gradient df
dv known before the

interpolation. f must remain �-connected during the entire process.
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3.5 Maximum Connectivity Spanning Tree and �-Value

The value of � determines the number of partitions in vertex set < G; � >. In this
section, we like to use the idea of minimum spanning tree (MST) to find the best
�-value. In other words, the maximum connectivity spanning tree is introduced to
provide the total information for what value of � should be selected. This idea was
first presented in [7].

We have introduced the spanning tree of a graph G in Chap. 2. The maximum
connectivity spanning tree is the one in which there is a path in the tree that has the
maximum connectivity for every pair of points.

In this section, we will still use the Kruskal’s algorithm [15]. In order to
find the maximum connectivity spanning tree, we first calculate all the neighbor-
connectivities first for each adjacent pair in < G; � > to form a weighted graph [8].

Algorithm 3.4. The maximum connectivity spanning tree algorithm. We modified
Kruskal’s algorithm here to find a maximum connectivity spanning tree, where G D
.V;E/ is the original graph. The weight for each pair of adjacent points indicates
the neighbor-connectedness [8].

Step 1: Let T D V .

Step 2: Repeat Steps 3–4 until T has jVj � 1 edges.

Step 3: Find an edge e with the maximum connectivity value.

Step 4: If T [ e does not have a cycle, then T  T [ e and
delete e from G; otherwise, delete e from G. Go to Step 3.

One advantage of using the maximum connectivity spanning tree is that it gives
the complete information for �-connectivity. With this tree, we can easily get a
refinement of �-connected classification. We can also find which value of � should
be selected for a particular segmentation. For example, the number of segments that
is desired is controllable. However, a disadvantage is that algorithm C takes O.n3/
time in terms of computational complexity and requires extra space to store the tree.
It is very slow when a large set of points/edges is considered.

After the maximum connectivity spanning tree is generated, we can easily find
all connected components for each �. Consider the example shown below. Suppose
that one wants to find the general relationship among major cities across the USA
based on size, population, and political and economic importance. We assume the
graph and potential values of cities are shown in Fig. 3.1.

For simplicity, formula (3.11) is used to compute the neighbor-connectivity, i.e.,
� D 1 � ju � vj=10. Then, the connectedness on each edge can be calculated. The
result is shown in Fig. 3.2.

According to Algorithm 3.4, the maximum connectivity spanning tree can be
computed, shown in Fig. 3.3. When � is set to be 0.8 or smaller, it is always to
generate the same �-connected component(s) that contains all cities. If � is 0.9,
then there are two �-connected components: one contains San Francisco and Los
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Fig. 3.1 Example of the potential values for major cities in the USA
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Fig. 3.2 The connectivity map based on the potential function

Angeles, and another one contains the rest of the cities. Therefore, a maximum
connectivity spanning tree provides full information of the �-connectedness among
vertices.
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Fig. 3.3 The maximum connectivity spanning tree in Fig. 3.2

3.6 �-Connectedness and Topological Data Analysis

Finding the topological structure of a massive data set has gained much attention in
mathematics and engineering. Space data [36, 40] and meteorological data analysis
require topological solutions.

A set of individual data points (cloud data) does not have a topological structure
mathematically. However, since they are sampled from the real world, we can only
get a discrete set of samples. So the human interpretation of each unique cloud data
set means something different. How do we find the best interpretation that matches
the original object or event [2, 46]?

We know each point is an independent component in sampling. However, we can
interpret each data point as an area or volume (usually a disk or a ball), but we would
not know how big the area or volume is. When the area is very small, the object may
still remain not connected, but when the coverage area of a point is very big, the total
area will be connected and become one connected object. So what would the radius
be such that the filled area is the closest to the real world? This is also related to
“data reconstruction” since a different radius chosen is the simple learning process.

While changing the value of radius, the homology or the number of holes does
not always change, so the fit with the most unchanged holes is or might be referred
to as the best fit. This method is called persistent homology analysis [2, 17, 47]. This
method is becoming one of the major developments in topological data analysis.

In topology, homology groups usually indicate the number of holes in each
dimension. Here, we treat this concept as a number of holes.
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A �-connected component indicates the topology. The homology of the �-
connected segmentation is the bar-code of persistent analysis. We only consider
the original data points and do not need to work on the actual filling using disks. If
a component contains a hole, we can use Minkowski’s sum.

In the persistent homology method, we make a sample point grow in its volume
with a radius r. When the radius r changes from 0 to a big number, the data will
change from individual data points to a large volume until fills the entire space.

The persistent homology method calculates the homology groups (number of
holes in each dimension) for each r. It would make some sense that the same
topology (homology groups) that covers most of r will be the primary topological
structure of M, the data set.

In Chap. 6, we will discuss more about this aspect.

3.7 Remark: Future Concerns

�-connectedness has advantages in that it can work with both a search method with
topological characteristics and a classification method related to geometric data
classification [6, 11, 41].

It is a general methodology for multitasking, independent to variability in
BigData, and a fast implementation method for computer programming due to
Depth First Search and Breadth First Search technology.

To get the shape of a component in the data sets, we must consider other features,
such as average value and shape type. In summary, connectivity can be applied to
find the topological structure and �-connectivity can be used to find classification.
This classification in geometry is the shape of the object.

Learning in �-connectedness includes learning the local lambda value, quadtree
analysis, and the kernel method or dynamically moving kernel methods.

Homology can find topological structure, but we still need to find the geometric
structure of data points. For this purpose, �-connectedness is a good candidate for
data science.

Topological analysis is needed to model data sets that may not fill the entire
space. For instance, the rainfall during a hurricane will contain a centric area that
does not have a lot of precipitation. Data reconstruction considers the topology of
the data sets.

When we consider a specific problem, what features are the most important?
Average value, shape, center location, or other. �-connectedness will provide a
general tool for these problems.

For any data set, with or without initial value, when a basic partition or
classification is made, we can build a function related to each class. Further
classification or decomposition of the original data will use this information. For
instance, for the computation of homology groups in terms of persistent analysis
or Morse theory, we can use the connectivity of the data on the previous partition
classification . Not only do we need the simple distance metric but we also require
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Fig. 3.4 Normalized cut combined with �-connectedness: (a) original image, (b) normalized cut,
(c) normalized cut combined with �-connectedness (Color figure online)

additional information, though the distance metric (used in most persistent methods)
is important. For instance, in circle packing, for the deformation of the data, we
want to find the deformation trice. This trice will represent the customer’s marketing
tendencies.

The �-connectedness method will provide more refined and detailed techniques
to the modern problem related to BigData. Again, for existing techniques, the
�-connectedness method will be highly applicable to reexamine a practical problem
related to data science in finding and modeling a detailed structure of the problem. It
could bring us one step closer to the satisfactory or desired solution of the problem
and can be used to articulate the problem [4, 32, 39, 44, 45].

For instance, Elhefnawy et al have used �-connectedness with normalized cut in
image segmentation, the result is very promising [16]. See Fig. 3.4.
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Chapter 4
Machine Learning for Data Science:
Mathematical or Computational

Li M. Chen

Abstract Machine learning usually requires getting a training and testing set of
samples. The training set is used to obtain the model, and then, the testing set
is used to verify the model. In general, a machine learning method requires an
iterated process for reaching a goal. Machine learning is one of the research areas
in artificial intelligence. Machine learning is mainly used to solve problems in
classification and clustering. The distinction is that machine learning uses automated
algorithms to learn from sample data for finding rules or making classifications.
Therefore, the earliest machine learning method should be the regression method
in statistics. Modern machine learning does not rely on a mathematical model such
as linear equations used in regression. Online data mining and networking based
applications nowadays request that machine learning be able to make decisions
based on partial data sets. When more data samples are available, the algorithm
must be able to adjust accordingly. Therefore, in cloud computing, and BigData
related methods in data science, machine learning becomes the primary technology.
We have introduced the PCA, k-NN and k-means, and other methods in artificial
intelligence in Chap. 2. In this chapter, we will do an overview of other important
machine learning methods such as decision trees, neural networks, and genetic
algorithms. We will also introduce variational learning, support vector machine,
and computational learning theory with some problems related to mathematical data
processing.

4.1 Decision Trees and Boosting Process

Decision tree technology is one of the most flexible methods in machine learning
adapted from pattern recognition [27, 29]. Theoretically, the decision tree method
can solve every problem. Let us look at the following example: A university would
admit a high school student if he or she has (a) An SAT score above 2300, (b)
Community service hours (CSH) above 500, (c) A good essay (ESS), (d) An
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excellent recommendation (REC), (e) A GPA above 3.85, and (e) Some special
talents in sports, music, or art (TAL).

We form a feature vector similar to .SAT;CSH;ESS;REC;GPA;TAL/. A deci-
sion can be made based on whether the students satisfy the above criteria. However,
if student John has SAT 2400 but 350 hours of community service, would the school
still consider him? If so, the decision-making procedure would look like a tree, a
decision tree. The decision tree is usually a binary tree. We can assume that the left
node indicates failure and the right node indicates success. Therefore, we have two
categories.

The first node at Level 1 will check for the SAT score, which John passed. Then,
going to the right son-node, we would check for CSH, which John failed. We would
then recheck his SATs to see if he got a 2400. If true, we would pass the right
son-node of the current node and move on to check the other factors.

The disadvantage for this decision system is that the tree could be very big.
The time required to build this tree may be time consuming.

This decision tree technology does not include a machine learning capability.
Now, we want to add this part to the system. Assume this university only accepts
3000 students this year. The existing decision tree has rejected too many students,
so we need to add some rules to the system, which would add nodes automatically
based on the samples we have. If the system adopts this feature, then such a decision
tree system could be considered as having machine learning abilities.

There are some sophisticated systems made for decision-tree learning includ-
ing iterative dichotomiser 3 (ID3) [15] and classification and regression tree
(CART) [23].

Decision trees are also associated with a very profound technology called
boosting. The principle of boosting is to improve training or learning accuracy. If
we have a weaker classifier meaning there will always be relatively big errors when
classifying the training set (error < 50 %), can we use the classifier multiple times
on part of the training set to improve the strength of the classifier? For instance, if
we can only draw a vertical or horizontal line to classify a set into two categories,
we would have many errors in most cases. However, when we classify the samples
incorrectly, we can use the rest of the samples in the training set for another try. We
can improve the accuracy a lot and this is the key idea of the boosting method.

Selecting the partial training set is not random, and we select it with almost
certainty that we can improve the result. The detailed statistical analysis can be
found in [15].

4.2 Neural Networks

A typical neural network (NN) consists of the input layer, hidden layers, and the
output layer. Each layer contains several nodes [4, 26]. Each node in the input layer
accepts a value of the feature vector. Each node of the output layer indicates the
classification of the feature vector (or input vector). The layers are connected by
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Hidden Layers
Input

Output

Fig. 4.1 Example of a backpropagation neural network

arcs (edges) with weights. The most popular NN is called the back-propagation
neural network. It uses the least square method for the convergence of updating the
weights. The detailed method can be found in [4]. See Fig. 4.1.

Neural networks is a method of statistical learning. The weights between nodes
will adjust to minimize error in each iteration. The mathematical model of the
simplest NN is similar to a linear transformation from the feature vector space to the
categorization space that is also a set of vectors (perhaps in different dimensions).
The detailed steps for training is as follows:

When we have n nodes in the input layer and m nodes in the output layer, we
will have a linking line between each pair of input nodes and output nodes. When
we put a weight on each linking line (arc), we will have an n �m matrix W D Œwij�.
As we have discussed, we have a training set .F;V/. For the feature vector u D
.u1; : : : ; un/ that is in class i, we use v D .v1; : : : ; vm/ to represent its classification
by letting vi D 1 and vj D 0 for i ¤ j. In other words, for each .u; v/, we require
v D .v1; : : : ; vm/ 2 V , satisfying vi 2 f0; 1g and ˙vi D 1. The key idea of the
learning is to modify the weights wij when inputing each sample of the training set.

The NN method is a type of statistical learning method. If hidden layers are
added, more weight matrices are involved. For the purpose of effectiveness, after
the matrix calculation, in NN, we usually add a nonlinear transfer function S that
could be a step function. The biggest component of vector S.u �W/ D z indicates the
classification of u as the “intermediate” classification. The learning process passes
.v � z/ back to wij to get a better result by changing the value of wij . After a certain
number of iterations, wij will reach a stable value. The learning process would then
stop.
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Fig. 4.2 Neural network classification: (a) original image, (b) the classification from an NN,
(c) the classification by a decision tree, (d) the expert classification (Color figure online)

One of the very successful applications of NN is optical character recognition
(OCR) [18]. Some researchers recognized that support vector machine (SVM) is a
type of NN methods. NN has many applications. We show some results of the real
data recognition of satellite image processing in Fig. 4.2 [6, 10].

4.3 Genetic Algorithms

The genetic algorithm is a specialized search technique, which is not guaranteed to
arrive at a “best” solution. However, it generally can get to a good or near optimal
solution in many cases [11, 12].
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One example is for the travelling salesman problem, where we need to find the
shortest path for a salesperson to visit each big city once in the USA and then return
to the start.

The solution for this problem can be string that records the sequence of the
visiting path. For instance, ABCDEFGA represents the salesperson leaving city A
and going to city B, then C, and so on. He or she will finally return to A from city G.

We can calculate the distance of this path. The distance here is called a fitness
function. Let us assume that ABGFCDEA has a shorter distance. How do we obtain
the sequence or an even better solution?

A genetic algorithm consists of a function and two operations:

(1) The objective or the fitness function. It tells the genetic algorithm which paths
(called chromosomes) are closer to the objective.

(2) The crossover operation: For two strings S and T , randomly select a position on
a string and cut the strings into two parts S D S1S2 and T D T1T2, where the
crossover means to have two new strings such as S1T2 and T1S2,

(3) The mutation operation is where we find a local element in the string and change
its value. (In this example, we need to make sure that S1 and T1 cover the same
cites.)

We return back to the example we used. We can first randomly select ten strings
(starting from city A and then back to A). And calculate each fitness values for each
string. We then only keep the five with the shortest distances (or the value of the
fitness function). Then we randomly do crossover or mutation operations among
these five strings and keep the best five. This iteration will run for a given number
of times or until the results can no longer be improved. The best answer will be the
solution for the genetic algorithm.

The principle of this algorithm is based on Darwins “survival of the fittest”. The
good “genes,” such as a certain substring that would make the trip shorter, will
always stay in the final string. That is the key to understanding this algorithm. For
instance, after the sales person has visited Washington DC, he must visit Baltimore,
or vice versa. This combination of Washington DC-Baltimore is a good gene for our
problem.

4.4 Functional and Variational Learning

Variational learning is one of the most important developments in applied mathe-
matics to image processing [7, 21]. Finding the optimization of a function in image
segmentation [17, 25, 28] is one of the major developments in the application of
the variational method. The principle of this method is to use harmonic functions to
solve the Dirichlet problem in functional analysis [20, 21, 35].

Variational learning was first proposed by Mumford and Shah in [21]. It considers
three factors in segmentation: (1) the total length of all the segments and edges, (2)
the unevenness of the image without its edges, and (3) the total error between the
original image and the proposed segmented images where each segment has unique
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or similar values in its pixels. When the three weighted factors are minimized, the
resulting image is a solution of the Mumford–Shah method.

In mathematics, the variational principle came from the solution of the Dirichlet
problem: given a continuous function f on boundary @D of D, is there a differen-
tiable extension F of f on D? The solution, a harmonic function, is related to the
minimum energy function for an integral:

EŒf .x/� D
Z

˝

.f 2x C f 2y /dxdy: (4.1)

The harmonic function is the function that satisfies the following equation.

@2f

@x2
C @2f

@y2
D 0 (4.2)

In Mumford–Shah segmentation, the learning is performed inside of each
iteration. Let F be an image (in a domain D). Assume f be the model (a reconstructed
image) and let B be the boundaries of each segmented component of f . The
Mumford–Shah functional is defined as [21]

EŒf ;B� D ˛
Z

D
.F � f /2dAC ˇ

Z

D�B
jrf j2dAC 	

Z

B
ds

where ˛, ˇ, and 	 are weights with ˛ C ˇ C 	 D 1. This formula means that
the difference between the original image and fitted image should be small because
the first term is

R
D.F � f /2dA. The internal variation of f should be small because

of the second term (the standard segmentation has the same value in a segmented
component). The total boundary length should also be small in many cases. The
Mumford–Shah method has many variations now for different problems. In Fig. 4.3,
a nice segmentation using a modified Mumford–Shah functional was presented by
Vese and Chan in [35]. In Chap. 10, Spencer and Chen will present a more complete
coverage and application in this book.

4.5 Support Vector Machine Algorithms

The SVM algorithm is another machine learning model [8]. It is an advanced
method in machine learning algorithms that uses regression analysis to a certain
subset of training samples. This method is to find a best separation line between two
classes (a middle line to both classes) [8, 32–34].

The philosophy behind this method is to get a separation line based on some of
the boundary points of two classes, and there are only two classes for a line to split.
Similar to the process of Voronoi diagrams, we would like to find a best partition
regarding a center point (a site). However, for a randomly shaped point that belongs
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Fig. 4.3 Image segmentation using a modified Mumford–Shah functional

supporting points

cba

Fig. 4.4 The support vector machine: (a) a training set with two classes, (b) three possible
classifiers shown as three lines, and (c) the best separation line supported by three points

to two categories, having a center point for a class or category does not make sense.
Using the boundary of edges will give the most meaning in many cases. For instance,
the boundary of two countries can be separated by some small towns near the border.
How do we draw an actual borderline? We can find a line that is equidistant from
the towns in both countries. We call the towns supporting points.

This is a good philosophy in practical learning. The rest of this method is easy
to understand, albeit technically difficult in practice. For instance, we can draw
multiple lines along the border, such as polylines linked together. We can even fit
a curve to approximate the polylines. To summarize, k-mean and k-NN use centers
for classification, while SVM uses boundaries for classification.

In Fig. 4.4, for an original data set (a), we can find three reasonable lines to
separate them (b). However, line a will give the largest gap. So a will be selected
by SVM. The data points A, B, and C will be called the supporting vectors.

Mathematically, let X D fx1; x2; � � � ; xng be a training set where xi is an
m-dimensional feature vector. These points (training samples) belong to class !1
and !2; they are separable by a line in 2D or a hyperplane in high dimensional
space. A line or hyperplane is in the following form:

f .x/ D AxC c0 D 0
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A is a matrix for rotation and c0 is a constant (may be related to the distance from
!1 or !2). If f .x/ splits these two classes completely, then when we put xi into
the equation, we will get a positive number for !1 and a negative number for !2,
and vice versa. Now, our objective is to get the equation to be equidistant from !1
and !2. At the same time, we want the distance to be the largest. Based on analytical
geometry, the distance from x to f .x/ is jf .x/=jjAjj. We would like to indicate that
the closest point in !1 is +1 and the closest point in !2 is �1 for simplicity. Thus,

(
AxC c0 � 1; x 2 !1
AxC c0 � �1; x 2 !2

Then, the margin of both sizes of f .x/ will be 2=jjAjj. To maximize the margin is
to minimize jjAjj or jjAjj2 for smooth derivative calculations.

For calculation purpose, we use c.i/ D C1 for each point in w1 and c.i/ D �1
for each point in w2. Now, we can put our optimization as

(
min E.A/ D 1=2jjAjj2
c.i/Axi C c0 � 1; i D 1; 2; � � � ; n:

(4.3)

Using the Lagrange multiplier, we can solve the above optimization problem. For
the detailed method, see [29, 32].

When we treat a massive data set, we can split the classified data samples into
different machines in a cloud. When we get the first line from each machine, we can
link them in a way that creates a continuous joint point on the border lines. We can
even modify the neighborhood points a bit to make them “smooth” looking at the
joint point.

Before SVM can be applied, we usually need a classification method for finding
w1 and w2. We can use the k-mean or k-NN method for the initial classification.
It is also possible to only use the modified SVM for direct classification and finding
the optimum margin. The SVM method can be very complicated when a kernel is
involved to predict curves as separation.

4.6 Computational Learning Theory

Computational Learning Theory focuses on learning algorithms for the polynomial
time learnable functions. There are two major methods in computational learning:
(1) Probably approximately correct (PAC) learning, and (2) Vapnik–Chervonenkis
theory. These two methods are somewhat equivalent.

PAC learning theory was proposed by Valiant [30, 31]. We will give a brief
introduction here. Given a set of training samples T , .xi; f .xi//, we would like to
guess the function f .x/, where x is a member of a domain X. The guessed function
is called a hypotheses h.x/. Nilsson gave a very nice lecture on this method in [22].
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The purpose is to make h.x/ D f .x/ for a restricted set having a high probability of
being correct (or approximately correct, in other words, having a small probability
for error). Such a restricted set can also be a testing set that has the same distribution
of f on X.

Let H be a set of hypotheses, jTj D m, and jHj D N.

Theorem 4.1. If T contains m > 1
�
.ln N C ln 1

ı
/ independent training samples, the

probability that there exists a hypothesis h 2 H that is consistent with f on these
samples and has error greater than � is at most ı.

A class, F, is (polynomially) PAC learnable (when H is provided, and F � H) if
there exists a polynomial-time learning algorithm to learn each function f in F.

Here, the term “polynomial” is about m, the size of the input in this instance
(x 2 X and x is coding for the problem), where 1

�
and 1

ı
.

The Vapnik–Chervonenkis (VC) theory is profound [33]. We only introduce the
concept of the VC-dimension here. For any set S, the VC-dimension is the smallest
number of functions hypothesis (lines or circles, definable in a finite way) that can
split S into any two disjoint sets. Let H be a set of hypotheses. We say that S is
shattered by H if for any bi-partition of S (meaning partitioned S into two classes),
there is an h 2 H where h is consistent with this partition. For instance, S contains
three points in 2D. For any type of classification of S into two classes, we can use
one line to split S to match the classification. However, if S contains four points,
then one line is not enough in some settings.

Therefore, the VC-dimension for S with four points in 2D is 2. In 1987, Blumer
et al. proved an important theorem, which we present below [5].

Theorem 4.2. A hypothesis space H is (polynomial) PAC learnable if and only if it
has finite VC-dimension.

Let us use an example to explain PAC learning. We try to use the letter “B” as a
learnable example. “B” is in a binary image form that is coded as a binary string.
The image can be small or big, and the length of the string is called the size of
the input. The training set consists of many example points where some are marked
“+1” if they are positive and “�1” if they are negative. H is the set of the hypotheses.
h 2 H can be as follows: “letter B has two holes,” “there are at least ten elements in
the image array as 1,” “there is a line segment that is almost straight,” etc.

In order to make this learning system work, our training examples must exceed a
certain number. F can be a subset of H for simplicity.

4.7 Remarks: Statistical Learning Algorithms
and BigData

Comparing to many learning theories such as rule-based learning, decision-trees,
and genetic algorithms, statistical learning is still the most popular. Most of
the statistical learning algorithms use numerical learning that mainly refers to a
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regression method [1–3, 16]. It usually uses the least square technology. Most read-
ers with mathematical backgrounds can easily understand this method. However,
for nonlinear models, the regression is much more complicated. Machine learning
and artificial intelligence methods can be used to partition or segment the original
models by treating each segment as a linear model. We have introduced least square
regression in Chap. 2. In Chap. 9, Huang et al will focus on methods for financial
data analysis.

For unsupervised learning k-mean may be still best. However, for massive
data sets or BigData, k-mean might not be very practical due to the extensive
iterations. However, k-NN for supervised learning can be easily turned into a parallel
algorithm. For instance, we can distribute the calculation to each class in different
machines. It is a good idea to investigate the k-mean algorithm in a MapReduce
programming style [9, 13, 36], and some research have been done on k-mean++
[1, 37].

For learning methods: Bayesian Networks and the Mean Shift method, We would
like to mention two other Bayesian networks are also called belief networks. They
are used for inference and reasoning. Bayesian networks use the directed graph to
represent these variables (as vertices) and the causal connection (as arcs/edges). It is
somewhat similar to �-connectedness. The difference is that the weight on arcs is
followed by probabilistic distributions.

Let U D fX1; : : : ;Xng be a set of random variables. For example, if there is an arc
from vertex X1 to vertex X2, we know that X1 causes X2 (see Fig. 4.5). Each node
associates with a table that indicates the conditional probability, called conditional
probability (distribution) table [24]. The summation of all outer probabilities is
equivalent to the probability on the node. The solving path is to backpropagate the
source. This is the reason why a neural network can be viewed as a type of Bayesian
networks.

Fig. 4.5 Example for
Bayesian networks [7]

X2 X3

X4

X5

X1 Cloudy

RainSprinkler

Wet

Slippery
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Figure 4.5. shows if the grass is slippery, then it is wet. This is either caused by
rain or the sprinkler which was turned on. The Bayesian network can tell us which
one is most likely based on the joint distribution formula.

P.x1; : : : ; xn/ D ˘iP.xijParent.i// (4.4)

where xi is the value of Xi, and Parent.i/ is all values of parent notes of Xi.
Therefore, the weight of each arc will become reality after an assumption is made

or a real event that has appeared. The path of propagation reasoning is then similar
to a �-connected path we discussed in Chap. 3.

The method of Bayesian networks was recently used with the MapReduce
framework and Hadoop clusters for parameter learning [2, 3]. Basak et al have tested
the expectation maximization (EM) learning model for both sequential iteration
(SEM) and MapReduce-framework iteration (MREM). SEM on the ADAPT T2
network used 2 h 30 min per iteration for 100,000 data records. For the same task,
MREM on an Amazon EC2 cluster used only 15 min for an iteration. That is about
10 times faster using Hadoop clusters. (Hadoop is a type of implementation of the
MapReduce framework.)

The mean shift method tracks a set of data points based on the density function.
This method is very popular in object recognition and tracking in video processing.
We discuss the details in Chap. 5. In this book, we have a chapter for statistical
learning, specifically the Monte Carlo method (see Chap. 7).

The relations among data mining, machine learning, and statistics can be found
in [14, 15, 19].

Acknowledgements Many thanks to Professor Nils. J. Nilsson for agreeing the author to use his
unpublished notes.
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Chapter 5
Images, Videos, and BigData

Li M. Chen

Abstract Images and videos are really BigData, even before the concept of
BigData was initiated or created. For many companies, image related data occupies
80 % of their storage. Therefore, data processing related to images is an essential
topic in data science. The tasks concerning images and videos are mainly object
search, recognition, and tracking. Current and future applications of images and
videos include security and surveillance, medical imaging, traffic monitoring,
industrial measurements, document recognition, automated driving, and more. In
this chapter, we focus on massive image data processing and computer vision.
We will still focus on machine learning algorithms. Images and video always
require most of the storage space and by having applications over the Internet,
we can say that image related problems are always BigData problems. Even with
other applications, we still need to consider massive data processing. For instance,
automated driving is a challenge to data science.

In BigData related image processing, we will discuss the following topics in this
chapter: (1) An overview of image and video segmentation, (2) Data storage and
fast image segmentation, (3) Feature extraction, (4) Learning and training, and (5)
Classification and decision making.

5.1 Images and Videos in BigData Times

Today, BigData related images and videos appear everywhere such as security,
surveillance, object tracking, facial recognition, document recognition, automated
driving, medical imaging, and meteorological and satellite images. Along with the
rapid growth of multiple structured or even unstructured data, in the future, image
processing must be able to assimilate and interpret images and videos in the same
way we are able to analyze text and numbers now [39]. Image and video processing
is very broad. In this chapter, we focus on the data preprocessing and BigData
related parts such as image segmentation and video tracking. The purpose of image
analysis and recognition is to make a final decision that is related to prediction and
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interpretation (prescription). Prior to decision making, we will need to collect data
(BigData) to prepare an analytical data, select and use predictive models, and make
predictions and interpretations [39].

Images and videos in BigData times require that we use fast algorithms in many
cases. We must be able to use multiple machines on cloud computers, and we must
be able to adapt the different images or video formats over the Internet. On the
other hand, moving object tracking in videos, called video tracking, seeks to locate
a moving object or multiple objects in time stamped videos. It is probably one of
the most widely used techniques in image processing and computer vision today.
Just to name a few areas where such technology would be useful: human–computer
interaction and video editing, security and surveillance, video compression and
communication, traffic control, and medical imaging.

Some of the learning algorithms are not suitable for these purposes when learning
requires extensive time. If the data set is too large, the algorithm for some statistical
methods cannot be directly applied since some matrix operations require O.n2/ scale
level space in the memory of a single machine. For instance, finding eigenvalues
and eigenvectors of the Laplacian matrix has many applications from the finite
difference method to the graph-cut method. If the matrix is too big, then this type of
calculation may need to be changed to an approximate but fast algorithm [9].

Even though there is a good amount of research in statistics and pattern
recognition, algorithmic learning over the Internet, in a parallel or distributed
manner, potentially using new mathematics and statistics, is the biggest challenge
today in data science. The main concern is with the linear O.n/ time, sub-linear
(log.n/,

p
.n/) time, and log-liner (O.n log n)) time complexities. Video data is a

sequence of images, but it is usually in a compressed form. The process of using
video data may require the restoration of the data.

Some real-world examples and problems of massive image data include the
following:

(1) Image forensics. A face recognition system is essential for this field to locate a
criminal record for a person whose face was captured by a camera. The system
needs to export this image from a recorded video.

(2) Security and surveillance. We need to use motion recognition in videos.
Recognized certain human or moving activities.

(3) Medical imaging. Data statistics is needed to list different features in the
collection of diseases. This would require multiple formats and resources in
different hospitals and data locations.

(4) Automated vehicle driving. For instance, the company ImageVision announced
that it can detect changes in video, frame by frame, by classifying and
categorizing actions and motions.

(5) Text recognition and data extraction. This can be used to transfer an old
newspaper image into text. This could also be used in vehicle license plate
recognition in real time.

Surveillance and image forensics usually require a human to make a selection.
After that, we need to put it into an image analysis system for image cleaning
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and enhancement since video recordings usually contain a lot of noise. After a
relatively clean image is generated, we need to upload the image into various
databases and Internet image collections. This task is time consuming and requires
cloud computing techniques. When we require Hadoop or SPARK coding for a
fast resolution, we need to be familiar with the programming practice [40]. There
are also some existing companies that can help in the search and analysis such as
www.ImageVision.com. For instance, the ImageVision software system developed
for facial recognition is an automated, real-time image and video manipulation
detection program with an easy-to-use API (the application programming interface).
There are some manipulation examples including photo retouching and adding or
removing content, which researchers can also use.

5.2 Concepts of Image Processing: Filtering, Segmentation,
and Recognition

From a technical point of view, image and video processing, including computer
vision, can be divided into five main tasks [16, 20]: (1) image filtering that makes
clear or clean images for preprocessing, (2) image segmentation that partitions the
image into meaningful parts, (3) feature selection, (4) recognition that includes
prediction, and (5) interpretation that includes prescription.

The first three tasks make data for the next two tasks. Image filtering is con-
sidered to use sophisticated technology already, and feature selection is relatively
simple. Feature selection forms feature vectors for a local point, a small collection
of pixels (a square), or a component in an image. Therefore image segmentation
is the main focus in this chapter. For image recognition, people use methods with
similar techniques to classification and machine learning, which we discussed in
Chaps. 2 and 4.

