
Efficient Image Search with Neural Net Features

David Novak1(B), Jan Cech2, and Pavel Zezula1

1 Masaryk University, Brno, Czech Republic
{david.novak,zezula}@fi.muni.cz

2 Czech Technical University, Prague, Czech Republic
cechj@cmp.felk.cvut.cz

Abstract. We present an efficiency evaluation of similarity search tech-
niques applied on visual features from deep neural networks. Our test
collection consists of 20 million 4096-dimensional descriptors (320 GB
of data). We test approximate k-NN search using several techniques,
specifically FLANN library (a popular in-memory implementation of k-d
tree forest), M-Index (that uses recursive Voronoi partitioning of a met-
ric space), and PPP-Codes, which work with memory codes of metric
objects and use disk storage for candidate refinement. Our evaluation
shows that as long as the data fit in main memory, the FLANN and the
M-Index have practically the same ratio between precision and response
time. The PPP-Codes identify candidate sets ten times smaller then the
other techniques and the response times are around 500 ms for the whole
20M dataset stored on the disk. The visual search with this index is avail-
able as an online demo application. The collection of 20M descriptors is
provided as a public dataset to academic community.

1 Introduction: Content-Based Image Retrieval

The content-based image retrieval (CBIR) is an area that naturally requires simi-
larity techniques to match the image data. A successful CBIR system must stand
on two pillars: effective image processing to achieve high quality of the retrieval,
and efficient search to make the system work in real time and on a large scale.
Specifically, the image processing typically leads to certain features (descriptors,
stimuli) that capture the application-driven characteristics of the image data;
the actual searching process is then realized in space of these features.

Currently, the state-of-the-art image recognition approach is based on deep
convolutional neural networks (details follow). The objective of this paper is to
study how current similarity techniques can manage visual features obtained by
this approach. These features are 4096-dimensional real vectors, which makes
it a challenge to efficiently search in large collections. These vectors can be
compared using various distance functions, and thus we focus mainly on metric-
based search techniques. We analyze the space properties of the visual features
extracted from a 20 million image collection and we evaluate the search efficiency
of different approaches.

This work was supported by Czech Research Foundation project P103/12/G084.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 237–243, 2015.
DOI: 10.1007/978-3-319-25087-8 22

238 D. Novak et al.

The Deep Convolutional Neural Networks (DCNN) have a long history
in computer vision and machine learning. LeCun et al. [6] introduced an archi-
tecture with many hidden layers where weights of lower-level layers are shared
as convolution filters. Two decades later, a similar architecture was applied to
a large scale visual recognition problem by Krizhevsky et al. [5] and won the
ILSVRC 2012 challenge by a large margin. The network was trained to recog-
nize 1k selected ImageNet categories from more than 1M training images. The
network consisting of 5 convolutional and 3 fully connected layers takes raw
size-normalized images as an input. The network having about 60M parameters
represents a very flexible classifier with a great class capacity.

After the great success of [5], researches started to consider a possibility to
re-use the representation power of the Krizhevsky’s network to solve other recog-
nition problems, i.e. to adapt the classifier to recognize classes the network was
not trained for, by using a much smaller dataset [3,12]. The last network layer
that outputs the class scores is in fact a linear classifier taking a non-linear rep-
resentation of an image (the previous layer response). The response of the last
hidden layer of Krizhevsky’s network is coined the DeCAF feature in [3]. The
feature is demonstrated to hold a great representation power and ability to gen-
eralize to other recognition tasks by training a simple linear classifier. Moreover,
a semantic information is carried implicitly which is shown by tendency of the
DeCAF features to cluster semantically similar images of categories on which
the network was never explicitly trained.

The DCNN methods were also studied in the context of CBIR [13], using the
deep features and a suitable metric. A good generalization to various datasets is
shown, but attempts to learn a metric are reported to have a minor effect.

2 Similarity Indexing and Searching

In this section, we describe selected techniques for similarity-based indexing.

FLANN. FLANN is a popular library for performing fast approximate nearest
neighbour search developed by Muja and Lowe [7]. It is often used in various
computer vision problems where a large dataset is involved and it is incorporated
into OpenCV. FLANN contains two main algorithms: (1) a forest of randomized
k-d trees, and (2) a hierarchical k-means tree. Additionally, FLANN includes a
method for an automatic selection of the most suitable algorithm and its param-
eters given the target dataset. The choice depends on the nature of the set of
features where the search is performed; on its size, on the dimensionality, on
the structure of the data, and of course on the desired precision of the approx-
imate nearest neighbour search. The auto-tuning algorithm optimizes a score
that consists of a weighted combination of the search time, tree build time and
memory overhead. The weights are optionally set by a user. The optimization
can run on a representative fraction of the dataset only, which further speeds
the auto-tuning up and makes the approximate search system easy to set up.

