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      Introduction                     

     Anne     Marie     Lynge     Pedersen     

    Abstract  

  The idea for this book came about in relation to a symposium organized by 
the editor to present a research update that summarizes new fi ndings related 
to the oral microbiota and the interaction between oral infections and gen-
eral health. The symposium was held at the Annual Meeting of the IADR 
Continental European Division (CED) and Scandinavian Division (NOF) in 
Florence, Italy, in 2013. Consequently, the content of this book is largely 
based on contributions from European researchers within the fi eld, but none-
theless the science presented in the various chapters embodies the global 
aspects of the topic and is therefore of signifi cant relevance for researchers 
as well as health-care professionals throughout the whole world.  

     The healthy oral cavity is normally colonized by 
bacteria, fungi, and viruses. It has been estimated 
that more than 600 bacterial species colonize the 
oral cavity of which some may be pathogenic and 
others are symbiotic or commensal. The normal 
oral microbiota may be disrupted by a large num-
ber of factors including poor diet, malnutrition, 
poor oral hygiene, tobacco smoking and alcohol 
consumption, but also by several systemic dis-
eases as well as the medications used for treating 
them, especially those associated with immuno-

suppression and/or salivary gland dysfunction. A 
disturbance of the balance between the oral 
microbiota and the host immune system results in 
a shift from a healthy state to a diseased state 
leading to infl ammation and infections of the oral 
hard and/or soft tissues. The most common oral 
infectious diseases include dental caries, peri-
odontal disease, and oral candidiasis. 

 Dental caries is one of the most prevalent dis-
eases in humans. Even though the incidence of 
dental caries has decreased during the last 
decades, it is still a major problem in most indus-
trialized countries as it affects 60–90 % of school- 
aged children and the vast majority of adults and 
obviously a larger problem in developing coun-
tries with poor living conditions and limited 
availability and accessibility of oral health 
 services. In Chap.   2    , Professor Twetman reviews 
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a number of systemic diseases that are associated 
with an increased frequency of dental caries. As 
stated by the author, there are still obvious gaps 
of knowledge concerning the interaction between 
caries and general diseases which calls for fur-
ther studies covering risk factors, associations, as 
well as cost-effective interventions. 

 Periodontitis is a serious oral infection, which 
is estimated to affect 15–20 % of the adult popu-
lations worldwide. Severe periodontitis may lead 
to premature tooth loss. Furthermore, most chil-
dren and adolescents worldwide display signs of 
gingivitis. An increasing number of studies have 
suggested that oral infection, especially marginal 
and apical periodontitis, may affect the course 
and pathogenesis of a variety of clinically impor-
tant systemic diseases. In Chap.   3    , Professor 
Bruno Loos reviews current knowledge on the 
infl ammatory mechanisms linking periodontal 
diseases to cardiovascular diseases. In the past 
decades a large number of studies have also 
demonstrated a linkage between periodontitis 
and diabetes mellitus. This linkage appears to 
be bidirectional. The proposed mechanisms or 
pathways by which these two diseases interact 
are reviewed by Professor Palle Holmstrup and 
Allan Flyvbjerg in Chap.   4    . A possible two-way 
interrelationship has also been suggested for 
periodontitis and rheumatoid arthritis which is 
described in details by Professor Palle Holmstrup 
and Claus Nielsen in Chap.   5    . Possible mecha-
nisms behind the systemic effect include spread-
ing of bacteria present in the periodontal pockets 
as a result of transient bacteremia and release of 
circulating oral microbial toxins and pro-infl am-
matory mediators caused by immunological 
injury induced by oral microorganisms. Insidious 
dental infections can worsen the condition and 
turn out to be life threatening in immunocompro-
mised patients like recipients of kidney and liver 
organs. Consequently, oral infections should be 
diagnosed and properly treated before as well as 
during and after organ transplantation. Chap.   6     
by Professor Jukka H. Meurman addresses the 
associations between dental infections and liver 
and renal diseases. According to WHO, the num-
ber of cancers is estimated to increase by 70 % by 
the year 2030 due to the aging of the populations. 

The prevalence of oral cancer is particularly high 
among men, and it is the eighth most common 
cancer worldwide. Recent research suggests that 
oral infections may play a role in the develop-
ment of cancer. In Chap.   7    , Professor Jukka 
H. Meurman reviews current knowledge on the 
mechanisms by which oral infections may infl u-
ence the process of carcinogenesis. 

 Oral candidiasis is a common opportunistic 
infection usually caused by the overgrowth of 
 Candida  species. There are several predisposing 
to oral candidiasis including use of antibiotics, 
steroid inhalers or systemic steroids, high- 
carbohydrate diet, malnutrition, smoking, wear-
ing dentures, and impaired salivary gland 
function. The prevalence of oral candidiasis is 
high in immunocompromised patients such as 
patients with HIV infection, Sjögren’s syn-
drome, malignancies, and diabetes. Hence fun-
gal infections are becoming a serious public 
health problem, particularly for the growing 
population of elderly people, immunocompro-
mised patients, as well as patients with salivary 
gland dysfunction. Although the introduction of 
highly active antiretroviral therapy (HAART) 
has made oral candidiasis less common, HIV-
associated oral lesions still remain signifi cant 
with oral candidiasis as the most typical lesion. 
An update on oral candidiasis in medically com-
promised patients and the various current meth-
ods used to diagnose oral candidiasis, their 
advantages and disadvantages, as well as with 
new perspectives in using molecular techniques 
is given by Associate Professor Camilla 
Kragelund and coworkers in Chap.   8    . 

 The last chapter in part II deals with the 
infl uence of salivary gland dysfunction, i.e., 
affection of the quantity and quality of saliva, 
on the occurrence of oral infections. In Chap.   9    , 
Associate Professor Siri Beier Jensen and Anne 
Marie Lynge Pedersen review the most condi-
tions associated with severe salivary gland dys-
function and their infl uence on oral health, i.e., 
Sjögren’s syndrome, cancer therapy, and intake 
of medications. 

 Emerging knowledge on the oral microbiota 
challenges the current practice of chairside diag-
nostics. A number of new molecular techniques 

A.M.L. Pedersen
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are now used to analyze the microbiome in health 
and disease including HOMINGS, oligotyping, 
high-throughput sequencing, whole genome 
shotgun sequencing, single-cell genome sequenc-
ing, metatranscriptomics, and community-wide 
transcriptome analysis. Chap.   10    , part III, by 
Professor Ingar Olson deals with the human oral 
microbiome which contains bacteria, bacterio-
phages/viruses, archaea, fungi, and protozoa, in 
health and common oral diseases. The salivary 
microbiota is a highly complex microbial com-
munity, containing oral microorganisms shed 
from various oral surfaces. Saliva can be easily 
and noninvasively collected, and compositional 
changes of the salivary microbiota may poten-
tially serve as a biomarker used for screening of 

oral and systemic diseases as reviewed by 
Assistant Professor Daniel Belström in Chap.   11    . 

 The fi nal part of the book addresses recent 
research in treating or even preventing oral infec-
tions. The fi eld of using probiotics is promising 
and may offer a novel approach of future han-
dling oral functions as reviewed by Dr. Mette 
Rose Jørgensen and Associate Professor Mette 
K. Keller (Chap.   12    ). Also the management of 
patients with oral candidiasis is dealt with in this 
part of the book, in Chap.   13     by Associate 
Professor Camilla Kragelund and coworkers. 

 As we discover in this book, it seems justifi ed 
to state that good oral health is important not only 
to prevent oral diseases but also to maintain good 
general health and vice versa.     

1 Introduction

http://dx.doi.org/10.1007/978-3-319-25091-5_10
http://dx.doi.org/10.1007/978-3-319-25091-5_11
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      Dental Caries and General Health 
in Children and Adults                     

     Svante     Twetman     

    Abstract  

  Caries is a biofi lm-mediated noncommunicable disease fueled by dietary 
sugar, neglected oral hygiene, and reduced saliva fl ow. General diseases 
may infl uence the oral environment through its pathogenesis, medication, 
and/or the caring of the condition. Associations between caries and chronic 
diseases are mainly derived from case–control studies with various sample 
sizes and quality of matching. Few observational studies are available and 
the majority of all research is conducted in childhood and among older 
adults. There is an increased caries risk for subjects with obesity, severe 
asthma, poorly controlled type 1 diabetes mellitus, and congenital heart 
diseases. An elevated caries frequency has also been reported for children 
with neuropsychiatric disorders and cleft lip palate and long-term cancer 
survivors. Frail elderly with cognitive impairments constitute a growing 
age group in society with caries risk due to age- and medication-induced 
salivary reduction. However, a general disease may not always have a 
negative infl uence on dental health. Therefore, a regular individual caries 
risk assessment is of utmost importance for clinical decision-making and 
tailoring of recall intervals. There is good evidence that preventive mea-
sures based on fl uoride, saliva stimulation, and sugar awareness can pre-
vent, control, and even arrest caries lesions in medically compromised 
patients of all ages.  

2.1         Introduction 

 Dental caries is still the major cause of tooth loss, 
and the severe forms of the disease are associated 
with pain and feeding problems as well as 
impaired well-being and quality of life (Selwitz 
et al.  2007 ). In 2010, untreated caries in perma-
nent teeth was the most prevalent chronic 
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 condition worldwide, affecting 2.4 billion people 
(Kassebaum et al.  2015 ). In addition, around 621 
million children exhibited untreated caries in their 
deciduous teeth (10th most prevalent condition). 
With more than 45 % of the global population 
affected, it seems obvious that there is an overlap 
with general diseases. Interestingly, there was evi-
dence that the current burden of untreated caries 
has shifted from children to adults, with three 
prevalence peaks at ages 6, 25, and 70 years 
(Kassebaum et al.  2015 ). Therefore, caries is a 
concern throughout the entire life course, and pre-
vention and oral health promotion are needed for 
all age groups. This is especially important in the 
light of the current demographic trends with an 
increasing life expectancy and fewer non- dentate 
elderly persons. In general dental practice, around 
30 % of all patients have medical issues that need 
to be considered, but an obvious concern is that 
medical data often are underreported in dental 
records; patients seem to regard such information 
as irrelevant for the dental care. The purpose of 
this chapter was to review the comorbidity 
between caries and the common general chronic 
diseases of which many have strong social and 
lifestyle components. The focus lies on children 
and elderly simply because there is a gap of stud-
ies and knowledge concerning young and middle-
aged adults. The ambition was not to cover rare 
syndromes and conditions described in case 
reports. Furthermore, diseases with impact on 
dental erosion, the oral mucosa, and periodontal 
conditions are described elsewhere.  

2.2     Link between Caries 
and General Diseases 

 Caries is a biofi lm-mediated disease resulting 
from a complex interaction between the com-
mensal microbiota, host susceptibility, and envi-
ronmental factors such as diet (Wade  2013 ). The 
resident oral microbiota is normally diverse and 
benefi cial to the host but the stability can be dis-
rupted by stress. The repeated exposure of 
healthy biofi lms to dietary sugars, and hence to 
low pH, favors the growth and metabolism of 

acid-producing and acid-tolerating bacteria (i.e., 
mutans streptococci, lactobacilli, bifi dobacteria, 
 Scardovia ), causing dysbiosis (Marsh et al. 
 2014 ). Thus, caries is not a classical infection but 
should be regarded and handled as a noncommu-
nicable disease. From a chemical point of view, 
caries is an imbalance between mineral loss and 
mineral gain; when the loss is dominating over 
time, a caries lesion eventually becomes visible. 
In a simplifi ed way, demineralization occurs at 
low pH conditions in the oral biofi lm (plaque) 
and remineralization at pH levels around neutral 
and above. It is therefore important to understand 
that any medical condition, medication, or behav-
ior that directly or indirectly affects the pH stabil-
ity in the oral environment and favors the 
overgrowth of aciduric species can be linked to 
caries. One common example is the use of xero-
genic drugs which reduce oral clearance and pro-
long an acidic environment. A systematic review 
of literature has concluded that medication- 
induced salivary gland dysfunction (MISGD) 
constitutes a signifi cant burden in many patients 
and may be associated with important negative 
implications for oral health (Aliko et al.  2015 ). 
Radiation therapy in connection with head and 
neck cancer is also associated with xerostomia 
and hyposalivation and rampant caries develop-
ment at any age (Jensen et al.  2003 ). Another 
common example is intellectual or cognitive 
impairment among elderly that negatively affects 
the ability to maintain a proper oral hygiene. On 
top of the direct infl uence of the disease and its 
medication, the caring involved with the disease 
may increase caries risk. It is especially true in 
childhood, when the onset of a chronic disease is 
stressful for the whole family. The oral hygiene 
can be put aside for more “urgent” problems, and 
compensation through sweets and candies are 
often used to comfort the child. 

 To summarize the paragraph above, caries can 
be linked to any medical or behavioral condition 
associated with sugar behavior, polypharmacy, 
and impaired ability to regular cleaning. The 
most vulnerable groups seem to be young chil-
dren and frail elderly, although the onset of a gen-
eral chronic disease may affect the caries burden 
at any age. It should however be underlined that a 

S. Twetman
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disease as such, with few exceptions like 
Sjögren’s disease, will not necessarily ruin the 
dental health within a certain time period. 
Therefore, an  individual  caries risk assessment 
should always be performed as an integrated part 
of the clinical decision-making. There is evi-
dence to suggest that comprehensive risk models 
are more accurate than the use of single factors, 
albeit no existing model performs superior to 
another (Mejàre et al.  2014 ). The use of struc-
tured templates or computer-based software 
(Fig.  2.1 ) is regarded as best clinical practice due 
to its consistency and didactic values (Twetman 
et al.  2013 ). The risk assessment should be 
repeated periodically throughout life and espe-
cially when life events occur, such as the onset of 
a chronic disease (Twetman et al.  2013 ). The out-
come of these assessments should ideally form 

the basis for subsequent and tailored preventive 
and/or restorative treatment.

2.3        Common Research Designs 

 There are two principal study designs utilized to 
investigate the relationship between general dis-
eases and dental caries; case–control and obser-
vational studies (Fig.  2.2a, b ). The case–control 
approach is most common and starts with the 
selection of subjects with a defi ned disease 
(cases) and subjects without this disease (con-
trols). The prevalence of caries can be compared 
in a cross-sectional way, and explanatory vari-
ables, or factors related to both the general dis-
ease and caries, can be collected retrospectively 
through a review of medical and dental records. 

  Fig. 2.1    Example of a computer-based caries risk model 
(Cariogram). After input, the computer is weighting pre-
selected algorithms on bacteria, oral hygiene, circum-
stances, and susceptibility toward each other. The  green 
sector  indicates that this patient only has 17 % chance to 

avoid new caries in the near future and that the major 
cause is a sugar-rich diet ( blue sector ). The program is 
interactive for patient education and motivation. It can be 
downloaded free of charge in many different languages at 
  www.mah.se           
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This approach is easy to implement but the qual-
ity is strongly dependent on the matching process 
and the validity of the “historical” registrations. 
In a trustworthy study, the cases and the controls 
must be carefully matched for sex, age, socioeco-
nomic and educational background, cultural 
norms, and lifestyle. The fact that case–control 
studies many times are presenting confl icting 
results is likely due to inadequate matching. 
Other problems that may fl aw the conclusions are 
small sample sizes and diverging disease defi ni-
tions for the “cases.” From an evidence point of 
view, the prospective observational study design 
is more robust and controllable for the researcher 
but requires a considerable budget and time; a 
large number of patients must be included and 
followed for years with periodical reexamina-
tions. The major threat for reliable conclusions is 
a large attrition rate (lost to follow-up) and/or a 
low incidence rate of the disease under study. 
A power calculation must therefore be conducted 
prior to the study in order to include a proper 
number of subjects. From an ethical point of 
view, it is equally problematic to run a project 
with too few persons as it is to enroll too many in 
demanding examinations and samplings. A mix 
of the abovementioned study designs is the nested 
case–control approach in which only a few 

defi ned cases and controls are selected from the 
full cohort. The main advantage is that not all 
patients must be sampled or examined over time 
which keeps down the workload and costs for an 
otherwise costly and resource-demanding trial.

2.4        Obesity/Overweight 

 Obesity and overweight is a growing problem 
among children and adults worldwide. The etiol-
ogy is complex but overeating and calorie-rich 
diets are common compartments. A frequent 
intake of sucrose-containing food and beverages 
may be detrimental for the dental health (Arola 
et al.  2009 ). The relationship between sugar and 
caries is however not as strong today as it was 
decades ago which is commonly explained by the 
widespread access to fl uoride in water and tooth-
paste. From the evidence perspective, it is beyond 
doubt that fl uoride exposure is the key element 
in caries prevention and caries arrest at all ages 
throughout life (Griffi n et al.  2007 ; Twetman and 
Dhar  2015 ). The link between caries and over-
weight in case–control trials is somewhat contro-
versial and highly dependent on inclusion criteria 
and matching. Even systematic reviews have come 
to diverging conclusions; one established a signifi cant 
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relationship (OR = 3.7) between obesity and den-
tal caries in children from industrialized, but not 
from newly industrialized countries (Hayden 
et al.  2013 ), while another failed to note any rela-
tionship between overweight and caries burden 
(Silva et al.  2013 ). A fact that partly can explain 
the different conclusions is that dental caries may 
be associated with both high and low body mass 
index (Hooley et al.  2012 ). Unfortunately, studies 
in adults and elderly are largely lacking, but obvi-
ously diet recommendations and restrictions in 
order to reduce weight and prevent caries go hand 
in hand. Obesity is a part of the metabolic syn-
drome, and according to the common risk factor 
approach, dentists, together with all other health 
professionals, should embrace the current WHO 
guidelines and motivate their patients to reduce 
the free sugar intake to less than 10 % of the total 
energy intake (Moynihan and Kelly  2014 ). Free 
sugars include monosaccharides and disaccha-
rides added to foods by the manufacturer, cook, or 
consumer, and sugars naturally present in honey, 
syrups, fruit juices, and fruit juice concentrates. 
A further reduction to below 5 % of total energy 
intake, or roughly 25 g (six teaspoons) per day, 
would provide additional health benefi ts.  

2.5     Asthma 

 Asthma affects 6–8 % of the population and may 
infl uence the oral ecology through behavioral and 
medical pathways. Severe asthma is often associ-
ated with dry mouth, thirst, and frequent wake-up 
periods at night when sugar-rich beverages and 
fruit juices must be avoided. Furthermore, the ste-
roid-containing inhalators, as well as beta-2 ago-
nists, may have low pH values which favor the 
growth of acid-tolerating phenotypes in the oral 
biofi lm, and increased levels of mutans strepto-
cocci are commonly unveiled in the saliva of asth-
matic children (Alaki et al.  2013 ). Although there 
are confl icting reports on the relationship between 
asthma and dental caries in the literature (Maupomé 
et al.  2010 ), a meta-analysis has suggested that 
asthma doubles the risk of caries in both primary 
and permanent dentition (Alavaikko et al.  2011 ). 
Based on 11 studies, the odds ratio was 2.7 in the 

primary dentition, and the corresponding value in 
the permanent dentition was 2.0 based on 14 stud-
ies (Alavaikko et al.  2011 ). It was concluded that 
physicians and dentists should reconsider preven-
tive measures against caries for persons with severe 
asthma and strongly recommend water rinses 
immediately after the use of inhalators.  

2.6     Diabetes 

 Diabetes can affect the stability and profi le of the 
oral biofi lm through frequent meals and an 
increased output and leakage of glucose in saliva 
and gingival crevicular fl uid. In the past, when the 
management of diabetes mellitus in childhood 
basically relied on slow-acting insulin and a highly 
restricted diet, subjects with diabetes exhibited less 
caries than a non-diseased population. With today’s 
continuous monitoring of glucose, rapid-acting 
insulin, or insulin pumps, the type 1 diabetic child 
can live a more or less normal life with a less 
restricted diet. Furthermore, the oral health aware-
ness among diabetics has increased in recent years 
with its close link to periodontal problems. 
Consequently, the results from case–control studies 
with diabetic patients have therefore slightly 
changed over time. According to recent systematic 
reviews, there is no consistent relationship between 
type 1 diabetes mellitus (T1DM) and dental caries 
in childhood (Ismail et al.  2015 ), although patients 
with uncontrolled T1DM and poor oral hygiene 
may present increased prevalence of dental caries 
(Sampaio et al.  2011 ). It is therefore important to 
collect information on the patient’s recent HbA1c 
status; values above 8 % may indicate a poor com-
pliance and may be associated with active caries 
development in schoolchildren and adolescents 
(Twetman et al.  2002 ). Concerning type 2 diabetes 
mellitus, no impact on the prevalence of dental car-
ies has been reported (Sampaio et al.  2011 ).  

2.7     Congenital Heart Disease 

 Congenital heart disease affects around 1 % of all 
children, and the condition is commonly associ-
ated with oral health problems. This has been 
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explained by an increased meal frequency, use of 
diuretic sucrose-containing medication, and fre-
quent episodes of antibiotic treatment (Hansson 
et al.  2012 ). In addition, enamel defects and hypo-
mineralization are prevalent in children with con-
genital heart disease which may predispose to 
caries development. Parental anxiety and over-
compensation with sweets are psychological and 
behavioral factors often involved in the manage-
ment of critically ill children. A case–control 
study has shown that children with congenital 
heart disease have three times more caries than 
healthy controls in spite of more prevention 
(Stecksén-Blicks et al.  2004 ). In the same study, a 
positive relationship between caries and the dura-
tion of the digoxin medication was established. 
Thus, a dental home should be established for 
children with congenital heart disease at an early 
age in order to implement individual treatment 
plans with frequent checkups during childhood.  

2.8     Cancers 

 Long-term survivors of malignant conditions are 
subjected to long-term effects on oral health due to 
aggressive treatment protocols based on chemo-
therapy and radiation (Kaste et al.  2009 ; Effi nger 
et al.  2014 ). In particular, the radiation therapy 
affects the salivary gland functions in a permanent 
or transient way, depending on location and radia-
tion exposure. Consequently, patients who were 
post-radiotherapy exhibited higher DMFT values 
(decayed, missing, fi lled permanent teeth) com-
pared to those who were post-chemotherapy and 
healthy controls (Hong et al.  2010 ). There is also 
data suggesting that children with leukemia dis-
played more caries than hospitalized children with-
out cancer (Willershausen et al.  1998 ). However, 
among children that were caries-free at the onset of 
leukemia and displayed a low caries risk, the vast 
majority (87 %) were still unaffected after 3 years 
(Pajari et al.  2001 ). This picture seems to be less 
clear-cut among adults; a study has suggested an 
inverse relationship between head and neck squa-
mous cell carcinoma and dental caries in a case–
control study, although age and social factors may 
have played a role (Tezal et al.  2013 ). Nevertheless, 

patients with cancers should be considered at risk 
and candidates for saliva- stimulating measures and 
high-fl uoride supplements.  

2.9     Cleft Lip Palate 

 Children with cleft lip palate are often claimed to be 
caries prone in their maxillary incisors due to com-
promised tooth brushing during the infant period 
(Hasslöf and Twetman  2007 ; Antonarakis et al. 
 2013 ). An elevated prevalence of enamel defects 
may also contribute to caries susceptibility (Sundell 
et al.  2015 ). Consequently, it has recently been 
reported that children with cleft lip palate have more 
caries in the primary but not in the young permanent 
dentition compared to non- cleft controls (Sundell 
et al.  2015 ). There was however no clear association 
to the type or localization of the clefts. The increased 
caries risk must be taken into account by all mem-
bers of the multi-professional team involved in the 
management of children with this syndrome.  

2.10     Neuropsychiatric Disorders 

 Neuropsychiatric disorders in childhood may affect 
the possibilities to conduct a regular and proper 
oral hygiene. For example, studies in children with 
ADHD (attention defi cit hyperactivity disorder) 
have suggested a 12-time increased risk for high 
DMFT values compared to controls that were 
matched concerning age, gender, ethnicity, and 
socio-economy (Broadbent et al.  2004 , Blomqvist 
et al.  2011 ). The fi ndings were adjusted for fl uoride 
exposure, medical problems, diet, and oral hygiene. 
The neuropsychiatric disorders are however highly 
diverse and each family/child is unique, so the car-
ies risk must be assessed individually and followed 
by targeted preventive measures.  

2.11     Aging and Cognitive 
Impairment 

 There is no evidence to suggest a link between 
caries and healthy and vital older persons. 
However, for those with progressive intellectual 
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disabilities and dementia, oral health can rapidly 
be jeopardized, and root caries development is an 
atypical and increasing problem (Fiske et al. 
 2006 ; Anders and Davis  2010 ). This is also true 
for subjects with mental illnesses (Kisely et al. 
 2011 ). The main reasons are diffi culties to clean 
and polypharmacy. Alzheimer’s and Parkinson’s 
disease are common examples on non-regular or 
sporadic oral cleaning and loss of ability to clean. 
Saliva plays a crucial role in maintaining oral 
health through its mechanical clearance, buffer-
ing effect, and being a source of mucins, immu-
noglobulins, enzymes, and antibacterial agents 
(Sreebny  2000 ). Increasing age means an increas-
ing number of prescribed drugs that when com-
bined in a “cocktail” very well can be xerogenic. 
Even a modest reduction of the unstimulated 
saliva secretion rate can have a strong impact on 
root caries development. It is therefore important 
to assess salivary gland function in elderly people 
and especially in frail elderly with diminishing 
autonomy. A sialometry can be helpful for moti-
vating the patient to benefi t from saliva- 
stimulating measures.  

2.12     Caries Management 

 Caries prevention and management of the medi-
cally compromised patient span from community 
measures based on the common risk approach to 
tertiary prevention and treatment under general 
anesthesia. Although there is a palette of tech-
nologies for intervention, the core must be 
focused on evidence-based methods for primary 
prevention and noninvasive methods for second-
ary prevention. Examples of suitable strategies 
are presented in Table  2.1  and some practice 
points are listed in Box  2.1 . It is important to 
keep in mind that there is no “one-size-fi ts-all” 
and that no method works better than its compli-
ance. The patient’s wish and demands must be 
considered in order to fi nd and suggest the opti-
mal care for each situation. For example, there 
are alternative ways to bring in fl uoride to the 
tooth–biofi lm interspace on a daily basis; the 
quality of evidence is varying, but a method with 
low evidence and good compliance may defi -
nitely be preferred over a measure with strong 
evidence but poor compliance.    

   Table 2.1    Examples of caries preventive measures suitable for the medically compromised patient   

 Measure  Age  Notes  Quality of evidence a  

  Self-applied measures  
 Fluoride toothpaste  All ages  at least 1000 ppm F, twice daily 
 High-fl uoride toothpaste  >12 years  >1500 ppm F, biofi lm metabolic inhibitor, 

 high-risk subjects, root caries arrest 
 ΟΟ 

 Fluoride mouth rinse  >6 years  Daily 0.05 % NaF, post-brushing  ΟΟ 
 Fluoride chewing gum  >6 years  Saliva stimulation, remineralization  ΟΟΟ 
 Xylitol chewing gum  All ages  Saliva stimulation, biofi lm metabolic 

inhibitor 
 ΟΟ 

  Professional measures  
 Fluoride varnish  All ages  2–4 times per year, sustained fl uoride release  Ο 
 Silver diamine fl uoride  All ages  44,000 ppm, lesion arrest, black-staining  ΟΟ 
 Fissure sealants  6–14 years  Prevention and noninvasive occlusal 

treatment 
 Ο 

 Resin infi ltration  Perm. teeth  Interdental non-cavitated lesions  ΟΟ 
 Professional tooth cleaning  All ages  Continuously repeated  ΟΟΟ 

   a Quality of evidence according to GRADE (Guyatt et al.  2011 ):  high  ( ) = based on high or moderate quality 
studies containing no factors that weaken the overall judgment;  moderate  ( O) = based on high or moderate 
quality studies containing isolated factors that weaken the overall judgment;  low  (  OO) = based on high or moderate 
quality studies containing factors that weaken the overall judgment;  very low  ( OOO) = the evidence base is insuffi -
cient when scientifi c evidence is lacking, quality of available studies is poor, or studies of similar quality are 
contradictory  
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    Conclusions 

 Although direct causal associations some-
times are lacking, many general chronic 
diseases share the same risk factors (social, 
behavioral, cultural) with dental caries. 
Clinicians must be aware that any disease or 
medication that prolongs low pH conditions in 
the oral cavity is the driving force for biofi lm 
dysbiosis that eventually will lead to impaired 
oral health and caries lesions. An individual 
risk assessment is therefore needed in order to 
tailor decision-making, prevention, and man-
agement to each unique subject, and this risk 
assessment must be updated regularly. In spite 
of extensive research, there are still obvious 

gaps of knowledge concerning caries and gen-
eral  diseases which calls for well-conducted 
studies covering risk factors, associations, as 
well as cost-effective interventions.     
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      Plausible Mechanisms Explaining 
the Association of Periodontitis 
with Cardiovascular Diseases                     
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    Abstract  

  The association between periodontitis and cardiovascular diseases is now 
well established. Cardiovascular diseases include atherosclerosis, coronary 
heart (artery) disease, cerebrovascular disease, and peripheral artery dis-
ease. Atherosclerosis is the underlying pathology of cardiovascular dis-
eases. In this chapter, we describe plausible mechanisms to explain the link 
between periodontitis, atherosclerosis, and the subsequent cardiovascular 
diseases. The explanations for the development and exacerbation of athero-
sclerotic plaques in periodontitis patients include: (1) bacteremia, (2) a pro-
infl ammatory state, (3) a prothrombotic state, (4) an overactive immunity, 
(5) dyslipidemia, and (6) common genetic risk factors. Most likely, these 
plausible mechanisms play all simultaneously a role. Obviously, much 
more fundamental and clinic research is needed to further study the asso-
ciations between periodontitis and atherosclerotic diseases.  

3.1          Introduction 

 In the last three decades, the association between 
periodontal diseases and cardiovascular dis-
eases has become apparent. The number of sci-
entifi c publications and reviews on this topic 

has exponentially increased in this period. 
Since the landmark “Editorial” by Friedewald 
et al. in 2009 which appeared simultaneously 
in the  American Journal of Cardiology  and the 
 Journal of Periodontology  (Friedewald et al. 
 2009 ), and which confi rmed the existence of 
the relationship between these two types of 
conditions, only further evidence has emerged. 
A joint workshop organized by the European 
Federation of Periodontology (EFP) and the 
American Academy of Periodontology (AAP) 
on the broad topic “the oral health-systemic 
health connection” further confi rmed the epide-
miological  associations between periodontitis 
and cardiovascular diseases (Tonetti et al.  2013 ). 
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Cardiovascular diseases include atherosclerosis, 
coronary heart (artery) disease, cerebrovascu-
lar disease, peripheral artery disease, and some 
other less frequent conditions. Atherosclerosis is 
the underlying pathology of cardiovascular dis-
eases. In the framework of this chapter, where we 
describe plausible mechanisms to explain the link 
between cardiovascular diseases and periodontal 
diseases, we therefore will refer mainly to a pos-
sible role of periodontitis in atherogenesis and 
atherosclerosis and its (acute) consequences. 

 While the epidemiological associations 
between periodontitis and atherosclerosis and 
acute atherosclerotic events are now beyond any 
doubt, biological explanations on how the rela-
tionship may exist are not clear. This chapter 
describes possible and plausible mechanisms on 
how these two diseases might be linked. In this, 
we follow the consensus report on potential 
infl ammatory mechanisms linking periodontal 
diseases to atherosclerosis and its consequences 
(Tonetti et al.  2013 ; Schenkein and Loos  2013 ).  

3.2     Defi nitions of the Conditions 

3.2.1     Periodontitis 

 Periodontal diseases include gingivitis, peri-
odontitis, acute necrotizing ulcerative gingivi-
tis or periodontitis, and periodontal abscesses. 
Specifi cally, periodontitis has been associated 
with atherosclerosis and acute atherosclerotic 
events. Periodontitis is a chronic infl ammatory 
disease of the supporting tissues around the roots 
of the teeth. This disease results in the irrevers-
ible destruction of periodontal ligament and 
alveolar bone. The gingival tissues are highly 
infl amed and the periodontal connective tissues 
are infi ltrated with leukocytes; the infl ammatory 
reactions are actually at the base of loss of col-
lagen and an increase in the number and size of 
blood vessels, giving the gingiva its swollen and 
reddish appearance. Over a period of years of 
chronic infl ammation, a gradual loss of alveolar 
bone and periodontal ligament is apparent. If left 
untreated, teeth become mobile, may migrate, 
and eventually will exfoliate. 

 Traditionally, we differentiate between two 
types of periodontitis: aggressive periodontitis 
and chronic periodontitis (Armitage  1999 ). 
Severe periodontitis occurs in about 8–15 % of 
the population (Demmer and Papapanou  2010 ) 
depending on the defi nitions used for severe peri-
odontitis and depending on the specifi c study 
population subjected to epidemiological studies. 
In countries with a high availability of dental 
care, with dental and health awareness, and with 
preventive measures available, the prevalence of 
severe periodontitis may be <10 %, while in 
countries with no dental care, the prevalence can 
even be >15 %. Recent studies suggest that 
almost half of the population suffers from mild to 
moderate periodontitis (Albandar  2011 ; Eke 
et al.  2012 ). Nevertheless, severe periodontitis is 
a disease occurring only in a minority of popula-
tions (8–15 %) (Albandar  2011 ; Eke et al.  2015 ). 

 Periodontitis is considered to be a complex 
disease: multiple factors play a role simultane-
ously in the pathophysiology (Loos et al.  2015 ). 
In periodontitis, the pathobiology behaves in a 
nonlinear fashion, where the disease progression 
rate fl uctuates. The disease swings between peri-
ods of exacerbation to periods of quiescence (a 
disease-resolving state). In the active phase of the 
disease, the total of the host-related and lifestyle- 
related causal factors results in an aberrant 
immune reaction against bacteria in the gingival 
sulcus or pocket, in particular against gram- 
negative bacteria (Loos et al.  2015 ). The ensuing 
infl ammatory reactions result in the described 
infl ammatory infi ltrate, proliferation, and ulcer-
ation of the pocket epithelium at the cost of sound 
tooth-supporting structures.  

3.2.2     Atherosclerosis and Acute 
Atherosclerotic Events 

 Atherosclerosis is a disease of the whole vascular 
system, with obvious predilection places for 
more severe disease development (Friedewald 
et al.  2009 ; Andersen and Jess  2014 ; 
 Garcia- Gomez et al.  2014 ; Pearson et al.  2003 ). 
Atherosclerosis is the gradual stiffening of arter-
ies, the increasing thickness of the intima media 
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of vessels, and at special areas severe atheroscle-
rotic plaque formation. This results in the nar-
rowing of the arterial lumen. This is typically 
observed in the coronary, carotid, intercranial, 
and femoral arteries. Severe atherosclerosis and 
severe endothelial dysfunction can result in 
blockage and local thrombus formation in the 
artery preventing oxygen-rich blood to supply the 
distal tissues. This is regarded as an “ischemic 
event,” such as an acute myocardial infarct, or 
stroke, or transient ischemic event in the brain. 

 The consequences of atherosclerosis are there-
fore the following:

    1.    Coronary artery disease (CAD) (also known 
as coronary heart disease (CHD)). This is a 
diagnosed, severe atherosclerotic plaque for-
mation and narrowing of the lumen occurring 
in the coronary arteries, possibly resulting in 
angina pectoris and/or an acute myocardial 
infarction (MI) or acute cardiac death.   

   2.    Cerebrovascular disease. This is confi rmed 
severe atherosclerosis in carotid arteries and/
or in intracranial vessels. The patient can 
experience transient ischemic accidents (TIA) 
mostly with reversible brain damage, or can 
suffer from a cerebrovascular ischemic acci-
dent (nonhemorrhagic stroke) with irrevers-
ible brain damage or sudden death.   

   3.    Peripheral arterial disease (PAD). Severe ath-
erosclerotic disease can also occur in periph-
eral arteries, such as the femoral arteries and/
or tibial arteries, but also in the brachial artery. 
The patient can experience (transient) leg 
muscle pain (intermittent claudication); 
necrosis and open ulcers can develop and pos-
sibly thrombus formation, with the potential 
that the thrombus gets dislodged to lung tissue 
(pulmonary embolism).     

 The above cardiovascular conditions have 
been linked to periodontitis in many epidemio-
logical studies, in both cross-sectional studies and 
in longitudinal studies. The latter type of studies 
has been prospective and retrospective. The 
review by Dietrich (2013) (Dietrich et al.  2013 ), 
presented and reviewed by the joint EFP/AAP 
workshop (Tonetti et al.  2013 ), concluded that 

there is evidence for the association of periodonti-
tis with coronary artery disease, with cerebrovas-
cular disease, mortality due to the latter conditions, 
and links with peripheral artery disease. However, 
to date, no fi rm evidence for any biological mech-
anism linking periodontitis to atherosclerosis and 
its sequelae is available. To what extent is peri-
odontitis a true risk factor for atherosclerosis and 
how can it play a causative role? 

 We now further summarize current knowledge 
on the possible mechanisms on how periodontitis 
and atherosclerotic diseases may be linked 
(Schenkein and Loos  2013 ). In brief, the explana-
tions for the associations focus on atherogenesis, 
that is, the development and exacerbation of athero-
sclerotic plaques (see Box  3.1 ); these include: (1) 
bacteremia, (2) a pro-infl ammatory state, (3) a pro-
thrombotic state, (4) an overactive immunity, (5) 
dyslipidemia, and (6) common genetic risk factors. 
Most likely, these six potential mechanisms do not 
act individually, but may play all simultaneously 
and may act in concert, making a patient with peri-
odontitis more susceptible for atherogenesis in 
time, and more prone to suffer from an acute athero-
sclerotic event.    

  Box 3.1. Atherogenesis and the 

Atherosclerotic Lesion (Atheroma) 

 At some point, an initial atherosclerotic 
lesion starts (atherogenesis, atheroma for-
mation). This results in activated and dys-
functional endothelial lining (1), and 
subsequently, partial loss of integrity of the 
lining of the blood vessel. Now, on and by 
these endothelial cells, there is an upregu-
lation of adhesion molecules (ICAM-1, 
VCAM-1, E-selectin, P-selectin) and che-
moattractants (e.g., IL-8, thrombin). These 
activated endothelial cells provide the 
adhesion triggers and receptors, for 
increased platelet and leukocyte adhesion 
to them. This results in diapedesis of mono-
cytes and dendritic cells (both possibly 
with ingested bacteria), and also T cells, 
into the underlying infl ammatory lesion. 
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Activated platelets may aggregate and may 
form mini-thrombi. 

 The infl ammatory lesion (2) in the 
intima media of the artery may be in part 
initiated and/or propagated by bacteria 
originating from the periodontitis lesion. 
However, many more sources of bacterial 
remnants in such atherosclerotic lesions are 
conceivable and extensive bacterial signa-
tures have been described (Ott et al.  2006 ). 
The infl ammatory reactions in the athero-
sclerotic lesion can also be propagated by 
pro-infl ammatory mediators (IL-1, IL-6, 
CRP, TNF-alpha) and chemotactic factors 
(e.g., MCP-1) both “spilled over” from the 
periodontal lesions and produced in the 
liver (8) and also systemically. 

 The atherosclerotic lesion increases 
over a period of years. Now it is character-
ized by the accumulation of degenerative 
material in the tunica intima (inner layer) 
of artery walls (3). The material consists 
of (mostly) a cellular infi ltrate of macro-
phages and the latter fused to foam cells 
and lymphocytes (CD4 +  Th cells charac-
terized by increased IL-12, IL-18, IFN- 
gamma production), further lipid streaks 
(cholesterol and fatty acids), calcifi ca-
tions, and a variable amount of fi brous 
connective tissue. The atherosclerotic 
plaque intrudes into the lumen of the 
artery and causes the arterial lumen to nar-
row, which will restrict blood fl ow. During 
atheroma maturation, one sees more and 
more modifi ed low-density lipoproteins 
(LDL) phagocytosed within the macro-
phages and foam cells, resulting in an 
increase of pro- infl ammatory cytokines 
(IL-6, IL-1, TNF- alpha), chemoattractants 
(IL-8), and metalloproteineases (MMPs). 
The active atherosclerotic lesion, now in a 
more infl ammatory state, induces a further 
dysfunctional endothelial lining. 

 In the mature atheroma, a degeneration 
of smooth muscle cells and an increase 
of fi broblasts are observed (4), with 

 progressive fi brosis and loss of a demarca-
tion between the infl ammatory lesion and 
smooth muscle cells; there is development 
of a compensatory blood supply for the 
affected artery and an increased outer mus-
cle layer. In Fig.  3.1 ., items 2 + 3 + 4 form 
the intimal layer (media) of the artery, and 
item 5 is the outer muscle layer.

