
Giuseppe Amato
Richard Connor
Fabrizio Falchi
Claudio Gennaro (Eds.)

 123

LN
CS

 9
37

1

8th International Conference, SISAP 2015
Glasgow, UK, October 12–14, 2015
Proceedings

Similarity Search
and Applications

Lecture Notes in Computer Science 9371

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Giuseppe Amato • Richard Connor
Fabrizio Falchi • Claudio Gennaro (Eds.)

Similarity Search
and Applications
8th International Conference, SISAP 2015
Glasgow, UK, October 12–14, 2015
Proceedings

123

Editors
Giuseppe Amato
ISTI-CNR
Pisa
Italy

Richard Connor
University of Strathclyde
Glasgow
UK

Fabrizio Falchi
ISTI-CNR
Pisa
Italy

Claudio Gennaro
ISTI-CNR
Pisa
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-25086-1 ISBN 978-3-319-25087-8 (eBook)
DOI 10.1007/978-3-319-25087-8

Library of Congress Control Number: 2015950012

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 8th International Conference on
Similarity Search and Applications (SISAP 2015) held in Glasgow, Scotland, UK,
during October 12–14, 2015. The International Conference on Similarity Search and
Applications (SISAP) is an annual forum for researchers and application developers in
the area of similarity data management. It focuses on technological problems shared by
many application domains, such as data mining, information retrieval, computer vision,
pattern recognition, computational biology, geography, biometrics, machine learning,
and many others that need similarity searching as a necessary supporting service.

Traditionally, SISAP conferences have put emphasis on distance-based searching,
but in general the conference concerns both the effectiveness and efficiency aspects of
any similarity search approach, welcoming contributions that range from theoretical
aspects to innovative developments for which similarity search plays the central role.

The call for papers welcomed research papers (full or short papers) presenting
previously unpublished research contributions, poster papers presenting innovative
work in progress, and demonstration papers presenting applications of similarity search
techniques.

We received 65 submissions. The Program Committee (PC) comprised 64
researchers from 21 different countries. Each submission was assigned to at least three
PC members. Reviews were discussed by the chairs and PC members when the reviews
diverged and no consensus had been reached. The final selection of papers was made
by the PC chairs based on the reviews received for each submission. Finally, the
conference program included 19 full papers, 11 short papers, three posters, and two
demonstrations, resulting in an acceptance rate of 29 % for full papers and 48 %
cumulative for full and short papers.

The conference program and the proceedings are organized into six parts.
The first part comprises papers proposing improvements to different methods and

techniques for similarity search. The second part is devoted to papers dealing with
issues related to metrics and evaluation. The third part focuses on applications of
similarity search to specific domains, such as image search, face retrieval, banknote
recognition, object recognition, text retrieval. The fourth part comprises papers devoted
to implementation and engineering solutions for similarity search. The fifth part con-
sists of posters and demonstration papers.

The conference program also included three invited talks from outstanding scientists
from industry and academia. The first, “Large-Scale Similarity Joins with Guarantees”
by Prof. Rasmus Pagh from the University of Copenhagen, gives an overview of
randomized techniques for high-dimensional similarity search. The second, “Directions
for Similarity Search in Television Recommender Systems” by Dr. Billy Wallace from
Think Analytics, discusses how similarity search can be exploited to build recom-
mender systems for television programs. The third, “Deep Learning and Similarity

Search” by Dr. Bobby Jaros from Yahoo Labs, discusses how deep learning can help in
identifying more subtle notions of similarity.

As in previous editions, the proceedings are published by Springer in the Lecture
Notes in Computer Science series. A selection of the best papers presented at the
conference were recommended for publication in the Information Systems Journal. The
selection of best papers was made by the PC, based on the reviews received by each
paper, and on the discussion during the conference.

SISAP conferences are organized by the SISAP initiative (www.sisap.org), which
aims to become a forum for the exchange of real-world, challenging, and innovative
examples of applications, new indexing techniques, common test-beds and bench-
marks, source code, and up-to-date literature through its Web page, serving the simi-
larity search community.

We would like to thank all the authors who submitted papers to SISAP 2015. We
would also like to thank all members of the PC and the external reviewers, for the
enormous amount of work they have done. We want to express our gratitude to the PC
members for their effort and contribution to the conference. All the submission,
reviewing, and proceedings generation processes were carried out through the Easy-
Chair platform.

October 2015 Giuseppe Amato
Richard Connor
Fabrizio Falchi

Claudio Gennaro

VI Preface

http://www.sisap.org

Organization

Program Committee Chairs

Richard Connor University of Strathclyde, Glasgow, UK
Giuseppe Amato ISTI-CNR, Pisa, Italy

Program Commitee Members

Agma Traina University of Sao Paulo, Brazil
Ahmet Sacan Drexel University, USA
Alfredo Ferro University of Catania, Italy
Andrea Esuli ISTI-CNR, Italy
Andreas Zuefle Ludwig-Maximilians-Universität München, Germany
Andreas Rauber Vienna University of Technology, Austria
Apostolos N. Papadopoulos Aristotle University of Thessaloniki, Greece
Benjamin Bustos University of Chile, Chile
Bjorn Thor Jonsson Reykjavik University, Iceland
Claudio Gennaro ISTI-CNR, Italy
Costantino Grana Università degli Studi di Modena e Reggio Emilia, Italy
Daniel Keim University of Konstanz, Germany
David Mount University of Maryland, USA
Deepak P. IBM Research, India
Dimitrios Tzovaras Informatics and Telematics Institute/Centre for

Research and Technology Hellas, Greece
Dong Deng Tsinghua University, China
Edgar Chavez CICESE, Mexico
Eduardo Valle University of Campinas, Brazil
Elaine Sousa University of Sao Paulo - ICMC/USP, Brazil
Fabrizio Falchi ISTI-CNR, Italy
Fabrizio Silvestri Yahoo Labs, Spain
Franco Maria Nardini ISTI-CNR, Italy
Giuseppe Amato ISTI-CNR, Italy
Gonzalo Navarro University of Chile, Chile
Hanghang Tong City College, CUNY, USA
Henning Müller HES-SO, Switzerland
Jakub Lokoc Charles University in Prague, Czech Republic
Joao Eduardo Ferreira University of Sao Paulo, Brazil
Joe Tekli Lebanese American University, USA
Johannes Niedermayer LMU Munich, Germany
Kaoru Yoshida Sony Computer Science Laboratories, Inc., Japan

K. Selcuk Candan Arizona State University, USA
Laurent Amsaleg CNRS-IRISA, France
Leonid Boytsov N/A, USA
Luisa Mico University of Alicante, Spain
Magnus Lie Hetland Norwegian University of Science and Technology,

Norway
Marcela Ribeiro Federal University of São Carlos - UFSCar, Brazil
Marco Patella DEIS - University of Bologna, Italy
Maria Luisa Sapino Università di Torino, Italy
Michael E. Houle National Institute of Informatics, Japan
Michel Crucianu CNAM, France
Nieves R. Brisaboa Universidade da Coruna, Spain
Oscar Pedreira Universidade da Coruna, Spain
Panagiotis Bouros Humboldt-Universität zu Berlin, Germany
Paolo Ciaccia University of Bologna, Italy
Peter Stanchev Kettering University, USA
Petros Daras Information Technologies Institute, Greece
Raffaele Perego ISTI-CNR, Italy
Renata Galante UFRGS, Brazil
Renato Fileto UFSC, Brazil
Richard Connor University of Strathclyde, UK
Richard Chbeir LIUPPA Laboratory, France
Robert Moss University of Strathclyde, UK
Robson Cordeiro ICMC-USP, Brazil
Rodrigo Paredes Universidad de Talca, Chile
Rosalba Giugno University of Catania, Italy
Rui Mao Shenzhen University, China
Stephane Marchand-Maillet Viper Group - University of Geneva, Switzerland
Thomas Seidl RWTH Aachen University, Germany
Virendra Bhavsar University of New Brunswick, Canada
Walid Aref Purdue University, USA
Walter Allasia Eurix, Italy
Yoshiharu Ishikawa Nagoya University, Japan
Yasin Silva Arizona State University, USA
Vincent Oria New Jersey Institute of Technology, USA

VIII Organization

Keynotes

Large-Scale Similarity Joins with Guarantees

Rasmus Pagh

IT University of Copenhagen, Copenhagen, Denmark

The ability to handle noisy or imprecise data is becoming increasingly important in
computing. In the information retrieval community the notion of similarity join has
been studied extensively, yet existing solutions have offered weak performance guar-
antees. Either they are based on deterministic filtering techniques that often, but not
always, succeed in reducing computational costs, or they are based on randomized
techniques that have improved guarantees on computational cost but come with a
probability of not returning the correct result.

The aim of this talk is to give an overview of randomized techniques for
high-dimensional similarity search, and then proceed to discuss two recent advances.
First, we consider ways of improving the locality of data access by using a recursive
approach. This provably lowers the I/O cost of large-scale similarity joins. Second, we
consider new methods for eliminating the probability of error inherent in classical
locality-sensitive hashing methods for similarity join in Hamming space, while almost
matching their theoretical performance.

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement
no. 614331.

Directions for Similarity Search in Television
Recommender Systems

Billy Wallace

Founding Developer, Think Analytics, Glasgow, UK

Recommender systems require similarity search in order to find a movie or tv show that
is similar to another. There are interesting constraints however, that differentiate this
application from a pure similarity search. Just finding similar content does not give
good recommendations, as we are trying to fulfil a business use-case such as up-selling
paid-for content or exposing users to content on channels they don't normally watch.
Instead, we use similarity almost as a bloom filter, where we populate a “candidate set”
using similarity search and then use a second pass to select good recommendations
based on the requirements of the use-case. It is common that we can't find enough
recommendations to fulfil a request from the candidate set unless we supply some hints
to the indexes being used to execute the similarity search, for example, prefer new
content, prefer popular content or candidates must be in the user's “package”. Mea-
suring the success of such recommender systems is difficult. There are no standard test
sets available, and it is difficult to convince broadcasters that they should share data that
they may not own outright, or which may present privacy issues if shared. We will
discuss an approach that we are starting to look at. Although the scale of the catalogues
indexed is modest, with numbers of items in the hundred thousands rather than mil-
lions, there are scalability concerns due to the number of requests - millions of cus-
tomers requiring thousands of requests per second with sub-second response times -
and also the fact that the catalogue changes frequently - usually in it's entirety several
times per day. It is hoped that by sharing insights from current commercial work in this
area, that new research directions, or applications of existing research are suggested.

Deep Learning and Similarity Search

Bobby Jaros

Yahoo Labs, San Francisco, California, USA

Deep Learning has received tremendous attention recently thanks to its impressive
results in computer vision, speech, medicine, robotics, and beyond. Although many
of the highly visible results have been in a classification setting, a prime motivation for
deep learning has been to learn rich feature vectors that are useful across a wide array
tasks. One goal of such features — for example, in perception-oriented tasks — might
be that items deemed similar by humans would have mathematically similar feature
vectors. As deep learning continues to advance, we can expect continued improvement
in our ability to identify more and more interesting and subtle notions of similarity. In
the other direction, similarity search can also empower deep learning, as recent work
invokes similarity search as a core module of deep learning systems.

Contents

Improving Similarity Search Methods and Techniques

Approximate Furthest Neighbor in High Dimensions 3
Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and Matthew Skala

Flexible Aggregate Similarity Search in High-Dimensional Data Sets 15
Michael E. Houle, Xiguo Ma, and Vincent Oria

Similarity Joins and Beyond: An Extended Set of Binary Operators
with Order . 29

Luiz Olmes Carvalho, Lucio F.D. Santos, Willian D. Oliveira,
Agma Juci Machado Traina, and Caetano Traina Jr.

Diversity in Similarity Joins . 42
Lucio F.D. Santos, Luiz Olmes Carvalho, Willian D. Oliveira,
Agma J.M. Traina, and Caetano Traina Jr.

CDA: Succinct Spaghetti . 54
Edgar Chavez, Ubaldo Ruiz, and Eric Tellez

Improving Metric Access Methods with Bucket Files 65
Ives R.V. Pola, Agma J.M. Traina, Caetano Traina Jr.,
and Daniel S. Kaster

Faster Dual-Tree Traversal for Nearest Neighbor Search 77
Ryan R. Curtin

Optimizing the Distance Computation Order of Multi-Feature Similarity
Search Indexing . 90

Marcel Zierenberg and Ingo Schmitt

Dynamic Permutation Based Index for Proximity Searching 97
Karina Figueroa and Rodrigo Paredes

Finding Near Neighbors Through Local Search. 103
Guillermo Ruiz, Edgar Chávez, Mario Graff, and Eric S. Téllez

Metrics and Evaluation

When Similarity Measures Lie . 113
Kevin A. Naudé, Jean H. Greyling, and Dieter Vogts

http://dx.doi.org/10.1007/978-3-319-25087-8_1
http://dx.doi.org/10.1007/978-3-319-25087-8_2
http://dx.doi.org/10.1007/978-3-319-25087-8_3
http://dx.doi.org/10.1007/978-3-319-25087-8_3
http://dx.doi.org/10.1007/978-3-319-25087-8_4
http://dx.doi.org/10.1007/978-3-319-25087-8_5
http://dx.doi.org/10.1007/978-3-319-25087-8_6
http://dx.doi.org/10.1007/978-3-319-25087-8_7
http://dx.doi.org/10.1007/978-3-319-25087-8_8
http://dx.doi.org/10.1007/978-3-319-25087-8_8
http://dx.doi.org/10.1007/978-3-319-25087-8_9
http://dx.doi.org/10.1007/978-3-319-25087-8_10
http://dx.doi.org/10.1007/978-3-319-25087-8_11

An Empirical Evaluation of Intrinsic Dimension Estimators 125
Cristian Bustos, Gonzalo Navarro, Nora Reyes, and Rodrigo Paredes

A Belief Framework for Similarity Evaluation of Textual or Structured Data 138
Sergej Znamenskij

Similarity of Attributed Generalized Tree Structures: A Comparative Study . . . 150
Mahsa Kiani, Virendrakumar C. Bhavsar, and Harold Boley

Evaluating Multilayer Multimedia Exploration . 162
Juraj Moško, Jakub Lokoč, Tomáš Grošup, Přemysl Čech,
Tomáš Skopal, and Jan Lánský

Semantic Similarity Between Images: A Novel Approach Based
on a Complex Network of Free Word Associations 170

Enrico Palumbo and Walter Allasia

Applications and Specific Domains

Vector-Based Similarity Measurements for Historical Figures 179
Yanqing Chen, Bryan Perozzi, and Steven Skiena

Efficient Approximate 3-Dimensional Point Set Matching
Using Root-Mean-Square Deviation Score . 191

Yoichi Sasaki, Tetsuo Shibuya, Kimihito Ito, and Hiroki Arimura

Face Image Retrieval Revisited . 204
Jan Sedmidubsky, Vladimir Mic, and Pavel Zezula

Semiautomatic Learning of 3D Objects from Video Streams. 217
Fabio Carrara, Fabrizio Falchi, and Claudio Gennaro

Banknote Recognition as a CBIR Problem . 229
Joan Sosa-García and Francesca Odone

Efficient Image Search with Neural Net Features. 237
David Novak, Jan Cech, and Pavel Zezula

Textual Similarity for Word Sequences . 244
Fumito Konaka and Takao Miura

Motion Images: An Effective Representation of Motion Capture Data
for Similarity Search . 250

Petr Elias, Jan Sedmidubsky, and Pavel Zezula

XVI Contents

http://dx.doi.org/10.1007/978-3-319-25087-8_12
http://dx.doi.org/10.1007/978-3-319-25087-8_13
http://dx.doi.org/10.1007/978-3-319-25087-8_14
http://dx.doi.org/10.1007/978-3-319-25087-8_15
http://dx.doi.org/10.1007/978-3-319-25087-8_16
http://dx.doi.org/10.1007/978-3-319-25087-8_16
http://dx.doi.org/10.1007/978-3-319-25087-8_17
http://dx.doi.org/10.1007/978-3-319-25087-8_18
http://dx.doi.org/10.1007/978-3-319-25087-8_18
http://dx.doi.org/10.1007/978-3-319-25087-8_19
http://dx.doi.org/10.1007/978-3-319-25087-8_20
http://dx.doi.org/10.1007/978-3-319-25087-8_21
http://dx.doi.org/10.1007/978-3-319-25087-8_22
http://dx.doi.org/10.1007/978-3-319-25087-8_23
http://dx.doi.org/10.1007/978-3-319-25087-8_24
http://dx.doi.org/10.1007/978-3-319-25087-8_24

