
Approximate Furthest Neighbor
in High Dimensions

Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and Matthew Skala(B)

IT University of Copenhagen, Copenhagen, Denmark
{pagh,fras,jovt,mska}@itu.dk

Abstract. Much recent work has been devoted to approximate nearest
neighbor queries. Motivated by applications in recommender systems,
we consider approximate furthest neighbor (AFN) queries. We present
a simple, fast, and highly practical data structure for answering AFN
queries in high-dimensional Euclidean space. We build on the technique
of Indyk (SODA 2003), storing random projections to provide sublin-
ear query time for AFN. However, we introduce a different query algo-
rithm, improving on Indyk’s approximation factor and reducing the run-
ning time by a logarithmic factor. We also present a variation based
on a query-independent ordering of the database points; while this does
not have the provable approximation factor of the query-dependent data
structure, it offers significant improvement in time and space complexity.
We give a theoretical analysis, and experimental results.

1 Introduction

Similarity search is concerned with locating elements from a set S that are
close to a given query q. The query q can be thought of as criteria we would
like returned items to satisfy approximately. For example, if a customer has
expressed interest in a product q, we may want to recommend other, similar
products. However, we do not want to recommend products that are too similar,
since that would not significantly increase the probability of a sale. Among the
points that satisfy a near neighbor condition (“similar”), we would like to return
those that also satisfy a furthest-point condition (“not too similar”), without
explicitly computing the set of all near neighbours and then searching it.

In this paper we focus on the problem of returning a furthest point, referred to
as “furthest neighbor” by analogy with nearest neighbor. In particular, we con-
sider point sets in d-dimensional Euclidean space (�d

2). We argue that the exact
version of this problem would also solve exact similarity search in d-dimensional
Hamming space, and thus is as difficult as that problem. The reduction follows
from the fact that the complement of every sphere in Hamming space is also a
sphere. That limits the hope we may have for an efficient solution to the exact
version, so we consider the c-approximate furthest neighbor (c-AFN) problem
where the task is to return a point x′ with d(q, x′) ≥ maxx∈S d(q, x)/c, with
d(x, u) denoting the distance between two points. We will pursue randomized
solutions having a small probability of not returning a c-AFN. The success prob-
ability can be made arbitrarily close to 1 by repetition.
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-25087-8 1

4 R. Pagh et al.

Another use for AFN comes from data structures that solve the approximate
near neighbor ((c, r)-ANN) problem via locality-sensitive hashing. A known issue
with the locality-sensitive hash approach to ANN is that if a point happens to
be very close to the query, then nearly every hash function will return it. These
duplicates cost significant time to filter out. AFN could offer a way to reduce
such duplication. If each hash function preferentially returns the points furthest
away from the query among the points it would otherwise return, then perhaps
we could reduce the cost of filtering out duplicate results while still hitting all
desired points with good probability.

We describe the data structure and query algorithm in section 2.2. The data
structure itself is closely similar to one proposed by Indyk [10], but our query
algorithm differs. It returns the c-approximate furthest neighbor, for any c > 1,
with probability at least 0.72. When the number of dimensions is O(log n), our
result requires Õ(n1/c2) time per query and Õ(n2/c2) total space, where n denotes
the input size. The Õ() notation omits polylog terms. Theorem 2 gives bounds
in the general case.

Our data structure requires more than linear space when c <
√

2, and there
are theoretical reasons why

√
2 may be an important boundary for all data

structures that solve this problem. In section 2.2 we give a preliminary result
showing that a data structure for c-AFN must store at least min{n, 2Ω(d)} − 1
data points when c <

√
2.

In section 3 we provide experimental support of our data structure by test-
ing it, and some modified versions, on real and randomly-generated data sets. In
practice, we can achieve approximation factors significantly below the

√
2 the-

oretical result, even with a simplified version of the algorithm that saves time
and space by examining candidate points in a query-independent order. We can
also achieve good approximation in practice with significantly fewer projections
and points examined than the worst-case bounds suggested by the theory. Our
techniques are much simpler to implement than existing methods for

√
2-AFN,

which generally require convex programming [6,15]. Our techniques can also be
extended to general metric spaces.