   Ultimately, a disintegrated endothe-
lial lining (6) can rupture, with exposi-
tion of the underlying atherosclerotic 
plaque. This generates thrombin from 
prothrombin, which in turn enzymati-
cally generates fi brin from fi brinogen, 
initiating the clotting cascade and resulting 
in thrombosis and subsequently to a myo-
cardial infarction, ischemic stroke, acute 
peripheral artery disease, or cardiac death. 

 This slow and chronic process over years 
of atherogenesis may be mediated by 
repeated bacteremia, a pro-infl ammatory 
state and activated infl ammatory cells, from 
infectious and infl ammatory processes else-
where (Andersen and Jess  2014 ; Koenig 
 2013 ). In this respect, Crohn’s disease and 
ulcerative colitis, chronic periodontitis, but 
also rheumatoid arthritis have been impli-
cated (Andersen and Jess  2014 ; Garcia-
Gomez et al.  2014 ; Kholy et al.  2015 ). 

 Bacteria (transmigrated from the sub-
gingival biofi lm into the periodontal 
lesion or in the circulation itself) can acti-
vate platelets (7; out of scale within 
Fig.  3.1 ) and can trigger platelet–leuko-
cyte complexes. These can form aggre-
gates on the dysfunctional endothelium, 
in particular due to the adhesion mole-
cules that are abundantly expressed, 
resulting in the initiation of (micro) 
thrombus formation. 

 Simultaneously, the liver (8) is stimu-
lated and upregulated due to infl ammatory 
signals (IL-6), to overproduce clotting fac-
tors, resulting in a prothrombotic state. 
Also increased production of acute 
phase reactants, including CRP, which 
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will increase the pro-infl ammatory 
state, are produced in the liver (8; 
again out of scale within Fig.  3.1 ). 

 Within the progressive athero-
sclerotic lesion, decreased collagen 
production and activation of MMPs 
(9) is occurring, resulting in reduc-
tion of the smooth muscle cell con-
tent and increased degradation of 
remaining collagen that borders the 

fibrous cap, weakening the strength 
of the vessel, leading to fissuring of 
the atheroma. 

 In a severely progressed stage (10), 
the atheroma comprises of a large 
necrotic core which is exposed to the 
vasculature within the lesion, leading 
to contact with platelets and initiation 
of coagulation and plaque rupture in 
so-called vulnerable lesions. 

3.3     Bacteremia 
and Consequences 
for the Cardiovascular 
System 

 It has been known for many years that oral bacte-
ria can enter the bloodstream. In particular, in 
cases of severe gingivitis and periodontitis, the 
inner epithelial lining of the periodontal pockets 
is ulcerated and shows loss of epithelial lining 
integrity (Schenkein and Loos  2013 ; Loos  2005 ; 
Tonetti and Graziani  2014 ). This ulcerated pocket 
epithelium may add up to 8–20 cm 2  (Loos  2005 ; 
Nesse et al.  2008 ). It is called periodontal 
infl amed surface area and forms an easy  porte 
d’entrée  for the bacteria, bacterial toxins, and 
other antigenic components residing in the 

 subgingival area (Loos  2005 ; Nesse et al.  2008 ). 
Many of the subgingival bacteria are gram nega-
tive, and in particular, the endotoxin lipopolysac-
charide (LPS) from these species stimulates the 
host immune system. This latter biologic event 
can be at the basis of the pro-infl ammatory state 
seen in both periodontitis and cardiovascular dis-
ease (see below) (Schenkein and Loos  2013 ; 
Tonetti and Graziani  2014 ). Also the daily epi-
sodes of dissemination of bacteria from the peri-
odontal lesions into the bloodstream can favor 
atheroma formation and can induce activated 
platelets and platelet–leukocyte complexes, lead-
ing to the prothrombotic state (see below). 

 It is now well documented that bacteria and 
endotoxins from periodontal lesions enter the 
bloodstream (Schenkein and Loos  2013 ; Tonetti 
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  Fig. 3.1    Schematic cartoon of an atherosclerotic lesion and events in the process of atherogenesis (Adapted and 
reprinted from (Schenkein and Loos  2013 ))       
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and Graziani  2014 ; Reyes et al.  2013 ). This has 
been shown when patients chew, brush their 
teeth, but also after dental procedures. However, 
the long-standing periodontal lesions and the 
chronic daily short-lived bacteremias are mostly 
responsible for the negative effects. The possi-
bilities for oral and periodontal bacteria to cause 
harm for the cardiovascular system and to be 
involved in atherogenesis and atherosclerosis are 
summarized in Table  3.1 .

   Interestingly, some indirect evidence for a role 
of bacteria in atherogenesis or in atherosclerotic 
lesions in general is the fi nding of a large variety 
of bacterial signatures in atherosclerotic biopsies 
(Ott et al.  2006 ). Specifi cally, in addition to a 
high variety of species, also  P. gingivalis ,  A. acti-
nomycetemcomitans , and other periodontal 
pathogens have been identifi ed (Table  3.1 ). In 
periodontitis, the prevalence of bacteremias and 
endotoxinemias is higher than in gingivitis or 
periodontal healthy subjects as evidenced by 
higher microbial diversities in atherosclerotic 
biopsies from periodontal patients. Also, there 
are correlations between the presence of bacterial 
antigens and molecular signatures in the athero-
thrombotic lesions and the severity of periodonti-
tis. Moreover, there are correlations reported 
between the composition of the subgingival 
microfl ora and the bacterial species in vascular 
biopsies. Even, interestingly, there is suggestion 
that some bacterial species are still viable. 

 Taken together, there is biological evidence 
that bacteria and their toxic components, such as 

LPS, may easily gain access to the vascular sys-
tem in cases of periodontitis. And biological 
experiments have demonstrated that this phe-
nomenon plays a role in atherogenesis and exac-
erbation of atherosclerotic lesions.  

3.4     Immunologic Reactions 

 The increased bacteremias and dissemination of 
endotoxins (LPS) and many other microbiologi-
cal antigens stimulate the immune response of the 
host (Schenkein and Loos  2013 ). Consequently, 
an activated innate immunity may result in hyper-
active neutrophils, higher levels of complement, 
increased levels of acute phase reactants (see 
below), and a general exacerbation of reactivity. 

 Also the adaptive immunity is activated. The 
latter is an intriguing fi nding and the conse-
quences are not well understood. It is found that 
there is an increased titer of antibodies to oral and 
periodontal bacteria in the circulation in patients 
with periodontitis. These antibodies fi rst of all can 
enter atherosclerotic lesions where such oral spe-
cies are nested. This can exacerbate such athero-
sclerotic lesions and could increase the endothelial 
dysfunction and increase the risk of rupture of the 
lesion with thrombus formation as a result. 

 Furthermore, enhanced T- and B-cell activation 
may give rise to autoimmunity. Autoantibodies 
may be generated through the molecular mimicry 
between bacterial and human heat shock proteins 
(HSP). These cross-reactive antibodies in the fi rst 
place generated against circulating microorgan-
isms may react, for example, with HSPs on endo-
thelial cells. These become dysfunctional and again 
this can enhance the chance for rupture of the endo-
thelial lining giving rise to thrombus formation 
with the chance of ischemia. Anti-HSP antibodies 
against the periodontal pathogens  P. gingivalis, F. 
nucleatum, T. forsythia , and  A. actinomycetemcom-
itans  have been found. Also the activated T and B 
cells against other antigens of these bacteria have 
been found. Further, other autoantibodies include 
anticardiolipin and anti-low-density lipoproteins 
(anti-LDL-type cholesterol) (Schenkein and Loos 
 2013 ; Schenkein et al.  2004 ).  

    Table 3.1    Lines of evidence for the role of bacteria and 
specifi cally periodontal pathogens and atherosclerosis 
(Tonetti and Graziani  2014 )   

 Evidence for the role of periodontal pathogens in 
atherosclerosis 

 DNA of periodontopathogens has been localized within 
atherosclerotic plaques 
 Periopathogens are able to invade endothelial cells, in 
particular  P. gingivalis  
 Periopathogens and other oral bacteria may trigger 
platelet aggregation 
  P. gingivalis  can accelerate the transition of 
macrophages to foam cells 
 Periopathogens can activate the host immune system 
and cause a pro-infl ammatory state 
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3.5     Pro-infl ammatory State 

 It has been widely accepted that low-grade sys-
temic infl ammation contributes to an elevated risk 
for CAD and ischemic stroke (Friedewald et al. 
 2009 ; Andersen and Jess  2014 ; Garcia- Gomez 
et al.  2014 ; Pearson et al.  2003 ; Koenig  2013 ; 
Emerging Risk Factors Collaboration et al.  2010 ; 
Ridker  2009 ). In the last two decades, C-reactive 
protein (CRP) has been proposed as an important 
infl ammatory biomarker related to acute athero-
sclerotic events. CRP levels exhibit a continu-
ous association with the risk of CAD, ischemic 
stroke, and vascular mortality (Emerging Risk 
Factors Collaboration et al.  2010 ). Interestingly, 
lowering of CRP levels after statin therapy is 
associated with a decrease in cardiovascular dis-
ease event rate, equivalent to what was observed 
for patients who achieved lowered LDL choles-
terol treatment goals (Ridker et al.  2005 ). 

 CRP is an “acute-phase reactant,” a molecule 
produced mainly in the liver, in response to 
infl ammatory signals, in particular in reaction to 
elevated levels of interleukin-6 (IL-6). The acute- 
phase reactants such as CRP have pro- 
infl ammatory properties. The exact function(s) of 
CRP, despite its years of discovery as biomarker, 
is not yet completely uncovered. CRP is a penta-
trexin molecule; it functions as soluble pattern 
recognition molecule, and one of the most impor-
tant roles for this protein is host defense primar-
ily against pathogenic bacteria. It can function as 
an opsonin for pathogens through activation of 
the complement pathway and through binding of 
Fc-gamma receptors. CRP and other pentatrexins 
can also recognize membrane phospholipids and 
nuclear components exposed on or released by 
damaged endothelial cells. In this way, it is pro-
posed to be important for clearance of damaged 
cells and tissues. Because CRP is a strong acute- 
phase reactant, it is widely used as a diagnostic 
marker for acute infl ammation and/or infection, 
with levels ranging 10–200 mg/l or even higher. 

 The levels of CRP related to chronic infl am-
mation and proposed as cardiovascular risk bio-
marker are relatively low and not exceeding 
10 mg/L. These levels have been found by apply-
ing a high sensitivity test using nephelometry and 

therefore often referred to as hsCRP. Levels of 
hsCRP are classifi ed in three categories with 
regard to risk for cardiovascular events 
(Table   3.2 ) (Pearson et al.  2003 ). 

 In periodontitis, consistently elevated levels of 
hsCRP have been found (Paraskevas et al.  2008 ). 
Meta-analysis of published case-control studies 
have shown that in periodontitis often CRP levels 
are in the range of intermediate to high CVD risk, 
while the values in controls are in the low- or 
intermediate-risk category. The latter authors 
reported that the weighted mean difference 
between patients and controls was highly signifi -
cant (1.56 mg/L). Moreover, it has been shown 
that hsCRP behaves in a dose-dependent manner: 
severe periodontitis in general shows higher 
blood plasma levels of hsCRP than moderate or 
mild periodontitis, while healthy controls show 
even lower values. 

 Furthermore, a meta-analysis on periodontitis 
treatment studies ( n  = 23) including 1647 patients 
have shown that hsCRP levels are signifi cantly 
reduced after periodontal therapy (overall a mean 
reduction of 0.5 mg/L) (Teeuw et al.  2014 ). The 
reduction was specifi cally signifi cant in a sub-
group of periodontitis patients having comor-
bidities such as diabetes, atherosclerosis, or 
rheumatoid arthritis. The reduction of hsCRP in 
periodontitis treatment studies is clinically rel-
evant since the hsCRP levels exhibit a continu-
ous association with the risk of CAD, ischemic 
stroke, and vascular mortality (Emerging Risk 
Factors Collaboration et al.  2010 ); the hsCRP 
levels after periodontal treatment can often place 
patients in a low CVD risk category (Table  3.2 ). 
These treatment studies with favorable results 
suggest further that periodontitis is causally 
related to elevated CRP.

   Next to hsCRP are other markers of infl amma-
tion in the circulation of patients with  periodontitis. 

    Table 3.2    Risk levels for acute cardiovascular events 
based on plasma hsCRP levels   

 Risk for acute cardiovascular events  Levels of hsCRP 

 Low  <1 mg/L 
 Intermediate  1–3 mg/L 
 High  >3 mg/L 
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Also these can make periodontitis patients more 
susceptible for an atherosclerotic event as they 
have atherogenic potential (Schenkein and Loos 
 2013 ). These include other acute-phase reactants 
and immune mediators: interleukin (IL)-1, IL-4, 
IL-6, IL-18, haptoglobin, serum amyloid A, alpha 
1 anti-chymotrypsin, tumor necrosis factor-alpha, 
metalloproteinase (MMP)-9, platelet-activating 
factor (PAF), and PAF acetylhydrolase. 

 The pro-infl ammatory state as characterized 
by the elevated levels of hsCRP, and other bio-
markers mentioned above, could enter the blood 
circulation in essentially two ways:

    1.    The spill over from periodontal lesions: There 
is substantial literature providing indications 
that infl ammatory cytokines and other bio-
markers are produced in the periodontal 
lesion; from here they are “dumped” or 
“spilled” into the blood circulation. These 
molecules could impact organs and tissues, 
such as blood vessels with/without atheroscle-
rotic lesions and the liver.   

   2.    The activated liver: The liver in turn initiates 
an acute-phase response. The liver produces 
higher levels of CRP, and other acute-phase 
reactants, but also higher levels of comple-
ment molecules and prothrombotic molecules, 
such as fi brinogen, von Willebrand factor, and 
plasminogen.     

 In summary, through the clearly proven pro- 
infl ammatory state in periodontitis, there is a 
highly plausible biologic mechanism why peri-
odontitis is linked to atherosclerosis and acute 
atherosclerotic events. Excessive local produc-
tion of pro-infl ammatory cytokines, as well as 
higher levels of these  and  acute-phase reactants 
produced in the liver, can induce or exacerbate 
infl ammatory changes in the endothelium and 
atherosclerotic lesions (Fig.  3.1 ).  

3.6     Prothrombotic State 

 In recent years, there is a growing body of evi-
dence that in periodontitis both a hypercoagula-
ble state and hypofi brinolysis exist (Schenkein 

and Loos  2013 ; Tonetti and Graziani  2014 ). 
Collectively, we call this a prothrombotic state, 
i.e., an individual may form faster than normal a 
(small) thrombus  and/or  this is less effi ciently 
removed. It is hypothesized that this state in peri-
odontitis could also be one of the mechanisms as 
to how periodontitis is associated with ischemic 
atherosclerotic events. In Box  3.2 , we summarize 
the normal blood clotting events.  

  Box 3.2. The Normal Blood Clotting Events 

 In response to vascular injury, a sequence 
of coordinated events ensures blood fl uid-
ity while preventing blood loss. Adhesion, 
activation, and aggregation of platelets are 
all steps in primary hemostasis. Under 
static or low shear conditions of fl ow, plate-
lets circulate in the inactivated discocyte 
form. Upon vascular or tissue injury, col-
lagen matrix exposure and local adenosine 
diphosphate (ADP) production result in 
agonist–receptor interactions (GPIb-von 
Willebrand factor, GPVI-collagen, P2Y12- 
ADP), which conclude with formation of 
platelet aggregates. 

 Formation of the platelet hemostatic plug 
is followed by true blood clot formation 
(activation of coagulation) and, fi nally, by 
clot dissolution (fi brinolysis). Activation of 
coagulation is strongly dependent on upregu-
lation of tissue factor (TF) and leads to 
thrombin generation. TF is not normally 
present in the circulation. Normal hemosta-
sis arises when the blood vessels are dis-
rupted allowing blood to contact extravascular 
cells expressing TF. Thrombin is active in the 
conversion of soluble fi brinogen to insoluble 
fi brin (deposited in the formed blood clot) 
and is a potent platelet activator. There are 
three natural anticoagulant mechanisms act-
ing together to prevent thrombosis: (I) the 
heparin–antithrombin system, (II) the pro-
tein C pathway, and (III) the tissue factor 
pathway inhibitor system. 

 Fibrinolysis is a natural response to coag-
ulation, leading to fi brin clot breakdown. 
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 In periodontitis, the normal hemostasis state 
and events may be disturbed. In Table  3.3 , we 
summarized the fi ndings. One of the very fi rst 
parameters found to be elevated in periodontitis 
was fi brinogen (Kweider et al.  1993 ). Fibrinogen 
is a member of the acute-phase protein family. Its 
concentration rises in acute and chronic infl am-
mation mainly as result of increased production 
by hepatocytes. Increased concentrations of 
fi brinogen are associated with the development 
of atherothrombotic disease. Several cohort and 
population-based studies have documented an 
increased level of plasma fi brinogen in periodon-
titis patients compared to periodontally healthy 
individuals (Kweider et al.  1993 ; Papapanagiotou 

et al.  2009 ; Wu et al.  2000 ). Studies on the effects 
of periodontal therapy on fi brinogen levels 
(reviewed in (Teeuw et al.  2014 ; D’Aiuto et al. 
 2013 )) yielded variable results; some studies 
reported a signifi cant reduction in the fi brinogen 
levels in the patient groups that received active 
periodontal treatment; others measured no sig-
nifi cant changes post-therapy.

   Other markers of coagulation or fi brinolysis 
(prothrombin fragments 1 + 2, D-dimer, von 
Willebrand factor, tissue plasminogen activator 
and plasminogen activator inhibitor-1) known to 
be modifi ed in prothrombotic states, rendered 
inconclusive results when explored in periodonti-
tis. Bizzarro et al. (Bizzarro et al.  2007 ) reported 
increased levels of PAI-1 (Bizzarro et al.  2007 ) 
and the levels of PAI-1 decreased after full-mouth 
extractions (Taylor et al.  2006 ), whereas another 
study failed to demonstrate an association 
between PAI-1 and periodontitis (Bretz et al. 
 2005 ). Interestingly, there is evidence for a short- 
term increase in the fi rst week after periodontal 
treatment of hemostatic factors such as PAI-1, 
D-dimer, and von Willebrand factor (D’Aiuto 
et al.  2005a ,  b ; Tonetti et al.  2007 ; Graziani et al. 
 2010 ). These changes correspond to an acute- 
phase reaction in response to the treatment itself 
measurable by an increased CRP, IL-6, possibly 
related to the acute bacteremia following full- 
mouth subgingival debridement. 

 In response to hemorrhage, circulating plate-
lets adhere to exposed subendothelial tissues 
and recruit additional platelets into aggregates 
that function as procoagulant surfaces. Platelets 
are released in the bone marrow from precur-
sors, the megakaryocytes. The process is con-
trolled by thrombopoietin, a liver-synthesized 
hormone, which stimulates multipotent mega-
karyoblasts toward maturation. In patients with 
reactive high platelet counts secondary to infl am-
mation, pro- infl ammatory cytokines such as IL-6 
are responsible for enhanced hepatic produc-
tion of thrombopoietin, resulting in increased 
platelet production. Untreated periodontitis has 
been associated with elevated numbers of plate-
lets (Papapanagiotou et al.  2009 ; Lopez et al. 
 2012 ; Wang et al.  2014 ), and the association of 
high platelet counts in periodontitis is further 

    Table 3.3    Changes or abnormalities in hemostasis 
parameters observed in periodontitis   

 Hemostasis parameters 
 Situation in 
periodontitis 

 Biomarkers of coagulation 
   Fibrinogen  

   Fragment 1 + 2   
   von Willebrand factor  

   P-selectin  

 Abnormalities of platelets 
   Numbers in the circulation 
   Size (mean platelet volume) 
   Activation state 
   Reactivity   
 Abnormalities of fi brinolysis 
   tPA 
   PAI-1  
   D-dimer  

  Abbreviations:  tPA  tissue-type plasminogen activator , 
PAI-1  plasminogen activator inhibitor 1  

During fi brinolysis, plasmin is generated 
from plasminogen (an inactive proenzyme) 
under the infl uence of tissue plasminogen 
activator (tPA) or urokinase plasminogen 
activator (uPA); this reaction is inhibited by 
plasminogen activator inhibitor 1 and 2 
(PAI-1, PAI-2) and α2-antiplasmin. The 
formed plasmin cleaves fi brin into soluble 
degradation products. 

3 Plausible Mechanisms Explaining the Association of Periodontitis with Cardiovascular Diseases



28

 strengthened by the observations that plate-
let numbers decrease after periodontal therapy 
(Wang et al.  2014 ; Christan et al.  2002 ). 

 Platelets play a crucial role in the pathogen-
esis of atherosclerotic complications, contribut-
ing to thrombus formation or apposition after 
plaque rupture. The mean platelet volume (MPV) 
is universally available with routine blood counts 
and is a quantity of the average size of platelets 
in a sample. Compared to smaller ones, larger 
 platelets are more reactive, have more granules, 
aggregate more rapidly with collagen, have higher 
thromboxane A2 level, and express more glyco-
protein Ib and IIb/IIIa receptors. Elevated MPV 
levels have been identifi ed as an independent risk 
factor for myocardial infarction in patients with 
coronary heart disease and for death or recurrent 
vascular events after myocardial infarction. In 
chronic periodontitis, there is an ongoing low- 
grade infl ammation, and cytokines such as IL-6 
or IL-3 regulate megakaryocyte ploidy, result-
ing in the production of more reactive and larger 
platelets. Therefore, we can expect higher MPV 
values in untreated periodontitis. Indeed, higher 
MPV in periodontitis patients than in healthy 
controls have been reported (Lopez et al.  2012 ). 
In contrast, Wang and coworkers found a lower 
MPV in periodontitis patients at intake, and the 
MPV increased without reaching the levels of 
healthy controls 1 month post-periodontal ther-
apy (Wang et al.  2014 ,  2015 ). The source of these 
confl icting results is as of yet unknown, but there 
are some plausible explanations. Lower MPV 
in untreated periodontitis might be the effect of 
intensive consumption of large platelets at sites of 
overt infl ammation. Post-therapy, larger platelets 
may represent newly released, young platelets 
during rebound from platelet clearance. However, 
MPV variations should be interpreted with cau-
tion in unmatched cohort studies, as confound-
ing factors, such as body mass index, systolic and 
diastolic blood pressure, smoking status, glucose 
and cholesterol levels, or medication use have all 
been associated with MPV variations. 

 As described above, regularly occurring bacte-
remias in periodontitis patients underlie chronic 
production and systemic increases of various 
 pro-infl ammatory immune mediators. These could 

be the cause for the observed platelet activation 
and reactivity (Table  3.3 ). Interestingly, strains of 
the recognized periodontal pathogens  A. actino-
mycetemcomitans  and  P. gingivalis , but also other 
dental plaque bacteria, such as  Streptococcus san-
guis , induce platelet activation and aggregation 
in vitro and in animal studies (Nicu et al.  2009 ; 
Assinger et al.  2011 ,  2012 ). Platelets become acti-
vated by periodontopathogens mainly via toll-like 
receptor 2 (TLR2) and TLR4. 

 P-selectin is a transmembrane protein present 
in the Weibel–Palade bodies of endothelial cells 
and in the α-granules of platelets. P-selection is 
expressed on the cell surface upon activation- 
dependent granule exocytosis and plays a central 
role in cardiovascular disease. Upon interaction 
with its receptor P-selectin glycoprotein ligand 1 
(PSGL-1) on the leukocyte surface, P-selectin 
(both platelet, as well as endothelial cell derived) 
is rapidly shed to form soluble P-selectin. Elevated 
levels of plasma P-selectin have been documented 
in patients with periodontitis (Papapanagiotou 
et al.  2009 ; Assinger et al.  2011 ). 

 Another cytokine expressed and released from 
activated platelets is the CD40L (cluster of differ-
entiation 40 ligand); in fact, platelets represent the 
main source of soluble CD40L. Ligation of 
CD40L to its receptor CD40 induces a pro- 
infl ammatory and prothrombotic response in the 
vascular endothelium, as evidenced by the release 
of infl ammatory cytokines, expression of adhesion 
molecules, activation of matrix metalloproteinases 
(MMPs), and procoagulant tissue factor. It initi-
ates the formation of reactive oxygen  species and 
inhibition of nitric oxide production. Also elevated 
levels of soluble CD40L were found in periodonti-
tis patients, and these were correlated with 
P-selectin (Papapanagiotou et al.  2009 ; Assinger 
et al.  2012 ), highly suggestive of an activated 
platelet phenotype in periodontitis. The platelets 
were not only activated, but also hyperreactive. In 
response to several species of oral bacteria, plate-
lets from periodontitis patients showed an 
increased membrane exposure of P-selectin and 
increased formation of platelet–monocyte com-
plexes compared with controls (Nicu et al.  2009 ). 
Formation of platelet–leukocyte complexes is a 
process that facilitates leukocyte transmigration to 
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perivascular tissues. However, these interactions 
also occur in circulating blood, leading to acti-
vated platelet–leukocyte aggregates, which are 
hallmarks not only of infl ammatory disorders and 
sepsis but also of acute myocardial infarction. 

 It is clear that in periodontitis small aberra-
tions from normal can be found regarding the 
hemostasis physiology. Most is based on cross- 
sectional case-control studies or longitudinal 
cohort follow-up studies. Since periodontitis is 
treatable, future longitudinal research should 
address the question of whether periodontal ther-
apy is capable of reducing the levels of hemosta-
sis biomarkers and reducing the platelet activation 
and reactive state. These studies will also help to 
further confi rm a mechanistic role of the pro- 
infl ammatory state in periodontitis being causally 
related to acute ischemic events.  

3.7     Dyslipidemia 

 For more than four decades, the role of high cho-
lesterol in atherosclerosis and the acute athero-
sclerotic events has been established. Total 
cholesterol consists mainly of HDL (high-density 
lipids) and LDL (low-density lipids). Increased 
serum levels of especially LDL and very low- 
density lipoproteins (v)LDL and triglycerides are 
considered pro-atherogenic. The (v)LDL can 
actually diffuse freely into the intimal layer of 
blood vessels. In atherosclerotic lesions, one 
fi nds foam cells, being multinuclear macrophages 
which have phagocytized LDL. Regular macro-
phages, not yet fused into multinuclear cells, are 
activated when they have phagocytized LDL and 
vLDL and may exuberate infl ammation in the 
atherosclerotic lesion. Subsequently, the endo-
thelial cells overlaying the atherosclerotic lesion 
become dysfunctional and express many chemo-
kines and surface receptors. 

 Actually not only diet and “fatty foods,” but in 
general, infl ammatory processes seem to be associ-
ated with dyslipidemia, i.e., increased levels of (v)
LDL and decreased levels of HDL. In fact, choles-
terol is synthesized in the liver; it is not only 
acquired via diet. When the liver is activated by 
cytokines directly via pro-infl ammatory cytokines, 

higher levels of cholesterol are generated. This is 
called elevated biosynthesis of cholesterol in the 
liver. Case-control studies have noted elevated total 
serum cholesterol, elevated LDL and lowered 
HDL, and elevated (v)LDL and intermediate- 
density lipoproteins in periodontitis (Schenkein 
and Loos  2013 ). Also increased triglycerides (TGs) 
have been found in periodontitis. 

 LDL cholesterol can bind to circulating 
LPS. The LDL–LPS complex in particular is 
very atherogenic. The LDP–LPS complex can 
enter easily atherosclerotic plaques and enhance 
the infl ammatory reactions/responses inside the 
atheromas. The latter was also observed in 
in vitro experiments. 

 Moreover, LDL can be oxidized (oxLDL) and 
autoantibodies to oxLDL have been observed in 
periodontitis (Schenkein et al.  2004 ). Interestingly, 
 P. gingivalis  can induce foam cell formation in the 
presence of exogenous LDL. In sum, from cross-
sectional clinical studies, we see that periodontitis 
is associated with dyslipidemia, i.e., elevated total 
cholesterol and elevated LDL and TGs, with con-
comitant lower levels of HDL. This total makes 
periodontitis patients with dyslipidemia more sus-
ceptible for increased atherogenesis, in particular 
in connection with LPS. 

 A recent review and meta-analysis (Teeuw 
et al.  2014 ) has demonstrated that dyslipidemia 
in periodontitis patients can be reduced following 
periodontal therapy. In the context of the current 
discussion on possible mechanisms how 
 periodontitis might be linked to atherosclerosis, 
this is another clear indication that periodontitis 
is actually related to dyslipidemia. But also it is 
important in terms of prevention of further devel-
opment of atherosclerotic lesions; treatment of 
periodontitis can be helpful, or can be part of a 
set of treatments, to lower an individual’s risk for 
an acute atherosclerotic event.  

3.8     A Common Genetic 
Background 

 Recent papers have identifi ed the same genetic 
variants (single nucleotide polymorphisms 
[SNP]) to be associated with both coronary artery 
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disease (CAD) and periodontitis. This is a very 
intriguing fi nding. A common genetic back-
ground for CAD and periodontitis could be inter-
preted that the host acts in similar – aberrant – ways 
to infections and/or infl ammatory processes, irre-
spectively where they take place. As stated 
before, atherosclerotic plaques are essentially 
infl ammatory lesions. For example, we could 
think about similar host immune reactions and 
similar pathobiologic pathways to bacteria and 
bacterial antigens that are transmigrated or dis-
lodged or phagocytized in macrophages/foam 
cells in atherosclerotic plaques, as well as host 
reactions to the bacteria and bacterial compo-
nents which are entered into periodontal lesions 
from the subgingival biofi lm. 

 One of the fi rst and best replicated genetic loci 
for CAD is the  ANRIL  locus. The  ANRIL  locus is 
a regulatory region and does not contain a protein- 
encoding gene. It is a long noncoding antisense 
RNA formerly called CDKN2BAS. Importantly, 
it appears to be a pleiotropic genetic region, since 
it is also associated with diabetes type 2, ischemic 
stroke, and Alzheimer disease. Since 2009, it is 
reported that certain genetic variations in  ANRIL  
are also consistently associated with periodontitis 
(Schaefer et al.  2009 ; Ernst et al.  2010 ). Further, 
a conserved noncoding element within  CAMTA1  
upstream of  VAMP3 , also fi rst identifi ed as a 
genetic susceptibility locus for CAD, was found 
to be associated with periodontitis (Bochenek 
et al.  2013 ). Experimental work suggests that 
ANRIL and VAMP3 are part of biological path-
ways (regulatory networks) that connect glucose 
and fatty acid metabolism steps with immune 
responses (Bochenek et al.  2013 ; Schwenk et al. 
 2012 ). Interestingly, a genome-wide association 
study suggested that  VAMP3  locus was associ-
ated with a higher probability of subgingival col-
onization of periodontal pathogens (Divaris et al. 
 2012 ). Collectively, although speculative, these 
shared genetic factors suggest a mechanistic link 
between CAD, periodontitis, diabetes, meta-
bolic syndrome, obesity, and infl ammation. The 
impairment of the regulatory pathways by genetic 
factors may be a common pathogenic denomina-
tor of at least CAD and periodontitis (Schaefer 
et al.  2015 ; Loos  2015 ). We hypothesize that an 

aberrant infl ammatory reactivity, determined in 
part by genetic variants in ANRIL, CAMTA1 and 
VAMP3, could also explain the epidemiological 
link between periodontitis and atherosclerosis in 
coronary arteries (CAD). 

 And recently, yet another CAD risk locus was 
also found to be associated with periodontitis; 
there is now evidence for  PLASMINOGEN (PLG)  
as a shared genetic risk factor of CAD and peri-
odontitis (Schaefer et al.  2015 ). When plasmino-
gen is converted into plasmin, the latter enzyme 
can dissolve the fi brinogen fi bers that entangle the 
blood cells in a blood clot; this is called fi brinoly-
sis. Thus, the plasminogen–plasmin axis has an 
important function in tissue degradation and con-
trol in the blood coagulation system. Interestingly, 
bacteria (including  P. gingivalis ) can aggregate 
with plasminogen and can convert plasminogen to 
plasmin, and this complex is highly proteolytic 
and can inactivate plasmin inhibitors causing per-
haps uncontrolled plasmin activity. Although we 
have no clear picture yet on the precise conse-
quences of genetic variants in  PLG , more and 
more pleiotropic genetic regions are identifi ed and 
may form the basis for common diseases such ath-
erosclerosis and periodontitis (Vaithilingam et al. 
 2014 ); then, periodontitis is not causally related to 
atherosclerosis, but rather the sequel of common 
aberrant infl ammatory pathways.  

3.9     Perspective and Concluding 
Remarks 

 Epidemiological studies have clearly indicated 
beyond any doubt that atherosclerosis and athero-
sclerotic events (CAD, cerebrovascular disease, 
PAD, and death due to ischemic events) are asso-
ciated with periodontitis. However, it is impor-
tant to note that it is not proven that periodontitis 
plays a causative role in the pathophysiology of 
atherogenesis or atherosclerosis. Atherosclerosis, 
actually the presence of atherosclerotic lesions 
that slowly progress and can rupture with acute 
MI or stroke as consequence, is considered a 
complex disease. Like for periodontitis, complex-
ity of atherosclerosis means that it is a disease 
process involving multiple causal components, 
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which interplay with each other simultaneously. 
In complex systems, the causes and effects may 
behave disproportional, so that a small cause may 
result in a large effect, and vice versa, and that 
the disease progression rate fl uctuates or, rather, 
can move from a non-acute or chronic state to an 
acute phase without a special “warning signal.” 
Complexity of atherogenesis and atherosclero-
sis reveals heterogeneity in its clinical course 
and in the various phenotypes between diseased 
patients. 

 There are several main causal risk factors for 
atherosclerosis to occur, including: (i) genetic 
risk factors and epigenetic modifi cations of the 
genetic code; (ii) lifestyle-related factors, such as 
diet and fat intake (high/low cholesterol- 
containing foods); (iii) systemic diseases such as 
diabetes and its sequelae on the condition of the 
blood vessel walls, smoking, high blood pres-
sure, and obesity; (iv) now also chronic infl am-
matory processes and/or chronic infections are 
considered as another cause for atherosclerosis. It 
is important to understand that, while these fac-
tors mentioned above play simultaneously a role 
in the pathobiology of atherosclerosis, the rela-
tive contribution of each of the causal factors var-

ies from patient to patient. For example, not every 
patient who suffered from an acute MI may have 
had high cholesterol or was a smoker. 

 In this chapter, we have outlined possible 
mechanisms, as to how periodontitis may be 
another risk factor for atherosclerosis. These 
have been discussed before in the EFP/AAP 
workshop (Tonetti et al.  2013 ) and are summa-
rized in Fig.  3.2 .

   For the link of periodontitis with atherosclero-
sis, researchers suggest that in fact the daily 
occurrence of multiple short-lived bacterial dis-
seminations may be at the base of a possible 
causal role of periodontitis. But also the fact that 
periodontitis is a chronic infl ammatory disease, 
which can cause a spillover of pro-infl ammatory 
cytokines and induces a pro-infl ammatory state, 
dyslipidemia and a prothrombotic state, can pres-
ent the risk to increased atherogenesis and/or 
enhanced pathology of atherosclerotic lesions. 
However, a common genetic susceptibility for 
atherosclerosis and periodontitis (and perhaps 
other linked chronic diseases) could dictate the 
way the host responds in general to certain types 
of infl ammatory processes. These diseases may 
share the same infl ammatory pathways in  reaction 
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  Fig. 3.2    A composite of biologically plausible mecha-
nisms how periodontitis might be linked to atherogenesis 
and atherosclerosis (Reprinted with permission for Tonetti 

et al. ( 2013 ) and based on references (Schenkein and Loos 
 2013 ; Reyes et al.  2013 ))       
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to, for example, bacteria, be it in the gingival tis-
sues or be it in the circulation or atherosclerotic 
lesion. Some pleiotropic genes have been identi-
fi ed, such as  ANRIL ,  CAMTA1 , and  PLG . 

 Independently, whether there is a true causal 
contribution of periodontitis to atherosclerosis, 
periodontitis treatment studies have indicated 
that the clinical condition of the vascular system 
can improve, i.e., the degree of atherosclerosis 
can be reduced by periodontal therapy (Tonetti 
et al.  2013 ; Teeuw et al.  2014 ). For example, 
endothelial dysfunction can be decreased after 
periodontal therapy and other studies showed a 
decrease in the intimedia thickness of the carotid 
arteries (Loos  2015 ). Also hsCRP is clearly 
reduced after periodontal therapy and even some 
studies showed a reduction in blood pressure and 
dyslipidemia. With these clinical fi ndings in 
mind, the proposed mechanisms as to how peri-
odontitis may be linked to atherosclerosis and its 
sequelae seem plausible. Obviously, much more 
fundamental and clinic research is needed to fur-
ther study the associations between periodontitis 
and atherosclerotic diseases.     
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      Linkage Between Periodontal 
Disease and Diabetes Mellitus                     

     Palle     Holmstrup       and     Allan     Flyvbjerg     

    Abstract  

  The past decades have signifi cantly widened the perspectives of the 
chronic oral infectious disease known as periodontitis. The disease is 
regarded as a bacterial infection resulting in low-grade infl ammation of 
the periodontal tissues, and both the associated release of pro- infl ammatory 
mediators and the presence of bacteria in the periodontal pockets, which, 
as the result of daily procedures, may spread after penetration of the vas-
culature, are possible mediators of systemic consequences. This chapter 
deals with the possible association between periodontitis and diabetes 
mellitus which is believed to possess in a two-way interrelationship.  

4.1         Diabetes Mellitus 

 Diabetes mellitus (DM) comprises a hetero-
geneous group of disorders, characterized by 
increased blood glucose level (Bell and Polonsky 
 2001 ). The two most common forms are type 1 

and type 2 DM. While type 1 DM is due to an 
autoimmune reaction of polygenic origin with 
destruction of the insulin-producing β cells of 
the pancreas, resulting in insulin defi ciency, type 
2 DM is related to insulin resistance at cellular 
and organ levels and altered lipid metabolism due 
to inactivity, high intake of food, and obesity in 
genetically susceptible individuals. As compen-
sation, the β cells in type 2 DM patients are stim-
ulated to increase their insulin secretion, but this 
compensatory mechanism may over time become 
insuffi cient to maintain the blood glucose level 
within the normal range, thereby resulting in overt 
type 2 DM (Kahn  2001 ; Nolan et al.  2011 ). Type 
2 DM is the most widespread endocrine disorder 
and the prevalence of the disease is increasing due 
to a worldwide growth in number of people with 
overweight and obesity. Thus, in 2025–2030, it is 
estimated that well above 300 million  individuals 
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worldwide will suffer from type 2 DM, the preva-
lence being above 6 % (Zimmet et al.  2001 ; Wild 
et al.  2004 ; Kaul et al.  2012 ). Globally, type 1 
DM, which is the predominant DM type among 
younger individuals, accounts for 5–10 % of total 
DM cases (American Diabetes Association  2009 ; 
SEARCH for Diabetes in Youth Study Group 
and Liese  2006 ). Type 2 DM, accounting for the 
remaining DM cases, was previously considered 
a disease of the elderly, but is increasingly seen 
in younger generations, now also in children and 
young adults (Pinhas-Hamiel and Zeitler  2005 ). 
Prediabetes is part of the natural history of type 
2 DM and it is defi ned by American Diabetes 
Association (ADA) as “a condition, in which 
blood glucose levels are higher than normal, but 
not yet diabetic, known as impaired glucose tol-
erance or impaired fasting glucose” (The Expert 
Committee on the Diagnosis and Classifi cation of 
Diabetes Mellitus  1997 ). The condition is highly 
prevalent, and a signifi cant number of patients 
with prediabetes develop type 2 DM within 10 
years (Benjamin et al.  2003 ). 

 A signifi cant proportion of up to 50 % of indi-
viduals currently suffering from type 2 DM pre-
sumably remains undiagnosed (Glumer et al.  2003 , 
Guariguata et al.  2011 ), which result in persistent 
poor metabolic control in individuals with unrec-
ognized type 2 DM. Poor metabolic control in DM 
patients is associated with a number of complica-
tions including low-grade infl ammation and mac-
rovascular and microvascular changes, including 
cardiovascular disease (CVD), eye and kidney 
problems, impaired wound healing, and increased 
prevalence and severity of periodontitis (Morain 
and Colen  1990 ; Löe  1993 ; Valensi et al.  1997 ; 
Stratton et al.  2000 ; King  2008 ). Among the mac-
rovascular changes, accelerated atherosclerosis is 
part of the development of CVD and cerebrovascu-
lar events (Kannel and McGee  1979 ; Manson et al. 
 1991 ). The microvascular changes may result in 
renal failure and blindness (Anonymous  1996 ). 
DM has been known for years to be an important 
risk factor for periodontitis, and periodontitis is 
increasingly considered a late complication of DM 
(Löe  1993 ; Preshaw and Bissett  2013 ). An overall 
estimate for risk of periodontitis in DM patients is 
increased by 2–3 times (Casanova et al.  2014 ).  