Implementation and Engineering Solutions

Brute-Force k-Nearest Neighbors Search on the GPU. 259
Shengren Li and Nina Amenta

Regrouping Metric-Space Search Index for Search Engine Size Adaptation. . . . 271
Khalil Al Ruqeishi and Michal Konečný

Improving Parallel Processing of Matrix-Based Similarity Measures
on Modern GPUs . 283

Martin Kruliš, David Bednárek, and Michal Brabec

Time Series Subsequence Similarity Search Under Dynamic Time Warping
Distance on the Intel Many-Core Accelerators . 295

Aleksandr Movchan and Mikhail Zymbler

Subspace Nearest Neighbor Search - Problem Statement, Approaches,
and Discussion: Position Paper . 307

Michael Hund, Michael Behrisch, Ines Färber, Michael Sedlmair,
Tobias Schreck, Thomas Seidl, and Daniel Keim

Query-Based Improvement Procedure and Self-Adaptive Graph
Construction Algorithm for Approximate Nearest Neighbor Search 314

Alexander Ponomarenko

Posters

Is There a Free Lunch for Image Feature Extraction in Web Applications . . . 323
Martin Kruliš

On the Use of Similarity Search to Detect Fake Scientific Papers 332
Kyle Williams and C. Lee Giles

Reducing Hubness for Kernel Regression. 339
Kazuo Hara, Ikumi Suzuki, Kei Kobayashi, Kenji Fukumizu,
and Miloš Radovanović

Demo Papers

FELICITY: A Flexible Video Similarity Search Framework Using the Earth
Mover’s Distance . 347

Merih Seran Uysal, Christian Beecks, Daniel Sabinasz,
and Thomas Seidl

Contents XVII

http://dx.doi.org/10.1007/978-3-319-25087-8_25
http://dx.doi.org/10.1007/978-3-319-25087-8_26
http://dx.doi.org/10.1007/978-3-319-25087-8_27
http://dx.doi.org/10.1007/978-3-319-25087-8_27
http://dx.doi.org/10.1007/978-3-319-25087-8_28
http://dx.doi.org/10.1007/978-3-319-25087-8_28
http://dx.doi.org/10.1007/978-3-319-25087-8_29
http://dx.doi.org/10.1007/978-3-319-25087-8_29
http://dx.doi.org/10.1007/978-3-319-25087-8_30
http://dx.doi.org/10.1007/978-3-319-25087-8_30
http://dx.doi.org/10.1007/978-3-319-25087-8_31
http://dx.doi.org/10.1007/978-3-319-25087-8_32
http://dx.doi.org/10.1007/978-3-319-25087-8_33
http://dx.doi.org/10.1007/978-3-319-25087-8_34
http://dx.doi.org/10.1007/978-3-319-25087-8_34

Searching the EAGLE Epigraphic Material Through Image Recognition
via a Mobile Device . 351

Paolo Bolettieri, Vittore Casarosa, Fabrizio Falchi, Lucia Vadicamo,
Philippe Martineau, Silvia Orlandi, and Raffaella Santucci

Author Index . 355

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-25087-8_35
http://dx.doi.org/10.1007/978-3-319-25087-8_35

Improving Similarity Search Methods
and Techniques

Approximate Furthest Neighbor
in High Dimensions

Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and Matthew Skala(B)

IT University of Copenhagen, Copenhagen, Denmark
{pagh,fras,jovt,mska}@itu.dk

Abstract. Much recent work has been devoted to approximate nearest
neighbor queries. Motivated by applications in recommender systems,
we consider approximate furthest neighbor (AFN) queries. We present
a simple, fast, and highly practical data structure for answering AFN
queries in high-dimensional Euclidean space. We build on the technique
of Indyk (SODA 2003), storing random projections to provide sublin-
ear query time for AFN. However, we introduce a different query algo-
rithm, improving on Indyk’s approximation factor and reducing the run-
ning time by a logarithmic factor. We also present a variation based
on a query-independent ordering of the database points; while this does
not have the provable approximation factor of the query-dependent data
structure, it offers significant improvement in time and space complexity.
We give a theoretical analysis, and experimental results.

1 Introduction

Similarity search is concerned with locating elements from a set S that are
close to a given query q. The query q can be thought of as criteria we would
like returned items to satisfy approximately. For example, if a customer has
expressed interest in a product q, we may want to recommend other, similar
products. However, we do not want to recommend products that are too similar,
since that would not significantly increase the probability of a sale. Among the
points that satisfy a near neighbor condition (“similar”), we would like to return
those that also satisfy a furthest-point condition (“not too similar”), without
explicitly computing the set of all near neighbours and then searching it.

In this paper we focus on the problem of returning a furthest point, referred to
as “furthest neighbor” by analogy with nearest neighbor. In particular, we con-
sider point sets in d-dimensional Euclidean space (�d

2). We argue that the exact
version of this problem would also solve exact similarity search in d-dimensional
Hamming space, and thus is as difficult as that problem. The reduction follows
from the fact that the complement of every sphere in Hamming space is also a
sphere. That limits the hope we may have for an efficient solution to the exact
version, so we consider the c-approximate furthest neighbor (c-AFN) problem
where the task is to return a point x′ with d(q, x′) ≥ maxx∈S d(q, x)/c, with
d(x, u) denoting the distance between two points. We will pursue randomized
solutions having a small probability of not returning a c-AFN. The success prob-
ability can be made arbitrarily close to 1 by repetition.
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-25087-8 1

4 R. Pagh et al.

Another use for AFN comes from data structures that solve the approximate
near neighbor ((c, r)-ANN) problem via locality-sensitive hashing. A known issue
with the locality-sensitive hash approach to ANN is that if a point happens to
be very close to the query, then nearly every hash function will return it. These
duplicates cost significant time to filter out. AFN could offer a way to reduce
such duplication. If each hash function preferentially returns the points furthest
away from the query among the points it would otherwise return, then perhaps
we could reduce the cost of filtering out duplicate results while still hitting all
desired points with good probability.

We describe the data structure and query algorithm in section 2.2. The data
structure itself is closely similar to one proposed by Indyk [10], but our query
algorithm differs. It returns the c-approximate furthest neighbor, for any c > 1,
with probability at least 0.72. When the number of dimensions is O(log n), our
result requires Õ(n1/c2) time per query and Õ(n2/c2) total space, where n denotes
the input size. The Õ() notation omits polylog terms. Theorem 2 gives bounds
in the general case.

Our data structure requires more than linear space when c <
√

2, and there
are theoretical reasons why

√
2 may be an important boundary for all data

structures that solve this problem. In section 2.2 we give a preliminary result
showing that a data structure for c-AFN must store at least min{n, 2Ω(d)} − 1
data points when c <

√
2.

In section 3 we provide experimental support of our data structure by test-
ing it, and some modified versions, on real and randomly-generated data sets. In
practice, we can achieve approximation factors significantly below the

√
2 the-

oretical result, even with a simplified version of the algorithm that saves time
and space by examining candidate points in a query-independent order. We can
also achieve good approximation in practice with significantly fewer projections
and points examined than the worst-case bounds suggested by the theory. Our
techniques are much simpler to implement than existing methods for

√
2-AFN,

which generally require convex programming [6,15]. Our techniques can also be
extended to general metric spaces.

1.1 Related Work

Exact Furthest Neighbor. In two dimensions the furthest neighbor problem can
be solved in linear space and logarithmic query time using point location in a
furthest point Voronoi diagram (see e.g. de Berg et al. [3]). However, the space
usage of Voronoi diagrams grows exponentially with the number of dimensions,
making this approach impractical in high dimensions. Indeed, an efficient data
structure for the exact furthest neighbor problem in high dimension would lead
to surprising algorithms for satisfiability [19], so barring a breakthrough in sat-
isfiability algorithms we must assume that such data structures are not feasible.

Further evidence of the difficulty of exact furthest neighbor is the following
reduction from Goel, Indyk, and Varadarajan [9]: Given a set S ⊆ {0, 1}d and a
query vector q ∈ {0, 1}d, a furthest neighbor (in Euclidean space) from −q is a
vector in S of minimum Hamming distance to q. That is, exact furthest neighbor

Approximate Furthest Neighbor in High Dimensions 5

is at least as hard as exact nearest neighbor in d-dimensional Hamming space,
generally believed to be hard for large d and worst-case data.

Approximate Furthest Neighbor. Bespamyatnikh gives a dynamic data struc-
ture for the c-approximate furthest neighbor problem; however, its query time is
exponential in the dimension [4]. Indyk [10] avoids this exponential dependence.
More precisely, Indyk showed how to solve a fixed radius version of the problem
where given a parameter r the task is to return a point at distance at least r/c
given that there exist one or more points at distance at least r. He then gives a
solution to the furthest neighbor problem with approximation factor c+δ, where
δ > 0, by reducing it to queries on many copies of that data structure. The over-
all result is space O(dn1+1/c2 log(1−1/c)/2(n) log1+δ(d) log log1+δ(d)) and query
time O(dn1/c2 log(1−1/c)/2(n) log1+δ(d) log log1+δ(d)). While our new data struc-
ture uses the same basic method as Indyk, multiple random projections to one
dimension, we are able to avoid the fixed radius version entirely and get a single
and simpler data structure that works for all radii. Moreover, being interested
in static queries, we are able to reduce the space to Õ(dn2/c2).

Methods Based on an Enclosing Ball. Goel et al. [9] show that a
√

2-approximate
furthest neighbor can always be found on the surface of the minimum enclosing
ball of S. More specifically, there is a set S∗ of at most d+1 points from S whose
minimum enclosing ball contains all of S, and returning the furthest point in S∗

always gives a
√

2-approximation to the furthest neighbor in S. This method is
query independent in the sense that it examines the same set of points for every
query. Conversely, Goel et al. [9] show that for a random data set consisting of
n (almost) orthonormal vectors, finding a c-approximate furthest neighbor for
a constant c <

√
2 gives the ability to find an O(1)-approximate near neighbor.

Since it is not known how to do that in time no(1) it is reasonable to aim for
query times of the form nf(c) for approximation c <

√
2.

Applications in Recommender Systems. Several papers on recommender systems
have investigated the use of furthest neighbor search [16,17]. However, these
works are not primarily concerned with (provable) efficiency of the search. Other
related works in recommender systems include those of Abbar et al. [1] and Indyk
et al. [11], which use core-set techniques to return a small set of recommendations
no two of which are too close. In turn, core-set techniques also underpin works
on approximating the minimum enclosing ball [2,13].

2 Algorithms and Analysis

2.1 Provably Good Furthest Neighbor Data Structure

Our data structure works by choosing a random line and storing the order of
the data points along it. Two points far apart on the line are at least as far
apart in the original space. So given a query we can find the points furthest

6 R. Pagh et al.

from the query on the projection line, and take those as candidates to be the
furthest point in the original space. We build several such data structures and
query them in parallel, merging the results.

Given a set S ⊆ R
d of size n (the input data), let � = 2n1/c2 (the number

of random lines) and m = 1 + e2� logc2/2−1/3 n (the number of candidates to be
examined at query time), where c > 1 is the desired approximation factor. We
pick � random vectors a1, . . . , a� ∈ R

d with each entry of ai coming from the
standard normal distribution N(0, 1). We use arg maxm

x∈S f(x) for the set of m
elements from S that have the largest values of f(x), breaking ties arbitrarily.

For any 1 ≤ i ≤ �, we let Si = arg maxm
x∈S ai · x and store the elements of

Si in sorted order according to the value ai · x. Our data structure for c-AFN
consists of � subsets S1, . . . , S� ⊆ S, each of size m. Since these subsets come
from independent random projections, they will not necessarily be disjoint in
general; but in high dimensions, they are unlikely to overlap very much. This
data structure is essentially that of Indyk [10]; our technique differs in the query
procedure, given by Algorithm 1.

Algorithm 1. Query-dependent approximate furthest neighbor
1: initialize a priority queue of (point, integer) pairs, indexed by real keys
2: for i = 1 to � do
3: compute and store ai · q
4: create an iterator into Si, moving in decreasing order of ai · x
5: get the first element x from Si and advance the iterator
6: insert (x, i) in the priority queue with key ai · x − ai · q
7: end for
8: rval ← ⊥
9: for j = 1 to m do

10: extract highest-key element (x, i) from the priority queue
11: if rval = ⊥ or x is further than rval from q then
12: rval ← x
13: end if
14: get the next element x′ from Si and advance the iterator
15: insert (x′, i) in the priority queue with key ai · x′ − ai · q
16: end for
17: return rval

Our algorithm succeeds if and only if Sq contains a c-approximate furthest
neighbor. We now prove that this happens with constant probability.

We make use of the following standard lemmas that can be found, for exam-
ple, in the work of Datar et al. [7] and Karger, Motwani, and Suden [12], respec-
tively.

Lemma 1 (See Section 3.2 of Datar et al. [7]). For every choice of vectors
x, y ∈ R

d:
ai · (x − y)
||x − y||2 ∼ N(0, 1). (1)

Approximate Furthest Neighbor in High Dimensions 7

Lemma 2 (see Lemma 7.1.3 in Karger, Motwani, and Suden [12]). For
every t > 0, if X ∼ N(0, 1) then

1√
2π

·
(

1
t

− 1
t3

)
· e−t2/2 ≤ Pr[X ≥ t] ≤ 1√

2π
· 1

t
· e−t2/2 (2)

The next lemma follows, as suggested by Indyk [10, Claims2-3].

Lemma 3. Let p be a furthest neighbor from the query q with r = ||p−q||2, and
let p′ be a point such that ||p′ − q||2 < r/c. Let Δ = rt/c with t satisfying the
equation et2/2tc

2
= n/(2π)c2/2 (i.e., t = O

(√
log n

)
). Then, for a sufficiently

large n, we get

Pr
a

[a · (p′ − q) ≥ Δ] ≤ logc2/2−1/3 n

n
(3)

Pr
a

[a · (p − q) ≥ Δ] ≥ (1 − o(1))
1

n1/c2
. (4)

Proof. Let X ∼ N(0, 1). By Lemma 1 and the right part of Lemma 2, we get
for a point p′ that

Pr
a

[a · (p′ − q) ≥ Δ] = Pr
a

[X ≥ Δ/||p′ − q||2] ≤ Pr
a

[X ≥ Δc/r]

≤ 1√
2π

e−t2/2

t
≤

(
t
√

2π
)c2−1 1

n
≤ logc2/2−1/3 n

n
.

The last step follows because et2/2tc
2

= n/(2π)c2/2 implies that t = O
(√

log n
)
,

and holds for a sufficiently large n. Similarly, by Lemma 1 and the left part of
Lemma 2, we have for a furthest neighbor p that

Pr
a

[a · (p − q) ≥ Δ] = Pr
a

[X ≥ Δ/||p − q||2] = Pr
a

[X ≥ Δ/r]

≥ 1√
2π

(
c

t
−

(c

t

)3
)

e−t2/(2c2) ≥ (1 − o(1))
1

n1/c2
.

�	
Theorem 1. The data structure when queried by Algorithm 1 returns a c-AFN
of a given query with probability 1 − 2/e2 > 0.72 in O(n1/c2(d + logc2/2+2/3 n))
time per query. The data structure requires O(n1+1/c2(d + log n)) preprocessing
time and total space

O
(
min

{
dn2/c2 logc2−1/3 n, dn + n2/c2 logc2−1/3 n

})
. (5)

Proof. The space required by the data structure is the space required for storing
the � sets Si. If for each set Si we store the m ≤ n points and the projection
values, then O (�md) memory words are required. On the other hand, if pointers
to the input points are stored, then the total required space is O (�m + nd).