In other words, methods in pattern recognition, statistical reasoning, and machine
learning can be used. We have discussed many classification methods in the previous
chapter and most other technologies introduced in that chapter can be used here.

In this chapter, we will focus on image segmentation and moving object search
and tracking in videos.

Image processing is very broad. The main tasks related to mathematics are fil-
tering, segmentation, and recognition. These are some of the topics in mathematical
image processing specifically discussed in this book

5.2.1 Image Filtering

The digital form of images is either a raster image or a vector image. A raster image
is saved in picture elements (pixels), each of which represents a small unit area of a
continuous picture. Pixels are arranged as a sequence in computer memory and have
numerical values for intensity (brightness) of gray scale or color. Our cell phone

www.ImageVision.com
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pictures are stored in this format. Vector images are formed by a set of polygons
with an intensity or color value. The printed characters (fonts) are usually stored in
vector image forms. Thus, the size change of the character does not generate jagged
edges.

There are two basic techniques for image filtering. One is to average the
surrounding pixel values with a center pixel. If there is a noise pixel, then we can
remove it or give it a more reasonable value relative to that of the center pixel. This
is called a low frequency pass. The value we assign is not very different from that
of adjacent pixels. Another way is to use the center pixel to subtract adjacent pixels.
This is called a high pass meaning that the center pixel will pass if it has a large
difference from its neighbors. It is used to detect the edges of objects in an image.
The mathematical foundations of image filtering come from the Fourier transform,
which we describe below [16].

Let f .t/ be a periodic wave function that has an amplitude (intensity) at time t.
Also, ejx D cos.x/C jsin.x/ is a complex number where j D p�1 is the imaginary
unit.

The Fourier transform of f .t/ represents the function on frequency domain U.

F.u/ D
Z 1

.�1/
f .x/e.�j2�ut/dt: (5.1)

u represents frequency. The inverse Fourier transform is the following:

f .t/ D F�1.t/ D
Z 1

.�1/
F.u/e.j2� tu/du:

Scientists use part of the frequency such as u 2 Œ�B;B� to reconstruct f .t/. When we
think about the original f .t/, it contains much noise beyond Œ�B;B� in its frequency
domain.

To use the Fourier transform to filter an image and remove noise, we need to do
a convolution as defined below:

.f � g/.t/ D
Z 1

.�1/
f .
/g.t � 
/d
:

Understanding this formula in signal processing is not difficult.
The convolution is equivalent to the average of the surrounding pixels. This

process will overcome some noise pixels (low frequency signals will pass easily).
When we want to enhance edge information in objects in the image, we want

to make a high frequency signal filter. We subtract the value from a neighbor pixel
(using the derivatives) to make such a filter.
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5.2.2 Segmentation

After an image is filtered, we would like to partition the image into pieces where
each piece represents an object. The piece is also called a segment or component. We
have introduced the concept of image segmentation in Chap. 3. Image segmentation
is the basic approach in image processing and computer vision [28]. It is used to
locate special regions and then extract information from them.

Image segmentation is an essential procedure for image preprocessing, object
detection and extraction, and object tracking.

Even though there is no unified theory for image segmentation, some practical
methods have been studied over the years such as thresholding, edge based
segmentation, region growing, clustering (unsupervised classification), and split-
and-merge segmentation to name a few.

The methods that use profound mathematics are variational image segmentation
and graph-cut segmentation. We have introduced the principle of variational meth-
ods in Chap. 4 and will discuss graph-cut image segmentation in this chapter.

For thresholding image segmentation, the key is to find the best threshold to cut
an image into a binary image. We will discuss two popular methods in this chapter:
the maximum entropy method and Otsu’s minimum variance method [16, 27].

Edge based segmentation is to enhance the edge of each component. We can use
filtering techniques to enhance the edge information, and then use a search algorithm
such as chain-code to extract the boundary of a component.

5.2.3 Image Recognition

In general, image recognition is part of pattern recognition. For instance, for a
location p D .i; j/ in an image, we can use 3 � 3 pixel arrays centered at p as a
vector to do classification. This vector has nine elements. Most methods introduced
in Chaps. 2 and 4 can be applied to this type of image recognition. Decision trees,
k-NN and neural networks are good recognition methods.

There is a so-called object recognition method in image processing. This type
of recognition needs special treatment other than a simple vectorization [16, 20].
For object recognition, the key is to get a good image segmentation, not only to
obtain pixel values. After a component is identified by image segmentation, we can
recognize it by collecting the characteristics of the components. The characteristics
can be represented by a feature vector as well. The difficult part is how we select
the features. For example, in character recognition, we can use topological holes
to distinguish “A” and “L.” Other features include projection, histograms, and
orientation.

In the last section of this chapter, we will discuss moving object recognition
that uses the mean-shift method and color histograms. There are some techniques
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where image segmentation and object recognition will work together to obtain better
results in image segmentation, object recognition, or both.

Therefore, image segmentation is an absolute key to image processing and
computer vision. As we discussed in Chap. 4, variational methods have made
significant contributions to image segmentation in the application of mathematics.

5.3 The Five Philosophies of Image Segmentation

There is no unified theory for image segmentation. Different problems require
different segmentation methods. Some practical methods have been studied over
the years such as thresholding, edge based segmentation, region growing, clustering
(unsupervised classification, e.g. k-mean), split-and-merge segmentation, and the
graph-theoretical based method. These segmentation algorithms have been devel-
oped for solving different problems [8, 28]. However, they are all based on one or
more of the five philosophies listed below:

(1) A segment is a class or cluster, so we can use a classification or clustering
method to segment the image. Classification methods usually do not need to
use the location position information. Clustering for unsupervised classification
technology can perform better to find an object for sampled points within
the subset of data frames. Typical techniques include k-mean. This method
classifies the pixels into different groups in order to minimize the total “errors,”
where the “error” is the distance from the pixel value to the center of its own
group (the average value).

(2) Segmentation is to separate foreground and background. It is to find a clip-
level to make a binary image. If an object or region can be identified by
absolute intensity (the pixel value), we usually use threshold segmentation. In
other words, an object will be recognized as a geometrically connected region
whose values/intensities are between a certain high-limit and low-limit. We
usually assume that the high limit is the highest value of the image. Therefore,
in practice, we only need to determine the low-limit. Maximum entropy and
minimum variance (also called Otsu’s method) are two of the most popular
methods for determining the best threshold for a single image [27, 34].

Multilevel thresholding is similar to threshold segmentation and uses the
same philosophy, but multiple thresholds are produced at once. It requires an
extremely high time cost for computation [17, 19, 28]. We will discuss these
two methods in detail in Sect. 5.4.

(3) A segment is a homogeneous region or a “smoothly connected” region. In a
region where intensity changes smoothly or gradually, the region is viewed as a
segment. A popular segmentation method is called mean-based region growing
segmentation in [16]. A pixel will be included in a region if the updated region
is homogeneous, meaning that the difference between pixel intensity and the
mean of the region is limited by �, a small real number.
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The �-connected segmentation introduced in Chap. 2 follows the same
philosophy. This is to link all pixels that have similar intensity [10, 38].

The big-pixel technology can be viewed as an extension of this method.
In this method, an image is first partitioned into some small regions called
big pixels. Each small region is absolutely part of an object. Then, we use a
graph to link all big pixels and then use the mean-based region growing method
or �-connectedness to make the final segmentation. The Canon company has
obtained a considerably important patent in the USA where the patent document
shows the relationship among those methods. [41]

(4) Split-and-merge segmentation uses quadtree to determine the order in which
pixel(s) should be treated or computed [18, 29, 36]. It is an algorithmic way to
find an object or force a merge order. This is because the method is based on the
mean of the merged region. It does not guarantee a transitive relation. Again,
the mean-based segmentation is not an equivalence relation. This method splits
an image into four sections and checks if each part is homogenous. The
homogenous segments are then merged together.

If the segments are not homogenous, the splitting process is repeated. This
process is also called quadtree segmentation. The method is more accurate for
some complex images, but it costs more time to segment an image.

The time complexity of this method (process) is O.nlogn/. This was proved
by Chen in 1991 [4, 31].

(5) A segment is surrounded by one or several closed boundary curves (edges). If
we can detect and track the edges of a region or segment, we can determine
the location and outline of the segment. The fifth philosophy is edge detec-
tion. Finding low or high frequency pixels is very common in edge detection.
However, not all edge-detection methods can be used in image segmentation
since enhancing an edge is not the primary purpose of image segmentation. The
purpose of image segmentation is to find components.

In addition, we usually use the so-called chain-code method to track the
edge of an object. As we discussed in Sect. 5.2 of this chapter, we may use
an edge enhancement technique to increase the signal on the edges. The chain-
code algorithm follows the edge of a component by always turning clockwise or
counterclockwise while finding the next pixel on the edge.

The number of edges on the boundary should be relatively small. Otherwise,
the extraction of the closed curves will be a major problem. The Mumford–Shah
method, which uses the variational principle [25], is an important development
in image segmentation. In their method, the total length of the boundaries of the
segments will be specifically considered. See details in Chap. 4.
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5.4 Image Segmentation Methods

In this section, we first introduce two advanced segmentation methods: the maxi-
mum entropy method and Otsu’s minimum variance method. Then we discuss the
combination of �-connectedness with these two methods. We will also discuss the
possible connections between these methods to the Mumford–Shah method.

5.4.1 The Maximum Entropy Method and the Minimum
Variance Method

The maximum entropy method was first proposed by Kapur, Sahoo, and Wong [19].
It is based on the maximization of the inner entropy in both the foreground and
background. The purpose of finding the best threshold is to make both objects in the
foreground and background, respectively, as smooth as possible [19, 28, 34].

If F and B are in the foreground and background classes, respectively, the
maximum entropy can be calculated as follows:

HF.t/ D �˙ t
iD0

pi

p.F/
ln

pi

p.F/

HB.t/ D �˙255
iDtC1

pi

p.B/
ln

pi

p.B/

where pi can be viewed as the number of pixels whose value is i; p.B/ is the number
of pixels in the background, and p.F/ is the number of pixels in the foreground. The
maximum entropy is to find the threshold value t that maximizes HF.t/CHB.t/ See,
Fig. 5.1.

Minimum variance segmentation was first studied by Otsu in image segmentation
[8, 27]. Otsu’s segmentation was the first global optimization solution for image
segmentation. It is used to clip the image into two parts: the object and the
background.

Assume that �2.W/, �2.B/, and �2.T/ represent the within-class variance,
between-class variance, and the total variance, respectively. The optimum threshold
will be determined by maximizing one of the following criteria with respect to
threshold t [8, 27]:

�2.B/

�2.W/
;
�2.B/

�2.T/
;
�2.T/

�2.W/

� is the standard deviation. Since �2.T/ is constant for a certain image, this
segmentation process makes between-class variance large and within-class variance
small. Therefore, our task is to make the within-class variance as small as possible.
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Fig. 5.1 Image Segmentation for testing image “Lena”: (a) The original image, (b) Result of
maximum entropy segmentation

5.4.2 Learning in �-Connectedness with Maximum Entropy

Chen proposed a method that uses the maximum entropy method to determine the
� value [8]. It can be called maximum entropy connectedness determination. We
know that the maximum entropy is to find the threshold value t that maximizes
HF.t/C HB.t/.

Such an idea can be used for �-connected segmentation. However, the total
inner entropy for the image is the combination of the entropy for each segment (�-
connected component), not for the threshold clipped foreground/background. This
is because in �-connected segmentation there is no specific background [6]. Each
�-connected segment can be viewed as a foreground, and the rest may be viewed as
the background. It is different from the original maximum entropy where the range
of pixel values determines the inclusion of pixels. Therefore, we need to summarize
all inner entropies in all segments.

H.�/ D ˙.inner entropy of each �-connected component/ (5.2)

We select the � such that H.�/ will be maximized. We call this �-value the
maximum entropy connectedness. This unique value is a new measure for images.

Since maximum entropy means the minimum amount of information or min-
imum variation, we want minimum changes inside each segment. This matches
the philosophy of the original maximum entropy method. In other words, the
�-connected maximum entropy has a better meaning in some applications. We use
the �e such that

H.�e/ D maxfH.x/jx 2 Œ0; 1�g:
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Assume there are m �-components. Define the inner entropy of each
�-component Si:

Hi.�/ D ˙255
kD0 �

HistogramŒk�

n
log

HistogramŒk�

n

where n is the number of points in component Si. HistogramŒk� is the number of
pixels whose values are k in the segment. Thus,

H.�/ D ˙m
iD1Hi.�// (5.3)

The maximum entropy connectedness can be viewed as a measure of a special
connectivity of the image. If the � value is calculated in the above formula for
an image that maximizes H.�/, we say that the image has maximum entropy
connectedness �, denoted by �e. Some experimental results with �e are shown as
follows.

In [7], we proposed a golden cut method for finding the �-value for bone density
connectedness calculation. We have obtained �=0.96, 0.97 for a bone image (the
size of the picture is different from the one used in this book). For a similar
image, using the maximum entropy connectedness presented in this section, we get
�e=0.95. The result is quite reasonable. See Fig. 5.2.

Using maximum entropy is a type of philosophical change. In fact, we can
consider other formulas. For example, we can select another way of calculating
the entropy of one segment.

We proposed a different formula in [8]. We can calculate the inner entropy of a
component, then treat the rest of the image as the background for the component.
The total entropy generated by this segment is the summation of both. We can apply
this process to all components/segments while segmenting.

Let I be an image, Ci.�/ D I � Si.�/ is the complement of component Si.�/

H.Ci.�// D fEntropy for the set Ci.�/g

We can use the following formula for the basis of optimization.

H.�/ D H.Si.�//C H.Ci.�//:

The outer (background) entropy is the total.

H.outer/ D ˙H.Ci/

In H.outer/, a pixel is calculated multiple times.
We may need to use the average H.outer/=m where m is the number of segments.

The relationship between this formula and the formula we used in the previous
subsection is also interesting.
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Fig. 5.2 Bone density image
segmentation: (a) The
original image, (b) �e=0.95

Furthermore, we should consider the following general model.

Hoptimal D a � H.inner/C b � H.outer/

where a and b can be constants or functions of segmentation.

5.4.3 �-Connected Segmentation and the Minimum
Variance Method

It is also possible to use the minimum variance-based method for finding the best �
value in �-connected segmentation [8].

The original design of Otsu’s method is not able to be implemented directly
for �-connected segmentation, which is similar to the case of maximum entropy.
This is because there were only two categories, the foreground (objects) and the
background. For the first and second criteria, in �-connected segmentation, there
are many components and it would be very hard to find between-class variance.
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We could consider the total between-class variance by considering every pair of
components, or we could consider the between-class variance for the components
that are neighbors. The third criterion seems likely to be valid. However, when we
only consider the variance within a connected component, what would happen is

�2.W/ D 0 if � D 1. The value of �2.T/
�2.W/

will be infinite and will always have the
greatest value.

In order to make use of Otsu’s philosophy, we modify the original formula by
adding a term that is the number of segments or components, M. We try to minimize
the following formula:

H.�/ D ˙.inner variance of each� � component/C c �M (5.4)

where c is a constant. We could let c D 1. The calculation of the inner variance of a
�-component is to compute the variance (square of standard deviation) of the pixels
in the component.

The following formula is to find the minimum average variance (for each
component).

H.�/ D ˙.inner variance of each� � component/=M (5.5)

We want to find �v such that

H.�v/ D minfH.�/j� 2 Œ0; 1�g (5.6)

This strategy works for meteorological data. The experimental results show that
the method is promising. For the other two kinds of images tested in maximum
entropy connectedness, “Lena” and the bone image, we still need to find an
appropriate method under the minimum variance philosophy.

The following images show the process on the same picture with a preprocessing
threshold cut using the maximum entropy cut or 45% peak cut. Then, we perform
the automated process of finding the �-value. Figure 5.3 shows that we arrived
at �v=0.97 using the method of minimum variance connectedness determination
described in this subsection. Without smoothing the original image, we pre-cut the
image using the maximum entropy threshold. The result is not what we expected.

Fig. 5.3 Minimum variance
connectedness determination
without smoothing
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Fig. 5.4 Minimum variance
connectedness determination
with smoothing

When we smoothed the image, we got �v=0.90, and the result turned out to be
correct. See Fig. 5.4.

5.4.4 �-Connectedness and the Mumford-Shah Method

How do we use Mumford–Shah’s idea to find the optimal segmentation? We can
define L as the total length of the edge of all segments.

H.�/ D ˛ �˙ (inner variance of each �-component)C ˇ � L (5.7)

where ˛ and ˇ are constants. More generally, we can do the normal �-connected
fitting [4, 9] on each �-connected component. The total variance (or standard
deviation) of the (normal �-connected) fitted image is denoted by V . L is still the
total length of the edges of the segments (components), and D is the difference
between the fitted image and the original image. Using the Mumford–Shah method,
we can minimize the following equation to get the �p.

H.�/ D ˛ � .V/C ˇ � .L/C 	 � .D/ (5.8)

H.�p/ D minfH.�/j� 2 Œ0; 1�g (5.9)

Even though we calculated the entropy or variance in each connected component
differently from the standard maximum entropy method and Otsu’s method in image
segmentation, the philosophy remains the same as in these two popular methods.

5.5 Graph-Cut Based Image Segmentation
and Laplacian Matrices

For a graph G D .V;E/, a cut is a partition on V such that V D A[B and A\B D ;.
If G is a weighted graph, then w.e/ D w.u; v/ is the weight on edge e D .u; v/. We
need to then find a partition for A and B so that
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minfcut.A;B/ D ˙u2A;v2Bw.u; v/g (5.10)

is a minimum. This is called a minimum cut problem. Comparing the graph-cut with
image segmentation, we can see that the minimum cut will segment an image into
two components.

However, there are so many data points in a picture and some neighborhoods
will have exactly the same values if we use the weight graph for all points in the
pictures. For instance, in jVj D 1024 � 1024 D 220, the graph for E and w may be
jEj D jVj2 D 240 in size. This may require BigData or cloud computing techniques
to process.

Thus, a technique of solving this issue begins with safely partitioning the picture
into smaller regions, specifically near convex regions for building an easier new
graph, where each node of the graph represents a similar homogeneous region that
is treated as one big pixel. Therefore, the minimum cut for big pixels will be much
faster.

Shi and Malik invented a method called the normalized cut. It almost always finds
the part that contains fewer vertices. Normalized cut will balance the size factor of
the cut [34]. We present a brief introduction to this technology, which is very popular
today. The normalized cut defines a measure as follows:

N_cut.A;B/ D cut.A;B/

Assoc.A;V/
C cut.B;A/

Assoc.B;V/
; (5.11)

where Assoc.S;V/ D ˙u2S;v2Vw.u; v/ is the total “association” between S and V .
cut.A;B/ and cut.B;A/ may differ if we consider direct graphs. It is proven that
finding the smallest N � cut.A;B/ is an NP-hard problem. We can only find its
approximate solution in a reasonable time. This method involves an excellent graph
theory tool called the Laplacian matrix along with the eigenvector to obtain this
approximation of the solution.

Let D be a diagonal matrix with dii D ˙jwij and dij D 0 if i ¤ j and W D Œwij�.
The Laplacian matrix is .D �W/.

Shi and Malik showed that X is the binary membership function of a set S with a
value of 1 for the component-index number in S and a value of�1 if the component-
index number is not in S [34]. If cut.S;V � S/ is the normalized cut, then

XT.D �W/X

XTDX

is minimized with the condition XTD1 D 0. Therefore, solving the following
eigenvalue equation will provide a solution for this problem.

.D �W/X D �DX
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The second smallest � value (the smallest is zero) indicates that its eigenvector
X is the smallest segment when X is translated into a binary vector.
If D is a diagonal matrix with dii D ˙ jwij, then dij D 0 if i ¤ j and W D Œwij�.

The normalized cut method is an very elegant method in terms of applying graph
theory and linear algebra to image segmentation. However, it is still quite slow in
performance. Ren and Malik improved this algorithm using a method similar to the
method of finding the similarity of big pixels [31]. Scientists at Canon Incorporated
observed that it is related to the �-connected method by Chen [4, 41]. In 3D or
other massive searches, when the data points cannot fit into a single computer, the
BigData technology can be used with big pixels or big surface cells.

When G is not a weighted graph, W D Œwij� is the adjacency matrix. In such a
case, .D�W/ is a standard form of the Laplacian matrix. The Laplacian matrix has
many applications in data processing and numerical analysis. For instance, to use the
difference method to solve a partial differential equation, we will need to use
the Laplacian matrix [1, 34]. It can also be used as the local linear embedding
technique in manifold learning [33]. The Laplacian matrix is positive semidefinite
so its eigenvalues are always greater than or equal to 0.

5.6 Segmentation, BigData, and Subspace Clustering

Future image processing including segmentation must involve cloud computing. For
instance, a large volume 3D image may need to be put into multiple machines for
processing. A video clip can also be viewed as a 3D image where one z-axis is the
time recording. Object tracking in this case is the online 3D image segmentation
and recognition problem. Our current technology can mainly track one or several
simple objects. We can say that many 3D image processing problems are BigData
problems.

In this section, we will first present a method that can segment an image faster
than the number of pixels the image has when the image is stored in a quadtree
format. Second, we will generalize the problem of subspace clustering where we do
consider not only segmenting the linear space but also submanifold clustering.

5.6.1 Quadtree and Octree Based Image Segmentation

In this section, we introduce a fast algorithm for segmenting/classifying 2D images
or 2D spatial data. The data is stored in quadtree or octree formats [11]. We will use
topological and graph theory properties of spatial data and images to speed up the
segmentation process.
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A key idea of this method is to perform a segmentation process without restoring
the data (image) frames. In other words, this segmentation will be done in a virtual
or abstracted manner. Based on local connectedness and value-homogeneity, we will
apply �-connected segmentation and the mean-based region growing segmentation.

Our algorithms will make the segmentation process much faster by not decoding
the quadtree indexing code before the segmentation.

The new algorithm for stream data will modify the boundaries of the segments
in previous frames to predict the segments in upcoming frames. This could lead
to the widespread use of segmentation technology for computer vision and geo-
data processing, medical image processing, object tracking, geometrical simulation,
database application, data-mining, and multi-dimensional data sets.

Quadtree and octree representations are commonly used in medical imaging and
spatial databases to compress data [11, 29, 36]. We have introduced quadtree in
Chap. 2.

The advantages to use quadtrees are: (1) Searching for a data object only requires
O.logn/ time, (2) There is a very small number of squared blocks (cells, big-pixels)
in general so we can develop a fast tracking algorithm for boundary extraction, and
(3) Each leaf can be treated as a surface-cell so that, using a similar technique, we
can get octree representation of the solid object.

A compressed image represented in the quadtree will have a leaf index and its
value [9]. An image is split into four quadrants, namely Q0, Q1, Q2, and Q3, and they
represent the upper-left quadrant, upper-right quadrant, lower-right quadrant, and
lower-left quadrant, respectively. A specific format is used to describe the structure
of the compressed image in quadtree representation. For example, .Null; 0/ means
that the entire image is filled with “0”, .< 3 >; 128/ means that the lower-left
quadrant is filled with “128”, and .< 2 >< 1 >; 255/ means that the upper-
right quadrant and the lower-right quadrant of the image is filled with “255”. In
this example, the leaf size may be computed as: n

22
where n is the length of image.

Typical image segmentation must go through each point so the time complexity
must be at least O.n2/ [29], where n is the length of the image and we can assume
n D 2k. In the quadtree technique, a leaf .< 2 >< 1 >; 255/ will represent n=22 �
n=22 pixels.

Assume that the number of quadtree leaves is N. Then, the segmentation
algorithm can be described by first defining the adjacency graph GQ D .VQ;EQ/

for the quadtree stored image where each leaf is a node in GQ. If u and v are two
adjacent leaves in VQ, then .u; v/ 2 EQ. In a 2D image, there two neighborhood
systems: the four-neighbor system where each point has only four neighbors and
the eight-neighbor system where each point has eight neighbors [9, 11].

The following theorem was proven in [9, 11]:

Lemma 5.1. GQ has at most 3N edges for a four-neighbor system. In addition, GQ

has at most 4N edges for an eight-neighbor system.

This result shows that we will have an even faster segmentation algorithm than a
linear time algorithm.

Our investigations show that the segmentation can be done by directly using
quadtree indexing code (without decoding) from the spatial database [11].
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Fig. 5.5 �-connected
segmentation (� D 112=255)
without decoding the
quadtree images

Threshold segmentation is the most popular method. To make the discussion
simple, we can assume that we are using a threshold or clip-level value to transform
a gray-scale image into a binary image.

This method can naturally be used in the quadtree stored data set. We only need
to examine the quadtree neighbors that are above the threshold (or between two
thresholds in the multiple thresholding method.)

The results show we applied �-connected segmentation without decoding the
quadtree images in (Fig. 5.5).

The mean-based method is similar to the �-connected method [16]. When we
add a quadtree leaf to the segment, we want to check if the data is still within the
range of the error limit (�) with respect to the mean after the addition. However, it
does not hold the transitivity property, meaning that the sequential order of adding
leaves may affect the results. On the other hand, sometimes we need to split the leaf
in order to satisfy the requirements. Because of this, we have to prioritize the order
in which it is added. For example, the largest leaf can be added first in adjacency.
Random adding can also be done if we do not care for a consistent result.

The problem with this method is that we usually do not test the pixels that are
included, we only test the pixels that will be included. This reduces the segmentation
time. However, it does not guarantee that the included pixels will still have the same
properties as the individuals. As we discussed above, the sequence of the growing
process can affect the results. For example, let us take an existing segment that tries
to involve pixels/squares a and b. The order may change the results. This means
the segment may reject a. However, if b merges first, then the new segment may
accept a. This is why a split-and-merge segmentation method was proposed to set
a certain order to have a relatively consistent result. As we can see, the statistical
mean could not maintain the equivalence of segments [16].

To summarize, mean-based segmentation for quadtree data is not an equivalence
relation partition. Different merging order may generate different results. The
following order properties can be applied: (1) the largest region is applied first
(2) the smallest difference (variation/standard derivation) is applied first. Real data
results are shown below (Fig. 5.6):
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Fig. 5.6 Mean-based
segmentation for a gray level
image without decoding the
quadtree images

5.6.2 General Subspace Clustering

In mathematics, this problem is a related (algebraic) variety that is a union of some
manifolds. A variety contains singular points. For example, two surfaces (or two
two-manifolds) may intersect and have a curve as the intersection. The topology
near this curve is not (homeomorphic to) a two-dimensional disk. Originally, variety
was defined as the set of solutions of a system of polynomial equations.

In Rn, we like to identify all (sub-)manifolds. Storing these manifolds is much
cheaper when n is very big. This problem is similar to subspace clustering defined
in Chap. 1.

In pure mathematics, this problem is also related to Hodge’s problem. Hodge’s
problem is also called the Hodge conjecture and is one of the seven Millen-
nium Prize Problems (http://www.claymath.org/sites/default/files/hodge.pdf). This
conjecture states: Let M be a non-singular complex projective manifold. Then
every Hodge class on M is a linear combination with rational coefficients of the
cohomology classes of complex subvarieties of M.

Roughly speaking, subspace clustering is to find a class of several systems of
linear equations. The general subspace clustering is to find a class of several systems
of polynomial equations. For example, if we could find a system of polynomial
equations that is the best fit to the data set, then we can say that we can find the
mathematical model of the data set.

Finding a connected component in discretized Rn is a more generalized procedure
in image segmentation in high dimensions. This is a simple example of clustering.
Assume that this component is k-manifold or k-complex, where k < n. We will have
an object with reduced dimension.

The purpose is to find all submanifolds, where the union of these manifolds are
all objects whose values are not zero. Each manifold is ideally a cluster in subspace
clustering. Our task is to find a model that can describe such a cluster. Assume that
we can find a system of polynomial equations that best fits one or more submanifolds
(in terms of the union). Then, we have found the algebraic representation of the

http://www.claymath.org/sites/default/files/hodge.pdf
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general subspace clustering. In other words, the Hodge problem could also have
real-world examples in image segmentation (with modifications to transform Rn

into a projective space).

5.7 Object Tracking in Video Images

Video is not usually saved as a sequence of image frames. It is often compressed.
There is a difference between a real time video and a saved video. To store a
sequence of image frames as a video clip is called encoding. For instance, we take
a video clip from the cell phone, save it as a .mov file. This file uses MPeg4 as its
compression technique. When we play this file, we need to decode each frame. In
general, we need 30–120 frames per second to maintain good quality. Even though
we only take 30 frames per second. We will have 24 � 3600 s � 30 D 2;592;000

frames a day. Let us take a frame with 480 � 640 D 307;200 pixels and use
three bytes per pixel as a colored image, then we will need 1 MB for each frame.
Therefore, a camcorder will generate 2000 GB of data a day without compression.
This is already near massive data storage scales. Walmart has over 5400 stores.
The video data alone would already reach the 10 PB level if one store has only one
camera at a doorway.

5.7.1 Videos, Compression, and Video Storing Formats

Video compression is a must when we deal with the sequence of image frames [16,
20, 30]. This is because a frame may contain the majority of the information in
the next frame. For instance, in the evening, not so many people go to the store.
Therefore, two consecutive frames are almost identical. A basic technique in image
compression is to subtract the previous frame from the new frame. We only code
the results of the subtraction called the residual. Since many pixels are zero in the
residual, we can save a lot of space. The industry has developed several standards
for video and image compression, including HVCC for instance.

Two common technologies for compression are called the cosine transformation,
which uses half of the Fourier transform [See formula (5.1)], and the wavelet
transformation. Usually, we use a one dimensional curve to code two dimensional
information. See [16] for more information.

Here is the easiest formula for wavelet transformation: The wavelet transform is
similar to the Fourier transform in terms of decomposing the signal. The wavelet
transform has two advantages: (1) The wavelet transform can use many types
of basic functions (basis) called wavelets. (2) Wavelet transform can perform
simultaneous localization in both time and frequency domains [10, 22, 30]. A
function  .x/ is called a wavelet. f�sk W s; k 2 Ig is called a basis  , if for integer s
(scale factor) and k (time factor)
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�sk.x/ D 2 s
2  .2sx � k/:

Let �sk.x/ be basis functions where s is the scale and k is time. Let f .x/ be a
function.

The integral wavelet transform is the integral transform defined as

W�.˛; ˇ/ D 1
pj˛j

Z 1

�1

N
 .

x � ˇ
ˇ

/f .x/dx (5.12)

where Ng.x/ is the complex conjugate of g.x/. (For the complex number z D aC ib,
its conjugate is Nz D a � ib.)

We can represent a function f .x/ as

f.x/ D
1X

s;kD�1
csk�sk.x/

where

csk D W�.2
�s; k2�s/:

The scale factor always decreases by 2. This method can only be used for multi-
resolution or compression. People can select any indexes for the special purposes of
compression. The simplest form of the wavelet is called the Haar wavelet.

An example of using Haar wavelets is as follows. For instance, in Haar wavelets,
H.t/ can be described as

H.t/ D
8
<

:

1 0 � t < 1=2;
�1 1=2 � t < 1;
0 otherwise.

We have used Haar wavelets in meteorological data analysis for outlier
tracking [22].

5.7.2 Object Tracking

In this section, we focus on the video tracking [21, 26, 37]. There are many video
tracking methods, but we only introduce two of them here. The common technique
now is to locate an object in a rectangular box, then the algorithm will trace the box
that contains most of the component or object in the previous box in a frame [42].