4.2     Association of Periodontitis 
and DM 

4.2.1     Population Data 

 In the recent decades, the relationship between 
DM and periodontitis has been subjected to 
increasing scientifi c interest because the preva-
lence of type 2 DM is increasing, and because the 
bidirectional interaction between the two dis-
eases has major impact on the affected patients. 
Dentists and medical doctors should be aware of 
the interaction between the two diseases. 

 A large body of cross-sectional and longi-
tudinal studies have demonstrated that both 
type 1 and type 2 DM patients suffer more peri-
odontitis than do nondiabetic patients (Glavind 
et al.  1968 ; Hugoson et al.  1989 ; Thorstensson 
and Hugoson  1993 ; Grossi et al.  1994 ,  1995 ; 
Dolan et al.  1997 ; Skrepcinski and Niendorff 
 2000 ; Xavier et al.  2009 ; Ochoa et al.  2012 ; 
Poplawska-Kita et al.  2014 , for recent reviews, 
see Casanova et al.  2014 ; Wu et al.  2015 ). 
Gingival infl ammation in type 1 diabetic chil-
dren and adolescents is more common than in 
nondiabetic controls (Ryan et al.  2003 ). Further, 
gingivitis is more common in adults with type 
2 DM than in nondiabetic controls (Orbak et al. 
 2008 ), and good metabolic control appears to 
reduce the prevalence of gingivitis (Albandar 
and Tinoco  2002 ). The progression from gin-
givitis to periodontitis is dependent on the level 
of metabolic control. Thus, poor metabolic con-
trol is an important determinant of periodon-
tal breakdown in DM patients (Tervonen and 
Karjalainen  1997 ; Iughetti et al.  1999 ; Garcia 
et al.  2015 ), and since poor metabolic control 
is often associated with poor oral hygiene, it 
has been suggested that dental health educa-
tion is particularly important in this population 
(Aggarwal and Panat  2012 ). A recent European 
study confi rmed that well-controlled type 2 DM 
is not associated with periodontitis and neither 
does prediabetes associate with periodontitis 
(Kowall et al.  2015 ). Moreover, the prevalence 
of periodontal sites with moderate to severe 
attachment loss depends on the duration of type 
2 DM (Al-Khabbaz  2014 ). 
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 There is growing evidence that periodontitis 
may aggravate the course of DM, but the effect of 
periodontitis on glycemic control in type 1 DM 
patients is controversial. However, evidence shows 
a direct correlation between periodontal health and 
glycemic control in type 2 DM patients (Lakschevitz 
et al.  2011 ). A systematic review of epidemiologic 
observational studies concluded that periodontal 
disease adversely affects DM outcomes, i.e., meta-
bolic control and development of late complica-
tions, but also that further longitudinal studies are 
warranted (Borgnakke et al.  2013 ). Thus, clinical 
investigations have associated periodontitis with 
increased risk of complications in DM patients 
(Saremi et al.  2005 ) and with increased HbA1c in 
nondiabetic patients (Demmer et al.  2010 ). 

 The best evidence of the signifi cance of peri-
odontitis for the course of DM probably comes 
from clinical studies on the effect of periodontal 
treatment in DM patients (see below).  

4.2.2     Biological Similarities 

 Both DM and periodontitis may be associated 
with a state of low-grade infl ammation. Thus, dys-
regulation of the cytokine production is essential 
for the pathogenesis of DM (Kolb and Mandrup-
Poulsen  2010 ), and pro-infl ammatory cytokines are 
increased in both diseases, including tumor necro-
sis factor α (TNF-α) and interleukin 1β (IL-1β), 
IL-6, and IL-18. These increased cytokine levels 
may contribute to insulin resistance and to diabetic 
complications, as well as to destruction of pancre-
atic β cells (Johnson et al.  2006 ; Graves and Kayal 
 2008 ; Nikolajczyk et al.  2011 ; Cruz et al.  2013 ). 
Likewise, pro- infl ammatory cytokines produced 
locally in the infl amed periodontal tissues, where 
they are involved in tissue-destructive processes, 
may spill into the circulation with systemic impact 
and contribute to a state of low-grade infl ammation 
(Amar et al.  2003 ; Elter et al.  2006 ; Garlet  2010 ). 
Interestingly, adipose tissue is an important source 
of cytokine production, and obesity may predispose 
to both type 2 DM and periodontitis (Hotamisligil 
et al.  1993 ; Genco et al.  2005 ; Pischon et al.  2007 ; 
Saito and Shimazaki  2007 ; Lontchi-Yimagou et al. 
 2013 ), although the signifi cance of obesity for 

 periodontal tissue degradation is still to be resolved 
(Kongstad et al.  2009 ). An obvious similarity of 
the two diseases is the increased level of oxidative 
stress (Bullon et al.  2009 ). 

 The role of antibodies to periodontopathic bac-
teria for the development of periodontal tissue 
destruction is not clarifi ed due to contradictory 
results of available studies. Whether the antibodies 
are primarily protective or contribute to tissue deg-
radation is unresolved, and the role of antibodies in 
type 2 DM is similarly controversial (Zhu and 
Nikolajczyk  2014 ). On the other hand, B cells from 
patients with periodontitis have been shown to pro-
duce a pro-infl ammatory cytokine profi le similar to 
that of B cells from patients with type 2 DM 
(Nikolajczyk et al.  2012 ). Finally, hyperlipidemia 
seems to interact with DM and periodontitis by 
increasing the risk of both diseases. The production 
of pro-infl ammatory cytokines is increased by 
hyperlipidemia, and this may aggravate both insu-
lin resistance and periodontitis (Zhou et al.  2015 ).  

4.2.3     Possible Mechanisms 
of Association 

 There are several ways in which DM may infl uence 
the periodontal tissues, including cellular activities 
therein. These involve an impact of DM on the 
composition of the periodontal microfl ora, but 
methodological problems in the studies published 
so far prevent a fi rm statement. Thus, it remains 
unclear whether microbiologic differences between 
DM patients and controls may be due to the dia-
betic state, or the result of more severe periodonti-
tis. A recent review concluded that DM and the 
level of glycemic control have no signifi cant effect 
on the periodontal microbiota (Taylor et al.  2013b ). 

 Both the periodontal ligament connective tissue 
and the tooth supportive bone may be affected by 
processes closely linked to loss of glycemic control. 
Most important is probably the formation of 
advanced glycation end products (AGEs) associ-
ated with hyperglycemia (Degenhardt et al.  1998 ). 
Formation of AGEs is due to a non- enzymatic gly-
cation of proteins and lipids, which results in func-
tional changes in intra- and extracellular proteins. 
The AGEs formed also imply modifi ed functions of 

4 Linkage Between Periodontal Disease and Diabetes Mellitus



38

cells and their receptors. The binding of AGE to one 
of its receptors (RAGE), the expression of which is 
increased in DM, may result in synthesis of 
infl ammation- stimulating cytokines, activation of 
nuclear transcription factor-κB (NF-κB), and pro-
duction of reactive oxygen species (ROS) (Brownlee 
 2001 ), all of which may result in increased cellular 

apoptosis, reduced bone  formation, and increased 
bone resorption, as thoroughly reviewed recently by 
Taylor,  Preshaw and Bissett  ( 2013 ), Zhu and 
Nikolajczyk ( 2014 ) and Wu, Xiao and Graves 
( 2015 ). The fi rst mentioned of these reviews pre-
sented a model of a mechanism of DM-related bone 
loss in periodontitis (Fig.  4.1 ).

Diabetes

Hyperglycemia

RANKL/OPG axis

Ecological
shift in

subgingival
biofilm

Immune dysfunction, cellular stress &
cytokine imbalance (↑ TNFα, IL-6, IL-1)

Enhanced
tissue destruction

Impaired
tissue repair

Periodontitls

AGE/RAGE axis Oxidative stress

Adiposity
& dyslipidemia

Adipokines

  Fig. 4.1    Network of potential mechanisms involved in the 
pathogenesis of periodontitis in diabetes. The hypergly-
caemic state that characterizes diabetes has several delete-
rious effects. It drives the formation of irreversible 
advanced glycation end-products( AGEs ) and the expres-
sion of their cheif signalling receptor  RAGE . This interac-
tion, in turn, leads to immune cell dysfunction, alters 
phenotype and function of other key cells in the periodon-
tium, and contributes to cytokine imbalance with increased 
generation of certain pro-infl ammatory cytokines. 
Hyperglycaemia also contributes to enhanced  levels of 
reactive oxygen species ( ROS ) and a state of oxidative 
stress, both directly and indirectly through the  AGE / RAGE  
axis, promoting quantitative and qualitative shifts in cyto- 
kine profi les. Finally, hyperglycaemia modulates the 
 RANKL / OPG  ratio, again directly and indirectly via the 
 AGE / RAGE  axis, tipping the balance towards enhanced 
infl ammation and destruction. All the above, comple-
mented by the effects of ecological shifts in the subgingi-
val biofi lm and the circulating adipokines generated due 
to diabetes-associated adiposity and dyslipidaemia, drive 
this vicious cycle of cellular dysfunction and infl amma-

tion. The end result is a loss of equilibrium where 
enhanced periodontal tissue destruction and impaired 
repair ensue, leading to accelerated and severe periodonti-
tis. Importantly, as shown, several of the associations 
between the different elements in the fi gure are bidirec-
tional, for example, the pro-infl ammatory state further 
feeds the generation of  AGEs ,  ROS , and adipokines, 
increases the  RANKL / OPG  ratio and helps pathogenic 
subgingival bacteria thrive. It is also important to note that 
(a) the amount and quality of evidence supporting the 
various pathways in this fi gure varies, and (b) although the 
goal is to depict the major mechanisms and networks 
described in the literature, other pathways and links 
among the various elements shown do exist, but cannot 
easily be demonstrated in a single schematic. Finally, the 
processes outlined are potentially modifi ed by several 
other factors, such as genetics, age, smoking, stress, all of 
which may contribute signifi cantly to inter-individual 
variations in disease experience (From Taylor et al 
( 2013a,b ). Reproduced with permission from the 
American Academy of Periodontology, European 
Federation of Periodontology and John Wiley and Sons)       
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   The signifi cance of the AGE/RAGE binding 
has been demonstrated in experimental studies 
using administration of soluble RAGE, which is 
the extracellular ligand-binding domain of RAGE, 
and administration of a RAGE antagonist pre-
vented periodontitis progression in hyperglycemic 
diabetic mice (Lalla et al.  2000 ). Also, decreased 
levels of TNF-α, IL-6, and matrix metalloprotein-
ases (MMPs) in the gingival tissue were found. 
Other studies have demonstrated that RAGE has 
fundamental infl uence on the increased periodon-
tal tissue destruction, which is why antagonists of 
RAGE have been proposed as a therapeutic tool 
for the management of DM-associated periodon-
titis (Lalla et al.  2001 ). Interaction of AGEs with 
toll-like receptors (TLRs) has been described, 
as well as increased expression of TLR2, TLR4, 
and TLR9 in periodontitis- affected tissues of DM 
patients, as compared with periodontitis-affected 
tissue from controls without DM (Rojo-Botello 
et al.  2012 ). Further investigations of the TLR-
mediated pathways in DM and periodontitis are 
obviously needed. 

 B cells, which dominate the infl ammatory 
reaction in the established periodontitis lesion, 
have been described as a major source of receptor 
activator of nuclear factor-κB ligand (RANKL) 
with a pro-osteoclastogenic effect (Onal et al. 
 2012 ), and since RANKL expression is increased 
in mice with type 2 DM (Cao et al.  2010 ), an 
exaggerated RANKL expression may potentiate 
periodontal bone destruction in type 2 DM 
patients (Zhu and Nikolajczyk  2014 ). Another 
source of RANKL is the T cell, but the role of T 
cells, including whether T-cell produced RANKL 
plays a role in DM-associated periodontitis, 
remains to be clarifi ed. 

 Several studies have investigated the infl u-
ence of DM on the cytokine profi le of patients 
with periodontitis, and the results reported so far 
are inconsistent; they are cross-sectional, or they 
are lacking confi rmative support from other 
studies. Elevated levels of IL-1β in serum and 
crevicular fl uid from DM patients with chronic 
periodontitis seem to be the most consistent fi nd-
ing (reviewed by Taylor et al. ( 2013b ) and by 
Atieh et al. ( 2014 )). Studies in animal models 
have also emphasized the role of TNF-α in pro-
longing the bacteria- induced immune response 

in DM-related periodontitis, but evidence from 
clinical studies is so far inconclusive (Taylor 
et al.  2013b ). 

 The role of neutrophils in the development of 
periodontitis, in general, is considered protective, 
and changes in neutrophil function may account 
for an increased susceptibility to periodontitis. 
Indeed, neutrophil function in DM patients with 
periodontitis has been studied intensively. The 
outcome of studies based on peripheral neutro-
phils may conceivably differ from that of neutro-
phils located in periodontal tissues. However, 
signs of compromised neutrophil function have 
been presented in humans, since neutrophil- 
derived β-glucuronidase and IL-8, which has a 
chemotactic effect on neutrophils, were depressed 
in type 2 DM patients with periodontitis 
(Engebretson et al.  2006 ). Experimental animal 
studies in rodent models of DM and/or periodon-
titis have also revealed reduced neutrophil func-
tion (Golub et al.  1982 ; Sima et al.  2010 ). 

 It is well established that hyperglycemia in 
DM patients may predispose to periodontal tis-
sue destruction, and a large amount of studies 
have scrutinized the possible pathologic pathways, 
by which DM may have impact on the course of 
periodontitis. Fewer studies have dealt with the 
pathways by which periodontitis may affect the 
course of DM. High levels of CRP in patients with 
both diseases have been associated with increased 
HbA1c levels, and since periodontitis itself may 
account for higher levels of CRP, the additional sys-
temic infl ammation associated with periodontitis 
may be responsible for the increased HbA1c levels 
in DM patients with periodontitis (Demmer et al. 
 2010 ). Insulin resistance in periodontitis patients 
with DM may be promoted by hyperreactive neu-
trophils producing reactive oxygen species, which, 
in turn, may stimulate pro-infl ammatory pathways 
(Allen and Matthews  2011 ). An interesting asso-
ciation of periodontal microbiota with prediabetes 
prevalence in young adults has been described in a 
recent cross- sectional study (Demmer et al.  2015 ). 
Although it is up to future longitudinal studies 
to determine whether such interrelationships are 
causal, the fi nding that levels of potentially peri-
odontopathic subgingival bacteria are abundant 
in and predictive of prevalent prediabetes is new 
knowledge (Demmer et al.  2015 ). 
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 A recent review has focused on the signifi -
cance of resistin, a biomarker for the levels of 
which are increased in chronic infl ammation 
including periodontitis. Since resistin has been 
shown to induce insulin resistance in mice, it has 
been proposed as a possible link between peri-
odontitis and DM (Devanoorkar et al.  2014 ). 

 Several experimental studies in rodents have 
provided insight in the possible interactions 
between periodontitis and DM (for review, see 
Andersen et al. ( 2007b )). Interestingly, ligature- 
induced periodontitis has been shown to deteriorate 
metabolic control in type 2 DM rats with an 
increase in oral glucose tolerance test of as much as 
30 %, and an increase in IL-1β in adipose tissue 
compared to diabetic rats without periodontitis 
(Andersen et al.  2006 ). In prediabetic rats with lig-
ature-induced periodontitis, the glucose tolerance 
was also signifi cantly impaired, which suggests 
that periodontitis may facilitate the development 
of manifest type 2 DM (Andersen et al.  2007a ). 
Moreover, the prediabetic rats with periodontitis 
developed renal alterations including kidney hyper-
trophy and a tendency for increased glomerular 
volume (Andersen et al.  2008 ). 

 Although a number of interactions of peri-
odontitis with DM may appear obvious, there is 
still little evidence to understand the mechanistic 
pathways of periodontitis’ infl uence on DM, and 
most is presently speculative.  

4.2.4     Outcome of Periodontal 
Treatment 

 A large number of studies have examined the role 
of periodontal treatment for the course of DM, 
but long-term randomized clinical trials are 
scarce. The studies are characterized by different 
inclusion criteria of patients, including various 
types of DM and various diagnostic criteria for a 
case of periodontitis. Moreover, stratifi cation for 
confounders such as smoking, overweight, and 
medication is diffi cult. The current evidence has 
been critically reviewed and analyzed in several 
papers. A meta-analysis of the outcome of non-
surgical periodontal treatment was performed 
based on 15 papers selected on the following 

 criteria: randomized controlled study in humans, 
intervention study on diabetic patients with peri-
odontal disease, minimum 3 months follow-up 
observation, including data on HbA1c and/or 
fasting plasma glucose change after treatment, 
and clear presentation of population demographic 
data (Corbella et al.  2013 ). The majority of the 
patients included in the studies were affected by 
uncontrolled type 2 DM, and only one study 
involved patients with type 1 DM. The meta- 
analyses showed that nonsurgical periodontal 
treatment signifi cantly reduces the level of 
HbA1c and fasting plasma glucose in patients 
with DM. The mean decrease of HbA1c was 
0.4 % after 3 months and 0.3 % after 6 months, 
and the decrease in fasting plasma glucose was 
9.0 mg/dL after 3 months and 13.6 mg/dL after 6 
months, and there was no positive effect of 
adjunctive antimicrobials. The authors stated that 
it was diffi cult to quantify the clinical relevance 
of the fi ndings in terms of improved glycemic 
control. Another meta-analysis of randomized 
clinical trials included fi ve studies of patients 
with type 2 DM (Sgolastra et al.  2013 ). The 
inclusion criteria were almost similar to the 
abovementioned, and the primary outcome vari-
ables were changes in HbA1c and fasting plasma 
glucose, while secondary outcomes were changes 
in total serum cholesterol, serum triglycerides, 
and high- and low-density lipoprotein choles-
terol. The result of the meta-analysis was that the 
periodontal treatment after 3–6 months resulted 
in a signifi cant reduction in HbA1c, and in fast-
ing plasma glucose, the mean differences being 
0.7 % and 9.0 mg/dL, respectively. Periodontal 
treatment resulted in no signifi cant differences in 
the secondary outcomes. This meta-analysis has 
been criticized for the use of too restrictive exclu-
sion criteria, which may limit the generalizability 
of the meta-analysis to a fraction of the relevant 
population (Janket  2014 ). Finally, a meta- analysis 
has been presented of the effect of nonsurgical 
periodontal treatment on systemic infl ammation 
in patients with type 2 DM (Artese et al.  2015 ). 
Exclusion of studies due to study design and 
missing data resulted in four included studies 
involving associations with CRP and two involv-
ing associations with TNF-α, the primary 
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 outcome measures being high sensitivity CRP 
(hsCRP) or CRP, IL-6, and TNF-α. Adjunctive 
antimicrobial therapy was combined with scaling 
and root planing in four of the included studies. A 
signifi cant reduction as the result of treatment 
was found for both TNF-α (−1.33 ng/L) and 
hsCRP (−1.28 mg/L). Taken together, the studies 
indicate a positive effect on metabolic control 
and systemic infl ammation of nonsurgical peri-
odontal treatment. This is particularly evident in 
type 2 DM patients. The clinical signifi cance of 
the improvements obtained, however, is uncer-
tain. Even small reductions in HbA1c may result 
in signifi cant clinical improvements in diabetic 
complications and mortality. Thus, for every per-
centage point decrease in HbA1c, 35 % reduction 
in microvascular complications has been 
reported, and an average at 0.2 % point reduction 
in HbA1c level associates with 10 % lower mor-
tality in type 2 DM patients (UK Prospective 
Diabetes Study UKPDS Group  1998 ). The 
abovementioned reductions in HbA1c levels of 
0.31–0.65 % after periodontal treatment, thereby 
constitutes an important public health benefi t. 
Also, it should be remembered that patients with 
poor glycemic control may have more insuffi -
cient oral hygiene, and they may visit the dentist 
more infrequently than those with a better blood 
sugar control, as pointed out by Aggarwal and 
Panat ( 2012 ). This is why special periodontal 
treatment efforts are recommendable for this 
group of patients. As mentioned above, a large 
proportion of type 2 DM and prediabetes patients 
remain undiagnosed (Glumer et al.  2003 ; 
Guariguata et al.  2011 ), which is a general prob-
lem for the prognosis of the patients’ health con-
dition in general. However, for the prognosis of 
the periodontal condition and the result of peri-
odontal treatment, it is very important that these 
patients are diagnosed as early as possible. An 
easy and cost-effective way to diagnose type 2 
DM is to measure HbA1c level in peripheral 
blood sampled from the fi nger (Heianza et al. 
 2011 ). Since the majority of adults attend the 
dental clinic independently of medical treatment 
needs, and since it is important for the dental 
treatment to know about diabetic state, it has 
been proposed to involve dentists in screening of 

some of their patients for diabetes. In favor of 
such an arrangement is the fact that the attitude of 
dentists and their patients is positive to these 
medical examinations performed in the dental 
setting (Greenberg and Glick  2012 ; Greenberg 
et al.  2012 ).   

    Conclusion 

 The association of periodontitis with diabetes 
has been described as bidirectional, and there 
is substantial evidence that poor glycemic con-
trol in type 1 and type 2 DM patients is a risk 
of periodontitis, resulting in increased exten-
sion and severity of periodontitis. Due to the 
global increase in the prevalence of diabetes, 
the infl uence of diabetes on the development of 
periodontitis may be a growing problem. 
Current evidence also suggests that periodonti-
tis may aggravate the course of DM, but fur-
ther longitudinal studies are warranted for a 
fi rm conclusion to be drawn. The mechanisms 
by which the two diseases interact are uncer-
tain, but presumably chronic low-grade infl am-
mation enhanced by both diseases plays an 
important part in the interaction, which obvi-
ously involves infl ammatory cells and their 
products, including cytokines and MMPs. The 
formation of AGE results in modifi ed cellular 
functions. The existing clinical trials indicate a 
positive effect on metabolic control and sys-
temic infl ammation of nonsurgical periodontal 
treatment, which may result in a clinically rel-
evant decrease of HbA1c. However, further 
studies are needed to robustly confi rm this.     
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      Linkage Between Periodontal 
Disease and Rheumatoid Arthritis                     

     Palle     Holmstrup       and     Claus     H.     Nielsen     

    Abstract  

  The past decades have signifi cantly widened the perspectives of the 
chronic oral infectious disease known as periodontitis. The disease is 
regarded as a bacterial infection resulting in low-grade infl ammation of 
the periodontal tissues, and both the associated release of pro- infl ammatory 
mediators and the presence of bacteria in the periodontal pockets, which, 
as the result of daily procedures, may spread after penetration of the vas-
culature, are possible mediators of systemic consequences. The present 
chapter deals with the possible association of periodontitis with rheuma-
toid arthritis, which may possess a two-way interrelationship.  

5.1         Rheumatoid Arthritis 

 Rheumatoid arthritis (RA) is an autoimmune dis-
ease affecting 0.5–1 % of adults in developed 
countries. The disorder is characterized by per-
sistent synovial infl ammation and destruction of 
joint tissues including the cartilage and bone 
(Scott et al.  2010 ). As a consequence, joint defor-
mity occurs, typically affecting the small joints 
of the hands and the feet where it causes painful 

swelling. RA may occur at any age, but it usually 
begins after the age of 40, and women are more 
often affected than men. Besides joints, the dis-
ease may sometimes affect other organs of the 
body including the skin, lungs, blood vessels, and 
eyes. An important environmental risk factor is 
smoking (Klareskog et al.  2009 ). 

 Although RA is not regarded as a classical 
autoantibody-driven autoimmune disease, auto-
antibodies have been widely used as diagnostic 
tools. These autoantibodies include rheumatoid 
factors, which are directed against the constant 
region of immunoglobulins of the IgG isotype 
and are present in 70–80 % of the patients with 
RA (Friswell  2004 ). Rheumatoid factors occur in 
many different acute and infl ammatory diseases 
and are thus a rather nonspecifi c marker of RA. 
Anti-citrullinated protein antibodies (ACPAs), on 
the other hand, are also found in 70–80 % of 

        P.   Holmstrup ,  DDS, PhD, DrOdont, 
OdontDr (hc)      (*) •    C.  H.   Nielsen ,  PhD, MD, MSc      
  Section 1, Periodontology and Oral Microbiology, 
Department of Odontology, Faculty of Health 
and Medical Sciences ,  University of Copenhagen , 
  20 Norre Alle ,  Copenhagen N   DK-2200 ,  Denmark   
 e-mail: pah@sund.ku.dk; 
claus.henrik.nielsen@regionh.dk  

  5

mailto:pah@sund.ku.dk
mailto:claus.henrik.nielsen@regionh.dk


46

patients with RA (Schellekens et al.  2000 ), and, 
with a specifi city as high as 98 % (Schellekens 
et al.  2000 ), they are a more specifi c marker for 
RA. Practically all patients with ACPAs have 
HLA-DRB1 molecules containing the so-called 
shared epitope capable of binding citrullinated 
peptides (peptides containing the nonstandard 
amino acid residue citrulline), which are thought 
to induce pathogenic T-cell responses, primarily 
subtypes 0401, 0404, and 0408 in the white pop-
ulation and 0405 in Asians (Nepom and Nepom 
 1992 ; Wordsworth et al.  1992 ). In this subgroup 
of patients, posttranscriptional conversion of 
arginine to citrulline, catalyzed by enzymes des-
ignated peptidylarginine deiminases (PADs), is 
regarded an important part in the pathogenesis of 
the disease (Schellekens et al.  1998 ). Smoking is 
thought to mediate release of PADs, which may 
explain why smoking is a particularly strong risk 
factor in ACPA-positive patients, who also 
develop bone erosions earlier and more widely 
spread than anti-CCP-negative patients. Many 
investigators therefore consider ACPA-positive 
and ACPA-negative RA as two different disease 
entities.  

5.2     Association of Periodontitis 
and RA 

5.2.1     Population Data 

 Several studies have indicated a positive associa-
tion between periodontitis and RA, sometimes 
referred to as a bidirectional interaction between 
the diseases (Cantley et al.  2011 ). On the other 
hand, most of the available population studies are 
small case–control studies providing limited evi-
dence of an association between the two diseases. 
Some studies have demonstrated that patients 
with RA are more likely to acquire advanced 
periodontitis than individuals without RA. This 
has been shown for young adults (20–35 years) 
(Havemose-Poulsen et al.  2006 ) and for midlife 
to aged people (Käßer et al.  1997 ; Mercado et al. 
 2000 ; Mercado et al.  2001 ). Based on such fi nd-
ings, it has been proposed to develop systematic 
programs for prevention of periodontal compli-

cations in RA patients (Havemose-Poulsen et al. 
 2006 ). However, the outcomes of the many stud-
ies are seriously hampered by varying diagnostic 
criteria for both diseases. In one of the studies on 
periodontitis, cases were identifi ed on the basis 
of mean clinical attachment loss being ≥4 mm, 
and the odds ratio for simultaneous occurrence of 
RA was as much as 6.09 (95 % CI 1.72–21.55), 
indicating a strong association although the con-
fi dence interval was wide. More extensive cross- 
sectional studies have provided weaker evidence 
of an association, the odds ratios being 1.82–1.94, 
and one of these had ranges of 95 % confi dence 
indicating insignifi cance (Pablo et al.  2008 ; 
Demmer et al.  2011 ). A 20-year prospective fol-
low- up study including 9,564 American adults 
defi ned periodontitis cases by tooth loss of four 
or more teeth with attachment loss or worse con-
ditions. Baseline and incident cases of RA were 
defi ned on the basis of self-reported physician 
diagnosis or physical examination data corre-
sponding to criteria 1–4 of the American 
Rheumatism Association 1987 criteria (Arnett 
et al.  1988 ). Incident RA was also defi ned on the 
basis of death certifi cate data or health-care facil-
ity discharge diagnosis of rheumatism. The 
adjusted odds ratios for incident RA were 
between 1.12 and 1.67, dependent on number of 
missing teeth among participants. Most odds 
ratios were statistically insignifi cant, and there 
was a lack of dose responsiveness (Demmer et al. 
 2011 ). A similar result was obtained in a compre-
hensive 12-year prospective follow-up study in 
American women (Arkema et al.  2010 ). Overall, 
the present data indicating an epidemiological 
association between periodontitis and RA are 
inconsistent. The varying case defi nitions used 
for both periodontitis and RA may, in part, 
explain the differences in results obtained. Also, 
patients with RA are usually receiving intensive 
anti-infl ammatory treatment, which ameliorate 
periodontal disease progression. The inconsistent 
results may also be due to an inhomogeneous 
nature of the patients with the two disease cate-
gories, which may both contain patients with 
more than one disease. 

 A recent systematic review showed that 
seven out of ten case–control studies had found 
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 signifi cantly more clinical tooth attachment loss 
in RA patients compared to controls (Kaur et al. 
 2013 ). The same review reported that fi ve of 
seven studies found signifi cantly increased tooth 
loss in RA patients compared to controls. When 
combining the results of the included studies in a 
meta- analysis, the weighed mean differences 
were signifi cant in both clinical attachment level 
and tooth loss between RA patients and non-RA 
controls. This fi nding is further supported by a 
Dutch cross-sectional study, in which a signifi -
cantly higher prevalence of severe periodontitis 
in RA patients (27 %) than in controls (12 %) was 
seen (De Smit et al.  2012 ). Furthermore, a case–
control study compared the presence of severe 
periodontitis in 287 patients with RA with that in 
a noninfl ammatory arthritis control group of 330 
patients with osteoarthritis, believed to be demo-
graphically similar to the RA group (Mikuls et al. 
 2014 ). Anti-cyclic citrullinated peptide antibody- 
positive patients were signifi cantly more likely to 
have periodontitis (37 %) than the osteoarthritis 
controls (26.4 %). A multivariate analysis 
accounting for confounding factors showed that 
the anti-cyclic citrullinated peptide antibody- 
positive patients remained more likely to have 
periodontitis than controls, the signifi cant odds 
ratio being 1.59. In this study, tooth loss in the 
RA patients was also more common than in the 
control group (Mikuls et al.  2014 ). Taken 
together, these studies strongly indicate that the 
periodontal status is worse in RA patients than in 
controls (Kaur et al.  2013 ; Payne et al.  2015 ). 
However, there is currently little evidence that 
periodontitis represents a risk factor for RA 
(Linden et al.  2013 ).  

5.2.2     Biological Similarities 

 RA has several clinical and pathological charac-
teristics in common with periodontitis. The dis-
eases, although chronic in nature, show periodical 
fl are-ups with increased tissue-destructive activ-
ity in some of the involved sites interposed by 
periods of relative quietness, and both diseases 
are quality of life hampering because they are 
associated with loss of function. Both diseases 

are characterized by their infl ammatory nature 
with local degradation of collagen-rich soft and 
hard tissues mediated by cytokines and collagen-
olytic enzymes. Based on the above fi ndings, it is 
likely that there is some degree of coexistence, 
although it is uncertain whether an association is 
causal or noncausal, for instance, due to shared 
environmental or other predisposing factors, i.e., 
smoking, and socioeconomic and genetic risk 
factors such as MHC class II HLA- DRB1  (Firatli 
et al.  1996 ; Katz et al.  1987 ; Marotte et al.  2006 ; 
Bonfi l et al.  1999 ).  

5.2.3     Possible Mechanisms 
of Association 

 Both periodontitis and RA have cytokine profi les 
thought to be involved in the tissue-destructive 
infl ammatory processes, including high produc-
tion of TNF-α (Cantley et al.  2011 ). An impor-
tant example is the common pathway of 
upregulated expression of receptor activator of 
nuclear factor  k B ligand (RANKL) by fi broblasts 
and lymphocytes, essential for osteoclast forma-
tion (Crotti et al.  2003 , Bartold et al.  2010a ). 
Obviously, an exaggerated systemic infl amma-
tion induced by periodontal infection might 
worsen the immune-infl ammatory reactions in 
the joints of RA patients and vice versa (Golub 
et al.  2006 , reviewed by Payne et al.  2015 ). 

 In an attempt to identify similarities in the 
pathology of periodontitis and RA, hematologi-
cal characteristics of patients with RA have been 
compared with those of aggressive periodontitis 
patients. Elevated levels of traditional markers of 
infl ammation could be seen in patients with gen-
eralized aggressive periodontitis similar to 
patients with RA (Havemose-Poulsen et al. 
 2006 ). Other case–control studies have compared 
erythrocyte sedimentation rate, C-reactive pro-
tein, ACPAs (measured as autoantibodies to 
cyclic citrullinated peptides), rheumatoid factor, 
TNF-α, and interleukin (IL)-1β in RA patients 
with and without periodontitis, as systematically 
reviewed by Kaur et al. ( 2013 ). The outcome of 
the studies indicates that there is no good evi-
dence for a correlation between increased levels 
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of the majority of these factors and presence of 
periodontitis and RA. An exception is IL-1 level, 
which appears to be increased in patients with 
both diseases (Kaur et al.  2013 ). Moreover, dys-
regulation of immunoinfl ammatory responses 
has been found for both diseases in a number of 
studies (Mercado et al.  2001 ; Bartold et al.  2005 ; 
Havemose-Poulsen et al.  2005 ) including similar 
patterns of elevated IL-10 plasma levels in RA 
patients and in patients with aggressive periodon-
titis (Havemose-Poulsen et al.  2005 ). Thus, gene 
expression of pro- and anti-infl ammatory cyto-
kines in peripheral blood mononuclear cells 
might be a common denominator for the two dis-
eases, but only few similarities between the two 
diseases with respect to these parameters have 
been found (Sørensen et al.  2009 ). Rheumatoid 
factors and ACPAs have been revealed in sera 
from periodontitis patients (Gargiulo et al.  1982 ; 
Thé and Ebersole  1991 ; Havemose-Poulsen et al. 
 2006 ), and levels of IgM- and IgA-rheumatoid 
factors in patients with RA were found to corre-
late with percentage of sites with clinical attach-
ment loss≥2 mm, which is why these variables 
have been proposed as possible predictors of 
periodontal tissue destruction (Havemose- 
Poulsen et al.  2005 ) similarly to their use as pre-
dictors of joint erosions (Guillemin et al.  2003 ; 
Bukhari et al.  2002 ). 

 One of the most interesting aspects is the pos-
sible involvement of  Porphyromonas gingivalis  
in the pathogenesis of RA (Rosentein et al. 
 2004 ). In some studies, the frequency of anti-
bodies to  P. gingivalis  has been shown to be sig-
nifi cantly higher in patients with RA than in 
controls (Mikuls et al.  2009 ; Okada et al.  2011 ), 
although this was not the case in another study 
based on a higher number of patients (Moen 
et al.  2003 ). Over recent years, there has been 
much speculation that  P. gingivalis  may play a 
role in generation of the citrullinated proteins, 
which are thought to constitute the pathogenic 
autoantigens in ACPA-positive patients.  P. gingi-
valis  has been shown to produce  P. gingivalis  
peptidylarginine deiminase (PPAD), which, like 
human PADs, catalyzes citrullination of pro-
teins. There is no amino acid sequence similarity 
between PPAD and human PADs, however, and 

while the bacterial enzyme targets carboxytermi-
nal arginine residues (McGraw et al.  1999 ) (after 
cleavage of protein substrates by bacterial gin-
gipains), human PADs effi ciently deaminate 
internal  arginine residues (Sugawara et al.  1982 ). 
Experimentally, PPAD is capable of citrullinat-
ing human fi brinogen and α-enolase, and it has 
been suggested that immune complexes formed 
between these citrullinated proteins and ACPAs 
play a pathogenic role in RA (Wegner et al. 
 2010 ). Of note,  P. gingivalis  also expresses an 
enolase, against the citrullinated form of which 
ACPAs from patients with RA react (Lundberg 
et al.  2008 ). Bacterial enolase might also be 
citrullinated by human PADs and act as antigens 
in RA. Indeed, ACPAs have been revealed in 
infl amed periodontal tissue (Harvey et al.  2013 ), 
but direct evidence for a role of  P. gingivalis  in 
RA remains to be established. 

 The role of protein citrullination in periodon-
titis also needs further elucidation. It is notewor-
thy that the same genetic locus associated with 
RA and presentation of citrullinated peptides 
(HLA-DR4) is also associated with severe and 
rapidly progressive periodontitis, mainly sub-
types HLA-DRB1*0401, - 0404, −0405, and 
−0408 (Bonfi l et al.  1999 ). Increased levels of 
ACPAs in RA patients with periodontitis com-
pared with RA patients without periodontitis 
have not been encountered (Pischon et al.  2008 ). 

 An essential support for a bidirectional inter-
action between the two diseases has been estab-
lished in experimental studies. Adjuvant arthritis 
was induced in rats, some of which were subse-
quently systemically treated with tissue inhibitor 
of matrix metalloproteinases (TIMP-4). At 3 
weeks the rats were examined for signs of peri-
odontitis. Rats untreated with TIMP-4 showed 
signifi cantly increased periodontal bone loss and 
tooth mobility, which was improved in rats 
treated with TIMP-4 (Ramamurthy et al.  2005 ). 
In another experimental study, induction of 
arthritis in mice with preexisting periodontitis 
resulted in exacerbation of arthritis, as compared 
to mice without periodontitis (Cantley et al. 
 2011 ). Further evidence for a relationship 
between infl ammation and a periodontitis- 
associated pathogen was provided in another 
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experimental study in rats. These animals had 
foam pieces loaded with heat-killed  P. gingivalis  
implanted in their backs with subsequent induc-
tion of adjuvant arthritis. The study showed that 
severe arthritis developed more rapidly in rats 
with preexisting  P. gingivalis- induced infl amma-
tory lesions distant from the joints than in con-
trols (Bartold et al.  2010a ,  b ).  

5.2.4     Outcome of Periodontal 
Treatment 

 Several studies have examined the effect of peri-
odontal treatment on biomarkers and course of 
RA, as systematically reviewed and meta- 
analyzed by Kaur et al. ( 2014 ). As an example, 
full-mouth scaling and root planing resulted in 
reduced erythrocyte sedimentation rate after 3 
months in 26 patients with RA, but there was no 
signifi cant effect on the degree of disability or 
IgM-rheumatoid factor level (Ribeiro et al.  2005 ). 
Another clinical trial including 40 patients with 
moderate to severe RA, receiving either disease- 
modifying antirheumatic drugs alone or in com-
bination with anti-TNF-α, had nonsurgical 
periodontal treatment. After 6 weeks the peri-
odontal treatment had a benefi cial effect on signs 
and symptoms of RA (Ortiz et al.  2009 ). Based 
on the 12 articles included, Kaur et al. ( 2014 ) 
concluded that the sample sizes of the available 
studies were small and the duration of the studies 
was limited. Nonetheless, the studies provided 
support for the hypothesis that periodontal infec-
tion control by nonsurgical periodontal treatment 
could reduce clinical and biochemical markers of 
active RA. Larger studies with a longer duration 
are needed to fully understand whether periodon-
tal treatment has an effect on disease activity in 
RA patients. 

 Another new interesting perspective is the 
similar effect of matrix metalloproteinase inhibi-
tors in periodontitis and RA patients. This effect, 
which appears to be synergistically enhanced 
combined with an anti-infl ammatory drug, is 
supposed to be due to a local effect in the affected 
tissues and due to a reduced systemic infl amma-
tion (reviewed by Payne et al. ( 2015 )).   

    Conclusion 

 Several studies have demonstrated an associa-
tion of periodontitis and RA. There is ample 
evidence of similarity in the pathogenesis of 
the two diseases, and a large body of studies 
has shown that patients with RA suffer more 
periodontal attachment loss. This is why it has 
been proposed to develop systematic programs 
for prevention of periodontal complications 
in RA patients. Some short-term interven-
tion studies have also shown that periodontal 
treatment may reduce the disease activity in 
patients with RA, but larger studies with a lon-
ger duration are warranted, and currently there 
is little evidence that periodontitis represents 
a risk factor for RA. A possible involvement 
of  P. gingivalis  in the pathogenesis of RA via 
citrullination of proteins remains to be further 
evidenced.     
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      Association Between Dental 
Infections and Renal and Liver 
Diseases                     

     Jukka     H.     Meurman     

    Abstract  

  The number of patients with kidney and liver diseases is increasing due to 
global aging of populations, increased obesity leading to metabolic syn-
drome and diabetes, and behavioral factors such as alcohol consumption, 
and contagious diseases such as hepatitis virus infections. Oral and dental 
infections may have detrimental effects on the course and treatment of 
these diseases and should thus be diagnosed and properly treated. The end 
stage of both kidney and liver diseases calls for organ transplantation and 
hence lifelong immunosuppression. This renders the patient liable for all 
kinds of infections. In these patients, insidious dental infections can turn 
out to be life threatening.  