8 R. Pagh et al.

Both representations are equivalent, and the best one depends on the value of
n and d. The claim on the space requirements follows. The preproceesing time
is dominated by the computation of the n� projection values and by the sorting
for computing the sets Si. Finally, the query time is dominated by the at most
2m insertion or deletion operations on the priority queue and by the search in
Sq for the furthest neighbor.

We now upper bound the success probability. As in the statement of
Lemma 3, we let p denote a furthest neighbor from q, r = ||p−q||2, p′ be a point
such that ||p′ − q||2 < r/c, and Δ = rt/c with t such that et2/2tc

2
= n/(2π)c2/2.

The query succeeds if: (i) ai(p − q) ≥ Δ for at least one projection vector ai,
and (ii) the (multi)set Sn = {p′|∃i : ai(p′ − q) ≥ Δ, ||p′ − q||2 < r/c} contains
at most m − 1 points (i.e., there are at most m − 1 near points whose distances
from the query is at least Δ in some projections). If (i) and (ii) hold, then the
set SQ must contain the furthest neighbor p since there are at most m−1 points
near to q with projection values larger than the maximum projection value of
p. Note that we do not consider points at distance larger than r/c but smaller
than r: they are c-approximate furthest neighbors of q and can only increase the
success probability of our data structure.

By Lemma 3, event (i) happens with probability 1/n1/c2 . Since there are
� = 2n1/c2 independent projections, this event does not happen with probability
at most (1 − 1/n1/c2)2n1/c2 ≤ 1/e2. For a point p′ at distance at most r/c

from q, the probability that ai(p′ − q) ≥ Δ is less than (logc2/2−1/3 n)/n for
Lemma 3. Since there are � projections of n points, the expected number of such
points is � logc2/2−1/3 n. Then, we have that S has size larger than m − 1 with
probability at most 1/e2 by the Markov inequality. Note that a Chernoff bound
cannot be used since there exists a dependency among the projections under the
same random vector ai. By a union bound, we can therefore conclude that the
algorithm succeeds with probability at least 1 − 2/e2 ≥ 0.72. �	

2.2 A Lower Bound on the Approximation Factor

In this section, we show that a data structure aiming at an approximation factor
less than

√
2 must use space min{n, 2Ω(d)} − 1 on worst-case data. The lower

bound holds for those data structures that compute the approximate furthest
neighbor by storing a suitable subset of the input points.

Theorem 2. Consider any data structure D that computes the c-AFN of an
n-point input set S ⊆ R

d by storing a subest of the data set. If c =
√

2(1 − ε)
with ε ∈ (0, 1), then the algorithm must store at least min{n, 2Ω(ε2d)}−1 points.

Proof. We prove by contradiction that any data structure requiring less than
min{n, 2Ω(ε2d)}− 1 input points cannot return a

√
2(1− ε)-approximation. Sup-

pose there exists a set S′ of size r = 2Ω(ε′2d) such that for any x ∈ S′ we have
(1 − ε′) ≤ ||x||22 ≤ (1 + ε′) and x · y ≤ 2ε′, with ε′ ∈ (0, 1). We will later prove
that such a set exists.

Approximate Furthest Neighbor in High Dimensions 9

Assume n ≤ r. Consider the input set S consisting of n arbitrary points of S′

and set the query q to −x, where x is an input point not in the data structure.
The furthest neighbor is x and it is at distance at least ||x− (−x)||2 ≥ 2

√
1 − ε′.

On the other hand, for y ∈ S\{x}, we get

||y − (−x)||22 = ||x||22 + ||y||22 + 2x · y ≤ 2(1 + ε′) + 4ε′.

Therefore, the point returned is at least a c′ approximation with

c′ ≤
√

2

√
1 − ε′

1 + 3ε′ . (6)

The claim follows by setting ε′ =
√

(2ε − ε2)/(1 + 3(1 − ε)2).
Assume now that n > r. Without loss of generality, let n be a multiple

of r. Consider as input set the set S containing n/r copies of each vector
in S′, each copy expanded by a factor i for any i ∈ [1, n/r]; specifically, let
S = {ix|∀x ∈ S′,∀i ∈ [1, n/r]}. Let the query q be −hx, where x is a point not
in the data structure and h is the largest integer such that hy, with y ∈ S′, is in
the data structure. The furthest neighbor in S is at distance at least 2h

√
1 − ε′.

On the other hand, every point in the data structure is at distance at most
h
√

2(1 + ε′) + 4ε′2. We then get the same approximation factor c′ given in equa-
tion 6, and the claim follows by suitably setting ε′.

The existence of the set S′ of size r follows from the Johnson-Lindenstrauss
lemma [14]. Specifically, consider an orthornormal base x1, . . . xr of R

r. Since
n = Ω

(
log r/ε2

)
, by the Johnson-Lindenstrauss lemma there exists a linear map

f(·) such that (1 − ε′)||xi − xj ||22 ≤ ||f(xi) − f(xj)||22 ≤ (1 + ε)||xi − xj ||22 and
(1 − ε′) ≤ ||f(xi)||22 ≤ (1 + ε′) for any i, j. We also have that f(xi) · f(xj) =
(||f(xi)||22 + ||f(xj)||22 −||f(xi)−f(xj)||22)/2, and hence −2ε ≤ f(xi) ·f(xj) ≤ 2ε.
It then suffices to set S′ to {f(x1), . . . , f(xr)}. �	

The upper bound on space translates into a lower bound for the query time in
data structures for AFN which are query independent. Indeed, the lower bound
translates into the number of points that must be read by each query. However,
this does not apply for query dependent data structures.

3 Experiments

To test the algorithm and confirm both its correctness and practicality we imple-
mented several variations in both the C and F# programming languages. This
code is available on request. Our C implementation is structured as an alternate
index type for the SISAP C library [8], returning the furthest neighbor instead
of the nearest.

We selected four databases for experimentation: the “nasa” and “colors” vec-
tor databases from the SISAP library, and two randomly generated databases of
105 10-dimensional vectors each, one using a multidimensional normal distribu-
tion and one uniform on the unit cube. The 10-dimensional random distributions

10 R. Pagh et al.

were intended to represent realistic data, but their intrinsic dimensionality is sig-
nificantly higher than what we would expect to see in real-life applications.

For each database and each choice of � from 1 to 30 and m from 1 to 4�, we
made 1000 approximate furthest neighbor queries. To provide a representative
sample over the randomization of both the projection vectors and the queries,
we used 100 different seeds for generation of the projection vectors, and did 10
queries (each uniformly selected from the database points) with each seed. We
computed the approximation achieved, compared to the true furthest neighbor
found by brute force, for every query. The resulting distributions for the uniform,
normal, and nasa databases are summarized in Figures 1–3.

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30

ap
pr
ox

im
at
io
n
ac
hi
ev
ed

(c
)

projections and points examined (� = m)

range/quartiles/median
sample mean

query-independent

Fig. 1. Experimental results for 10-dimensional uniform distribution

We omit a similar figure from our experiment on the colors database because
the result was of little interest: it apparently contains a few very extreme outliers,
making the furthest neighbor problem too easy to meaningfully test the algo-
rithm. We also ran some informal experiments on higher-dimensional random
vector databases (with 30 and 100 dimensions, in particular) and saw approxi-
mation factors very close to those achieved for 10 dimensions.

� vs. m Tradeoff. The two parameters � and m both improve the approximation
as they increase, and they each have a cost in the time and space bounds. The
best tradeoff is not clear from the analysis. We chose � = m as a typical value,
but we also collected data on many other parameter choices.

Figure 4 offers some insight into the tradeoff: since the cost of doing a query
is roughly proportional to both � and m, we chose a fixed value for their product,
� · m = 48, and plotted the approximation results in relation to m given that.
As the figure shows, the approximation factor does not change much with the
tradeoff between � and m.

Query-independent Ordering. The furthest-neighbor algorithm described in our
theoretical analysis examines candidates for the furthest neighbor in a query
dependent order. It seems intuitively reasonable that the search will usually

Approximate Furthest Neighbor in High Dimensions 11

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30

ap
pr
ox

im
at
io
n
ac
hi
ev
ed

(c
)

projections and points examined (� = m)

range/quartiles/median
sample mean

query-independent

Fig. 2. Experimental results for 10-dimensional normal distribution

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30

ap
pr
ox

im
at
io
n
ac
hi
ev
ed

(c
)

projections and points examined (� = m)

range/quartiles/median
sample mean

query-independent

Fig. 3. Experimental results for SISAP nasa database

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14

ap
pr
ox

im
at
io
n
ac
hi
ev
ed

(c
)

points examined (m), with �m = 48

range/quartiles/median
sample mean

query-independent

Fig. 4. The tradeoff between � and m

12 R. Pagh et al.

examine points in a very similar order regardless of the query: first those that
are outliers, on or near the convex hull of the database, and then working its
way inward. Maybe there could be a single generic ordering of the points that
would serve reasonably well for all queries?

We implemented a modified version of the algorithm in which the index stores
a single ordering of the points. Given a set S ⊆ R

d of size n, for each point x ∈ S
let key(x) = maxi∈1...� ai · x. The key for each point is its greatest projection
value on any of the � randomly-selected projections. The data structure stores
points (all of them, or enough to accomodate the largest m we plan to use) in
order of decreasing key value: x1, x2, . . . where key(x1) ≥ key(x2) ≥ · · · .

The query simply examines the first m points in this query independent order-
ing and returns the one furthest from the query point. Sample mean approxima-
tion factor for this algorithm in our experiments is shown by the dotted lines in
Figures 1–4.

Variations on the Algorithm. We have experimented informally with a number
of practical improvements to the algorithm. The most significant is to use the
rank-based depth of projections rather than the projection value. In this variation
we sort the points by their projection value for each ai. The first and last point
then have depth 0, the second and second-to-last have depth 1, and so on up
to the middle at depth n/2. We find the minimum depth of each point over all
projections and store the points in a query independent order using the minimum
depth as the key. This approach generally yields slightly better approximations,
but is more complicated to analyze. A further improvement is to break ties in
the minimum depth by count of how many times that depth is achieved, giving
more priority to investigating points that repeatedly project to extreme values.

The number of points examined m can be chosen per query and even during
a query, allowing for interactive search. After returning the best result for some
m, the algorithm can continue to a larger m for a possibly better approximation
factor on the same query. The smooth tradeoff we observed between � and m
suggests that choosing an � during preprocessing will not much constrain the
eventual choice of m.

Discussion. The main experimental result is that the algorithm works very well
for the tested datasets in terms of returning good approximations of the fur-
thest neighbor. Even for small � and m the algorithm returns good approxima-
tions. Another result is that the query independent algorithm returns points only
slighly worse than the query dependent. The query independent algorithm is sim-
pler to implement, it can be queried in time O (m) as opposed to O (m log � + m)
and uses only O (m) storage. In many cases these advances more than make up
for the slightly worse approximation observed in these experiments. However, by
Theorem 2, to guarantee

√
2 − ε approximation the query-independent ordering

version would need to store and read m = n − 1 points.
In data sets of high intrinsic dimensionality the furthest point from a

query may not be much further than any randomly selected point, and we
can ask whether our results are any better than a trivial random selection

Approximate Furthest Neighbor in High Dimensions 13

from the database. The intrinsic dimensionality statistic ρ of Chávez and
Navarro [5] provides some insight into this question. Skala gives a formula for its
value on a multidimensional normal distribution [18, Theorem 2.10], which yields
ρ = 9.768 . . . for the 10-dimensional distribution used in Figure 2. With the def-
inition ρ = μ2/2σ2, this means the standard deviation of a randomly selected
distance will be about 32% of the mean distance. Our experimental results come
much closer than that to the true furthest distance, and so are non-trivial.

The concentration of distances in data sets of high intrinsic dimensional-
ity reduces the usefulness of approximate furthest neighbor. Thus, although we
observed similar values of c in higher dimensions to our 10-dimensional random
vector results, random vectors of higher dimension may represent a case where
c-approximate furthest neighbor is not a particularly interesting problem. Fortu-
nately, vectors in a space with many dimensions but low intrinsic dimensionality,
such as the colors database, are more representative of real application data, and
our algorithms performed well on such data sets.

4 Conclusions and Future Work

We have proposed a data structure for AFN with theoretical and experimental
guarantees. Although we have proved that it is not possible to use less than
min{n, 2Ω(d)} − 1 total space when the c approximation factor is less than

√
2,

it is an open problem to close the gap between this lower bound and the space
requirements of our result. Another interesting problem is to apply our data
structure to improve the output sensitivity of near neighbor search based on
locality-sensitive hashing. We conjecture that, by replacing each hash bucket
with an AFN data structure with suitable approximation factors, it is possible
to control the number of times each point in S is reported.

Our data structure extends naturally to general metric spaces. Instead of
computing projections with dot product, which requires a vector space, we could
choose some random pivots and order the points by distance to each pivot. The
query operation would be essentially unchanged. Analysis and testing of this
extension is a subject for future work.

Acknowledgement. The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement no. 614331.

References

1. Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S.: Real-time recommendation
of diverse related articles. In: Proc. 22nd International Conference on World Wide
Web (WWW), pp. 1–12 (2013)

2. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Computational Geometry
40(1), 14–22 (2008)

14 R. Pagh et al.

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS (2008)

4. Bespamyatnikh, S.N.: Dynamic algorithms for approximate neighbor searching. In:
Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG
1996), pp. 252–257. Carleton University, August 12–15, 1996

5. Chávez, E., Navarro, G.: Measuring the dimensionality of general metric spaces.
Tech. Rep. TR/DCC-00-1, Department of Computer Science, University of Chile
(2000)

6. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM (JACM) 42(2), 488–499 (1995)

7. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proc. 20 Annual Symposium on Com-
putational Geometry (SoCG), pp. 253–262 (2004)

8. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007) (online).
http://www.sisap.org/Metric Space Library.html

9. Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional prox-
imity problems. In: Proc. 12th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 769–778 (2001)

10. Indyk, P.: Better algorithms for high-dimensional proximity problems via asym-
metric embeddings. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 539–545 (2003)

11. Indyk, P., Mahabadi, S., Mahdian, M., Mirrokni, V.S.: Composable core-sets for
diversity and coverage maximization. In: Proc. 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), pp. 100–108.
ACM (2014)

12. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite
programming. Journal of the ACM (JACM) 45(2), 246–265 (1998)

13. Kumar, P., Mitchell, J.S., Yildirim, E.A.: Approximate minimum enclosing balls
in high dimensions using core-sets. Journal of Experimental Algorithmics 8, 1–1
(2003)

14. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Struc-
tures and Algorithms 33(2), 142–156 (2008)

15. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4–5), 498–516 (1996)

16. Said, A., Fields, B., Jain, B.J., Albayrak, S.: User-centric evaluation of a k-furthest
neighbor collaborative filtering recommender algorithm. In: Proc. Conference on
Computer Supported Cooperative Work (CSCW), pp. 1399–1408 (2013)

17. Said, A., Kille, B., Jain, B.J., Albayrak, S.: Increasing diversity through fur-
thest neighbor-based recommendation. In: Proceedings of the WSDM Workshop
on Diversity in Document Retrieval (DDR 2012) (2012)

18. Skala, M.A.: Aspects of Metric Spaces in Computation. Ph.D. thesis, University of
Waterloo (2008)

19. Williams, R.: A new algorithm for optimal constraint satisfaction and its implica-
tions. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)

http://www.sisap.org/Metric_Space_Library.html

Flexible Aggregate Similarity Search
in High-Dimensional Data Sets

Michael E. Houle1(B), Xiguo Ma2, and Vincent Oria3

1 National Institute of Informatics, Tokyo 101-8430, Japan
meh@nii.ac.jp

2 Google, Mountain View, CA 94043, USA
maxiguo@google.com

3 New Jersey Institute of Technology, Newark, NJ 07102, USA
oria@njit.edu

Abstract. Numerous applications in different fields, such as spatial
databases, multimedia databases, data mining and recommender sys-
tems, may benefit from efficient and effective aggregate similarity search,
also known as aggregate nearest neighbor (AggNN) search. Given a group
of query objects Q, the goal of AggNN is to retrieve the k most similar
objects from the database, where the underlying similarity measure is
defined as an aggregation (usually sum, avg or max) of the distances
between the retrieved objects and every query object in Q. Recently,
the problem was generalized so as to retrieve the k objects which are
most similar to a fixed proportion of the elements of Q. This variant of
aggregate similarity search is referred to as ‘flexible AggNN’, or FANN.
In this work, we propose two approximation algorithms, one for the sum
and avg variants of FANN, and the other for the max variant. Exten-
sive experiments are provided showing that, relative to state-of-the-art
approaches (both exact and approximate), our algorithms produce query
results with good accuracy, while at the same time being very efficient
— even for real datasets of very high dimension.