1.1 Related Work

Exact Furthest Neighbor. In two dimensions the furthest neighbor problem can
be solved in linear space and logarithmic query time using point location in a
furthest point Voronoi diagram (see e.g. de Berg et al. [3]). However, the space
usage of Voronoi diagrams grows exponentially with the number of dimensions,
making this approach impractical in high dimensions. Indeed, an efficient data
structure for the exact furthest neighbor problem in high dimension would lead
to surprising algorithms for satisfiability [19], so barring a breakthrough in sat-
isfiability algorithms we must assume that such data structures are not feasible.

Further evidence of the difficulty of exact furthest neighbor is the following
reduction from Goel, Indyk, and Varadarajan [9]: Given a set S ⊆ {0, 1}d and a
query vector q ∈ {0, 1}d, a furthest neighbor (in Euclidean space) from −q is a
vector in S of minimum Hamming distance to q. That is, exact furthest neighbor

Approximate Furthest Neighbor in High Dimensions 5

is at least as hard as exact nearest neighbor in d-dimensional Hamming space,
generally believed to be hard for large d and worst-case data.

Approximate Furthest Neighbor. Bespamyatnikh gives a dynamic data struc-
ture for the c-approximate furthest neighbor problem; however, its query time is
exponential in the dimension [4]. Indyk [10] avoids this exponential dependence.
More precisely, Indyk showed how to solve a fixed radius version of the problem
where given a parameter r the task is to return a point at distance at least r/c
given that there exist one or more points at distance at least r. He then gives a
solution to the furthest neighbor problem with approximation factor c+δ, where
δ > 0, by reducing it to queries on many copies of that data structure. The over-
all result is space O(dn1+1/c2 log(1−1/c)/2(n) log1+δ(d) log log1+δ(d)) and query
time O(dn1/c2 log(1−1/c)/2(n) log1+δ(d) log log1+δ(d)). While our new data struc-
ture uses the same basic method as Indyk, multiple random projections to one
dimension, we are able to avoid the fixed radius version entirely and get a single
and simpler data structure that works for all radii. Moreover, being interested
in static queries, we are able to reduce the space to Õ(dn2/c2).

Methods Based on an Enclosing Ball. Goel et al. [9] show that a
√

2-approximate
furthest neighbor can always be found on the surface of the minimum enclosing
ball of S. More specifically, there is a set S∗ of at most d+1 points from S whose
minimum enclosing ball contains all of S, and returning the furthest point in S∗

always gives a
√

2-approximation to the furthest neighbor in S. This method is
query independent in the sense that it examines the same set of points for every
query. Conversely, Goel et al. [9] show that for a random data set consisting of
n (almost) orthonormal vectors, finding a c-approximate furthest neighbor for
a constant c <

√
2 gives the ability to find an O(1)-approximate near neighbor.

Since it is not known how to do that in time no(1) it is reasonable to aim for
query times of the form nf(c) for approximation c <

√
2.

Applications in Recommender Systems. Several papers on recommender systems
have investigated the use of furthest neighbor search [16,17]. However, these
works are not primarily concerned with (provable) efficiency of the search. Other
related works in recommender systems include those of Abbar et al. [1] and Indyk
et al. [11], which use core-set techniques to return a small set of recommendations
no two of which are too close. In turn, core-set techniques also underpin works
on approximating the minimum enclosing ball [2,13].

2 Algorithms and Analysis

2.1 Provably Good Furthest Neighbor Data Structure

Our data structure works by choosing a random line and storing the order of
the data points along it. Two points far apart on the line are at least as far
apart in the original space. So given a query we can find the points furthest

6 R. Pagh et al.

from the query on the projection line, and take those as candidates to be the
furthest point in the original space. We build several such data structures and
query them in parallel, merging the results.

Given a set S ⊆ R
d of size n (the input data), let � = 2n1/c2 (the number

of random lines) and m = 1 + e2� logc2/2−1/3 n (the number of candidates to be
examined at query time), where c > 1 is the desired approximation factor. We
pick � random vectors a1, . . . , a� ∈ R

d with each entry of ai coming from the
standard normal distribution N(0, 1). We use arg maxm

x∈S f(x) for the set of m
elements from S that have the largest values of f(x), breaking ties arbitrarily.