6.1         Introduction 

 The kidneys play a major role in body homeosta-
sis by fi ltering metabolic waste products, and 
they are also involved in a number of critical pro-
cesses such as regulation of electrolyte balance, 
blood pressure control, and stimulation of the red 
blood cell production by erythropoietin. The 
global prevalence of chronic kidney disease is 
estimated to be 8–16 % (Jha et al.  2013 ). Serious 
problems arise when the kidney function drops so 

that less than 25 % of the function remains. 
Stages of chronic kidney disease are assessed 
using the glomerular fi ltration rate (GFR) where 
values below 15 ml/min/1.73 m 2  mean kidney 
failure. Severe renal diseases are treated with 
dialysis and fi nally with kidney transplantation. 

 The liver, respectively, is the largest internal 
organ and no human can survive without it. Liver 
helps in digestion by producing bile for lipid 
metabolism, but liver also is the principal chemi-
cal factory of the body. It synthesizes proteins, 
such as albumin, hormones, and blood coagula-
tion factors and is responsible for glucose metab-
olism and storage for many vitamins. The liver 
also detoxifi es a number of harmful substances 
such as alcohol, bacterial toxins, and many drugs. 
The renin-angiotensin system is an example of 
the interplay between the liver and kidneys. 
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 Liver failure leads to the death of the patient 
due to multi-organ failure. There are a number of 
etiologic causes for liver diseases such as viral 
hepatitis and extensive alcohol consumption, to 
mention just two. Liver function can be assessed 
by several clinical chemistry parameters, for 
example, by serum glutamyltransferase. Liver 
cirrhosis is the result of death of functioning 
hepatocytes which leads to fi brosis. Its incidence 
is rising in the industrialized countries mainly due 
to obesity and alcohol consumption. For example, 
in the USA, death rate in liver cirrhosis in 2012 
was 14.9 in men and 7.1 in women per 100,000 
individuals (WHO Global Information System 
on Alcohol and Health  2014 ). The ultimate treat-
ment of liver diseases is organ transplantation.  

6.2     Renal Diseases 

 The global increase in diabetes directly refl ects in 
the increase of renal diseases because of diabetic 
nephropathy. End-stage renal failure is also 
mainly caused by diabetes (Atkins  2005 ). In 
addition to diabetic nephropathy, there are sev-
eral other etiologic factors for kidney disease. 
Chronic glomerulonephritis and polycystic kid-
ney disease usually are slow-progressing dis-
eases, but there are many other heterogenic renal 
diseases, such as nephrosclerosis, arteriosclerotic 
nephropathy, urinary tract obstruction, tubuloin-
testinal nephritis, renal amyloidosis, and congen-
ital or hereditary kidney diseases. 

 Periodontal disease is prevalent in patients 
with chronic kidney disease (Akar et al.  2011 ; 
Chambrone et al.  2013 ). Patients with diabetic 
nephropathy have shown particularly poor oral 
health compared with patients with glomerulone-
phritis which fi nding supports the known two- 
way relationship between oral health and diabetes 
(Teratani et al.  2013 ; Preshaw et al.  2012 ). 
Periodontal pathogens have also been associated 
with chronic kidney disease (Niedzielska et al. 
 2014 ; Ismail et al.  2015 ). Oral health is often 
poor among patients with chronic kidney disease 
(Vesterinen et al.  2011 ). Periodontitis also refl ects 
in low serum albumin concentration in end-stage 
kidney disease (Kshirsagar et al.  2007 ). This in 

turn is a marker of mortality, and albumin can 
also be measured from saliva samples of the 
patients (Meurman et al.  2002 ).  

6.3     Streptococcal 
Glomerulonephritis 

 Before the advent of penicillin, streptococcal glo-
merulonephritis was highly prevalent (Nasr et al. 
 2013 ). Today it is rare in industrialized countries 
with estimates between 9.5 and 28.5 new cases 
per 100,000 individuals per year (Rodriguez- 
Iturbe and Musser  2008 ). Glomerulonephritis 
nevertheless is one of the two types of infections 
caused by  Viridans streptococci  – the other being 
endocarditis. These two disease entities often 
occur concomitantly, and rheumatic fever should 
be mentioned in this context (Neugarten and 
Baldwin  1984 ). Hence, infections of the mouth 
and teeth have long been known to be important 
causative factors of this renal disease. The caries 
bacterium  Streptococcus mutans  has also been 
associated with glomerulonephritis (Okada et al. 
 1996 ). A causal link between periodontitis and 
glomerulonephritis has similarly been suggested 
(Ardalan et al.  2011 ). It is thus evident that main-
taining good oral health is important in such 
patients. Administering prophylactic antibiotic 
before dental treatment to patients with history of 
glomerulonephritis is still recommended even 
though scientifi c evidence for this practice is 
weak (Del Mar et al.  2004 ).  

6.4     Liver Diseases 

 Apart from metastatic oral infections and case 
reports of patients with liver abscesses from dental 
origin, there is hardly any literature on the role of 
oral infection in liver diseases (Gendron et al.  2000 ; 
Kajiya et al.  2008 ). However, oral health status of 
patients with chronic liver disease is known to be 
poor in general, and many patients suffer from 
xerostomia (Guggenheimer  2009 ; Helenius-
Hietala et al.  2013a ,  b ). Xerostomia is often associ-
ated with salivary gland  hypofunction, and it has 
been shown that liver transplant recipients have 
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low whole saliva fl ow rates, which lead to further 
deterioration of the oral health (Helenius-Hietala 
et al.  2013a ,  b ). 

 Helenius-Hietala  et al.  ( 2013a ,  b ) have inves-
tigated liver transplant patients and observed 
increased risk for posttransplant infection com-
plications in those patients by whom no dental 
treatment had been given before the operation 
because of lack of time, in comparison to those 
with more elective transplantation: OR 8.17 
(95 % CI 2.19–30.6). Similarly, the assessed need 
for dental extractions was found to associate with 
reduced time from diagnosis of liver disease to 
the need of transplantation and the number of 
tooth extractions correlated signifi cantly with 
change in the Model for End-Stage Liver Disease 
(MELD) score (Fig.  6.1 ) (Aberg et al.  2014 ). In 
the same study,  Streptococcus viridans  was 
detected in peritonitis cases only among the 
patients with dental infections.

   Nagao  et al.  ( 2014 ) reported that periodontal 
disease may worsen the progression of liver dis-
ease caused hepatitis virus infection by reducing 
platelet count, for example, with OR 5.80 (95 % 
CI 2.30–14.92). The periodontal pathogen 
 Porphyromonas gingivalis  has also been linked 
to the progression of liver disease in patients with 

nonalcoholic fatty liver (Yoneda et al.  2012 ). In 
addition, periodontitis has been shown to be 
associated with hepatocellular carcinoma 
(Tamaki et al.  2011 ). Periodontitis may further 
enhance alcohol-induced liver damage as shown 
in an animal experiment (Tomofuji et al.  2008 ). 
The importance of lipid and sugar metabolism of 
the liver was further emphasized in a study where 
periodontitis was associated with hepatic steato-
sis (Saito et al.  2006 ). In this investigation, the 
severity of periodontitis increased with elevated 
serum values measuring liver function.  

    Conclusion 

 Scientifi c evidence of the role of oral infections 
in renal and liver diseases is still weak. However, 
it is known that chronic oral infections such as 
periodontitis affect many systemic metabolic 
pathways and by causing endothelial dysfunc-
tion, for example, which is detrimental in all 
organs (Janket et al.  2008 ). Studies have shown 
that if eradication of dental infection foci has 
been neglected, the outcome of patients with 
kidney or liver disease may be compromised. 
Hence, maintaining good oral health and treat-
ing infection foci properly is highly important 
also in these patient groups (Table  6.1 ).
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  Fig. 6.1    Dental infections 
associated with the incidence 
of complications after liver 
transplantation. Patients who 
had no dental examination 
and treatment because of 
emergency operation had more 
posttransplant complications 
than those whose dental 
problems had been treated 
(Modifi ed from  Helenius-Hietala 
et al. 2013 )       
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      Association Between Oral 
Infections and Cancer Risk                     

     Jukka     H.     Meurman     

    Abstract  

  Highly prevalent dental infections have been shown to statistically associ-
ate with cancer. Periodontal disease in particular links to head and neck 
cancer but also to malignancies in other organs. Metabolism of oral micro-
organisms may lead to carcinogenic substance that also affect oral mucosa 
locally thus posing a risk for oral cancer. However, scientifi c evidence is 
still weak in these associations.  

7.1         Introduction 

 Cancer is always characterized by infection, but 
infection may also be causally linked to the devel-
opment of malignancy (zur Hausen and de Villiers 
 2014 ). Classical examples are certain human pap-
illomavirus (HPV) infections and cervical can-
cer and  Helicobacter pylori  infection and gastric 
cancer. In general, chronic infl ammations induced 
by microorganisms are considered important in 
the carcinogenesis (Kuper et al.  2000 ). Recently, 
also bacterial and yeast infections of the mouth 
have been statistically associated with the develop-
ment of cancer in various organs (Meurman and 
Bascones-Martinez  2011 ; Söder et al.  2015 ). Oral 
microbiome may also play a role in oral cancer 

where, for example, local acetaldehyde production 
by oral microorganisms has been shown to pose 
a marked risk (Kurkivuori et al.  2007 ; Meurman 
 2010 ). However, in general there is a long latency 
between the initial infection and tumor appearance, 
and not at all infected person develops cancer.  

7.2     Oral and Dental Infections 
and Cancer Epidemiology 

 One unique characteristic in oral and dental infec-
tions is their mostly chronic nature and very 
high prevalence in populations. Dental caries is 
regarded as one of the most widespread infection 
of humans in the world. Also the prevalence of 
periodontal disease is very high. The World Health 
Organization (WHO) has estimated that 60–90 % 
of schoolchildren and nearly 100 % of adults 
worldwide have dental caries, and,  respectively, 
15–20 % of 35–44-year-old adults have severe 
periodontal disease (Petersen et al.  2005 , WHO 
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Oral Health  2012 ). Both caries and periodontal 
disease are multi-bacterial infections caused by the 
oral biofi lm (dental plaque). Recent studies have 
shown that oral microbiota is far more complex 
and numerous in species than hitherto understood. 
It may, in fact, comprise thousands of microbial 
species (Keijser et al.  2008 ). Studies have also 
been conducted analyzing the microbiota at the 
site of oral cancer compared with normal mucosa; 
in this, for example, the number of streptococci 
was decreased in cancer specimens (Schmidt et al. 
 2014 ). Correspondingly, saliva may also refl ect the 
diversity of microbiota in patients with oral can-
cer (Pushalkar et al.  2011 ). Dental bacteremia on 
the other hand is common, and thus oral microbes 
easily gain access to blood circulation and may 
then cause systemic complications (Lockhart 
et al.  2008 ) and possibly link to cancer in general 
(Meurman  2010 ). 

 Oral yeast infections need to be mentioned 
here. The global prevalence of  Candida  infections 
is not known. In certain patient groups such as 
human immunodefi ciency virus (HIV) infected, 
the prevalence can be 90 %, and WHO has esti-
mated that approximately 9.5 million people 
would be infected with  Candida  (The Fungal 
Research Thrust  2011 ).  Candida  is more preva-
lent on dysplastic and carcinoma lesions than on 
healthy oral mucosa (McCullough et al.  2002 ). 
The role of  Candida  in carcinogenesis is particu-
larly evident in patients with autoimmune polyen-
docrinopathy-candidiasis-ectodermal dystrophy 
(APECED), which is a genetic, autosomal reces-
sive disorder. These patients frequently present 
oral and esophageal carcinomas (Rautemaa et al. 
 2007 ). The mechanisms how  Candida  links to the 
development of cancer may be partly due to its 
invasiveness. Degradation of the epithelial basal 
membrane components and disruption of cell-to-
cell contacts have been shown in experiments with 
 Candida  (Parnanen et al.  2008 ,  2010 ). 

 As regards cancer, this is among the leading 
causes of morbidity and mortality in the world. 
The WHO reported approximately 14 million new 
cases and 8.2 million cancer-related deaths in the 
year 2012 (WHO Cancer  2015 ). Furthermore, the 
number of cases with malignancies is estimated 
to increase by 70 % by the year 2030 because of 
aging of the populations. Hence if oral infections 

play any part in the development of cancer, or 
modify the process of carcinogenesis, the asso-
ciation here discussed is evidently of high impor-
tance. Namely, these easily preventable diseases 
(in particular caries and periodontitis) should 
then be better controlled.  

7.3     Infection-Driven Mechanisms 
in Carcinogenesis 

 In carcinogenesis cells accumulate changes 
in the genetic material which modify their 
function. Cell proliferation, differentiation, 
senescence, and apoptosis are involved in 
the regulation of the cell cycle, and all these 
functions may be involved in carcinogenesis 
(Lundberg and Weinberg  1999 ). Infection and 
infl ammation, in turn, may interfere with cell 
metabolism and functions causing upregula-
tion of a number of cytokines and infl ammatory 
mediators, which trigger cascade-like reac-
tions further leading to DNA damage, impaired 
DNA repair, mutations, and uncontrolled cell 
proliferation (Chang and Parsonnet  2010 ). 
Infection-driven carcinogenesis thus involves 
several mechanisms. These include infl am-
mation caused by microbial infection, lym-
phoproliferation, infection-induced hormonal 
changes that affect epithelial cell proliferation, 
cell transformation directly caused by infec-
tion, and toxic and carcinogenic mechanisms of 
the microbes in question (Chang and Parsonnet 
 2010 ). These pathways are depicted in Fig.  7.1 .

7.4        Acetaldehyde Production 
by Oral Microorganisms 

 Alcohol is not carcinogenic but the fi rst metab-
olite of ethanol, acetaldehyde, is highly car-
cinogenic. Although the liver is the organism 
responsible for 75–90 % of ethanol metabo-
lism, extrahepatic pathways also exist. Ethanol 
is oxidized also by mucosal and microbial cells 
 yielding acetaldehyde, formed by alcohol dehy-
drogenase enzyme. Acetaldehyde is further 
metabolized by aldehyde dehydrogenase yield-
ing acetone which is less toxic and less harmful 
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compound. This, in turn, is oxidized to carbon 
dioxide and then eliminated from the body. 

 Homann et al. ( 1997 ) were the fi rst to show 
high levels of acetaldehyde in saliva after intake 
of alcohol. This group further showed that 
 drinking alcohol and smoking concomitantly 
increased salivary acetaldehyde concentrations 
and that poor oral hygiene associated with this 
risk (Homann et al.  2000 ,  2001 ) (see Fig.  7.2 ). 

Later, also oral  Candida  species were shown to 
produce acetaldehyde from ethanol partly 
explaining why  Candida  infections as such have 
been linked to oral cancer (Nieminen et al. 
 2009 ; Uittamo et al.  2011 ). Moritani et al. 
( 2015 ) reported that indeed considerable num-
bers of oral bacteria have the capability to pro-
duce acetaldehyde from ethanol. Today it seems 
clear that the ethanol metabolism here discussed 
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  Fig. 7.1    Metabolic pathways in infection-driven carcinogenesis (Picture prepared by Bascones-Martinez)       

 

7 Association Between Oral Infections and Cancer Risk



62

is an  evident pathologic mechanism in the 
development of oral and upper gastrointestinal 
tract cancer.

7.5        Caries, Periodontitis, 
and Cancer 

 Chronic periodontitis in particular associates 
with oral cancer risk. In a large study from the 
USA comprising more than 13000 subjects, 
clinical attachment loss, a proxy for periodonti-
tis, associated with the presence of tumor (OR 
4.57, 95 % CI 2.25–9.30) and premalignant 
lesions (OR 1.55, 95 % CI 1.06–2.27), respec-
tively (Tezal et al.  2005 ). Periodontitis was 
found to also associate with tongue cancer risk 
(OR 5.23, 95 % CI 2.64–10.35) (Tezal et al. 
 2007 ). Concomitant HPV infection seems to 
play a role in this regard too (Tezal et al.  2009 ). 

 As regards dental caries, there might be an 
inverse relationship between this dental disease 

and cancer. Tezal et al. ( 2013 ) investigated in a 
case–control study how cardiological status 
parameters link to head and neck cancer. It 
appeared that caries lesions showed an OR 0.55 
(95 % CI 0.30–101) regarding cancer. The authors 
suggest that the lactobacilli prevalent in caries 
lesions might exert benefi cial effect and enhance 
the immune system against cancer. 

 Virtanen et al. ( 2014 ), on the other hand, 
showed in their observational study of 1390 sub-
jects with 24 years of duration that dental infec-
tions in periodontally healthy subjects associated 
with the incidence of any cancer (OR 2.62, 95 % 
CI 1.18–5.78). Gingivitis was also shown to link to 
cancer in this same Swedish cohort study (Söder 
et al.  2015 ). Furthermore, after 26 years of obser-
vation in the same study, high gingival index score 
associated with the incidence of any cancer with 
OR 1.29 (95 % CI 1.00–1.65). The statistical asso-
ciation between oral infections and cancer has also 
been observed specifi cally with certain types of 
cancer. Söder et al. ( 2011 ) found in their cohort 
that missing any molar tooth from the mandible 

Salivary acetaldehyde production in correlation with smoking and
drinking, *p<0.05 versus non-smokers, moderate alcohol consumption

  Fig. 7.2    Relationship between drinking alcohol and smoking and salivary acetaldehyde concentration (Modifi ed 
from Homann et al.  2000 )       
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associated with incidence of breast cancer with 
OR 2.36 (95 % CI 1.07–5.21). Missing molars 
were the proxy for history of dental infections. It is 
evident, however, that more studies are needed for 
fi nal conclusion regarding the associations 
between caries, periodontal disease, and cancer.  

7.6     Role of Saliva in the Oral 
Infection-Linked 
Carcinogenesis 

 Little is known about the role of saliva in oral 
infection-related carcinogenesis. It has been 
observed that salivary characteristics differ in 
patients with and without head and neck tumors 
so that saliva form those with malignancy showed 
more cytotoxic effect on fi broblasts than that 
from healthy controls (Bloching et al.  2007 ). Oral 
microorganisms may also metabolize dietary 
components into carcinogenic substances. Saliva 
may contain nitrosamines, for example (Bahar 
et al.  2007 ). However, more studies are called for 
before any conclusions can be drawn.  

    Conclusion 

 The highly prevalent oral infections and den-
tal diseases in particular pose threat to sys-
temic health if not diagnosed in time and 
properly treated. Studies have shown that 
statistical associations exist between chronic 
dental infections and development of cancer. 
Head and neck and upper gastrointestinal 
tract cancer may be affected by direct oral 
microbial metabolism leading to carcinogenic 
substances thus triggering malignant devel-
opment in the tissue. But malignancy in any 
organ may in fact be affected by infection.     
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    Abstract  

  Oral candidiasis is a common opportunistic oral infection in humans 
caused by overgrowth of  Candida  species, in particular  Candida albicans . 
Clinically it usually presents as pseudomembranous or erythematous can-
didiasis. It may be asymptomatic or associated with local discomfort, dys-
geusia and xerostomia. The most common risk factors for oral candidiasis 
include treatment with antibiotics, poor oral hygiene, tobacco smoking, 
denture wearing and salivary gland hypofunction. A large number of dis-
eases as well as their treatment including diabetes, cancer and cancer ther-
apy, HIV infection and treatment with immunosuppressants are associated 
with oral candidiasis. In immunocompromised patients, the localized oral 
infection can spread through the bloodstream or upper gastrointestinal 
tract leading to severe infection with increased morbidity and mortality. 
This chapter focuses on  Candida  as commensal oral microorganism, the 
clinicopathological aspects in medically compromised patients and diag-
nostic methods available regarding oral candidiasis.  

8.1         Introduction 

  Candida  species, in particular  Candida albicans , 
are part of the normal oral microbiota. The per-
centage of carriers varies considerably in different 

studies due to geographical variations and varia-
tions in subjects examined, sampling methods 
and identifi cation techniques. Possibly, 30–50 % 
of healthy individuals harbour  Candida  species 
as part of their oral microbiota (Odds  1988 ), and 
it is likely that  Candida  plays a role in maintain-
ing a balance between microorganisms and the 
host (Krom et al.  2014 ). 

  C. albicans  exists in different morphological 
forms: blastospores, yeast form and fi lamentous 
forms, pseudohyphae and true hyphae; where 
pseudohyphae appearing to be an intermediate 
between blastospores and true hyphae (Carlisle 
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et al.  2009 ). The yeast form is occurring in the 
normal oral microbiota, although hyphae may be 
seen in the absence of infection (Arendorf and 
Walker  1980 ; Rindum et al.  1994 ). In general, 
however, the fi lamentous forms are related to 
invasive infection in the oral mucosa (Carlisle 
et al.  2009 ). Thus, the ability of the fungus to 
transform from blastospores to hyphae is impor-
tant for the virulence of  C. albicans . Interestingly, 
a salivary component, statherin, seems to be able 
to induce the inverse transition (Leiro et al.  2009 ). 
Another important ability of  C. albicans  is “phe-
notypic switching” (Soll et al.  2014 ) that may 
enable the fungus to evade the immunological 
defence and even adapt to antifungal agents and 
thereby increase virulence. 

 Apart from  C. albicans , other  Candida  species 
such as  C. glabrata ,  C. krusei  and  C. tropicalis  
have been isolated from healthy individuals 
(Zaremba et al.  2006 ).  C. dubliniensis  is an emerg-
ing species initially recovered from patients 
infected with human immunodefi ciency virus 
(HIV) (Sullivan et al.  1995 ). Recent studies identi-
fi ed  Candida/Pichia ,  Cladosporium/Davidiella , 
 Alternaria/Lewia ,  Aspergillus/Emericella/
Eurotium ,  Fusarium/Gibberella ,  Cryptococcus/
Filobasidiella  and  Aureobasidium as  consensus 
genus-level members of the basal human salivary 
mycobiome from healthy human mouth using mul-
titag pyrosequencing of panfungal internal tran-
scribed spacer (ITS) primers and massive parallel, 
high-throughput sequencing of ITS1 amplicons 
from saliva (Ghannoum et al.  2010 ; Dupuy et al. 
 2014 ).  Saccharomyces ,  Epicoccum  and  Phoma  
were weaker candidates for consensus inclusion. 
However,  Malassezia  species were included in the 
oral core mycobiome, which is interesting since 
they are important commensals/pathogens of 
human skin (Dupuy et al.  2014 ). 

 Infection requires recognition and adhesion 
to epithelial cells, and following subsequent 
multiplication and secretion of extracellular 
matrix, a biofi lm can form on the mucosal sur-
faces (Cannon et al.  1995 ). Hyphae formation 
is important for formation of a stable biofi lm; 
thus, hyphal growth is important for the viru-
lence of  C. albicans . Secretion of enzymes 
such as proteases and lipases facilitates tissue 

penetration and furthermore degrades immu-
noglobulins which help to evade the host 
defence. Interestingly, several studies have 
shown that bacteria coexist with  C. albicans  in 
oral biofi lms (Budtz-Jørgensen  1990 ), and it 
seems that this infl uences the growth and viru-
lence of  C. albicans  (Thein et al.  2006 ,  2009 ; 
Diaz et al.  2014 ; Cavalcanti et al.  2015 ). Thus, 
a symbiotic relationship between  Streptococcus 
mutans  and  C. albicans  has been shown to syn-
ergize virulence of dental plaque biofi lms 
in vivo (Falsetta et al.  2014 ). Furthermore, 
 Streptococcus gordonii  glucosyltransferase 
promotes biofi lm interactions with  C. albicans  
(Ricker et al.  2014 ). 

 In order to maintain in the oral cavity, the 
fungi not only need to grow, reproduce them-
selves and bind to a surface, they also have to 
resist the antimicrobial activity of saliva. Saliva 
exhibits antimicrobial activity by killing and 
inhibiting growth but also by preventing adhe-
sion and colonization to the surfaces in the oral 
cavity. Moreover, saliva contains numerous 
antimicrobial proteins and peptides of which 
histatins, especially histatin 5, are the most 
important ones regarding antifungal activity. 
Histatins are small molecular weight proteins 
produced by the human salivary glands, which 
exhibit fungicidal and fungistatic activities 
against  C. albicans  and other  Candida  species 
like  C. glabrata ,  C. guilliermondii ,  C. krusei , 
 C. lambica ,  C. parapsilosis ,  C. pseudotropica-
lis ,  C. stellatoidea and C. tropicalis , as well as 
 Saccharomyces cerevisiae  and  Cryptococcus 
neoformans  isolated from healthy and immuno-
compromised patients (Oppenheim et al.  1988 ; 
Tsai and Bobek  1998 ; Xu et al.  1991 ). Other 
important salivary proteins with antifungal 
properties include lactoferrin and lysozyme 
(Samaranayake et al.  2001 ). The importance of 
the salivary antifungal activity becomes evident 
in cases of immune defi ciency and disease- and/
or medication-induced salivary gland hypo-
function being associated with high rates of 
oral candidal carriage and  Candida  infections 
(Costa et al.  2006 ; Lam et al.  2012 ; Lin et al. 
 1999 ; Pedersen et al.  2015 ; Shiboski et al. 
 2015 ; Yan et al.  2011 ).  
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8.2     Clinicopathological Aspects 

 In patients carrying  Candida  as part of the com-
mensal oral microbiota, overgrowth of  C. albi-
cans  or non-albicans  Candida  spp. can cause oral 
candidiasis (Rindum et al.  1994 ). The diagnosis 
oral candidiasis is based on clinical signs and/or 
oral mucosal symptoms together with positive 
test results compatible with candidal overgrowth. 
Characterization of oral candidiasis according to 
sporadic or recurrent infection, duration of infec-
tion (acute/chronic), symptomatic or asymptom-
atic infection, primary or in relation to other oral 
or systemic diseases (primary/secondary/tertiary) 
is important in unravelling and managing oral 
candidiasis. Most patients experience sporadic 
candidal infection, whereas less experiences 
multiple recurrent infections. Information from 
medical history and clinical evaluation are used 
to classify acute or chronic candidiasis as no arbi-
trary time limit makes clinical sense as individual 
host and oral environmental factors infl uence the 
course of the infection. Subjective symptoms in 
relation to candidiasis are usually associated to 
the clinical type. Oral candidiasis presents clini-
cally in various forms such as pseudomembra-
nous, erythematous and hyperplastic candidiasis 
(Ellepola and Samaranayake  2000 ). It is still 
largely unknown why oral candidiasis manifests 
in these different variants in different individuals 
(Reichart et al.  2000 ). Furthermore, there are 
candida-associated lesions which further compli-
cate the diagnosis. 

 Pseudomembranous candidiasis is character-
ized by thick, white patches covering part of the 
mucous membranes often being the soft palate, 
tongue and buccal and lip mucosa (Fig.  8.1 ). The 
pseudomembranes can be wiped off easily. In 
chronic infections the mucous membrane under-
neath often is erythematous with pinpoint haem-
orrhages. Normally no soreness is associated 
with the pseudomembranous type, but taste dis-
turbances as salty or metallic taste are reported. 
Acute neonatal thrush is common as a result of 
favourable candidal growth conditions because 
of immature oral microbiota and oral immunity. 
Chronic pseudomembranous candidiasis can be 
seen in immunocompromised patients and in 

relation to topical exposure to steroids, e.g. 
asthma inhalators.

   Erythematous candidiasis is characterized by 
unspecifi c focal or generalized redness of the 
mucous membranes (Fig.  8.2 ) and is often asso-
ciated with symptoms as burning and stinging 
sensation. Antibiotics are the most common 
cause of acute primary erythematous candidiasis. 

  Fig. 8.1    Pseudomembranous candidiasis in the soft 
palate       

  Fig. 8.2    Chronic erythematous candidiasis on the dorsal 
surface of the tongue (“median rhomboid glossitis”)       
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Chronic secondary erythematous candidiasis is 
common in oral lichen planus.

   Hyperplastic candidiasis (Fig.  8.3 ) is a chronic 
infection and has two primary manifestations. 
The nodular type presents as small white slightly 
elevated papular lesions giving the mucous mem-
brane a speckled appearance. The plaque-like 
type is homogenous white slightly elevated areas 
of the mucous membrane. It is often related to 
smoking and seen in the commissural area of the 
buccal mucosa. The hyperplastic lesions cannot 
be rubbed off and are usually asymptomatic. The 
two types may occur simultaneously. The hyper-
plastic types are to some extent controversial as 
they may represent secondary candida infections 
in leukoplakias (Holmstrup and Bessermann 
 1983 ), and the term candidal leukoplakia is 
sometimes used (Sitheeque and Samaranayake 
 2003 ). A biopsy is generally indicated to exclude 
malignancy, and the treatment result after anti-
fungal therapy should always be monitored.

   Candida-associated lesions including denture 
stomatitis (Fig.  8.4 ), angular cheilitis, median 
rhomboid glossitis (Fig.  8.2 ) and linear gingival 
erythema may all be associated with  Candida  
infection but may also be related to other causes, 
e.g. ill-fi lling dentures and bacterial or mixed bac-
terial and fungal infection. Thus, a thorough inves-
tigation is mandatory before adequate treatment 
can be initiated. In particular it is important to rule 
out a premalignant or malignant lesion, e.g. leuko-

plakia, erythroplakia or oral cancer, secondarily 
infected with  Candida , or a disorder needing other 
management or supplementary treatment, e.g. 
lichen planus or lupus erythematosus (Table  8.1 ).

8.2.1        Histopathology 

 Candidal hyphae are readily identifi ed in biopsies 
by the use of an appropriate staining method, e.g. 
Periodic Acid-Schiff (PAS) method or Grocott- 
Gomori methenamine silver (GMS) method. It 
should be mentioned that there is a risk of 

  Fig. 8.3    Chronic hyperplastic candidiasis in the anterior 
part of the right buccal mucosa       

  Fig. 8.4    Chronic erythematous candidiasis presenting as 
denture stomatitis       

   Table 8.1    Different types of oral candidiasis and differ-
ential diagnostic considerations   

 Oral candidiasis 
 Differential diagnostic 
considerations 

 Pseudomembranous  No similar lesion 
 Erythematous  Erythematous oral lichen 

planus, erythroplakia, oral 
cancer 

 Hyperplastic 
   Nodular 

   Plaque 

 Non-homogeneous 
leukoplakia, oral cancer 
 Homogeneous leukoplakia 

 Denture stomatitis  Ill-fi tting dentures, poor 
denture hygiene 

 Angular cheilitis  Bacterial infection, 
malnutrition, vitamin and/
or mineral defi ciency 

 Median rhomboid glossitis  Geographic tongue, 
malnutrition, vitamin and/
or mineral defi ciency 

 Linear gingival erythema  Gingivitis (bacterial) 
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 false- negative results if only few PAS-stained sec-
tions are examined (Roed-Petersen et al.  1970 ). 
Hyphae are seen in the parakeratin layer of the epi-
thelium as a superfi cial infection (Fig.  8.5 ). Only 
in severely immunocompromised patients can 
hyphae be seen in the underlying epithelial layers 
or in the connective tissue. Typically, the epithe-
lium is hyperplastic and hyperparakeratinized with 
leukocytes, in particular polymorphonuclear neu-
trophils, penetrating the epithelium often forming 
microabscesses in the superfi cial part of the epi-
thelium in relation to the hyphae. Chronic infl am-
mation is present in the connective tissue 
underneath the epithelium; however, this is often 
lacking in severely immunocompromised patients, 
e.g. patients with HIV infections and AIDS.   

8.2.2     Immunological Aspects 

 A large variety of proinfl ammatory and immuno-
regulatory cytokines are generated in the oral 
mucosa during an infection with  Candida  
(Dongari-Bagtzoglou and Fidel  2005 ). It has 
been shown that highly invasive strains of  C. 
albicans  trigger production of proinfl ammatory 
cytokines, including IL-1α, IL-6, IL-8 and TNF-α 
in epithelial cells and IL-6, IL-8, monocyte che-
motactic protein (MCP)-1, MCP-2 and granulo-
cyte colony-stimulating factor in endothelial 
cells (Villar et al.  2005 ; Whiley et al.  2012 ).   

8.3     Oral Candidiasis 
in the Medically 
Compromised Patient 

 Oral candidiasis is the result of yeast overgrowth 
and penetration of the epithelial mucosal protective 
barrier and is evident in patients with various con-
ditions that exhibit immunosuppression including 
diabetes. 

 A large number of local and systemic fac-
tors and conditions may predispose individuals 
to oral candidiasis. Factors like treatment with 
antibiotics, ill-fi tting dentures, poor oral hygiene 
and tobacco smoking can favour growth of yeast 
cells by disrupting the ecological balance on the 
mucosal surface (Baboni et al.  2009 ; Holmstrup 
and Bessermann  1983 ; Semlali et al.  2014 ). 
Treatment with immunosuppressives, cancer 
therapy, immune defi ciencies, salivary gland 
hypofunction induced by medication or disease 
and diabetes can compromise local or general 
defence mechanisms and thereby lead to oral 
candidiasis. Often a patient will present several 
predisposing factors at the same time, and mul-
tiple interventions must be initiated including 
instruction, motivation and follow-up of oral 
hygiene procedures, diet change, stimulation of 
functional salivary glands, substitution of xero-
genic drugs, diagnosis of oral mucosal diseases, 
tobacco counselling and smoking cessation and 
multidisciplinary diagnostic workup of systemic 
predispositions. 

8.3.1     Oral Candidiasis as Adverse 
Drug Reaction 

 Systemic antibiotics are the most common cause 
of acute mucosal candidiasis. Oral exposure to 
topical glucocorticoid steroids is another com-
mon cause of medication-induced oral candidia-
sis, probably due to alterations of the local 
mucosal host immunity. Removal of the topical 
medication with water after exposure tends to 
prevent recurrence. General immune suppression 
due to systemic glucocorticoids, cancer chemo-
therapy and immunomodulators often causes 
mucosal candidiasis, which usually can be 

  Fig. 8.5    Photomicrograph of a biopsy from a chronic 
hyperplastic candidiasis. Numerous PAS-positive ( red ) 
hyphae are seen in the parakeratin layer of the epithelium       

 

8 Oral Candidiasis and the Medically Compromised Patient



70

 prevented by prophylactic antifungal treatment. 
Studies using both culture and pyrosequencing 
have shown that the oral mycobiota in immuno-
suppressed solid organ transplant recipients is 
dominated by  Candida  species (Charlson et al. 
 2012 ; Diaz et al.  2013 ; Dongari-Bagtzoglou et al. 
 2009 ). Salivary gland dysfunction resulting in 
reduced salivary fl ow rate (salivary hypofunc-
tion), compositional changes or a combination of 
both often has major consequences for the oral 
microbial balance and local immune defence 
leading to an increased risk of dental caries and 
oral candidiasis (Dawes et al.  2015 ). The main 
causes of salivary gland hypofunction are intake 
of medications, systemic diseases like Sjögren’s 
syndrome and head and neck radiotherapy (Villa 
et al.  2015 ; Jensen et al.  2010 ; Pedersen  2014 ). 

 A number of studies have shown that intake of 
xerogenic medication is associated with high 
rates of  Candida  carriage and oral candidiasis 
(Almståhl and Wikström  2003 ,  2005 ; Kaplan 
et al.  2008 ; Pedersen et al.  2015 ) (for further 
details, see Chap.   9    ).  

8.3.2     Diabetes Mellitus and Oral 
Candidiasis 

 The carriage frequency of  Candida  and the den-
sity of candidal colonization as well as the rates of 
oral  Candida  infections are increased in patients 
with both type 1 and type 2 diabetes mellitus (DM) 
(Tapper-Jones et al.  1981 ; Lamey et al.  1988 , 
 1992 ; Hill et al.  1989 ; Vazques and Sobel  1995 ; 
Bai et al.  1995 ; Guggenheimer et al.  2000 ; Kadir 
et al.  2002 ; Jurevic et al  2003 ; Shenoy et al.  2014 ). 
Oral candidiasis is not only more common in 
patients with DM than in nondiabetics, the infec-
tions are also more severe (Guggenheimer et al. 
 2000 ). The increased susceptibility to oral candi-
diasis has been related to poor glycaemic control 
and hence high concentrations of glucose in the 
blood and saliva, long disease duration as well 
as presence of diabetic complications (retinopa-
thy) (Bai et al.  1995 ; Bartholomew et al.  1987 ; 
Dorocka-Bobkowska et al.  1996 ; Guggenheimer 
et al.  2000 ; Kadir et al.  2002 ; Ueta et al.  1993 ; 
Vazques and Sobel  1995 ). High concentrations 

of glucose in the blood and saliva may promote 
growth and enhance adherence of yeasts to epithe-
lial cell surfaces (Samaranayake  1990 ). Also the 
impaired functions of polymorphonuclear leuko-
cytes leading to reduced phagocytosis, intracellu-
lar killing and chemotaxis may contribute to the 
increased colonization of  Candida  and increased 
susceptibility to oral candidiasis (Ueta et al.  1993 ; 
Vazques and Sobel  1995 ). However, other risk 
factors such as salivary gland hypofunction, low 
salivary pH and impaired salivary antimicrobial 
activity, poor oral hygiene, cigarette smoking and 
denture wearing also have a substantial infl uence 
on candidal colonization and various oral mani-
festations and symptoms of  Candida  infections in 
both type 1 and 2 DM patients (Budtz- Jørgensen 
 1990 ; Banoczy et al.  1987 ; Guggenheimer et al. 
 2000 ; Jurevic et al.  2003 ; Kadir et al.  2002 ; 
Pedersen  2004 ; Samaranayake  1990 ; Willis et al. 
 1999 ). Inadequately controlled diabetics who 
wear dentures have a higher oral candida load 
and higher prevalence of denture stomatitis than 
nondiabetic denture wearers (Guggenheimer et al. 
 2000 ; Vitkov et al.  1999 ). 

  C. albicans  is the most common species iso-
lated from the oral cavity of diabetics (Dorocka- 
Bobkowska et al.  1996 ; Kadir et al.  2002 ; 
Samaranayake  1990 ; Willis et al.  1999 ), but also 
 C. dubliniensis ,  C. glabrata  and  C. tropicalis  have 
been isolated from the oral cavity of patients with 
diabetes (Jurevic et al.  2003 ). The signifi cance of 
species in relation to pathogenesis of fungal infec-
tions in diabetics remains to be elucidated.  

8.3.3     HIV Infection and Oral 
Candidiasis 

 Oral candidiasis is the most common opportunis-
tic infection in HIV-infected patients and in 
patients with AIDS (Coleman et al.  1993 ; 
Shiboski et al.  2015 ) and one of the earliest 
 indicators of the progression from HIV-
seropositive status to AIDS. Oral candidiasis is 
strongly associated with immune suppression, as 
measured by CD4 +  lymphocyte counts, and also 
associated with high viral burden and conse-
quently suggested as a clinical marker of plasma 
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viral load and the progression of HIV disease 
(Glick et al.  1994 ; Patton  2000 ). 

 The candida carriage in HIV-infected patients 
is predominated by  C. albicans , but  C. dublinien-
sis  and  C. glabrata  have also commonly been 
isolated from oral lesions in HIV-infected patients 
(Sullivan et al.  1995 ; Li et al.  2007 ). The increased 
carriage of  C. krusei  has been associated with the 
widespread use of fl uconazole prophylaxis 
(Samaranayke and Samaranayke  1994 ). A recent 
study on the oral mycobiome using pyrosequenc-
ing showed a shift in the oral mycobiome in 
which  Epicoccum  and  Alternaria  were abun-
dantly colonizing HIV-infected patients, but 
 Candida  being abundant in both HIV patients 
and healthy subjects (Mukherjee et al.  2014 ). 

 The introduction of highly active antiretrovi-
ral therapy (HAART) has changed the epidemiol-
ogy of oral candidiasis. Thus, several studies 
have reported a decrease in the prevalence and 
recurrence of oral candidiasis in HIV-infected 
patients receiving HAART (Greenspan et al. 
 2004 ; Jiang et al.  2014 ; Ramírez-Amador et al. 
 2007 ). However, some studies report rare cases 
of increased prevalence. There is substantial evi-
dence suggesting that onset of oral candidiasis is 
associated with a progressive reduction in CD4 +  
lymphocyte count and an increase in viral load in 
HIV-infected patients receiving HAART 
(Hodgson et al.  2006 ; Ramírez-Amador et al. 
 2007 ). Oral candidiasis has therefore been sug-
gested as a clinical marker of immune status and 
a predictor of virologic failure during HAART 
and hence an indicator of HIV disease progres-
sion and a tool for monitoring HIV infection in 
conjunction with CD4 +  lymphocyte counts and 
plasma viral load in HIV-infected patients receiv-
ing HAART (Ramírez-Amador et al.  2007 ).  

8.3.4     Recipients of Organ 
and Haematopoietic Cell 
Transplants and Cancer 
Therapy 

 Recipients of solid organ transplants and haema-
topoietic cell transplants and patients receiving 
cancer therapy have a high risk of developing 

fungal infections due to immunosuppressive, 
immunomodulating therapy as well as treatment 
with antibiotics (Trenschel et al.  2000 ). Despite 
antifungal prophylaxis, the increased risk for sys-
temic and oropharyngeal fungal infection is still 
a matter of concern in these patients, and fungal 
infections remain a signifi cant cause of morbidity 
and mortality. The prevalence of oral candidiasis 
in renal transplant recipients ranges from 9.4 to 
46.7 % (Al-Mohaya et al.  2002 ; de la Rosa- 
García et al.  2005 ; Güleç et al.  2003 ). 