1 Introduction

The aim of classical similarity search is to retrieve from the database a set of
objects most similar to a specified query object, based on a single ranking crite-
rion that is usually expressed in terms of a similarity function. In recent years, the
use of multiple ranking criteria has been investigated, in which the final rankings
of objects are obtained by combining the individual rankings according to some
aggregation function (for example, min, max , sum or avg). The ranking criteria
used in applications of this form of similarity search have differed greatly from
area to area. In multimedia applications [1], ranking criteria have been defined
in terms of several distance functions computed over different sets of discrim-
inative features, such as color features and texture features. In keyword-based
search [2], criteria have been defined with respect to each individual keyword
used in the search; while in subspace similarity search [3], ranking criteria have
been defined on each individual dimension of the targeted subspace dimensions.
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 15–28, 2015.
DOI: 10.1007/978-3-319-25087-8 2

16 M.E. Houle et al.

Given a group of query objects Q, aggregate similarity or aggregate nearest
neighbor (AggNN) search aims to retrieve the k objects from the database S that
are most highly ranked with respect to Q, where the ranking criterion (similarity
measure) is defined as an aggregation (usually sum, avg or max) of distances
between the retrieved objects and every object in Q.

Due to its importance and generality, AggNN has received a considerable
amount of attention in the literature. Specifically, it has been addressed in the
contexts of content-based image retrieval [4], recommender systems [5], road
networks [6], and for indexing in both Euclidean vector spaces [7–9], and metric
spaces [10]. AggNN methods tend to favor only those objects that are similar
to all query objects in Q, which may drastically limit its performance when the
characteristics of the objects of Q vary greatly [11].

Inmanyscenarios, itmaybedifficult (or impossible) todetermineasetofobjects
that are similar to all the query objects of Q. For this reason, Li et al. [11] proposed
a generalized problem, called flexible aggregate similarity search (FANN), in which
the restrictiveness of AggNN is eased by calculating aggregate distances only over
subsets of Q. More precisely, FANN aims to retrieve the k objects which are most
similar to a subset of group query Q with size φ|Q|, for some target proportion 0 <
φ ≤ 1. When φ = 1, FANN is equivalent to AggNN.

Compared to AggNN, FANN is not only better suited for finding semantically
meaningful results, but it also allows the user to formulate the group query Q
with more flexibility. As pointed out in [11], FANN query results may also be
more diverse than AggNN results, since every object in the FANN result set may
be related to a distinct subset of Q. For these reasons, FANN is a more difficult
problem than AggNN, and existing solutions for the AggNN problem cannot be
effectively applied for FANN.

In this paper, we propose the FADT (Flexible Aggregation through Dimen-
sional Testing) family of approximation algorithms for the FANN problem in
high-dimensional spaces, that possess great efficiency while returning high-
quality query results. Our algorithms adopt a multi-step search strategy [12],
together with tests for early termination based on a measure of intrinsic dimen-
sionality [13]. The main contributions are:

– Two approximation algorithms for the FANN problem, one for the sum and
avg variants and the other for the max variant.

– A theoretical analysis of our methods, showing conditions under which an
exact result can be guaranteed. We also show conditions under which approx-
imate result can be guaranteed for a variable distance approximation ratio.

– An extensive experimental evaluation, showing that our algorithms are able
to produce query results with both good accuracy and high efficiency in
comparison with state-of-the-art competitors, particularly when the data
dimensionality is high.

2 Problem Description

Before formally presenting the FANN problem, let us first introduce some needed
notation. Let U be a data domain with a distance metric d(u, v) defined for any

Flexible Aggregate Similarity Search 17

two objects u, v ∈ U . Let S ⊆ U denote the set of objects in the database. For any
object set X ⊆ U and any object v ∈ U , let NX(v, k) denote the set of k nearest
neighbors of v within X with respect to distance metric d. The AggNN aggregate
distance measure D(X, v) is defined as D(X, v) = g(d(x1, v), . . . , d(x|X|, v)),
where g is an aggregation function (sum or max), and xi ∈ X for i = 1, . . . , |X|.
FANN Problem. Given a group of query objects Q ⊆ U with size |Q| = m > 1,
a distance metric d, an aggregation function g, a target proportion 0 < φ ≤ 1,
and a target neighborhood size k, a FANN query returns the k most similar
objects to Q from the database S, where the similarity distance is defined as
Dφ(Q, v) = D(NQ(v, �φm�), v). The similarity distance Dφ(Q, v) denotes the
aggregate distance from v to all members of its �φm� neighborhood in Q. We call
this similarity distance the ‘φ-aggregate distance’. Since D1(Q, v) = D(Q, v), the
AggNN problem can be viewed as a special case of the FANN problem whenever
φ = 1.

3 Related Work

3.1 Flexible Aggregate Similarity Search

As discussed in Section 1, none of the methods proposed for the AggNN problem
can be effectively applied to the FANN problem [7–10]. In [11], two exact solu-
tions, R-tree and List, were proposed specifically for FANN. Algorithm R-tree
extends the solution for AggNN due to Papadias et al. [8] in low-dimensional
settings (up to 10 dimensions), through an adaptation of the pruning bound. The
design of the other exact method, List, is based on the well-known Threshold
Algorithm (TA) [1]. Algorithm List retrieves candidates for the query result from
the neighborhoods of every object of group query Q in a round robin fashion,
while maintaining a lower bound for the best possible φ-aggregate distance of
all the unseen objects. The algorithm terminates when at least k of the objects
visited have φ-aggregate distances no greater than the lower bound. Although
the algorithm is capable of handling higher-dimensional data, the execution cost
may be prohibitively expensive, as we shall see in Section 5.

In addition to the exact methods R-Tree and List, two simple approxima-
tions methods were also proposed in [11]: ASUM, for the sum variant of FANN,
and AMAX, for the max variant. With the ASUM heuristic, a candidate set is
generated by taking the union of the k-NN sets for every query object in Q.
The k best objects within these km candidates is then returned as the result.
The AMAX heuristic is very similar to ASUM, the only difference being that
AMAX first finds the center of the minimum enclosing ball (MEB) of the query
set neighborhood NQ(q, �φm�), based at each query object q ∈ Q; AMAX then
treats these centers as query objects.

3.2 Multi-step Search

Our proposed solutions for the FANN problem make use of the multi-step search
strategy originally proposed for the adaptive similarity search problem, which

18 M.E. Houle et al.

Fig. 1. Formal definitions of generalized expansion dimension and maximum expansion
dimension (from [14]).

aims to find the most similar objects to a query object with respect to an adaptive
similarity measure — one that can be determined by the user at query time [12].
Multi-step search computes a query result using a fixed ‘lower-bounding’ distance
function that is adapted to answer the same query with respect to a user-supplied
‘target’ distance function. The function dl is a lower-bounding distance for the
target distance d if dl(u, v) ≤ d(u, v) for any two objects u, v drawn from a
domain for which both dl and d are defined.

The proposed FANN solutions build upon our previous work on MAET [13],
a heuristic multi-step search algorithm that utilizes, as the basis of an early
search termination condition, tests of intrinsic dimensionality (‘dimensional
tests’) according to the generalized expansion dimension (GED) [13,14]. For
more details on MAET, its theoretical analysis, and its performance in practice,
we refer the reader to [13].

3.3 Generalized Expansion Dimension

GED is a relaxation of the expansion dimension due to Karger and Ruhl [15], in
which the estimation of intrinsic dimension in the vicinity of a query point q is
made through the observation of the ranks and distances of pairs of neighbors
with respect to q.

For any point q ∈ U and any point set X ⊆ U , let δX(q, k) be the k-th smallest
distance (with respect to d) from q to the points in X. Given a point q ∈ U and
a radius r ≥ 0, let B≤

S (q, r) ⊆ S be the closed ball of points centered at q with
radius r containing all v ∈ S satisfying d(q, v) ≤ r, and let B<

S (q, r) ⊆ S be the
open ball containing all v ∈ S satisfying d(q, v) < r. Note that the definition of
the closed ball provided here allows a ball to have radius 0, and to contain no
points.

Given two closed balls B≤
S (q, r1) and B≤

S (q, r2) with radii 0 < r1 < r2 and
cardinalities 0 < |B≤

S (q, r1)| < |B≤
S (q, r2)|, their GED is defined as in Fig. 1. As

Flexible Aggregate Similarity Search 19

argued in [13–15], the cardinality of the two ball sets is an estimator of their
spherical volumes; substituting the true volumes for these cardinalities in the
formula would reveal the representational dimensionality of the set. As such, the
GED is the dimension of the space within which a uniform point distribution
would be expected to produce inner and outer ball cardinalities proportional to
the observed values. The GED formula therefore serves to relate an estimate of
intrinsic dimensionality with the ranks of two neighbors (the ball cardinalities),
and their distances to the query (the ball radii).

Also defined in Fig. 1 are the inner ball set, the outer ball set and the maxi-
mum expansion dimension (MaxGED), all relative to a point q ∈ U and a neigh-
borhood size k ≥ 2. Note that the MaxGED(q, k) has no definite value when
the inner ball set Bin(q, k) is empty. In other words, in order for MaxGED(q, k)
to have a definite value, the ball B≤

S (q, δS(q, j)) must have radius satisfying
0 < δS(q, j) < δS(q, k) for at least one choice of j in the range [1, k − 1].

4 The SUM and Avg Variants of FANN

Note that for the FANN problem, the aggregation functions sum and avg are
equivalent. For this reason, and for the ease of description of our algorithm, we
will formulate our solution in terms of the avg aggregation function.

Let us first introduce some additional notation. For any object set X ⊆ U and
any group query Q ⊆ U , let NX(Q, k) denote the set of k nearest neighbors of
Q within X with respect to φ-aggregate distance Dφ. Ties are broken arbitrarily
but consistently. Note that when k = 0, the neighborhood set NX(Q, k) would be
empty. Let R≤

X(Q, r) be the closed range set of objects v ∈ X with distance to Q
satisfying Dφ(Q, v) ≤ r, and let R<

X(Q, r) be the open range set of objects v ∈ X

with distance to Q satisfying Dφ(Q, v) < r. For any object u ∈ U , let R≤
X(u, r) be

the closed range set of objects v ∈ X with distance to u satisfying d(u, v) ≤ r,
and let R<

X(u, r) be the open range set of objects v ∈ X with distance to u
satisfying d(u, v) < r. Let δX(Q, k) be the k-th smallest φ-aggregate distance
from Q to all the objects in X.

4.1 Algorithm

Our algorithm, FADT AVG, is described in Fig. 2. Whereas traditional search
techniques usually progress through the exploration of a neighborhood of a single
point in the domain (the query point), our aggregate similarity search method
simultaneously explores the neighborhoods of m ‘start points’ Mi, each of which
is formed by aggregating a subset of the group query Q. Iterating through the
neighborhoods of the start points in round robin fashion, two pruning strategies
are applied to reduce the search space. The first strategy utilizes a distance
bound based on an auxiliary distance relative to the φ-aggregate distance. The
second strategy applies a test of the intrinsic dimensionality (in the vicinity of
Q) to determine whether early termination is possible.

20 M.E. Houle et al.

Algorithm FADT (database S, group query Q, target proportion φ, aggregation function avg or
max, neighborhood size k, lower-bounding ratios λ1, . . . , λm, termination parameter t)
1: Assume the existence of an index I created with respect to d, together with a method getnext

that uses I to iterate through the nearest neighbor list of a target object.
2: Let P be an object set. P ← ∅.
3: AVG: For each qi ∈ Q, find the geometric median Mi of NQ(qi, �φm�).

MAX: For each qi ∈ Q, find the centerMi of the minimum enclosing ball ofNQ(qi, �φm�).
// m = |Q|

4: AVG: Let αi be the average of the largest �φm� distances from Mi to all the query points in
Q, for i = 1, . . . , m.
MAX: Let αi be the �φm�-th largest distance from Mi to all the query points in Q, for
i = 1, . . . , m.

5: Let q∗ and r∗ be the center and radius of MEB(Q), respectively.
6: Initialize γi ← −∞ for i = 1, . . . , m.
7: Initialize kin ← 0 and kout ← k.
8: while TRUE do
9: for i = 1 → m do
10: (vi, βi) ← I.getnext(Mi). // βi = d(Mi, vi)
11: γi ← λi · βi − αi. // lower distance bound
12: P ← P ∪ {vi}.
13: if |P | < k then
14: Continue to Line 9.
15: else if |P | = |S| then
16: return NP (Q, k).
17: end if

// prune using distance bound
18: γ ← max{γ1, . . . , γm}.
19: k′ ← |R≤

P (Q, γ)|.
20: if k′ ≥ k then
21: return NP (Q, k).
22: else

// prune using dimensional test
23: kin ← |R<

P (q
∗, γ − r∗)|.

24: if kin > 0 then
25: rin ← δP (q∗, kin).
26: rout ← δP (Q, k) + r∗.
27: kout ← |R≤

P (q
∗, rout)|.

28: if rin > 0 and kin · (rout/rin)t < kout + 1 then
29: return NP (Q, k).
30: end if
31: end if
32: end if
33: end for
34: end while

Fig. 2. The description of the FADT AVG and FADT MAX variants of Algorithm
FADT.

Flexible Aggregate Similarity Search 21

For each query point qi ∈ Q, the algorithm constructs one start point Mi.
The point Mi is constructed as the geometric median of the neighborhood
NQ(qi, �φm�) of qi within group query Q. The geometric median Mi is the point
which minimizes the average of its distances to all points in the full query set
neighborhood NQ(qi, �φm�). Note that Mi is not required to be one of the points
of this neighborhood. Algorithm FADT AVG then searches for query result can-
didates by sequentially scanning the neighborhood of every Mi (with respect
to d) in a round robin fashion. Throughout the search process, the algorithm
maintains an object set P , which stores all objects that have been visited so far.
The algorithm also maintains m lower bounds (γ1, . . . , γm) for the φ-aggregate
distances of unseen objects to Q, with each γi relating to the neighborhood of
the geometric median Mi, for 1 ≤ i ≤ m. We let γ denote the maximum of these
m lower bounds.

The algorithm terminates when one of the following three conditions holds:

– all objects of S have been visited (Line 15); or
– the exact multi-step search termination condition is fulfilled, in which at

least k visited objects have φ-aggregate distances to Q that are no greater
than the maximum lower bound γ (Line 20); or

– a termination condition relating to the intrinsic dimensionality in the vicinity
of Q is fulfilled (Line 28).

The test of intrinsic dimensionality at Line 28 (the dimensional test) is based
on a user-supplied estimate, in the form of a termination parameter t > 0. The
test is performed on two closed balls centered at q∗, the center of minimum
enclosing ball MEB(Q) of Q. The inner ball has rin as its radius and contains
kin points of S, all of which are members of the aggregate query result; the
outer ball has rout as its radius and contains at least kout points of S, where
kout ≥ k. The aim of the dimensional test is to verify that no unvisited points
could possibly be included in the outer ball, and therefore that the correct query
result has been found.

Lower-Bounding Relationship. The assumption that d is a distance metric
implies that for every geometric median Mi (1 ≤ i ≤ m), every qj ∈ Q (1 ≤
j ≤ m) and any object v ∈ U , a triangle inequality holds: d(Mi, v) ≤ d(qj , v) +
d(Mi, qj). Together with the definition of φ-aggregate distance Dφ for the avg
variant, we can derive that:

�φm� · d(Mi, v) ≤ �φm� · Dφ(Q, v) +
∑

q∈NQ(v,�φm�) d(Mi, q).