For any 1 ≤ i ≤ �, we let Si = arg maxm
x∈S ai · x and store the elements of

Si in sorted order according to the value ai · x. Our data structure for c-AFN
consists of � subsets S1, . . . , S� ⊆ S, each of size m. Since these subsets come
from independent random projections, they will not necessarily be disjoint in
general; but in high dimensions, they are unlikely to overlap very much. This
data structure is essentially that of Indyk [10]; our technique differs in the query
procedure, given by Algorithm 1.

Algorithm 1. Query-dependent approximate furthest neighbor
1: initialize a priority queue of (point, integer) pairs, indexed by real keys
2: for i = 1 to � do
3: compute and store ai · q
4: create an iterator into Si, moving in decreasing order of ai · x
5: get the first element x from Si and advance the iterator
6: insert (x, i) in the priority queue with key ai · x − ai · q
7: end for
8: rval ← ⊥
9: for j = 1 to m do

10: extract highest-key element (x, i) from the priority queue
11: if rval = ⊥ or x is further than rval from q then
12: rval ← x
13: end if
14: get the next element x′ from Si and advance the iterator
15: insert (x′, i) in the priority queue with key ai · x′ − ai · q
16: end for
17: return rval

Our algorithm succeeds if and only if Sq contains a c-approximate furthest
neighbor. We now prove that this happens with constant probability.

We make use of the following standard lemmas that can be found, for exam-
ple, in the work of Datar et al. [7] and Karger, Motwani, and Suden [12], respec-
tively.

Lemma 1 (See Section 3.2 of Datar et al. [7]). For every choice of vectors
x, y ∈ R

d:
ai · (x − y)
||x − y||2 ∼ N(0, 1). (1)

Approximate Furthest Neighbor in High Dimensions 7

Lemma 2 (see Lemma 7.1.3 in Karger, Motwani, and Suden [12]). For
every t > 0, if X ∼ N(0, 1) then

1√
2π

·
(

1
t

− 1
t3

)
· e−t2/2 ≤ Pr[X ≥ t] ≤ 1√

2π
· 1

t
· e−t2/2 (2)

The next lemma follows, as suggested by Indyk [10, Claims2-3].

Lemma 3. Let p be a furthest neighbor from the query q with r = ||p−q||2, and
let p′ be a point such that ||p′ − q||2 < r/c. Let Δ = rt/c with t satisfying the
equation et2/2tc

2
= n/(2π)c2/2 (i.e., t = O

(√
log n

)
). Then, for a sufficiently

large n, we get

Pr
a

[a · (p′ − q) ≥ Δ] ≤ logc2/2−1/3 n

n
(3)

Pr
a

[a · (p − q) ≥ Δ] ≥ (1 − o(1))
1

n1/c2
. (4)

Proof. Let X ∼ N(0, 1). By Lemma 1 and the right part of Lemma 2, we get
for a point p′ that

Pr
a

[a · (p′ − q) ≥ Δ] = Pr
a

[X ≥ Δ/||p′ − q||2] ≤ Pr
a

[X ≥ Δc/r]

≤ 1√
2π

e−t2/2

t
≤

(
t
√

2π
)c2−1 1

n
≤ logc2/2−1/3 n

n
.

The last step follows because et2/2tc
2

= n/(2π)c2/2 implies that t = O
(√

log n
)
,

and holds for a sufficiently large n. Similarly, by Lemma 1 and the left part of
Lemma 2, we have for a furthest neighbor p that

Pr
a

[a · (p − q) ≥ Δ] = Pr
a

[X ≥ Δ/||p − q||2] = Pr
a

[X ≥ Δ/r]

≥ 1√
2π

(
c

t
−

(c

t

)3
)

e−t2/(2c2) ≥ (1 − o(1))
1

n1/c2
.