  C. albicans  has been found to be the most 
prevalent species isolated from the oral cavity of 
recipients of kidney transplants (da Silva-Rocha 
et al.  2014 ). Also in recipients of liver trans-
plants, the  Candida  carriage and prevalence of 
oral candidiasis are high (40–50 %), and many of 
these patients also suffer from salivary gland 
hypofunction (Helenius-Hietala et al.  2014 ). 

 The most common forms of oral candidiasis 
reported in patients receiving cancer therapy are 
pseudomembranous and erythematous candidiasis 
(Lalla et al.  2010 ). There appear to be no relation 
to  Candida  colonization and the presence or sever-
ity of oral mucositis in haemopoietic progenitor 
cell transplant patients (Epstein et al.  2003 ; 
Westbrook et al.  2013 ), whereas  C. glabrata  has 
been associated with oral ulcerations in this patient 
group (Laheij et al.  2012 ). A recent study indicates 
that the mycobiome plays a role in the pathogene-
sis of acute graft-versus-host disease in blood- and 
marrow-transplanted patients (van der Velden 
et al.  2013 ). 

 Several studies have shown that the oral 
microbiota is disturbed in patients, who has 
received radiotherapy in the head and neck 
region, and in this regard found increased coloni-
zation of  Candida  species and higher occurrence 
of oral candidiasis (Al-Nawas and Grötz  2006 ; 
Almståhl and Wikström  2003 ; Almståhl et al. 
 2008 ; Brown et al.  1975 ; Grötz et al.  2003 ).  C. 
albicans  is the cause of the majority of 
 oropharyngeal infections, but  C. glabrata  and  C. 
tropicalis  are emerging causes of these infections 
in patients with head and neck cancer. It has been 
shown that about 50 % of patients with head and 
neck cancer were colonized with  Candida  spe-
cies prior to radiotherapy, and after the therapy 
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the percentage has increased to about 75 % (Lalla 
et al.  2010 ). The increased colonization also 
translated into an increased rate of oral infec-
tions. Predisposing factors in patients with head 
and neck cancer include mucosal injury due to 
cancer therapy, salivary gland hypofunction, 
smoking and wearing dentures.   

8.4     Chronic Mucocutaneous 
Candidiasis 

 Chronic mucocutaneous candidiasis (CMC) is 
persistent or recurrent widespread superfi cial 
 Candida  infection of the oral, oesophageal, 
digestive, genital, nail mucous membranes and/
or skin. Most often  C. albicans  is the infectious 
 Candida  species. CMC is caused by immune 
defi ciencies involving the mucosal cutaneous 
immunity, which can have an inherited but most 
often have sporadic origin. T-cells seem to play 
an essential role, as several T-cell immune defi -
ciencies, e.g. impaired T-cell function, activation 
and cytokine signalling, have been associated 
with CMC (Lanternier et al.  2013 ). Findings such 
as reduced proportion of interleukin-17 (IL-17)-
secreting T-cells, autoantibodies directed against 
IL-17 and mutations in IL-17-related genes sug-
gest that impairment of IL-17 immunity plays a 
signifi cant role in CMC pathogenesis (Puel et al. 
 2012 ). CMC is associated with three syndromes 
including autosomal recessive autoimmune poly-
endocrinopathy syndrome type 1, hyper IgE syn-
drome and CARD9 defi ciency (Al-Herz et al. 
 2011 ). CMC as the principal symptom or CMC 
in association to other skeletal, endocrine or skin 
abnormalities initiates in early childhood, and 
immune dysfunction should be suspected in 
patients without predisposing risk factors for oral 
candidiasis.  

8.5     Diagnostic Methods 

 Identifi cation of candidal overgrowth can be 
established by a variety of methods including 
culture, cytosmears, biopsy and molecular tech-
niques (Table  8.2 ).

8.5.1       Culture of Clinical Samples 
in Order to Quantify and
Identify the Candida Load 

 Different culture media can be used to grow and 
differentiate  Candida  spp. Some can easily be 
prepared, e.g. Sabouraud dextrose and Pagano- 
Levin agar media, and others are commercially 
available, e.g. CHROMagar™ (CHROMagar, 
France), chromID® Candida (BioMérieux, USA) 
and BiGGY Agar (Nickerson Agar) (Sigma- 
Aldrich®, USA). Up to four different  Candida  
spp. can be differentiated by culture of clinical 
samples. Swaps, imprints, whole saliva and oral 
rinse can be the source for culture techniques. 
In immunocompetent patients, there is no uni-
versal arbitrary threshold level of colony-form-
ing units (CFU) differentiating between carrier 
state and candidiasis as individual host and oral 
environmental factors infl uence the candida 
load (Epstein et al.  1980 ). However, in immu-
nocompromised patients an arbitrary value of 
>400 CFU has been suggested for antimycotic 
intervention (Ship et al.  2007 ). Culture is time 
consuming and 48 h growth at 37 ° C delays the 
diagnosis. The composition of the  Candida  spp. 
in lesional infections may vary from the over-
all composition in the oral cavity, which make 
the choice of sampling procedure important 
(Kragelund et al.  2013 ).  

8.5.2     Smears 

 Exfoliative cytologic examination is an easy and 
inexpensive method for detection of candida 
organisms. The suspected area is vigorously 
scraped with a wooden spatula and made into a 
smear on a glass microscope slide, spray fi xed 
with a commercial spay or fi xed in 70 % ethanol 
and stained appropriately, e.g. the PAS or GMS 
method. An advantage of this method compared 
to simple culture techniques is that the patho-
genic form of the candida organism (hyphae) is 
easily identifi ed. However, standardized culture 
of saliva or oral rinse samples is more suitable 
for identifying candida presence and load in the 
oral cavity.  

C. Kragelund et al.
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8.5.3     Biopsy 

 Biopsy is particularly relevant in the case of the 
hyperplastic candida infections (see above). An 
appropriate staining method will reveal candida 
hyphae in the keratin layer of the epithelium. If a 
suspected lesion does not respond to antifungal 
therapy, a biopsy may be indicated in order to 
rule out an underlying disease.  

8.5.4     Molecular Techniques 
for Candida Identifi cation 

 Molecular techniques make it possible to iden-
tify microorganisms based on their genetic or 
protein uniqueness (Table  8.2 ). Polymerase chain 
reaction (PCR) is used to amplify a unique gene 
sequence of CFU and sample material from cyto-
brush from lesional foci with candida infections 
(Kragelund et al.  2013 ). Pyrosequencing of whole 
genome sequence or specifi c gene sequence, e.g. 
 ERG11  gene coding for the CYP51 the target 
for azoles, can be performed in order to identify 
new species or azole resistance (Xie et al.  2014 ). 
PCR procedures are time consuming as restric-
tion enzyme analysis or sequencing is necessary 
for  Candida  identifi cation. Fluorescence in situ 
hybridization (FISH) can be used on microscope 
slides or on biopsy material for identifi cation of 
 Candida  spp. using fl uorescence probes for spe-
cifi c DNA or RNA sequences. Commercially 
available PNA probes (AdvanDx, USA) can dif-
ferentiate between  C. albicans / parapsilosis ,  C. 
tropicalis  and  C. glabrata / krusei . 

 Identifi cation of microorganisms, e.g. 
 Candida  spp., using their unique proteomic can 
be conducted by matrix-assisted laser desorp-
tion ionization- time of fl ight/mass spectrom-
etry (MALDI-TOF/MS). Detection of highly 
abundant ribosomal proteins of the unidentifi ed 
microorganism is matched with stored reference 
MALDI-TOF spectra, and the microorganisms 
are identifi ed by their typical protein spectrum. It 
is important that the MALDI-TOF reference data-
base is updated continually because new  Candida  
spp. are identifi ed (Criseo et al.  2015 ). Once the 
MALDI-TOF equipment has been obtained, it is 

a cheap and quick technique and is part of rou-
tine procedures in many medical microbiological 
laboratories (Coronado- Castellote and Jimenez-
Soriano  2013 ).      
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    Abstract  

  Saliva plays an important role in the maintenance of oral health and regu-
lation of the oral microbiota. Saliva lubricates the oral hard and soft tis-
sues, dilutes food detritus and bacteria and enhances the clearance of 
microorganisms and dietary carbohydrates from the oral cavity. Saliva 
also provides antimicrobial activity via numerous proteins and peptides 
including lactoferrin, lactoperoxidase, lysozyme, statherin and histatins. 
This chapter focuses on the oral microbiota in patients suffering from sali-
vary gland hypofunction due to Sjögren’s syndrome, radiotherapy of 
tumours in the head and neck region, cancer chemotherapy and intake of 
medications. Despite the different causes of salivary gland hypofunction, 
these patient groups show some similarities regarding the composition of 
the oral microbiota with increased colonisation of oral pathogens associ-
ated with dental caries ( Streptococcus mutans  and  Lactobacillus  species) 
and oral mucosal infections, especially  Candida albicans .  

9.1         Introduction 

 Saliva plays an essential role in the maintenance 
of tooth integrity and protection against dental 
caries by neutralising acids from food and bac-
teria via salivary buffering systems, contributing 

to formation of the dental pellicle, diluting food 
detritus and bacteria and mechanical cleansing 
of the oral cavity. Furthermore, salivary proteins 
such as statherin and proline-rich proteins keep 
saliva supersaturated with respect to calcium 
phosphate salts thereby preventing demineralisa-
tion. Similarly saliva and its components main-
tain mucosal integrity by constantly covering 
and lubricating the oral soft tissues and thereby 
preventing injuries as well as adhesion and pro-
liferation of microorganisms. In addition, saliva 
provides antimicrobial activity via a large vari-
ety of proteins and peptides including mucins, 
lysozyme, lactoferrin, histatins, defensins and 
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 antibodies (secretory IgA) and thereby inhibits 
bacterial and fungal colonisation and infections 
(Dawes et al.  2015 ; Lagerlöf and Oliveby  1994 ; 
Lenander-Lumikari and Loimaranta  2000 ). 

 The composition of saliva is dependent on the 
rate by which the saliva is produced, the type of 
gland, from which the saliva is secreted and the 
nature and duration of the stimuli applied to acti-
vate the secretion refl exes (Pedersen et al.  2002a ,  b ). 
The composition of salivary antimicrobial pro-
teins may therefore vary from one oral site to 
another in an individual, and different oral sites 
can harbour different microbiota depending on 
the local morphology, growth conditions and the 
local immune defence. Other factors such as oral 
hygiene, diet, dental restorations, systemic dis-
eases, medication intake and various lifestyle fac-
tors also affect the local oral microbiota (for 
further details see Chap.   2    ). 

 Under normal conditions, the unstimulated 
whole saliva fl ow rate is on average 0.3–0.4 ml/
min, while chewing-stimulated whole saliva fl ow 
rate is about 1.5–2.0 ml/min (Humphrey and 
Williamson  2001 ; Pedersen et al.  2002a ,  b ). An 
unstimulated whole saliva fl ow rate ≤0.1 ml/min 
and chewing-stimulated whole saliva fl ow rate 
≤0.5–0.7 ml/min are designated hyposalivation 
(Heintze et al.  1983 ; Pedersen et al.  2002a ,  b ). 
Xerostomia usually occurs when the unstimu-
lated secretion rate has decreased to approxi-
mately 50 % of its normal value in any given 
individual, indicating that more than one major 
salivary gland must be affected (Dawes  1987 ). 

 The importance of saliva in the maintenance 
of a natural balance between the host and the oral 
microbiota becomes evident when the saliva fl ow 
rate is reduced. The most common causes of sali-
vary gland hypofunction include intake of medi-
cations, polypharmacy, systemic diseases such as 
Sjögren’s syndrome and cancer therapy including 
chemo- and radiotherapy. Regardless of the aetiol-
ogy of salivary gland hypofunction, a shift in the 
oral ecology appears to occur already at unstimu-
lated whole saliva fl ow rates below 0.20 ml/min 
with a shift towards a more aciduric and acido-
philic oral microbiota leading to an increased risk 
of dental caries and oral candidiasis (Navazesh 
et al.  1995 ; Bardow et al.  2001 ). This chapter 

reviews results from studies of the oral microbiota 
both in rinsing samples and in samples collected 
from specifi c sites in patients with chronically 
or temporary salivary gland hypofunction due to 
Sjögren’s syndrome, cancer therapy (chemo- and/
or radiotherapy) and intake of medications.  

9.2     Oral Microbiota in Sjögren’s 
Syndrome 

 Sjögren’s syndrome (SS) is a chronic, systemic 
autoimmune infl ammatory disorder that affects the 
exocrine glands, particularly the salivary and lacri-
mal glands. The most prominent disease manifesta-
tions include hyposalivation and keratoconjunctivitis 
sicca resulting in symptoms of oral and ocular dry-
ness. The aetiology remains unknown, but most 
likely includes an interaction between immunologi-
cal, genetic, hormonal and environmental factors. 
The median age of presentation is around 50 years 
and it mainly affects women. SS is classifi ed into 
two forms: primary SS (pSS) and secondary SS 
(sSS). The latter defi nes the disease entity in the 
presence of another chronic infl ammatory connec-
tive tissue disease, most commonly rheumatoid 
arthritis or systemic lupus erythematosus (Pedersen 
and Nauntofte  2005 ). Diagnosis is often delayed 
which refl ects the fact that the onset is often insidi-
ous and patients present various and unspecifi c 
symptoms like xerostomia, fatigue, myalgia and 
arthralgia. Hyposalivation may therefore precede 
the diagnosis for several years increasing the risk of 
dental caries and recurrent oral candidiasis. Before 
diagnosis and hence awareness of risk of oral dis-
eases, the patients may have a frequent intake of 
easily fermentable carbohydrates like candies and 
soft drinks in order to alleviate the symptoms of dry 
mouth (Brunström  2002 ; Cermak et al.  2003 ) and 
an inadequate oral hygiene which further favour the 
growth of  Streptococcus mutans  and  Lactobacillus  
and  Candida  species. 

9.2.1     Dental Caries 

 Both the quantity and quality of saliva are affected 
in patients with pSS (Kalk et al.  2001 ; Pedersen 
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et al.  2005 ; Thorn et al.  1989 ). The number of 
decayed, missed and fi lled teeth is high (Baudet-
Pommel et al.  1994 ; Christensen et al.  2001 ; 
Pedersen et al.  1999a ,  2005 ) and found inversely 
correlated to salivary fl ow rates and especially the 
unstimulated whole saliva fl ow rate (Pedersen et al. 
 1999b ,  2005 ). The reduced saliva secretion results 
in reduced bicarbonate concentration, pH and buf-
fer capacity (Bardow et al.  2001 ; Pedersen et al. 
 2005 ). The clearance of microorganisms and dietary 
sugars is also impaired thereby promoting an envi-
ronment dominated by aciduric and acidogenic spe-
cies and prolonged exposure of dietary sugars and 
acids to the teeth. Kolavic et al. ( 1997 ) found higher 
counts of  Streptococcus mutans  and lactobacilli in 
caries-inactive patients with SS having stimulated 
parotid fl ow rates <0.25 ml/min than in subjects 
with higher parotid fl ow rates. The counts and num-
bers of  S. mutans  and lactobacilli counts have been 
found inversely correlated to stimulated whole 
saliva fl ow rates (Lundström and Lindström  1995 ). 
Almståhl et al. ( 1999 ) also showed that patients 
with pSS harboured higher numbers of both  S. 
mutans  and  Lactobacillus  species and sSS higher 
numbers of  Lactobacillus  species than healthy sub-
jects. In patients with pSS, the shift in the oral 
microbiota appears to occur despite a good oral 
hygiene, as they had higher levels of  S. mutans  than 
patients who had received radiotherapy in the head 
and neck region and patients who took neuroleptics 
(Almståhl et al.  1999 ). The high number of micro-
bial retention sites generated by dental restorations 
such as fi llings, crowns and bridges found in patients 
with pSS may also contribute to the shift in oral bac-
teria (Almståhl et al.  1999 ). Leung et al. ( 2007 ) 
found higher levels of lactobacilli in saliva, espe-
cially  L. acidophilus ,  L. fermentum  and  L. minitus , 
and in supragingival plaque from patients with SS 
than in subjects with normal salivary secretion, but 
no differences in the numbers of  S. mutans  or anaer-
obic gram-negative rods.  

9.2.2     Oral Candidiasis 

 Recurrent oral candidiasis is prevalent among 
patients with SS, and the most common clinical 
presentation of  Candida albicans  colonisation is 

erythematous candidiasis and angular cheilitis 
(Hernandez and Daniels  1989 ; Lundström and 
Lindström  1995 ; Pedersen et al.  1999b ; Soto- 
Rojas et al.  1998 ; Tapper-Jones et al.  1980 ). 
 C. albicans  is the most frequently isolated (66–
72 %) species in patients with SS. It may occur 
alone or mixed with other  Candida  species such 
as  C. tropicalis , C.  pseudotropicalis ,  C. parapsi-
losis ,  C. kefyr  and  C. glabrata  (Kindelan et al. 
 1998 ; Soto-Rojas et al.  1998 ). The prevalence of 
 Candida  as well as the numbers of colony- 
forming units (CFU) per ml (CFU/ml) not only 
varies between studies but also between the pSS 
and sSS patients (Table  9.1 ) refl ecting differ-
ences in the patient groups regarding dental sta-
tus, oral hygiene habits, comorbidity, medication 
intake and/or immune response. Results of saliva 
cultures and oral rinses correspond well to the 
occurrence of signs and symptoms of oral candi-
diasis (Abraham et al.  1998 ; Kindelan et al.  1998 ; 
Soto-Rojas et al.  1998 ). Candidal colonisation 
and oral candidiasis tend to be more prevalent in 
patients with sSS (Soto-Rojas et al.  1998 ). 
Almståhl et al. ( 2001 ) showed that patients with 
pSS had signifi cantly higher levels of  C. albicans  
in rinsing samples than subjects with hyposaliva-
tion of unknown aetiology. SS patients with 
immeasurable unstimulated whole saliva fl ow 
rates have the highest levels of  C. albicans  in oral 
rinses (Almståhl et al.  1999 ).

   The microbial samples proving the presence 
of  Candida  species on the oral mucosa have usu-
ally been obtained by smears or culture swabs 
taken from the dorsum of the tongue, the buccal 
or palatal mucosa, the right tonsillar area and/or 
the fi tting surface of the denture (Almståhl and 
Wikström  1999 ; Leung et al.  2008 ; MacFarlane 
and Mason  1974 ; MacFarlane  1984 ; Pedersen 
et al.  2002a ,  b ; Rhodus et al.  1997 ; Soto-Rojas 
et al.  1998 ; Tapper-Jones et al.  1980 ). Results 
revealed that patients with SS have a signifi cant 
higher mucosal colonisation of  C. albicans  than 
healthy subjects (Leung et al.  2008 ; MacFarlane 
 1984 ; Radfar et al.  2003 ; Rhodus et al.  1997 ; 
Soto-Rojas et al.  1998 ; Tapper-Jones et al.  1980 ; 
Yan et al.  2011 ) and pSS compared with patients 
with oral lichen planus (Pedersen et al.  2002a ,  b ). 
Patients with sSS harboured higher numbers of 
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 C. albicans  (CFU 3.1 × 10 6 ) than patients with 
pSS (CFU 1.2 × 10 5 ), which was attributed to the 
presence of an additional infl ammatory disease in 
sSS as well as to low saliva fl ow rates (Rhodus 
et al.  1997 ). The presence and density of  C. albi-
cans  were also inversely correlated to saliva fl ow 
rates (Hernandez and Daniels  1989 ; Radfar et al. 
 2003 ; Rhodus et al.  1997 ; Tapper-Jones et al. 
 1980 ). Hernandez and Daniels ( 1989 ) found that 
patients with SS and with chronic erythematous 
candidiasis were older and had long duration of 
oral symptoms, more infl ammation in their labial 
salivary glands and lower stimulated parotid fl ow 
rates than SS patients without this oral lesion. In 
contradiction to oral rinses, not all mucosal cul-
tures correspond to the clinical signs and symp-
toms. Thus, MacFarlane ( 1984 ) found that 73 % 
of the patients with pSS had clinical signs of oral 
candidiasis, although cultures obtained from the 
dorsal part of the tongue only were positive in 
52 % of the cases. This difference between clini-
cal signs and results of  Candida  cultures may 
refl ect diffi culties in obtaining representative 
material from the dry mucosa (Lundström and 
Lindström  1995 ; Soto-Rojas et al.  1998 ). 
Furthermore, patients with  Candida  infection do 
not necessarily exhibit oral lesions which can be 
attributed to an asymptomatic carrier status or 

early candidiasis without clinical apparent lesions 
or a less virulent strain of  Candida . Regarding 
site specifi city, it is noteworthy that  C. albicans  
was found twice as frequent in the supragingival 
plaque than on the tongue in patients with pSS, 
but could not be detected in the gingival crevicu-
lar region using the paper point technique 
(Almståhl et al.  2001b ).  

9.2.3     Other Microorganisms 

 A sparse number of studies have examined the 
bacteria in oral mucosal cultures of patients with 
SS. MacFarlane and Mason ( 1974 ) found signifi -
cantly higher numbers of  Staphylococcus aureus  
and coliform bacilli in SS patients without clini-
cal signs of infl ammation than in healthy sub-
jects.  Veillonella  species,  Neisseria pharyngis , 
 Micrococcus mucilaginosus ,  S. salivarius  and  S. 
aureus  have also been isolated in higher num-
bers from the tongue, palate, throat and dentures 
of patients than in healthy subjects (MacFarlane 
 1984 ). However, Almståhl and Wikström ( 1999 ) 
found no differences in the numbers of  S. aureus  
and enterics between patients with pSS and 
healthy subjects, and the numbers of  S. salivarius , 
 Neisseria pharyngis  and  Veillonella  species were 

   Table 9.1    Frequency of  Candida  species determined semiquantitatively and the numbers of colony-forming units per 
ml (CFU/ml) in patients with primary Sjögren’s syndrome (pSS) and secondary Sjögren’s syndrome (sSS)   

 Microbiological tests  pSS  sSS  References 

 Tongue smear  33 %  76 %  Sota-Rojas et al. ( 1998 ) 
 Tongue swab culture  52 %  76 %  Sota-Rojas et al. ( 1998 ) 
 Saliva culture/oral rinse  76 %  79 %  Sota-Rojas et al. ( 1998 ) 

 81 %  67 %  Kindelan et al. ( 1998 ) 
 65 %  60 %  Almståhl et al. ( 1999 ) 
 72 %  48.1 %  Leung et al. ( 2007 ) a  

 Supragingival plaque  84 %  55.6 %  Leung et al. ( 2007 ) a  
  Numbers of CFU / ml  
 Tongue/palate swab culture  3.1 × 10 6  (mean)  1.2 × 10 5   Rhodus et al. ( 1997 ) 
 Saliva culture  419/μl (mean)  739/μl  Sota-Rojas et al. ( 1998 ) 

 >10 4  (35.7 %)  >10 4  (39.1 %)  Ergun et al. ( 2010 ) 
 Oral rinse  2100 (median)  1710  Kindelan et al. ( 1998 ) a  

 380 (median)  500  Almståhl et al. ( 1999 ) b  
 1025.5 (mean)  155  Leung et al. ( 2007 ) a  

 Supragingival plaque  1.8 × 10 6 /g (mean)  0.4 × 10 6   Leung et al. ( 2007 ) a  

   a The study included denture wearers 
  b The study only included dentate subjects  
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lower in pSS patients. Regarding site specifi city, 
a higher density of streptococci,  S. salivarius , 
 Fusobacterium nucleatum ,  Prevotella interme-
dia ,  Prevotella nigrescens  and  S. aureus  has been 
demonstrated on the dorsal part of the tongue 
than on the buccal mucosa and in the vestibulum 
(Almståhl et al. 2001b). Species usually associ-
ated with gingivitis such as  F. nucleatum ,  P. inter-
media  and  P. nigrescens  were found in slightly 
lower levels in the gingival crevice region of the 
patients with pSS, but in higher levels of the sSS 
patients, than in control subjects (Almståhl and 
Wikström  1999 ). In this regard, it is noteworthy 
that the susceptibility to gingivitis and periodon-
titis has not been found increased in patients with 
pSS compared to healthy controls (Boutsi et al. 
 2000 ; Kuru et al.  2002 ; Pedersen et al.  1999b ; 
Schiødt et al.  2001 ; Tseng et al.  1990 ), which is 
supported by the rare detection of  Porphyromonas 
gingivalis  and  Actinobacillus actinomycetemcom-
itans  in the gingival crevice region of patients with 
pSS (Almståhl et al. 2001b). However, increased 
levels of antibodies to  A. actinomycetemcomitans  
and  Porphyromonas gingivalis , but not to  P. inter-
media , in addition to an increased incidence of 
periodontal disease have been reported in patients 
with SS (Çelenligil et al  1998 ; Ergun et al.  2010 ), 
but they did not discriminate between pSS and 
sSS, and it is likely that patients with sSS display 
an increased risk of periodontal diseases due to 
its concomitant presence with rheumatoid arthri-
tis (for further details on rheumatoid arthritis and 
periodontitis, see Chap.   4    ).   

9.3     Oral Microbiota in Patients 
Receiving Chemotherapy 

 During cancer chemotherapy, there is a signifi -
cantly increased risk of oral infections due to the 
immunosuppressive effect and the direct cyto-
toxic effect of the drugs on oral epithelial barrier 
function. Studies have shown that chemotherapy 
may induce temporary salivary gland hypofunc-
tion, although there is some controversy whether 
it is caused by the chemotherapy per se or by 
other factors, e.g. concomitant intake of xero-
genic medication like antiemetics (Jensen et al. 

 2010 ). Salivary secretion may even be lower in 
individuals with cancer prior to the initiation of 
treatment (Harrison et al.  1998 ; Napeñas et al. 
 2013 ). Chemotherapy can induce compositional 
changes in saliva. Decreased saliva fl ow rates 
combined with the fi nding of slightly increased 
salivary sodium and chloride concentrations as 
well as decreased inorganic phosphate concentra-
tion suggest that salivary gland acinar secretion 
and duct modifi cation mechanisms are impaired 
by cancer chemotherapy (Jensen et al.  2008a ). 
The concentration and output of secretory IgA 
has been found to decrease both during and fol-
lowing chemotherapy (Harrison et al.  1998 ; 
Jensen et al.  2008a ; Laine et al.  1992 ; Main et al. 
 1984 ; Meurman et al.  1997a ) and the concentra-
tion of lysozyme to decrease after chemotherapy 
(Meurman et al.  1997a ). The salivary peroxidase 
system is impaired during chemotherapy due to 
a lower concentration of thiocyanate and its oxi-
dised form hypothiocyanite with antibacterial 
properties (Mansson-Rahemtulla et al.  1992 ). 
Findings on saliva pH and buffer capacity are 
inconsistent and have been shown to decrease, 
be unchanged or with regard to buffer capacity 
even be increased in response to cancer chemo-
therapy (Avsar et al.  2007 ; Jensen et al.  2008a ; 
Nemeth et al.  2014 ; Pajari et al.  1989 ; Schum 
et al.  1979 ). Thus, salivary gland hypofunction, 
changed composition and reduced output of anti-
microbial substances may impair the oral host 
defence against microorganisms, thus individuals 
in cancer chemotherapy may be more susceptible 
to oral infections. 

9.3.1     Dental Caries 

 Increased amount of dental bacterial plaque, gin-
gival infl ammation and increased salivary counts 
of caries-related bacteria, mutans streptococci and 
lactobacilli have been found during and after che-
motherapy (Avsar et al.  2007 ; Jensen et al.  2008b ). 
However, other studies have shown that the sali-
vary concentrations of  S. mutans  and lactobacilli 
may decrease during chemotherapy in spite of sali-
vary gland hypofunction. This could be ascribed 
to the concomitant use of antibiotics, antifungals 
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and/or chlorhexidine mouth rinses during chemo-
therapy as well as cytotoxic effect of the chemo-
therapy itself (Meurman et al  1997b ; O’Sullivan 
et al.  1993 ).  S. mutans  has been found to be sen-
sitive to daunorubicin, a cytotoxic antibiotic used 
in chemotherapeutic regimens (O’Sullivan et al. 
 1993 ). Along this line, a study showed that salivary 
 S. mutans  counts decreased, whereas lactobacilli 
counts increased during chemotherapy (Meurman 
et al.  1997b ). Other studies have not revealed any 
changes in the composition of the oral microbiota 
(Bergmann  1991 ; O’Sullivan et al.  1993 ; Wahlin 
and Holm  1988 ), but an initial doubling of the con-
centration of microorganisms concomitant with a 
transient decrease of stimulated whole saliva fl ow 
rate during chemotherapy (Bergmann 1991). A 
study of the supra- and subgingival dental plaque 
in adult acute leukaemia patients during chemo-
therapy found that the percentage of total viable 
counts of  S. mutans  in supragingival dental plaque 
increased and the percentage in subgingival dental 
plaque decreased (Reynolds et al.  1989 ). However, 
the percentage of viridans streptococci ( S. mutans  
not specifi ed) has also been shown to be lower in 
the supragingival dental plaque of children with 
acute leukaemia during chemotherapy than in 
healthy individuals (Sixou et al.  1998 ). 

 As chemotherapy is a time-limited treatment 
and caries is a process that progresses relatively 
slowly, it may be debatable whether it is possible 
to assess an increased progression rate of car-
ies during chemotherapy. One study found that 
5 years after chemotherapy, salivary counts of 
 S. mutans  and lactobacilli were on the same low 
levels as baseline values before chemotherapy 
(Meurman et al.  1997b ). Another study found no 
signifi cant correlation between salivary immu-
noglobulin levels in stimulated whole saliva and 
 S. mutans  or  Lactobacillus  counts in long-term 
(6 months to 10 years) event-free paediatric 
patients treated for childhood malignancies by 
chemotherapy (Dens et al.  1995 ). The salivary 
immunoglobulin level was within normal lim-
its, but there was a negative correlation between 
secretory IgA concentration and caries preva-
lence (DMFT/dmft), although only signifi cant 
in some age groups. In bone marrow transplant 
patients, a signifi cant decrease in stimulated 

whole saliva fl ow rate, lower buffer capacity and 
a change in the oral microbiota towards higher 
salivary counts of  S. mutans  and  Lactobacillus  
have been observed during and after chemo-
therapy and transplantation (Dahllof et al.  1997 ; 
Dens et al.  1996 ). However, stimulated saliva 
fl ow rates reached normal values 1 year after 
cancer treatment, and no signifi cant differences 
in caries prevalence were found between bone 
marrow- transplanted children receiving chemo-
therapy and healthy children 4 years following 
treatment, but all participants also underwent 
preventive dental care (Dahllof et al.  1997 ). 
In other paediatric populations, signifi cantly 
more caries, poor oral hygiene and signifi cantly 
lower stimulated whole saliva fl ow rate have 
been found following childhood chemotherapy 
(Alberth et al.  2004 ; Avsar et al.  2007 ; Nemeth 
et al.  2014 ; Pajari et al.  1995 ).  

9.3.2     Oral Candidiasis during and
After Chemotherapy 

 The oral yeast counts and especially the preva-
lence of  Candida  species may increase signifi -
cantly from a prevalence of about 50 % in the 
normal population to 73 % in cancer patients dur-
ing chemotherapy, and the weighted prevalence of 
clinical oral fungal infection has been estimated 
to be 38 % (Lalla et al.  2010 ).  C. albicans  is the 
predominant yeast in the oral microbiota during 
chemotherapy and accounts for up to 88 % of the 
salivary yeasts (Samaranayake et al.  1984 ). Other 
potential virulent  Candida  species may colo-
nise the oral cavity during cancer treatment with 
weighted prevalence of 16.6 % for  Candida trop-
icalis , 5.5 % for  Candida glabrata  and 3 % for 
 Candida krusei  (data pooled for chemotherapy 
and radiation therapy) (Lalla et al.  2010 ). 

 Clinical candidiasis and angular cheilitis 
have been found to correlate to higher oral 
yeast counts and low saliva fl ow rates (Wahlin 
and Holm  1988 ; Wahlin  1991 ). A follow-up 
study found that salivary yeast counts remained 
high in spite of normal saliva fl ow rates 5 years 
after chemotherapy for lymphoma (Meurman 
et al.  1997b ). The salivary concentrations of 
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s-IgA, IgG, IgM and lysozyme in stimulated 
whole saliva were concomitantly found to be 
signifi cantly decreased as compared to baseline 
values (Meurman et al.  1997a ). These fi ndings 
suggest that the disease itself or the chemother-
apy may affect the body defences against 
 Candida  in the long term.   

9.4     Oral Microbiota in Patients 
Receiving Radiation Therapy 

 Radiotherapy (RT) of tumours in the head and 
neck region often includes the major and minor 
salivary glands in the radiation fi eld depending 
on the anatomical location and the extension of 
the tumour. RT can cause severe salivary gland 
hypofunction (Jensen et al.  2003 ,  2010 ). The 
severity of salivary gland hypofunction depends 
on the volume of salivary gland tissue included in 
the radiation fi eld and on the total radiation dose 
(Vissink et al.  2010 ). RT targets cells with a rapid 
mitotic turnover like tumour cells and damages 
the DNA thereby leading to cell death. Acinar 
salivary gland cells are radiosensitive in spite of 
their slow mitotic turnover (Berthrong  1986 ), and 
the serous cells appear to be more sensitive to 
radiation than the mucous ones (Kashima et al. 
 1965 ). Radiation damage to the salivary glands 
may be seen as early as 1 week after initiation of 
RT (Dreizen et al.  1977 ) and results in both acute 
and long-term effects characterised by reduced 
saliva fl ow rates, high saliva viscosity and 
changes of saliva composition. During RT, saliva 
fl ow rates decrease and may even reach immea-
surable levels (Vissink et al.  2010 ). With decreas-
ing fl ow rates, the salivary pH drops and the 
buffer capacity decreases both during and after 
RT (Jensen et al.  2003 ; Valdez et al.  1993 ). RT 
also affects the salivary antimicrobial compo-
nents. The salivary concentrations of IgA and 
IgG, lactoferrin, lysozyme and peroxidase have 
been shown to increase during RT due to acute 
tissue destruction, but after RT they decrease due 
to reduced functioning of the glands (Brown 
et al.  1976 ; Jensen et al.  2003 ; Makkonen et al. 
 1986 ). In the long term, recovery of salivary 
gland function is dependent on the total radiation 

dose that the tissue has received. Thus, saliva 
fl ow rates may remain severely decreased, and 
the compositional changes may persist in 
response to the decrease in saliva fl ow rates 
(Jensen et al.  2003 ,  2010 ). The standard thera-
peutic radiation dose for head and neck carci-
noma amounts to a total dose of 60–70 Gy. The 
major salivary glands may have the potential to 
gradually recover within 1–2 years if gland- 
sparing radiation regimens have been applied, for 
example, intensity-modulated radiation therapy, 
and if it has been achievable to keep the radiation 
dose to the gland tissue below thresholds of 
~26 Gy to the parotid gland and ~39 Gy to the 
submandibular gland (Murdoch-Kinch et al. 
 2008 ; Vissink et al.  2010 ). A compensatory 
increase in saliva fl ow rate from salivary glands 
not included in the radiation fi eld may be seen 
(Eisbruch et al.  2001 ). 

9.4.1     Dental Caries 

 Irradiation-induced salivary gland hypofunction 
is associated with a shift of the normal oral 
microbiota increasing the risk to develop rampant 
dental caries (Vissink et al.  2003 ). Higher levels 
of  S. mutans  and  Lactobacillus  species are often 
observed in the oral cavity during and after RT 
compared to preradiation levels (Brown et al. 
 1975 ,  1978 ; Keene and Fleming  1987 ; Llory 
et al.  1972 ; Schwarz et al.  1999 ; Vuotila et al. 
 2002 ). Oral colonisation with  S. mutans  has been 
found lower and stimulated saliva fl ow rates 
higher at the end of treatment in patients receiv-
ing unilateral RT as compared to bilaterally irra-
diated patients (Beer et al.  2002 ). In oral rinses, it 
has been demonstrated that the predominant 
acid-producing species of the oral microbiota 
may change from  S. sanguis ,  S. mitis  and  S. sali-
varius  before RT to  S. mitis ,  S. salivarius  and lac-
tobacilli with a concomitant decrease in saliva 
fl ow rates after RT (Tong et al.  2003 ). The acid- 
sensitive  S. sanguis  appears to be inhibited by the 
more acidic oral environment after RT (Tong 
et al.  2003 ). The decrease in the presence of  S. 
sanguis  after RT has been shown in other studies 
(Brown et al.  1975 ,  1978 ). Vuotila et al. ( 2002 ) 
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found unchanged levels of  S. mutans  after RT as 
compared to preradiation levels. Interestingly, a 
study found no difference in the microbial diver-
sity, composition or number of colony-forming 
bacterial units (mutans streptococci and lactoba-
cilli), nor did they fi nd a difference in the stimu-
lated whole saliva fl ow rate, saliva pH and 
buffering capacity when comparing caries-free 
and caries-active irradiated nasopharyngeal 
patients (Zhang et al.  2015 ). 

 RT patients suffering from impaired saliva 
secretion are to be considered a high-risk group 
regarding dental caries as the oral environment 
favours acidogenic and acidophilic species.  

9.4.2     Oral Candidiasis 

 The number of yeasts increases in the oral cavity 
of cancer patients with hyposalivation due to RT, 
and oropharyngeal candidiasis is a frequent com-
plication during and after RT for head and neck 
cancer (Lalla et al.  2010 ). The weighted preva-
lence of oral candidiasis during head and neck RT 
has been estimated to be 37 % (Lalla et al.  2010 ). 
The increase in the oral yeast colonisation is 
observed during RT, and the colonisation level 
remains elevated after RT. The weighted preva-
lence of oral fungal colonisation during radiation 
therapy has been estimated to be 75 % (Lalla et al. 
 2010 ).  C. albicans  is the predominant yeast spe-
cies associated with oral candidiasis in RT patients 
(Redding et al.  1999 ; Thaweboon et al.  2008 ). 
However, other  Candida  species are frequently 
isolated from the oral cavity in RT and may cause 
oral candidiasis, e.g.  C. glabrata ,  C. tropicalis ,  C. 
parapsilosis  and  C. krusei  (Bulacio et al.  2012 ; de 
Freitas et al.  2013 ; Lalla et al.  2010 ; Schelenz et al. 
 2011 ). It has been shown that the increase in  C. 
albicans  in oral rinses is positively related to the 
radiation dose and the volume of parotid gland tis-
sue included in the radiation fi eld (Rossie et al. 
 1987 ). A direct correlation between the increase in 
 C. albicans  in saliva and reduced saliva fl ow rates 
during RT has also been shown (Epstein et al. 
 1998 ; Karbach et al.  2012 ). The increased coloni-
sation of oral yeasts in RT patients in combination 
with  salivary gland hypofunction emphasises the 
importance of optimal oral hygiene in RT patients 

due to the risk of developing oropharyngeal candi-
diasis (Lalla et al.  2010 ).   

9.5     Medication-Induced Salivary 
Gland Dysfunction and Oral 
Microbiota 

 The most common cause of salivary gland dys-
function is the intake of prescribed medications 
(Handelman et al.  1986 ; Närhi et al.  1992 ; Smidt 
et al.  2010 ,  2011 ; Villa et al.  2015 ; Österberg et al. 
 1984 ). Xerostomia is a common complaint, espe-
cially in elderly people above the age of 65 years, 
and is often reported as an adverse effect of med-
ications. The prevalence is ranging from 11 to 
72 % (Smidt et al.  2011 ; Desoutter et al.  2012 ). 
Xerostomia is defi ned as the subjective feeling of 
oral dryness (Fox et al.  1987 ; Shetty et al.  2012 ), 
and salivary gland dysfunction denotes changes 
in the quantity and/or quality of saliva (Villa 
et al.  2015 ). More than 75 % of adults aged 65 
and older take at least one prescription medica-
tion (Chrischilles et al.  1992 ; Smidt et al.  2010 ). 
Xerostomia has been associated with 80 % of 
the most commonly prescribed medications, and 
several of them have adverse effects directly on 
the mechanisms responsible for saliva secretion 
(Smith and Burtner  1994 ; Sreebny  2010 ; Smidt 
et al.  2011 ; Villa et al.  2015 ; Aliko et al.  2015 ). 
Regardless of the type of  medication, saliva fl ow 
rates have been shown to decrease as the number 
of medications increases also known as polyphar-
macy (Thorselius et al.  1988 ; Närhi et al.  1992 ; 
Smidt et al.  2010 ). Xerostomia is not only associ-
ated with a decrease in the salivary fl ow rate, it 
may also be attributed to a change in quality of the 
saliva (Crogan  2011 ; Ekström et al.  2012 ; Tabak 
 1995 ). The duration of medication intake also 
affects the saliva fl ow rates and the prevalence 
of xerostomia (Navazesh et al.  1996 ; Thomson 
et al.  2006 ). Navazesh et al. ( 1996 ) found that 
unstimulated and stimulated whole saliva fl ow 
rates were signifi cantly lower in adults who had 
been taking medication for more than 2 years as 
compared to those who had been taking medica-
tion for less than 2 years. 