Let αi be the average of the largest �φm� distances from Mi to all the points
in Q (as defined in Line 4 of the description of FADT AVG), we can derive
the following lower-bounding relationship: d(Mi, v) ≤ Dφ(Q, v) + αi. Together
with the dimensional test, Algorithm FADT AVG utilizes this lower-bounding
relationship to filter out candidate query result objects. The distance d(Mi, v)
from the candidate to geometric median Mi can be regarded as an approximation

22 M.E. Houle et al.

of Dφ(Q, v) + αi For the approximation to be as tight as possible, we introduce
a lower-bounding ratio λi ≥ 1 such that

λid(Mi, v) ≤ Dφ(Q, v) + αi. (1)

For each individual object v ∈ U , consider the maximum possible value of the
lower-bounding ratio λi ≥ 1 for which the inequality holds. Ideally, λi should be
set to the smallest such maximum so that the inequality holds for every object v.

4.2 Analysis

Due to space limitations, in this version of the paper we provide only a brief
overview of a formal theoretical analysis of FADT AVG that establishes the
accuracy of the method in terms of the choice of termination parameter t.

The proof strategy involves an assumption on the maximum expansion rate of
the items encountered in an expanding search from the center q∗ of the minimum
enclosing ball MEB(Q) of the query objects — this assumption is embodied in
the choice of t. At any stage in the search, if the presence of unvisited query result
objects would indicate an expansion rate that would exceed the limit implied by
MaxGED(q∗, k + 1), we can conclude that no such unvisited result objects can
exist.

Theorem 1. If MaxGED(q∗, k + 1) has no definite value, then FADT AVG
returns the correct query result regardless of the value of t. Otherwise, if t ≥
MaxGED(q∗, k + 1), FADT AVG returns the correct query result; if 0 < t <
MaxGED(q∗, k + 1), FADT AVG returns a t

√
℘-approximate query result with

℘ = kout + 1 at termination.

4.3 Variants

The algorithm for the max variant, which we will refer to as FADT MAX, is very
similar to FADT AVG. Instead of expanding the search from geometric medians
of subsets of Q (as in FADT AVG), Algorithm FADT MAX initiates its searches
from the center Ci of the minimum enclosing ball of query set neighborhood
NQ(qi, �φm�), for each qi ∈ Q. Due to space limitations, however, further details
are omitted from this version.

In addition to the basic versions of FADT AVG and FADT MAX, several
heuristic variants were proposed, analyzed, and tested. Here, we briefly state
only those variants with the best trade-offs between accuracy and efficiency,
which we refer to as FADT AVG5 and FADT MAX5. Both are obtained by
applying the following three heuristic modifications.

– The radius term r∗ in the algorithmic description was substituted by 0.
– A limited-capacity object buffer of at most zk objects was maintained for

the determination of the outer ball.

Flexible Aggregate Similarity Search 23

– The lower-bounding ratios λi were dynamically estimated. More precisely,
after each neighborhood vi of the geometric median Mi and distance βi =
d(Mi, vi) are retrieved from the underlying index, the sum of the φ-aggregate
distance Dφ(Q, vi) and the constant αi is computed first, followed by the
ratio of the sum over βi. The smallest such ratio encountered is stored in λei

as the current estimate of λi.

 0.4

 0.6

 0.8

 1

 4 8 16 32 64 128

ac
cu

ra
cy

m

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

102

103

104

105

106

 4 8 16 32 64 128

nu
m

be
r

of
 c

an
di

da
te

s

m

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

10-3

10-2

10-1

100

101

 4 8 16 32 64 128

ru
nn

in
g

tim
e

(s
ec

on
ds

)

m

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

(a) Varying m.

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

ac
cu

ra
cy

k

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

102

103

104

105

 20 40 60 80 100

nu
m

be
r

of
 c

an
di

da
te

s

k

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

10-3

10-2

10-1

100

 20 40 60 80 100

ru
nn

in
g

tim
e

(s
ec

on
ds

)

k

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

(b) Varying k.

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.3 0.5 0.7 0.9 1

ac
cu

ra
cy

φ

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

101

102

103

104

105

 0.1 0.3 0.5 0.7 0.9 1

nu
m

be
r

of
 c

an
di

da
te

s

φ

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

10-3

10-2

10-1

100

 0.1 0.3 0.5 0.7 0.9 1

ru
nn

in
g

tim
e

(s
ec

on
ds

)

φ

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

(c) Varying φ.

 0.4

 0.6

 0.8

 1

1 10 100 200 300

ac
cu

ra
cy

c (×102)

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

102

103

104

105

1 10 100 200 300

nu
m

be
r

of
 c

an
di

da
te

s

c (×102)

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

10-3

10-2

10-1

100

1 10 100 200 300

ru
nn

in
g

tim
e

(s
ec

on
ds

)

c (×102)

FADT_AVG5 (t=64)
FADT_MAX5 (t=64)

List_SUM
List_MAX

ASUM
AMAX

(d) Varying c.

Fig. 3. The results of varying each of the four parameters for generating FANN queries
on dataset MNIST. Termination parameter t was set to 64, for which the maximum
approximation ratio t

√|S| was guaranteed to be less than 1.2, given that |S| = 70, 000.

5 Experimental Results

5.1 Experimental Framework

Data Sets. Four publicly-available data sets were considered for the experimen-
tation, so as to compare across a variety of set sizes, representational dimensions
and domains.

– The MNIST data set [16] consists of 70, 000 images of handwritten digits
from 500 different writers, with each image represented by 784 gray-scale
texture values.

24 M.E. Houle et al.

– The Amsterdam Library of Object Images (ALOI) [17] consists of 110, 250
images of 1000 small objects taken under different conditions, such as differ-
ing viewpoints and illumination directions. The images are represented by
641-dimensional feature vectors based on color and texture histograms (for
a detailed description of how the vectors were produced, see [18]).

– The Cortina data set [19] consists of 1, 088, 864 images gathered from the
World Wide Web. Each image is represented by a 74-dimensional feature
vector based on homogeneous texture, dominant color and edge histograms.

– The Reuters Corpus Vol. 2 news article data set (RCV2) [20] consists of
554, 651 sparse document vectors spanning 320, 647 keyword dimensions,
with TF-IDF weighting followed by vector normalization.

FANN Queries. For the experimentation, several factors should be taken into
account when generating a set of FANN queries, including the position of the
center of MEB(Q) (minimum enclosing ball of group query Q), the radius of
MEB(Q), the size m = |Q|, the target neighborhood size k, and the target
proportion φ. For our experiments, we generated a group query Q in the following
way. We first determined a ball with a randomly-chosen center covering a certain
number c of points in the data space. Then, within this ball, we randomly selected
m data points as the group query. Parameter c can thus be regarded as governing
the dispersion of the query object sets generated for the experimentation. Unless
stated otherwise, the default parameters m = 16, k = 50, φ = 0.5 and c = 10, 000
were used in generating FANN queries.

Methodology. For each test, 100 random FANN queries were generated. Three
quantities were measured for the evaluation: query result accuracy, number of
candidates visited, and execution time. The results were reported as averages
over the 100 queries performed. The number of candidates was calculated as
the number of data objects (including duplicates) retrieved from the underlying

102

103

104

105

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

ru
nn

in
g

tim
e

(s
ec

on
ds

)

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

(a) MNIST.

101

102

103

104

105

 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

10-3

10-2

10-1

100

 0.2 0.4 0.6 0.8 1

ru
nn

in
g

tim
e

(s
ec

on
ds

)

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

(b) ALOI.

101

102

103

104

105

 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

10-4

10-3

10-2

10-1

100

 0.2 0.4 0.6 0.8 1

ru
nn

in
g

tim
e

(s
ec

on
ds

)

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

(c) Cortina.

102

103

104

105

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

10-3

10-2

10-1

100

101

 0 0.2 0.4 0.6 0.8 1

ru
nn

in
g

tim
e

(s
ec

on
ds

)

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

(d) RCV2.

Fig. 4. The results of using default parameters on all the datasets.

Flexible Aggregate Similarity Search 25

index in the course of computing the final query result. For one group query Q,
the accuracy of its k-NN query result is defined as the proportion of the result
falling within the true k-NN (φ-aggregate) distance:

| {v ∈ Y | Dφ(Q, v) ≤ δS(Q, k)} |/k,

where Y denotes the k-NN query result of Q (|Y | = k). For ease of comparison
among the competing methods, we ignored the costs associated with producing
candidate elements from the underlying index structure I, and instead precom-
puted all required neighborhoods. However, in order to gauge the practicality of
the methods tested, in the last set of experiments (Section 5.2), we report the
total query cost, including the costs associated with the production of neighbor-
hood lists. For these experiments, we used SASH [21] as the underlying index
I, for its ability to answer approximate k-NN queries in very high-dimensional
settings with good accuracy and efficiency. The Euclidean distance was used for
all experiments.

5.2 Comparison with Other Methods

The following extensive experimental study shows that our algorithms are able
to produce query results with good accuracy, while at the same time being very
efficient, compared to List, ASUM and AMAX (R-Tree being omitted due to its
inability to cope with high-dimensional datasets).

Using Precomputed Neighborhoods. On all the considered datasets, we
conducted 4 sets of experiments for the comparison, varying one of the 4 param-
eters for generating FANN queries respectively, while fixing the rest at their
default values (m = 16, k = 50, φ = 0.5 and c = 10, 000). Specifically, we varied
m from 4 to 128, k from 20 to 100, φ from 0.1 to 1, and c from 100 to 30, 000.
Since similar conclusions can be drawn from all the results, due to space lim-
itations we report only the results for the MNIST dataset. In addition, for all
the datasets, we report the results obtained when all parameters are set to the
default values stated above.

Variation in the Query Set Size m. The results of varying m are shown in
Fig. 3(a). We observe that in all cases, for both the sum (or avg) FANN problem
and the max FANN problem, our algorithms FADT AVG5 and FADT MAX5
are able to produce query results with reasonable accuracy, while at the same
time being very efficient. On average, our algorithms outperform List by approx-
imately one order of magnitude, in terms of both the number of candidates and
the execution time. This can be explained by their minimization of aggregate dis-
tances through the use of geometric medians or the centers of minimum enclosing
balls. Although ASUM and AMAX are also very efficient, for some cases they
failed to produce query results with reasonable accuracy. Their failure is likely
due to their strategy of always limiting the search to at most km candidates.
Such aggressive search strategies may not be able to produce the query result
with reasonable accuracy, as justified here and in the following experiments.

26 M.E. Houle et al.

Variation in the Neighborhood Size k. Fig. 3(b) shows the results of varying
k. We again observe that for all choices of k, our algorithms FADT AVG5 and
FADT MAX5 maintain their superiority over List by roughly 1 to 2 orders of
magnitude, in terms of both the number of candidates and the execution time.
We also note that ASUM and AMAX may not be able to produce query results
with reasonably good accuracy.

Variation in the Target Proportion φ. The results of varying φ are shown
in Fig. 3(c). Again, FADT AVG5 and FADT MAX5 outperform List in terms
of both number of candidates and running time for all choices of φ, and again,
ASUM and AMAX cannot guarantee query results with reasonable accuracy.
The superiority of our algorithms over List becomes more and more evident as φ
increases. In particular, when φ = 1, our algorithms outperform List by approxi-
mately 2 to 3 orders of magnitude, in terms of both the number of candidates and
the execution time. This shows that our algorithms benefit more from utilizing
geometric medians or centers of MEB as φ grows.

Variation in the Query Set Dispersion Parameter c. Fig. 3(d) shows
the results of varying c. Similarly, algorithms FADT AVG5 and FADT MAX5
show their superiority over List in terms of both number of candidates and
running time, and ASUM and AMAX may not be able to produce query results
with good accuracy. The superiority of our algorithms over List becomes more
and more evident as c increases. Especially, when c = 30, 000, our algorithms
outperform List by approximately 1.5 orders of magnitude in terms of both
number of candidates and running time. The behaviors of our algorithms are
relatively stable with respect to c, again due to the benefits of utilizing geometric
medians or centers of MEB.

Default Parameters. Here, we show the results for all datasets using the
default parameters in generating and processing FANN queries. For our algo-
rithms, parameter t was chosen to be 2i for all integer choices of i in the range
[−6, 6], so as to cover a reasonably wide range of result accuracies. Note that
some of the plots have been cropped for the sake of readability.

The results are shown in Fig. 4. Again, we find that FADT AVG5 and
FADT MAX5 outperform List by 1 to 2 orders of magnitude, in terms of both
the number of candidates and the execution time, and again we observe the
inability of ASUM and AMAX to achieve reasonably high accuracies.

Online Neighborhood Generation. For our last set of experiments, for all
algorithm-dataset combinations, we measured the execution costs of queries
using the SASH as the underlying index for online neighborhood generation.
As a baseline comparison, we also computed the query results using a ‘brute
force’ search (BF) in which the φ-aggregate distance from Q is explicitly com-
puted for each object in the database. In the plots, the running time is presented
as a proportion of the time required by BF. Again, for our algorithms, param-
eter t was chosen to be 2i for each choice of i ∈ [−6, 6], and again, some of the
performance plots have been cropped for the sake of readability.

Flexible Aggregate Similarity Search 27

102

103

104

105

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

100

101

102

 0 0.2 0.4 0.6 0.8 1

ru
nn

in
g

tim
e

(in
 %

)

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

(a) MNIST.

101

102

103

104

105

 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

100

101

102

 0.2 0.4 0.6 0.8 1

ru
nn

in
g

tim
e

(in
 %

)

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

(b) ALOI.

101

102

103

104

105

 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

100

101

102

 0.2 0.4 0.6 0.8 1

ru
nn

in
g

tim
e

(in
 %

)

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

(c) Cortina.

102

103

104

105

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

100

101

102

 0 0.2 0.4 0.6 0.8 1

ru
nn

in
g

tim
e

(in
 %

)

accuracy

FADT_AVG5
FADT_MAX5

List_SUM
List_MAX

ASUM
AMAX

(d) RCV2.

Fig. 5. The results of using default parameters on all the datasets with SASH as the
underlying index. The average running times of BF for MNIST, ALOI, Cortina and
RCV2 are approximately 1.67, 2.16, 3.92 and 10.24 seconds, respectively.

The results are shown in Fig. 5. Due to the high computational cost associ-
ated with online neighborhood generation, in terms of the execution time, the
superiority of our algorithms over List is less significant than when neighbor
lists have been precomputed. Nevertheless, FADT AVG5 and FADT MAX5 still
outperform List by approximately 0.5 to 1.5 orders of magnitude. Compared to
the baseline method BF, our algorithms maintain their superiority in execution
cost by roughly 1 to 2 orders of magnitude, whereas the cost of Algorithm List
may approach that of BF.

Acknowledgments. Michael Houle acknowledges the financial support of JSPS Kak-
enhi Kiban (A) Research Grant 25240036, JSPS Kakenhi Kiban (B) Research Grant
15H02753, and JSPS Kakenhi Kiban (C) Research Grant 24500135. Vincent Oria
acknowledges the financial support of NSF under Grant 1241976.