Finding an object and tracking it can be different for compressed videos than for
uncompressed videos with a compression, there is already some existing informa-
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Fig. 5.7 Object tracking in videos [32]

tion about moving vectors (for some small image blocks, called macroblocks) that
can be used. When the difference of two adjacent frames is too big, we will use
the so called key frames directly in the video without compression. The following
image frames will be compressed based on the key frame. However, for automobile
driving software, the speed of finding an object is essential. There might not be
enough time to do a compression.

As we can see, the segmentation of images is still the center of our concerns
in video object tracking. This is because we need to first find an object that is our
target. Then, the segments (components) in an image or video frame will be used to
compare the predefined object we are looking for. Otherwise, we will isolate several
objects that are moving to the next video frame. Those objects will be used as the
predefined ones for the next search as well as determining the size and location of
the rectangular region (called the bounding box) that holds the objects. Some fast
trackers just use the feature vector of a bounding box to track the object in the next
frame. See an example that is presented in Fig. 5.7 [32].

Smeulders et al presented a survey on the tracking methods for videos in [35].
A complete survey of research related to this topic up to 2006 can be found in
[24]. Although there is a significant amount of research papers, compared to image
segmentation, video tracking is still a relatively young research area.

5.7.3 Tracking Algorithms

The algorithm used to perform video tracking is called a tracker, which is used
to match the representation of a target model in the current frame with its
representation in the previous frame(s). Here, we use the representation of a target,
meaning that we may use a feature vector to represent a component or a target.
There are some noted trackers such as:

(1) Mean Shift Tracking [13]: This tracker makes match on histograms. It is very
simple and elegant (comparing to use spatial information about the pixels or find
shape-changes of the target).
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(2) Normalized Cross-Correlation [2]: This tracker uses normalized cross-
correlation to do direct target matching. It uses the intensity values in the initial
bounding box as template. For each following frame, the tracker searches around the
previous target position to select candidate windows (box). Compare each candidate
window with the target template based on normalized cross-correlation. The best
matching will be selected.

(3) Kalman Filter Tracking: The Kalman filter was originally invented to track
the trajectory of moving objects in space. It is a two-stage filter running recursively
based on an optimal Bayesian filter for Gaussian noise. The two stages are the
predict step and the update step.

We now focus the method of mean-shift and its tracking method in videos. In
the mean shift method, tracking a dense set of point data is based on the density
function. To find the center point of each small window, we always move the current
mean vector in the same direction as the maximum increase in density. This method
is called the mean shift method.

The procedure guarantees the convergence of the point towards the points with
the highest density in a designed window. Note that the gradient of the density
function is zero at this point since the derivative of the highest point is zero. This
process can start at a randomly selected point in the search space, this method can
be used to find the backbone or framework of the data set. Mean shift can also be
used to find the thinning (skeleton) of an object statistically.

Mathematically, mean shift can be used to find the centric trice of a cloud point
data. We first need to assume a statistical model of density function, such as the
Gaussian kernel: Kernel.x � x0/ D e�c.x�x0/2 where x0 is an initial estimated center
where c is a predefined constant. Then the next mean will be determined by

where N.x0/ is the neighborhood window of x0, a set of points for which
Kernel.x0/ ¤ 0.

Then we will set the new center x0 to be m.x0/, and repeat the above calculation
to get a trice of x0 as the track of the mean shift.

The principle of the mean shift method is used by Comaniciu, Ramesh, and Meer
[13, 14] for object tracking in videos. It is called the mean shift tracker, and is
probably the most effective tracker.

Before we give the actual algorithm, we explain the principle of this elegant
method below: In video tracking, the idea of the mean shift tracker is not going to
trace the mass center of the distribution of the sample. This is because the data is
everywhere in an image. For instance, we can describe an object as a pre-banding
box. Everything (every pixel) is considered as part of the object. The key of this
algorithm is to use the density distribution function or probability density function
to represent this object. That can be a histogram of the object in gray-scale or color.
This histogram will be the model for the next location prediction.

m.x0/ D
P

x2N.x0/
Kernel.x � x0/x

P
x2N.x0/

Kernel.x � x0/
(5.13)
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Let us think about the same binding box B (or a circular region) with center
location y in both the previous frame Q and the present frame P, which are two
consecutive frames. The histogram of Q is the model of the object. We can calculate
the histogram of P with respect to B. Then, we want to calculate the “distance”
between two histograms. The best way to find the distance between two histograms
is related to the Bhattacharyya coefficient.

We use h.Q/ and h.P/ to represent the histograms at location y. h.Q/ can be
viewed as a function or a vector. For instance, Q D .q0; � � � ; q255/ will represent
the gray-scale histogram where qi is the intensity value on i (or in the interval of
.i � 1; i�). When we deal with a color image, we can use a triple length vector to
represent .red; green; blue/. In general, qi, i D 1; � � � ;m is the model or pattern at
the original location y. h.P/ D OP.y/ is a candidate of prediction in the new frame.
Therefore, we can get the new mean shift center z using the Eq. (5.13) in P. We
then compare the similarities between Oq D fqig and OP.y/ along with the similarities
between qi and OP.z/. B will be moved to the center at z when we do this calculation
relating to z. We will change the center to z if the similarity value of Oq and OP.z/
is bigger. In implementation, this change will be at the middle location between z
and y.

Such a similarity value is calculated by the Bhattacharyya coefficient,

�. OP.y/; Oq/ D ˙m
uD1
p

pi.y/ � qi: (5.14)

We can think about pi.y/ as the value of the histogram P. This equals the cosine
of vectors .

p
p1; �;ppm/ and .

p
q1; �;pqm/. Therefore, maximizing this value � is

maximizing the color match.
We can express the algorithm as the following. For more mathematical details,

see [14, 15]. Note that Oq does not have to be a histogram. The algorithm was
designed in [14]. The representation of the algorithm here was based on the lecture
notes of Wee Kheng Leow at National University of Singapore and [14].

5.7.3.1 Machining Learning Algorithms

Another method often used is the machine learning algorithm. When we want to
search for a specific person or specific plate number in a video clip, we can use
neural networks to learn this object and then use the learned algorithm (a procedure
coded) on each component or block in the video clip. Some other algorithms in
machine learning can also be developed such as decision trees. Video tracking is
still a relatively new research area, but some profound algorithms are expected to be
developed in the future. An algorithm was presented in [32].
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Algorithm 5.1 The mean shift tracking algorithm is as follows: Given
fqig;wherei D 1; � � � ;m, of a model, location y in the previous frame, and a small
value � as the moving length for each step, fqig can be obtained by the histogram of
colors in a box surrounding y in the previous frame. We want to find a location z,
such that OP.z/ for B.z/ in the current frame has the maximum similarity to OP.y/ for
B.y/ in the previous frame. (Note that box B.y/ does not necessarily appear, but it is
good for our intuition. In fact, the calculation of fqig; i D 1; � � � ;m already contains
information on B.y/ or B.z/ for new center.)

Step 1. Set the initial location to be y in the current frame to be the target. Compute OP.y/ D
.p1.y/; � � � ; pm.y// in the current frame, and compute �. OP.y/; Oq/.

Step 2. Assigning smaller weights wj to pixels farther from the center, the calculation is based
on the kernel in Equation (5.13). wj will be used in the new center calculation.

Step 3. Get the new location z using Equation (5.13).
Step 4. Get OP.z/ D .p1.z/; � � � ; pm.z// with new box B.z/ and �. OP.z/; Oq/.
Step 5. If �. OP.z/; Oq/ < �. OP.y/; Oq/ and kz�yk > � (in the new frame), update z as z 1

2
.yCz/.

Repeat Step 5.
Step 6. Otherwise, when y  z, assign the current frame to be the previous frame, and assign

the next frame to be the current frame. Go to Step 2.

5.7.3.2 Online Object Tracking

Online object tracking is a new research area in video tracking [23, 35]. This
problem can be specified to describe an object in the first frame of a video clip
that we want to locate in subsequent frames with bounding boxes.

Online object tracking differs from typical video tracking in the following ways:
(1) the variations of the object itself including incomplete data appearance, and (2)
the complexity of the scene including the movement of cameras.

In [23], the authors developed an algorithm called tracking-learning-parsing
(TLP) for online tracking. In the algorithm, the object is traced by a graph-based
structure in a hierarchical and compositional model.

Even though the minimal spanning tree method is already very practical,
techniques using segmentation based techniques are in development.

5.8 Future Concerns: BigData Related Image Segmentation

In general, images and videos are collections of raw data. Image analytics can
help humans make decisions. Such analytics will add a great deal of value to the
industry when a prescriptive resolution can be given, such as some of the methods
mentioned in this chapter. Currently, researchers are concerned with emerging
BigData images that contain advanced computational and scientific technologies
in statistics, machine learning, operations research, and business logic or rules [39].
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Mathematically, to segment an image is to partition it into several components.
The partition is equal to an equivalence relation. The difference is that the
segmentation allows some errors on the edge of each segment since almost every
image contains noise.

It is definitely not possible to get a perfect image segmentation that is based on
human interpretation. Different people will see or interpret an image differently.

The idea of rough sets, or sets that are �-connected or normal connected, is good
for finding upper and lower limits [5]. The question is how we find a reasonable
control for these limits, a relation R or a � value.

It is good that image segmentation can be treated in partition regions with
different lambda-values for segmentation in different machines.

When we use Hadoop or MapReduce in image segmentation, we can pass
different seeds to different locations of the array before passing them to different
machines. The segmentation will be very fast in the region growing method.
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Chapter 6
Topological Data Analysis

Li M. Chen

Abstract Classical data processing uses pattern recognition methods such as
classification for categorizing data. Such a method may involve a learning pro-
cess. Modern data science also uses topological methods to find the structural
features of data sets. In fact, topological methods should be the first step before
the classification method is applied in most cases. Persistent homology is the most
successful method for finding the topological structure of a discrete data set.

This chapter deals with topological data processing. We first introduce space
triangulations and decompositions. Then, we discuss manifold learning and focus
on persistent analysis. We give an overview of all topological methods but will focus
on persistent data analysis.

6.1 Why Topology for Data Sets?

What is the difference between two data sets? This depends on what is the most
important issue we care about these two data sets. When we talk about apples, the
size or the number of apples is important. When we talk about automated car license
plate recognition, we need to care about getting a good, clean image.

Netflix, an Internet based movie streaming and renting company, would want
to predict revenues from a specific movie that targets a certain age group or
demographic. We might ask: What is the volume (number of individuals) of people
in an area? Can local internet servers in a city handle the movie stream? Is city A
similar to city B?

We can classify the data into two categories for a certain movie: (1) people who
are definitely interested and (2) people who are not interested.

We have discussed the NetFlix matrix completion problem in Chap. 2. Now the
problem discussed here is more general especially in topological aspects. This is
because that matrix completion is filling the holes using subspace, the completion
of filling has so many options, a particular one might not reflect the actual data.
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On the other hand, holes in the matrix might be real. There are a group of people
who will not watch a particular movie, we need to identify holes not to fill the holes.

Considering all the factors, Netflix will obtain a multidimensional cloud data set.
Now, before Netflix purchases the rights to show a movie nationwide, they may test
the movie in a small city. When the company has received the data for who or which
families are watching the movie, the data will be translated into a set of vectors.

Even if similarities between cities exist, they may not be exactly the same. We can
use deformation at the top of the training data to predict the topological structure of
the large data set for a big city. Netflix can find the appropriate volume of people
who are going to order the internet movie stream.

Another example is more practical and is used in medical imaging specifically
bone data imaging. There are many holes in a particular part of a bone. The number
of holes can indicate the strength of the bone. How do we calculate the correct
number of holes [4, 5].

The third problem is related to wireless networking. We know we want to build
several tower stations in a small city to handle the communication of cell phone
users. Every stations will have a radio power that will cover certain area, usually
circular area. We want to know if there is a hole where no station will reach it
[6, 7]? These type of questions require us to find the structure or shape of the data.
The topological structure is just the basic structure of these problems. We might be
able to find valuable problems relating to topology in other business related data
mining [30].

6.2 Concepts: Cloud Data, Decomposition, Simplex,
Complex, and Topology

Cloud data, sometimes called scattered data, is a set of data points that are randomly
arranged. They are usually dense, meaning that they have a lot of data points. Cloud
computing, as well as cloud data computing, is highly related to networking.

A Problem of Wireless Networking Let us assume that we have a set of sites
where each site has a tower station for network communication. When we drive a
car from one location of a site to another, how do we handle the location change in
terms of communication?

In fact, networking experts have already designed a way to switch a user (a cell-
phone) from one tower station to another by measuring distances. We always select
the nearest host station to the user to handle communication.

The method in mathematics is called the Voronoi diagram. The method pre-
partitions the space into polygons. When a user enters in a specific polygon called
Voronoi region, then the corresponding tower station takes over the service. This
question is referred to in Chap. 1. Section 1.5.
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The Voronoi Diagram The Voronoi diagram partitions a plane into polygons,
where each polygon contains a sample point called a site; a point x is inside a specific
polygon containing site p if x is closer to p than to any other site [4, 9, 35].

The Voronoi diagram method is particularly important to science and engi-
neering. This partition is made based on the closest distance from the given site
compared to other sites. The dual diagram of the Voronoi decomposition is a
triangulation of the domain, which is called Delaunay triangulation.

Delaunay triangulation is the most popular form among different types of
triangulation. See Fig. 3.4 from [4]. We will present the algorithm of Delaunay
triangulation in the next section.

A space usually can be partitioned into smaller pieces. This is called a decom-
position. Image segmentation is a type of decomposition. If these pieces are all
triangles, we say this is a triangulation. We usually use polygons for more general
decompositions. A triangle is called a 2D simplex (2-simplex). In a triangulation,
two triangles share an edge (1-simplex), a point (0-simplex), or an empty set.
A collection K of 2-simplexes, 1-simplexes, 0-simplexes (with the empty set) is
called a simplicial complex if (a) the intersection of any two simplexes is also in
K , and (b) each edge or points of a simplex is an element in K .

A topological space is a pair of M D .X; 
/ where X is a set and 
 is a collection
of subsets of X. M satisfies (1) X and ; are in 
 , (2) The union of any number of
members of 
 is in 
 , and (3) The intersection of finite number of members of 

is in 
 . We can see that a simplicial complex (usually contains finite number of
simplexes) can be regarded as a topological space. We can see that a decomposition
induces a simplicial complex.

In many other cases especially in digital images, we use squares to decompose
a space. A square or other shape is called a cell, so we will have cell complexes.
A triangulation of a space forms the simplicial complexes that is a foundation of
Combinatorial Topology [4, 9, 13]. The formal definition of topology can be found
in [4, 13].

6.3 Algorithmic Geometry and Topology

As we discussed in the last section, partitioning a 2D region into triangles is
called triangulation. We can also partition a region into polygons where each
polygon can be viewed as a cell. Therefore, we will have a cell complex. In higher
dimensions, this is called a polyhedron. The polyhedron decompositions such as
Voronoi diagrams are specific research areas in computational geometry also called
algorithmic geometry. Cell complexes are in the research area of topology and have
a long history in mathematics [13].

A complex that is usually a finite topology is a collection of cells in different
dimensions. For the k-complex, M is the complex whose biggest dimension is k.
If for each point (0-cell) in M, we have a group of k-cells containing this point that
is homeomorphic to k-dimensional Euclidean space, then this complex is called a
k-manifold.
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Computational topology studies the problems related to manifolds in computing
including algorithm design and practical applications [9, 34].

In this section, we discuss a classic problem of algorithmic geometry that is
related to space decomposition and a relatively new problem that is called manifold
learning.

6.3.1 Algorithms for Delaunay Triangulations
and Voronoi Diagrams

Mathematically, the method of the most meaningful decompositions is the Voronoi
Diagram: Given n points (called sites) on a plane, we partition a space into several
regions. Any point in the region is closer to the site in its own region. This type of
region is called the Voronoi region.

For a new point x, find the closest site to x. In other words, if we have a new
point x and try to find the closest site to the new point, we only need to decide which
Voronoi region contains x. This problem is called the nearest neighbor problem as
we discussed in Chap. 2. That is also used in pattern recognition.

Fortune found an optimum algorithm for Voronoi diagrams with time complexity
O.nlogn/, but it is difficult to implement [4]. Here, we first design an algorithm for
Delaunay triangulation. This relatively simple algorithm is called Bowyer–Watson
algorithm for the Delaunay triangulation .

Let Pi, i D 1; � � � ; n be n sites. A Voronoi region is bounded by edges and
vertices. The vertex of the region is called the Voronoi point. We know that: (1)
An edge of the Voronoi region must have the property that each point on the edge
must be equal distance to the two sites. (2) A Voronoi point must have the property
of being equidistant to the three sites.

This means there must be a circle containing these three sites centered at each
Voronoi point. This circle is the circumcircles of the triangle containing all three site
points. Such a triangle is called a Delaunay triangle.

Another definition of Delaunay triangulation is as follows: no circumcircle of
any triangle contains a site. The following Bowyer–Watson algorithm is designed
based on this fact. The Bowyer–Watson algorithm is one of the most commonly
used algorithms for this problem. This method can be used for computing the
Delaunay triangulation of a finite set of points in any number of dimensions. After
the Delaunay triangulation is completed, we can obtain a Voronoi diagram of these
points by getting the dual graph of the Delaunay triangles. See Fig. 6.1 [4].

Algorithm 6.1. The Bowyer–Watson algorithm is incremental in that the algorithm
works by adding one point at a time to a valid Delaunay triangulation of a subset of
the desired points. Then, it works in the new subset, adding points to reconstruct the
new Delaunay triangulation.

Step 1 Start with three points of the set. We make the first triangle by linking
three points with three edges.
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a b

Fig. 6.1 Voronoi and Delaunay diagrams: (a) a Voronoi diagram; (b) Delaunay triangulation

Step 2 Insert a new point P. Draw the circumcircle of each existing triangle.
If any of those circumcircles contains the new point P, the triangle will
be marked as invalid.

Step 3 Remove all invalid triangles. This process will leave a convex polygon
hole that contains the new point.

Step 4 Link the new point to each corner point of the convex polygon to form a
new triangulation.

This algorithm is not the fastest one, and it runs in O.n
p
.n// time. To get the

Voronoi diagram from the Delaunay triangulation, the key is to link the centers of
the circumcircles such that two corresponding triangles share an edge. For more
details of this algorithm, see [4, 9, 35].

6.3.2 Manifold Learning on Cloud Data

Finding a surface from a 3D data volume is a very challenging job. However, if
the data in the volume is continuous in terms of values, we can find an iso-surface,
meaning that the value at each data point is the same. Then we can easily get the
data set by searching for the same value in its neighborhood.

6.3.2.1 Real Problems Related to Manifold Learning

Isosurface Determination in High Dimensional Space In meteorology data pro-
cessing, the researcher usually uses sensors to detect the temperatures or humidity
data in the air. So reconstructing the shape from this type of sampling data points
is not easy when we think the data is discrete points. In the past, we have some
way that can draw a contour map. However, in such a case, we usually have a set
of dense samples. We just need to extract the surface on which each point has the
same or similar value called an isosurface. However if the data samples are shown
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Fig. 6.2 Manifold learning
on cloud data [4, 17]

like Fig. 6.2a, it is hard to know the 2D neighborhood of a point in a desired surface
(e.g. an isosurface). Manifold learning is a way to find such a surface in a high
dimensional space.

Object Deformation Sequencing in a Set of Images Given a set of images, see
Fig. 6.3, can we determine a subset of images that are most likely in a deformation
sequence? In this problem, we will transfer the images or objects to feature vectors,
we want to find a smooth curve(s) in the space that holds these vectors (Fig. 6.4).
We then extract the curves and corresponding images. Such a smooth curve is a (1D)
manifold. This is also a good example in manifold learning.

Manifold learning here is to identify a lower dimensional manifold where most
of the data will be located.

Manifold learning is always related to dimensionality reduction. For instance, we
want to find a surface, a 2D object, from 3D space.

In Fig. 6.2, a 2D Swiss roll that was embedded in a 3D space [4, 17]. The question
is how do we extract the information?

For this particular case, we want to know if the data points represent a sphere or
a spiral shape [17, 32] (Manifold learning).
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Fig. 6.3 Example of a set of facial images [32]

Fig. 6.4 Vector points of the set of facial images in 3D space [32]

Learning a data set that will most likely represent a random shape is a very diffi-
cult task. Therefore, there are many tasks to be studied in manifold learning [17, 32].

Two most popular methods for manifold learning are the Isomap and the kernel
principal component analysis [4, 17]. The idea of the Isomap method is to use k-NN
or MST to get the neighborhood information. Then, a graph is constructed with
weight. After that, we use Dijkstra’s algorithm to find the shortest path for each pair
of points.
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Let us present the Isomap algorithm below [4]:

Algorithm 6.2. The Isomap algorithm. Let S be a cloud data set.

Step 1 For each point x 2 S, determine the neighbors of each point. We can use
k-NN or MST to get the information.

Step 2 Construct the graph with the neighbors found in Step 1. The edge will be
weighted by Euclidean distance.

Step 3 Calculate the shortest path between two vertices using Dijkstra’s algo-
rithm.

Step 4 Multidimensional scaling creates edges between two vertices. Cut off the
data points beyond the clip level. Determine the local dimension of the
data. This step is called lower-dimensional embedding.

Step 5 Compare the results from Step 4. Make a decision on the dimensions for
all local neighborhoods. For instance, most local neighborhoods are 2D
and so we make the 2D out put.

In Step 5, we can use principal component analysis to help us find the local
dimensions [4, 17, 25]. In fast algorithm design, there may be some geometric data
structures that can assist us to find new faster algorithms. The moving kernel will
be determined by eigenvalues and eigenvectors. This method is referred to as the
kernel principal component analysis.

In [32], a method called maximum variance unfolding (MVU) and the PCA
method are used to find the image deforming sequence in Fig. 6.4. These results
can be used to make better image reconstruction when we know the path of face
change in deformation. See Fig. 6.5 [32]. More discussion can be found in [15].
This type of manifold learning has direct relationships to object tracking in videos.
We have introduced it in Chap. 5. In manifold learning, we usually deal with very
high dimensional data sets. For instance, we can treat a 32 � 32 picture as a
32 � 32 D 1024 dimensional vector. The calculation of this type is toward to a
BigData type.

For massive images, cloud computing machines can be used to detect all possible
directions of the pictures. This is also related to Bigdata analysis. Newly developed
software, called SPARK, by researchers at Berkeley may play a significant role in
this type of calculation [? ]. In Chap. 8, Su et al. will discuss a special technique to
manifold learning for data science.

Fig. 6.5 An example of ideal image reconstruction after finding the deformation line in Fig. 6.4
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6.4 Persistent Homology and Data Analysis

As we discussed in the beginning of this chapter, individual sample points do
not have a topological structure other than the discretely located points in space.
However, human’s interpretation makes a set of discrete points to have some
meanings. The “best” interpretation is the structure we are looking for. A technology
called persistent homology analysis was proposed to solve this problem [2, 8, 12].
It can be used to find the topological structure of a data set.

Let us have a set of cloud data, each point is an independent component. We can
interpret each data point as a sample of a point, a small disk, or a cubical volume.
We can also use this point represents a relatively bigger area, a bigger disk. When
the size of the disks increases, the shape of the data sets may change its topological
properties. For example, the data points may connect to be a object (component).
See Fig. 6.6. The intuitive meaning of persistence is the topological property such
as the number of components or the number of holes does not change in a period of
time as the radius of disks changes.

While changing the value of radius, the homology or the number of holes does
not always change, so the fit with the most unchanged holes is referred to as the
best fit. This method is called persistent homology analysis [13, 36]. This method is
becoming one of the major developments in topological data analysis.

6.4.1 Euler Characteristics and Homology Groups

In topology, homology usually indicates the number of holes in each dimension.
We start at the Euler characteristic that is an invariant to a topological manifold. For
any finite simplicial or cell complex, the Euler characteristic can be defined as the
alternating sum

� D k0 � k1 C k2 � k3 C k4 � k5 � � � ; (6.1)

a b c

Fig. 6.6 Example of persistent analysis: (a) original data points, (b) the covered area by small
disks centered at original points, and (c) the covered area by larger disks centered at original points;
the topology is changed
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where ki denotes the number of i-cells in the complex. The detailed explanation of
homology groups can be found in [13] and a concise introduction can be found in
[4]. We only give a definition of homology groups here.

Let Ci be a group generated by i-cells in M. It is called a chain group where each
element is in the form of ˙Ai ni �Ai, where Ai is an i-cell and ni is an integer. Ci is an
Abelian group.

Let @i be the boundary operator from Ci to Ci�1. The boundary operator only
sends the i-cell to its boundary (with the direction already defined). We can see that
the boundary of an i-cell is an “.i � 1/-cycle.” The combination of an i-cell, for
instance kAC k0B, will map to an element in Ci�1 by @i.

The ith homology group, Hi, is defined as

Hi.X/ WD Kernal.@i/=Image.@iC1/; (6.2)

For example, let a square A D .a; b; c; d/ be a 2-cell. Then, we have 4 edges,
.a; b/; .b; c/; .c; d/; .d; a/. So @2.A/ D .C1/.a; b/ C .C1/.b; c/ C .C1/.c; d/ C
.C1/.d; a/ D .C1/.a; b/C.C1/.b; c/C.C1/.c; d/C.�1/.a; d/. @2.A/ is an element
in C1. Kernal.@i/means the set of elements in Ci that maps to 0, the identity element
in the Abelian group. In fact, all cycles in Ci will map to 0 in Ci�1. (The boundary of
a cycle is empty, which means 0). Image.@iC1/ is the image of mapping @iC1. They
are boundaries of elements in CiC1. Every boundary (in Ci) is a “cycle.” Therefore,
Image.@iC1/ is a subgroup of Kernal.@i/.

To further explain, Ci is a group that contains all combinations of i-cells (with
connected-sum as we can intuitively say). Kernel.@i/ sends all cycles to 0 2 Ci�1.
Image.@iC1/ is a set of cycles in Ci that has filled .iC 1/-cells in KiC1 (the .iC 1/-
sectionskeleton of M). This means that for the boundary of grouped iC 1-cells, the
boundaries are in Ci. We want to pull them out of Kernel.@i/ and only leave empty
cycles in Ci. The removal means Kernal.@i/=Image.@iC1/ boundaries.

The ith Betti number bi is the rank of Hi. For example, if Zn is a free Abelian
group, then rank.Zn/ D n. We also have

� D b0 � b1 C b2 � b3 C � � � ; : (6.3)

The Betti numbers are topological invariants that indicate the connectivity of
simplicial or cell complexes. Let x be n-dimensional manifold. If X is closed and
oriented, then the Poincare duality holds:

bk D bn�k:

In 2D, b1 describes the maximum number of 1-cuts needed to separate a surface
into two pieces.

We also have � D 2 � 2g, where g is the genus. Intuitively, bi refers to the
number of i-dimensional holes on a topological surface. So (1) b0 is the number of
connected components, (2) b1 is the number of different type of one-dimensional
holes (of a cycle in terms of deformation or homeomorphism ), and (3) b2 is the
number of two-dimensional tunnels (cavities).
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For a sphere Sn, where n > 1, we have b0 D bn D 1 and all other bi D 0. For
example, a torus has one connected component (b0 D 1), two circular holes (b1, one
in the center and the other in the middle of the “donut”), and one two-dimensional
cavity or tunnel (b2, the inside of the “donut”), which yields Betti numbers. There
is no 3D-cell so bi D 0 for all i � 3.

Understanding homology groups is not a simple task. After extensive consider-
ation and practice, we suggest methods for interpreting homology groups using the
following rules:

1. Let M be an n-manifold or cell complex in general where b0 is always the number
of connected components. Now M can only be connected.

2. Draw an i-cycle �i (a manifold that is homomorphic to an i-sphere, Si) in M,
where i < n. If every other i-cycle can be deformed to the original �i, then bi D 0
(if Hi is the remaining element in the group, then the group no longer exists).

3. If M is a closed n-manifold without a boundary, then bn D 1. The boundary is
the only “cycle” or closed boundary in n-dimension. Hn D Kernel.@n/=fe D 0g,
fe D 0g is the identity group. M will map to 0 in Cn�1 and is the generator of
the group. For the same reason, if M contains k closed n-manifolds (where each
manifold is “minimal”), then bn D k. For instance, if M is 2-sphere, S2, then
b0 D 1 and b1 D 0 since every cycle on S2 is deformable to another cycle (called
homotopic) and b2 D 1.

4. As we have said in (2), i-cycle �i and its deformed i-cycle will be treated the
same. If there is another cycle and we cannot deform �i to it, then bi > 1. If the
example is for a torus, then we have b1 D 2, but b0 D 1 and b2 D 1.

5. If M is a disk (or 2-ball), then b2 D 0 since there is no 2-cycle. There are 1-cycles,
but they are all homotopic (deformable to each other), so b1 D 1. In general, for
n-ball Bn, b0 D 1 b1 D 0; � � � ; bn D 0.

The two following examples are very practical in application.

Example 6.1. For a graph G D .V;E/, if it is connected then b0 D 1 and b1 is
the number of “minimal” cycles, which are called generators of H1. A cycle is
not “minimal” if it can be constructed by two (or more) “minimal” cycles using
connected-sum.

Example 6.2. Let F be a connected image or picture in 2D. According to Rule (1),
b0 D 1. Based on Rule (5), b2 D 0. The boundary of a hole is a cycle, which is
minimal. According to Rule (3), b1 is just the number of holes. We can also verify
this using formula (6.1) and (6.3). Since b0 � b1 C b2 D k0 � k1 C k2, we have
b1 D 1Ck1�k0�k2. For example, in Hather’s book, for X2 we have k0 D 2, k1 D 4,
and k2 D 1. There are two holes since b1 D 1C k1 � k0 � k2 D 1C 4� 2� 1 D 2.
We can conclude that there are exactly two holes in the Euclidean 2D plane as it is
shown in [13].

When we deal with applications in the following sections, we discuss how we
can calculate and use algorithms that cannot be solved with the human eye.
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Fig. 6.7 Examples of Vietoris–Rips complex: (a), build VR complex using small disk, and (b)
build VR complex using a relatively larger disk. [20]

6.4.2 Data Analysis Using Topology

Persistent data analysis has become more important in recent years. Many
researchers have done some analysis on actual point cloud data sets. Algorith-
mically, it is not very efficient if we use small disks to cover the area and then do a
homology calculation.

There is a method that is more practical called the Vietoris–Rips complex. It is
related to the Cech complex that is made by the topological cover of B.x; r/.

Definition 6.1 (Vietoris–Rips Complex). Let X be a subset of a metric space with
metric d. Choose a small real number � > 0. Construct a simplicial complex in the
following way inductively:

(1) For each point in X, make it as a 0-simplex.
(2) For each pair x1; x2 2 X, make a 1-simplex (Œx1; x2�) if d.x1; x2/ � �.
(3) For x1; x2; � � � ; xn 2 X, make an .n � 1/-simplex with vertices x1; x2; � � � ; xn.

Then, d.xi; xj/ � � for all 0 � i; j � n; that is, if all the points are within a
distance of � from each other.