Metric-Based Approaches. Further, we focus on the metric access methods
(MAMs), that model the data as a metric space (D, δ), where D is the domain

Efficient Image Search with Neural Net Features 239

p3

p4

p1

p2

p3

p2

p4

C3,2

C2,1

C1,2

C4,3

4,1C

C3,4

1,3C

p1

C3

C2

C1

C4

C1,4

C2,3C3,1

Fig. 1. Voronoi partitioning (left) and of second level Voronoi partitioning (right).

and δ is a metric (distance) function. Specifically, we describe a class of MAMs
based on recursive Voronoi partitioning of the space as depicted in Figure 1 for
pivots p1, . . . , p4. The left part shows standard partitioning which generates four
Voronoi cells C1, . . . , C4; on the right, each of these cells is partitioned using
the rest of the pivots. Cell Ci,j then contains objects for which pi is the closest
pivot and pj is the second closest. This principle can be used recursively l-times
and it is often formalized as permutations of pivots: objects from Voronoi cell
Ci1,...,il can be “mapped” onto a vector 〈i1, . . . , il〉, which is an l-prefix of a
certain permutation of the pivot indexes [8].

This principle has been successfully applied by several MAMs, for instance
by a structure called M-Index [8]. This index builds a dynamic trie-like structure
over the recursive Voronoi diagram, so that only the overfilled cells are parti-
tioned to another level. Given a k-nearest neighbor query k-NN(q), the M-Index
forms a candidate set of indexed objects by accessing data objects x from the
“most promising” Voronoi cells; these candidate objects are refined by evalua-
tion of δ(q, x) and the best k objects are returned. The Voronoi cell data can be
stored either in memory or on the disk in continuous chunks. This approach can
be further improved by combining several independent Voronoi partitions [10]
in a similar way as in case of randomized k-d forest.

The same space partitioning is used also in a recent technique called PPP-
Codes [11]. This MAM defines a mapping of the metric objects onto small codes
composed of the pivot permutation prefixes from several pivot spaces. These
codes are kept in memory; given a k-NN query, the PPP-Codes search algorithm
combines candidate sets from the independent pivot spaces into a small but very
accurate candidate set. Only objects from this candidate set are retrieved from
the disk and refined. As these objects are read one-by-one (via their identifiers),
this approach assumes an efficient key-value store, ideally kept on an SSD disk.

3 Efficiency Evaluation

According to the state of the art in computer vision, we use the DeCAF7 feature
produced by the last hidden layer of the neural network model provided by the
Caffe project1 [4], which was trained according to [5]. This 4096-dimensional float
1 http://caffe.berkeleyvision.org

http://caffe.berkeleyvision.org

240 D. Novak et al.

 0 1000 2000 3000 4000
L1 distance

 0 0.2 0.4 0.6 0.8 1
cosine distance

 0 20 40 60 80 100 120 140 160

fr
eq

ue
nc

y

L2 distance

Fig. 2. Distance histograms of the data space with different metric functions; corre-
sponding intrinsic dimensionality values are: L2: 26.8, L1: 36.0, cosine distance: 46.9.

vector was extracted from a collection called Profiset [1] consisting of 20 million
images provided for research purposes by a microstock photography company.
This set of 20M features is public for research purposes at http://disa.fi.muni.
cz/profiset/.

In the beginning of this evaluation, we we provide analysis of the feature
space properties. Figure 2 shows histogram of distances calculated on a sample
of 1M images with three metrics: L2, L1 and cosine distance; the figure caption
shows also respective values of intrinsic dimensionality calculated as μ2/(2 ·σ2),
where μ and σ2 are the mean and variance of the distance histogram [2].

The core of this section is evaluation of k-NN processing efficiency using L2.
Denoting A the approximate k-NN search answer and AP the precise NN answer,
the answer quality is measured by recall(A) = precision(A) = |A∩AP |

K · 100%.
The key performance indicator is the wall-clock time of the query processing. All
results were averaged over 1,000 queries from the outside of the dataset. We use
several subsets of the collection of sizes from 100K to 20M. The evaluation was
realized on a 12-core Intel Xeon @ 2.0 GHz machine with 60 GB of main memory,
and SSD disk with transfer rate about 270 MB/s with random accesses.

3.1 In-memory Indexes

First, the in-memory FLANN and M-Index were tested on subsets up to 3M
objects (48 GB in main memory). The FLANN auto-tuning procedure (running
on a 100K sample) chose the randomized k-d tree forest with 32 trees; parameter
“number of accessed leaves” varied for different required values of 1-NN recall.
The M-Index was configured to use four Voronoi trees [10], each with 512 pivots
and the parameter “number of accessed objects” was altered.