References

1. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: Proc. Symp. on Principles of Database Systems (PODS), pp. 102–113 (2001)

2. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible
databases. ACM Transactions on Database Systems (TODS) 29(2), 319–362
(2004)

3. Bernecker,T.,Emrich,T.,Graf,F.,Kriegel,H.P.,Kröger,P.,Renz,M., Schubert,E.,
Zimek, A.: Subspace similarity search using the ideas of ranking and top-k retrieval.
In: Proc. ICDE Workshop DBRank, pp. 4–9 (2010)

4. Razente, H.L., Barioni, M.C.N., Traina, A.J.M., Traina, Jr., C.: Aggregate sim-
ilarity queries in relevance feedback methods for content-based image retrieval.
In: Proc. Symp. on Applied Computing, pp. 869–874 (2008)

28 M.E. Houle et al.

5. Beliakov, G., Calvo, T., James, S.: Aggregation of preferences in recommender
systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender
Systems Handbook. Springer (2010)

6. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in
road networks. IEEE Transactions on Knowledge and Data Engineering (TKDE)
17(6), 820–833 (2005)

7. Li, F., Yao, B., Kumar, P.: Group enclosing queries. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) 23(10), 1526–1540 (2011)

8. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor
queries in spatial databases. ACM Transactions on Database Systems (TODS)
30(2), 529–576 (2005)

9. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries.
In: Proc. Intern. Conf. on Data Engineering (ICDE), pp. 301–312 (2004)

10. Razente, H.L., Barioni, M.C.N., Traina, A.J.M., Faloutsos, C., Traina, Jr., C.:
A novel optimization approach to efficiently process aggregate similarity queries
in metric access methods. In: Proc. Intern. Conf. on Information and Knowledge
Management (CIKM), pp. 193–202 (2008)

11. Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible aggregate similarity search. In:
Proc. Intern. Conf. on Management of Data (SIGMOD), pp. 1009–1020 (2011)

12. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor search. In: Proc.
Intern. Conf. on Management of Data (SIGMOD), pp. 154–165 (1998)

13. Houle, M., Ma, X., Nett, M., Oria, V.: Dimensional testing for multi-step similar-
ity search. In: Proc. Intern. Conf. on Data Mining (ICDM), pp. 299–308 (2012)

14. Houle, M., Kashima, H., Nett, M.: Generalized expansion dimension. In: IEEE
ICDM Workshop on Practical Theories for Exploratory Data Mining (PTDM),
pp. 587–594 (2012)

15. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics.
In: Proc. Symp. on Theory of Computing (STOC), pp. 741–750 (2002)

16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

17. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library
of object images. International Journal of Computer Vision (IJCV) 61(1),
103–112 (2005)

18. Boujemaa, N., Fauqueur, J., Ferecatu, M., Fleuret, F., Gouet, V., Saux, B.L.,
Sahbi, H.: IKONA: interactive generic and specific image retrieval. In:
Proc. Intern. Workshop on Multimedia Content-Based Indexing and Retrieval
(MMCBIR) (2001)

19. Rose, K., Manjunath, B.S.: The Cortina data set. http://www.scl.ece.ucsb.edu/
datasets/index.htm

20. Reuters Ltd.: Reuters corpus, vol. 2, multilingual corpus. http://trec.nist.gov/
data/reuters/reuters.html

21. Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-
dimensional data sets. In: Proc. Intern. Conf. on Data Engineering (ICDE),
pp. 619–630 (2005)

http://www.scl.ece.ucsb.edu/datasets/index.htm
http://www.scl.ece.ucsb.edu/datasets/index.htm
http://trec.nist.gov/data/reuters/reuters.html
http://trec.nist.gov/data/reuters/reuters.html

Similarity Joins and Beyond: An Extended Set
of Binary Operators with Order

Luiz Olmes Carvalho(B), Lucio F.D. Santos, Willian D. Oliveira,
Agma Juci Machado Traina, and Caetano Traina Jr.

Institute of Mathematics and Computer Sciences, University of São Paulo,
São Carlos - SP, Brazil

{olmes,luciodb,willian,agma,caetano}@icmc.usp.br

Abstract. Similarity joins are troublesome database operators that
often produce results much larger than the user really needs or expects. In
order to return the similar elements, similarity joins also require sorting
during the retrieval process, although order is a concept not supported in
the relational model. This paper proposes a solution to solve those two
issues extending the similarity join concept to a broader set of binary
operators, which aims at retrieving the most similar pairs and embed-
ding the sorting operation only as an internal processing step, so as to
comply with the relational theory. Additionally, our extension allows to
explore another useful condition not previously considered in the sim-
ilarity retrieval: the negation of predicates. Experiments performed on
real and synthetic data show that our operators are fast enough to be
used in real applications and scale well both for multidimensional and
non-dimensional metric data.

Keywords: Similarity search · Similarity joins · Query operators

1 Introduction

Similarity joins are becoming important database operators in several scenar-
ios, such as near-duplicate detection, string matching and data mining support
[7,10]. Those operators receive two relations T1 and T2 and return pairs of tuples
〈t[T1], t[T2]〉 that meet a similarity predicate. The most common types of simi-
larity joins found in the literature are the range join, the k-nearest neighbor join
and the k-distance join [1].

Usually, the results of the range and the k-nearest neighbor joins are not sent
directly to the user, as they are mainly applied as preprocessing operators [3,15]
or as intermediate operators, once their result set cardinality is usually very large.
Those high-cardinality results are often not intuitive to the user, being sent to
another algorithm [1]. In most applications requiring similarity joins, the users
are usually interested in the few most similar pairs [4,9]. Thus, the k-distance

The authors are grateful to FAPESP, CNPQ, CAPES and Rescuer (EU Commission
Grant 614154 and CNPQ/MCTI Grant 490084/2013-3) for their financial support.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 29–41, 2015.
DOI: 10.1007/978-3-319-25087-8 3

30 L.O. Carvalho et al.

Fig. 1. The negation of predicates: (a) Combining sensors and candidate location to
install a sensor; (b) Answer with the negation of a range condition.

join is the similarity operator most suitable to be a query operator, because it
results in just the k most similar pairs.

However, in order to choose the k most similar pairs in general, the k-distance
join operator demands additional operations, such as sorting, before the final
result is obtained. Therefore, k-distance joins internally performs more opera-
tions than those defined in the “classical” join: in fact, the non-similarity based
joins are defined as a Cartesian product followed by a selection. Thus, in a strict
sense, the so called k-distance join is not a join operator but an extended type
of binary similarity operator that also requires ordering.

In addition to ordering, the same concept employed to define the k-distance
join operator can be generalized to support also the range and the k-nearest
neighbor joins by interposing their respective similarity selections. Such more
generic operator enables to explore a kind of condition common in relational
databases but, to the best of our knowledge, it was still not adequately explored
in similarity joins: the negation of the similarity operators.

Consider the following example. The São Paulo Brazilian State is an impor-
tant sugar cane producer, providing ethanol to the country. The expansion of
such cultivar demands monitoring the climate measures such as temperature and
precipitation. For this purpose, a small number of climate sensors (represented
as stars, in Fig. 1(a)) were positioned in the most productive areas, where each
sensor covers a radius of about 10 km. To improve monitoring, new additional
locations sensors should be installed (the diamonds in Fig. 1(a)), but the cur-
rent budget allows for the installation of just k new sensors. Where should the
new sensors be installed, so they are close but not inside the already monitored
areas?

This scenario requires to consider not only the locations closest to each sensor,
but also those which are outside their covering area. The problem can be solved
employing the negation of the range predicate. In addition, the order among
the pairs of sensors and the new locations must be considered, as Fig. 1(b)
shows, where the stars are combined with the circles (the closest locations not
yet covered).

This paper extends the definition of similarity joins to generate a broader
set of binary similarity operators, which we call wide-joins (Sect. 3). They are
defined as a Cartesian product followed by a selection based on order, where
the ordering is obtained during the similarity evaluation. Broadening the k-

An Extended Set of Binary Operators with Order 31

Table 1. Symbols employed in the paper.

Symbol Meaning Symbol Meaning

d a metric t[A] the value of attribute A in tuple t

S1, S2 attributes subject to a metric Π extended projection [8]

S metric data domain θ a predicate

T1,T2,TR relations �̈� similarity join

distance join, those new operators aims at computing the most similar pairs,
being general enough to support range and k-nearest neighbor predicates and
also their negation.

We performed an extensive scalability evaluation of the proposed operators
using real and synthetic datasets (Sect. 4). The results obtained show that the
“ordered similarity joins” present computational cost equivalent to the existing
similarity joins whereas returning a smaller and more significant result set.

The major contributions of this paper are: (i) we present the k-distance join
as an extended operator and provide a theoretical ground to support it; (ii) we
embed the sorting concept into a similarity operator in a way compatible with
the relational theory; (iii) we explore the negation of a similarity predicate; (iv)
we enable any similarity join to be used as a final query operator. Finally, we
outline the main ideas and devise future improvements (Sect. 5).

2 Related Work

Similarity search is the information retrieval process where the answer consists of
a set of elements recognized, in some sense, as similar to others. The basic query
operators that perform similarity retrieval are the similarity selections [2,14] and
the similarity joins. They are typically applied over data in a metric space [13].
Formally, let S be a metric data domain subjected to a distance function d, that
is d : S × S �→ R

+, T1 and T2 be two relations containing attributes S1 ∈ T1
and S2 ∈ T2 with values sampled from S, ξ ∈ R

+ be a similarity threshold
and k ∈ N

∗ be a constant (Table 1 summarizes the symbols). The similarity
range join combines the tuples t[T1] and t[T2] such that d(t[S1], t[S2]) ≤ ξ. The
k-nearest neighbor join combines each tuple whose attribute t[S1] is one of the
k most similar value to t[S2], totaling k ∗ |T1| pairs. Finally, the k-distance join
retrieves the k most similar pairs 〈t[S1], t[S2]〉.

Similarity joins have been extensively investigated in the literature. The
study introduced in [14] defines algebraic equivalence rules holding in similarity
selection, grouping and join operators. It also presents another join that com-
bines range and one-nearest neighbor into a conjunctive predicate. It departs
from ours as we aim at retrieving the most similar pairs, extending the k-distance
join, whereas a range predicate does not ensure such cardinality control.

Several studies process similarity joins using metric structures. The basic
idea is to insert the elements from one or both relations into a data structure
that speeds up retrieval. Previous studies like [5,12] employ the eD-Index, but
they focus only in range joins. Another study [7] proposed pruning techniques on

32 L.O. Carvalho et al.

the M-Tree to improve the detection of closest pairs. Our proposal departs from
that once we detect closest pairs extending similarity join operators. The List of
Twin Clusters (LTC) [11] was specially designed to process similarity joins, but
LTC does not ensure the closest pairs, which we are interested in.

A non-indexing approach to process similarity joins in metric spaces is the
Quickjoin [10]. It divides the search space into smaller regions to reduce the
complexity of nested-loops. However, Quickjoin was designed to compute only
range joins, whereas we focus on the k-distance join type. An enhanced version
of Quickjoin to process k-nearest neighbor join was introduced in [6]. However,
that version computes approximate nearest neighbors, in which some relevant
pairs may be lost and replaced by less similar ones, while we are interested in
an accurate version of the similarity join operator.

The theory of wide-joins was introduced in [2]. We extend that study includ-
ing: (i) a reformulation of the basic similarity join definition in a generalized
concept which allows to perform any kind of comparison involving similarity;
(ii) the support to handle negation; and (iii) experimental performance compar-
ison of similarity joins, wide-joins and their algebraic expressions.

3 Proposal

Considering the similarity join operators presented in Sect. 2, the range join can
be expressed as the Cartesian product followed by a range selection. Likewise,
the k-nearest neighbor join is equivalent to a Cartesian product followed by a
k-nearest neighbor selection. Therefore, both join operators have corresponding
similarity selection operators supporting them. Both join operators can also be
seen as equivalent to similarity selection operators when T1 has a single tuple
(the query center) and T2 contains the elements to be queried. However, the
k-distance join does not have a corresponding similarity selection operator to
produce its result when attached to the Cartesian product.

In order to find the global k most similar pairs, the k-distance join operator
must compute the candidate pairs to compose the result (Cartesian product),
evaluate their similarity (distance computation) and order the pairs following
the similarity criterion (distance), allowing to finally filter only the most similar
pairs (final selection) in a general context. Thus, the k-distance join is expressed
in relational algebra as in (1).

σ(ord≤κf)

(
Π{T1,T2,F(dist)→ord}

(
Π{T1,T2,d(t[S1],t[S2])→dist} (T1 × T2)

))
. (1)

In (1), F is a function that projects the ordinal value of each value com-
puted by the metric d into the extended attribute ord. We employ F such as
a function that receives the distances between values t[S1], t[S2] and returns the
ordinal classification of each of those dissimilarity values. In such way, although
the k-distance join demands to order the elements, the ordering concept is con-
tained inside the operator remaining compatible with the relational theory, once
each extended projection Π operator receive a relation and return a relation.
In fact, this definition follows the same concept that allows aggregate functions

An Extended Set of Binary Operators with Order 33

such as sum, average, etc. to be employed in the relational model. Finally, the
elements are not physically nor logically sorted, as the ordering is embodied in
the attribute ord, which is projected out in the end, but enables to select the k
most similar pairs in general.

3.1 Similarity Joins with Order: The Theory of Wide-Joins

Although (1) provides the algebraic definition of the k-distance join, it also
defines the conceptual basis to create an extended set of similarity-based opera-
tors that includes the order concept as an internal part of the processing. In (1),
it is possible to interpose a similarity selection operator between the Cartesian
product and the extended projection in order to embrace joins. Once those oper-
ators are composed of additional operations, beyond just a Cartesian product
followed by a selection (as in the join definition), we refer to them as the “simi-
larity wide-joins” and formalize them in Definition 1.

Definition 1 (Similarity Wide-Join: �̈�). Let S be a metric data domain
subjected to a distance function d, that is, d : S × S �→ R

+, T1 and T2 be two
relations containing attributes S1 ∈ T1 and S2 ∈ T2 with values sampled from
S, κf be an upper bound parameter and θ be a similarity-based predicate. Then,

a similarity wide-join T1

(S1 θ S2),κf

�̈� T2 is a binary operator that performs an inner
similarity join using the predicate θ, order the intermediate result by the dissim-
ilarity among values t[S1] and t[S2] and returns the κf tuples having t[S1] and
t[S2] most similar in general. The wide-join is expressed in relational algebra
according to (2).

T1

(S1 θ S2),κf

�̈� T2 ≡ σ(ord≤κf)

(
Π{T1,T2,F(d(t[S1],t[S2]))→ord}

(
T1
(t[S1] θ t[S2])

�̈� T2

))
. (2)

Similarity wide-joins follow a k-distance join-like definition, with function
F executing as aforesaid. They also employ the ordering concept internally,
compatible with the relational theory. In addition, similarity wide-joins make
flexible to express both the desired cardinality of the result set and the similarity-
based predicate that composes the inner similarity join, where each variation
of the similarity condition generates a distinct type of wide-join. Usually, the
similarity predicate is expressed by a single-term with comparisons based on
range or k-nearest neighbors, but those conditions can be combined to obtain
results from more elaborated predicates.

3.2 Single-term Predicates

The most straightforward type of wide-join does not employ a comparison based
on similarity, but it corresponds to the predicate θ = true. In such case, the

34 L.O. Carvalho et al.

inner join appearing in (2) becomes a Cartesian product, like in (1). Thus, a
wide-join employing a true predicate results in the k-distance join operator.

The other types of wide-joins are directly obtained from using range and
nearest neighbor conditions. When θ = (t[S1] Range(d, ξ) t[S2]), the resulting
operator is the range wide-join. Range wide-joins enable to combine a range join
and k-distance join in a single operator. It selects a restricted number of the
κf most similar elements among pairs 〈t[T1], t[T2]〉 such that d(t[S1], t[S2]) ≤ ξ.
Either range or k-distance joins alone do not produce the same result. Naturally,
the former fails in restricting only the most similar pairs and the latter can select
pairs whose dissimilarity exceeds the value ξ. Moreover, it is slower to retrieve a
composition of a range join followed by a selection of the most similar pairs, like
the right-hand side of (2), than to embed those operations into a single operator,
as discussed in the experimental section.

A predicate θ = (t[S1] kNN(d, k) t[S2]) produces the k-nearest neighbor
wide-join. Like the range wide-join, the k-nearest neighbor wide-join reduces the
cardinality of the k-nearest neighbor join from k∗|T1| to κf . However, it requires
two parameters related to quantities: k for the k initial nearest neighbor join and
κf for the final number of pairs.

Values of κf ≤ k filter out a subset of the k-nearest neighbor join result. As
the wide-join operator retrieves the most similar pairs, the intermediary result
eventually corresponds to a k-distance join operator, when θ = true. If k ensures
a large selectivity, such setup allows using function F to optimize the operator,
once it allows selecting a reduced number of pairs.

In metric spaces containing a number of denser regions, setting κf ≤ k may
lead to many pairs too much similar among themselves, which may not add
valuable information to the query answer. However, when κf > k, the k-nearest
neighbor wide-join assumes a more exploratory behavior, and returns not only
the most similar pairs from the subset of the k-nearest neighbor join in general,
but also pairs distributed along the entire search space, despite the existence of
denser regions.

Although similarity queries including range and nearest neighbor operators
are the most frequent ones, the complement of those single condition is supported
in the predicate logic and can be employed for similarity retrieval, producing
not-in-range and not-the-nearest neighbors similarity comparators.