�	
Theorem 1. The data structure when queried by Algorithm 1 returns a c-AFN
of a given query with probability 1 − 2/e2 > 0.72 in O(n1/c2(d + logc2/2+2/3 n))
time per query. The data structure requires O(n1+1/c2(d + log n)) preprocessing
time and total space

O
(
min

{
dn2/c2 logc2−1/3 n, dn + n2/c2 logc2−1/3 n

})
. (5)

Proof. The space required by the data structure is the space required for storing
the � sets Si. If for each set Si we store the m ≤ n points and the projection
values, then O (�md) memory words are required. On the other hand, if pointers
to the input points are stored, then the total required space is O (�m + nd).

8 R. Pagh et al.

Both representations are equivalent, and the best one depends on the value of
n and d. The claim on the space requirements follows. The preproceesing time
is dominated by the computation of the n� projection values and by the sorting
for computing the sets Si. Finally, the query time is dominated by the at most
2m insertion or deletion operations on the priority queue and by the search in
Sq for the furthest neighbor.

We now upper bound the success probability. As in the statement of
Lemma 3, we let p denote a furthest neighbor from q, r = ||p−q||2, p′ be a point
such that ||p′ − q||2 < r/c, and Δ = rt/c with t such that et2/2tc

2
= n/(2π)c2/2.

The query succeeds if: (i) ai(p − q) ≥ Δ for at least one projection vector ai,
and (ii) the (multi)set Sn = {p′|∃i : ai(p′ − q) ≥ Δ, ||p′ − q||2 < r/c} contains
at most m − 1 points (i.e., there are at most m − 1 near points whose distances
from the query is at least Δ in some projections). If (i) and (ii) hold, then the
set SQ must contain the furthest neighbor p since there are at most m−1 points
near to q with projection values larger than the maximum projection value of
p. Note that we do not consider points at distance larger than r/c but smaller
than r: they are c-approximate furthest neighbors of q and can only increase the
success probability of our data structure.

By Lemma 3, event (i) happens with probability 1/n1/c2 . Since there are
� = 2n1/c2 independent projections, this event does not happen with probability
at most (1 − 1/n1/c2)2n1/c2 ≤ 1/e2. For a point p′ at distance at most r/c

from q, the probability that ai(p′ − q) ≥ Δ is less than (logc2/2−1/3 n)/n for
Lemma 3. Since there are � projections of n points, the expected number of such
points is � logc2/2−1/3 n. Then, we have that S has size larger than m − 1 with
probability at most 1/e2 by the Markov inequality. Note that a Chernoff bound
cannot be used since there exists a dependency among the projections under the
same random vector ai. By a union bound, we can therefore conclude that the
algorithm succeeds with probability at least 1 − 2/e2 ≥ 0.72. �	

2.2 A Lower Bound on the Approximation Factor

In this section, we show that a data structure aiming at an approximation factor
less than

√
2 must use space min{n, 2Ω(d)} − 1 on worst-case data. The lower

bound holds for those data structures that compute the approximate furthest
neighbor by storing a suitable subset of the input points.

Theorem 2. Consider any data structure D that computes the c-AFN of an
n-point input set S ⊆ R

d by storing a subest of the data set. If c =
√

2(1 − ε)
with ε ∈ (0, 1), then the algorithm must store at least min{n, 2Ω(ε2d)}−1 points.

Proof. We prove by contradiction that any data structure requiring less than
min{n, 2Ω(ε2d)}− 1 input points cannot return a

√
2(1− ε)-approximation. Sup-

pose there exists a set S′ of size r = 2Ω(ε′2d) such that for any x ∈ S′ we have
(1 − ε′) ≤ ||x||22 ≤ (1 + ε′) and x · y ≤ 2ε′, with ε′ ∈ (0, 1). We will later prove
that such a set exists.

Approximate Furthest Neighbor in High Dimensions 9

Assume n ≤ r. Consider the input set S consisting of n arbitrary points of S′

and set the query q to −x, where x is an input point not in the data structure.
The furthest neighbor is x and it is at distance at least ||x− (−x)||2 ≥ 2

√
1 − ε′.

On the other hand, for y ∈ S\{x}, we get

||y − (−x)||22 = ||x||22 + ||y||22 + 2x · y ≤ 2(1 + ε′) + 4ε′.