This simplicial complex can also be denoted as VR.X; �/. The problem of this
simplex is that we need extensive calculations to construct the complex, especially
when X is a large set. It requires O.2fjXjg/ time complexity to determine such a
simplex if we directly implement a simple algorithm as suggested by the definition,
i.e. we check all possible simplexes. See Fig. 6.7 [20]. The construction process is
called the Vietoris–Rips filtration. There has been software developed to build the
complex [19, 20].

An algorithm for obtaining all possible Vietoris–Rips complex for each r D � is
not economic if the data set is very big. In the next section, we will find a very fast
algorithm for 2D and 3D problems (Fig. 6.7).
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6.5 Digital Topology Methods and Fast Implementation

Using a digital method, we can easily solve the problem of homology groups in 2D
and 3D [4, 5]. This method is called digital geometry topology [4].

Digital geometry and topology was developed to provide a solid foundation for
image processing and computer graphics. For 2D images, a connected component
usually means an object in the image. A digital image can be viewed as an array; for
simplicity, it can be viewed as a binary array with values only in f0; 1g. The value 0
indicates the background. Some theoretical development of digital topology related
to digital surfaces are still under investigations [4, 16].

The topological structure of a connected component in 2D is essentially to find
how many holes are in the component.

Thinking about the Vietoris–Rips or Cech complexes, these methods usually use
B.X; r/ as the (open) covering set. If we use digital point plate (or square) DB.X; r/
to cover each point in X, then we will have the same topology. As we discussed
above, for a digital component, we have b0 D 1, b2 D 1, and b1 D h where h is the
number of holes in the component. If DB.X; r/ is a good cover, meaning that each
intersection is simply connected (contractible), then the space made by DB.X; r/
has the same homology (groups) as the original manifold or complex sampled as
the point set X.

The set DB.X; r/ refers to the digital cell complex. See [4] for details. The
advantages of using DB.X; r/ instead of the Vietoris–Rips complex or B.X; r/ is
that we can use the properties of digital topology to get a very fast algorithm in 2D
and 3D.

To get DB.X; r/ algorithmically in a fast way is also interesting. We can use 6,
18, or 26 adjacency to determine whether the cubic cells are in DB.X; r/. For each r,
we can obtain the homology groups or Betti numbers to get the persistent homology.
In the following two subsections, we will introduce the digital methods.

For higher dimensional complexes, we still need to use the Vietoris–Rips com-
plex. We would also need further research to archive the simplicity of computing.

6.5.1 2D Digital Holes and Betti Numbers

There is a very simple formula to get the number of holes in 2D digital space. 2D
digital hole counting begins with the following.

Proposition 6.1. For a connected component that has at least one 2-cell in 2D, we
will have b0 D 1, b2 D 1 (at least one 2-cell in an image), and b1 D number of
holes.

This is because: (a) H0 D Z when the image is connected, (b) H2 D 0 since
@3 does not exist, and (c) according to the definition, � D ˙.�1/ibi D ˙.�1/iki.
So 1 � b1 C 0 D k0 � k1 C k2. For simplicity, let us use examples to verify this
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formula. See Fig. 6.5. We have 32 vertices, 48 edges, and 16 faces in Fig. 6.5a, so
k0 D 32, k1 D 48, and k2 D 16. Thus, b1 D 1 � .k0 � k1 C k2/ D 1 in Fig. 6.5a.

In Fig. 6.5b, k0 D 32C 21, k1 D 48C 34, and k2 D 16C 12. Therefore, b1 D 2
in Fig. 6.5b.

(Then, H1 D Z � � � � � Z D Zb1 .)
Following � D ˙.�1/ibi D ˙.�1/iki, this can be calculated as b1 D h, where

h is the number of holes (Fig. 6.8).
Therefore, using the digital method, we can easily find homology groups in 2D.
The number of holes and hole counting is important to determine whether two

images are similar or completely different.
Let us look at the digital case of this problem. In Fig. 6.5, we defined Inp as

the total number of corner points, each of which directs to the inside of the object.
Likewise, Outp is the number of total corner points, each of which directs to the
outside of the object.

The outside boundary curve always has 4 more outward points than inward
points. However, each of the inside cycle has 4 more inward (corner) points than
outward points. We assume that M has h holes. Then, we will have hC1 cycles, one
of which would be outside boundary cycle B. Therefore,

Theorem 6.1.

h D 1C .Inp � Outp/=4: (6.4)

The formal and topological proof requires more sophisticated knowledge in topol-
ogy, see [4]. To examine the correctness of the formula, we can still use the
examples shown in Fig. 6.5. In Fig. 6.5a, we have Inp D 4 and Outp D 4.

k0=32

k1=48

k2=16

k0=53 k1=82 k2=28

inward pointoutward point inward point

outward point

a b

Fig. 6.8 Betti numbers and holes: (a), (b)
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So h D 1 C .Inp � Outp/=4 D 1. In Fig. 6.5b, Inp D 11 and Outp D 7.
So h D 1C .Inp�Outp/=4 D 2. We can see that formula (6.4) is much simpler than
we just count k0, k1, and k2.

In the image below, we can count the number of inward and outward points.
We get h D 1.

6.5.2 3D Genus Computation

For details on 3D genus computation, see Chap. 14 in [4]. We will only present the
formula and algorithm here [4, 5].

Theorem 6.2. Let M be a closed 2D manifold in 3D space. The formula for genus is

g D 1C .jM5j C 2 � jM6j � jM3j/=8: (6.5)

where Mi indicates the set of surface-points, each of which has i adjacent points on
the surface.

This formula provides a type of topological invariants such as genus and
homology groups for 3D image processing. We also design a linear time algorithm
that determines such invariants for digital spaces in 3D.

Such computations have direct applications in medical imaging as they can be
used to identify patterns in 3D imaging, especially for bone density calculation [4].
In [4], we discussed the implementation of the method and the applications of digital
mean curvatures to 3D image classifications.

We now present a linear algorithm for finding homology groups in 3D. The actual
real data calculation is shown in Figs. 6.9 and 6.10.

Algorithm 6.3. Let us assume that we have a connected set M that is a 3D digital
manifold in 3D space.

Step 1. Track the boundary of M, S D @M, which is a union of several closed
surfaces. This algorithm only needs to visit all the points in M to see if the point
is linked to a point outside of M. This point would be on the boundary.

Step 2. Calculate the genus of each closed surface in @M using the method
described in Sect. 2. We just need to count the number of neighbors on a surface.
and put them in Mi using the formula (6.5) to obtain g.
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Fig. 6.9 Betti numbers and holes: h D 1 where Inp D 18 and Outp D 18

Fig. 6.10 3D genus calculation using a linear time algorithm in digital space: (a) g=6 and (b) g=10

Step 3. we also can get H0, H1, H2, and H3. H0 is Z. For H1, we need to get
b1.@M/, which is the summation of the genus in all of the connected components
in @M. H2 is the number of components in @M and. H3 is trivial.
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6.6 New Developments in Persistent Homology
and Analysis

Persistent homology for data analysis has been studied by many researchers in
mathematics and computer science, Carlsson [2], Edelsbrunner and Harer [8, 9],
Ghrist [6, 7, 12], and Zomorodian [34, 36], just to name a few.

Besides playing an important role in shape analysis, image processing, and
computer vision, in recent years, persistent homology has been applied to many
areas of data science including biology and medical science [26, 27] and sensor
networks [6, 7]. Statistical informational analysis is also used in homology [10, 11].
Persistent homology has also been applied to natural language processing [33].
Introductory articles can be found in [2, 12, 31, 33].

Some theoretical analysis using theoretical learning theory and probabilistic
learning are particularly interesting to computer theorists [22, 23, 31]. Software
systems developed for homology groups can be found in [19, 29]. The principle
of the algorithm design can be found in [19, 20].

6.6.1 Coverage of Sensor Networks Using
Persistent Homology

Sensor Networks are the popular research area in electrical engineering, computer
science, and information technology [1]. A fantastic method to solving a sensor
networks coverage problem was developed using persistent homology [6, 7]. This

In this problem, we want to know whether or not a set of sensors can cover a
given area without leaving holes. However, we do not know the exact location of
the sensors. We have a set of testing locations (users who have cell phones) that will
be able to tell if the user is within a certain distance (� r) to a sensor i.

This problem was first considered by Silva and Grist in [6]. Tahbaz-Salehi and A
Jadbabaie proposed a solving method that uses integer programming with persistent
homology [28].

They have even developed a distributed algorithm that can localize coverage
holes in a network of sensors without any metric information. This means we can
use a computing cloud to accomplish the job. This is exactly the right algorithm
for BigData networking. The implementation under Hadoop or SPARK architecture
should not be very difficult.

This algorithm uses Vietoris–Rips complexes and finds the tightest (smallest or
minimal) cycle encircling a hole. Since this problem is mostly in 2D, the question
we can ask is the following:

section to solve this problem in an even faster way? What is the time complexity of
the new algorithm?

problem was first considered by Grist, Problem 6.1 in this book.

Problem 6.1. Can we use the digital method for hole finding described in the above
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6.6.2 Statistics and Machine Learning Combined
with Topological Analysis

A computational and statistical learning method was developed by Niyogi, Smale,
and Weinberger for noise data where the homology was concerned [22, 23]. More
interestingly, their method is related to a spectral learning algorithm based on a
combinatorial Laplacian (introduced in Chap. 5) that is referred to as a sampling
data-based simplicial complex [25].

This work is of particular interest in the areas of theoretical computer science and
discrete mathematics. However, researchers usually emphasize algorithm analysis
and not practical implementations.

Another aspect of statistical methods used in topological data analysis was
in [11]. They focused on the practical uses of the statistical method in shape analysis.

However, when both sides realize the advantages of the other, new and more
effective methods will be developed in the near future.

The implementation is always difficult for people in computer science and
information technology. Since the mathematics behind homology requires an
advanced mathematical background, the methods are not easily accessible to the
broader public [33].

For instance, understanding Betti numbers is much more difficult than the term
number of holes. However, the concept of holes is not precise to the homeomor-
phism of cycles. Training data scientists in algebraic topology is an issue that must
be resolved in order for them to use such great technology.

To be frank, the concept of homology groups is a hard topic even for some
mathematicians. At the same time, the material and concept is one of the toughest
for a professor to teach in a popular way. For instance, how do we explain why a
triangle without filling in 2D has b1 D 1, but a triangle with filling has b1 D 0?
Intuitively, we can see that the triangle without filling has a hole, but the other does
not. Using the theory of homology to derive the proof would be a difficult job.

6.7 Remarks: Topological Computing and Applications
in the Future

In this section, we provide an author’s view to some possible applications of
topological data processing in the future. Finding the topological structure of a
massive data set has gained much attention in mathematics and engineering. Space
data and methodological data analysis require topological solutions.

A set of individual data points (cloud data) does not have a topological structure
mathematically. However, since they are sampled from the real world, we can only
get a discrete set. So the human interpretation of each unique cloud data set means
something different. How do we find the best interpretation that matches the original
object or event [12, 34]?
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We know that each point is an individual event in sampling. However, we can
interpret each data point as an area or volume (usually a disk or a ball), but we
would not know how big the area or volume is. When the area is very small, the
object may still remain not connected, but when the coverage area of a point is very
big, the total area will be connected and become one connected object. So what
would the radius be such that the filled area is the closest to the real world? This
is also related to “data reconstruction” since a different radius chosen is the simple
learning process.

6.7.1 �-Connectedness and Topological Data Analysis

In the persistent homology method, we make a sample point grow in its volume
with a radius r. When r changes from 0 to a big number, the data will change from
individual data points to a large volume until fills the entire space.

The persistent homology method calculates the homology groups (number of
holes in each dimension) for each r. It would make some sense that the same
topology (homology groups) that covers most of r will be the primary topological
structure of M, the data set.

The minimum spanning tree(MST) that finds the minimum value for r, to make
all data samples connected. This we call Dc. The value of the largest distance of the
pair of points in the space M will make the set to be simply connected, denoted by
DM . The smallest value that makes the set simply connected is called Ds, so we have
Dc � Ds � DM .

How do we find Ds using a fast search such as divide and conquer? Another
way to represent the problem of persistent analysis in �- connectivity is to build a
reduction in the following way:

Get the geometric distance for all pairs, which we do not need to calculate
beforehand. We put the largest value on the site i, then we put the value f .j/ D
f .i/ � d.i; j/. We can see that every point will be adjacent to other points.

We could also use MST with normalization: Let us put point i as a point we are
looking at. i will easily be �-connected to its closer points. For any point j, j will be
easily �-connected to point k if j and k are in the same circle or sphere with respect
to the center at site i. This is because the potential values on j and k are determined
only by the distance to i even though j and k are very far from each other. The good
asset about this setting is that if j and k are not �-connected, then j and k are not
close to each other.

As we stand at site i, we can do a partition using �-connectedness. So we
calculate homology based on the partitioned data. H0 will be the number of the
component.

We can also calculate the value based on j, and we can use it to separate the
classes partitioned by i. This is a refinement process with regard to the existing one
that is centered at i.
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The advantage is that we can build �-connectivity for each node and pass it to a
cloud computer to do a focused calculation and combine the results.

Mathematically, the results will be the same and the complexity is not increased.
We can do a clustering using kNN to only focus on the center points (to build a
�-connectedness for approximation).

Such a process will save a lot of time and make the calculations possible in cloud
computing [14, 15, 30]. We only consider the original data points and do not need
to work on the actual filling using disks. If a component contains a hole, we can use
Minkowski’s sum.

Based on point locations and radius, we can use triangulation, simplex, or digital
methods for space coverage. Then, we can calculate the homology group. We first
want a �-connected partition because we want to treat the smaller subsets.

Another application of �-connectedness is to use other factors, such as the shape
when DM , the largest distance between two points in the set, is small. We can also
use a hierarchy for detailed topological analysis.

A �-connected component indicates the topology. The homology of the lambda-
connected segmentation is another kind of the bar-code of persistent analysis. For
image segmentation, when the value of � changes from 0 to 1, we can obtain the
homology of the partition by considering each �-connected components, H.�/.
What is the relationship between H.�/ and the maximum spanning tree for � we
discussed in Chap. 3?

6.7.2 Hierarchy of �-Connectedness and Topological
Data Analysis

Data has shape and shape contains meaningful information. Topological data
analysis (TDA) tries to find the topology of the data, whereas �-connectedness can
attach the geometric and statistical information to topological data analysis.

Each data cluster has its own shape and pattern, but what the relationship is
among them is what we try to find when we make a classification of the classified
data (or treat the cluster as an element for next level classification). �-connectedness
can measure the similarity of two objects. Let Hr is a persistent homology group for
radius r. Let the set of Hri to be vertices of a graph, the �-connectedness can be
implemented among those groups that represent data partitions.

Basic topology of data has meaning, but the detailed analysis would provide
more than topological information. More importantly, �-connectedness uses the
information obtained from TDA that is not totally independent from the TDA.

Using �-connectedness in topological data analysis provides an extra parameter
for assisting the existing topological method.

The value of the data recombines the average location. The shape factor or pattern
factor is not enough in the next level of partitioning the geometric data information
on the distance metrics.
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We can use �-connectedness to combine classifications from different data sets
in different data forms.

For image processing, �-connectedness can still apply in terms of partitioning
into a Big Pixel.

This can even be applied to the deformed image where the deformation is a
continuous move.

6.7.3 Topological Computing in Cloud Computers

Some companies do not want to offer all the data information to outside user, they
can provide some necessary information for others to evaluate the company. This
just like the outlines and statistics of a company. The “door” or “gate” for exchange
information. But cannot provide the whole information. In image segmentation, we
may need to only hock the boundary in the quadtree (split-and-merge), there is no
need to know the entire quadtree.

When a company only wants to know certain information such as boundary
information or doors not inside of a building, the topological structure can be
calculated based on the boundary and inside data (secret inside calculation).

Just like in quadtree analysis, we only know the boundary of lines, and each
station would have to take care its own calculations.

Data sharing has limitations in that data may not be detailed or a computer station
cannot store the whole volume of data. Topological data analysis would need search
and matching on boundaries.

Learning in �-connectedness includes learning the local lambda value, quadtree
analysis, and the kernel method or dynamically moving kernel methods.
�-connectedness has advantages in that it can work with both a search method

with topological characteristics and a classification method related to geometric data
classification.

It is a general methodology for multitasking, independent to variability in
BigData, and a fast implementation method for computer programming due to
Depth First Search and Breadth First Search technology.

To get the shape of a component in the data sets, we must consider other features,
such as average value and shape type. In summary, connectivity can be applied to
find the topological structure and �-connectivity can be used to find classification.
This classification in geometry is the shape of the object.

Learning in �-connectedness includes learning the local lambda value, quadtree
analysis, and the kernel method or dynamically moving kernel methods.

Homology can find topological structure, but we still need to find the geometric
structure of data points. For this purpose, �-connectedness is a good candidate for
data science.

Topological analysis is needed to model data sets that may not fill the entire space
[14]. For instance, the rainfall during a hurricane will contain a centric area that does
not have a lot of precipitation. Data reconstruction should consider the topology of
the data sets.
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When we consider a specific problem, what features are the most important?
Average value, shape, center location, or other. �-connectedness will provide a
general tool for these problems.

For any data set, with or without initial value, when a basic partition or classifi-
cation is made, we can build a function related to each class. Further classification
or decomposition of the original data will use this information. For instance, for the
computation of homology groups in terms of persistent analysis or Morse theory, we
can use the connectivity of the data on the previous partition/classification. Not only
do we need the simple distance metric but we also require additional information,
though the distance metric (used in most persistent methods) is important.

For instance, in circle packing, for the deformation of the data, we want to find
the deformation trice. This trice will represent the customer’s marketing tendencies.

The �-connectedness method will provide more refined and detailed techniques
to the modern problem related to BigData. Again, for existing techniques, the
�-connectedness method will be highly applicable to reexamine a practical problem
related to data science in finding and modeling a detailed structure of the problem.
It could bring us one step closer to the satisfactory or desired solution of the problem
and can be used to articulate the problem.

The following example provides an explanation to this problem: (1) A company
owns a large forest. In regular years, there is a fertilizer plan with designed
distribution. Each small circle will give a certain amount of fertilizer for a given
cost. This area contains mountains and lakes. This year, due to strong winds from a
valley near the forest and a long winter, the trees need more fertilizer.

Then, the planned picture image will be combined with sensor monitoring on the
ground.

We want to use the ground sensors to do the first partition, and then we want to
find the deformation curve of how much fertilizer is required. How do we deal with
this problem?

A standard classification method can be used to find categories. The persistent
analysis can be used to find the lakes that do not need to be treated. To find the
deformation curve, the �-connectedness method can help. The data sets would still
need to be monitored during the winter.

Problem 6.2. How do we calculate homology groups based on connected sum #?
We know that �.M�N/ D �.M/ ��.N/ and �.M1#M2/ D �.M1/C�.M2/��.Sn/.
How do we use the similar method in homology groups calculation if we know the
homology group of parts?

Problem 6.3. For a polyhedra or polytope in very large scales, how do we
decompose it to be convex hulls? This problem was discussed between Dr. David
Mount in UMD and the author.

Problem 6.4. Given a cloud set (can be very large), we will want to define a region
(moveable) R, find Delaunay decomposition in R. Move R to cover all Space, R can
be an N-ball. How do we find the local Delaunay decomposition with the merge
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considering intersections (smoothly)? The solution of this question will also solve
the persistent homology problem. This problem was discussed between Dr. Feng
Luo in Rutgers University and the author.
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Chapter 7
Monte Carlo Methods and Their Applications
in Big Data Analysis

Hao Ji and Yaohang Li

Abstract Due to recent emergence of many big data problems, Monte Carlo
methods tend to become powerful tools for analyzing big data sets. In this
chapter, we first review the fundamental principles of Monte Carlo methods. Then,
we describe several popular variance reduction techniques, including stratified
sampling, control variates, antithetic variates, and importance sampling, to improve
Monte Carlo sampling efficiency. Finally, application examples of estimation of
sum, Monte Carlo linear solver, image recovery, matrix multiplication, and low-
rank approximation are shown as case studies to demonstrate the effectiveness of
Monte Carlo methods in data analysis.

7.1 Introduction

Numerical methods known as Monte Carlo methods can be loosely defined in
general terms to be any methods that rely on random sampling to estimate the
solutions. Monte Carlo methods are often applied to problems which are either too
complicated to be described by a mathematical model or whose parameter space is
too large to be explored systematically.

Recent years have witnessed dramatic increase of data in many fields of
science and engineering [1], due to the advancement of sensors, mobile devices,
biotechnology, digital communication, and internet applications. These massive,
continuously growing, complex, and diverse data sets are often referred to as the
“big data.” Analyzing big data demands cost-effective and innovative forms of
information processing for enhanced insight and decision making. While many
traditional, deterministic data analysis methods have great difficulties to scale to
the massive big data sets, Monte Carlo methods, which are based on random
sampling techniques, become important and powerful tools for big data applications.
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Particularly, for certain big data sets beyond the computational capability of the
most powerful supercomputers, Monte Carlo data analysis methods using random
sampling are the only viable approaches.

This article starts with a basic description of the principles of Monte Carlo
methods. It then discusses the variance reduction techniques, including stratified
sampling, control variates, antithetic variates, and importance sampling, to design
“smart” Monte Carlo. Examples of Monte Carlo methods on estimating sum
of a large array, solving linear systems, multiplying matrix products, recovering
missing matrix, and approximating low-rank matrices. Although in order to keep
the presentation simple, these application examples are presented in a relatively
small scale, the underlying Monte Carlo techniques can be effectively extended to
big data sets.

7.2 The Basic of Monte Carlo

Monte Carlo methods provide approximate solutions to a variety of mathematical
problems by random sampling. Let us take the numerical integration as an example,
which constitutes a broad family of algorithms in numerical analysis. Suppose we
want to calculate a one-dimensional definite numerical integral, I D R b

a f .x/ dx.
A common numerical integral method is to divide the one-dimensional interval into
N subintervals and then to sum the area corresponding to each subinterval using
either rectangular, trapezoidal, or Simpson’s rules (Fig. 7.1a) [2]. Similarly, for two-
dimensional intervals, the number of 2D subintervals becomes N2 (Fig. 7.1b). In
general, for d-dimensional integration problems, the d-dimensional space needs to
be divided into Nd subintervals. For a not very high dimensional problem with
d D 20 and N D 100, the total number of subintervals that need to be evaluated
goes up to 1040, which is unapproachable by most numerical integration algorithms.
Mathematically, this is referred to as the “curse of dimensionality.”

x

f(
x)

ba+4ha+3ha+2ha+ha

xy

f(x,y)

a b

Fig. 7.1 Numerical integration using deterministic methods. (a) 1D integral. (b) 2D integral
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In contrast, Monte Carlo methods estimate the integral by statistical sampling
techniques [3]. Let us consider a one-dimensional integral I0�1 D

R 1
0

f .x/ dx, which

can be easily extended to a more general integral of I D R b
a f .x/ dx. Suppose that

the random variables x1; x2; � � � ; xN are drawn independently from the probability
density function p.x/. A function F may be defined as

F D
NX

iD1
f .xi/ p .xi/ :

The expectation value of F becomes

E .F/ D
Z 1

0

f .x/ p .x/ dx:

The crude Monte Carlo integration method assumes that the probability density
function p.x/ is uniform, i.e., the random samples f .x1/; f .x2/; � � � ; f .xN/ are equally
important, and then

E .F/ D
Z b

a
f .x/ dx:

Correspondingly, the variance of F becomes

Var .F/ D 1

N

Z 1

0

.f .x/ � E.F//2 dx D 1

N
�2;

where �2 is the inherent variance of the integrant function f .x/. Clearly, we can find
that the standard deviation of the estimator  is �N�1=2. This means that as N !1,
the distribution of F narrows around its mean at the rate of O

�
N�1=2

�
.

Now, let us extend the Monte Carlo integration method to a d-dimensional
integral Id D

R 1
0
� � � R 1

0
f .x/ dx, the expectation of Fd DPN

iD1 f .xi/=N on uniformly
distributed random variable vectors x1; x2; � � � ; xN becomes

E .Fd/ D
Z 1

0

� � �
Z 1

0

f .x/ dx D Id:

The variance of the estimator Fd is �2d =N, where �2d is the inherent variance of the
integrant function f .x/. If an integral function f .x/ is given, �2d is a constant and
therefore, similar to one-dimensional integral, the convergence rate of Monte Carlo
is O

�
N�1=2

�
, which is independent of dimensionality.

In summary, compared to the deterministic numerical integration methods,
whose convergence rate is O.N�˛=d/, where ˛ is the algorithm related constant
and d is the dimension, Monte Carlo integration method yields a convergence
rate of O.N�1=2/ [4], which can somehow avoid the “curse of dimensionality.”
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Moreover, computations on each random samples are independent, which can be
carried out in an embarrassingly parallel minor to harness the power of large-scale
parallel and distributed computing architectures [5, 6]. On the other hand, the main
disadvantage of Monte Carlo is that the convergence of Monte Carlo methods is
very slow, roughly for every one digit of accuracy usually requiring 100 times more
computations.

7.3 Variance Reduction

Crude Monte Carlo treats all random samples are equally important. In reality, we
can often gain additional knowledge from the application domain, which can be
taken advantage to come up with better estimators. Variance reduction is a procedure
of deriving an alternative estimator to obtain a smaller variance than the crude
Monte Carlo estimator and improve the precision of the Monte Carlo estimates
for a given number of samples. In practical applications, a good estimator leading
to million times more accurate than a bad one is not rarely seen. In this section,
we describe some of the popular variance reduction techniques [3, 4], including
stratified sampling, control variates, antithetic variates, and importance sampling.
These variance reduction methods, if appropriately used, can significantly improve
the efficiency of Monte Carlo methods in processing and analyzing big data sets.

7.3.1 Stratified Sampling

The inherent variance of the integral function f .x/may vary significantly in different
regions. The fundamental idea of stratified sampling is to apply more samples in
the region with large variability and vice versa. Using the one-dimensional integral
in interval Œ0; 1� as an example, stratified sampling is to partition the interval Œ0; 1�
into several disjoint subinterval ranges, i.e., Œ0; ˛1/ ; Œ˛1; ˛2/ ; � � � ; Œ˛k�1; ˛k/ ; Œ˛k; 1�.
Then a Monte Carlo estimator F˛i�1;˛i is applied to each range Œ˛i�1; ˛i/ separately
so that

F˛i�1;˛i D
niX

jD1
.˛i � ˛i�1/

1

ni
f .xj/;

where xj is a random sample in Œ˛i�1; ˛i/ and ni is the total number of samples.
Clearly,

E .F˛i�1;˛i/ D
Z ˛i

˛i�1

f .x/dx:
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The overall stratified sampling estimator Fstratified is the combination of all estimators
in different subinterval ranges

Fstratified D
kC1X

iD1
F˛i�1;˛i ;

which is an unbiased estimator of the integral. The variance of the stratified sampling
estimator becomes

Var
�
Fstratified

� D
kC1X

iD1

�
˛i � ˛i�1/

� 1
ni
�2˛i�1;˛i

;

where �2˛i�1;˛i
is the variance of the integrant function f .x/ in subinterval Œ˛i�1; ˛i/.

This reveals the rationale of stratified sampling, which is to minimize
1

ni
�2˛i�1;˛i

in each subinterval. If stratification is well carried out, the variance of stratified
sampling will be less than that of crude Monte Carlo.

7.3.2 Control Variates

If there is another estimator which is positively correlated to the one to be evaluated
and can be easily calculated with known expectation, it can be used as a control
variate. For example, in the Monte Carlo integration example, the original integral
I0�1 D

R 1
0

f .x/dx can be rewritten into a summation of two parts

I0�1 D
Z 1

0

g.x/dxC
Z 1

0

.f .x/ � g.x// dx;

where g.x/ is a simple function that can be either integrated theoretically or easily
calculated and absorbs most of the variation of f .x/ by mimicking f .x/ as shown in
Fig. 7.2, we only need to estimate the difference between f .x/ � g.x/, which will
result in variance reduction of the estimator.

7.3.3 Antithetic Variates

Contrast to the control variates method based on a strongly positively correlated
estimator with F, the antithetic variates method takes advantage of an estimator F0
that is strongly negatively correlated with F. Suppose that F is an unbiased estimator
of a quantity, E.F/ D E.F0/, and Cov.F;F0/ < 0. Then, the antithetic estimator
Fantitheticc D .FCF0/=2 is also an unbiased estimator of this quantity. The sampling
variance of Fantitheticc becomes
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Fig. 7.2 Control variates approach. If g.x/ can be estimated theoretically, the sampling errors are
limited to the area of f .x/� g.x/

Var .Fantitheticc/ D Var .F/

v
C Var .F0/

4
C Cov .F;F0/

2
:

Here Cov.F;F0/ < 0 due to negative correlation between F and F0, which leads to
overall smaller variance in Fantitheticc than that of F and F0.

7.3.4 Importance Sampling

The importance sampling technology is often used in statistical resampling, which
reduces variance by emphasizing the sampling on regions of interest. For example,
by introducing a new proposal function g.x/, the original integral I0�1 D

R 1
0

f .x/dx
can be rewritten as

I0�1 D
Z 1

0

f .x/

g.x/
g.x/dx D

Z 1

0

f .x/

g.x/
dG.x/;

where G.x/ is a cumulative density function (CDF). f .x/=g.x/ is called the
likelihood ratio. With random samples drawn from a proposal distribution whose
CDF is G.x/ instead of sampling from a uniform distribution, the variance of the
importance sampling estimator Fimportance sampling becomes

Var
�
Fimportance sampling

� D
Z 1

0

�
f .x/

g.x/
� E.F/

�2
dG.x/:

A good likelihood ratio can result in a significant variance reduction.
In practice, assume that we know nothing about the target distribution at the

very beginning, we may have to start from uniform sampling. However, after initial
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sampling, we have a better understanding of the target distribution, which results
in a better proposal function. The resampling can be guided by the new proposal
function and leads to a better approximation of the target distribution.

7.4 Examples of Monte Carlo Methods in Data Science

In this section, we present several application examples as case studies of using
Monte Carlo methods for data analysis. Variance reduction techniques are applied
to build “smart” Monte Carlo estimators to enhance sampling efficiency.

7.4.1 Case Study 1: Estimation of Sum

In many practical data analysis applications, we are often required to estimate the
sum of a large data set. However, due to many reasons, we are not allowed to visit
every element in the data set but want to get a good estimation. The following is an
application example to estimate the overall salary expense in a company.

Consider a big, global company having 7140 employees falling in the following
categories, 78 managers, 4020 engineers, 2008 salesmen, and 1034 technicians.
Now we want to estimate the overall expense in employee salaries in this company.
Due to cost as technical difficulty, we are only allowed to use 100 samples.

The simplest sampling method is the crude Monte Carlo using uniform sampling
without considering different categories. The main problem of uniform sampling is
ignoring the differences among categories, which will thus lead to a large estimation
variance 460; 871K ˙ 80; 712K. More importantly, the percentage of managers is
around 1% in all employees. There is a high chance that the selected 100 samples
may miss the manager category. Stratified sampling can better address this problem.
We can calculate the number of samples falling into each category, specifically,
78=7140 � 100 D 1 sample in managers, 4020=7140 � 100 D 56 samples in
engineers, 2008=7140�100 D 28 samples in salesmen, and 1034=7140�100 D 15
samples in technicians. As a result, stratified sampling yields better estimation
.500; 112K ˙ 30; 147K/ than that of uniform sampling.