3.3 Negation of Single-term Predicates

The predicate negation of a term exists in the relational algebra and is well
explored in relational databases. For instance, queries employing operators like

= (negation of a ‘=’), ≥ (negation of a ‘<’) or < (negation of a ‘≥’) are common.

In similarity queries, the negation of a similarity operator becomes trouble-
some in two main aspects. First, retrieving similar elements corresponds to a
“direct” predicate, not to its negation. For example, returning the “10-farthest
neighbors” is distinct from returning the “not 10-nearest neighbor”. Second,
the negation of similarity predicates return a set with very large cardinality. For
example, a “not 10-nearest neighbor” query returns all elements of the database,

An Extended Set of Binary Operators with Order 35

except for the “10-nearest neighbors”. With respect to similarity joins, negation
retrieves even more pairs. Wide join is well suited to help taming such problems.

Negating a predicate has an interesting motivation in similarity retrieval:
once the most similar elements are already known, but the user wants to know
something else, how to obtain the elements beyond the ones already known? This
is a distinct problem from the incremental k-NN selection, as here the user is not
interested in the k-NN ones. An example of negating the predicate in a similarity
join was provided in Sect. 1 and such situations are treated also negating the
predicate term in the wide-join. Following the definitions introduced in Sect. 3.2,
negating the case where θ = true does not apply to similarity joins nor to wide-
joins, as its negation θ = false always returns an empty set.

For a θ composed of a range negation ¬(t[T1]Range(d, ξ)t[T2]), the not-range
comparator selects the pairs where d(t[S1], t[S2]) > ξ. However, such condition
presents the drawback of returning a result with huge cardinality. A common
way to solve such shortcoming in similarity range join operators is to increase
the similarity threshold ξ to obtain a reduced set of elements. Nevertheless, as
ξ increases, the retrieved elements lie more and more in the farthest regions
of the space, which disrupts the similarity and the negation concepts, once the
obtained elements are not similar to the query centers. Thus, predicates based on
the not-range conditions are computed using wide-joins, where the upper bound
limit κf ensures retrieving the similar elements that are beyond the threshold ξ
and also prevents the operator from returning too many elements.

Algorithm 1 introduces a nested-loop procedure to compute not-range wide-
joins. Line 4 performs the not-range comparison. While the result TR contains
less than κf pairs, the tuples whose similarity exceed the threshold ξ are tem-
porarily included in the answer (lines 5–6). As soon as TR has more than κf

pairs, lines 9–11 replaces the most dissimilar one with the currently analyzed
pair. The condition in line 5 ensures a result set with at most κf pairs and

Algorithm 1. Wide-join with ¬Range comparison
1: for t1 ∈ T1 do
2: for t2 ∈ T2 do
3: dist ← d(t1[S1], t2[S2]);
4: if (dist > ξ) then
5: if |TR| < κf then
6: TR ← TR ∪ {〈t1[S1], t2[S2], dist〉};
7: else
8: Let w ∈ TR be the tuple with the greater d(t2[S1], t2[S2]) value;
9: if dist < w.dist then

10: TR ← TR ∪ {〈t1[S1], t2[S2], dist〉};
11: TR ← TR − {w};

12: return TR;

36 L.O. Carvalho et al.

avoids the ¬Rng predicate to return unnecessary elements. As it requires the
maximum upper bound κf , this solution is specific for wide-joins.

Likewise, when θ = ¬(t[S1] kNN(d, k)t[S2]), the not-k-nearest neighbor wide-
join retrieves the most similar pairs beyond the result of a k-nearest neighbor
join, but restricted to the upper bound κf . Its implementation is similar to Alg. 1,
just varying three key points: (i) the condition in line 4 is suppressed; (ii) the
cardinality in line 5 is checked to be less than (κf +k); and (iii) for each t1 ∈ T1,
TR becomes a temporary result Ttemp, where the procedure returns a result TR =
Ttemp1 ∪ Ttemp2 ∪. . .∪ Ttempn

. The remainder operations defined presented in the
right-hand side in (2) (projection and selection) are performed subsequently to
the processing of those unary not-range and not-k-nearest neighbor conditions.
Following, we explore predicates composed of more than one term.

3.4 Multiple-Term Predicates

Sections 3.2 and 3.3 introduced four similarity-based comparators: range, k-
nearest neighbor and their respective complements. However, the similarity pred-
icate can be assumed to be in the form as θ = τ1 ϕ . . . ϕ τn, where ϕ is a logical
connective and the term τ is one of the four comparators previously defined.

It is not straightforward to enumerate the number of distinct types of wide-
join instances generated by combining similarity terms, as some of them are
equivalent to others. However, such discussion is beyond the scope and space of
this paper. As multiple-term predicates connect terms τ in a conjunctive (∧) or
disjunctive (∨) way, each term τ can be processed separately and each individ-
ual result combined to others respectively executing intersection and union set
operations in place of ∧ and ∨.

Following, we present some optimization options to compute the wide-joins
either for single or multiple-term predicates.

3.5 Optimizing Wide-Joins Processing

Similarity wide-joins are usually processed using nested-loops like in Alg. 1,
i.e., performing |T1| ∗ |T2| distance computations to obtain the result set. This
approach presents a high computational cost, but it enables to compute any type
of wide-join and to combine any kind of data, either multidimensional or purely
metric. However, some improvements can be applied to speed up its processing.

Indexing the elements in T2 is an effective technique often employed in the
literature and can also be applied to wide-joins. Once metric structures can
benefit from properties such as the triangle inequality to prune elements, they
usually reduce the number of I/O operations when processing the operator.

Aiming at decreasing the CPU time when processing the inner join, it is
possible to employ an extended version of the Cartesian product operator that
returns a triple 〈t[T1], t[T2], d(t[S1], t[S2])〉, as is shown in lines 6 and 10 of Alg. 1.
Thus, the similarity distance between t[S1] and t[S2] does not need to be recom-
puted in the subsequent operations, such as in the function F in (2).

An Extended Set of Binary Operators with Order 37

Finally, the operations performed by the extended projection and the final
selection in the right-hand side of (2) can be directly executed if the result of
the inner similarity join is inserted into a priority queue, where the more similar
t[S1] and t[S2] are, the greater is the priority in the list. Thereafter, the final
selection only removes κf elements from the priority queue when composing the
final answer.

4 Experiments

This paper reports on the enlargement of similarity joins in a broader set of
binary operators that employs the sorting concept internally, allowing extending
the applicability of joins in similarity queries. We conducted our experimental
studies to evaluate the scalability of the proposed operators by varying the car-
dinality of the joined relations, the data distribution and its dimensionality, and
performed an analysis on how setting the parameters (ξ, k, κf) influences the
performance.

We describe the results of several synthetic datasets (Synth) with distinct
dimensionality and cardinality, and a real one (Protein). The Synth data sets
vary from 1,000 to 100,000 points in 2, 4, 8, 16, 32 and 64 dimensions each set,
generated according to Uniform and Normal distributions. For those datasets,
we used the L2 metric. The Protein1 data set consists of 12,866 chains of amino-
acids represented by characters. This is a purely metric data set and allows to
evaluate the operators on data that cannot be represented in the multidimen-
sional space model. We retained proteins whose length varies between 2 and 15
amino-acids and employed the well-known Levenshtein edit distance.

The experiments ran in a computer with an Intel R© CoreTM i7-4770 processor,
running at 3.4 GHz, with 16 GB of RAM on the operating system Ubuntu 14.04.
We implemented all distinct operators in the same framework, written in C++,
and the elements of both relations remain in disk, that is, tuples are loaded in
memory only when they are required. The results obtained are depicted in Fig. 2
and the default parameter setup of each experiment can be found in Table 2.

Figure 2(a) shows the performance of the range wide-join and its algebraic
version when the cardinality of the Synth dataset increases. The algebraic version
corresponds to the combination of operators expressed in the right-hand side in
(2). As it can be seen, the range wide-join operator (Rng) is at least 6.62%
faster (|T1|, |T2| = 1, 000) than the algebraic operator composition (AlgRng),
but the largest performance gain (71.57%) was observed when both cardinalities
are larger, as when they are equal to 10,000. The figure also compares the range
wide-join and the similarity range join (SimRng) present in the literature. As
expected, SimRng executes faster than the Rng, because the latter performs
all the processing of the former plus some additional operations. Even so, the
SimRng was in average only 6.87% faster than the range wide-join.

Figure 2(b) presents the previous comparison regarding the operators based
on the nearest neighbor predicate. The k-nearest neighbor wide-join (KNN) was
1 Proteins: http://www.uniprot.org/uniprot Access: Apr 27, 2015

http://www.uniprot.org/uniprot

38 L.O. Carvalho et al.

(a) Range-based operators (b) Nearest-based operators (c) Negation of predicates

(d) Returned cardinality (e) Dimensions variation (f) Distribution variation

(g) Parameter variation: ξ (h) Parameter variation: k (i) Parameter variation: κf

Fig. 2. Results: scalability and parametric analysis

in average 76.78% faster than its algebraic version (AlgKNN) regarding increas-
ing cardinality. The KNN wide-join was also compared to the similarity k-NN
join (SimKNN). Analogous to Fig. 2(a), the wide version is expected to be slower
than the SimKNN, but the latter was in average 14.25% faster than the former.

Figures 2(a) and 2(b) show that although our proposed operators are not
faster than the corresponding plain similarity joins found in the literature, the
additional processing introduced to compute the most similar pairs does not
influence the computational complexity of both types of joins.

Figure 2(c) shows the performance of the wide-joins employing the negation
of the range and k-nearest neighbor conditions. The new proposed NotRng and
NotKNN operators executed in a time quite similar, once they share the same
implementation structure (Section 3.3), but the NotRng was in average 9.45%
faster than the NotKNN. Notice in the same figure that NotRng and NotKNN are
in average 63.86% and 92.62% faster than their algebraic versions, respectively.

Additionally, the negation of a similarity predicate (Fig. 2(c)) follows the
same behavior of its traditional versions, where range is faster than the nearest

An Extended Set of Binary Operators with Order 39

Table 2. Parameter configuration: default values in bold

Parameter Dataset Values

|T1| Protein 861 (proteins present in humans)
Synth 1,000; 2,500; 5,000; 7,500; 10,000

|T2| Protein 12005 (proteins not present in humans)
Synth 1,000; 2,500; 5,000; 7,500; 10,000; 100,000

ξ
Protein 1; 2; 3; 4; 5
Synth 0.25; 0.50; 0.75; 1.00; 1.25

k All 5; 10; 15; 20; 25

κf All 5; 10; 15; 20; 25

Dimension Synth 2; 4; 8; 16; 32; 64

Distribution Synth normal; uniform

neighbors, as can also be seen comparing Figs. 2(a) and 2(b). Comparing the
results in Figs. 2(a), 2(b) and 2(c), one can see that the computational complexity
of the join operators follow the theoretical O(|T1| ∗ |T2|) prediction.

Figure 2(d) shows the total amount of pairs returned by the inner similarity
range and k-nearest neighbor joins before the subsequent operations of the wide-
join definition. This figure confirms that both types of similarity joins retrieve
more pairs than the user is usually interested in, and, eventually, most of them
are discarded, which is a waste of computational resources. Distinctly, the wide-
joins retrieved only 10 pairs in each run on the Synth set (as κf in Table 2).

Figure 2(e) studies the effect of the dimensionality variation in the perfor-
mance. As it can be noticed, the difference among the proposed operators is
small. However, as the number of dimensions increases, the metric becomes more
computationally expensive to compute and the performance of the operators
reduces.

Figure 2(f) considers the performance in 2D data following the normal and
uniform distributions. The execution time is equivalent in both distributions,
showing that the wide-joins were not influenced by the data distribution.

Following, Figs. 2(g), 2(h) and 2(i) study the effect of parameter variation (ξ,
k, κf), using the Protein dataset. Figures 2(g) and 2(h) shows that as the radius
or k increases, more elements are combined in the join phase and included in the
partial result, which smoothly reduces the performance of the sorting phase. As
shown in Fig. 2(i), κf restricts more similar pairs from the result sorted in the
previous steps. Thus, using κf to filter the most similar tuples leads to a linear
processing time in the result size. Thus, even when that parameter increases, the
answer growth rate is not big enough to influence the overall performance.

5 Conclusion

Similarity join operators present two main drawbacks when applied to the rela-
tional environments: their resulting cardinality is usually larger than necessary,
requiring post-processing; and they often require an ordering step, a concept that

40 L.O. Carvalho et al.

is not acknowledged by the relational theory. In order to address those problems,
this paper presented a complete set of binary similarity operators, namely the
wide-join, that embraces the join concept and produces a more meaningful result
set than the plain similarity joins. Wide-joins enable retrieving the most similar
tuple pairs in general, representing the ordering among the elements internally,
not requiring to sort the input nor the output data, thus complying to the rela-
tional model.

We provided the wide-join definition and specified the distinct kinds of predi-
cates that the operator is able to process, where each distinct similarity condition
generates a variant of the wide-join operator. We also presented an algorithm
aiming at showing the wide-join usability in real applications and provided guide-
lines to implement the main instances of the operator.

The experiments performed on synthetic and real datasets, including non-
dimensional and multidimensional data, showed that wide-joins execute with
performance equivalent to the existing similarity joins whereas providing a result
set significantly smaller and more meaningful to the user.

As a future work, we are now exploring the algebraic properties on how the
wide-join operators interact with the other similarity operators and instances of
wide-joins employing multiple-term predicates.

References

1. Böhm, C., Krebs, F.: The k-nearest neighbour join: turbo charging the kdd process.
Knowledge and Information Systems 6(6), 728–749 (2004)

2. Carvalho, L.O., Oliveira, W.D., Pola, I.R.V., Traina, A.J.M., Traina Jr, C.: A
‘wider’ concept for similarity joins. Journal of Information and Data Management
5(3), 210–223 (2014)

3. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: Proc. 22nd Int. Conf. on Data Engineering, p. 12 (2006)

4. Cheema, M.A., Lin, X., Wang, H., Wang, J., Zhang, W.: A unified framework for
answering k closest pairs queries and variants. IEEE Trans. on Knowledge and
Data Engineering 26(11), 2610–2624 (2014)

5. Dohnal, V., Gennaro, C., Zezula, P.: Similarity join in metric spaces using ed-index.
In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol.
2736, pp. 484–493. Springer, Heidelberg (2003)

6. Fredriksson, K., Braithwaite, B.: Quicker range- and k-NN joins in metric spaces.
Information Systems 52, 189–204 (2014). doi:10.1016/j.is.2014.09.006

7. Gao, Y., Chen, L., Li, X., Yao, B., Chen, G.: Efficient k-closest pair queries in
general metric spaces. The VLDB Journal 24(3), 415–439 (2015)

8. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database systems: the complete book.
Pearson (2009)

9. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-
niques in relational database systems. Computing Surveys 40(4), 395–420 (2008)

10. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Trans. on Database
Systems 33(2), 7:1–7:38 (2008)

11. Paredes, R., Reyes, N.: Solving similarity joins and range queries in metric spaces
with the list of twin clusters. Journal of Discrete Algorithms 7(1), 18–35 (2009)

http://dx.doi.org/10.1016/j.is.2014.09.006

An Extended Set of Binary Operators with Order 41

12. Pearson, S.S., Silva, Y.N.: Index-based R-S similarity joins. In: Traina, A.J.M.,
Traina Jr, C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 106–112.
Springer, Heidelberg (2014)

13. Searcóid, M.Ó.: Metric spaces. Springer (2007)
14. Silva, Y.N., Aref, W.G., Larson, P.A., Pearson, S., Ali, M.H.: Similarity queries:

their conceptual evaluation, transformations, and processing. The VLDB Journal
22(3), 395–420 (2013)

15. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for near-
duplicate detection. ACM Trans. on Database Systems 36(3), 15:1–15:41 (2011)

Diversity in Similarity Joins

Lucio F.D. Santos(B), Luiz Olmes Carvalho, Willian D. Oliveira,
Agma J.M. Traina, and Caetano Traina Jr.