Therefore, the point returned is at least a c′ approximation with

c′ ≤
√

2

√
1 − ε′

1 + 3ε′ . (6)

The claim follows by setting ε′ =
√

(2ε − ε2)/(1 + 3(1 − ε)2).
Assume now that n > r. Without loss of generality, let n be a multiple

of r. Consider as input set the set S containing n/r copies of each vector
in S′, each copy expanded by a factor i for any i ∈ [1, n/r]; specifically, let
S = {ix|∀x ∈ S′,∀i ∈ [1, n/r]}. Let the query q be −hx, where x is a point not
in the data structure and h is the largest integer such that hy, with y ∈ S′, is in
the data structure. The furthest neighbor in S is at distance at least 2h

√
1 − ε′.

On the other hand, every point in the data structure is at distance at most
h
√

2(1 + ε′) + 4ε′2. We then get the same approximation factor c′ given in equa-
tion 6, and the claim follows by suitably setting ε′.

The existence of the set S′ of size r follows from the Johnson-Lindenstrauss
lemma [14]. Specifically, consider an orthornormal base x1, . . . xr of R

r. Since
n = Ω

(
log r/ε2

)
, by the Johnson-Lindenstrauss lemma there exists a linear map

f(·) such that (1 − ε′)||xi − xj ||22 ≤ ||f(xi) − f(xj)||22 ≤ (1 + ε)||xi − xj ||22 and
(1 − ε′) ≤ ||f(xi)||22 ≤ (1 + ε′) for any i, j. We also have that f(xi) · f(xj) =
(||f(xi)||22 + ||f(xj)||22 −||f(xi)−f(xj)||22)/2, and hence −2ε ≤ f(xi) ·f(xj) ≤ 2ε.
It then suffices to set S′ to {f(x1), . . . , f(xr)}. �	

The upper bound on space translates into a lower bound for the query time in
data structures for AFN which are query independent. Indeed, the lower bound
translates into the number of points that must be read by each query. However,
this does not apply for query dependent data structures.

3 Experiments

To test the algorithm and confirm both its correctness and practicality we imple-
mented several variations in both the C and F# programming languages. This
code is available on request. Our C implementation is structured as an alternate
index type for the SISAP C library [8], returning the furthest neighbor instead
of the nearest.

We selected four databases for experimentation: the “nasa” and “colors” vec-
tor databases from the SISAP library, and two randomly generated databases of
105 10-dimensional vectors each, one using a multidimensional normal distribu-
tion and one uniform on the unit cube. The 10-dimensional random distributions

10 R. Pagh et al.

were intended to represent realistic data, but their intrinsic dimensionality is sig-
nificantly higher than what we would expect to see in real-life applications.

For each database and each choice of � from 1 to 30 and m from 1 to 4�, we
made 1000 approximate furthest neighbor queries. To provide a representative
sample over the randomization of both the projection vectors and the queries,
we used 100 different seeds for generation of the projection vectors, and did 10
queries (each uniformly selected from the database points) with each seed. We
computed the approximation achieved, compared to the true furthest neighbor
found by brute force, for every query. The resulting distributions for the uniform,
normal, and nasa databases are summarized in Figures 1–3.

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30

ap
pr
ox

im
at
io
n
ac
hi
ev
ed

(c
)

projections and points examined (� = m)

range/quartiles/median
sample mean

query-independent

Fig. 1. Experimental results for 10-dimensional uniform distribution

We omit a similar figure from our experiment on the colors database because
the result was of little interest: it apparently contains a few very extreme outliers,
making the furthest neighbor problem too easy to meaningfully test the algo-
rithm. We also ran some informal experiments on higher-dimensional random
vector databases (with 30 and 100 dimensions, in particular) and saw approxi-
mation factors very close to those achieved for 10 dimensions.

� vs. m Tradeoff. The two parameters � and m both improve the approximation
as they increase, and they each have a cost in the time and space bounds. The
best tradeoff is not clear from the analysis. We chose � = m as a typical value,
but we also collected data on many other parameter choices.

Figure 4 offers some insight into the tradeoff: since the cost of doing a query
is roughly proportional to both � and m, we chose a fixed value for their product,
� · m = 48, and plotted the approximation results in relation to m given that.
As the figure shows, the approximation factor does not change much with the
tradeoff between � and m.