If we have additional information, we can construct even better stratified sam-
pling estimator. If we happen to know about the salary variation in each employee
category (for example, from previous years’ data), i.e., Managers .200K 	 500K/,
Salesmen .40K 	 120K/, Engineers .60K 	 80K/, and Technicians .50K 	 70K/,
we can take advantage of this information. We can find that the managers and
salesmen have large variances, which deserves more samples while the engineers
and technicians categories have small variances, where small number of samples
will work. By reassigning the number of samples in different categories, 32 samples
for Managers, 7 samples for Engineers, 59 samples for Salesmen, and 2 samples
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for Technicians, the overall estimated result becomes 520; 066K˙ 10; 113K, which
provides us more precise estimation than simple stratified sampling.

7.4.2 Case Study 2: Monte Carlo Linear Solver

Applying Monte Carlo sampling to estimate solutions in linear systems is originally
proposed by Ulam and von Neumann and later described by Forsythe and Leibler in
[7]. Considering a linear system of

x D HxC b;

where H is an n � n non-singular matrix, b is the given constant vector, and x is the
vector of unknowns. The fundamental idea of the Monte Carlo solver is to construct
Markov chains by generating random walks to statistically sample the underlying
Neumann series

I C H C H2 C H3 C � � �
of the linear system [8]. The transition probabilities of the random walks are defined
by a transition matrix P satisfying the following transition conditions:

Pij � 0I
X

j

Pij � 1I

Hij ¤ 0! Pij ¤ 0;
and the termination probability Ti at row i is defined as

Ti D 1 �
X

j

Pij:

Then, a random walk starting at i0 and terminating after k steps is defined as

	k W r0 ! r1 ! r2 ! � � � ! rk

where the integers r0; r1; r2; � � � ; rk are the row indices of matrix H visited during
the random walk.

As noted in existing literature [9], if the necessary and sufficient condition for
the convergence of Monte Carlo solver holds, a random variable X.	k/ defined as

X .	k/ D Hr0r1Hr1r2 � � �Hrk�1rk

Pr0r1Pr1r2 � � �Prk�1rk

brk=Trk

is an unbiased estimator of component xr0 in the unknown vector x.
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Fig. 7.3 Comparison of
Monte Carlo linear solver
with different transition
matrices
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Variance reductions have been commonly employed in the Monte Carlo algo-
rithms to improve the sampling efficiency. Let’s consider a simple linear with

H D
2

4
0:1 0:45 0:225

�0:15 0:1 �0:3
�0:18 0:36 0:1

3

5 and b D
2

4
0:225

1:35

0:72

3

5. Clearly, the exact solution is

b D
2

4
1

1

1

3

5 :

Figure 7.3 compares the convergence of Monte Carlo linear solvers using three
sampling schemes listed in Table 7.1 with different transition matrices in terms of
estimate value x1. One can find that even though all of these sampling schemes have
the same convergence rate of O.N�1=2/, the estimator based on Monte Carlo Almost
Optimal (MAO) scheme [10], which samples the matrix elements according to their
importance, yields significant smaller variance than the other two.

7.4.3 Case Study 3: Image Recovery

In this case study, we investigate the image processing technology of using a small
number of pixel samples to recover an incomplete or fuzzy image. The strategy of
Monte Carlo sampling plays a critical role for the quality of the recovered image.

We use an aerial image chosen from the USC-SIPI Image Database [11] as an
example. The image recovery method is based on a matrix completion algorithm
by optimizing the constrained nuclear norm of the matrix [12]. Two sets of pixel
samples (12:19% samples in each) are used—one is generated by uniform sampling
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Table 7.1 Uniform, original, and MAO sampling scheme with different transition
matrices

Sampling scheme Pij P

Uniform sampling
1

nC 1

2

64
0:25 0:25 0:25

0:25 0:25 0:25

0:25 0:25 0:25

3

75

Original (Ulam and von Neumann)
ˇ̌
Hij

ˇ̌
2

64
0:1 0:45 0:225

0:15 0:1 0:3

0:18 0:36 0:1

3

75

MAO (Monte Carlo Almost Optimal) ˇ̌
Hij

ˇ̌
P

k jHikj

2

64
0:129032 0:580645 0:290323

0:272727 0:181818 0:545455

0:28125 0:5625 0:15625

3

75

and the other by importance sampling. The importance sampling process consists of
two stages:

(1) initial uniform sampling is performed with 3:05% pixel samples to learn the
rough pixel distribution in the image to produce a proposal function; and

(2) importance sampling is performed based on the proposal function created in (1)
to generate the rest 9:14% samples.

As shown in Fig. 7.4, the pixel samples generated by the importance sampling
scheme lead to a recovered image in significantly higher quality than the one by
using uniform samples.

7.4.4 Case Study 4: Matrix Multiplication

In this case study, we investigate the Monte Carlo methods of approximating the
product of large matrices. Let A be an m� n matrix and B be an n� p matrix, where
m,n, and p are large. The Monte Carlo sampling algorithm to fast approximate the
product matrix C D AB using s samples is described as follows [13]:

(1) Generate s random integers ik between 1 and n with probability pik , for k D
1; � � � ; s;

(2) Set M.k/ D A.ik/=
p

spik and N.k/ D B.ik/=
p

sp.ik/ , for k D 1; � � � ; s;
(3) Compute the matrix product of MN.

The fundamental idea of the Monte Carlo sampling algorithm is to con-

struct a discrete random variable X with probability p

 
X D A.k/B.k/

pk

!
D pk for

k D 1; � � � ; n, where A.k/ and B.k/ represent the kth column of A and the kth row of
B, respectively. The expectation of X is
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Fig. 7.4 Comparison of
image recovery from pixel
samples generated by uniform
sampling and importance
sampling

E.X/ D
nX

kD1

A.k/B.k/
pk

pk D
nX

kD1
A.k/B.k/;

which is identical to matrix C. Therefore, matrix C can be fast approximated from

the product of MN, where MN D 1

s

Ps
kD1

A.ik/B.ik/
pik

is an estimator. The variance on

each element in MN is [13]

Var
�
.MN/ij

	 D
nX

kD1

A2ikA2kj

s2pk
� 1

s2
.AB/2ij :
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To improve the accuracy of approximating matrix–matrix multiplication, impor-
tance sampling can be effectively applied by using the optimal probabilities

pk D
ˇ̌
A.k/

ˇ̌ ˇ̌
B.k/

ˇ̌
Pn

jD1
ˇ̌
A.j/
ˇ̌ ˇ̌

B.j/
ˇ̌ ;

where the expectation of approximation error can be theoretically minimized
[13, 14].

Let us consider a simple toy example where

A D

2

666664

1:6254 8:5799 8:5596 5:4832 9:1047 1:3797

9:8717 4:5759 7:5434 1:1230 8:4098 8:3874

4:8246 3:9563 5:1322 1:0143 8:6938 7:7045

0:9104 545:3701 4:6611 769:1278 9:1947 4:4734

14:9880 6:4549 197:7756 5:2276 88:9237 7:4417

3

777775

and

B D

2

66666664

5:5899 2:6152 7:8102 8:2298

5:9020 666:2519 2:6396 7:7184

7:3150 143:9785 9:0632 4:9668

2:1493 695:7888 3:2657 974:7106

1:3544 758:2126 2:7377 4:6348

9:1003 8:3607 6:7709 27:5470

3

77777775

Figure 7.5 compares the relative approximation error of the resulting product
matrix using uniform sampling and the one using important sampling with respect
to sample size in 1000 runs. One can clearly find that when optimal selection
probabilities are used, importance sampling outperforms uniform sampling with
better approximation of the matrix product.

7.4.5 Case Study 5: Low-Rank Approximation

Given a matrix A, it is often desirable to find a good low-rank approximation to
A in many data analysis applications. Denote u1; � � � ; un and v1; � � � ; vn as the left
and right singular vectors, respectively, �1; �2; � � � ; �n, are singular values in non-
increasing order, the matrix A can be expressed as

A D
nX

iD1
�iuiv

T
i
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Fig. 7.5 Comparison of
relative approximation error
in matrix–matrix
multiplication using uniform
sampling and importance
sampling with respect to
sample size in 1000 Monte
Carlo runs
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The best k-rank approximation [15] to a matrix A is formed as Ak D Pk
iD1 �iuiv

T
i

with minor error

min
rank.B/Dk

kA � Bk2 D kA � Akk2 D �kC1:

To handle the computational challenges involved in very big matrices, ran-
domized Singular Value Decomposition (SVD) algorithm with Gaussian sampling
[16–18] is widely used to approximate top-k singular values and singular vectors.
The rationale is to construct a small condensed subspace by sampling A, where
the dominant actions of A could be fast estimated from this small subspace with
relatively low computation cost and high confidence. The procedure of randomized
SVD is described as follows:

(1) Sample A with a standard Gaussian matrix ˝ so that Y D A˝;
(2) Construct a basis Q for the range of Y;
(3) Compute matrix multiplication of B D ATQ;
(4) Perform a deterministic SVD decomposition on B D UB˙BVT

B ;
(5) Assign uj D QvBj , �j D �Bj , and vj D uBj , j D 1; � � � ; k.

We consider an example of applying the randomized SVD algorithm to obtain
a low-rank approximation of an image while minimizing the approximation error.
The control variates approach is applied. First of all, the whole range space of matrix
A is sampled to approximate the largest r singular components and then derive an
approximate eAr such that eAr DPr

iD1 �iuiv
T
i . If the approximation error is too high,

eAr is used as the control variate to sample the next dominating singular components.
This process is repeated until satisfactory approximation accuracy is achieved.
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Fig. 7.6 Low-rank approximation using randomized SVD with Gaussian sampling and control
variates strategy. (a) The original image. (b) Rank 10 with approximation error 14:3%. (c) Rank
40 with approximation error 2:1%. (d) Rank 100 with approximation error 0:9%

Figure 7.6 shows the results of applying randomized SVD algorithm and control
variate to compute a low-rank approximation of the aerial image with less than 1%
error. Figure 7.6a presents the original image. Figures 7.6b–d illustrate the adaptive
reconstructed images with increasing numbers of singular components. Finally with
100 singular components, a low-rank approximation of the original image with
0:9% error is obtained.

7.5 Summary

Monte Carlo methods are powerful tools to analyze large data sets, particularly in the
big data era when the data growth outpaces the computer processing capability. We
review the basics of Monte Carlo methods and the popular techniques for variance
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reduction in this article. Several application examples using Monte Carlo for data
analysis are presented. The rule of thumb in Monte Carlo is, the more known
knowledge is incorporated into the estimator, the more uncertainty can be reduced
and the better data analysis accuracy can be obtained.
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Chapter 8
Feature Extraction via Vector Bundle Learning

Risheng Liu and Zhixun Su

Abstract In this paper, we propose a geometric framework, called Vector Bundle
Learning (VBL) for feature extraction. In our framework, a vector bundle is
considered as the intrinsic structure to extract features from high dimensional data.
By defining a manifold to model the structure of sample set, features sampled
from each fibre of a vector bundle can be obtained by metric learning on the
manifold. A number of existing algorithms can be reformulated and explained
in this unified framework. Based on the proposed framework, a novel supervised
feature extraction algorithm called Vector Bundle Discriminant Analysis (VBDA) is
proposed for recognition and classification. Experimental results on face recognition
and handwriting digits classification demonstrate the excellent performance of our
VBDA algorithm.

8.1 Introduction

Feature extraction is an extensively discussed topic in computer version and pattern
recognition fields. Different kinds of techniques have been developed for this key
problem. In this paper, we propose to view feature extraction from a perspective of
vector bundle.

There have been many feature extraction algorithms which can be categorized
as linear and nonlinear approaches. Traditional linear feature extraction algorithms
include Principal Component Analysis (PCA) [1, 2], Multidimensional Scaling
(MDS) [3] and Linear Discriminant Analysis (LDA) [4].

During the recent years, a number of nonlinear feature extraction algorithms
called manifold learning have been developed. They seek to find the intrinsic low
dimensional nonlinear structure, which is regarded as a manifold embedded in a high
dimensional space. The most well-known unsupervised algorithms include Isomap
[5], Diffusion Map [6], Laplacian Eigenmap (LE) [7], Local Linear Embedding
(LLE) [8], Hessian Eigenmap (HE) [9] and Local Tangent Space Alignment (LTSA)
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[10], and the typical supervised algorithms include Maximum Margin Criterion
(MMC) [11], Average Neighborhood Margin Maximization (ANMM) [12] and
Semi-Riemannian Discriminant Analysis (SRDA) [13].

Recently, there is considerable interest in using linear methods, inspired by
the geometric intuition of manifold learning, to find the nonlinear structure of
features. The representative algorithms include Local Preserving Projection (LPP)
[14, 15], Unsupervised Discriminant Projection (UDP) [16], Neighborhood Preserv-
ing Embedding (NPE) [17], Laplacian PCA (LPCA) [18], Marginal Fisher Analysis
(MFA) [19] and Local Discriminant Embedding (LDE) [20].

In this paper, we propose a geometric framework, called Vector Bundle Learning
(VBL), to provide a general theoretical analysis and a unified perspective on feature
extraction. By geometrization of the sample structure, we get a so-called structural
manifold, where the geometry of the sample set is prescribed by the metric tensor of
this manifold. If define a Riemannian metric tensor on the structural manifold, we
can obtain low dimensional approximations in each fibre by the local metric learning
on the structural manifold. Then total low dimensional approximations can be
obtained by aligning all fibres together. Many existing feature extraction algorithms
can be reformulated by our VBL framework. Furthermore, a novel supervised
feature extraction algorithm, called Vector Bundle Discriminant Analysis (VBDA),
is proposed based on our VBL framework.

The rest of this paper is organized as follows. We first present our VBL frame-
work in Sect. 8.2. The VBDA algorithm is presented in Sect. 8.3. The experimental
results are shown in Sect. 8.4. Finally, we conclude the paper in Sect. 8.6.

8.2 Vector Bundle Learning

In this section, we first introduce two important geometric concepts, then present the
Vector Bundle Learning (VBL) framework to provide a novel geometric perspective
to understand and formulate feature extraction. The meanings of notations used
hereafter can be found in Table 8.1.

8.2.1 Mathematical Fundamentals

Vector bundle as a special fibre bundle is a topological construction which makes
precise the idea of a family of vector space parameterized by a manifold M. Locally,
the vector bundle is the tensor product of a neighbourhood on the base manifold
and a d-dimensional Euclidean space. Therefore, a (smooth) rank d vector bundle
fE;M; �g [21] consists of a pair of smooth manifolds, E (the total space) and M

(the base space), together with a surjective map � W E ! M (the projection).
For each x 2 M, there is a d-dimensional vector space Ex (the fibre of E) and a
diffeomorphism ��1 W fxg � R

d ! Ex (the local trivialization of E).
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Table 8.1 Mathematical notations

tr.A/ The trace of matrix A AT The transpose of A
I (Ip�p) The identity matrix (of size p� p) e (ep) The all-one column vector

Dp D ŒIp�p;�ep�
T Hp D Ip�p � 1

p epeT
p

Ei The fibre over xi. E D fE1; : : : ;Emg
xi The ith sample in R

n Sx D fx1; : : : ; xmg
Sxi D fxi

1; : : : ; x
i
mi
; xig X D Œx1; : : : ; xm�, an n� m matrix

Xi D Œxi
1; : : : ; x

i
mi
; xi� yi The approximation of xi in R

d

Sy D fy1; : : : ; ymg Syi D fyi
1; : : : ; y

i
mi
; yig

Y D Œy1; : : : ; ym�, a d � m matrix Yi D Œyi
1; : : : ; y

i
mi
; yi�

d.yi; yj/ The distance between yi and yj U The linear projection matrix

Cyi The class that yi belongs to n.Cyi / The number of points in Cyi

Another important concept in differential geometry is metric tensor. Suppose that
r is a vector. Then a metric tensor g.r; r/ is expressible as

g.r; r/ D rT�r; (8.1)

where � is a symmetric matrix. If the metric matrix � is positive definite at every
point on the manifold, then g is called a Riemannian metric tensor. If � is only non-
degenerate, then g is a semi-Riemannian metric tensor. One may refer to [22] for
more details.

8.2.2 Vector Bundle Learning Framework

Suppose Sx is randomly sampled from a d-dimensional sub-manifold M which
is embedded in an ambient Euclidean space R

n. For each xi 2 Sx, there is a
coordinate chart .Vxi ; 'xi/ associated with it. We denote all the points sampled from
Vxi as Sxi and call it the reference sample set of xi. Therefore, different from
traditional manifold learning algorithms, we describe feature extraction as learning
a trivialization for each fibre locally and aligning all fibres together globally.

In VBL framework, we use distance from yi to other points in Syi to characterize
the structural relationship of Ei. So with yi and Syi , an mi-tuple coordinate
representation dyi is defined as

dyi D Œd.yi; yi
1/; : : : ; d.yi; yi

mi
/�T : (8.2)

So we can say that dyi is a new point which contains the locally structural
information of the original sample manifold. This dyi can also be considered as a
point sampled from another manifold S which is called the structural manifold of
M in VBL framework.



146 R. Liu and Z. Su

We use a Riemannian metric tensor gR to furnish the newly built structural
manifold, then features can be extracted by learning the Riemannian geometry of S.
Suppose the Riemannian metric matrix GR

i at xi has been determined. It is easy to
see that gR.dyi ;dyi/ can be written as

gR.dyi ;dyi/ D dT
yi

GR
i dyi D tr.YiMiYT

i /; (8.3)

where Mi D Dmi G
R
i DT

mi
. We call Mi the fibre matrix of Ei. Assuming Mi has been

determined, it is easy to confirm that GR
i can also be uniquely determined as:

GR
i D Emi MiET

mi
; (8.4)

where Emi D ŒImi�mi ; 0mi�1� � Œe.miC1/�1; 0.miC1/�.mi�1/�T . Thus the optimization
problem of learning fibre Ei can be defined as minimizing the values gR.di;di/ of
metric tensor, which is determined by the fibre matrix Mi.

After performing manipulations on each fibre, the geometry of global vector
bundle can be determined. If we aim at deriving the global approximation Y from
E, we should align all fibres together. This alignment skill has been used in [10] and
extended in [18].

By defining an m � .mi C 1/ binary selection matrix Bmi associated with the ith
fibre whose structure is that .Bmi/pq D 1 if the qth vector in Yi is the pth vector in
Y, the sum of metric tensor values can be written as:

mX

iD1
gR.dyi ;dyi/ D tr.YMYT/; (8.5)

where M D
mP

iD1
Bmi MiBT

mi
.

So the global low dimensional approximation Y can be learnt via the following
optimization problem:

(
arg min

Y
tr.YMYT/;

s:t: YCYT D I;
(8.6)

where the constraint YCYT D I removes an arbitrary scaling factor. The constraint
matrix C is dependent on applications so that it induces features with some invariant
properties. It is typically a symmetric matrix and may also be the metric matrix
of another structural manifold.1 We will show in Sect. 8.2.3 that many existing
algorithms can be reformulated by our VBL framework.

1It will be discussed in Sect. 8.3.
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The solution of (8.6) can be obtained by solving the following generalized eigen-
value problem [7, 8, 10]:

Myi D �iCyi; (8.7)

where �i are the 2nd to the .dC 1/th smallest generalized eigen-values of the above
problem.

Linearization By assuming that the low dimensional approximation can be
obtained from linear projection: Y D UTX, the optimal projection matrix U can be
found by solving the following problem:

(
arg min

U
tr.UTXMXTU/;

s:t: UTXCXTU D I:
(8.8)

Extensions A global view and semi-Riemannian generalization can also be pro-
posed as extensions to this framework. For global algorithms, we choose all points in
Sx to construct the structural manifold and define a global Riemannian metric tensor
GR for it. In this case, VBL can be considered as a global algorithm. For some
algorithms (e.g., MMC, ANMM, SRDA), the positive-definiteness of the metric
matrices is not fulfilled. So semi-Riemannian metric tensors should be used to
generalize VBL. Henceforth, we use g with respect to a non-degenerate symmetric
matrix Gi as the metric tensor in the generalized VBL framework.

8.2.3 General Framework for Feature Extraction

Yan et al. [19] proposed the Graph Embedding (GE) framework to unify feature
extraction algorithms. In this section, we present a unified geometric perspective to
understand feature extraction using our VBL, which can be considered as a more
general framework.

Theorem 8.1. By defining the metric matrix as:

.GGE
i /pq D

(
WGE

ip ; if p D q and xi
p 2 Sxi ;

0; otherwise;

where WGE
ip is the element of the similarity matrix in [19], we can get GE from our

VBL framework.

With Theorem 8.1, it is easy to see that GE framework can only formulate
algorithms which have a diagonal metric matrix, such as PCA, LDA, Isomap, LLE
and LE/LPP. The diagonal constraint for metric matrix is so strong that lots of
algorithms cannot be reformulated in GE. In contrast, our VBL relaxes the constraint
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“positive-definite diagonal” to “non-degenerate symmetric” and hance supports a
more general metric matrix. Therefore, feature extraction algorithms mentioned in
Sect. 8.1 which cannot be incorporated in GE, such as LTSA, UDP, HE, LPCA,
Diffusion Map and discrepancy criterion based algorithms, e.g., MMC, ANMM and
SRDA can all fit in our VBL framework. The difference among them lies in the ways
to construct the reference sample set, the fibre matrix (or the metric matrix) and the
constraint matrix.2

8.3 Vector Bundle Discriminant Analysis

VBL can be utilized as a general platform to develop new algorithms for fea-
ture extraction. In this section, as an example we introduce a novel supervised
feature extraction algorithm, called Vector Bundle Discriminant Analysis (VBDA),
based on the VBL framework.

By assuming that points in Cyi are sampled from one fibre E
c
i , the proposed

VBDA aims to enhance both the local fibre similarity and the non-local vector
bundle separability to optimize the intrinsic structure of group of classes for
classification.

To measure the local fibre similarity, we model the intra-fibre structural manifold
OS as:

Odyi D Œd.yi; yi
1/; : : : ; d.yi; yi

Omi
/�T ; (8.9)

where yi
j 2 Cyi and yi

j ¤ yi ( Omi D n.Cyi/ � 1).

With the newly built OS, the Riemannian metric tensor OgR. Odyi ;
Odyi ) can be

obtained as:

OgR. Odyi ;
Odyi/ D OdT

yi
OGR

i
Odyi D tr.YiMiYT

i /; (8.10)

where Mi D D Omi
OGR

i DT
Omi

is the fibre matrix of E
c
i and OGR

i is constrained to be a
diagonal matrix. The local similarity of each E

c
i can be learnt from the Riemannian

geometry of OS. Thus the problem reduces to finding an ambient Riemannian metric
matrix OGR

i at each Odyi .
The dissimilarity of points (i.e., the Euclidean distance) in different fibres can

be used to measure the non-local separability of vector bundle. So to enhance the
inter-fibre separability, we model inter-fibre structural manifold LS as

Ldyi D Œd.yi; yi
1/; : : : ; d.yi; yi

Lmi
/�T ; (8.11)

where yi
j … Cyi ( Lmi D m � n.Cyi/).

2The details are given in the supplementary material due to the page limit.



8 Feature Extraction via Vector Bundle Learning 149

Similar to the intra-fibre case, the Riemannian metric tensor LgR. Ldyi ;
Ldyi ) for point

on LS can be obtained as

LgR. Ldyi ;
Ldyi/ D LdT

yi
LGR

i
Ldyi D tr.YiCiYT

i /; (8.12)

where Ci D D Lmi
LGR

i DT
Lmi

and LGR
i is also constrained to diagonal. The non-

local separability of different fibres (vector bundle) can be learnt from another
Riemannian metric matrix LGR

i .
Different from LLE, which uses reconstruction weights, VBDA transfers the

local geometry from the sample space to the feature space by learning metric in Sx

and applying it to Sy. Therefore, the smaller intra-fibre margins and larger inter-
fibre margins in E both can be fulfilled by learning OGR

i and LGR
i .

In this paper, we introduce a method to learn the Riemannian metric matrix in
the sample space. The ambient Riemannian metric tensor at xi can be written as:

gR.dxi ;dxi/ D dT
xi

GR
i dxi D gT

i Dxi gi;

where

gi D Œ
q

GR
i .1; 1/; : : : ;

q
GR

i .mi;mi/�
T

and

Dxi D diag.d.xi; xi
1/
2; : : : ; d.xi; xi

mi
/2/:

Therefore, we can minimize this metric and obtain the following optimization
problem to learn the intrinsic fibre structure:

8
<

:
arg min

gi

gT
i Dxi gi;

s:t: eTgi D 1:
(8.13)

It is easy to check that the solution to the above problem is

gi D .Dxi/
�1e

eT.Dxi/
�1e

: (8.14)

By applying the above model to intra-fibre and inter-fibre structural manifolds,
the metric matrices OGR

i and LGR
i can be obtained as

. OGR
i /pq D

(
.Ogi.p//Ot; if p D q

0; otherwise
(8.15)
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and

. LGR
i /pq D

(
.Lgi.p//Lt; if p D q

0; otherwise
; (8.16)

respectively. We empirically find that the discriminability will be enhanced if we
choose Ot; Lt 2 Œ0; 3� properly.

8.4 Experimental Results

Experiments are conducted on face recognition and handwriting digits classification
to test the performance of VBDA against the existing algorithms such as LPP, UDP,
LDA and MFA on recognition and classification.

8.4.1 Face Recognition

Face recognition experiments are conducted on a subset of facial data in experiment
4 of FRGC version 2 [23]. There are 8014 images of 466 subjects in the query set.
We choose the first 30 images of each subject in this set if the number of images is
not less than 30. Thus we get 2850 images of 95 subjects for our experiment. These
images are all cropped to a size of 32 � 32. Figure 8.1 shows some cropped facial
images in experiment 4 of FRGC version 2.

Note that the data are preprocessed by PCA. We follow the idea of Yan et al. [19]
to choose the percentage of energy retained in PCA preprocessing step between
90–100 % in our experiment, respectively. The nearest neighbour classifier is used
for classification with the extracted features. The image set of each subject is split
into different gallery and probe sets, where Gm/Pn means m images are randomly
selected for training and the remaining n images are for testing. Such a trial is
repeated 20 times.

Fig. 8.1 Some cropped FRGC version 2 facial images



8 Feature Extraction via Vector Bundle Learning 151

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

Dimension

R
ec

og
ni

tio
n 

ra
te

(%
)

LPP
UDP
LDA
MFA
VBDA

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n 

ra
te

(%
)

LPP
UDP
LDA
MFA
VBDA

a b

Fig. 8.2 The recognition rate curves versus the variation of dimensions on experiment 4 of FRGC
version 2 database. (a) G3/P27; (b) G5/P25

Table 8.2 The average experimental results on experiment 4 of FRGC version 2 facial data and
USPS handwriting digital data (mean˙ std %). The best results are shown in bold font.

FRGC facial data USPS digital data
Method G3/P27 G5/P25 G30/P170 G40/P160

LPP 59.1˙ 4.0 (50, 93) 70.1˙ 2.2 (50, 92) 7 6.3˙ 7.6 (25) 87.6˙ 10.5 (20)

UDP 48.3˙ 4.3 (120, 99) 58.6˙ 3.5 (120, 98) 79.3˙ 6.5 (25) 88.8˙ 2.4 (20)

LDA 75.6˙ 4.8 (25, 93) 85.1˙ 2.2 (20, 92) 81.1˙ 7.3 (5) 89.0˙ 8.0 (15)

MFA 71.9˙ 4.5 (30, 91) 82.5˙ 2.4 (45, 92) 80.8˙ 2.9 (5) 87.6˙ 3.0 (10)

VBDA 77.2˙ 4.1 (45, 97) 87.6˙ 2.1 (45, 99) 87.0˙ 3.2 (10) 93.3˙ 4.2 (25)

The first number in the brackets is the optimal dimension of feature space and the second one is
the percentage of energy retained in the PCA preprocessing step (for face recognition experiment)

Figure 8.2 displays the recognition rate curves versus the feature space dimen-
sions when performing these methods. Table 8.2 shows the average recognition
results on FRGC version 2. One can see that VBDA is better than other methods
in comparison.

8.4.2 Handwriting Digits Classification

The USPS handwriting digital data3 includes 10 classes from “0” to “9”. Each class
has 1100 samples. Images are cropped to 16 � 16. Figure 8.3 shows subsets of the
cropped images of two digits. The first 200 images of each class are chosen for our
experiment. We directly apply all algorithms to the normalized data without using
PCA as preprocessing.

3Available at http://www.cs.toronto.edu/~roweis/data.html.

http://www.cs.toronto.edu/~roweis/data.html


152 R. Liu and Z. Su

Fig. 8.3 Some cropped USPS digital images
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Fig. 8.4 The classification accuracy curves versus the variation of dimensions on USPS database.
(a) G30/P170; (b) G40/P160

Figure 8.4 illustrates the classification accuracy curves versus the variation of
dimensions. The average classification results are also shown in Table 8.2. The per-
formance of VBDA is significantly better than other methods under consideration.

8.4.3 Discussions

The free parameters in the test methods were determined in the following way: as
in LPP, UDP and MFA, the number of reference sample set (k, Ok and Lk) is selected
according to the original data in different experiments. For face recognition, the
parameter k in LPP and UDP is set to 5, the parameters Ok and Lk in MFA are set to
m � 1 (m is the number of gallery set) and 210, respectively. For handwriting digits
classification, we set the parameter k to 5 in LPP and UDP, the parameters Ok and Lk
to 7 and 40, respectively, in MFA. The Gaussian kernel exp



� kxi�xjk2

t

�
is used in

LPP and UDP. We set the parameter t to 250 in LPP and 200 in UDP, respectively.
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8.5 Unifying Previous Algorithms in VBL Framework

8.5.1 Local Algorithms

Local algorithms aim at preserving the structure for local fibres. So in these
algorithms, we choose xi and its k nearest neighbours as Sxi .