 The mechanisms by which medications can 
infl uence salivary secretion and cause salivary 
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gland dysfunction are complex, and this is also 
refl ected in the variation and severity of oral 
complications. It is believed that medications 
can interact with the salivary secretory refl ex at 
several sites (Ekström et al.  2012 ; Proctor  2015 ; 
Sreebny  2010 ; Villa et al.  2015 ). Thus some 
medications act at the level of the central nervous 
system such as antidepressants (both tricyclic 
and non-tricyclic), opioids, sedatives, anxiolyt-
ics and decongestants (pseudoephedrine). Also 
antihypertensives acting on central alpha-2 adren-
ergic receptors (e.g. clonidine) have been shown 
to reduce salivary secretion in humans (Proctor 
 2015 ; Sreebny  2010 ). Other medications like 
anticholinergics for overactive bladder, antiemet-
ics, tricyclic antidepressants, serotonin reuptake 
inhibitors, certain neuroleptics, antihistamines 
and antihypertensives (alpha-1 adrenergic and 
beta-adrenergic blocking agents) are acting at 
the peripheral level of the neuro-glandular junc-
tion interfering with cholinergic muscarinic 
(M3), adrenergic, peptidergic and/or histaminer-
gic receptor systems (for reviews Proctor  2015 ; 
Sreebny  2010 ). Antidepressants, i.e. inhibitors of 
serotonin and noradrenaline transporters respon-
sible for reuptake, appear to cause salivary gland 
dysfunction through activation of alpha-2 adren-
ergic receptors by elevating endogenous levels of 
noradrenaline. Both centrally and peripherally act-
ing medications include tricyclic antidepressants, 
the serotonin reuptake inhibitors, some neurolep-
tics and antihistamines (Clemmesen  1988 ; Del 
Vigna de Almeida et al.  2008 ; Hunter and Wilson 
 1995 ; Proctor  2015 ; Sreebny  2010 ). Furthermore, 
some medications like diuretics indirectly infl u-
ence the salivary secretion by affecting the elec-
trolytes and water homeostasis (Nederfors et al. 
 1989 ). Finally, a large number of factors infl uence 
the effect of medications on salivary secretion, 
such as the dose and the absorption and excretion 
rates of the drug as well as drug interactions (Del 
Vigna de Almeida et al.  2008 ). 

9.5.1     Dental Caries 

 A relatively limited number of studies have 
investigated the association between medication- 
induced salivary gland dysfunction and changes 

in the oral microbiota. A cross-sectional study 
demonstrated that root caries was more prevalent 
in those taking antihypertensives than in control 
subjects (Streckfus et al.  1990 ). Also the whole 
saliva fl ow rates have been found lower and the 
levels of mutans streptococci and lactobacilli 
higher in patients taking antihypertensives com-
pared to control subjects (Nonzee et al.  2012 ). A 
study on 848 community-dwelling elderly peo-
ple in South Australia found only a moderate 
association between medication intake and root 
caries experience (Thomson et al.  1995 ). 
However, a more detailed analysis on the various 
drugs revealed that patients who took antide-
pressants and antiulcer agents had a signifi cantly 
higher root caries index and a 5-year follow-up 
study including 528 community-dwelling elderly 
South Australians did not reveal a strong associ-
ation between intake of medication and caries, 
apart from intake of antiasthmatics. Along this 
line, Ryberg et al. ( 1991 ) found that long-term 
treatment with β2-adrenoceptor agonists in 
patients with asthma was associated with an 
impaired saliva secretion, which was followed 
by an increased incidence of dental caries and 
higher number of DMS (Decayed-Missing-
Surfaces) after 4 years of follow-up. These fi nd-
ings were supported by Alaki et al. ( 2013 ), who 
also found higher levels of mutans streptococci 
and lactobacilli in asthmatic patients taking anti-
asthmatics more than three times a day com-
pared with other asthmatic patients. A recent 
study showed that patients on diuretics had a 
higher prevalence of xerostomia, periodontitis, 
dental caries and mucosal lesions than control 
subjects (Prasanthi et al.  2014 ). A study by 
Rindal et al. ( 2005 ) demonstrated that patients 
taking antidepressants had a higher number of 
dental restorations (a proxy for dental caries) 
than the non-medicated ones. Bardow et al. 
( 2001 ) showed that patients with a daily intake 
of xerogenic medications had low unstimulated 
and stimulated whole saliva fl ow rates and 
decreased salivary outputs of bicarbonate, cal-
cium, phosphate and protein and higher levels of 
 Lactobacillus  species. These results were sub-
stantiated by Almståhl et al. ( 2003 ) who found 
higher numbers of lactobacilli in oral rinses from 
patients with medication-induced hyposalivation 
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than in control subjects, but lower levels than in 
patients with pSS and patients with RT-induced 
hyposalivation which was attributed to much 
lower saliva fl ow rate in the two latter groups. It 
has also been shown that patients with medica-
tion-induced hyposalivation had a supragingival 
plaque comprising high levels of mutans strepto-
cocci and lactobacilli and hence an increased 
risk of developing caries (Almståhl and 
Wikström  2005 ). An additional number of stud-
ies have reported that the numbers of lactobacilli 
are higher in medicated patients compared to 
non-medicated and also associated with low 
saliva fl ow rates (Fure  2003 ; Närhi et al.  1994 ; 
Parvinen et al.  1984 ). 

 Moreover, several liquid formulations of med-
ications have a high sugar content that may infl u-
ence the oral microbiota and hence increasing the 
risk of medication-induced caries (Donaldson 
et al.  2015 ). Beighton et al. ( 1991 ) showed that 
the salivary level of mutans streptococci, lactoba-
cilli and yeasts in elderly patients treated with 
sucrose-containing medication was signifi cantly 
higher than in patients taking non-sucrose- 
containing medication.  

9.5.2     Oral Candidiasis 

 The number of studies investigating the associa-
tion between medication-induced salivary gland 
dysfunction and oral candidiasis is sparse. It has 
been shown that medicated elderly people have a 
higher  Candida  load and also higher frequency of 
oral candidiasis and lower saliva fl ow rates than 
the non-medicated ones (Pedersen et al.  2015 ). A 
higher frequency of  Candida  isolation and palatal 
infl ammation has also been found in patients 
treated with psychotropic agents, and who were 
wearing complete upper dentures, than in control 
subjects (Lucas  1993 ). However, other risk factors 
were more common among the psychiatric 
patients including cigarette smoking, sugar con-
sumption and a poor denture hygiene. A recent 
study reported that intake of anxiolytics, and low 
salivary fl ow rates, were associated with higher 
levels of  Candida  in patients with oral lichen pla-
nus (Bokor-Bratic et al.  2013 ). Janket et al. ( 2007 ) 

showed that intake of xerogenic medication was 
signifi cantly associated with a high oral mucosal 
infl ammation score. Furthermore, in patients tak-
ing antihypertensives, the mean levels of  Candida  
species were higher than in the control subjects 
(Nonzee et al.  2012 ). Other studies have found 
higher  Candida  levels in patients with medication- 
induced hyposalivation and in medicated men 
(Almståhl and Wikström  2005 ; Parvinen et al. 
1984), and Kreher et al. ( 1991 ) showed that 
 C. glabrata  was the most frequent yeast strain in 
the oral cavity of medicated patients.  

9.5.3     Periodontal Disease 

 One study has found that periodontal disease 
(assessed by Russell’s periodontal index and 
plaque index) was more prevalent in patients tak-
ing diuretics and who also had low whole saliva 
fl ow rates (Nonzee et al.  2012 ). The authors sug-
gest that the high prevalence of periodontitis 
could be due to decreased cleansing activity and 
reduced microbial activity by saliva. However, 
apparently there is no substantial evidence sug-
gesting that medication-induced salivary gland 
dysfunction is associated with an increased risk 
of periodontal disease (Aliko et al.  2015 ). 
Periopathogens such as  P. gingivalis  and  A. acti-
nomycetemcomitans  are rarely detected in supra-
gingival plaque samples from patients with 
medication-induced salivary gland hypofunction 
or in patients with hyposalivation due to other 
causes (Almståhl and Wikström 2005).   

    Conclusions 

 Patients with SS often have a severe and per-
manent reduction in their salivary gland func-
tion leading to reduction in the salivary pH 
and decreased clearance of microorganisms, 
dietary sugars and acids in the oral cavity. 
This leads to a shift in the oral microbiota 
including colonisation of more acidophilic 
species such as  S. mutans , lactobacilli and  C. 
albicans  and consequently an increased risk 
of dental caries and oral candidiasis. 

 During cancer chemotherapy, there is a sig-
nifi cantly increased risk of oral infections due 
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to the immunosuppressive effect and the direct 
cytotoxic effect of the drugs on oral epithelial 
barrier function. Moreover, chemotherapy may 
also induce temporary salivary gland hypo-
function, although there is some controversy 
whether it is caused by the chemotherapy per se 
or by other factors, e.g. concomitant intake of 
xerogenic medication like antiemetics. Studies 
have shown that the output of salivary antimi-
crobials may decrease during chemotherapy 
and thus increase the risk of oral infections. 
Changes in the oral microbiota may not be 
attributable to the chemotherapy alone, but also 
occur due to concomitant medication, antimi-
crobial treatment, the underlying cancer dis-
ease and duration of hospitalisation. 

 RT in the head and neck region can result in 
a severe and permanent salivary gland hypo-
function. The severity depends on the volume 
of salivary gland tissue included in the radia-
tion fi eld and on the total radiation dose. In can-
cer patients with RT-induced salivary gland 
hypofunction, the clearance of microorganisms 
decreases. Changes in the microbiota include 
increased colonisation of  Lactobacillus  spe-
cies,  S. mutans  and  Candida  species, and these 
patients have a signifi cant increased risk of 
especially dental caries and oral candidiasis. 

 Several medications have the potential to 
cause salivary gland hypofunction and changes 
in saliva composition, but in contrast to chronic 
autoimmune diseases like Sjögren’s syndrome 
and RT in the head and neck region, medication- 
induced salivary gland dysfunction is reversible. 
In patients with medication-induced salivary 
gland dysfunction, the number of mutans strep-
tococci, lactobacilli and yeasts increases, and 
results indicate an increased risk of dental caries 
and oral candidiasis in these patients.     
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      The Oral Microbiome in Health 
and Disease                     

     Ingar     Olsen     

    Abstract  

  This chapter deals with the human oral microbiome which contains bacte-
ria, bacteriophages/viruses, archaea, fungi, and protozoa. Modern molecu-
lar techniques used to analyze this microbiome are dealt with such as 
HOMINGS, oligotyping, high-throughput sequencing, whole-genome 
shotgun sequencing, single-cell genome sequencing, metatranscriptomics, 
and community-wide transcriptome analysis. The oral microbiota in health 
is described as well as that in periodontal disease and dental caries. 
Furthermore, the architecture of biofi lms in periodontitis and caries is 
visualized. Our knowledge on the oral microbiota challenges the current 
practice of chairside diagnostics.  

10.1         The Human Oral Microbiome 

 The human oral microbiome is composed of a 
variety of different microorganisms such as bac-
teria, bacteriophages/viruses, yeasts, archaea, 
and protozoa. It has been suggested that these 
organisms cause diseases by a synergistic or 
cooperative way and that the interspecies interac-
tions have a crucial role whether the oral micro-
biota causes disease or not (He et al.  2014 ). What 
is remarkable for this microbiota is also that its 
commensals contribute to disease, e.g., to caries 

and periodontitis through ecological changes. 
Another noteworthy feature is that it is personal-
ized, meaning that each person harbors a unique 
microbiota. This implies that the human microbi-
ome is more different between individuals than 
within an individual (Fig.  10.1 ). It has also been 
shown that characteristics of an individual’s life 
history can be associated with the composition of 
the microbiome (Ding and Schloss  2014 ) and 
that the phylogenetic microbial structure varies 
with aging (Xu et al.  2014 ).

10.1.1       Bacteria 

 Bacteria have been considered the dominating part 
of the microbiome in man. However, while some 
six billion bacteria are present in the oral cavity, it 
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contains potentially 35 times that many bacterio-
phages/viruses (Edlund et al.  2015 ). When 
Dewhirst et al. ( 2010 ) established the Human Oral 
Microbiome Database (HOMD) (  http://www.
homd.org/    ), it comprised over 600 prevalent bacte-
rial taxa at the species level with distinct subsets 
predominating at different sites such as teeth, gin-
gival sulcus, tongue, cheeks, hard/soft palate, and 
tonsils. The HOMD included 619 taxa from 13 
phyla: Actinobacteria, Bacteroidetes, Chlamydiae, 
Chlorofl exi, Euryarchaeota, Firmicutes, Fuso-
bacteria, Proteobacteria, Spirochaetes, SR1, 
Synergistetes, Tenericutes, and TM7. The analysis 
comprised 1179 taxa. Among these 24 % were 
named, 8 % were cultivated but unnamed, and 
68 % were uncultivated phylotypes. Later the 
number of oral phyla has been extended to 15, but 
96 % of the sequences are accounted for by only 6 
phyla: Actinobacteria, Bacteroidetes, Firmicutes, 
Fusobacteria, Proteobacteria, and Spirochaetes 
(Wade  2013 ). Recently, Camanocha and Dewhirst 
( 2014 ) developed primer pairs for making phylum- 
selective 16S rRNA clone libraries and identifi ed 
species from the lesser known oral phyla or candi-
date divisions including Synergistetes, TM7, 
Chlorobi, Chlorofl exi, GN02, SR1, and WPS-2.  

10.1.2     Bacteriophages/Viruses 

 Oral viruses in saliva are dominated by bacterio-
phages (Pride et al.  2012 ). Also dental plaque is 
inhabited by a community of bacteriophages 
(Naidu et al.  2014 ). Bacteriophages constitute the 
major part of the oral virome with relatively few 
eukaryotic viruses identifi ed such as herpesvi-
ruses, papillomaviruses, enteroviruses, and circo-
viruses (Grinde and Olsen  2010 ; Naidu et al. 
 2014 ). The mouth has been found to have more 
genetic elements than the stool, i.e., viruses, plas-
mids, and transposons, although it has fewer bac-
teria (Zhang et al.  2013 ). Bacteriophages may 
serve as reservoirs for genes functioning in the 
oral cavity. Phage members of the oral virome 
can carry genes involved in resistance to comple-
ment degradation of immunoglobulins, adhesion 
to cells lining the oropharynx, and antibiotic 
resistance (Pride et al.  2012 ; Muniesa et al.  2013 ; 
Abeles et al.  2014 ; Quirós et al.  2014 ). 

 Oral viruses have gene functions that may be 
involved in the pathogenic roles of their host bac-
teria (Pride et al.  2012 ). The same salivary viruses 
could be identifi ed at all time points over 60 days 
despite being present in low numbers (Abeles 

  Fig. 10.1    Humans are far more different from each other in 
their microbial composition than in their genomic composi-
tion. The  colors  on the  left side  of each individual represent 
bacterial phyla, while the  colors  on the  right side  indicate 
host genomic similarity. For the most part we  contain  similar 

phyla living in and on our bodies, including the oral cavity, 
but their relative abundance can be drastically different. On 
the other hand, our genomic composition is nearly identical, 
with only a small fraction (ca 0.1 %) differing across indi-
viduals (Adapted from Califf et al.  2014 )       
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et al.  2014 ), refl ecting that the oral viral ecosys-
tem is stable. Most oral viruses are lysogenic and 
live in harmony with their hosts (Abeles and 
Pride  2014 ; Ly et al.  2014 ), and they may be 
important in shaping the microbial diversity of 
the oral cavity. Another peculiarity is that viral 
communities of the mouth are highly personal-
ized (Willner et al.  2011 ; Pride et al.  2012 ), even 
more personalized than bacterial communities 
when analyzed with  16S rDNA  sequencing 
(Abeles et al.  2014 ). A noteworthy feature is also 
that oral viruses vary according to host sex, rather 
than among individuals (Abeles et al.  2014 ). The 
human oral viral community is probably a result 
of the unique viral exposures of each individual 
(Abeles et al.  2014 ), but considerably more of the 
oral virobiota of people living together is shared 
than could be expected by chance (Robles- 
Sikisaka et al.  2013 ). Eukaryotic viruses such as 
Torque Teno viruses (TTVs) and SEN viruses 
have been found in the bloodstream of healthy 
people (Pride et al.  2012 ; Abeles and Pride  2014 ). 
Blood of healthy persons have previously been 
considered sterile. Both these groups of viruses 
are present in the human oral cavity (Pride et al. 
 2012 ). Also herpesviruses, shed in the mouth 
from healthy individuals, can be found in human 
blood (De Vlaminck et al.  2013 ). Therefore not 
only bacteria but also viruses can translocate 
through mucosal surfaces to the bloodstream and 
possibly be involved in systemic diseases. 

 It is well known that the human oral cavity 
contains a large and diverse variety of bacteria. 
What viruses it contains has to a great extent been 
overlooked. This particularly relates to the peri-
odontal microbiota, although herpesviruses 
including Epstein-Barr virus and cytomegalovi-
rus can be present in high copy counts in aggres-
sive periodontitis and may interact with 
periodontopathogenic bacteria to cause the dis-
ease (Sunde et al.  2008 ; Slots  2011 ; Contreras 
et al.  2014 ). Ly et al. ( 2014 ) examined samples 
from saliva of periodontally healthy and diseased 
patients and found that the communities of 
viruses inhabiting saliva and subgingival and 
supragingival biofi lms were composed mainly of 
bacteriophages. The virome composition was 
greatly refl ected by the site it was collected from. 

The largest difference in composition was 
between supra-/subgingival plaque and saliva. 
Differences in virus composition were signifi -
cantly related to the health status of viruses in 
plaque, but not to those in saliva. Noteworthy, 
there was a signifi cant increase in myoviruses 
(generally lytic) in subgingival biofi lm suggest-
ing that these viruses may have a great impor-
tance to local bacterial diversity and that the virus 
may serve as useful indicators of the oral health 
status. Since viruses have the potential to form 
microbial communities as well as to elicit host 
immune response, they probably play an impor-
tant role in human health (Edlund et al.  2015 ). 
Also, the fact that they are personal, persistent, 
and gender specifi c suggests that they can be 
important in the interplay between host genetics 
and the environment.  

10.1.3     Archaea 

 Archaea were originally considered a primitive 
form of life that thrives in extreme environments. 
However, high numbers of methane-producing 
archaea (methanogens) have now been detected 
in the oral cavity (Belay et al.  1988 ), the gas-
trointestinal tract (Karlin et al.  1982 ), and 
vagina (Belay et al.  1990 ) of human beings. 
The reported oral archaea contain the gen-
era  Methanobrevibacter ,  Methanobacterium , 
 Methanosarcina , and  Methanosphaera  and the 
order Thermoplasmatales (He et al.  2014 ). The 
main species is  Methanobrevibacter oralis . 
Archaea have been detected in saliva, periodon-
titis, peri-implantitis, pericoronitis, and infected 
root canals (Brusa et al.  1987 ; Belay et al.  1988 ; 
Kulik et al.  2001 ; Lepp et al.  2004 ; Vianna et al. 
 2006 ,  2009 ; Vickerman et al.  2007 ; Conway de 
Macario and Macario  2009 ; Jiang et al.  2009 ; 
Matarazzo et al.  2011 ,  2012 ; Faveri et al.  2011 ; 
Mansfi eld et al.  2012 ; Bringuier et al.  2013 ). These 
studies detected a higher frequency of archaea 
in oral infections than in health. Thus the rela-
tive abundance of archaea in subgingival plaque 
increased with the severity of periodontitis and 
decreased with the reduction of periodontitis after 
treatment. Archaea may therefore be  associated 
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with periodontitis but the diversity of archaea 
is limited (Li et al.  2009 ). Almost all sequenced 
amplicons fell in the genus  Methanobrevibacter  
of the Euryarchaeota phylum with  M. oralis -like 
species as the most dominant. In root canal infec-
tions, presence of archaea was associated with 
clinical symptoms (Jiang et al.  2009 ). Although 
discussion of the clinical role of Euryarchaeota 
(including  Methanobrevibacter smithii ,  M. ora-
lis , and  Methanosphaera stadtmanae ) continues 
(Horz and Conrads  2010 ), and archaea are emerg-
ing organisms in complex human microbiomes 
(Dridi et al.  2011 ), methanogenic archaea do not 
seem to induce oral diseases directly. However, 
they may promote anaerobic infections through 
syntropic interactions with true pathogenic fer-
menting bacteria, e.g., through interspecies H 2  
transfer, thereby favoring growth of certain bac-
teria (Matarazzo et al.  2012 ). Thus, a positive 
correlation has been found between methanogens 
and  Synergistes  species in oral infections (Vianna 
et al.  2006 ; Vartoukian et al.  2007 ).  

10.1.4     Fungi 

 Dupuy et al. ( 2014 ) performed massive parallel, 
high-throughput sequencing of internal transcribed 
spacer 1 (ITS1) amplicons from saliva after robust 
extraction methods. Their fi ndings confi rmed 
nearly every community member from a similar 
study by Ghannoum et al. ( 2010 ) who had detected 
74 cultivable and 11 non-cultivable fungal genera 
in the oral cavity by using multitag pyrosequencing 
of panfungal ITS primers. A consensus on genus-
level members of oral fungi (core mycobiome) was 
thereby reached. This study was the fi rst to demon-
strate not-yet- cultivated fungi in the oral cavity. It 
was suggested that such organisms could be the rea-
son for failure in the treatment of oral fungal infec-
tions. Consensus members of the saliva microbiome 
were  Candida / Pichia ,  Cladosporium / Davidiella , 
 Alternaria / Lewia ,  Aspergillus / Emericella / Euroti
um ,  Fusarium / Gibberella ,  Cryptococcus / Filoba
sidiella , and  Aureobasidium . Weaker candidates 
for consensus inclusion were  Saccharomyces , 
 Epicoccum , and  Phoma . Interestingly,  Malassezia  
species, that are important commensals of human 

skin, were for the fi rst time included in the oral 
core mycobiome. The oral fungal community 
showed a consistent intraindividual stability over 
time, but there was high interindividual variability 
(Monteira-da-Silva et al.  2014 ). 

 Interactions between fungi and bacteria, e.g., 
between  Candida  and streptococci, may infl uence 
oral health (Diaz et al.  2014 ). A symbiotic relation-
ship between  S. mutans  and  C. albicans  has been 
found to synergize virulence of plaque biofi lms 
in vivo (Falsetta et al.  2014 ). Thus  S. gordonii  glu-
cosyltransferase promotes biofi lm interactions 
with  C. albicans  (Ricker et al.  2014 ). Fungi proba-
bly have a role in maintaining a balance between 
microorganisms and the host (Krom et al.  2014 ).  

10.1.5     Protozoa 

 Protozoa are parts of the normal microbiome. 
The best known are  Entamoeba gingivalis  and 
 Trichomonas tenax  (Vozza et al.  2005 ). They are 
present in subjects who neglect their oral hygiene 
and predominantly in subgingival plaque from 
patients with periodontal disease (Lange et al. 
 1983 ). Both have been linked to gingivitis and 
they were once considered pathogens.  T. tenax  has 
been correlated with xerostomia, burning mouth, 
and periodontal pockets (Kurnatowska  1993 ; 
Kurnatowska and Kurnatowski  1998 ). Later, it has 
become clear that these organisms increase when 
the oral hygiene deteriorates. Their increase may 
be due to nutrients accessible from debris and 
bacteria (Wade  2013 ). It is interesting though that 
metronidazole, frequently used as an effective sup-
plement in the treatment of periodontitis, is active 
against both  Entamoeba  and  Trichomonas .   

10.2     Techniques to Analyze 
the Oral Microbiota 

 It should be realized that every technique that has 
been used to detect oral microorganisms has its 
strengths and limitations. Not all of these tech-
niques will be dealt with here. Microscopy and 
culture were long standard methods for assess-
ment of the oral microbiota. Later, culture helped 
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us become more familiar with this microbiota 
when methods for recovery of anaerobic bacteria 
were developed. However, it soon became clear 
that only half of the oral microbiota could be cul-
tured. Therefore culture-independent methods 
were exploited, particularly DNA-DNA hybrid-
ization and PCR-based assays. DNA-DNA 
hybridization (checkerboard) relied though on 
bacteria that could be cultivated for the making of 
whole genomic probes (Socransky et al.  1994 ), 
but reverse-capture checkerboard hybridization 
did not (Paster et al.  1998 ). Checkerboard DNA- 
DNA hybridization was helpful delineating 
 bacteria clinically related to periodontitis such as 
the red and the orange complex (Socransky et al. 

 1998 ). Since there was reason to believe that also 
not-yet-cultivated bacteria could be involved in 
disease methods, targeting the small subunit 
(16S) ribosomal RNA molecule was used. These 
efforts have provided a vast amount of knowl-
edge and description of the oral microbiota. They 
have also shown that the oral microbiota is not 
uniform but varies from site to site (Fig.  10.2 ). 
The information has been collected in the fi rst 
curated collection of a human-associated micro-
biome, HOMD, which provides a description of 
the organisms and their genomics together with a 
16S rRNA identifi cation tool (Dewhirst et al. 
 2010 ), and later in the CORE database that is a 
phylogenetically curated  16S rDNA  database of 

  Fig. 10.2    Site specifi city of predominant bacterial spe-
cies in the mouth. Bacterial species or phylotypes were 
selected on the basis of their detection in multiple subjects 
for a given site. Distributions of bacterial species in oral 
sites among subjects are indicated by the columns of 
boxes to the right of the tree as follows: not detected in 

any subject ( clear box ), < 15 % of the total number of 
clones assayed ( yellow box ), and ≥ 15 % of the total num-
ber of clones assayed ( green box ). The 15 % cutoff for low 
and high abundance was chosen arbitrarily. Marker bar 
represents a 10 % difference in nucleotide sequences 
(From Aas et al.  2005 )       

 

10 The Oral Microbiome in Health and Disease



102

the core oral microbiome (Griffen et al.  2011 ). 
Although  16S rRNA  gene amplifi cation and 
Sanger sequencing signifi cantly increased our 
knowledge of the major components of the oral 
microbiota, they did not provide information of 
the entire microbiota. Organisms that are present 
in low amounts were fi rst revealed by pyrose-
quencing (next-generation sequencing methods).

10.2.1       HOMINGS 

 HOMINGS (  http://homings.forsyth.org    ) apply 
the speed and effi ciency of the next-generation 
sequencing using the Illumina platform. Almost 
600 oral bacterial taxa can be identifi ed with this 
technique which provides genus-level identifi ca-
tion of the remaining sequences for 129 genera. It 
is thus more comprehensive than its predecessor 
HOMIM which gave simultaneous microarray 
detection of about 270 of the most prevalent, cul-
tivated, and not-yet-cultivated oral bacterial 
species.  

10.2.2     Oligotyping Analysis 
of the Human Oral 
Microbiome 

 A limited taxonomic resolution has often pre-
vented understanding the census of bacterial pop-
ulations in healthy individuals. By using  16S 
rRNA  gene sequence data from nine sites in the 
oral cavity, Eren et al. ( 2014 ) identifi ed 493 oli-
gotypes from their V1-V3 data and 360 oligo-
types from the V3-V5 data. The oligotypes were 
associated with species-level taxon names by 
comparing with HOMD. The authors discovered 
closely related oligotypes differing sometimes by 
only a single nucleotide that showed widely dif-
ferent distributions among oral sites and samples. 
Different habitat distributions of closely related 
oligotypes indicated a level of ecological and 
functional biodiversity not recognized previ-
ously. This technique combined with Shannon 
entropy has the capacity to analyze entire micro-
biomes and discriminate between closely related 
but distinct taxa in different habitats.  

10.2.3     High-Throughput Sequencing 
(Pyrosequencing) 

 16S rRNA sequencing using next-generation 
sequencing has provided a wealth of new knowl-
edge on the genetic composition of the oral micro-
biome in health and disease. The most useful of 
these approaches have relied on the 454 (Roche) 
pyrosequencing platform. In Table  10.1 , the advan-
tages and limitations of different high- throughput 
sequencing platforms are summarized.

10.2.4        Whole-Genome Shotgun 
Sequencing 

 Whole-genome shotgun sequencing (WGS) can 
provide highly accurate sequences in an economic 
way and has a fast turnaround (Hasan et al.  2014 ). 
WGS metagenomic sequencing has proved to be a 
powerful tool for studying the human microbiome. 
At present, WGS metagenomic data contain mil-
lions to billions of short reads and offer an unprec-
edented opportunity to identify species at or near 
strain level and their abundance.  

10.2.5     Single-Cell Genome 
Sequencing 

 Remarkable in the identifi cation of bacteria is sin-
gle-cell genome sequencing which enables not 
only identifi cation of microbes but links their func-
tions to species, which is not feasible with metage-
nomic techniques. It also analyzes low- abundance 
species that can be lost in  community- based analy-
ses and can be useful in complementing metage-
nomic analyses (Yilmaz and Singh  2012 ). An 
ultimate goal of single-cell sequencing is recovery 
of genome sequences from each cell within an 
environment (Clingenpeel et al.  2015 ).  

10.2.6     Metatranscriptomics 
of the Oral Microbiome 
during Health and Disease 

 Although new techniques have revealed what 
organisms are present in the oral microbiome, 
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they do not tell anything about the viability of the 
organisms or their functions. Therefore efforts 
have been made recently to use microbiomics, 
metagenomics, and transcriptomics to better 
understand the role of the oral microbiome in 
health and disease. This may also help us to more 
effi ciently prevent these diseases and provide a 
personalized treatment. 

 Our indigenous microbiota is closely linked to 
health. However, when disrupted the same micro-
biota can induce disease. Such diseases are charac-
terized by changes in the relative amounts of 
different species. While such changes in the 
microbiota occur, it is also clear that the members 
of the microbial communities can differ markedly 
between individuals (Ge et al.  2013 ). This applies 
to the microbiota of both healthy and diseased 
individuals. In a study based on nine patient-
matched healthy and diseased samples, 160,000 
genes were compared in healthy and diseased peri-
odontal communities (Jorth et al.  2014 ). Massive 
parallel RNA sequencing was used to demonstrate 
changes in the composition and gene expression of 
the microbiota in health and periodontitis. It was 
shown that both communities exhibited defi ned 
differences in metabolism that were conserved 
between patients. In contrast, the metabolic gene 
expression of individual species within the com-
munity varied greatly between patients. Disease-
associated communities also showed conserved 
changes in metabolic and virulence gene expres-
sion. Thus, by using transcriptional profi ling the 
authors could determine changes in the composi-
tion and gene expression of the human oral micro-
biota in health and periodontitis. 

 By using metatranscriptome analysis of peri-
odontal biofi lm in vitro, it was demonstrated that 
addition of periodontal pathogens to a healthy 
biofi lm multispecies model had a drastic effect in 
changing the gene expression profi les of the 
organisms of the healthy community (Frias- 
Lopez and Duran-Pinedo  2012 ). Chaperones 
were highly upregulated, possibly due to stress, 
and there was a signifi cant upregulation of ABC 
transporter systems and putative transposases. 
With pathogens present, proteins related to 
growth and division, as well as a large portion of 
transcription factors, were upregulated.  

10.2.7     Community-Wide 
Transcriptome Analysis 
of the Oral Microbiome 
in Subjects With and Without 
Periodontitis 

 Our knowledge on the in situ activities of the 
organisms and their interaction with each other 
and with the environment is limited. Such knowl-
edge may be obtained by characterizing gene 
expression profi les of the microbiome. In situ 
genome-wide transcriptome variation was stud-
ied in the subgingival microbiome of six peri-
odontally healthy individuals and seven 
individuals with periodontitis (Duran-Pinedo 
et al.  2014 ). The overall metabolic activities 
defi ning disease were related to iron acquisition, 
lipopolysaccharide synthesis, and fl agella syn-
thesis. It was both noteworthy and unexpected 
that the majority of virulence factors upregulated 
in periodontitis came from organisms not consid-
ered as major pathogens. Also remarkable was 
that one of the organisms with characterized gene 
expression profi le was from the uncultured can-
didate division TM7 exhibiting upregulation of 
putative virulence factors in disease. This dem-
onstrated the importance of in situ metatranscrip-
tomic studies for studying the possible etiological 
role of uncultured organisms. Unexpectedly, no 
viral sequence was detected in either the metage-
nome or the metatranscriptome.   

10.3     Oral Microbiota in Health 

 The oral microbiota in health is highly diversifi ed. 
It consists of approximately 600 predominant spe-
cies (Dewhirst et al.  2010 ) that contribute to the 
health and physiology of the oral cavity. Two main 
types of tissues are colonized: soft and hard tis-
sues. It is also clear that the oral cavity contains 
different niches for bacterial growth with different 
bacterial profi les that are site and subject specifi c 
(Fig.  10.2 ). Even close sites such as the dorsal and 
lateral sides of the tongue dorsum (Aas et al.  2005 ) 
and the vestibular and lingual surfaces of incisors 
and canines (Simon-Soro et al.  2013 ) have dif-
ferent microbiotas. The oral microbiota has, due 
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to its continuum with the external environment, 
developed features to counteract challenges from 
foreign bacteria. There is probably a core microbi-
ome for health which is common to all individuals 
(Zarco et al.  2012 ). In addition, there is a variable 
microbiome unique to individuals depending on 
lifestyle and physiological differences. Supporting 
the existence of a core microbiome was that iden-
tical bacterial sequences were detected in the oral 
cavities of unrelated healthy persons (Zaura et al. 
 2009 ). Transcription profi ling defi ned a functional 
core microbiota of nearly 60 species in dental 
plaque (Peterson et al.  2014 ), and Wang et al. 
( 2013 ) described a core disease-associated com-
munity in periodontitis by metagenomic sequenc-
ing. A study based on a large set of near full-length 
sequences in 10 healthy individuals identifi ed 10 
variables shared by 11 bacterial species (Bik et al. 
 2010 ). However, there were also signifi cant inter-
individual differences. This supported the pres-
ence of both a core and a variable microbiome in 
the oral cavity. Based on several literature reports 
(Zarco et al.  2012 ) the major genera with the larg-
est representation in the oral cavity were found to 
include  Streptococcus ,  Veillonella ,  Granulicatella , 
 Gemella ,  Actinomyces ,  Corynebacterium ,  Rothia , 
 Fusobacterium ,  Porphyromonas ,  Prevotella , 
 Capnocytophaga ,  Neisseria ,  Haemophilus ,  Trepo-
nema ,  Lactobacterium ,  Eikenella ,  Leptotrichia , 
 Peptostreptococcus ,  Staphylococcus ,  Eubacteria , 
and  Propionibacterium . 

10.3.1     Microbiota in Periodontal 
Disease 

 Over the years, there have been several mile-
stones and hypotheses on the microbial etiol-
ogy of periodontitis (Hajishengallis and Lamont 
 2012 ). Etiologies related to specifi c organisms 
(amoeba, spirochetes, fusiforms, or strepto-
cocci), nonspecifi c plaque hypothesis/mixed 
anaerobic infections, microbial shift in periodon-
titis, specifi c plaque hypothesis, red complex 
bacteria ( Porphyromonas gingivalis ,  Tannerella 
forsythia ,  Treponema denticola ), ecological 
catastrophe hypothesis, disruption of periodon-
tal tissue homeostasis, keystone pathogens, and 

 polymicrobial synergy and dysbiosis (PSD) can 
be mentioned. This variability may partly be con-
sidered results of increased knowledge related to 
instrumental analytical improvements. However, 
rather than mentioning the microorganisms 
involved under each etiological heading, space will 
be devoted here to the most recent concept, PSD. 

 In the PSD model, it is recognized that the 
gingival crevice is colonized by a diverse micro-
biota where compatible microorganisms assem-
ble into heterotypic communities. These are in 
equilibrium with the host. The organisms are 
controlled by the host, despite their production of 
toxic products such as proteases, overgrowth, and 
pathogenicity. Noteworthy, the microbial compo-
nents of these communities vary over time from 
person to person and from site to site. The viru-
lence of the entire community is increased by 
keystone pathogens such as  P. gingivalis  which 
can have interactive communication with acces-
sory pathogens like the  mitis  group of strepto-
cocci, thereby orchestrating infl ammatory disease 
by remodeling a normally benign microbiota into 
a dysbiotic one (Hajishengallis and Lamont 
 2012 ; Hajishengallis et al.  2012 ). The host 
immune response is not impaired and the abun-
dance of the dysbiotic community increases, 
destroying tissue homeostasis and causing 
destruction of periodontal tissues. PSD is 
 probably not the last model of periodontitis that 
will be launched, but it is attractive from the point 
that it reconciles the joint effects of a synergetic 
and a dysbiotic microbial community, rather than 
select organisms. 

 In terms of the microorganisms related to 
periodontitis, it should be mentioned that it is 
now moderate evidence in the literature to sup-
port the association of 17 species or phylo-
types from the phyla Bacteroidetes, Candidatus 
Saccharibacteria, Firmicutes, Proteobacteria, 
Spirochaetes, and Synergistetes with periodon-
titis. Also the archaea domain seems to have an 
association with this disease (Pérez-Chaparro 
et al.  2014 ). As already mentioned, every human 
body carries a personalized microbiome that is 
important for maintaining health but also for elic-
iting disease (Zarco et al.  2012 ; Califf et al.  2014 ). 
According to Schwarzberg et al. ( 2014 ) who used 
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next- generation  sequencing, there is not a single 
microbial composition that represents a healthy 
periodontal state and that recovery from peri-
odontal disease appears to shift from a personal-
ized disease state to a personalized healthy state. 
Although there may be a consensus that particu-
lar communities will shift according to disease, 
there may not be a healthy part of these bacteria 
that is consistent across individuals. In contrast 
to this Griffen et al. ( 2012 ), using 16S multiple 
region pyrosequencing, found differences between 
health- and periodontitis-associated bacterial com-
munities at all phylogenetic levels and distinct 
community profi les. Spirochaetes, Synergistetes, 
and Bacteroidetes were prominent phyla in dis-
ease, while Proteobacteria was detected at higher 
levels in healthy controls. Their data confi rmed the 
association of species such as  P. gingivalis ,  T. den-
ticola , and  T. forsythia  with disease, but  Filifactor 
alocis  appeared to be at least as prevalent and 
disease associated. Abusleme et al. ( 2014 ), using 
454 pyrosequencing of  16S rRNA  gene libraries, 
found that periodontitis communities were high 
in Spirochaetes, Synergistetes, Firmicutes, and 
Chlorofl exi among other taxa, while the propor-
tion of Actinobacteria, especially  Actinomyces , 
was more abundant in health. 

 A number of bacterial taxa and genes have 
been found to differ between health and disease. 
Until now data sets across studies have not been 
compared directly, and we do not know if the 
microbial variations observed across studies are 
consistent. Kirst et al. ( 2015 ) used 16S rRNA 
sequencing to survey the subgingival microbiota 
in 25 subjects with chronic periodontitis and 25 
controls and compared their data with those of the 
Human Microbiome Project (HMP) (Turnbaugh 
et al.  2007 ; Griffen et al.  2012 ; Abusleme et al. 
 2013 ). They found a signifi cantly altered micro-
biota with decreased heterogeneity in periodon-
tal disease. Comparison with the other data sets 
showed that the subgingival microbiota clus-
tered by study. However, differences between 
periodontal health and disease were greater than 
the technical variations between the studies. 
Two microbial clusters were detected. One was 
driven by  Fusobacterium  and  Porphyromonas  
and was associated with  periodontitis; the other 

consisted of  Rothia  and  Streptococcus  and was 
related to health. 

 In a study by Ly et al. ( 2014 ), the oral bacte-
riophage membership was signifi cantly changed 
in persons with periodontitis compared to healthy 
subjects, mainly as a result of abundance of myo-
viruses in subgingival plaque. Myoviruses are 
mainly lytic. Their predominance in subjects 
with periodontitis suggested an active role for 
viruses in driving bacterial diversity in the peri-
odontal pocket. They were more abundant than 
siphoviruses which generally have a lysogenic 
lifestyle. In supragingival plaque, however, there 
was no difference between myoviruses and 
siphoviruses. The altered ecology suggested for 
bacterial involvement in periodontitis could 
therefore also involve bacteriophages.  