Query-independent Ordering. The furthest-neighbor algorithm described in our
theoretical analysis examines candidates for the furthest neighbor in a query
dependent order. It seems intuitively reasonable that the search will usually

Approximate Furthest Neighbor in High Dimensions 11

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30

ap
pr
ox

im
at
io
n
ac
hi
ev
ed

(c
)

projections and points examined (� = m)

range/quartiles/median
sample mean

query-independent

Fig. 2. Experimental results for 10-dimensional normal distribution

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30

ap
pr
ox

im
at
io
n
ac
hi
ev
ed

(c
)

projections and points examined (� = m)

range/quartiles/median
sample mean

query-independent

Fig. 3. Experimental results for SISAP nasa database

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14

ap
pr
ox

im
at
io
n
ac
hi
ev
ed

(c
)

points examined (m), with �m = 48

range/quartiles/median
sample mean

query-independent

Fig. 4. The tradeoff between � and m

12 R. Pagh et al.

examine points in a very similar order regardless of the query: first those that
are outliers, on or near the convex hull of the database, and then working its
way inward. Maybe there could be a single generic ordering of the points that
would serve reasonably well for all queries?

We implemented a modified version of the algorithm in which the index stores
a single ordering of the points. Given a set S ⊆ R

d of size n, for each point x ∈ S
let key(x) = maxi∈1...� ai · x. The key for each point is its greatest projection
value on any of the � randomly-selected projections. The data structure stores
points (all of them, or enough to accomodate the largest m we plan to use) in
order of decreasing key value: x1, x2, . . . where key(x1) ≥ key(x2) ≥ · · · .

The query simply examines the first m points in this query independent order-
ing and returns the one furthest from the query point. Sample mean approxima-
tion factor for this algorithm in our experiments is shown by the dotted lines in
Figures 1–4.

Variations on the Algorithm. We have experimented informally with a number
of practical improvements to the algorithm. The most significant is to use the
rank-based depth of projections rather than the projection value. In this variation
we sort the points by their projection value for each ai. The first and last point
then have depth 0, the second and second-to-last have depth 1, and so on up
to the middle at depth n/2. We find the minimum depth of each point over all
projections and store the points in a query independent order using the minimum
depth as the key. This approach generally yields slightly better approximations,
but is more complicated to analyze. A further improvement is to break ties in
the minimum depth by count of how many times that depth is achieved, giving
more priority to investigating points that repeatedly project to extreme values.

The number of points examined m can be chosen per query and even during
a query, allowing for interactive search. After returning the best result for some
m, the algorithm can continue to a larger m for a possibly better approximation
factor on the same query. The smooth tradeoff we observed between � and m
suggests that choosing an � during preprocessing will not much constrain the
eventual choice of m.

Discussion. The main experimental result is that the algorithm works very well
for the tested datasets in terms of returning good approximations of the fur-
thest neighbor. Even for small � and m the algorithm returns good approxima-
tions. Another result is that the query independent algorithm returns points only
slighly worse than the query dependent. The query independent algorithm is sim-
pler to implement, it can be queried in time O (m) as opposed to O (m log � + m)
and uses only O (m) storage. In many cases these advances more than make up
for the slightly worse approximation observed in these experiments. However, by
Theorem 2, to guarantee

√
2 − ε approximation the query-independent ordering

version would need to store and read m = n − 1 points.
In data sets of high intrinsic dimensionality the furthest point from a

query may not be much further than any randomly selected point, and we
can ask whether our results are any better than a trivial random selection

Approximate Furthest Neighbor in High Dimensions 13

from the database. The intrinsic dimensionality statistic ρ of Chávez and
Navarro [5] provides some insight into this question. Skala gives a formula for its
value on a multidimensional normal distribution [18, Theorem 2.10], which yields
ρ = 9.768 . . . for the 10-dimensional distribution used in Figure 2. With the def-
inition ρ = μ2/2σ2, this means the standard deviation of a randomly selected
distance will be about 32% of the mean distance. Our experimental results come
much closer than that to the true furthest distance, and so are non-trivial.