4

LLE [8] defines the fibre matrix as Mi D AT
i Ai, where Ai D Œ1;�wi

1; : : : ;�wi
mi
�

are the local representation coefficients. Let !i D Œwi
1;w

i
2; : : : ;w

i
mi
�T and the local

Gram matrix �i be .�i/pq D .xi � xi
p/

T.xi � xi
q/, one can calculate !i like this:

�
!i D .� �1i e/T

!i  !i=!ie
:

NPE [17] can be considered as a linearization of LLE.
If we view the local tangent space as the fibre at every point and define Mi D

HmiC1 � QiQT
i , where Qi is the matrix consisting of the eigen-vectors associated

with the d largest eigen-values of XT
i Xi, LTSA [10] can also be fit into our VBL

framework.
To fit LE [7] into VBL, we may define the metric matrix as

.GLE
i /pq D

8
<

:
exp



� kxi�xi

pk2
t

�
; if p D q and xi

p 2 Sxi ;

0; otherwise;

then the fibre matrix can be given as Mi D Dmi G
LE
i DT

mi
. The constraint matrix C D

DLE, where DLE is a diagonal matrix whose entries are sums of GLE
i . LPP [14] is the

linearization of LE.
Let the fibre matrix Mi be the same as the one in LPP, and the constraint matrix

C D Hm, UDP [16] can also be fit into our VBL framework.
HE [9] can be viewed as a variant of LE where the Hessian is in place of the

Laplacian. The fibre matrix can be obtained as Mi D .Htan
i /THtan

i , where Htan
i is the

tangent Hessian matrix.
The fibre matrix of LPCA [18] is exactly the local Laplacian scatter matrix:

Mi DWi � WieeTWi

eTWie
;

where Wi is determined by coding length.
MFA [19] and LDE [20] are essentially the same. In VBL, we choose Sxi D

fxig [ ONOk.xi/ [ LNLk.xi/, where ONOk.xi/ is the Ok nearest within-class neighbours and

4For MFA, LDE, ANMM and SRDA, the choice of Sxi uses the class information as they are
supervised dimensionality reduction techniques. See the details that follow.
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LNLk.xi/ is the Lk nearest between-class neighbours, and use ONOk.xi/ to construct the

metric matrix and LNLk.xi/ to construct the constraint matrix. First we define

.GMFA
i /pq D

(
1; if p D q and xi

p 2 ONOk.xi/;

0; otherwise:

Then the fibre matrix is given as Mi D Dmi G
MFA
i DT

mi
. Next, let WMFA be an m � m

symmetric matrix with

.WMFA/pq D
(
1; if xp 2 LNLk.xq/ or xq 2 LNLk.xp/;

0; otherwise;

and let DMFA be a diagonal matrix whose entries are column sums of WMFA. Then
the constraint matrix C D LMFA, where LMFA D DMFA �WMFA. Thus we can get
MFA and LDE from VBL.

ANMM [12] uses the average neighbourhood margin to find an embedding space
that characterizes the within-class similarity and the between-class separability.
We may choose k nearest within-class neighbours and k nearest between-class
neighbours as Sxi . Then

GANMM
i D

" OGOk�Ok 0

0 � LGLk�Lk

#
;

where OGOk�Ok D 1
Ok IOk�Ok and LGLk�Lk D 1

Lk ILk�Lk. And Mi D Dmi G
ANMM
i DT

mi
.

In SRDA [13], the structure of classes is conceptualized as a semi-Riemannian
manifold and semi-Riemannian manifold learning is used to acquire the best

embedding space for classification. Let Sxi D
K[

jD0
Nkj.xi/ be the reference sample

set, where Nk0 .xi/ is the set of xi’s k0 nearest within-class neighbours and Nkj.xi/

is the set of xi’s kj nearest neighbours in the jth nearest class (j D 1; : : : ;K) [13].
Then Mi D Dmi G

SRDA
i DT

mi
, where GSRDA

i is a semi-Riemannian metric matrix which
is learnt by optimization.

8.5.2 Global Algorithms

In contrast with local techniques, global algorithms seek to directly find the
intrinsic global structure hidden in the ambient space. For global algorithms, Sx is
considered as the reference sample set. The fibre matrix M (or the metric matrix G)
can be defined directly from Sx.

PCA [1] is by far the most popular unsupervised global linear algorithm for
feature extraction. We can fit it into VBL by defining M D �Hm.
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MDS [3] finds an embedding space that retains the pairwise Euclidean distance at
the best. Let M D �
.De/, where 
.De/ is the inner product matrix corresponding
to the Euclidean distance matrix De.

Isomap [5] shares the same perspective with MDS but retains pairwise geodesic
distance at the best. We may define the bundle matrix as M D �
.Dg/, where Dg is
the geodesic distance matrix.

Diffusion Map [6] is based on defining a Markov random walk on the graph and
a so-called diffusion distance to measure the similarity between features. A matrix

P.1/ is formed with entries P.1/ij D Kij=
P

k
Kik, where Kij D exp



� kxi�xjk2

t

�
. Then

we can fit it into VBL framework by defining M D �.P.1//t.
LDA [4] is well known as a classic technique in discriminant analysis. While

PCA seeks to find a subspace that is efficient for representation, LDA seeks a
subspace that is efficient for discrimination. Let WClass be an m � m symmetric
matrix with

WClass
pq D

(
1

n.Ci/
; if xp; xq 2 Ci;

0; otherwise;

where Ci is the ith class. The within-class scatter and the between-class scatter
matrices can be rewritten as:

Sw D
cX

iD1

n.Ci/X

jD1
.xi

j � Nxi/.xi
j � Nxi/

T (8.17)

D X.I �WClass/XT (8.18)

and

Sb D
cX

iD1
n.Ci/.Nxi � Nx/.Nxi � Nx/T (8.19)

D X.WClass � 1

m
eeT/XT ; (8.20)

respectively, where Nxi D 1
n.Ci/

Xie is the center of Ci and Nx D 1
m Xe is the center

of Sx. Then letting M D I �WClass and C D WClass � 1
m eeT , LDA is fit into VBL

framework.
MMC [11] takes the role of integrating within-class scatters and between-class

scatters by differences, instead of ratios used by the traditional LDA. Because Sw �
Sb D X.IC 1

m eeT � 2WClass/XT , we have M D IC 1
m eeT � 2WClass for MMC in

VBL framework.
Table 8.3 lists the fibre matrices Mi (or the bundle matrix M) and the constraint

matrices C for all the above-mentioned methods.
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Table 8.3 Different algorithms expressed in our VBL Framework

Algorithm Mi or M C Type

LLE/NPE Mi D AT
i Ai C D I N=L

LTSA Mi D HmiC1 �QiQT
i C D I N

LE/LPP Mi D Dmi G
LE
i DT

mi
C D DLE N=L

UDP Mi D Dmi G
LE
i DT

mi
C D Hm L

HE Mi D .Htan
i /T Htan

i C D I N

LPCA Mi DWi � WieeT Wi
eT Wie

C D X�.X�/T L

MFA(LDE) Mi D Dmi G
MFA
i DT

mi
C D LMFA L

ANMM Mi D Dmi G
ANMM
i DT

mi
C D X�.X�/T L

SRDA Mi D Dmi G
SRDA
i DT

mi
C D X�.X�/T L

PCA M D �Hm C D X�.X�/T L

MDS M D �
.De/ C D I L

Isomap M D �
.Dg/ C D I N

Diffusion Map M D �.P.1//t C D I N

LDA M D I�WClass C DWClass � 1
m eeT L

MMC M D IC 1
m eeT � 2WClass C D X�.X�/T L

N and L means nonlinear VBL and the linearization of VBL. X� means the
Moore–Penrose inverse of X

8.6 Conclusions

We have proposed a general framework, called VBL, to unify the existing feature
extraction techniques and develop new algorithms. Most traditional algorithms can
be reformulated and understood in this framework. A novel supervised feature
extraction algorithm, called VBDA, is also presented based on the proposed
framework, by learning special Riemannian metric tensors. The experimental results
have shown that our proposed VBDA is promising.
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Chapter 9
Curve Interpolation and Financial Curve
Construction

Pengfei Huang, Haiyan Wang, Ping Wu, and Yifei Li

Abstract In this chapter, first we introduce some commonly used curve
interpolation methods for interest rate curves. Then, we present a positivity-
preserving piecewise rational cubic interpolation function. It is constructed to
ensure positive values by adjusting the shape-control parameters. When it is applied
to the interest rate curve construction, this interpolation algorithm ensures positive
values. The market data has been reconstructed to restrict the fluctuation of the
interest rate curve when the market data changes sharply.

9.1 Introduction

Interest rate curves are the foundation of the pricing of interest rate derivatives, and
reflect the market’s expectation of future interest rate development [1]. The market
interest rate data is usually a set of discrete time sequences with different gaps, by
which one can construct an interest rate curve with various interpolation algorithms.
These algorithms should guarantee the interest rate curve satisfies continuity and
smoothness conditions and accurately reflects the current market.

The cubic spline interpolation method [2] proposed by McCulloch (1975) is a
popular choice for interest rate curve construction, and was developed by Fisher
et al. (1995) to ensure the smoothness and goodness of fit of the interest rate
curve [3]. However, the interest rate curve constructed by cubic spline interpolation
is not guaranteed to be positive and is not arbitrage free. Lu Jun and Han Xuli (2005)
proposed a rational cubic spline with cubic denominator and numerator which can
preserve the monotonicity of the inputs [4]. Tian Meng (2006) proposed a rational
cubic spline with cubic numerator and quadratic denominator which can guarantee
the positivity of the constructed curve [5]. Based on the existence of rational splines,
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in this paper we propose a rational cubic spline with a cubic denominator and
numerator that can ensure the constructed interest rate curve is positive.

9.2 Basic Interpolation Methods for Interest Rate Curves

The term structure of interest rates is fundamental to consistently value interest rate
instruments. The term structure can refer to different curves: the discount curve,
zero curve, or forward curve. However, we cannot obtain these curves directly from
market data; instead, we use discrete dates and market quotes, and a wide range of
models and numerical methods are employed to fit a continuous function to a set of
discretely observed quotes.

As a brief review, we provide the mathematical background and notation for the
term structure. There are three equivalent descriptions: the discount function d.t/,
the yield curve r.t/, and instantaneous forward rate curve f .t/.

d.t/ D e�r.t/t

is equivalent to

d.t/ D e�
R t
0 f .u/du

where

f .t/ D @

@t
r.t/t:

9.2.1 Linear Interpolation

Suppose we have market quotes r1; r2; : : : ; rn at times t1; t2; : : : ; tn. The objective
is to determine rt for any time t 2 Œt1; tn�. A straightforward method is linear
interpolation. The interpolation can be linear on rates, discount factors, and the
transformation of discount factors. Some common approaches are as follows:

First, we can give a formula for the zero rates. We determine i for time t such that
t 2 Œti; tiC1�, and rt is calculated as the linear interpolation of ri and riC1:

rt D .tiC1 � t/

.tiC1 � ti/
ri C .t � ti/

.tiC1 � ti/
riC1:

For the instantaneous forward curve f .t/ D @
@t r.t/t, we have

f .t/ D .tiC1 � 2t/

.tiC1 � ti/
ri C .2t � ti/

.tiC1 � ti/
riC1:
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When it is linear on the discount factors, we can apply the linear interpolation on
the discount factors directly. Since the discount factors are defined as d.t/ D e�r.t/t,
we have a set of discount factors d1; d2; : : : ; dn corresponding to r1; r2; : : : ; rn. The
formula is

d.t/ D .tiC1 � t/

.tiC1 � ti/
di C .t � ti/

.tiC1 � ti/
diC1:

According to

r.t/ D � ln.d.t//

t

we have

r.t/ D �1
t

ln

�
.tiC1 � t/

.tiC1 � ti/
di C .t � ti/

.tiC1 � ti/
diC1

�
:

Then, the forward rate can be calculated as

f .t/ D .di � diC1/
..tiC1 � t/di C .t � ti/diC1/

: (9.1)

If discount factors are linear on the logarithmic rate, we can derive a formula
accordingly.

9.2.2 Cubic Spline Interpolation

As well as considering the same set of assumptions as in linear interpolation, spline
interpolation requires a separate cubic polynomial for each interval. The aim is to
determine the coefficients and the value of the rate at time t:

r.t/ D ai C bi.t � ti/C ci.t � ti/
2 C di.t � ti/

3; t 2 Œti; tiC1�:

In order to determine the set of coefficients fai; bi; ci; di; i D 1; 2; : : : ; n � 1g,
constraints on the value, the first derivative, and the second derivatives at ti should
be satisfied.

First, the value of the piecewise polynomial should be identical at the knots (ti),
which gives the following system of equations:

ri D ai;

riC1 D ai C bi.tiC1 � ti/C ci.tiC1 � ti/
2 C di.tiC1 � ti/

3:
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Since

f .t/ D @

@t
r.t/t D @r.t/

@t
C r.t/;

and

@r.t/

@t
D bi C 2ci.t � ti/C 3di.t � ti/

2; t 2 Œti; tiC1�;

the piecewise polynomial should be differentiable to guarantee the continuity of the
instantaneous forward rate curve f .t/. Thus, we have

biC1 D bi C 2ci.tiC1 � ti/C 3di.tiC1 � ti/
2; i D 1; 2; : : : ; n � 2:

Combining the 2.n� 2/ conditions above, we now have 3n� 4 equations for 4n� 4
parameters. We still need another n constraints to obtain all of the parameters. We
can use the so-called natural cubic splines to do this based on the second derivatives:

@2r.t/

@t2
D 2ci C 6di.t � ti/; t 2 Œti; tiC1�:

These cubic splines are chosen so that the second derivatives of the functions at the
knots are continuous and the second derivatives of the end points equal zero, which
gives n linear equations in the system:

ciC1 D ci C 3di.tiC1 � ti/; i D 1; 2; : : : ; n � 2;
c1 D 0;

cn�1 C 3dn�1.tn � tn�1/ D 0:

These splines guarantee the continuity and smoothness of the curve.

9.2.3 Monotone and Convex Splines

A simple observation is that the cubic splines in the last subsection could unex-
pectedly generate negative forward rates. The monotone convex spline method is
introduced to build a continuous, smooth curve that ensures positive forward rates
between the observations. Thus, the curve is arbitrage free. First, we calculate
the forward rates f d

i ; i D 1; 2; : : : ; n from the market quotes r1; r2; : : : ; rn at times
t1; t2; : : : ; tn, assuming forward rates are constant in each interval and are continu-
ously compounded [6].
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Various methods can be applied to fit a curve to the term structure of the interest
rate; goodness of fit and smoothness of the curves are two measures of success. All
such methods have strengths and weaknesses, and their selection depends on the
specific requirement of the application.

In the following, we propose a rational cubic interpolation method for positive
forward rates, which we call positivity preservation.

9.3 Rational Cubic Interpolation Method
for Positivity Preservation

Let a D 
1 < 
2 < : : : < 
n D b be a set of time knots,  D 
�
i

iC1�
i

, hi D 
iC1 � 
i,
and f .
i/ D fi.i D 1; 2; : : : ; n/ be the input data at time knot 
i. Define the rational
cubic spline interpolation function in the ith interval Œ
i; 
iC1� as

Si.
/ D Pi./

Qi./
; i D 1; 2; : : : ; n � 1; (9.2)

where

Pi./ D .1 � /3fi C .1 � /2AC 2.1 � /BC 3fiC1 (9.3)

Qi./ D .1 � /3 C vi.1 � /2 C ui.1 � /2 C 3: (9.4)

In Eq. (9.4) vi > 0 and ui > 0 are shape-control parameters, and di is the first
derivative of the function f .
/ at time knot 
 . To fulfill the condition S.x/ 2
C1Œa; b�, the interpolation function defined by Eq. (9.2) should satisfy the following
conditions:

8
ˆ̂<

ˆ̂:

Si.
i/ D fi
Si.
iC1/ D fiC1
S

0

i.
i/ D di

S
0

i.
iC1/ D diC1:

(9.5)

The terms A and B are given by

�
A D dihi C vifi
B D �diC1hi C uifiC1:

(9.6)

The first derivative at time knot 
i, di, is unknown in the market and is estimated as
follows. We take two knots from both sides of 
i (if one side does not have two, we
take more from the other side). Let�
j D 
j � 
i, assume the input data at the knots
is f.j/.j D 1; 2; 3; 4/, and define
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8
<

:

�0 D �P 4
jD1�j

�j D ˘4
kD1�
k

�
2j ˘
4
kD1
k¤j

.�
k��
j/
; j D 1; 2; 3; 4: (9.7)

Then, di can be estimated by

di D �0fi C
X

4
jD1�jf.j/: (9.8)

The accuracy of the estimation is O.max
1�j�4 j�


4
j j/ [7], which is good. This will

improve the smoothness and help retain the monotonicity of the inputs to the interest
rate curve. However, as seen in Eq. (9.8), the estimation of the first derivative at knot

i is achieved using four nearby points, so changes at knot 
i affect the shape of
the curve considerably. The positivity-preserving property is analyzed as follows.
Since  D 
�
i


iC1�
i
and 
 2 Œ
i; 
iC1�,  is in the interval Œ0; 1�. Hence, a sufficient

condition for the positivity-preserving property of the interpolation function defined
by Eq. (9.2) is A > 0;B > 0, and the value range of the shape-control parameters
can be obtained as follows:

(
vi > max.� dihi

fi
; 0/;

ui > max. diC1hi

fiC1
; 0/:

(9.9)

When vi and ui satisfy these conditions (9.9), the curve constructed with the rational
cubic spline interpolation method will always be positive and arbitrage free. The
error estimation of the rational cubic spline interpolation is analyzed as follows. It
is sufficient to only deal with the case where the knots are equally spaced. Without
loss of generality, we only consider the subintervals Œ
i; 
iC1� .3 � i � n � 2/, and
when the knots are equally spaced let hi D h. By Eqs. (9.7) and (9.8), we get

�1 D 1

12h
; �2 D � 2

3h
; �3 D 2

3h
; �4 D � 1

12h
; �0 D 0; (9.10)

di D 1

12h
fi�2 � 2

3h
fi�1 C 2

3h
fiC1 � 1

12h
fiC2: (9.11)

Then, the numerator of the interpolation function in Eq. (9.3) can be transformed
into the following form:

Pi./ D l1fi�2 C l2fi�1 C l3fi C l4fiC1 C l5fiC2 C l6fiC3; (9.12)

where
8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

l1 D 1
12
.1 � /2

l2 D .1 � /Œ� 23 .1 � / � 1
12
�

l3 D .1 � /Œ.1 � /2 C .1 � /vi C 2
3
2�

l4 D Œ.1 � /ui C 2 C 2
3
.1 � /2�

l5 D �.1 � /Œ 112 .1 � /C 2
3
�

l6 D 1
12
2.1 � /:

(9.13)
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When f .t/ 2 C1Œa; b� and S.t/ is the rational cubic interpolation function of f .t/ in
the subinterval Œ
i; 
iC1�, using the Peano–Kernel Theorem gives

RŒf � D f .t/ � S.t/ D

iC3Z


i�2

f
0

.
/RtŒ.t � 
/0C�d
; (9.14)

where

RtŒ.t � 
/0C� D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

1 � l2Cl3Cl4Cl5Cl6
Qi./

; 
i�2 < 
 < 
i�1

1 � l3Cl4Cl5Cl6
Qi./

; 
i�1 < 
 < 
i

1 � l4Cl5Cl6
Qi./

; 
i < 
 < t

� l4Cl5Cl6
Qi./

; t < 
 < 
iC1

� l5Cl6
Qi./

; 
iC1 < 
 < 
iC2

� l6
Qi./

; 
iC2 < 
 < 
iC3:

(9.15)

From Eq. (9.14) we get the following result:

jRŒf �j D j

iC3Z


i�2

f
0

.t/RtŒ.t � 
/0C�d
 j � jf
0

.t/jŒ

i�1Z


i�2

j1 � l2 C l3 C l4 C l5 C l6
Qi./

jd


C

iZ


i�1

j1 � l3 C l4 C l5 C l6
Qi./

jd
 C
tZ


i

j1 � l4 C l5 C l6
Qi./

jd


C

iC1Z

t

j � l4 C l5 C l6
Qi./

jd
 C

iC2Z


iC1

j � l5 C l6
Qi./

jd


C

iC3Z


iC2

j � l6
Qi./

jd
� � hjf 0

.t/jw.vi; ui; /; (9.16)

where

w.vi; ui; / D 3C 1

Qi./
.jl2C l3C l4C l5C l6jCjl3C l4C l5C l6jC2jl4C l5C l6jCjl5C l6jCjl6j/:

(9.17)

For a given vi and ui, let ei D max
0<<1

w.vi; ui; /. This term is independent of the

subinterval Œ
i; 
iC1�, and only dependent on the parameters vi and ui. The values
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Table 9.1 The values of ei

for vi D 0:001 with various
values of ui

vi ui e 

0.001 0.001 6.9862 0.7040

0.001 0.005 6.9862 0.7040

0.001 0.010 6.9863 0.7040

0.001 0.050 6.9865 0.7039

0.001 0.100 6.9867 0.7037

0.001 1.000 6.9901 0.7015

0.001 10.000 6.9972 0.6974

0.001 100.000 6.9997 0.6961

0.001 1000.000 7.0000 0.6959

Table 9.2 The values of ei

for ui D 0:001 with various
values of vi

vi ui e 

0.005 0.001 6.9849 0.7060

0.010 0.001 6.9833 0.7086

0.050 0.001 6.9720 0.7322

0.100 0.001 7.0000 0.9999

1.000 0.001 7.0000 1.0000

10.000 0.001 7.0000 0.9999

100.000 0.001 7.0000 0.9999

1000.000 0.001 7.000 0.9999

ei, for various vi and ui, are given in Tables 9.1 and 9.2. Based on the experimental
results in Tables 9.1 and 9.2, we can see the value of ei only changes slightly for
vi > 0 and ui > 0. This demonstrates that this interpolation method is stable.

9.4 Reconstruction of the Market Interest Rate Data

Table 9.3 details the USD market data from 04=01=2000. In Table 9.3, the first
column is the time from start to expiration, the second column is the expiration date,
the third column is the market rate, and the last column is the time in years (365
days=1 year). To restrict the fluctuation of the interest rate curve when the input
data changes sharply, we reconstruct the market data before applying the rational
cubic interpolation method. Let .
i; ri/ .i D 1; 2; : : : ; n/ be a given set of market
data, where 
i are the time knots. We assume ri is the value corresponding to the
entire subinterval Œ
i1 ; 
i� .i D 2; : : : ; n/. The reconstructed rate is fi at the point

i .i D 2; : : : ; n � 1/:

fi D 
i � 
i�1

iC1 � 
i�1

riC1 C 
iC1 � 
i


iC1 � 
i�1
ri: (9.18)
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Table 9.3 USD market data in 2000

Time length Expiration date Market interest r (%) Time length 


7 day 13-Jan-00 5.53125 0.019

1 month 7-Feb-00 5.81250 0.088

3 months 6-Apr-00 6.03125 0.249

6 months 6-Jul-00 6.21875 0.499

12 months 8-Jan-01 6.59375 1.008

2 yr 7-Jan-02 6.8950 2.005

3 yr 6-Jan-03 7.0250 3.003

4 yr 6-Jan-04 7.0850 4.003

5 yr 6-Jan-05 7.1350 5.005

6 yr 6-Jan-06 7.1750 6.005

7 yr 8-Jan-07 7.2250 7.011

8 yr 7-Jan-08 7.2650 8.008

9 yr 6-Jan-09 7.2950 9.008

10 yr 6-Jan-10 7.3350 10.008

12 yr 6-Jan-12 7.3850 12.008

15 yr 6-Jan-15 7.4350 15.011

20 yr 6-Jan-20 7.4450 20.014

25 yr 6-Jan-25 7.4450 25.019

30 yr 7-Jan-30 7.4350 30.025

We add the additional subintervals Œ
0; 
1� and Œ
n; 
nC1� at the start and end, where
�

0 D 
1 � .
2 � 
1/

nC1 D 
n C .
n � 
n�1/

(9.19)

and

rnC1 D rn C 
n � 
n�1

n � 
n�2

.rn � rn�1/: (9.20)

Then, the reconstructed market data fi .i D 1; 2; : : : ; n/ can be obtained from
Eq. (9.18) [6]. The results of applying the reconstruction algorithm to the market
data (from Table 9.3) are given in Table 9.4. The third column in Table 9.4 is the
reconstructed market data.

9.5 Analysis of the Interest Curve Constructed by Rational
Cubic Interpolation

The constructed interest rate curve, found by applying the rational cubic interpo-
lation method to the reconstructed market data, is given in Fig. 9.1. In general,
the term structure contains more short-term information, so the short term of the



168 P. Huang et al.

Table 9.4 USD market data
in 2000

Serial number Time length 
 Market rare f

1 0.019 0.05671875

2 0.088 0.05878125

3 0.249 0.06104699

4 0.499 0.06342268

5 1.008 0.06695567

6 2.005 0.06959967

7 3.003 0.07054970

8 4.003 0.07109975

9 5.005 0.07155020

10 6.005 0.07199925

11 7.011 0.07245090

12 8.008 0.07279977

13 9.008 0.07315000

14 10.008 0.07351667

15 12.008 0.07404988

16 15.011 0.07438751

17 20.014 0.07445000

18 25.019 0.07440000

19 30.025 0.07432500
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Fig. 9.1 Interest curve constructed by applying rational cubic interpolation to the reconstructed
market interest rate data
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Fig. 9.2 The interest curve constructed by rational cubic interpolation with and without the
reconstruction of market interest rate data

interest rate curve should focus on goodness of fit while the long term of the curve
requires smoothness [8]. The interest rate curve constructed by the rational cubic
interpolation method essentially satisfies these requirements. We now discuss the
stability of the interest rate curve; when rational cubic interpolation is applied to
the reconstructed market data the data in Table 9.3 changes from .7:011; 7:2250%/
to .7:011; 11:0000%/. The two interest rate curves in Fig. 9.2 are constructed by
the rational cubic interpolation method; the upper curve uses reconstructed market
data and the lower curve uses the original market data. It can be seen that the upper
curve, from reconstructed market data, has less volatility.

9.6 Conclusion

The rational cubic interpolation algorithm can ensure that the constructed interest
rate curve is positivity-preserving. The interpolation function is C1 continuous and
the constructed interest rate curve is stable and smooth. The algorithm to reconstruct
the data can restrict the fluctuations of the interest rate curve when the input data
jumps sharply.
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Chapter 10
Advanced Methods in Variational Learning:
Segmentation with Intensity Inhomogeneity

Jack Spencer and Ke Chen

Abstract Mathematical imaging aims to develop new mathematical tools for
the emerging field of image and data sciences. Automatic segmentation in the
variational framework is a challenging as well as a demanding task for a number
of imaging tasks. Achieving robustness and reliability is a major problem. The two-
phase piecewise-constant model of the Mumford–Shah (2PCMS) energy is most
suitable for images with simple and homogeneous features where the intensity
variation is limited. However, it has been applied to many different types of
synthetic and real images after some adjustments to the formulation. This chapter
addresses the task of generalising this widely used model to account for intensity
inhomogeneity which is common for real life images. We consider two ways of
altering the fitting terms by ‘correcting’ the intensity. This allows us to process
the type of images that are beyond 2PCMS. We first review the state of the art of
such methods for treating inhomogeneity and then demonstrate inconsistencies in
existing methods. Next we propose two modified variational models by introducing
additional constraints and extend the concept to selective segmentation, where user
input can aid the intensity correction. These models are minimised with convex
relaxation methods, where the global minimiser can be found for a fixed fitting term.
Finally, we present numerical results that demonstrate an improvement to existing
methods in terms of reliability.
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10.1 Introduction

Segmentation is a fundamental aspect of image processing, and variational methods
have proved to be a very effective approach to this important problem. In Sect. 10.2
we introduce the concept of image segmentation, its major applications, and the
areas of interest to this work. In Sect. 10.3 we provide a background for variational
methods for image segmentation, by detailing two foundational formulations:
Mumford–Shah [17], and Chan–Vese [6]. We set out the focus and motivation of our
work, before detailing the Variant Mumford–Shah model (VMS) [8] in Sect. 10.4.
We discuss the problems with recovering the ‘true’ image, in particular the lack
of convergence of its constituent parts. In Sect. 10.5 we detail the introduction
of constraints to VMS in order to ensure the convergence of all variables being
minimised, as well as ensuring their feasibility in relation to the image. We have two
approaches: restricting the size of the intensity constants by an initial approximation
(Method 1), and restricting the scale of the bias field (Method 2). In Sect. 10.6
we include experimental results that measure the accuracy of the new methods
compared to VMS by using the Tannimoto Coefficient [9], and discuss the benefits
of these approaches in Sect. 10.7.

10.2 Image Segmentation

The task of partitioning an image into multiple regions each sharing certain
characteristics—such as texture, intensity, shape or colour—is called segmentation,
and is an important aspect of image processing. Given an image z.x; y/ in a bounded
domain ˝ � R

2, we look for an edge � that partitions ˝ into regions f˝i; i D
1; 2; : : : ;Ng in˝ n� . Typically, the number of regions is understood to be known a
priori, which significantly simplifies the problem. In this work we consider the case
N D 2, such that we are determining foreground and background regions.

There are many applications of segmentation in a broad range of fields. Medical
imaging is an important aspect of medical research and patient care, being a
major part of clinical diagnosis. Segmentation is an essential part of this field,
allowing for an improved analysis of various image types such as PET (positron
emission tomography), MRI (magnetic resonance imaging) and CT. Currently,
the interpretation of these images has a critical impact on patient care. The
incorporation of image segmentation into the diagnosis and treatment process allows
for improved outcomes due to quantification and precision aiding the subjective
interpretation of healthcare professionals in a number of ways. Segmentation also
aids aspects of the security sector. Event recognition and object tracking can help
in many different areas such as securing private property or sensitive locations.
Automating this process has substantial benefits to these industries as it provides
an efficient alternative to traditional methods. Image segmentation is also central
to the robotics field, helping automatic visual sensing, fundamental to autonomous
navigation.
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Fig. 10.1 The top row is a piecewise-constant image, with a successful result using the ‘edge’
function. The second row is for an image with background artefacts and slight noise. The
‘edge’ function fails, whereas the ‘activecontour’ function succeeds. Both functions are included
in MATLAB’s Image Processing Toolbox. (a) Piecewise-constant image. (b) Edge detection.
(c) Image. (d) Failed edge detection. (e) ‘Activecontour’ result

There are many different approaches to tackle the problem of partitioning an
image into relevant regions. The aspect of interest here is to primarily consider
intensity as a segmentation criterion. For simple examples, where there is little
variation of intensity within the foreground and background, it is possible to simply
threshold the image to determine regions of interest,˝1 and˝2. Another option is to
use edge detectors to determine the correct partition � , such as the ‘edge’ function
in MATLAB’s Image Processing Toolbox. Figure 10.1a–b shows such an example,
where there is a piecewise-constant image, and the resulting edge function clearly
gives the correct partition � . However, simplistic approaches like edge detection
or thresholding have limited use with real images, that also include noise, blur,
inhomogeneity and artefacts. In these cases, the boundaries computed are often
incomplete such that they do not completely define objects, or pick up more detail
than required.

There are many alternatives to tackling more difficult segmentation problems,
rather than the naive approaches mentioned above and demonstrated in Fig. 10.1e.
One such option is the region growing approach, where image statistics determine
the splitting of the image. However, the boundaries computed can often be irregular
and can be sensitive to initialisation. There are also combinatorial methods, that
view segmentation as a discrete label assignment problem, but there can be
limitations in terms of the type of data terms that can be accommodated. We consider
the variational approach, which we introduce next. In this way, an energy functional
that describes the image data is minimised, and the solution gives the correct
boundary � , and corresponding foreground and background regions. An important
example of this type of model is Active Contours Without Edges [6] by Chan and
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Vese, which we detail in Sect. 10.3. Figure 10.1 demonstrates a successful result
using the ‘activecontour’ function in MATLAB’s Image Processing Toolbox, where
edge detection fails. The image contains noise and background artefacts, which can
be treated by region based variational segmentation models easily.

10.3 Variational Methods

Variational image segmentation models are defined in a continuous setting and
formulated as energy minimisation problems. The approach is to define an energy
that describes some characteristics of the image and then find an optimal function,
that defines the unknown edge or regions of interest. Two main approaches to
segmentation by image intensity have developed. One is based on edges, where edge
detectors are incorporated into an energy functional, and the other is region based,
where the intensity throughout the image is considered. We first briefly review the
development of edge based active contour models, and then discuss the focus of this
work: region based methods.