10.3.2     Biofi lm Architecture 
in Periodontitis 

 Sampling of dental plaque will destroy its archi-
tecture making it diffi cult to conclude fi rmly on 
the relative pathogenic role of taxa. When dif-
ferent materials were kept for several days in 
periodontal pockets of patients with periodon-
titis and examined with electron microscopy 
and fl uorescence in situ hybridization (FISH), 
those parts of carriers extending into the deep-
est zone of the pocket were mainly colonized 
by spirochetes and Gram-negative bacteria 
(Wecke et al.  2000 ). Those kept in shallower 
regions were colonized by streptococci. The 
methods allowed detailed analysis of the archi-
tecture of biofi lms and identifi cation of putative 
periodontal pathogens with single-cell resolu-
tion. Previous investigations had revealed pres-
ence of novel yet uncultivated organisms at a 
high frequency in periodontal pockets (Moter 
et al.  1998 ). All patients with rapidly progres-
sive periodontitis ( n  = 53) harbored oral trepo-
nemes that were either new species such as  T. 
maltophilum  or uncultivable phylotypes. When 
enamel slices were used to examine the micro-
biota development of dental plaque, channels 
or pores fi lled with extracellular polymers were 
seen throughout the biofi lm (Wood et al.  2000 ). 
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Staining and confocal microscopy showed that 
the most viable and active areas of the biofi lm 
were in the central parts and parts lining the 
channels. Plaque biofi lms in the gingival crev-
ice had a thin densely adherent layer on the sur-
face of the root, while the bulk of the biofi lm 
had a looser structure particularly where there 
was contact with the epithelial lining of the gin-
gival crevice or periodontal pocket (Fig.  10.3 ). 
In outer layers structures such as corncob, test-
tube brush, or rosette formations were detected 
together with not-yet-cultivated organisms such 
as spirochetes and members of the TM7 phy-
lum (Fig.  10.4 ). In the plaque itself interact-
ing bacteria exhibited a spatial organization, 
e.g., between streptococci and  Fusobacterium 
nucleatum .

10.3.3         Bacteria Associated 
with Caries 

 Recent theories divide the dental caries process 
into three reversible stages: the dynamic stabil-
ity stage, the acidogenic stage, and the aciduric 
stage (Takahashi and Nyvad  2008 ,  2011 ; Nyvad 
et al.  2013 ). The microbiota on clinically sound 
enamel consists mainly of non- mutans  strepto-
cocci and  Actinomyces . Here acidifi cation is mild 
and infrequent which is refl ected in a balanced 
demineralization/remineralization or a shift in 
the mineral balance toward a net mineral gain 
(dynamic stability stage). Acidifi cation becomes 
moderate and frequent when sugar is added. 
This may increase the acidogenicity and acidur-
ance of non-  mutans   bacteria. There can also be a 
selective increase in more aciduric strains such 
as low pH non- mutans  streptococci. In the end, 
this will shift the demineralization/remineraliza-
tion balance, so that a net mineral loss occurs, 
leading to initiation/progression of dental caries 
(acidogenic stage). If the acidogenic conditions 
become severe and prolonged, aciduric bacte-
ria will predominate by acid-induced selection 

  Fig. 10.3    Fluorescence in situ hybridization (FISH) of a 
subgingival biofi lm showing the close spatial relationship 
between facultatively anaerobic  Streptococcus  spp. 
( orange ) and obligately anaerobic  Fusobacterium  spp. 
( magenta ). Subgingival biofi lms of periodontitis patients 
were obtained using a carrier system. Bacteria were visu-
alized in 3 μm cross sections of the biofi lms using the fol-
lowing probes simultaneously: probe EUB338, which 
detects most bacteria ( green ); probe Strep1⁄2, which 
shows streptococci; probe FUS664, which detects most 
 Fusobacterium  spp.; and nonspecifi c nucleic acid stain 
DAPI ( blue ). Details of oligonucleotide probes are avail-
able at probeBase (  http://www.microbial-ecology.net/pro-
bebase/    ) (From Marsh et al. ( 2011 ) with permission)       

  Fig. 10.4    High numbers of group I treponemes ( orange ) 
in a subgingival biofi lm, most of which are yet uncultured. 
The carrier section was hybridized with probe TRE I 
together with FUNU for detection of  Fusobacterium 
nucleatum ⁄ canifelinum  ( light blue ), which forms a cluster 
in the lower left corner, and DAPI ( dark blue ) (From 
Marsh et al. ( 2011 ) with permission)       
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(aciduric stage). At this stage,  mutans  strepto-
cocci, lactobacilli, aciduric strains of non- mutans  
 streptococci,  Actinomyces , bifi dobacteria, and 
yeasts may become dominant. 

 Different components of the microbiota 
may play different roles in initial enamel 
lesions compared to caries extension into den-
tin. The hydroxyapatite-rich enamel likely 
requires a more acidic microbiota for demin-
eralization than dentin. The highly acidogenic 
species include  S. mutans , acidogenic non-
 mutans  streptococci,  Actinomyces  species, and 
 Bifi dobacterium / Scardovia  species (Chalmers 
et al.  2015 ), whereas caries progression into 
dentin may involve proteolysis by  Prevotella  
species of proteins denatured by acidic species 
(Hashimoto et al.  2011 ). It seems likely that the 
proteolytic component also will lead to pulp tis-
sue necrosis considering the frequent detection of 
Gram-negative taxa in root canal infections. 

 As for the microorganisms involved in caries, 
direct pyrosequencing of samples from dental 
cavities showed that cavities are not dominated 
by  S. mutans  but contain a complex community 
of bacterial species (Belda-Ferre et al.  2012 ). 
This supported previous 16S rRNA sequencing 
studies (Corby et al.  2005 ; Aas et al.  2008 ) and 
the idea that dental caries is a polymicrobial dis-
ease. Pyrosequencing also supported that oral 
bacteria are specifi c at different stages of caries 
progression (Jiang et al.  2014 ). In children with 
severe dental caries, the genera  Streptococcus , 
 Granulicatella , and  Actinomyces  had increased 
signifi cantly (Jiang et al.  2013 ). 

 By performing comprehensive 16S DNA pro-
fi ling of the dental plaque microbiome of both 
caries-free and caries-active microbiomes, the 
signatures associated with dental health outnum-
bered those associated with dental caries by 
nearly twofold (Peterson et al.  2013 ). It was sug-
gested that a shift in the abundance of groups of 
species, rather than the appearance of new cario-
genic species or the pathogenicity of a single spe-
cies, best describes the distinction between 
caries-free and caries-active microbiota. 

 Detection of major bacteria present in dental 
caries needs to be followed by information on 
the metabolic activity of the biofi lm. Therefore, 

approaches such as metagenomic, metatranscrip-
tomic, metaproteomic, and metabolomic analysis 
should be used to provide better information on the 
dynamic caries process. The precise determina-
tion of function requires the analysis of individual 
cells and cultures. In this context, it is important 
that previously uncultured microorganisms are 
being brought to culture. Emphasis should also be 
made to obtain site-specifi c sampling of microbial 
communities for studying the molecular ecology 
in situ of caries (Dige et al.  2014 ). 

 The next-generation sequencing technique 
was combined with a metagenomic technique 
and showed that individuals who had never suf-
fered from caries had an overrepresentation of 
functional genetic categories such as genes for 
antimicrobial peptides and quorum sensing. They 
did not carry  mutans  streptococci (Belda-Ferre 
et al.  2012 ). Interestingly, several isolates belong-
ing to healthy conditions inhibited the growth of 
cariogenic bacteria when they were co-cultured. 
Thus, the metagenomic approach enabled quanti-
tation of the most abundant bacteria and con-
fi rmed presence of bacteria with a protective 
effect against cariogenic species.  

10.3.4     Architecture of Biofi lms 
in Caries 

 In occlusal caries, FISH showed a distinct dif-
ference in the bacterial composition between 
different ecological niches in the caries pro-
cess (Dige et al.  2014 ). Biofi lms located at the 
entrance of fi ssures had an inner compact layer 
of microorganisms structured in palisades often 
with a columnar pattern (Fig.  10.5 ). They were 
often identifi ed as  Actinomyces  and were cov-
ered by a loosely structured bacterial layer con-
sisting of various genera that were similar to 
supragingival biofi lm. Within the proper fi ssure 
the biofi lm appeared less metabolically active as 
estimated from low fl uorescence signal intensity 
and presence of material of nonbacterial origin. 
Invasion of bacteria, often  Lactobacillus  and 
 Bifi dobacterium  spp., into dentinal tubules was 
seen only at advanced stages of caries with cavity 
formation.
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  Fig. 10.5    ( a – c ) Images of in vivo biofi lms on dental 
occlusal surfaces. ( a – c ) Toluidine blue-stained sections 
showing an overview of occlusal surfaces with shallow 
fi ssure-like morphology ( a ), groove-like morphology, ( b ) 
and cavitated caries lesion ( c ).  Arrows  refer to the areas 
illustrated in  b ,  d ,  i ,  j , and  l , respectively. ( d – i ) Confocal 
laser scanning microscopy images of microbial coloniza-
tion patterns from above the entrance of shallow fi ssures 
and groove-like occlusal surfaces. In all confocal laser 
scanning microscopy images,  red  represents all bacteria 
that are neither  Streptococcus  spp. ( yellow / green  in  d – i ) 
nor  Actinomyces  spp. ( purple / magenta  in  e ,  g – i ) nor 

 Fusobacterium  spp. ( purple / magenta  in  f ). Note that the 
biofi lm could be divided into an inner compact layer of 
palisade-like bacteria ( d – h ) often with a columnar pattern 
( g ,  h ) on top of which a looser structured layer ( d ,  e ,  f ,  h , 
 i ) with non-stained voids ( d ,  i ) was seen. The outermost 
part of the decalcifi ed enamel showed a thin auto- 
fl uorescent layer without bacteria ( blue  or  green  in  d ,  g ), 
and invaginations of developmental origin were often 
fi lled with bacteria ( d ,  g ,  arrows ). All images are oriented 
with the biofi lm surface upward. Scale bars: 500 μm  a – c ) 
and 25 μm ( d – i ) (Adopted from Dige et al. ( 2014 ) with 
permission)       
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10.3.5        Future Chairside Diagnostics 
of Dental Plaque 

 Molecular studies have informed us about the 
great complexity of the oral microbiota both in 
health and disease, and we have been able to 
study microbial communities on a large scale due 
to advancements in sequencing and bioinformat-
ics. They have also pointed out that specifi c 
organisms are not responsible for disease but 
rather rely on the supplementary action of other 
organisms. Recent studies have further taught us 
that a species can comprise strains of different 
virulence. This throws doubt on the species as a 
reasonable diagnostic unity (Wade  2013 ). The 
development of molecular diagnostics has been 
so fast that it seems reasonable now to turn to 
functions of the microbiota, rather than to what 
organisms are present. This makes a great chal-
lenge to chairside diagnostics of dental plaque 
which should try to implement the new knowl-
edge into their procedures, rather than focus on a 
handful of select organisms.      
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      Salivary Microbiota in Oral Health 
and Disease                     

     Daniel     Belstrøm     

    Abstract  

  The salivary microbiota is a highly complex microbial community, pre-
sumably comprised by bacteria shed from various oral surfaces, and since 
saliva can be easily and noninvasively collected, compositional changes of 
the salivary microbiota may potentially serve as a biomarker used for 
screening of oral and systemic diseases. This chapter describes the compo-
sition of the salivary microbiota in oral health and disease, with special 
emphasis on recent studies that employed modern molecular methods for 
analysis of the salivary microbiota.  

11.1         Salivary Microbiota 
in Oral Health 

 The salivary microbiota contains a unique indi-
vidualized bacterial community shaped by con-
tentious interaction with the surroundings, as 
bacteria are shed from different oral locations 
and captured in saliva. Interestingly, 1 ml of 
saliva contains >100 million bacteria, which 
means that a person with a normal saliva fl ow of 
750 ml will excrete >5 g of solid bacteria through 
saliva in 24 h (Curtis et al.  2011 ). However, 
although the salivary microbiota is highly diverse, 
bacterial DNA has been reported to constitute 

only 0.73 % of total DNA present in saliva 
(Lazarevic et al.  2012 ). 

 The composition of the salivary microbiota in 
oral health has been addressed in detail. A com-
prehensive study from 2012 performed as part of 
the Human Microbiome Project analyzed and 
compared bacterial community profi les in sam-
ples collected from 10 different sites of the diges-
tive tract in each of more than 200 healthy 
individuals (Segata et al.  2012 ). The study 
reported that the salivary microbiota in oral 
health mostly resembled that of the throat, the 
tonsils, and dorsum of the tongue. Firmicutes, 
Bacteroidetes, Proteobacteria, and Fusobacteria 
were described as the predominant phyla consti-
tuting 40 %, 25 %, 20 %, and 10 % of the micro-
biota, respectively. The predominant genera were 
 Streptococcus  and  Veillonella  accounting for 20 
and 15 % of the microbiota in saliva. Interestingly, 
major differences between supra- and  subgingival 
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microbiota and salivary microbiota were evident, 
indicating that bacteria shed from these surfaces 
only accounts for a minor fraction of the salivary 
microbiota in oral health. Recently, next- 
generation sequencing was used to investigate 
saliva from two adults, and fi ve datasets from the 
Human Microbiome Project, and identifi ed more 
than 175 bacterial species present in saliva in oral 
health. Furthermore, it was estimated that the 
predominant microbiota of saliva comprised as 
much as 900 different bacterial species (Hasan 
et al.  2014 ), indicating that the salivary microbi-
ota is probably far more complex than hitherto 
anticipated. In that respect, an interesting fi nding 
was reported in 2014, as an investigation of saliva 
samples from 97 healthy children aged 6–12 
years revealed that 43 % of the samples were 
culture-positive for  Streptococcus aureus , and in 
6 % of the samples,  S. aureus  were identifi ed at a 
level of >10 3  CFU/mL, proposing that saliva may 
harbor low proportions of pathogens as commen-
sal members of the salivary microbiota in oral 
health (Petti et al.  2014 ). 

 It has been suggested that composition of the 
salivary microbiota is infl uenced by geographic 
location and individual lifestyle. To elucidate this 
perspective, an extensive study from 2010 ana-
lyzed saliva samples collected from 120 individ-
uals living in each of 12 different locations 
worldwide, i.e., 10 individuals from each loca-
tion, by means of 16S rRNA sequencing. A total 
of 101 genera were identifi ed, and out of these 39 
were not previously identifi ed in the oral cavity. 
Furthermore, the study reported a major diversity 
of the salivary microbiota, but it was concluded 
that this diversity was only minimally infl uenced 
by geographic location, since the diversity among 
individuals from the same location was almost 
the same as between individuals living at differ-
ent locations (Nasidze et al.  2009 ). Another 
report by the same group addressed composition 
of salivary microbiota in samples collected from 
two geographically different industrialized 
African populations and compared these with 
saliva samples from  Batwa Pygmies , an isolated 
hunter society from Uganda. This study revealed 
that the salivary microbiota from the  Batwa 
Pygmies  expressed signifi cantly more diversity 

than samples from the corresponding industrial-
ized individuals and also reported fi nding of 40 
bacterial genera in samples from  Batwa Pygmies  
that had not previously been identifi ed in the oral 
cavity. Therefore, the authors suggested that the 
differences observed could be a result of a differ-
ent diet and lifestyle between the populations 
investigated (Nasidze et al.  2011 ). Analogous, in 
a recent publication from 2014, data based on 
Human Oral Microbe Identifi cation Microarray 
(HOMIM) analysis of saliva samples from 293 
orally healthy adult Danes suggested that saliva 
microbiota in oral health is infl uenced by indi-
vidual smoking habit as well as socioeconomic 
status. However, in this particular study, no asso-
ciation was identifi ed between different dietary 
habits and composition of the salivary microbiota 
(Belstrøm et al.  2014c ). Thus, future studies are 
warranted to further elucidate the impact of diet 
and lifestyle on the composition of the salivary 
microbiota. The oral microbiota, including that 
of saliva, is developing from the moment of birth, 
and it has been hypothesized that during fetal life 
the fetus may in fact be exposed to the oral micro-
biota, thereby facilitating an ability of the new-
born to better distinguish microbial friend from 
foe after birth (Zaura et al.  2014 ). Interestingly, 
the salivary microbiota has been demonstrated to 
be relatively simple in a newborn child, and sali-
vary microbiota has been reported insignifi cant 
from stool microbiota of the same newborn until 
15 days after birth (Costello et al.  2013 ). 
Furthermore, a delayed compositional differenti-
ation of the salivary microbiota in low-birth-
weight children has been demonstrated (Costello 
et al.  2013 ). In a recent study, saliva samples 
from newborn babies and saliva samples from 
their mothers/primary caregivers were collected 
and compared, and based on the data presented, 
high diversity of salivary microbiota in both 
study groups were evident. However, higher 
diversity was reported in samples from adults, as 
27 genera were observed with greater prevalence 
in saliva from adults, whereas  Streptococcus  was 
the only genus signifi cantly more prevalent in 
saliva from newborns (Cephas et al.  2011 ). 
Likewise, in another study from 2011, saliva 
samples from 74 children (aged 3–18) were ana-
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lyzed by pyro-sequencing, and it was demon-
strated that the composition of salivary microbiota 
was altered through transition from deciduous 
dentition through mixed dentition until perma-
nent dentition, as the proportion of Firmicutes 
declined, and proportions of Bacteroidetes and 
Proteobacteria as well as total bacterial diversity 
increased (Crielaard et al.  2011 ). Interestingly, 
recent studies have revealed that the salivary 
microbiota may be altered in patients with infl am-
matory bowel disease (Said et al.  2014 ), which in 
combination with evidence highlighting dynamic 
associations between microbial communities in 
different anatomic sites (Ding and Schloss  2014 ) 
suggest that alteration in relation to local and sys-
temic diseases may stress the salivary microbiota, 
possibly resulting in detectable compositional 
alterations of the salivary microbiota. Such alter-
ations could potentially be used for identifi cation 
of disease- prone individuals at early stages of 
disease.  

11.2     Salivary Microbiota 
in Subjects 
with Periodontitis 

 Since the introduction of the bacterial complex 
theory by Socransky and coworkers ( 1998 ), 
much literature has focused on the etiologi-
cal association of specifi c putative periodon-
tal pathogens, i.e.,  Porphyromonas gingivalis , 
 Prevotella intermedia, Tannerella forsythia  
(previously  Tannerella forsythensis ),  Treponema 
denticola ,  Fusobacterium nucleatum , and 
 Campylobacter rectus  in chronic periodontitis 
and  Aggregatibacter actinomycetemcomitans  in 
aggressive periodontitis. Thus, several papers 
have addressed the presence of these specifi c 
bacteria as part of the salivary microbiota, and 
high salivary carriage of suggested periodontal 
pathogens has been reported in subjects with peri-
odontitis, but also in orally healthy individuals. 
For example, a large Finnish survey (n = 1294) 
employed a 16S rRNA-based PCR method with 
species-specifi c primers and reported that at least 
1 of 6 periopathogens ( T. forsythia, T. denticola, 
P. gingivalis, C. rectus, A. actinomycetemcomitans  

and  P. intermedia ) were identifi ed in 88 % of 
samples from this adult population, comprised 
of both periodontitis subjects and orally healthy 
individuals (Könönen et al.  2007 ). Likewise, 
another study employed 16S rRNA-based PCR 
for examining the presence of 6 periodontal 
pathogens ( Prevotella nigrescens, A. actino-
mycetemcomitans, P. gingivalis, T. forsythia, P. 
intermedia , and  T. denticola)  in saliva samples 
from 41 orally healthy children (6–13 years) and 
reported high carriage in saliva from healthy chil-
dren of  P. nigrescens  (80 %),  T. denticola  (32 %), 
 A. actinomycetemcomitans  (24 %), and  P. gin-
givalis  (12 %) (Kulekci et al.  2008 ). Moreover, 
high carriage of suggested periodontal pathogens 
was also reported in a group of one-year-old chil-
dren, regardless of whether they were delivered 
premature and with low birth weight or they were 
full-term infants (Merglova et al.  2014 ). Finally, 
another study using a 16S rRNA-based PCR 
identifi cation of 4 periodontal pathogens ( A. acti-
nomycetemcomitans, P. gingivalis, F. nucleatum , 
and  T. denticola ) in children with and without 
Fanconi’s anemia reported frequent detection of 
all 4 pathogens in saliva samples, with no sig-
nifi cant differences between healthy and diseased 
children (Lyko et al.  2013 ). Collectively these 
reports demonstrate that suggested periopatho-
gens may be present as commensal bacteria in 
the salivary microbiota. However, several studies 
have reported that the salivary microbiota may 
be altered in subjects with periodontitis (Feng 
et al.  2014 ; Liljestrand et al.  2014 ; He et al.  2012 ; 
Paju et al.  2009 ). For example, one study ana-
lyzing saliva samples from 1198 Finnish adults 
showed that presence of two or more suggested 
periodontal pathogens in saliva was associated 
with periodontitis as determined by number of 
teeth with deepened periodontal pockets (Paju 
et al.  2009 ). In line, an investigation using quan-
titative real- time PCR (qRT-PCR) for detection 
of 4 periodontal pathogens reported signifi cant 
association between salivary carriage of  P. gingi-
valis  and  P. intermedia  and chronic periodontitis 
compared to healthy controls (He et al.  2012 ). 
This fi nding was confi rmed in a recent report, as 
presence of 8 periopathogens were found to be 
higher in saliva samples from Chinese adults with 

11 Salivary Microbiota in Oral Health and Disease



118

chronic and aggressive periodontitis compared to 
healthy controls (Feng et al.  2014 ). Interestingly, 
a study from 2014 demonstrated that high sali-
vary carriage of  P. gingivalis  was associated with 
increased saliva and serum levels of  P. gingivalis - 
specifi c  IgA and IgG, and it was proposed that 
combined information about saliva carriage of  P. 
gingivalis  and markers of pathogen-specifi c host 
responses could be used as a biomarker for iden-
tifi cation of periodontitis patients (Liljestrand 
et al.  2014 ). This fi nding is in line with another 
study demonstrating that salivary carriage of  P. 
gingivalis,  in combination with salivary levels of 
matrix metalloproteinase (MMP)-8 and interleu-
kin 1-β (IL-β), was more strongly associated with 
periodontitis than one of the tree markers alone 
(Salminen et al.  2014 ). 

 Compositional changes of the salivary micro-
biota in relation to periodontitis have been inves-
tigated in a few studies recently (Yamanaka et al. 
 2012 ; Belibasakis et al.  2013 ; Belstrøm et al. 
 2014b ). In one study, saliva samples from sub-
jects with aggressive periodontitis (n = 21) and 
chronic periodontitis (n = 20) and saliva samples 
from healthy control subjects (n = 18) were com-
pared using quantitative fl uorescent in situ 
hybridization (FISH) analysis and demonstrated 
signifi cantly higher prevalence of  Synergistetes  
cluster A in samples from subjects with aggres-
sive and chronic periodontitis. This member of 
the salivary microbiota might therefore associate 
with periodontitis (Belibasakis et al.  2013 ). 
Additionally, an investigation from 2014, in 
which 586 saliva samples from an adult Danish 
population including 139 periodontitis patients 
and 447 healthy controls were analyzed by means 
of the HOMIM technology, identifi ed 12 
periodontitis- associated phylotypes of saliva. 
Interestingly, newly suggested periodontal patho-
gens as  Parvimonas micra  and  Filifactor alocis  
were associated with saliva samples from peri-
odontitis subjects, indicating that local bacterial 
accumulation during periodontitis may shed to, 
and be identifi ed in, saliva (Belstrøm et al. 
 2014b ). Finally, a recent investigation employed 
pyro-sequencing of 16S rRNA, for analysis of 
supragingival plaque samples and saliva samples 
collected from 19 subjects with periodontitis, 

before and after periodontal therapy. This study 
demonstrated that supragingival microbiota dif-
fers signifi cantly from salivary microbiota and 
described that whereas periodontal therapy 
resulted in a major shift in supragingival micro-
biota, the salivary microbiota was only modestly 
infl uenced by periodontal therapy. Therefore, the 
authors concluded that shifts of the salivary 
microbiota might not be a strong predictive mea-
surement of periodontal therapy (Yamanaka et al. 
 2012 ). Further large-scale interventional studies 
using advanced molecular methods are war-
ranted, to elucidate whether local bacterial altera-
tions in periodontitis lesions are refl ected by 
detectable compositional changes of the salivary 
microbiota.  

11.3     Salivary Microbiota 
in Subjects with Dental 
Caries 

 The salivary microbiota in relation to dental car-
ies has been addressed in multiple studies pri-
marily in children (Nurelhuda et al.  2010 ; Ling 
et al.  2010 ; Luo et al.  2012 ; Chaffee et al.  2014 ; 
Relvas et al.  2014 ) but also in adult populations 
(Yang et al.  2012 ; Wennerholm and Emilson 
 2013 ; Belstrøm et al.  2014a ). Based on their 
prominent position in the specifi c plaque hypoth-
esis and their suggested role of true caries patho-
gens (Parisotto et al.  2010 ), salivary levels of 
 Streptococcus mutans  and  Lactobacillus  species 
in relation to dental caries have been investigated 
using culture-based methods and different molec-
ular techniques (Guo and Shi  2013 ). Collectively, 
 S. mutans  and  Lactobacillus  have been reported 
to be present in saliva from children and adoles-
cents with dental caries as well as in orally 
healthy subjects. For example, one study reported 
that 47 % and 57 % of a population of adolescent 
had detectable amounts of  S. mutans  and lactoba-
cilli in saliva, respectively, and that 22 % and 
34 % of the population had >10 3  CFU/ml of these 
bacteria in saliva (Relvas et al.  2014 ). In another 
study, saliva samples were collected from 243 
mothers and their newborn infants until 24 
months postpartum, and presence of  S. mutans  
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and lactobacilli in saliva samples from the moth-
ers was compared to caries incidence in the chil-
dren at age 3. The study demonstrated that high 
levels of salivary carriage of  S. mutans  and lacto-
bacilli in mothers were associated with a cumula-
tive incidence ratio of 1.9 of the children having 
dental caries at age 3. Furthermore, it was dem-
onstrated that children of mothers with high sali-
vary carriage of  S. mutans  and lactobacilli were 
more likely to be  S. mutans - and  Lactobacillus - 
positive  themselves (Chaffee et al.  2014 ). 
Likewise, another report suggested that a com-
mercialized test facilitating semiquantitative 
measurements of salivary  S. mutans  levels could 
be used for caries risk assessment (Wennerholm 
and Emilson  2013 ). Furthermore, recent studies 
have revealed that the use of probiotics (Cannon 
et al.  2013 ) and meticulous oral hygiene instruc-
tion (Liu et al.  2014 ) may result in lowered pro-
portions of  S. mutans  in saliva of children. It has 
also been reported that salivary levels of  S. 
mutans  may be altered during different orthodon-
tic procedures (Ortu et al.  2014 ; Jung et al.  2014 ), 
and it has been reported that children with aller-
gic rhinitis have higher salivary levels of  S. 
mutans  than healthy children (Wongkamhaeng 
et al.  2014 ), which is why salivary levels of  S. 
mutans  may be altered as a consequence of other 
parameters than dental caries. 

 Other papers have addressed community pro-
fi les of saliva microbiota using advanced molecu-
lar methods and demonstrated that dental caries 
in children and adults associates with an altered 
salivary microbiota. Collectively, these studies 
suggest that alterations of saliva microbiota may 
be more profound than hitherto anticipated based 
on data from studies only analyzing  S. mutans  
and lactobacilli levels of saliva. Thus, alterations 
in richness and diversity of the salivary microbi-
ota in samples from subjects with dental caries 
have been reported, and other members of the 
salivary microbiota have been suggested to be 
associated with saliva samples from subjects with 
dental caries. In one study, saliva and supragingi-
val plaque samples from 3- to 6-year-old children 
with and without dental caries were investigated 
using high-throughput barcoded pyro- sequencing 
and PCR-denaturating grading gel  electrophoresis 

for analysis of bacterial diversity and reported 
identifi cation of 156 genera belonging to 10 
phyla in saliva samples from this cohort. 
Furthermore, salivary microbiota was found to 
signifi cantly differentiate from microbiota of 
supragingival plaque. However, no genera identi-
fi ed were found to be signifi cantly associated 
with saliva samples from subjects with dental 
caries (Ling et al.  2010 ). Another study, examin-
ing saliva samples from 6- to 8-year-old Chinese 
children (caries-active n = 30, healthy controls 
n = 20) using the HOMIM technique, identifi ed 
94 bacterial phylotypes representing 30 genera 
belonging to 6 phyla, out of which 8 and 6 phylo-
types were signifi cantly associated with saliva 
samples from subjects with dental caries and 
healthy controls, respectively (Luo et al.  2012 ). A 
comprehensive report employing 16S rRNA gene 
amplicon-based and whole-genome-based deep 
sequencing technologies for analysis of saliva 
microbiota in samples from 19 caries-active and 
26 healthy control subjects (aged 18–22), also 
reported saliva microbiota in subjects with dental 
caries to be signifi cantly more diverse than 
observed in healthy control samples. In addition, 
147 caries-associated operational taxonomic 
units (OTUs) were identifi ed (Yang et al.  2012 ). 
Likewise, a study from 2014 investigating saliva 
samples from 621 adult Danes (caries-active 
n = 174, healthy controls n = 447) by means of the 
HOMIM technology found the diversity of sali-
vary microbiota in subjects with dental caries to 
be reduced compared to healthy controls and 
identifi ed 10 bacterial phylotypes to be present at 
different levels in samples from subjects with and 
without dental caries (5 caries associated and 5 
health associated) (Belstrøm et al.  2014a ). 
Finally, in a recent investigation, functional gene 
signatures were addressed in saliva samples from 
10 subjects with dental caries and 10 healthy con-
trols (aged 18–23 years) using a functional gene 
microarray (HuMiChip 1.0), and it was demon-
strated that disease-associated functional gene 
signatures were associated with saliva samples 
from subjects with dental caries (Yang et al. 
 2014 ). Thus, current evidence suggests that not 
only may the composition of salivary microbiota 
be altered in subjects with dental caries but 
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potentially also the functional abilities of the 
microbiota may be different in saliva from sub-
jects with dental caries compared to oral health.  

11.4     Methodological 
Considerations for Studying 
Salivary Microbiota 

 Some reports describing the composition of the 
salivary microbiota have been rather confl ict-
ing. One explanation might be that different 
culture- based techniques and molecular tech-
niques were employed, making comparison 
between investigations diffi cult. Thus, several 
reports have demonstrated that meticulous col-
lection and zealous handing of saliva samples in 
a standardized manner is required for obtaining 
solid validated results, which can be compared 
across publications (Lazarevic et al.  2010 , 
 2012 ,  2013a ; Rasiah et al.  2005 ). Also, it has 
been reported that use of systemic antibiotics 
in children with acute otitis media (Lazarevic 
et al.  2013b ), and chemotherapy/radiation ther-
apy in subjects with nasopharyngeal carcinoma 
(Xu et al.  2014 ) altered the salivary microbiota. 
Thus, careful consideration of inclusion and 
exclusion criteria is prerequisite when ana-
lyzing salivary microbiota. Furthermore, pre-
vious reports has revealed that application of 
various DNA extraction protocols (Lazarevic 
et al.  2013a ) and culture- independent molecu-
lar techniques have profound infl uence on the 
data obtained (Lazarevic et al.  2012 ). Finally, 
in a study from 2005 using denaturating gra-
dient gel electrophoresis (DGGE) for analysis 
of saliva samples, it was suggested that saliva 
microbiota remains stable for years (Rasiah 
et al.  2005 ). In contrast, a recent study from 
2010 addressed inter- and intraindividual 
variations of saliva microbiota by means of 
pyro-sequencing, and it was concluded that the 
salivary microbiota cannot be considered stable 
for more than 5 consecutive days (Lazarevic 
et al.  2010 ). This example illustrates that as 
a consequence of technological improvement, 
additional methodological considerations must 
be addressed.  

11.5     Future Perspectives: Using 
the Salivary Microbiota 
as a Biomarker of Health 
and Disease 

 Microbial analysis of supra- and subgingival 
plaque samples can be tenacious and expensive, 
since separate sampling and analysis from multiple 
diseased sites is often required (Yoshizawa et al. 
 2013 ). On the other hand, the use of saliva is con-
siderably more cost-effective since only one sample 
from each subject may be collected and analyzed, 
thereby making saliva an ideal fl uid for analysis of 
larger populations, which may be suitable for chair-
side analysis in the dental offi ce (Giannobile et al. 
 2011 ; Schafer et al.  2014 ). Thus, saliva has been 
proposed as “the mirror of the body,” and much 
scientifi c activity has focused on identifi cation of 
salivary biomarkers in relation to oral health and 
disease (Giannobile et al.  2011 ). However, it is 
important to acknowledge that the most common 
oral diseases, e.g., periodontitis and dental caries, 
are conditions with multifactorial etiologies, which 
stresses the importance for combined informa-
tion from areas of genomics and transcriptomics 
for identifi cation of disease-prone individuals 
(Ai et al.  2012 ). Thus, with further technological 
developments, it is reasonable to believe that future 
chairside analysis of saliva samples measuring 
compositional changes of the salivary microbiota 
in combination with infl ammatory biomarkers 
could provide diagnostic aid for general practic-
ing dentists, enabling identifi cation of periodontitis 
and dental caries-prone individuals at early stages 
of disease, thereby facilitating individualized non-
invasive treatment (Yoshizawa et al.  2013 ).     
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    Abstract  

  The interest for probiotic bacteria to combat biofi lm-related diseases in the 
oral cavity has arisen during the last decade. The probiotic concept has 
successfully been used to control gastrointestinal diseases, such as 
antibiotic- associated diarrhoea and acute infectious diarrhoea. The poten-
tial mechanisms of action in the oral cavity are not fully understood, but 
there are thoughts to be a local effect in the mouth and systemic effect 
through immune regulation. The purpose of this chapter is to summarise 
our current knowledge of the potential for probiotics to improve oral and 
dental health and to discuss its potential in the future prevention of oral 
diseases. Despite some limitations, the currently available clinical studies 
appear expectant, and there seem to be evidence of probiotics to improve 
oral conditions such as dental caries, periodontitis and the colonisation of 
 Candida . However, more long-term clinical studies are needed before 
evidence-based guidelines can be released.  

12.1         Introduction 

 Probiotics in the dental practice is an emerg-
ing and promising strategy to combat biofi lm-
related diseases in the oral cavity (Laleman and 
Teughels  2015 ). The term probiotic derives from 
the Greek language meaning  pro  “for” -biotic 

“life”. Probiotic bacteria are defi ned as “Live 
microorganisms, which when administered in 
adequate amounts, confer a health benefi t on the 
host” (WHO) (Meurman and Stamatova  2007 ). 
Probiotics used in general health should be non- 
pathogenic and non-toxic, and they should be 
able to survive in the gastrointestinal tract and 
temporarily colonise in the gut. 

 The use of microorganisms to promote health 
can be dated back to ancient times, where 
Romans fermented food with microorganisms 
and used it therapeutically. In 1906, the French 
physician Henry Tissier isolated the bacteria 
 Bacillus bifi dus communes , later reclassifi ed as 
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the genus  Bifi dobacterium , and some years later, 
he treated diarrhoea with stool transplants con-
taining bifi dobacteria. In 1907, the Nobel Prize–
winning scientist Elie Metchnikoff postulated 
that Bulgarians lived longer because of their 
consumption of Bulgarian yoghurt (containing 
lactic acid bacteria) promoting good health. The 
word “probiotic” was introduced in 1965 by 
Lilly and Stillwell and probiotics were defi ned 
as “substances produced by microorganisms that 
stimulate the growth of another” (Lilly and 
Stillwell  1965 ). 

 In present time, the probiotic concept has suc-
cessfully been used to control gastrointestinal 
diseases, and probiotics also seem to alleviate 
symptoms of allergy and diseases with immuno-
logical pathology (Meurman  2005 ). The most 
fully documented probiotic intervention is the 
treatment of acute infectious diarrhoea, antibiotic- 
associated diarrhoea and infl ammatory bowel 
disease (Crohn’s disease and ulcerative colitis). 
Furthermore, probiotics are also commonly used 
for conditions in which fi rm evidence is lacking 
such as vaginal candidiasis,  Helicobacter pylori  
infection of the stomach and upper respiratory 
infections (Saha et al.  2012 ). 

 There are a number of different microorgan-
isms that can be classifi ed as probiotics, including 
bacteria and yeasts. The most common probiotic 
strains belong to the genera  Lactobacillus  (e.g. 
 L. acidophilus ,  L. rhamnosus ,  L. bulgaricus ,  L. 
reuteri  and L.  casei ) and  Bifi dobacteria  (e.g.  B. 
bifi dum ,  B. longum  and  B. infantis ), but also, 
some  Streptococcus  spp. (e.g.  S. thermophilus  
and  S. salivarius ) and  Saccharomyces  spp. (e.g. 
 S. boulardii  and  S. cerevisiae ) have been intro-
duced as potential probiotics (Isolauri et al. 
 2002 ).  Prebiotics  are defi ned as non-digestible 
food ingredients that stimulate selected benefi -
cial bacteria already established in the colon and 
thus in effect improve host health (Table  12.1 ) 
(Dahlén et al.  2012 ). The most commonly used 
prebiotics are carbohydrate substrates, e.g. oli-
gosaccharides, with the ability to promote the 
components of the normal intestinal microfl ora. 
When the prebiotics and probiotics are applied 
together, the concept is defi ned as synbiotics 
(Anusha et al.  2015 ).

   During the last decade, the interest in probiot-
ics as an alternative, preventive, and therapeutic 
approach in the oral cavity has arisen. The effi -
cacy of probiotic bacteria in the oral cavity has 
been investigated for conditions including dental 
caries, gingivitis, periodontitis, halitosis, coloni-
sation of oral  Candida , oral mucositis and xero-
stomia. Within dentistry,  L. rhamnosus GG  and 
 L. reuteri  are the most intensely studied probiotic 
species, and they have shown their potential in 
interacting with  S. mutans  and reducing colonisa-
tion of  Candida . The intention of this chapter is 
to briefl y outline current knowledge on the poten-
tial for use of probiotic bacteria to prevent oral 
diseases and to improve oral and dental health.  

12.2     Mechanisms of Action 

 The mechanisms of action of probiotics are not 
fully understood but are thought to be locally in 
the mouth by competing for adhesion sites and 
nutrients with the oral pathogens and by inhibi-
tion of growth of pathogens by production of 
bacteriocins or other products (acid or perox-
ide). Thus, probiotics modify the composition 
of the oral biofi lm or the metabolic activity. 
There also seems to be a systemic regulation of 
the immune response during intake of probiotics 
(Devine and Marsh  2009 ; Stamatova and 

   Table 12.1    General defi nitions within probiotic research   

 Resident 
microbiota 

 Consists of the  common  microfl ora 
(microorganisms found in most 
humans), the  supplemental  microfl ora 
(microorganisms characterising the 
individual) and the  transient  
microfl ora (microorganisms 
temporarily present in the body) 

 Probiotic  Living microorganisms which, when 
ingested, provide a health benefi t on 
the host 

 Prebiotic  Non-digestible food ingredients, e.g. 
oligosaccharides, inulin and lactulose, 
that stimulate the growth and/or 
activity of selected benefi cial bacteria 

 Synbiotic  Nutritional supplements combining 
probiotics and prebiotics 
synergistically, which benefi cially 
affect the host 
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Meurman  2009 ). Alterations in levels of both 
salivary IgA (Ericson et al.  2013 ) and cytokines 
in the gingival crevicular fl uid (Twetman et al. 
 2009 ) have been registered after exposure to 
probiotic bacteria. Generally, the effects of pro-
biotic bacteria are strain specifi c and cannot be 
applied directly to other strains. Also, the same 
strains can have different effect in different indi-
viduals (Koll-Klais et al.  2005 ).  

12.3     Probiotics and Oral Diseases 

12.3.1     Dental Caries 

 Dental caries is demineralisation of the tooth 
induced by microbial production of acid in the 
dental plaque. Hence, modulation of the dental 
plaque by probiotic bacteria has naturally been of 
interest. 

 Since the fi rst study on the topic by Näse et al. 
in  2001 , there have been an increasing number of 
clinical trials with caries-related end points. 
However, the majority of these studies have other 
end points than caries such as microbial counts or 
plaque index. Mutans streptococci are the most 
common microbial end point, but some studies 
also look at lactobacilli. Most of these studies 
show an inhibitory effect of probiotics on sali-
vary mutans streptococci, but a few does not fi nd 
any difference after the intervention period 
(Stecksen-Blicks et al.  2009 ; Lexner et al.  2010 ; 

Taipale et al.  2012 ). Nonetheless, two recent sys-
tematic reviews conclude that probiotic bacteria 
decrease the mutans streptococci counts as long 
as there is a regular intake of the probiotic bacte-
ria (Cagetti et al.  2013 ; Laleman et al.  2014 ). The 
strains used in the clinical intervention trials vary 
among different lactobacilli strains and a few dif-
ferent bifi dobacteria and even some streptococci 
strains. There does not seem to be any clear-cut 
difference between the outcomes of the trials 
based on the strains used in the study. 