Plots in Figure 3 show dependence between the single-thread search times
and k-NN recall for FLANN and M-Index on 1M dataset (various values of k).
We can see that the results are very similar; this is quite surprising since the
partitioning principles and the implementation platforms (C++ vs. Java) of the
two indexes differ significantly. FLANN is able to return some results within
milliseconds while the M-Index has a minimum response time about 20 ms. This
is caused especially by initial calculation of distances between the query object
and the set of 4 × 512 pivots. On the other hand, the recall values grow faster
for M-Index, especially for higher values of k.

http://disa.fi.muni.cz/profiset/
http://disa.fi.muni.cz/profiset/

Efficient Image Search with Neural Net Features 241

 100

 0

auto−tuning
99%

auto−tuning
95%

 50 100 150 200 250
average search time [ms]

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250
average search time [ms]

90%

k−
N

N
 r

ec
al

l [
%

]

k=100
k=10
k=1

FLANN

 0

 20

 40

 60

 80

k=1000
 150 200 250

k=10

average search time [ms]

M−Index in memory

k=100

k−
N

N
 r

ec
al

l [
%

]

 0
k=1000

 20

 40

 60

 80

 100

 0 50 100 150 200 250
average search time [ms]

 0

 20

 40

 60

 80

 100

 0 50 100

k=1

Fig. 3. Recall of k-NN queries vs. search time (single thread) for FLANN and main
memory M-Index on 1M data collection.

Figure 4 shows the same type of dependence for 10-NN and collection sizes
varying between 100K and 3M. We can see that both indexes scale quite well;
the M-Index has again “slower start” but it outruns FLANN in the end.

3.2 Disk-Oriented Indexes

Finally, we analyze how disk-oriented indexes perform on collections up to 20M.
First, we test the disk version of M-Index with the same configuration as in the
memory case (four indexes, each with 512 pivots, 1M dataset). Since we use four
independent space partitioning (in a similar way as locality-sensitive hashing
approaches do), the physical data is now replicated four times. The left graph in
Figure 5 shows the k-NN recall with respect to percentage of data accessed by
the index; these results are independent of the memory/data implementation.
The right graph compares the search time for various implementations: memory
vs. disk and single- vs. multi-thread query evaluation. We can see that the disk
variant is feasible with multi-treading. For all disk-oriented experiments, the disk
caches were dropped before running every 1000-query batch.

Further, we focus on efficiency of the PPP-Codes index, which has been
designed for larger collections of voluminous data objects [11]. In our case, it

 150 200 250

size=300K

average search time [ms]

10
−

N
N

 r
ec

al
l [

%
]

size=1M

FLANN

 0
size=3M

 20

 40

 60

 80

 100

 0 50 100 150 200 250
average search time [ms]

 0

 20

 40

 60

 80

 100

 0 50 100

size=100K

 150 200 250

size=300K

average search time [ms]

10
−

N
N

 r
ec

al
l [

%
]

size=1M

M−Index in memory

 0
size=3M

 20

 40

 60

 80

 100

 0 50 100 150 200 250
average search time [ms]

 0

 20

 40

 60

 80

 100

 0 50 100

size=100K

Fig. 4. Recall of 10-NN operations vs. search time (single thread) for FLANN and
main memory M-Index on collections of different sizes.

242 D. Novak et al.

 3 4 5

k=10

accessed and refined objects [% of database]

k−
N

N
 r

ec
al

l [
%

]

k=100

M−Index

 0
k=1000

 20

 40

 60

 80

 100

 0 1 2 3 4 5
accessed and refined objects [% of database]

 0

 20

 40

 60

 80

 100

 0 1 2

k=1

 4 5
accessed and refined objects [% of database]

disk, multi thread

M−Index: various implementations

av
er

ag
e

se
ar

ch
 ti

m
e

[m
s] memory, single thread

 0

 500

memory, multi thread

 1000

 1500

 2000

 2500

 0 1 2 3

disk, single thread

Fig. 5. k-NN recall (left) and search times (right) for different settings (memory/disk
and single-/multi-thread processing) for variable perc. of accessed data (1M collection).