One of the most important models in variational image segmentation, proposed
by Kass et al. [12] in 1988, minimises an objective functional towards a regular
curve on edges, and is known as Snakes [12]. The energy characterises the contour
and controls the elastic and bending energies of a piecewise C 1 planar curve.
An additional term, known as the external energy, employs an edge function to
attract the contour towards edges within the image, z. When employed naively edge
detectors rarely produce successful results, as shown in Fig. 10.1. However, when
embedded into the variational formulation they can prove very effective. The local
minima of this functional can be found by computing the corresponding Euler–
Lagrange equation. Caselles et al. [4] proposed the geodesic active contour model
in 1997, a particular case of the Snakes model. The functional only involves one
term, again reliant on an edge function to locate boundaries. These active contour
models [4, 12] depend on the gradient of the image, and have been widely studied
since their inception proving very successful. However, when applied to some real
images the edge function is not zero at the edges and the curve can pass through
object boundaries. This can be counteracted by smoothing the image, which can in
turn lead to the loss of edge definition and limited results. These problems can be
avoided with an alternative approach; region based methods.

Region based methods tend to be more flexible in terms of their application, and
more robust to phenomena that occur in real images: noise, blur, inhomogeneity and
artefacts. These approaches consider image intensities throughout the image, rather
than focus on sharp intensity jumps. The focus of this work, and a fundamental idea
in variational image segmentation, is the introduction of the minimisation of the
Mumford–Shah functional [17], given by

EMS.u; � / D �
Z

˝

.z � u/2 d˝ C
Z

˝n�
jruj d˝ C �j� j; (10.1)
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where �; � > 0 are weighting parameters, and j� j denotes the length of the edge
curve � , the boundary between regions ˝i. Mumford and Shah [17] demonstrated
that, theoretically, the existence and regularity of minimisers of (10.1) can be
achieved. The function that minimises (10.1) is a piecewise smooth function we
denote uMS, that has discontinuities given by � , defining object boundaries. In 2001,
Chan and Vese introduced Active Contours Without Edges [6] and a functional
that was a particular case of (10.1): the two-phase piecewise-constant example, i.e.
jruj D 0 and N D 2 in (10.1):

ECV.c1; c2; � / D �
�Z

˝1

.z � c1/
2 d˝ C

Z

˝2

.z � c2/
2 d˝

�
C �j� j: (10.2)

Here, c1 and c2 are the average intensities of z in regions ˝1 and ˝2, respectively.
The Chan–Vese model (CV) has been widely used in segmentation applications
since its introduction. It differs from the original Mumford–Shah formulation (10.1)
in the sense that it treats the image as piecewise-constant rather than piecewise-
smooth. In Fig. 10.2 we include a result for CV, demonstrating that the artefacts in
the background of the image are ‘ignored’ due to the averaging of intensities in each
region.

Variational methods involve minimising an energy, such as Eqs. (10.1)
and (10.2). In each case the variable that defines the boundary between objects
is � . To minimise with respect to this variable is not straightforward; topological
changes are difficult to track in this framework. An idea that is integral to the
development of variational image segmentation models, as well as many other areas
in image processing and computer vision, is the level set method, first introduced
by Osher and Sethian [19] and Zhao et al. [22]. When applied to segmentation,
the level set function �.x; y/ implicitly represents the one-dimensional contour � .
By replacing � with a two-dimensional function � the motion of this interface �0
(given by �.x; y/ D 0) is implicit. The geometric characteristics of this interface can
be easily tracked with this formulation, as opposed to a parametrisation approach.
Caselles et al. [4] minimised their edge based formulation using the variational
level set method, Tsai et al. [21] applied it to minimise (10.1), and Chan and Vese

Fig. 10.2 On the left is an image containing noise, inhomogeneity, and artefacts. On the right is
a failed CV result computed with the ‘activecontour’ function in MATLAB’s Image Processing
Toolbox. (a) Inhomogeneous image. (b) Failed ‘activecontour’ result
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applied it to the minimisation of (10.2). Chan and Vese used the Heaviside function
to represent the two regions ˝1 and ˝2 with respect to the level set function, �,
and computed the Euler–Lagrange equation. Despite the considerable success of
this model, the solution of the corresponding partial differential equation is often a
local minimum, which reduces the reliability of the results. The introduction of the
idea of convex relaxation by Chan et al. [7] demonstrated that a global minimum
of (10.2) with respect to � , and consequently the regions ˝1 and ˝2, can be found.
The idea is to represent the two regions by an indicator function, and relax the
binary constraint such that both the functional and the constraint sets are convex,
and has improved the applicability of piecewise-constant segmentation.

We now discuss the main focus of this work; image segmentation with intensity
inhomogeneity, based on the CV formulation in particular. Partitioning images by
areas of constant intensity (the CV approach) has proved very effective, however
can have limited results for more complicated images, as demonstrated in Fig. 10.2.
Considering intensity inhomogeneity can offer major benefits and there have been
many models that aim to allow for intensity variations within the object, mainly
incorporating the level set approach. The CV framework has been generalised by the
introduction of new fitting terms to incorporate extensive intensity inhomogeneity,
such as Li et al. [14, 15] who introduced a region scalable fitting energy and local
cluster method. Jung et al. [11] introduced a nonlocal ACM utilising distance func-
tions. Brox and Cremers [3] and Lanktona and Tannenbaum [13] introduced new
local models, incorporating Gaussian kernel functions. Other relevant approaches
include Ahmed et al. [1] and Sun et al. [20]. A recent model that combines both
the idea of segmentation with intensity inhomogeneity and convex relaxation is
D. Chen et al. [8], and our work focuses on their formulation. Their framework
is based on the idea of attaining a solution to the piecewise-smooth formulation of
Mumford–Shah (10.1), using the piecewise-constant approach of Chan–Vese (10.2).
They achieve this with bias field estimation, which we detail next.

10.4 Variant Mumford–Shah Model [8]

D. Chen et al. [8] assume the image can be treated as piecewise-constant. With this
assumption, the ‘true’ image data is formulated [1, 16] as

T D
X

i

ci�i; i D 1; 2; : : : ;N; (10.3)

where �1 and �2 are characteristic functions defining the regions ˝1 and ˝2,
respectively. The premise is that the image can be modelled as

z.x/ D B.x/T C �; x 2 ˝i; i D 1; 2; : : : ;N; (10.4)



10 Advanced Methods in Variational Learning: Segmentation with Intensity. . . 177

where � is additive noise. Here, as with CV, we consider the two-phase case, i.e.
N D 2. D. Chen et al. [8] aim to estimate the bias field B and therefore recover the
‘true’ image T . The VMS [8] is formulated as follows:

Evms.c1; c2;B/ D �
Z

˝

�
.z � Bc1/

2�1 C .z � Bc2/
2�2

�
dxC�

Z

˝

jrBj2 dxC�j� j;
(10.5)

where �;� and � are weighting parameters. The idea is that the intensity constants
represent the ‘true’ image, and the bias field B varies such that their combination is
the piecewise-smooth approximation of z (with respect to the Mumford–Shah [17]
formulation (10.1)), given by

uMS D Bc1�1 C Bc2�2: (10.6)

This is minimised iteratively (e.g. the iterative process method, Li et al. [15]) by the
following steps. Step (1): For fixed characteristic functions �1 and �2, and intensity
constants c1 and c2, minimise (10.5) with respect to bias field estimator B. Based on
the work of Nielsen et al. [18] and Brox and Cremers [3], the exact minimiser can
be well approximated. Step (2): For fixed characteristic functions �1 and �2, and
bias field estimator B, minimise (10.5) with respect to intensity constants c1 and c2.
These can be computed precisely. Step (3): For fixed intensity constants c1 and c2,
and bias field estimator B, minimise (10.5) with respect to �1; �2. Minimising two
characteristic functions can be achieved by using an indicator function, u.x/, which
is allowed to take intermediate values. This is based on the work of Chan et al. [7]:

min
0�u�1

�
�

Z

˝

�
.z � Bc1/

2 � .z � Bc2/
2
�

u.x/ dxC �
Z

˝

jru.x/j dx

�
; (10.7)

where the length term j� j in (10.5) has been replaced by the total variation of u.
D. Chen et al. use the dual formulation method of Chambolle [5], which consists of
introducing a new variable v and alternating between minimising u and v. D. Chen
at al. [8] implement the three steps given above using slight variations on the
formulation.

10.4.1 Convergence Behaviour of VMS

In Fig. 10.3, we demonstrate some results for the VMS that are also used in [8],
and are of a comparable quality. However, the question remains: based on the
image model described above (10.3), what is the ‘true’ image? Whilst the joint
minimisation of (10.5) with respect to c1; c2;B; �1; �2 is nonconvex, and therefore
we cannot determine the correct c1 and c2 precisely, there is a problem with
the current framework, which we will now discuss. In Fig. 10.3 (after 300 iterations),
we show that the values of the intensity constants continually rise, such that after
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Fig. 10.3 Good results of early termination for VMS (after 300 iterations). From left to right: final
contour, bias field B, and the progression of c1 values (vertical axis) against iterations (horizontal
axis), demonstrating continuous growth (similar progression for c2). Note that c1 and c2 would
indefinitely increase, with B approaching 0. (a) Final contour. (b) Bias field, B. (c) c1 progression.
(d) Final contour. (e) Bias field, B. (f) c1 progression

2 � 105 iterations, for Image 1, c1 D 4:372 � 1066 and c2 D 3:147 � 1066, and
for Image 2, c1 D 3:422 � 1051 and c2 D 3:053 � 1051. The convergence of
uMS (10.6) comes from the reduction in scale of B. To demonstrate this, after the
same number of iterations, for Image 1, jjBjjF D 1:023 � 10�65, and for Image
2, jjBjjF D 1:513 � 10�50 (where jj � jjF is the Frobenius norm). This motivates
our proposal for modifying VMS, in the form of additional constraints, that can
automatically control the scale of c1; c2 and B.

10.5 Modified Models

Although the VMS model would not give values for B; c1 and c2 that are consistent
with the image, the function uMS (10.6) is usually a sensible piecewise-smooth
approximation of the image, since the products Bc1 and Bc2 are finite. Once uMS

has converged, it is possible to manually rescale B; c1; c2 to finite values, but these
are unknown quantities. The immediate question is: is it possible to incorporate
constraints into the formulation in a reliable way, i.e. can we use information
in the image to automatically restrict the scale of B; c1 and c2? Based on the
observations of the previous section, it is natural to approach this problem in two
ways. First, by explicitly restricting the size of the intensity constants, c1 and c2, and
second, by controlling the scale of B.
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10.5.1 Method 1

If Qc1 and Qc2 are good approximations of the ‘correct’ values of c1 and c2, then
we can incorporate them into the formulation. It is unnecessary to constrain both
intensity constants, and so we proceed by restricting c1 by adjusting the formulation
as follows, by including Qc1:

Evms
1 .c1; c2;B/ D �

Z

˝

�
.z � Bc1/

2�1 C .z � Bc2/
2�2

�
dxC �j� j

C �
Z

˝

jrBj2 dxC 	1jjc1 � Qc1jj2; (10.8)

where 	1 is a positive parameter. The introduction of this constraint to VMS
alters the minimisation of the intensity constants discussed in Sect. 10.4. Minimis-
ing (10.8) with respect to c1 gives:

c1 D 	1 Qc1 C �
R
˝

z.x/B.x/�1 dx

	1 C �
R
˝

B2.x/�1 dx
: (10.9)

10.5.2 Method 2

Secondly, we tackle the problem of the scale of the bias field, B. With VMS, B is
encouraged to be close to 0, which leads to the lack of convergence for c1 and c2.
To prevent this we introduce a new term that encourages B to be close to a positive
constant. The new formulation is given as follows:

Evms
2 .c1; c2;B/ D �

Z

˝

�
.z � Bc1/

2�1 C .z � Bc2/
2�2

�
dxC �j� j

C �
Z

˝

jrBj2 dxC 	2
Z

˝

.B � s/2 dx; (10.10)

where s; 	2 are positive parameters. Here, with 	2 D 0, clearly we just have VMS.
If s D 1, and 	2 ! 1 we have the CV formulation (10.2). We intend to use the
framework of VMS to approximate the exact minimiser of (10.10) for B. With this
in mind, the previous formulation is equivalent to

Evms
2 .c1; c2;B/ D �

Z

˝

��
.z � Bc1/

2 C 	2
�
.B � s/2

	
�1

C �.z � Bc2/
2 C 	2

�
.B � s/2

	
�2
�

dx

C�
Z

˝

jrBj2 dxC �j� j;
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where the new constraint has been incorporated into the fitting term. We can
reformulate this as follows, first looking at the �1 term:

�
.z � Bc1/

2 C 	2
�
.B � s/2

	 D B2
�
c21 C Q	

� � 2B .c1zC Q	s/C �z2 C Q	s2
�

D �c21 C Q	
� 

B � c1zC Q	s

c21 C Q	
�2
C f1.z; c1; s; Q	/

D

2

64
c1zC Q	s
q

c21 C Q	
� B

q
c21 C Q	

3

75

2

C f1.z; c1; s; Q	/;

where Q	 D 	2
�

and f1.z; c1; s; Q	/ D z2CQ	s2

c21CQ	 . In a similar way, for the �2 term:

�
.z � Bc2/

2 C 	2
�
.B � s/2

	 D

2

64
c2zC Q	s
q

c22 C Q	
� B

q
c22 C Q	

3

75

2

C f2.z; c2; s; Q	/;

where f2.z; c2; s; Q	/ D z2CQ	s2

c22CQ	 . Therefore (10.10) is equivalent to

Evms
2 .c1; c2;B/ D �

Z

˝

0

B@

2

64
c1zC Q	s
q

c21 C Q	
� B

q
c21 C Q	

3

75

2

�1

C

2

64
c2zC Q	s
q

c22 C Q	
� B

q
c22 C Q	

3

75

2

�2

1

CA dx

C
Z

˝

f1.z; c1; s; Q	/�1 dxC
Z

˝

f2.z; c2; s; Q	/�2 dx

C�
Z

˝

jrBj2 dxC �j� j:

Minimising Evms
2 .c1; c2;B/ with respect to B is given by

min
B

�
�

Z

˝



ŒNz1 � BNc1�2 �1 C ŒNz2 � BNc2�2 �2

�
dxC �

Z

˝

jrBj2 dx

�
; (10.11)
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since f1.z; c1; s; Q	/; f2.z; c2; s; Q	/, and j� j are not dependent on B. Here

Nz1 D c1zC Q	s
q

c21 C Q	
; Nc1 D

q
c21 C Q	; Nz2 D

c2zC Q	s
q

c22 C Q	
; and Nc2 D

q
c22 C Q	:

In the same way as VMS, we can approximate the exact minimiser of (10.11):

B D Nc1Nz1�1 C Nc2Nz2�2Nc21�1 C Nc22�2
� G: (10.12)

10.6 Results

An important aspect of the success of each method is how much the constraints
affect the final segmentation. With this in mind, we can treat the result computed
by VMS as the ‘ground truth’ and quantifiably measure the solution of each method
against this using the Tannimoto Coefficient [9]:

TC D N.GT \˝�1 /
N.GT [˝�1 /

; (10.13)

where N.�/ is the number of pixels in the enclosed region, GT is the result computed
by VMS, and ˝�1 is the result computed with additional constraints. The final
intensity constants computed by each method are c�1 and c�2 . Another aspect of
the success of each method is what these values are; we can check whether the
computed values are feasible, i.e. c1; c2 2 Œ0; 1�, whilst maintaining the quality of
the segmentation.

For VMS Method 1 (M1), we test two examples (Images 1 and 2, see Fig. 10.4),
both used in [8]. In Tables 10.1 and 10.2, we present results for variations of
the initial intensity approximation, Qc1, and the constraint parameter, 	1, in terms
of how accurately these values can reproduce the results of VMS. In addition,
Figs. 10.5 and 10.6 contain example results for M1, demonstrating the convergence
of c1 and c2. For VMS Method 2 (M2), we test four examples (Images 1–4, see

Fig. 10.4 Images tested with M1 and M2. (a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4
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Table 10.1 Result Sets for Method 1, Image 1 (bold results shown in Fig. 10.5)

Constraint parameter, 	1
Qc1 1 10 102 103 104 105 106 107

0.2 c�

1 3.773 4.928 1.625 0.591 0.282 0.212 0.201 0.200

c�

2 2.729 8.017 2.628 0.958 0.450 0.356 0.338 0.337

TC 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.3 c�

1 3.763 2.707 1.221 0.526 0.336 0.304 0.300 0.300

c�

2 2.721 1.994 0.915 0.397 0.253 0.222 0.226 0.226

TC 0.999 0.996 0.991 0.964 0.962 0.962 0.962 0.962

0.4 c�

1 3.750 2.723 1.277 0.599 0.428 0.403 0.400 0.400

c�

2 2.711 2.004 0.957 0.452 0.323 0.304 0.302 0.302

TC 0.999 0.996 0.991 0.965 0.962 0.962 0.962 0.962

0.5 c�

1 3.679 2.753 1.339 0.678 0.528 0.502 0.500 0.500

c�

2 2.659 2.025 1.004 0.510 0.393 0.379 0.377 0.377

TC 0.999 1.000 0.991 0.986 0.984 0.962 0.962 0.962

0.6 c�

1 3.686 2.780 1.403 0.759 0.620 0.602 0.600 0.600

c�

2 2.664 2.042 1.052 0.571 0.466 0.454 0.452 0.452

TC 0.999 1.000 0.991 0.986 0.984 0.962 0.962 0.962

0.7 c�

1 3.691 2.812 1.470 0.843 0.717 0.702 0.700 0.700

c�

2 2.667 2.067 1.103 0.634 0.539 0.529 0.528 0.528

TC 1.000 1.000 0.992 0.986 0.984 0.962 0.962 0.962

0.8 c�

1 3.693 2.847 1.540 0.931 0.814 0.802 0.800 0.800

c�

2 2.668 2.092 1.155 0.699 0.614 0.604 0.603 0.603

TC 1.000 1.000 0.992 0.975 0.962 0.962 0.969 0.969

The TC row demonstrates how this method compares to the VMS results, while
rows for c1; c2 suggest reliance on Qc1

Fig. 10.4), all used in [8]. In Fig. 10.7 we present examples of M2 for Images 1–4.
The constraint parameter is fixed at s D 1, with 	2 depending on each case. Below
we discuss the results for each method in detail.

For M1 we test two challenging examples. Image 1 is an example of vessel
segmentation, from Fig. 6 of [8]. It contains intensity variation in the foreground,
and background artefacts of a similar intensity to the object, which makes it a
difficult example. The VMS result for this case shows a minor inaccuracy in the
sense that one artefact is included in the segmented region, which we hope to
improve on. For Image 1, Table 10.1 shows that a high value of TC can be achieved
except for very small values of the initial intensity approximation, i.e. Qc1 D 0:2. As
	1 increases the additional constraint of M1 (10.8) is enforced exactly, as expected.
With 	 > 103, c�1 ; c�2 2 Œ0; 1�, suggesting that 	1 should be higher than this to
be consistent with the image. For Image 1, we have shown an example of a result
for Qc1 D 0:5; 	1 D 105 in Fig. 10.5. We see that whilst TC D 0:984 indicating
a slight variation from the result computed from VMS, we still get a good result.
However, as seen in Fig. 10.3 and Fig. 6 of [8] the result we took as a ‘ground truth’,
as mentioned before, does contain an inaccuracy as it includes a slight artefact in
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Table 10.2 Result Sets for Method 1, Image 2 (bold results shown in Fig. 10.6)

Constraint parameter, 	1
Qc1 1 10 102 103 104 105 106 107

0.2 c�

1 1.576 1.547 1.331 0.730 0.333 0.250 0.205 0.200

c�

2 1.406 1.383 1.203 0.674 0.309 0.318 0.246 0.235

TC 1.000 1.000 1.000 0.999 0.998 0.998 0.059 0.141

0.3 c�

1 1.576 1.552 1.358 0.790 0.409 0.314 0.301 0.300

c�

2 1.407 1.387 1.226 0.729 0.379 0.292 0.279 0.278

TC 1.000 1.000 1.000 0.999 0.998 0.998 0.673 0.659

0.4 c�

1 1.577 1.556 1.386 0.855 0.491 0.411 0.401 0.400

c�

2 1.407 1.390 1.251 0.789 0.455 0.381 0.372 0.371

TC 1.000 1.000 1.000 1.000 0.998 0.998 0.997 0.997

0.5 c�

1 1.577 1.560 1.416 0.924 0.577 0.509 0.501 0.500

c�

2 1.407 1.394 1.277 0.853 0.535 0.472 0.464 0.464

TC 1.000 1.000 1.000 0.999 0.998 0.997 0.890 0.896

0.6 c�

1 1.578 1.564 1.447 0.996 0.667 0.605 0.601 0.600

c�

2 1.408 1.397 1.304 0.920 0.619 0.561 0.557 0.557

TC 1.000 1.000 1.000 0.999 0.998 0.896 0.885 0.885

0.7 c�

1 1.578 1.567 1.478 1.071 0.759 0.704 0.700 0.700

c�

2 1.408 1.400 1.332 0.990 0.704 0.653 0.649 0.648

TC 1.000 1.000 1.000 0.999 0.998 0.885 0.777 0.695

0.8 c�

1 1.578 1.571 1.510 1.149 0.852 0.803 0.800 0.800

c�

2 1.409 1.403 1.359 1.062 0.791 0.754 0.739 0.739

TC 1.000 1.000 1.000 0.999 0.991 0.886 0.557 0.557

The TC row demonstrates how this method compares to the VMS results, while
rows for c1; c2 suggest reliance on Qc1

Fig. 10.5 Results for Image
1 (with 	1 D 105 and
Qc1 D 0:5). Top left shows
progression of c1 values
(vertical axis) against
iterations (horizontal
axis)—c2 values demonstrate
similar behaviour. Top right is
the bias field B. Bottom left is
the result for VMS Method 1
(TC D 0:962), and bottom
right is original VMS,
demonstrating our method
can improve quality. (a) c1
Progression. (b) Bias field.
(c) New VMS, Method 1
Contour. (d) Old VMS
Contour
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Fig. 10.6 Results for Image 2 (with 	 D 105 and Qc1 D 0:5). From left to right: result for VMS
Method 1 (TC D 0:997), progression of c1 values (vertical axis) against iterations (horizontal
axis)—c2 values demonstrate similar behaviour, and bias field B. (a) VMS, Method 1 Contour.
(b) c1 Progression. (c) Bias field, B

the background. This is the best result computed for VMS, with many variations of
� and � , and agrees with the results of D. Chen et al. [8]. This demonstrates that
M1 can actually improve the results for difficult examples, such as Image 1. Image
2, from Fig. 1 of [8], contains very large intensity variation in both the foreground
and background. The VMS result for this case is good, but the challenge is how
robust Method 1 and 2 are to the additional parameters. For Image 2, we see that
for high values of 	1 the final result, ˝�1 , can deviate from the result computed
by VMS, except for good selections of Qc1, i.e. Qc1 D 0:4; 0:5. With 	1 > 104,
c�1 ; c�2 2 Œ0; 1�. This demonstrates that for this particularly challenging case of
intensity inhomogeneity, which has high intensity variation in the foreground and
background the success of M1 can be more sensitive to the additional constraint than
in Image 1. However, Fig. 10.6 shows the desired convergence of c1 and c2, allowing
us to automatically recover a feasible ‘true’ image for appropriate parameters.

For M2 we test four examples (Images 1–4), all used in D. Chen et al. [8].
In Fig. 10.7, we present the results for each case. We set s D 1, and vary the
constraint parameter for each case. Given this value, for an n � n image, we expect
jjBjjF 
 128 with the addition of the M2 constraint. For Image 1 	2 D 0:1, and
the intensity constants converge to c�1 D 0:352; c�2 D 0:240. The bias field, B,
also converges and we compute jjBjjF D 129:8. This result is of a similar quality
to VMS, shown in Fig. 10.3, but of slightly worse quality to the result for M1,
shown in Fig. 10.5. For Image 2 	2 D 0:2, and the intensity constants converge
to c�1 D 0:807; c�2 D 0:660. The bias field, B, also converges and we compute
jjBjjF D 67:0. However, row 2 of Fig. 10.7 demonstrates that the convergence of
c1 and c2 is quite slow, taking over 500 iterations which is much more than for the
convergence of uMS in VMS. Image 3 is an ultrasound image, containing intensity
variation in the background. For this example, 	2 D 0:1, and the intensity constants
converge to c�1 D 0:446; c�2 D 0:383. The bias field, B, also converges and we
compute jjBjjF D 120:9. Image 4 is another example of vessel segmentation, where
intensity varies smoothly throughout the vessel. For this example, 	2 D 0:1, and
the intensity constants converge to c�1 D 0:352; c�2 D 0:239. The bias field, B, also
converges and we compute jjBjjF D 122:2. We see results of comparable quality to
rows 3 and 4 in Fig. 10.7, in Figs. 9 and 4 of [8], respectively, except that there is
no convergence for c1; c2 and B. This demonstrates a clear improvement for these
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Fig. 10.7 Results for Method 2. Rows 1–4 are for Images 1–4, respectively. From left to right:
result for VMS Method 2, bias field B, and the progression of c1 values (vertical axis) against
iterations (horizontal axis)—c2 values demonstrate similar behaviour
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examples. Despite the slow convergence of M2 in the case of Image 2, we have
fast convergence in the other examples, meaning the additional constraint of M2
generally doesn’t slow down the computation of a solution. Also, the results are not
sensitive to the constraint parameter, 	2. For Image 2, it was adjusted to 0.2, but for
all other cases it was set at 0.1, and for all examples, c�1 ; c�2 2 Œ0; 1�, showing that
M2 produces results consistent with the image.

10.7 Conclusions

In this paper, we have introduced two modified VMS models that ensure the separate
convergence of all variables minimised. VMS Method 1, restricting the growth of
one intensity constant, allows for an intuitive control on the intensity of the desired
object, whilst ensuring the convergence of each variable. VMS Method 2, restricting
the scale of the bias field, B, is a simple adjustment of the original formulation of D.
Chen et al. [8]. We have incorporated an additional constraint into the approximation
of B. We see a good standard of results in four examples, where all variables
converge separately.

We suggest that both modified models have advantages over VMS. In cases
where the intensity constants can be well approximated, VMS Method 1 is a natural
choice. It has demonstrated that it can achieve very good results, even improving on
the results of D. Chen et al. [8] in a difficult example. However, some sensitivity to
the additional parameter, 	1 can limit its potential efficacy. The additional constraint
of VMS Method 2 can reliably control the scale of the bias field, B, thus ensuring
the convergence of all variables, and is therefore an improvement on VMS. It is a
simple and effective addition to the original formulation, and is not heavily reliant on
the additional parameters, and so does not significantly affect usability. In general,
VMS Method 2 is the superior modification due to its flexibility; it does not require
any prior knowledge. There exist other bias correction models such as [10] which
could be studied and compared to VMS in future works.

Finally it should be remarked that while variational models are generally
powerful, there are issues to be overcome: (a) Non-complexity—it may take a
long time to completely resolve this problem; (b) Slow convergence—this is a long
standing issue with nonlinear optimisation or PDEs; in some cases, developing a
fast multigrid method is possible [2].
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Chapter 11
An On-Line Strategy of Groups Evacuation
from a Convex Region in the Plane

Bo Jiang, Yuan Liu, Hao Zhang, and Xuehou Tan

Abstract This paper considers the problem faced by people who must evacuate
an area as quickly as possible. The evacuees are divided into multiple groups
share information completely. We seek strategies that achieve a bounded ratio of
evacuation path length, without any knowledge of boundary information. We restrict
the affected area to a convex region in the plane, and present a 4

p
2-competitive

strategy for n groups of evacuees (n � 3). The performance of the strategy is
evaluated with case studies.

11.1 Introduction

Motivated by its relations to the well known searching and evacuation problem,
recently much attention has been devoted to the problem of how to efficiently
evacuate an affected area in an emergency. In this paper, suppose that the evacuees
are divided into multiple groups, at different locations in the affected area. They
don’t know any boundary information of the affected area, but can share information
with each other during the evacuation. We seek strategies to evacuate the affected
people from the dangerous region as quickly as possible. We call the problem
discussed in this paper the multi-source points evacuation problem, since the
evacuees start to evacuate from several different initial positions in the affected area.

An on-line strategy is usually evaluated by a competitive ratio. Let P denote an
affected area, restricted to a convex region in the plane. The evacuees are modelled
as the points inside P, whose initial positions are at different locations. When
our strategy is used to evacuate P, without any boundary information we let the
evacuation time ttactic denote the cost of the tactic. The evacuation time ttactic is the

B. Jiang (�)
Dalian Maritime University, Dalian, China
e-mail: bojiang@dlmu.edu.cn

Y. Liu • H. Zhang
School of Information Science and Technology, Dalian Maritime University, Dalian, China

X. Tan
School of Information Science and Technology, Tokai University, Tokyo, Japan

© Springer International Publishing Switzerland 2015
L.M. Chen et al., Mathematical Problems in Data Science,
DOI 10.1007/978-3-319-25127-1_11

189

mailto:bojiang@dlmu.edu.cn


190 B. Jiang et al.

period from the beginning of the evacuation to the moment that all people evacuees
successfully evacuate the affected area. Let topt denote the shortest evacuation time
required to evacuate from P in the case that the evacuees know the boundary
information of P. If the boundary information of the affected area is known, they
can reach the boundary in the shortest time or distance. The competitive ratio of an
on-line strategy is defined as the upper bound of ttactic / topt.

Previous Work The evacuation problem has been extensively studied. Chen
et al. [1] used the methods of system simulation to compare the evacuation efficiency
of three different road networks. Lu et al. [2] and Shekhar et al. [3] studied the
shortest path algorithm of evacuation with the consideration of capacity constraints
and increasing the number of people in time and space. Berman [4] surveyed the
problems of online searching and navigation. Burgard [5] considered the evacuate
ratio with the cost of strategy as the time spent, instead of path lengths.

To analyze the evacuation strategy under complete information on the boundary,
previous studies mainly focus on details such as flow and other constraints. In a
recent work [6], Xu et al. considered a new situation in which the evacuees don’t
know the boundary information of the affected area. This actually occurs in an
emergency, as the affected region is not known to the evacuees in some cases. For the
convex region in the plane, Xu et al. [6] gave an evacuation strategy for n.n � 3/
groups of the evacuees with a competitive ratio of 3=cos.�=n/, provided that the
evacuees can communicate with each other during the evacuation. For n D 1, Wei
et al. [8] gave an evacuation strategy with a competitive ratio of 19:64. But, for
n D 2, the problem is unsolved. For the case n D 3, Wei et al. [7] improved the
competitive ratio to 2C 2p3. The evacuation strategies for grid networks are also
studied in [6].

Our Work In the strategy of Xu et al. [6], the evacuees are modelled as the points
inside P, whose initial positions are the same. In this paper, we further consider the
case where the initial positions are different, meaning our model is more practical.
Also, we assume that the evacuees can communicate with each other and move at the
unit speed during the evacuation. Our main result is a 4

p
2-competitive strategy for

the evacuation of several groups, and thus solves the multi-source points evacuation
problem.