 Since the lactobacilli used in most studies 
have strong acidogenic abilities, a natural reserva-
tion in relation to caries would be that addition 
of lactobacilli to the oral cavity would involve an 
increased risk of an acidogenic shift of the oral 
microbiota. However, two clinical trials found 
no increase in biofi lm acidurity after exposure to 
probiotic lactobacilli strains ( L. reuteri  SD2112, 
 L. reuteri  DSM 17938 and  L. reuteri  PTA 5289) 
(Keller and Twetman  2012 ; Marttinen et al.  2012 ). 

 There are fewer studies with caries incidence, 
root caries arrest or remineralisation of carious 
lesions as outcome. The six studies with caries 
incidence as end points are listed in Fig.  12.1 , 
which displays the prevented fraction of the stud-
ies. The calculated mean of preventive fraction is 
33 %. The most popular vehicle for the probiotic 
bacteria was milk which was supplemented with 
2.5 ppm fl uoride in one study. The fi rst study 
from Finland (Näse et al.  2001 ) also used milk as 
the vehicle for  L. rhamnosus  GG during a 

Wattanarat (2015)

Stensson (2014)

Hasslöf (2013)

Taipele (2013)

Stecksén-Blicks (2009)

Näse (2001)- 3–4 year

Näse (2001)- 1–6 year

0 20 40 60 80

Preventive fraction %

100

  Fig. 12.1    Preventive 
fractions in clinical studies 
with caries as an end point       

 

12 Use of Probiotics in Future Prevention and Treatment of Oral Infections



128

7-month intervention period. They found a pre-
ventive fraction of 56 % among the children 
being 3–4 years of age but only 21 % when look-
ing at the entire study population of 1–6 years of 
age. Besides the dental health benefi ts, the study 
also showed a reduction in antibiotic treatments 
for respiratory infections in the test group 
(Hatakka et al.  2001 ). The promising results 
encouraged a similar study in Sweden where pre-
schoolers aged 1–5 years were provided with 
milk containing  L. rhamnosus  LB21 and 2.5 ppm 
fl uoride on a daily basis (Stecksen-Blicks et al. 
 2009 ). Their results showed a 75 % preventive 
fraction but due to the study design, it was not 
possible to determine how much of this can be 
attributed to the fl uoridation or the addition of 
probiotic bacteria. Secondly, this study also 
found an additional benefi cial effect in fewer pre-
scriptions of antibiotics to the children in the test 
group. A more recent study from Finland chose 
another vehicle based on the young age of the 
participants (0–12 months) and used a pacifi er 
with room for probiotic tablets to obtain longer 
oral exposure to the probiotic strain  L. rhamno-
sus  LB21 (Taipale et al.  2013 ). At age four, how-
ever, the caries preventive fraction was rather 
modest (5 %) which might be due to uncertain 
compliance.

   Two Swedish studies are follow-up studies on 
trials conducted 6 and 7 years ago, respectively. 
After having eaten gruel with added  L. paracasei  
F19 during infancy, the children in the test group 
had statistically signifi cant less eczema at age 6 
but not statistical signifi cant results on caries 
incidence (Hasslof et al.  2013 ). The dropout rate 
was rather high and together with generally low 
level of caries, it may account for failure to 
achieve statistically signifi cant results. In com-
parison, the results of the other study were more 
promising. Stensson et al. ( 2014 ) reports a pre-
ventive fraction of 29 % 7 years after the original 
intervention with fi ve drops of  L. reuteri  ATCC a 
day during the fi rst 12 months of age. 

 It has been discussed whether colonisation of 
the probiotic strains is necessary to gain an effect. 
The studies with microbial end points show a 
change in levels of mutans streptococci as long as 
the probiotic strains are administered but mutans 

streptococci return to previous levels when the 
probiotic bacteria are ceased. Hence, the effect 
seems to be dependent of a continuous distribution 
of the probiotic bacteria. However, the follow- up 
study by Stensson reported on an effect 7 years 
after the original intervention. This could point 
towards the importance of intervention in early 
childhood to secure a long-term effect. Despite the 
promising results from the existing studies, there 
is still insuffi cient evidence to give any clinical 
recommendations, and more long- term studies 
with caries as an end point are needed.   

12.4     Gingivitis and Periodontitis 

 Gingivitis and periodontitis are diseases related 
to the gum and surrounding bone caused by 
bacterial dental plaque and the host immune 
response. Exposure of the gingival tissues to 
dental plaque results in infl ammation within the 
tissues which manifests in clinical signs of gingi-
vitis, e.g. change in colour, swelling of the tissue, 
increased gingival exudate and bleeding upon 
provocation. The clinical features of chronic 
periodontitis are, in addition to the characteris-
tics of gingivitis, loss of clinical attachment and 
loss of alveolar bone. Today, treatment strate-
gies include hygiene improvement, mechanical 
debridement (scaling and root planing), surgery 
and antibiotic treatment. One of the main etio-
logical factors in periodontal infl ammation is the 
shift of the periodontal microbiota towards gram- 
negative species and the absence of so-called 
benefi cial bacteria. Theoretically, restoring the 
reduced number of these benefi cial bacteria via 
probiotic administration might be of interest in 
the treatment of periodontal disease (Teughels 
et al.  2008 ). 

 A Medline search in June 2015 revealed 24  in 
vivo  human clinical studies concerning the effect 
of probiotic bacteria on periodontally healthy 
individuals or patients with gingivitis or peri-
odontitis. Selected studies are shown in 
Table  12.2 . These studies mostly report end 
points related to amount of plaque (PI), gingival 
condition (GI), bleeding on probing (BOP), 
 probing pocket depth (PPD) and subgingival 
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microbiota associated with periodontal diseases. 
In the majority of the studies, a signifi cant effect 
of probiotic treatment was obtained in the probi-
otic group compared to placebo. However, the 
studies are heterogeneous and have been subject 
to methodological criticism mainly due to a 
diverse patient population, lack of descriptions of 
the extent and severity of the periodontal disease, 
potential confounding factors, high risk of bias 
and inconsistent end points (Dhingra  2012 ; 
Laleman and Teughels  2015 ).

   Eight clinical studies have looked at clinical 
periodontal parameters in periodontally healthy 
individuals (Burton et al.  2013 ; Iwamoto et al. 
 2010 ; Kang et al.  2006 ; Karuppaiah et al.  2013 ; 
Mayanagi et al.  2009 ; Shimauchi et al.  2008 ; 
Sinkiewicz et al.  2010 ; Zahradnik et al.  2009 ). In 
a randomised, double-blind, placebo-controlled 
trial, Shimauchi et al. ( 2008 ) investigated the 
effect of  L. salivarius  WB21 on 66 healthy sub-
jects and found periodontal parameters improved 
after 8-week intervention. Mayanagi et al. ( 2009 ) 
and Zahradnik et al. ( 2009 ) found a reduction in 
selected periopathogens (e.g.  P. gingivalis ) in 
subgingival plaque and saliva of healthy individ-
uals after treatment with lactobacilli spp. Two 
randomised clinical trials have looked into the 
effi cacy of probiotics on gingival health in chil-
dren. In the fi rst study by Burton and co-workers 
( 2013 ), 100 children (5–10 years) were included 
to assess changes in plaque score and gingival 
score after 3 months treatment with either  S. sali-
varius  M18 or placebo. At treatment end, the 

plaque scores were signifi cantly lower in the pro-
biotic group, but no differences were seen in gin-
gival scores. These fi ndings were confi rmed by 
Karuppaiah et al. ( 2013 ). 

 Krasse et al. ( 2006 ) were the fi rst to investi-
gate the effect of chewing gum containing  L. 
reuteri  on patients with chronic gingivitis. They 
found a reduction in PI and GI after 2-week inter-
vention. However, Iniesta and co-workers ( 2012 ) 
were not able to confi rm these fi ndings. Three 
clinical trials have looked upon the effect of pro-
biotics on subjects with experimental gingivitis 
(Hallström et al.  2013 ; Slawik et al.  2011 ; Staab 
et al.  2009 ): two with positive and one with a 
negative outcome (Table  12.2 ). 

 Bleeding on probing (BOP) is a widely used 
criterion to diagnose gingival infl ammation. 
Seven studies found decreased BOP after treat-
ment with probiotic bacteria compared with 
placebo (Fig.  12.2 ) (Ince et al.  2015 ; Slawik 
et al.  2011 ; Teughels et al.  2013 ; Tsubura et al. 
 2009 ; Twetman et al.  2009 ; Vicario et al.  2013 ; 
Vivekananda et al.  2010 ). However, Teughels 
et al. ( 2013 ) did not fi nd this decrease signifi cant.

   Nine recent studies (2007–2015) have inves-
tigated the effect of probiotics on patients with 
chronic periodontitis (Ince et al.  2015 ; Riccia et al. 
 2007 ; Shah et al.  2013 ; Szkaradkiewicz et al.  2014 ; 
Tekce et al.  2015 ; Teughels et al.  2013 ; Tsubura 
et al.  2009 ; Vicario et al.  2013 ; Vivekananda 
et al.  2010 ) (Table  12.2 ). Longitudinal studies 
have shown the effi cacy of the standard treatment 
approach consisting of systematic  scaling and root 
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planing (SRP) on root surfaces and optimal oral 
hygiene. Three studies combined the SRP with 
probiotic treatment. In a randomised placebo-
controlled trial from 2013, Teughels et al. proved 
the effect of  L. reuteri  (Prodentis)-containing pro-
biotic lozenges as an adjunct to SRP in patients 
with chronic periodontitis. Signifi cantly larger 
PPD reductions, especially in moderate and deep 
pockets, were evident. 

 Antibiotic treatment can be an adjunct to 
mechanical therapy when these are found to be 
insuffi cient. However, repeated use of antibiotics 
increases the risk of drug-resistant microorgan-
isms. Shah et al. ( 2013 ) compared the effi cacy of 
probiotic tablets ( L. brevis  CD2) alone, in combi-
nation with doxycycline and doxycycline alone 
after SRP in patients with aggressive periodonti-
tis. The study showed that all three alternatives 
had similar reducing effect on PI, GI and PPD 
after 2 months. This fi nding is encouraging since 
a reduction in the use of antibiotics in the dental 
practice is desirable. 

 In summary, within the limitations of the clinical 
studies performed to date, the results are encourag-
ing and display that probiotics might be a valid 
supplement to the gold standard treatment of gingi-
vitis and chronic periodontitis patients. However, 
further long-term studies with more homogenous 
end points are needed before evidence- based treat-
ment recommendations can be released. 

12.4.1     Colonisation of Oral  Candida  
Species 

 The yeast  Candida  can cause a number of 
 disorders in the oral cavity, known as oral candidi-
asis. Seven  Candida  species are the clinically most 
important, of which  C. albicans ,  C. tropicalis  and 
 C. glabrata  are most frequently isolated (80 %). 
 Candida  species are commensal microorganisms 
in the oral cavity in 40–60 % of the population and 
only cause disease when disturbances in the oral 
microbial balance occur (Teughels et al.  2008 ). 
Oral candidiasis is therefore often seen in elderly 
people and is frequently  associated with antibi-
otic treatment, hyposalivation, impaired local or 
systemic immune system, neglected oral hygiene, 

dentures and smoking (Anil et al.  2014 ; Pires 
et al.  2002 ; Shay et al.  1997 ; Torres et al.  2002 ). 
A number of antifungal agents are available for 
the treatment of oral candidiasis, e.g. the polyenes 
(nystatin) and the azoles (fl uconazole). However, 
since oral candidiasis is caused by an ecologi-
cal imbalance (dysbiosis) in the oral biofi lm that 
favours fungal overgrowth, a certain interest has 
been addressed to a bioecological approach for 
prevention and management. 

 In the past decade, several clinical studies 
have investigated the ability of probiotic bacte-
ria to hamper the growth of  Candida  in the oral 
cavity. Hatakka and co-workers ( 2007 ) were 
the fi rst to conduct a randomised double-blind, 
placebo- controlled trial on the effect of probiot-
ics on the prevalence of oral  Candida . The study 
included 276 elderly people consuming probiotic 
cheese ( L. rhamnosus GG ,  L. rhamnosus LC705 , 
 Propionibacterium freudenreichii spp. shermanii 
JS ) or placebo cheese for 16 weeks. The inves-
tigators found that the prevalence of high yeast 
count (≥10 4  colony-forming units (cfu)/mL saliva) 
diminished by 32 % in the probiotic cheese group, 
while it increased by 21 % in the control group. 
These fi ndings were confi rmed in two later stud-
ies following consumption of yoghurt containing 
lactobacilli and bifi dobacteria spp. (Dos Santos 
et al.  2009 ; Mendonca et al.  2012 ). The probiotic 
concept has also been proven effective in reduc-
ing the number of  Candida  species in patients with 
 Candida - associated  stomatitis (Li et al.  2014 ) and 
in candidiasis- asymptomatic elderly denture wear-
ers (Ishikawa et al.  2015 ). 

 Our knowledge within this fi eld was just 
recently confi rmed by Kraft-Bodi and co- workers 
( 2015 ) who investigated the effect of a twice 
daily intake of probiotic lactobacilli lozenges on 
the prevalence and counts of oral  Candida  spe-
cies in 215 frail elderly living in nursery homes in 
the southern parts of Sweden. The results revealed 
a signifi cant reduction of high  Candida  counts 
(>10 4  cfu/mL) in saliva in the test group com-
pared to placebo after 12-week treatment with  L. 
reuteri  (DSM 17938 and ATCC PTA 5289) 
(Fig.  12.3 ). The same results were seen regarding 
 Candida  prevalence in plaque after probiotic 
treatment.

12 Use of Probiotics in Future Prevention and Treatment of Oral Infections



132

   In conclusion, our knowledge from the fi nd-
ings of these studies suggest that probiotic bacte-
ria added to food, tablets or lozenges may reduce 
oral  Candida  counts, and we thereby might be 
one step closer to clinical recommendations on 
the use of daily probiotic supplementation in 
patients at risk for oral candidiasis.   

12.5     Oral Mucositis 

 Oral mucositis is a frequent and painful side effect 
of cancer chemotherapy and radiotherapy to cancer 
in the head and neck region. The condition can 
result in suboptimal oral hygiene, problems with 
adequate nutritional intake and reduced quality of 
life. The immunosuppressed patients have earlier 
been mentioned as a group where probiotic bacteria 
should be avoided or used only with caution. 
However, a randomised, controlled trial with 200 
patients found no serious adverse effects of the pro-
biotic product (Sharma et al.  2012 ). Furthermore, 
they found a statistically signifi cant reduction in the 
prevalence of mucositis (7 % vs. 28 %) and reduc-
tion of the proportion of patients with severe (grades 
III and IV) mucositis (52 % vs. 77 %).  

12.6     Halitosis 

 Oral malodour is often caused by compounds from 
the oral cavity but some compounds may also be 
produced by nasal, oropharyngeal or pharyngeal 

infections (Delanghe et al.  1997 ; Quirynen et al. 
 2009 ). The oral malodours can be produced by 
anaerobic bacteria by degradation of food resi-
dues, exfoliated epithelial cells and salivary pro-
teins (Scully and Greenman  2008 ). It has been 
proposed that bacteriotherapy in order to replace 
halitosis-associated species may create a more 
long-lasting effect than the current methods reduc-
ing the total bacterial numbers by mechanical 
measures such as brushing, fl ossing, and tongue 
scraping, antibacterial agents, and complex bind-
ing of malodorous compounds by zinc (Burton 
et al.  2005 ; Fedorowicz et al.  2008 ; Outhouse et al. 
 2006 ; Porter and Scully  2006 ). Several studies 
have looked at the effect of probiotic bacteria on 
oral malodour (Burton et al.  2006 ; Iwamoto et al. 
 2010 ; Kang et al.  2006 ; Keller et al.  2012 ; Sutula 
et al.  2013 ; Suzuki et al.  2014 ). A number of them 
fi nd a reduction in either VSC (volatile sulphur 
components) or organoleptic score. However, they 
all have fairly small study groups ( n  = 22–46) and 
some are not placebo controlled.  

12.7     Vehicles, Dose and Safety 

 The safety of administration of probiotic bacteria 
must also be considered. Overall, the use of pro-
biotics is considered safe. Some strains used as 
probiotics, also strains used in oral health, have 
been isolated from infections such as endocardi-
tis (Cannon et al.  2005 ). However, in both Finland 
and Sweden where use of probiotic products 

  Fig. 12.3    Percent 
distribution of  Candida  
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 containing  Lactobacillus  is common, there have 
been no increase in  Lactobacillus -associated 
 bacteremia in a period with increasing use of the 
strains (Isolauri et al.  2002 ; Salminen et al.  2004 ; 
Sullivan and Nord  2006 ). In another study, the 
safety of two strains used to promote gastrointes-
tinal health in infants was evaluated, and no side 
effects were found (Saavedra et al.  2004 ). 
However, in some high-risk groups, adverse 
effects have been reported (Cilieborg et al.  2011 ). 

 So far, no serious adverse effects have been 
reported in clinical trials regarding oral health-
care. Some of the reported adverse effects include 
fl atulence or mild abdominal discomfort. A few 
studies have addressed this issue as a primary 
outcome and no adverse effects have been found 
either in animal models (Tanzer et al.  2010 ) or in 
humans (Burton et al.  2011 ). The acidogenicity 
of lactobacilli could lead to increased risk of car-
ies, and hence, acidogenicity (Pham et al.  2009 ) 
and sugar fermentation (Haukioja et al.  2008 ; 
Hedberg et al.  2008 ) of probiotic strains have 
been studied  in vitro . However, as previously 
mentioned, no increased plaque acidogenicity 
has been found  in vivo .  

12.8     Considerations 
for the Future 

 The currently available studies regarding the poten-
tial for probiotics to improve oral and dental health 
are promising. The studies display that probiotics 
might help to improve oral conditions such as den-
tal caries, periodontitis, halitosis, mucositis and 
oral  Candida  load. Emerging research in human 
and animal models has also indicated that probiot-
ics may enhance chronic wound healing, which 
could be benefi cial in the oral cavity (Huseini et al. 
 2012 ; Jones and Versalovic  2009 ; Sonal Sekhar 
et al.  2014 ). Several health-promoting effects of 
probiotics are well recognised, but their infl uence 
on oral health still needs to be elucidated by more 
long- term, randomised clinical trials. The potential 
mechanisms of action of probiotics in the oral cav-
ity are not fully understood but are anticipated to be 
similar to those observed in the gastrointestinal 
tract. However, it is important to keep in mind that 

the oral cavity differs from the gut with regard to 
oral microbiota, mucosal structure and composi-
tion of fl uids like saliva (Meurman and Stamatova 
 2007 ). Future studies should focus on defi ning the 
optimal strains for the various dental diseases. 
Moreover, more studies are needed to clarify 
whether a mix of different strains works better than 
single strains, determine the optimal daily dosage 
and fi nd a vehicle system allowing a prolonged 
retention time in the oral cavity.  

    Conclusion 

 The benefi cial effect of probiotic bacteria has 
been suggested and studied within several 
areas of dentistry. Despite limitations of the 
studies, such as surrogate end points, hetero-
geneous design and small sample sizes, the 
majority of the studies show promising results. 
Still, there is not suffi cient evidence to make 
any clinical recommendations but when for 
either prevention or treatment of oral infec-
tions, probiotic bacteria should be used as an 
adjunct to the existing options.     
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Candidiasis                     
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and     Anne     Marie     Lynge     Pedersen     

    Abstract  

  Oral candidal infections are medically treated with antifungal agents. In 
the fungal cell membrane, steroid ergosterol is the target of the antifungals 
on the market, but similarity with the human cell membrane may cause 
host toxicity and unintended reactions. Management of oral candidiasis 
depends on several factors, some are host-sensitive parameters, systemic 
diseases and drug exposure, and others are infection-sensitive parameters, 
duration of the infection and the virulence of the infecting  Candida  spe-
cies. Treatment failure might be associated with acquired or native azole 
resistance in particular in patients with recurrent oral candidiasis. This risk 
can be reduced if different types of antifungal drugs are used over time or 
are combined. This chapter focuses on antifungal treatment of the medi-
cally compromised patient with oral candidiasis by highlighting the 
advantages and disadvantages of different antifungals.  

13.1        Introduction 

 Oral candidal infections are medically treated 
with antifungal agents with different indications. 
Fungi are eukaryotes like humans, which is chal-
lenging for the drug selectivity as similarity 
between the human host and the pathogen may 
cause host toxicity and unintended reactions. 

Human and fungal cell membrane steroids differ, 
which has been the focus of the antifungals on 
the market. Human cell membranes consist 
mainly of cholesterol, whereas fungal cell mem-
branes consist of ergosterol, and ergosterol and 
its biosynthesis have been the drug target of anti-
fungals (Xie et al.  2014 ). 

 Antifungal agents for treatment of oral candi-
diasis fall into two main categories: polyenes 
(nystatin and amphotericin B) and azoles (micon-
azole, clotrimazole, fl uconazole, ketoconazole, 
and itraconazole). Antifungal agents seem to 
interact with the ability of candidal adherence to 
buccal epithelium and some are up-concentrated 
in epithelial cells, e.g. itraconazole. Topical and 
systemic formulations are available.  
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13.2     Polyenes 

 Nystatin and amphotericin B are ergosterol syn-
thesis inhibitors and broad-spectrum antifungal 
agents. They interact with ergosterol in the cell 
membrane of yeasts and yeastlike fungi, thus, all 
the  Candida  spp. The binding to ergosterol causes 
pore formation and ion leakage. Depending on 
the drug concentration on the application site, 
polyenes have a fungistatic or fungicidal effect. 
Amphotericin B has not absolute specifi city for 
fungal cell membranes as it also binds to choles-
terol of the human cell membranes, which causes 
signifi cant systemic toxicity. 

 Thus, polyenes are only available for topi-
cal treatment of oral candidiasis. When admin-
istered perorally both are poorly absorbed from 
the oral, gastric, and intestinal mucous mem-
branes and mostly eliminated faecally unchanged. 
Accordingly, they have no known severe drug- drug 
interactions. Nystatin has a bad bitter taste and 
formulations are often sweetened with sucrose, 
which signifi cantly increases the risk of dental 
caries. Special formulations without sucrose can 
be prepared if not available on the market. The 
adverse drug effects of topical polyenes are usu-
ally mild and of gastrointestinal character.  

13.3     Azoles 

 Azoles are cytochrome p450 enzyme inhibitors 
and the antifungal effect is interaction with the 
fungal ergosterol synthesis through binding to 
the cytochrome p450 enzyme, CYP51. A fungi-
static effect is achieved by ergosterol depletion, 
changes in cell membrane permeability and 
membrane-bound proteins, and synthesis of cell 
toxic sterols. Some  Candida  spp., i.e.  C. krusei  
and  C. glabrata , are native resistant or have 
reduced sensibility to azoles (Arendrup  2013 ). 
Azoles can enhance the effect of oral antidiabet-
ics leading to hypoglycaemia. 

 Azoles are available for topical and systemic 
use. Azoles for oral candidiasis are classifi ed into 
imidazoles with a two-nitrogen azole ring 
(clotrimazole and miconazole) and triazoles with 
a three-nitrogen azole ring (fl uconazole and 
 itraconazole). All these azoles are cytochrome 

p450 inhibitors, i.e. CYP2C9 and CYP3A4. 
These enzymes are involved in the metabolism of 
approximately 40 % of the marketed drugs. Thus, 
azole-drug interaction must be taken into serious 
consideration in medically compromised patients. 

 Clotrimazole cream has a low skin penetration 
and has no clinical relevant drug-drug interac-
tions. Miconazole is a potent CYP2C9 and 
CYP3A4 inhibitor. Only 25 % of the miconazole 
administered topically is absorbed from the skin 
and mucous membranes of the mouth, ventricle, 
and intestine, but the fi rst-pass intestinal and liver 
enzymes are inhibited signifi cantly. Miconazole 
has clinical relevant drug-drug interactions where 
dose adjustment of the implicated drug is impor-
tant, e.g. warfarin and cyclosporine. Clotrimazole 
and miconazole have a bacteriostatic effect that is 
benefi cial in treating angular cheilitis. 

 Fluconazole is both available as oral suspen-
sion for topical/systemic treatment and as capsules 
for systemic use. The oral suspension has both 
topical and systemic effects as it is absorbed intes-
tinally and secreted in saliva in high concentration 
after swallowing. The majority of fl uconazole is 
excreted unchanged by the kidneys, why knowl-
edge of reduced renal function is relevant. If the 
glomerular fi ltration rate (GFR) is < 50 %, the dos-
age is reduced with 50 % because of 50 % longer 
elimination time. Fluconazole is a potent inhibitor 
of CYP2C9 and a moderate inhibitor of CYP3A4 
why there is a risk of drug-drug interaction with a 
long list of drugs ( The American Society of 
Health-System Pharmacists (ASHP) 2015 , The 
Danish Health and Medicines Authority  2015 ). 

 Itraconazole is available for systemic use and 
is absorbed intestinally. It is only recommended 
to adults. The absorption is dependent on gastric 
pH, why it must be administered before a meal, 
and proton pump inhibitors reduce the absorp-
tion. Itraconazole is metabolized in the liver and 
is a potent CYP3A4 inhibitor. Like fl uconazole, 
itraconazole interacts with a long list of drugs 
( The American Society of Health-System 
Pharmacists (ASHP) 2015 , The Danish Health 
and Medicines Authority  2015 ). 

 Ketoconazole is recommended for topical 
skin infections only. In 2013 the  European 
Medicines Agency (EMA)  assessment and the 
US Food and Drug Administration (FDA) recom-
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mended that ketoconazole was no longer used for 
systemic treatment of candidiasis because of high 
risk of severe adverse reactions, i.e. liver damage, 
drug interactions, and adrenal gland problems 
(European Medicines Agency  2013 ; US Food 
and Drug Administration  2013 ). 

The adverse drug effects of azoles are usually 
mild and of gastrointestinal character. Topical 
preparations may give rise to local skin 
irritation. 

 The treatment expense for different antifun-
gals and different formulations may vary consid-
erably and must also be taken into account in 
treatment planning. The general advantages and 
disadvantages of topical and systemic treatment 
are listed in Table  13.1 .   

13.4     Specialist Treatment 

 Second-generation azoles such as voriconazole 
and posaconazole are spared for specialist set-
tings and selected patients with life-threatening 
candidiasis or severe immunocompromising con-
ditions. Intravenous antifungal therapy with 

amphotericin B, echinocandins, and pyrimidines 
for oral candidiasis may be indicated in seriously 
medically compromised patients and should only 
be done in specialist settings.  

13.5     Management of Patents 
with Oral Candidiasis 

 Management of oral candidiasis depends on sev-
eral factors; some are host-sensitive and others 
are infection-sensitive parameters (Table  13.2 ).  

13.5.1     Host-Sensitive Parameters 

 Host-dependent parameters are very important 
factors when managing oral candidiasis. 
Identifi cation of predisposing factors is crucial 
for successful treatment outcome (Table  13.3 ). If 
the underlying causes are not eliminated or iden-
tifi ed, the chance of relapse is high.  

 The drug formulation is relevant in patients 
with special needs, e.g. topical formulation in 
patients with dysphagia and capsules in patients 

      Table 13.1    Advantages and disadvantages of topical and systemic antifungal treatment of oral candidiasis   

 Sensitive parameters  Topical  Systemic 

 Polyenes  Azoles  Azoles 
 Diffi cult compliance  −  −  + 
 Complicating systemic disease/condition  +  +  − 
 Risk of drug-drug interactions  +  −  − 
 Azole insusceptibility  +  −  − 
 Treatment expense  −  −  + 

  + Advantage, − disadvantage  

   Table 13.2    Relevant factors for management of patents with oral candidiasis   

  Host-sensitive parameters  
 1. Predispositions for oral candidiasis  Local 

 Systemic 
 2.  Health and medical status of the patient affecting drug 

metabolism 
 Chronic diseases 
 Drug exposure 

  Infection-sensitive parameters  
 1. Classifi cation of infection  Duration of infection (acute/chronic) 

 Primary/secondary/tertiary infection 
 Sporadic/recurrent 
 Clinical manifestations 

 2.  Candida  species  Susceptibility to antifungals 
 Resistance to antifungals 
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with reduced compliance. Patients with hyposali-
vation cannot dissolve pastilles and lozenges. 

 The health and medical status of the patient 
is important as the choice of antifungals depends 
on whether the patient can eliminate the drug in 
order to avoid toxic or adverse reactions. 
Moreover, knowledge of the patient’s drug 
intake is vital as severe drug-drug interactions 
with the antifungals can be relevant (Table  13.1  
and  13.4 ).  

 In treatment of pregnant women, knowledge 
of teratogenic risks in relation to drug exposure is 
always important as is unintended drug exposure 
of breastfed children. Generally, well-known and 
well-documented drugs are recommended during 
pregnancy and breastfeeding. Topical nystatin 
and amphotericin B are well-documented old 
antifungal agents and have a low systemic effect 
because of little absorption. Topical miconazole 
for vaginal candidiasis in pregnant women is 
widely used without report of higher incidence of 
foetal malformations. Foetal malformations have 
been reported in relation to high-dose fl ucon-
azole and also itraconazole should be avoided in 
pregnancy and during periods of breastfeeding.  

13.5.2     Infection-Sensitive Parameters 

 Infection-sensitive parameters infl uence the dura-
tion of treatment as acute infection usually needs a 

shorter intervention period. Acute candidiasis in 
general needs topical treatment for 2 weeks and 
systemic treatment for 1 week, whereas the chronic 
infection needs longer intervention (Table  13.4 ). 
The anatomic area of infection infl uences the 
choice of drug vehicle. Cream is used for perioral 
infections but is not applicable on wet oral mucous 
membranes. Topical formulations for intraoral 
infections are pastilles, lozenges, oral gel, and oral 
suspension. All  topical agents need frequent dos-
age as oral clearance results in falling of the con-
centration to a subtherapeutic level after 
approximately 6 hours. To achieve maximal reten-
tion time, topical treatment must be applied after 
meals and oral hygiene procedures, and the patient 
must also be instructed not to drink and rinse the 
mouth after application. Thus, topical treatment is 
challenging for the compliance of the patient. 

 All lesions in multifocal infections need to be 
treated; thus, these are most easily treated with 
systemic administration of the antifungal agent. 
However, this is not always possible because of 
other host- or infection-sensitive parameters, e.g. 
azole-drug interactions (Table  13.1 ). 

 Some of the  Candida  spp. commonly isolated 
from the oral cavity are not sensitive to azole 
antifungal agents, e.g.  C. krusei  and  C. glabrata,  
and drug resistance can be acquired by other spe-
cies (Tables  13.1  and  13.4 ) (Arendrup  2013 ). 

 Acquired resistance to polyenes is very rare 
and accordingly little described. The low 

    Table 13.3    Local and systemic predisposing factors and conditions   

 Background  Intervention 

 Local  Poor oral hygiene  Instruction, motivation, and follow-up of oral hygiene 
procedures 

 High- carbohydrate diet  Information, motivation, and follow-up 
 Salivary gland hypofunction caused by 
medications, head and neck radiotherapy, 
or systemic diseases like Sjögren’s syndrome 

 Stimulation of functional salivary gland tissue with 
sugar-free pastilles or chewing gum, substitution 
of drug if possible 

 Mucosal traumas  Identify cause and eliminate 
 Mucosal diseases  Diagnostic workup, information, treatment, and 

follow-up 
 Topical steroid  Instruction in appropriate behaviour 
 Tobacco  Tobacco counselling, smoking cessation 

 Systemic  Immune defi ciency (acquired or idiopathic)  Diagnostic workup and intervention. 
 Often need for multidisciplinary cooperation  Systemic diseases 

 Nutritional defi ciency 
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 incidence is believed to be related to the fungi-
cidal effect of polyenes. The exact mechanisms 
of resistance are not clear but are suggested to be 
related to mutations in the ergosterol biosynthe-
sis pathway (Maubon et al.  2014 ). On the con-
trary, acquired resistance towards azoles is widely 
described and believed to be related to their fun-
gistatic effect. 

 There are four main azole resistance 
mechanisms:

    1.    Reduced affi nity to drug target CYP51   
   2.    Increased amount of drug target CYP51   
   3.    Increased effl ux of azoles from the fungal cell   
   4.    Genomic rearrangements     

 The mode of azole action is inhibition of the 
fungal ergosterol synthesis through binding to 
the CYP51 enzyme leading to ergosterol deple-
tion, cell membrane disruption, and synthesis of 
cell toxic sterols. Azole failure leads to ergosterol 
synthesis, unharmed cell membrane integrity, 
and reduced susceptibility to azole-induced 
 cellular stress, and the end point is survival of the 
fungus. 

 Point mutation of the  ERG11  gene coding for 
CYP51 reduces the azole’s affi nity to CYP51. 
Upregulation of the  ERG11  gene increases the 
amount of CYP51 and enables substrate competi-
tion towards ergosterol synthesis. Upregulation 
of multidrug transporters reduces the intracellu-
lar azole concentration, and thereby the therapeu-
tic dose is not achieved. Genomic alteration as 
chromosomal rearrangements, aneuploidy, and 
loss of heterozygosity causes reduced suscepti-
bility to azole-induced cellular stress (Xie et al. 
 2014 ). All mechanisms reduce the intended effect 
of azoles on the fungal cell membrane and may 
induce multi-resistance towards azoles. The 
increased incidence of non- C. albicans  infections 
in the Western part of the world and the increase 
of azole-insensitive  C. albicans  infections is 
believed to be a result of increased human expo-
sure to environmental and medical azoles 
(Arendrup  2013 ). 

 Over-the-counter azoles for treatment of 
‘self- diagnosed’ candidiasis, antifungal prophy-
laxis, and prolonged antifungal treatment con-

tribute to the high individual exposure. However, 
the environmental exposure to azoles is even 
higher as azoles are widely used as fungicides in 
agriculture, industry, and domestically, e.g. seed 
and postharvest treatment, wood preservatives, 
textiles, toiletries, and human and animal excre-
tions when in antifungal treatment (Parker et al. 
 2014 ). 

 The risk of iatrogenic selection of azole- 
insensitive  Candida  spp. in patients with recur-
rent oral candidiasis is reduced if the drugs for 
the antifungal therapy vary between different 
drugs over time or are combined (Xie et al.  2014 ). 
Still, caution and restriction of antifungal use are 
many years behind the professional and public 
alertness on unnecessary use of antibiotics. 
However, in 2013 fl uconazole-resistant  Candida  
was listed by the US Department of Health and 
Human Services as having equivalent threat level 
to human health as methicillin-resistant 
 Staphylococcus aureus  (MRSA) (Centers of 
Disease Control and Prevention. Antibiotic resis-
tance threats in the United States  2013 ).  

13.5.3     Prophylaxis of Oral Candidiasis 

 The majority of patients experience sporadic oral 
candidiasis, but some experience recurrent oral 
candidiasis with varying disease-free periods. 
Recurrent oral candidiasis might affect quality of 
life and oral functions because of oral symptoms, 
and there is a risk of infection spreading to other 
areas of the body. Identifi cation of predisposing 
factors is the important fi rst step followed by inter-
vention for elimination of the predisposing factors 
(Table  13.3 ). This may not be possible in patients 
with local predisposing factors like oral mucosal 
diseases, e.g. oral lichen planus and leukoplakia, 
or systemic predisposing factors, e.g. disease-
related or iatrogenic immunosuppression. 

 Depending on the type of predisposing factor, 
other topical treatments with antifungal effect 
can be successful, e.g. chlorhexidine mouth rinse 
in patients with oral lichen planus (see below). 
 Prolonged or repeated treatment with antifungal 
drugs may be necessary, and systemic treatment 
with azoles is most widely used. However, there 
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is a risk of acquired resistance and iatrogenic 
selection of azole-insensitive  Candida  spp. This 
risk can be reduced if the drugs for the antifungal 
therapy vary between different drugs over time or 
are combined (Xie et al.  2014 ).   

13.6     Other Topical Treatments 
with Antifungal Effect 

 In order to minimize the individual and environ-
mental exposure to antifungals, old and new 
alternative agents are used or investigated for 
treatment and prophylaxis of oral candidiasis. 

13.6.1     Chlorhexidine 

 Chlorhexidine is antiseptic and has a broad- 
spectrum antibacterial and antifungal effect. 
Depending on the concentration it is fungistatic 
or fungicidal. At high concentrations it destroys 
the fungus cell membrane resulting in coagula-
tion of cellular proteins and cell death. At lower 
doses it inhibits the fungi adhesion to surfaces 
as it binds to acrylic, epithelial, and tooth struc-
tures and interacts with the fungus adhesion by 
modifying fungal cell surface hydrophobicity 
and hyphae formation. Even at low dose of long 
time after chlorhexidine exposure, the fungi are 
suppressed, which is referred to as “the post- 
antifungal effect of chlorhexidine” (Ellepola and 
Samaranayake  2001 ). Adverse reactions include 
chemical-induced epithelial desquamation, tem-
porary brown discoloration of teeth and dentures, 
and taste disturbances, which are related to treat-
ment duration and the concentration. The extent 
of epithelial desquamation increases with con-
centration at the site. Thus, chlorhexidine is not 
suitable for long-term treatment (Flotra  1973 ). 
In vitro it has been found that chlorhexidine 
and nystatin suppress each other’s antifungal 
properties as they form chlorhexidine-nystatin 
complexes (Barkvoll and Attramadal  1989 ). 
Chlorhexidine is available as mouth rinse, oral 
gel, and cream and usually in 0.12, 0.2 and 1 % 
concentrations. Randomized clinical trials (RCT) 
have shown that chlorhexidine concentrations of 

0.12 % or above successfully reduced candida 
yeast in bone marrow-transplanted, mechanically 
ventilated, and HIV patients (Lam et al.  2012 ). 
Local allergic and anaphylactic reactions are 
reported for chlorhexidine. 

 Repeated short-term oral treatment may be 
indicated in patients with recurrent candidiasis 
and poor oral hygiene, e.g. mouth rinse with 
0.12 % chlorhexidine twice daily for maximum of 
two weeks when symptoms begin. Dentures can 
be soaked overnight in 0.2 % chlorhexidine after 
mechanical cleaning in patients with denture sto-
matitis (Ellepola and Samaranayake  2001 ).  

13.6.2     Fluoride 

 Topical fl uoride treatment affects the composition 
and thickness of the oral biofi lm on tooth structures 
in particular.  Candida  is part of the oral microfi lm 
(Williams et al.  2011 ). Amine fl uoride and stannous 
fl uoride have been shown in vitro to have antifungal 
effect close to that of chlorhexidine (Flisfi sch et al. 
 2008 ). A combination of potassium fl uoride and 
amphotericin B increases the destabilizing effect of 
amphotericin B on the fungal cell membrane (Li 
and Breaker  2012 ). Thus high fl uoride treatment is 
indicated in patients with poor oral hygiene.  

13.6.3     Probiotics 

 Probiotics are live microorganisms, which when 
administered in adequate amounts confer a health 
benefi t for the host (FAO/WHO  2001 ). The 
 probiotic bacteria have been administered to 
patients in dairy products such as cheese, yoghurt, 
and milk and as pharmaceutical products as pow-
der, lozenges, tablets, and chewing gums. In order 
to keep an adequate number of probiotic bacteria 
in the mouth, they need to be administered fre-
quently and after oral procedures with increased 
oral clearance, e.g. meals and oral hygiene proce-
dures. The  Bifi dobacterium  and  Lactobacillus  are 
the two genera investigated in relation to oral 
 Candida  spp., and the oral load of  Candida  has 
been shown to decrease (Hatakka et al.  2007 ; 
Mendonca et al.  2012 ; Dos Santos et al.  2009 ; 
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Ishikawa et al.  2015 ; Kraft-Bodi et al.  2015 ). One 
study investigated probiotic powder for treatment 
of denture stomatitis, but still, the impact of probi-
otics on treatment and prophylaxis of oral candi-
diasis needs to be investigated in detail (Li et al. 
 2014 ) (see Chap.   12    ).  

13.6.4     Essential Oils 

 Essential oils from plants have been investigated 
for antifungal alternative alone or in combination 
with antifungal drugs. There are challenges using 
essential oils. One is that genetic identical plants 
produce chemically different essential oils with 
different antifungal properties depending on grow-
ing conditions like climate, soil quality, and other 
external factors. Another challenge is the safety 
regarding allergic reaction and administration of 
the essential oils (Palmeira-de-Oliveira et al. 
 2009 ). In two RCT with HIV-positive patients, 
essential oils have been shown to reduce the can-
dida count and oral candidiasis (Lam et al.  2012 ).    
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