 0 0.1
search time [ms] (right)

 0.2 0.3 0.4 0.5
 0

 50

 100

 150

 200

 250

accessed and refined objects [% of database]

PPP−Codes, collection size: 1M
se

ar
ch

 ti
m

e
[m

s]

k−
N

N
 r

ec
al

l [
%

]

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5
 0

 50

 100

 150

 200

 250

accessed and refined objects [% of database]

 0

1−NN recall (left)
 20

 40

 60

10−NN recall (left)

 80

 100

100−NN recall (left)

 2000
search time [ms] (right)

 4000 6000 8000 10000
 0

 200

 400

 600

 800

 1000

accessed and refined objects

k−
N

N
 r

ec
al

l

se
ar

ch
 ti

m
e

[m
s]

PPP−Codes, collection size: 20M

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000
 0

 200

 400

 600

 800

 1000

accessed and refined objects

 0

1−NN recall (left)
 20

 40

 60

10−NN recall (left)

 80

 100

100−NN recall (left)

 0

Fig. 6. k-NN recall and search times with respect to accessed objects: 1M and 20M.

uses the same four sets of 512 pivots as the M-Index, it keeps a memory structure
(about 1 GB for the 20M collection) and the actual data objects are compressed
on the disk (124 GB for the 20M collection).

For comparison with the results above, left graph in Figure 6 shows values
of k-NN recall (left vertical axis) and of search times (right axis) with respect
to percentage of accessed objects of 1M collection. We can see that PPP-Codes
access one order of magnitude fewer objects than M-Index and the search times
are about 1/3 of the M-Index with multi-thread processing on the disk. The
search time improvement is not proportional to candidate set reduction since
the PPP-Codes have more demanding in-memory processing phase and the can-
didate set objects on the disk are accessed one-by-one [11].

The right graph presents the results on the 20M collection. In this case, the
horizontal axis shows the absolute number of accessed objects (out of 20M) and
we can see that high recall values are achieved for response times around 500 ms.
In practice, lower response times are achieved by not dropping the disk caches.

4 Conclusions

The fusion of the deep neural networks and similarity-based indexing has
many good applications in the area of content-based image retrieval. The high
dimensionality and bulkiness of the visual features from the neural networks

Efficient Image Search with Neural Net Features 243

calls for analysis of actual search efficiency of current indexing techniques on
large datasets of this data. We have introduced a test collection with 20M 4096-
dimensional image features and tested the k-NN search efficiency of selected
indexing techniques. The results indicate that if the data fit into main memory,
the metric-based structure M-Index [8] is as efficient as the FLANN [7] library.
With the disk version of M-Index, the search would not stay real-time for large
datasets because the index accesses over 1 % of the data to produce good results.

The PPP-Codes index [11] better fits this type of datasets as it can achieve
fine results accessing around 0.02 % out of the 20M dataset; the search times
are around 500 ms. There is an online demonstration application available at
http://disa.fi.muni.cz/demos/profiset-decaf/ which presents k-NN visual search
on this 20M dataset with the PPP-Codes index [9]. The collection of the 20M
descriptors is publicly available at http://disa.fi.muni.cz/profiset/.

References

1. Budikova, P., Batko, M., Zezula, P.: Evaluation platform for content-based image
retrieval systems. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.)
TPDL 2011. LNCS, vol. 6966, pp. 130–142. Springer, Heidelberg (2011)

2. Chávez, E., Navarro, G.: Measuring the dimensionality of general metric spaces.
Technical report, Department of Computer Science, University of Chile (2000)

3. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
DeCAF: a deep convolutional activation feature for generic visual recognition. In:
International Conference in Machine Learning (ICML), pp. 647–655 (2014)

4. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. In: International Conference on Multimedia (2014)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances In Neural Information Processing Systems
25, 1097–1105 (2012)

6. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel,
L.: Backpropagation applied to handwritten zip code recognition. Neural Compu-
tation 1(4) (1989)

7. Muja, M., Lowe, D.G.: Scalable Nearest Neighbour Algorithms for High Dimen-
sional Data. IEEE Trans. on PAMI 36(11), 2227–2240 (2014)

8. Novak, D., Batko, M., Zezula, P.: Metric Index: An Efficient and Scalable Solu-
tion for Precise and Approximate Similarity Search. Information Systems 36(4),
721–733 (2011)

9. Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net
descriptors. In: Proceedings of SIGIR 2015 (to appear, 2015)

10. Novak, D., Zezula, P.: Performance Study of Independent Anchor Spaces for
Similarity Searching. The Computer Journal 57(11), 1741–1755 (2014)

11. Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity
search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA
2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)

12. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: CVPR (2014)

13. Wan, J., Wang, D., Hoi, S., Wu, P., Zhu, J., Zhang, Y., Li, J.: Deep learning
for content-based image retrieval: a comprehensive study. In: Proc. of 22nd ACM
International Conference on Multimedia (2014)

http://disa.fi.muni.cz/demos/profiset-decaf/
http://disa.fi.muni.cz/profiset/

	Efficient Image Search with Neural Net Features
	1 Introduction: Content-Based Image Retrieval
	2 Similarity Indexing and Searching
	3 Efficiency Evaluation
	3.1 In-memory Indexes
	3.2 Disk-Oriented Indexes

	4 Conclusions
	References