The rest of this paper is organized as follows. In Sect. 11.2, we give some basic
definitions relevant to this paper. In Sect. 11.3, we present an on-line strategy to
solve the multi-source points evacuation problem and give its competitive ratio. In
Sect. 11.4, we conclude the paper with a discussion of further research and open
questions.

11.2 Preliminaries

In this paper, we define a convex polygon as a closed polygonal chain with all inte-
rior angles are less than � . Let P be a convex polygon. Let O D fO1;O2; : : : ;Ong
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denote a sequence of initial locations. The evacuees starting at Oi,1 � i � n,
don’t know the boundary information. The evacuees at an initial location converge
to a group, and their goal is to leave from P as soon as possible. Let G D
fG1;G2; : : : ;Gng denote the divided groups of evacuees.

Successful evacuation requires that all evacuees reach the boundary of the
affected area. We suppose that evacuees move at the unit speed during the
evacuation. So, the cost of our strategy is the path length of the last group to
evacuate. Let dtactic denote the distance this group walks using our strategy. Let dopt

denote the largest distance among all groups to the boundary of P, provided that the
boundary of P is known in advance. The performance of a strategy is evaluated by a
competitive ratio k, is defined above. Then, we get that k D ttactic=topt D dtactic=dopt.
Our objective is to minimize the competitive ratio k.

We make some assumptions about the evacuation in this paper. First, the
evacuees, at the initial locations O1;O2; : : : ;On in P, don’t know the boundary
information of P, but they can share information all the time. Second, the evacuees
move at the unit speed during the evacuation. Third, the longest distance among the
original locations is much less than dopt(i:e:; << dopt).

11.3 The Multi-Source Points Evacuation Problem

In this section, we study tactics in evacuation problem. In reality, the evacuees have
several grouping options. One is that all the evacuees converge to a group. Another
is that the evacuees are divided into several groups, and choose different paths to
escape the affected area with information sharing between them. The evacuation
strategy of n groups (n � 3) had been studied in [6], provided that the communica-
tion between different groups is always possible. Our strategy also allows evacuees
to divide into several groups to escape the affected area with information sharing
between them. Moreover, groups of evacuees can start at different locations.

Our Tactic Is Described as Follows

Step 1: The evacuees at an original location Oi are considered as a group, and we
denote by Gi the evacuees group at Oi.

Step 2: Find the convex hull of the original locations O1;O2 : : :On. Move the
evacuees from the locations, which are not on the vertex of the hull, to the closest
vertex on the hull. In Fig. 11.1, G2 is moved from O2 to O4, and G3 is moved from
O3 to O6. Then renumber the original locations on the hull, see Fig. 11.2. From
the third assumption above, the distances of moving the groups to the convex hull
can be ignored.

Step 3: Design evacuation paths for all groups at the renumbered original loca-
tions on the hull. Let Ri denote the path starting from the location Oi. The paths
are radials and designed as follows. First, the path for the evacuees at the first
location O1 is the bisector of the interior angle †O1. The direction of the path is
outward. Second, the path for the evacuees at the other location Oi, beside O1, is
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Fig. 11.1 The convex hull of
all initial locations

O2

O3

O5

O1

O4

O6

Fig. 11.2 Only the locations
on the convex hull are
renumbered

o2

o3

o4
o1

Fig. 11.3 Illustrating the
evacuation paths

R1

R2

R3

R4

O3

O4
O1

O2

the path from Oi�1 rotated 2�=n (n is the number of evacuees groups) clockwise,
i D 2; : : : ; n. See Fig. 11.3, where n D 4. The path starting from O1 is a radial,
which is on the bisector of interior angle †O1. R2 is R1 rotated 2�=4 clockwise.
Also, R3 is R2 rotated 2�=4 clockwise, and R4 is R3 rotated 2�=4 clockwise.

Step 4: When one group Gi, reaches the boundary of P first, other groups which
have not arrived at the boundary of P change their directions and move towards
the boundary point that had been reached by Gi. Let Lj denote the location of Gj

when the first group reaches the boundary of P, at Li, see Fig. 11.4. The group
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Fig. 11.4 An instance of three groups evacuation problem

G3 starting from O3 reaches the boundary of P first. When G3 arrives at L3 on
the boundary of P, the group G1, which arrives at L1, and the group G2, which
arrives at L2, change their directions towards L3 and continue to move. Finally,
all the evacuees successfully evacuate the affected area P through the point L3.

Theorem 11.1. The evacuate ratio of our tactic with n.n � 3/ groups is no more
than 4

p
2.

Proof. Let Ot, 1 � t � n, denote the initial location of the group Gt in P and Lt

denote the current point of Gt, when one of G1; : : : ;Gn reaches the boundary of P.
More specifically, suppose that Li is on the boundary of P and Lj is any other point,
Gj changes its direction and moves from Lj to Li (j ¤ i). Let d denote the distance
which the group first walks to find the boundary, then the total distance moved by Gj

is d C jLiLjj. The original locations Oi and Oj may be on the same side of segment
LiLj, or on the different side of segment LiLj, see Fig. 11.5. Whether they are on the
same or the different side, we can get jLiLjj � jOiLij C jOiOjj C jOjLjj. In other
words, jLiLjj � 3d. So, we have that dtactic D maxfjLiLjjg C d, then dtactic � 4d.

Now, we compute dopt as follows. Let P0 denote the convex polygon of the
vertices L1;L2; : : : ;Ln. Clearly, P0 is completely contained in P, see Fig. 11.6, where
n D 3.

Suppose the boundary of the affected area is the polygon P0, then dopt is the
largest distance from the original locations to the boundary of P0 among all groups.
Therefore, dopt can be obtained by computing the shortest distance from the original
locations to the boundary of P0. There are four situations as follows.
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Fig. 11.5 Different situations
for points Oi,Oj and segment
LiLj. (a) Oi and Oj are on the
same side of segment LiLj.
(b) Oi and Oj are on the
different side of segment LiLj
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Fig. 11.6 Illustrating the
convex polygon P0(n D 3)
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Fig. 11.7 The distance from source points to the boundary of P0(Case 1)
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Fig. 11.8 The distance from source points to the boundary of P0(Case 2)

Case1: The intersection of line OiLi and OiC1LiC1 is not on the segment OiLi and
OiC1LiC1 (Fig. 11.7). The foot of a perpendicular from Oi to line LiLiC1 is Di,
which is on the segment LiLiC1. Also, the foot of a perpendicular from OiC1 to
line LiLiC1 is DiC1, which is on the segment LiLiC1.
We know that †LiOLiC1 D 2�=n and OiLi D OiC1LiC1 D d. If OiOiC1
is parallel to LiLiC1, we get OiDi D OiC1DiC1 D d cos.�=n/. If OiOiC1
is not parallel to LiLiC1, we get that minfOiDi;OiC1DiC1g < d cos.�=n/ <
maxfOiDi;OiC1DiC1g.

Case 2: The intersection of line OiLi and OiC1LiC1 is on the segment OiLi or
OiC1LiC1 (Fig. 11.8). The foot of a perpendicular from Oi to line LiLiC1 is Di,
which is on the segment LiLiC1. Also, the foot of a perpendicular from OiC1 to
line LiLiC1 is DiC1, which is on the segment LiLiC1.
We know that †LiOLiC1 D 2�=n and OiLi D OiC1LiC1 D d. Then,
OLi < OLiC1, †OLiLiC1 > �=2 � �=n > †OLiC1Li. Because OiDi D
OiLi sin†OiLiLiC1, we get that OiDi D d sin†OiLiLiC1 > d sin.�=2 � �=n/ D
d cos.�=n/, that is, OiDi > d cos.�=n/.

Case 3: The intersection of line OiLi and OiC1LiC1 is not on the segment OiLi and
OiC1LiC1 (Fig. 11.9). The foot of a perpendicular from Oi to line LiLiC1 is Di,
which is not on the segment LiLiC1. But the foot of a perpendicular from OiC1 to
line LiLiC1 is DiC1, which is on the segment LiLiC1.
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Fig. 11.9 The distance from
source points to the boundary
of P0(Case 3)
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Fig. 11.10 The distance from source points to the boundary of P0(Case 4)

We know that †LiOLiC1 D 2�=n and OiLi D OiC1LiC1 D d. See Fig. 11.9.
The shortest distance from Oi to the segment LiLj is the segment OiLi. Then,
OiLi D d > d cos.�=n/.

Case 4. The intersection of line OiLi and OiC1LiC1 is on the segment OiLi or
OiC1LiC1 (Fig. 11.10). The foot of a perpendicular from Oi to line LiLiC1 is Di,
which is not on the segment LiLiC1. But the foot of a perpendicular from OiC1 to
line LiLiC1 is DiC1, which is on the segment LiLiC1.

See Fig. 11.10. The shortest distance from Oi to the segment LiLj is the segment
OiLi. Then, OiLi D d > d cos.�=n/.

As discussed above, Cases 1 	 4 enumerate all possible situations, so we know
that at least one of the distances, which are from the original locations to the
boundary between two adjacent paths, is longer than d cos.�=n/. According to the
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definition of dopt, dopt � d cos.�=n/.

k D ttactic=topt D dtatic=dopt � 4d

d cos �n
D 4

cos�n
(11.1)

Let x D cos �n , n > 3, x 2 Œ
p
2
2
; 1/. Then, k � f .x/ D 4

x . f .x/ is a decreasing

function, so k � f .
p
2
2
/ D 4p2.

When n D 3; k � 4p2 also helds since in the case of evacuating from the same
initial position the competitive ratio is k � 2C 2p3 [7], which is at least the path
length moved by evacuees in multi-source points evacuation problem.

The proof is thus complete.

11.4 Concluding Remarks

In this paper, we study the problem of finding efficient strategies for evacuating a
convex region without any boundary information as soon as possible. We consider
the problem for several groups evacuation, and present a 4

p
2�competitive strategy

to solve multi-source points evacuation problem.
If we release the communication restriction, how can the evacuees escape from

the affected area? In this situation, Wei et al. [8] have solved the problem of only
one group of the evacuees to escape from the affected area and have presented a
19.64-competitive strategy. The main idea of their strategy is to iteratively follow
a sequence of semicircles, whose centers are all the same, such that the radius of
a semicircle is twice that of the previous one in the sequence. It can be considered
as the planar generalization of the doubling strategy [9]. Let jOPT.P/j denote the
shortest distance between the evacuees and the boundary of P. The very first radius
is assumed to be on the horizontal line L and of length one, which is assumed to be
small, as compared tojOPT.P/j. Two consecutive semicircles are simply connected
by a line segment. An instance of the strategy is shown in Fig. 11.11, where O
denotes the starting position of the evacuees’ group, and Ai, Bi the points of L
intersecting the ith half-circle in the strategy. OA1 is the first radius, jOA1j D 1.
OA2 is the second radius, jOA2j D 2. OA3 is the third radius, jOA3j D 4, and so
on. jOPT.P/j is jOIj. The strategy is called spiral evacuation strategy described as
follows.

Step 1: Make a directed line L, with arbitrary direction, which passes through O,
as shown in Fig. 11.11. Let Z D fZ1;Z2g D fCL;�Lg denote the direction set
defined by L, where CL is the direction of L, and �L is the direction opposite to
CL. Let j denote the sequence number of Z and k denote the sequence number of
the set of half circles. At the start, let j D 1, k D 1 .j; k 2 N/ and G, the group of
the evacuees, begins at point O.
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Fig. 11.11 The strategy to
solve one group evacuation
problem
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Step 2: Make a segment OA1 with length 1 on L towards Z1. G walks along arc
bA1B1. Make a segment circle with radius r1 D OA1, which intersects L with B1.

G walks along with arc bA1B1. j D jC 1, k D kC 1.
Step 3: While k � 2, do the followings:

(1) Make a segment Bk�1Ak with length jrk�1j on L towards Zj. G walks along
Bk�1Ak. Make a semicircle with radius rk D OAk, which intersects L with Bk.
G walks along with arc bAkBk.

(2) if (G reach the boundary of P) stop.
(3) j D jC 1, k D kC 1.
(4) if .j > 2/ let j D 1.

We now pose several open problems for further research. Considering the spiral
evacuation strategy, suppose that the evacuees basically move on a sequence of the
semicircles, how could an efficient strategy be designed to solve the evacuation
problem discussed in this paper? Also, it may be very interesting to study the
evacuation problem with the spiral evacuation strategy, when n D 2. Moreover,
we suggest that the spiral evacuation strategy is useful for solving the evacuation
problems even when the affected area is not convex region.

Acknowledgements The authors would like to thank the anonymous referees for their valuable
comments and suggestions for improvements. The work by Jiang was partially supported by
National Natural Science Foundation of China under grant 61173034 and the General Project of
Liaoning Province Science and Research (No. L2015105).

References

1. X. Chen, F.B. Zhan, Agent-based simulation of evacuation strategies under different road
network structures. J. Oper. Res. Soc. 59, 25–33 (2008)

2. Q.S. Lu, B. George, S. Shekhar, Capacity constrained routing algorithms for evacuation
planning: a summary of results, in Advances in Spatial and Temporal Databases. Lecture Notes
in Computer Science, vol. 3633 (Springer, Berlin, 2005), pp. 291–307



11 An On-Line Strategy of Groups Evacuation from a Convex Region in the Plane 199

3. S. Shekhar, K. Yang, V.M.V. Gunturi, L. Manikonda, et al., Experiences with evacuation route
planning algorithms. Int. J. Geogr. Inf. Sci. 26(12), 2253–2265 (2012)

4. P. Berman, On-line searching and navigation, in Competitive Analysis of Algorithms (Springer,
Berlin, 1998)

5. W. Burgard, M. Moors, D. Fox, R. Simmons, S. Thrum, Collaborative multi robot exploration,
in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings, vol. 1, pp. 476–481 (2000)

6. Y. Xu, L. Qin, Strategies of groups evacuation from a convex region in the plane, in Frontiers
in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in
Computer Science. vol. 7924 (Springer, Berlin, 2013), pp. 250–260

7. Q. Wei, L. Wang, B. Jiang, Tactics for evacuating from an affected area. ICCCI, IACSIT 3(5),
435–439 (2013)

8. Q. Wei, X. Tan, B. Jiang, et al., On-line strategies for evacuating from a convex region in the
plane, in The Proceedings of Combinatorial Optimization and Applications. Lecture Notes in
Computer Science, vol. 74–85 (2014)

9. R.A. Baeza-Yates, J.C. Culberson, G.J.E. Rawlins, Searching in the plane. Inf. Sci. 106(2),
234–252 (1993)



Chapter 12
A New Computational Model of Bigdata

Binhai Zhu

Abstract BigData has been a buzzword since a few years ago. However, what
is exactly the corresponding (theoretical) computer model? What can be done
and cannot be done with such a model? These are questions demanding answers.
Recently, a model was proposed to address this issue by simulating a restricted
version of the PRAM model. In this paper, we propose a theoretical model called
Master/Slave Multiprocessor (MSM for short) which is very similar to a practical
system using MapReduce but with additional constraints relevant to BigData
processing. This model captures some of the most important properties of the
practical coarse-grained multiprocessors (CGM) model (instead of PRAM). The
most important ideas under such a master/slave model are that (1) even the master
can only access a small fraction of all the data in its slave processors at any given
time, (2) a large amount of data transmission between the slave nodes is considered
impossible or too costly, and (3) an extra slave processor, together with the data it
carries, can be easily integrated into the system to support scalability. Under such
a model capturing the most important characteristics of a practical MapReduce
system, some standard problems, like sorting, become hard to solve. We then
propose an adaptive MSM model where the master node still has limited working
memory but a large secondary storage. We demonstrate how these two MSM models
can be used to solve some basic problems when the data volume is huge.

12.1 Introduction

BigData has been a buzzword since a few years ago. In almost every industry we
have heard of people talking about BigData, one prominent example is the huge data
volume of all Walmart transactions, or the search queries Google has to process, or a
video surveillance system monitoring all the road intersections in New York City, all
just in a single day. Funding agencies in different countries are setting up research
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programs aiming at handling BigData in different areas. In short, BigData are there
and will change our lives. We need to process them properly, if not, they will become
our burden.

Nevertheless, there does not seem to exist a commonly accepted model for
BigData computations. As some level of parallelism must be used to handle
BigData, let us first briefly review the known parallel computation models (see
also [2]).

The most popular parallel model is PRAM (Parallel Random Access Machine)
which was proposed in 1970s, but unfortunately a generic practical PRAM has
never been built, though there has been some recent effort to do that [17]. On
the other hand, there has been a lot of algorithmic research based on PRAM,
see [11, 13]. But the gap between theoretical algorithms and practically working
systems on PRAM remains huge. Seeing this gap, in early 1990s, the LogP [3]
and BSP (Bulk Synchronous Parallel) models [16] were proposed, in essence, to
have a distributed-memory, overall asynchronous parallel machine. In the early
1990s, the coarse-grained multiprocessors (CGM), which can be thought of as the
restricted version of LogP and BSP, are proposed. In short, a CGM is a set of
processors, each with enough local memory and sufficient computation power, and
the synchronization is through point-to-point communication. In fact, two practical
systems, PVM—parallel virtual machine, and MPI—message passing interface, are
implemented and used widely by professionals in parallel computation. In fact, two
special issues on CGM algorithms have been published in scientific journals [5, 6].
However, CGM require high communication bandwidth and system connectivity for
real-time applications, hence are either too expensive or are not really practically
applicable for many commercial applications, especially when the data volume is
huge and when a fully connected network is not always guaranteed.

Surprisingly, a master/slave model, called MapReduce, was adopted in late 1990s
by Google and becomes almost prevalent in large scale web search [4]. The idea
of MapReduce is as follows. (1) A master node maps and divides a task into
several parts and assign them to its slave nodes (the Map process), and (2) the slave
nodes finish the sub-tasks and return the results for the master node to combine
for further computation (the Reduce process). Note that this process can be done
in multiple rounds and can be done recursively, i.e., a slave node can divide the
task further to a set of sub-slave nodes. Under this model, the communication is
only between a master node and its slaves, the slaves cannot communicate directly
among themselves. In Fig. 12.1, P1 is the master node for slave nodes P2;P3, and
P4; and recursively P4 is the master node for P5 and P6.

One of the most significant properties of the MapReduce system, from the
application perspective, is the scalability. Namely, when one has an extra slave node
available (together with some associated data), it is easy to add it under an existing
master without changing the overall topology of the system. In Fig. 12.1, when node
P7 is added as a slave node under P4, all other nodes, except P4, are not affected.
For CGM, one would have to add a communication channel between the new node
to all the existing nodes, which is much more costly to implement.

It remains to tell what can and cannot be done efficiently using a MapReduce
system. The practical success on MapReduce is mainly on the searching and
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Fig. 12.1 Illustration of a
practical MapReduce system
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Fig. 12.2 The master/slave
multiprocessor model
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querying side (see [10] for a most recent survey). With this motivation, in 2010,
Karloff, Suri, and Vassilvitskii proposed a MapReduce model, which is based on
simulating a restricted version of PRAM [12]. Under this model, many graph
problems can be solved efficiently [14]. However, as this model inherits some of
the drawbacks of PRAM, we believe that it is probably too powerful (or practically
too costly) compared with any existing practical MapReduce system.

Intending to obtain a system based on LogP and BSP, instead of PRAM, in
this paper, we propose a Master/Slave Multiprocessor model (MSM) based on
MapReduce to handle large data sets (or BigData). Abstracted from some existing
practical system using the MapReduce model, we assume that this MSM has a
master node M and p slave nodes S1; S2; : : : ; Sp; moreover, the internal memory
of the master node M is in the same order as those slaves nodes. (In practice, that
means it is easy to replace the master node when it becomes faulty.) To be able to
analyze the efficiency of algorithms, we assume that each Si and M has a memory of
size O. n

p /, where n is the input size. Note that here p should not be taken as a small
constant. See Fig. 12.2 for an example.
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This paper is organized as follows. In Sect. 12.2 we introduce the model. In
Sect. 12.3 we show how to solve some fundamental problems using this model and
also leave some open problems. Moreover, we show an adaptive version of this
model. In Sect. 12.4, we conclude the paper.

12.2 MSM: The Master/Slave Multiprocessor Model

In this section, we discuss some technical aspects of the MSM model, especially
from the processing of BigData point of view.

The measurement of algorithm complexity under the MSM model includes

• #C: The number of communication rounds, where each round includes a hmaster,
slavei and hslave, masteri communication, possibly including sending O. n

p /

amount of data, where n is the input size and p is the number of slave nodes.
• T: The local computation cost within one round of communication.
• D: The maximum amount of information exchanged between the master and

slave nodes within one round of communication.

The computation complexity (cost) of the algorithm is O.#C � T/. The total
communication cost of the algorithm is then O.#C � p � D/.

Different from some practical MapReduce system, like Hadoop, we assume
that the master node M and all the slave nodes have a local internal memory of
O. n

p /. This assumption is valid when the data sets are large, for instance, all the
data in Google cannot be stored in any single computer. We assume throughout
this paper that n > p2. Also, in practice communication cost is high; hence, it is
likely that a practical algorithm only allows a small (preferably constant) number of
communication rounds, and within each round a limited amount of information is
exchanged. The last constraint implies that it is hard to swap a large amount of data
between a master node and a slave node. In fact, without this constraint, one can
always simulate a CGM algorithm with an MSM, as the communication between
two (slave) nodes can be done through the master node.

Observation 1. If there is no constraint on communication, then a CGM algorithm
can be simulated with an MSM system where a point-to-point communication can be
simulated with at most a pair of hslave,masteri and hmaster,slavei communications,
and a broadcast communication can be simulated with at most one hslave,masteri
communication and one round of hmaster,slavei communications.

From now on, we forbid the data transmissions between slave nodes. Under this
assumption (also the limited working memory of the master node), we notice that
many standard problems become hard to solve, for example, sorting n elements
stored in p processors. The reason is that the Reduce step needs to send the p
partially sorted data items back to the master node, which is impossible unless we
can store all of the n data items in the master node or we allow a large amount of
information exchange. That gives us the following observation.
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Observation 2. The MSM system can efficiently solve a problem of size n where
there are a bounded number of communication rounds and in each round the
problem can be partitioned into p independent parts and each results in a sub-
solution of size O. n

p2
/.

The above observation basically shows that a naive simulation of many algo-
rithms on an MSM is not going to work. For instance, one can solve the diameter
problem in any fixed dimension in O.n2/ time with a brute-force method. There are
n rounds of computations/communications: each round the master asks the slave
nodes to compute the maximum distance to a fixed point and always keeps the
current maximum. Of course, the number of rounds, n, would be too large.

However, some problems can be solved efficiently using this MSM model. For
example, a search on Google can be best simulated as a� k-nearest neighbor search
problem on an MSM (where k is typically a small constant), with only one round of
communication: The master node assigns the search to p slave nodes, each returns
the � k-nearest neighbors at each slave node. These neighbors are then returned
to the master node so that it can combine these results to compute the � k-nearest
neighbors in the whole system, according to the distance between the query object
and the searched objects. Note that at this stage some results could be truncated if
the returned p sets of partial results are too large.

In the next section, we try to solve several basic (geometric) problems using this
MSM model.

12.3 Processing Large Data sets with an MSM

In this section, we illustrate how to use the MSM model to solve a few basic
problems when the data volume (i.e., n) is huge. (We try to keep the paper self-
contained, but readers can refer to [15] for anything related to computational
geometry.) We assume that the data are stored roughly in equal size in each slave
node; however, we do not assume any other property of the stored data, e.g., locally
distributed or organized into some data structure—the latter can be rectified in
practice, as building some complex data structure locally is not much different from
regular computations.

This assumption is critical for the remaining parts of this paper, and we believe
that it is practical as in practice the data sets might be generated, maintained, and
updated in different ways and stored locally. In fact, if we allow the shuffling of
the input data sets in an arbitrary fashion, many problems can be solved easily by
tuning the existing CGM algorithms. For instance, if we assume that the master can
generate a random sample and use the sample to partition and map the remaining
data to the corresponding slave nodes, we can then solve many problems more
efficiently with random sampling by tuning the existing CGM algorithms, for
instance, 3D convex hull (2D Voronoi diagram) [7], or 2D Voronoi diagram for
line segments [9]. In fact, even some CGM algorithms on graph problems [8] could
be simulated on such an MSM model with large communication overhead.
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However, we think that this does not fit most applications in processing BigData,
where in many situations data are generated and stored first, but we do not know
what we want to compute from the data until later on. For practical consideration,
we only allow a small number of communication rounds and try to bound the
communication costs as much as we could. Due to this reason, for most problems
under consideration, we can only design approximation algorithms.

12.3.1 Selection

It is easy to see that with one round of communication the Min, Max of n 1-D values
X stored in an MSM can be computed in O. n

p / time. Each slave node just needs to
perform the selection of the extreme (Min or Max) values and the n

p returned values
can be combined at the master node to obtain the overall extreme (Min or Max)
value for the set X.

We next show that the selection of the k-th smallest value of X can be solved
efficiently on an MSM. Here k is not necessarily a small constant—otherwise the
problem will be easy to solve.

Theorem 12.1. Given a set X of n 1-D values, with minflog R;Ng rounds of
communication and a total of O.minflog R;Ng � p/ communication costs, the k-th
smallest element of X can be computed in O. n

p �minflog R;Ng/ time on an MSM with
p slave processors, where R is the distance between min1 and max1, N � n.1�1=p/
is the number of elements between min1 and max1, min1 is the minimum element in
X and max1 is the minimum k-smallest elements in the p slave nodes, respectively.

Proof. The local computation cost at step 2 is obviously O. n
p / [1]. The number of

communication rounds is first bounded by O.log R/ and in the worst case could be

Algorithm 12.1
1. M computes the smallest value min in set X.
2. M assigns the task of finding the k-th smallest value to all the slave nodes S1; : : : ; Sp.
3. Each Si returns the k-th smallest value xk

i ; i 2 Œ1; p�, to M.
4. M selects the minimum value among the p returned values from the slave nodes. Let the value

be max.
5. Then, M computes L D .maxCmin/=2 and assigns the task to the slave nodes whether there

are k elements in X which are � L. Each slave node performs this task by counting locally the
number of values � L. If there are exactly k elements in X which are � L, then with one extra
round of communication, M can find and return the largest value in X which is� L. If there are
< k elements in X which are � L, then compute the largest element in X which is � L, still
call it min, update L  .maxCmin/=2. If there are > k elements in X which are � L, then
compute the smallest element in X which is > L, still call it max, update L .maxCmin/=2.
Repeat until the solution is returned.
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O.N/. In fact, we can construct a set of points between min1 and max1 such that the
interdistances grow exponentially, and hence the algorithm will hit every point for
an extra round of communication.

For practical data, say the data are uniformly distributed or uniformly distributed
in a constant number of clusters, it is safe to claim that O.log R/ D O.log n/.

Open Problem 1. For the selection problem, is it possible to design an algorithm
under the MSM with a local computation cost of O. n

p / and with O.log n/ rounds of
communications?

12.3.2 Diameter in any Fixed Dimension

Given a set P of n points in any fixed dimension, the diameter is the maximum
distance between two points in P. As discussed before, if we allow n rounds of
communications, then the problem can be easily solved optimally. We discuss how
to design algorithms with few rounds of communications.

Theorem 12.2. Given a set P of n points in any fixed dimension, with one round
of communication and total of O.p/ communication cost, a 2-approximation of the
diameter of P can be computed in O. n

p / time on an MSM with p slave processors.

Proof. Let d.u; v/ be the diameter. By triangle inequality, d.u; v/ � d.u; q/ C
d.q; v/. Then, if the algorithm selects the farthest point z from q, we have d.z; q/ �
maxfd.u; q/; d.q; v/g � 1

2
d.u; v/.

We comment that this algorithm is from a folklore diameter algorithm and could
certainly be improved. For instance, let z be the point returned by the algorithm, we
can run the algorithm one more time to find the farther point y from z, then d.z; y/
would be a factor-

p
3 approximation for the diameter. Here, the purpose is just to

show the application of the MSM model.

12.3.3 Sorting and Element Uniqueness

Under the constraint that even the master node can only store O. n
p / amount of

data. Sorting becomes a hard problem on an MSM. In fact, even a related Element

Algorithm 12.2
1. M picks any point q D ps;t and assign the task of finding the maximum distance from q to all

the slave nodes S1; : : : ; Sp.
2. Each Si returns the farthest point pi;i0 ; i 2 Œ1; p�; i0 2 Œ1; n

p �, to M.
3. M selects the farthest point from q among the p returned points from the slave nodes.
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Uniqueness problem, namely, determining whether there are two equal elements
(possibly stored in different slave nodes), becomes hard. We leave this as an open
problem.

Open Problem 2. For the element uniqueness problem, is there an efficient solu-
tion under the MSM?

12.3.4 Relaxing the Master Memory Constraint in an MSM

As we discussed before, if the master node in an MSM has only a size of O. n
p / then

even the sorting problem becomes difficult. On the other hand, if the size of the
master node has a memory of size O.n/ (which is roughly the sizes of all its slave
nodes), then the model is not realistic (though many problems can be efficiently
solved). Here, we try to make the model slightly adaptive. We assume that the
master node has a (working) memory of O. n

p /, but with some extra cost a secondary
storage can be expanded to the master node—to store the eventual computational
results. We next illustrate a simple example of solving the sorting problem under
this adaptive model. We comment that this adaptive model is still different from
a practical MapReduce model, like Hadoop, where the (working) memory of the
master node could be much larger than O. n

p /.
If the master node has a secondary storage which is of size O.n/, then sorting

becomes solvable—even if the working memory at the master level is still O. n
p /.

We can sort all elements stored in each slave node and then each node sends the first
n
p2

smallest elements to the master node. Among the p lists of n
p2

elements (for a
total of n

p ) received, the master node can extract elements from the p lists, compute
and dump the smallest elements in a buffer. If one of the lists, Li from Si, is empty,
then Si sends its current n

p2
smallest elements to Li at M, and the buffer contents are

written to the secondary storage and then emptied. Then the process can be repeated.
Note that the buffer is of size ˝. n

p2
/.

Theorem 12.3. Given a set X of n 1-D values, with O.p2/ rounds of communication
and a total of O.n/ communication costs, the elements of X can be sorted in O. n log n

p /

time at each of the p slave processors of an MSM, and it takes the master node O.n/
time to compute and store the sorted list of X in a secondary storage.

Proof. It is easy to see that there are at most p2 � p D O.p2/ rounds of
communication. The computation time of the master node is O.n � n

p / D O.n/.

We comment that the above algorithm is a naive implementation of Merge–Sort
and it would be interesting to see an improved algorithm.
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12.4 Concluding Remarks

In this paper, we try to propose a theoretical model capturing the most important
properties of BigData computations. The model we propose is a master/slave
multiprocessor incorporating all important properties of a MapReduce system.
One important constraint we put on this MSM model is that the master node cannot
access all the input data at the same time and large amount of data transmission
between nodes is forbidden. This might be the reason that some fundamental
problems, like sorting, becomes hard to solve. We also propose an adaptive model
where the master node has limited working memory but a much larger secondary
storage. We show some simple applications of both of the models.
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