The concentration of distances in data sets of high intrinsic dimensional-
ity reduces the usefulness of approximate furthest neighbor. Thus, although we
observed similar values of c in higher dimensions to our 10-dimensional random
vector results, random vectors of higher dimension may represent a case where
c-approximate furthest neighbor is not a particularly interesting problem. Fortu-
nately, vectors in a space with many dimensions but low intrinsic dimensionality,
such as the colors database, are more representative of real application data, and
our algorithms performed well on such data sets.

4 Conclusions and Future Work

We have proposed a data structure for AFN with theoretical and experimental
guarantees. Although we have proved that it is not possible to use less than
min{n, 2Ω(d)} − 1 total space when the c approximation factor is less than

√
2,

it is an open problem to close the gap between this lower bound and the space
requirements of our result. Another interesting problem is to apply our data
structure to improve the output sensitivity of near neighbor search based on
locality-sensitive hashing. We conjecture that, by replacing each hash bucket
with an AFN data structure with suitable approximation factors, it is possible
to control the number of times each point in S is reported.

Our data structure extends naturally to general metric spaces. Instead of
computing projections with dot product, which requires a vector space, we could
choose some random pivots and order the points by distance to each pivot. The
query operation would be essentially unchanged. Analysis and testing of this
extension is a subject for future work.

Acknowledgement. The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement no. 614331.

References

1. Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S.: Real-time recommendation
of diverse related articles. In: Proc. 22nd International Conference on World Wide
Web (WWW), pp. 1–12 (2013)

2. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Computational Geometry
40(1), 14–22 (2008)

14 R. Pagh et al.

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS (2008)

4. Bespamyatnikh, S.N.: Dynamic algorithms for approximate neighbor searching. In:
Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG
1996), pp. 252–257. Carleton University, August 12–15, 1996

5. Chávez, E., Navarro, G.: Measuring the dimensionality of general metric spaces.
Tech. Rep. TR/DCC-00-1, Department of Computer Science, University of Chile
(2000)

6. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM (JACM) 42(2), 488–499 (1995)

7. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proc. 20 Annual Symposium on Com-
putational Geometry (SoCG), pp. 253–262 (2004)

8. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007) (online).
http://www.sisap.org/Metric Space Library.html

9. Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional prox-
imity problems. In: Proc. 12th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 769–778 (2001)

10. Indyk, P.: Better algorithms for high-dimensional proximity problems via asym-
metric embeddings. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 539–545 (2003)

11. Indyk, P., Mahabadi, S., Mahdian, M., Mirrokni, V.S.: Composable core-sets for
diversity and coverage maximization. In: Proc. 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), pp. 100–108.
ACM (2014)

12. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite
programming. Journal of the ACM (JACM) 45(2), 246–265 (1998)

13. Kumar, P., Mitchell, J.S., Yildirim, E.A.: Approximate minimum enclosing balls
in high dimensions using core-sets. Journal of Experimental Algorithmics 8, 1–1
(2003)

14. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Struc-
tures and Algorithms 33(2), 142–156 (2008)

15. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4–5), 498–516 (1996)

16. Said, A., Fields, B., Jain, B.J., Albayrak, S.: User-centric evaluation of a k-furthest
neighbor collaborative filtering recommender algorithm. In: Proc. Conference on
Computer Supported Cooperative Work (CSCW), pp. 1399–1408 (2013)

17. Said, A., Kille, B., Jain, B.J., Albayrak, S.: Increasing diversity through fur-
thest neighbor-based recommendation. In: Proceedings of the WSDM Workshop
on Diversity in Document Retrieval (DDR 2012) (2012)

18. Skala, M.A.: Aspects of Metric Spaces in Computation. Ph.D. thesis, University of
Waterloo (2008)

19. Williams, R.: A new algorithm for optimal constraint satisfaction and its implica-
tions. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)

http://www.sisap.org/Metric_Space_Library.html

	Approximate Furthest Neighbor in High Dimensions
	1 Introduction
	1.1 Related Work

	2 Algorithms and Analysis
	2.1 Provably Good Furthest Neighbor Data Structure
	2.2 A Lower Bound on the Approximation Factor

	3 Experiments
	4 Conclusions and Future Work
	References