Institute of Mathematics and Computer Sciences, University of São Paulo,
São Carlos, SP, Brazil

{luciodb,olmes,willian,agma,caetano}@icmc.usp.br

Abstract. With the increasing ability of current applications to produce
and consume more complex data, such as images and geographic infor-
mation, the similarity join has attracted considerable attention. However,
this operator does not consider the relationship among the elements in
the answer, generating results with many pairs similar among themselves,
which does not add value to the final answer. Result diversification meth-
ods are intended to retrieve elements similar enough to satisfy the simi-
larity conditions, but also considering the diversity among the elements
in the answer, producing a more heterogeneous result with smaller car-
dinality, which improves the meaning of the answer. Still, diversity have
been studied only when applied to unary operations. In this paper, we
introduce the concept of diverse similarity joins: a similarity join oper-
ator that ensures a smaller, more diversified and useful answers. The
experiments performed on real and synthetic datasets show that our
proposal allows exploiting diversity in similarity joins without diminish
their performance whereas providing elements that cover the same data
space distribution of the non-diverse answers.

Keywords: Similarity joins · Result diversification · Query processing

1 Introduction

Nowadays, huge amount of information are produced by the applications, and
the modern Relational Database Management Systems (RDBMS) must handle
more complex data types, such as images, videos, genetic sequences, geographic
information. Unlike scalar data types (numbers, dates and strings), it makes
no sense to compare complex data by equality or by order relationships: they
are better compared by similarity. Similarity-based variations of the classical
relational operators are being investigated to support similarity and included in
RDBMS, such as similarity selections [13] and similarity joins [7,8].

There exist several types of similarity joins, but the similarity range one
(often called just similarity join) is the most discussed in the literature
[4,8,11,13]. It retrieves pairs of elements such that elements in each pair are

The authors are grateful to FAPESP, CNPQ, CAPES and Rescuer (EU Commission
Grant 614154 and CNPQ/MCTI Grant 490084/2013-3) for their financial support.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 42–53, 2015.
DOI: 10.1007/978-3-319-25087-8 4

Diversity in Similarity Joins 43

similar up to a maximum threshold. Range join is useful in several contexts
[8], such as string matching, data cleaning, and near-duplicate object detection.
However, let us consider an application example where similarity joins may pro-
duce results whose intuitiveness and expressiveness can be improved. Assume an
emergency scenario where one or more incidents require immediate providence
to reduce adverse consequences to life and property. Suppose that an emergency
crowd-source-based control system can receive many eyewitnesses reports con-
taining photos with meta information, such as their geolocation coordinates. In
this scenario, it is reasonable to consider that the system with several identified
incidents can receive a large amount of photos, leading to the following ques-
tion: “How to capture a broad vision around the incidents region using a reduced
number of photos?”. There are two possible ways to use similarity join operators
to answer the question, computing similarity using incident locations with the
geolocation of the photos up to a maximum threshold.

The first way uses a similarity join as a final query generator. However, many
pairs can bring the same information, as many photos come from the same point
of view (near-duplicate perspectives). The second way employs a similarity join
as a pre-processing operator, sending the join result to a clustering algorithm
that summarizes the answer. Both alternatives have drawbacks. The former only
considers similarity among the incident and the photos, not taking into account
the similarity among the pairs in the answer. For example, a result composed
of pairs in the form 〈s1, sa〉 and 〈s2, sb〉 where s1 and s2 are incident locations,
〈s1, sa〉 and 〈s2, sb〉 are pairs similar among themselves and sa and sb are close
locations photos, leads to a large cardinality answer set, which requires more
attentive effort from the emergency control system staff. The second alternative
trades the problem of “analyzing too many similar pairs” for “properly tune
a clustering algorithm” executed in a follow-up operation. The performance of
clustering algorithms is directly affected by the cardinality of the input, thus
it typically needs to be executed more than once to find proper results. This
alternative is computationally costlier, but eases and improves the staff’s job.

Surpassing those drawbacks, a more interesting answer is to capture a whole
perspective about each incident region, taking advantage of the relationship
among the reports to obtain a more diversified view of the incidents. In order
to obtain more relevant photos with such a holistic vision about the search
space, several studies introduced a diversity factor in similarity queries [6,12,
17]. Query result diversification aims at computing not only a result set with
elements similar enough to satisfy the similarity conditions, but also to get a set
of elements diverse among themselves to produce a more heterogeneous result.
However, to the best of our knowledge, the result diversification definitions found
in the literature [2,5,6,12,14,16,17] were always applied to unary operations, and
none of them explored combining two relations, such as in a join operation.

This paper introduces the concept of diverse similarity joins: a binary oper-
ation that receives two relations and combines their elements meeting a similar-
ity predicate but that also ensures a smaller, diversified answer. Our proposal
was evaluated using real and synthetic datasets. The results show that diverse

44 L.F.D. Santos et al.

similarity joins have equivalent computational costs of the similarity joins, yet
retrieving a broader distribution of the elements from both input sets. The main
contributions of this paper are summarized as follows:

– The definition of a theoretical basis to combine the concepts of diversity
queries and similarity joins.

– Introducing an operator that improves the usefulness of similarity joins.
– An efficient algorithm to compute diverse similarity joins.

The remainder of this paper is organized as follows: Section 2 reviews related
works. Section 3 introduces the diversity join concept. Section 4 presents experi-
mental evaluation and results. Section 5 concludes the paper and discusses future
research directions.

2 Related Work

Similarity Joins: Let us assume that it exists two relations T1 and T2, each
one having one attribute (or a set of attributes) S1 ∈ T1 and S2 ∈ T2 sharing
the same complex data domain S, that is Dom(S1) ⊆ S and Dom(S2) ⊆ S. The
similarity range join of T1 and T2 retrieves all tuple pairs 〈ti, tj〉 |ti ∈ T1, tj ∈ T2
such that the distance between the values of the corresponding attributes do
not exceed a maximum similarity threshold ξ, that is d(ti[S1], tj [S2]) ≤ ξ. It also
exists a similarity join whose limit is not a maximum similarity threshold, but a
maximum number of elements, the k-nearest neighbor join. It retrieves the pairs
〈ti, tj〉 |ti ∈ T1, tj ∈ T2 such that the value of the complex attribute t[S1] in the
right relation is one of the k most similar to the value of the complex attribute
t[S2] in the left relation. The range join is the fastest and most common type of
similarity join [8].

Similarity joins can be processed by nested-loops, which implies to perform
|R| ∗ |S| distance computations [10]. Despite its high computational cost, this
approach enables to perform any type of similarity join and to combine any kind
of data. However, it is possible to employ an index data structure in order to
improve performance. The main idea is to store the elements of one or both
joined relations into a data structure that speeds up accesses. Examples of such
structures are the eD-Index, employed in studies such as [4,11], and the List of
Twin Clusters (LTC), introduced in [10]. Whereas eD-Index is well-suitable to
compute range joins, LTC also processes the k-nearest neighbor variant.

Similarity joins can also be computed by non-indexing approaches based
on the divide-and-combine strategy. These techniques intend to partition the
search space and to group the elements. Examples of such techniques include
the Quickjoin [8], Epsilon Grid Order (EGO) [1] and its extensions [9], and the
Generic External Space Sweep (GESS) [3]. Quickjoin improves similarity joins
in multidimensional spaces by dividing the elements into small groups, in a way
that enables them to be efficiently joined by nested-loops. However, Quickjoin
only processes range joins whereas variations aimed at processing the k-nearest
neighbors join [7] computes only approximate answers. EGO and GESS are

Diversity in Similarity Joins 45

specific to handle dimensional data and cannot be applied in metric spaces in
general.

Search Result Diversification: The main idea of adding a diversity factor
into similarity queries is to bring better information than a result based only
on similarity, as diversity allows the user to have a broader perspective of the
possible results over larger portions of the data space distribution. Diversity has
been exploited in several areas, such as information retrieval [5], recommendation
systems [2] and similarity queries [12,14]. Most approaches use metadata associ-
ated to the elements, such as taxonomies in document sets [5], cluster attributes
in annotated data [2,16], and distances among the elements in dimensional and
metric spaces. However, processing external information is often computationally
expensive and restricts its use to datasets that have this information [17].

Other approaches have pursued diversity without using extra information.
Called distance-based approaches, they can be classified as two main groups:
Optimization and Separation Distance. The optimization approach considers
that similarity and diversity must compete to each other, taking a user-defined
diversity preference as input, so that the results of pure-similarity algorithms
(configured to retrieve more than the k elements requested by the user) can
be re-ranked, inducing diversity among elements based on a bi-criteria objective
function. However, this diversity definition results in an NP-hard problem [12,17]
and restricts their usage to k-nearest neighbor queries.

The separation distance approach considers that there is a minimum distance
ξmin among elements in the answer, such that pairs of elements closer than ξmin

are considered too much similar to each other and only one is included in the final
result [6,14]. An example of using this approach is the k-Distinct Nearest Neigh-
bors (kDNN) query [14]. The kDNN query builds on the classic k-NN query,
but excluding all elements that are too similar by restricting the result rela-
tion TR = {∀sx, sz ∈ TR,∀sy ∈ T − TR : d(sx, sz) ≥ ξmin ∧ (d(sx, sq) ≤ d(sy, sq)
∨∃sw ∈ TR : d(sy, sw) < ξmin)}, where T is a relation, ξmin is a fixed user-defined
separation distance and sq is the query center. Although the separation distance
approaches have a reduced computational cost compared to the optimization
ones, setting up the separation distance for each element in a relation T1 to join
to another relation T2 makes such diversity definition less intuitive to the user, as
it requires defining a fixed separation distance for all elements in each relation.

Other recent approach defines diversity without requiring more information
from the user about the separation distance, called the Result Diversification
based on Influence (RDI) [12]. This technique is based on a minimum distance
that can be automatically estimated using the concept of “influence” intensity
(I), which is defined as the inverse of the similarity distance between two ele-
ments. Let si, sj and sq be elements in a relation T. Then sj is more influenced
by si than by sq iff I(si, sj) ≥ I(sj , sq). For a query centered at sq, the RDI
goal is to retrieve a diversity result set TR ⊂ T by selecting elements in T that
are similar to sq (nearest or in the range), but also considering the minimum
distance between two elements si, sj ∈ TR by the influence intensity I.

46 L.F.D. Santos et al.

The diversity property was defined only for the selection operator, thus con-
sidering only one relation. The proposal in this paper extends those aforestated
studies to compute the diversity of similarity joins of two relations T1 and T2.
Thus, we intend to compute a result composed of pairs 〈si, s2〉 where si ∈ T1
and s2 ∈ T2 and each si is similar enough to elements s2 to satisfy the similarity
request but, increasing the diversity among the elements si in the result.

3 Diversified Similarity Joins

Let us first hone our intuition about how the combination of antagonistic con-
cepts as similarity and diversity improves the applicability of the similarity joins.
Typically, queries are expressed by combining searching operators, as for exam-
ple, the join operator is composed of the Cartesian product followed by a selec-
tion. Thus, the answer of a similarity range join has properties related to the
“range selection” operator, an operator that selects the elements within a simi-
larity threshold from a query center.

As already discussed in Sect. 1, a pure similarity criterium (without con-
sidering diversity) results in a relation including elements too much similar to
each other, which increases the result cardinality without increasing the infor-
mation content. Figure 1 (a) represents elements of two relations T1 and T2 in
an Euclidean bi-dimensional space, where stars represent elements in T1, trian-
gles represent elements in T2 and circles delimits elements of T2 combined with
elements T1. However, in the same way that a diversified similarity selection
operator can improve the result evaluating diversity, a diverse similarity join
may provide a better perspective too, as shown in Fig. 1 (b). Notice that each
element in T1 can be associated to a varying number of elements in T2, depending
on the data space distribution. In Fig. 1 (b), the squares represent elements in
T2 skipped to be paired with elementos from T1, as they probably only repeat
the information already presented by another pair already in the result, meeting
what we want in the emergency scenario presented in Sect. 1.

We now state the problem of the diversified similarity join. Let T1 and T2
be two relations, each one having an attribute sharing the same complex data
domain S. Our objective is to retrieve all pairs of tuples from both relations such
that the distance between the corresponding complex attributes does not exceed
a maximum similarity threshold, at the same time ensuring that the resulting
pairs are diverse among each other. The Diversified Similarity Join or just
DS-join is defined as follows:

Definition 1. Diversified Similarity Join Operator (DS-join): Let T1
and T2 be two relations, each one having one attribute (or a set of attributes)
S1 ∈ T1 and S2 ∈ T2 sharing the same complex data domain S. Let also d be
a metric defined on S, ξ be a distance threshold and RngDiv(d, ξ) be a simi-
larity with diversity range comparison operator. The diversified similarity join

T1
S1RngDiv(d,ξ)S2

�� T2 combines tuples of T1 and T2 whose distance between the
pair of elements d(t[S1], ti[S2]) is less than or equal to the given threshold ξ and

Diversity in Similarity Joins 47

(a) Similarity Join (b) Diversified Similarity Join

Fig. 1. Similarity joins in an Euclidean bi-dimensional space. Stars are the elements
of the first relation T1, triangles represent the elements of the second relation T2.
Dashed circles groups the elements of T1 paired with the elements of T2. Squares are
the elements of the T1 not paired with T2 in a diversified similarity join.

ensures that the pairs in the result relation 〈t[S1], ti[S2]〉 , 〈t[S1], tj [S2]〉 ∈ (T1×T2)
are separated by a minimum distance based on the relative position of ti[S2] and
tj [S2] to t[S1], that is:

T1
S1RngDiv(d,ξ)S2

�� T2 = TR = {〈t[S1], ti[S2]〉 ∈ (T1 × T2) | d(t[S1], ti[S2]) ≤ ξ ∧
∀ 〈t[S1], ti[S2]〉 ∈ TR : 〈t[S1], ti[S2]〉 /∈

”
T2(tj [S2], ti[S2])} .

Let us interpret Definition 1 and see how it formalizes our intuition. The first
part of that definition 〈t[S1], ti[S2]〉 ∈ (T1 × T2) | d(t[S1], ti[S2]) ≤ ξ ensures that
only the tuples holding the most similar complex attribute values (restricted by
the user threshold ξ) in T1 will be paired to the tuples in T2. The second part,
∀ 〈t[S1], ti[S2]〉 ∈ TR : 〈t[S1], ti[S2]〉 /∈

”
T2(tj [S2], ti[S2]) ensures the diversity in the

final result, selecting only the pairs whose complex attributes are separated by
a minimum distance. We consider that only the tuples ti, tj ∈ T2 farther than a
minimum distance to the others in TR (estimated in an automatic way, using the
concept of influence Intensity described in Sect. 2) will be selected. The tuples
influenced by ti[S2] is represented by

”
T2(tj [S2], ti[S2]). The intuition is that ti[S2]

provides more (or equivalent) information as tj [S2] to each respective element
t[S1]. Thus, we only need to pair up one of them in the final result. Definition
2 shows how to generate a set of elements tj [S2] that can be surely skipped as
candidates from relation T2 based on the element ti[S2] for each corresponding
element t[S1] ∈ T1.

Definition 2. Strong Influence Set –
”
T2: Given an value t[S1] in relation T1

and another ti[S2] in relation T2, the strong influence set
”
T2 of ti[S2] for each

t[S1] is:

48 L.F.D. Santos et al.

”
T2(ti[S2], t[S1]) = { 〈t[S1], tj [S2]〉 ∈ (T1 × T2)|

(I(ti[S2], tj [S2]) ≥ I(ti[S2], t[S1])) ∧
(I(tj [S2], ti[S2]) ≥ I(tj [S2], t[S1]))} .

The combination of Definition 1 with Definition 2 enables pruning elements
from relation T2 for a given element in T1, which allows to consider only the ele-
ments in T2 within threshold ξ that are diverse to each other in a way transparent
to the user. This parameter-free characteristic is important in a join process, as
some of the elements in T2 may be in a region denser or sparser when joined to T1
and the influence intensity is automatically estimated during the join execution,
based solely on the data space distribution. .

An Algorithm for the Diversified Similarity Joins: The traditional way
to compute similarity joins is through a nested-loop approach. Algorithm 1 com-
bines a nested-loop with the operations to prune elements influenced by others
in the second relation to support diversity in similarity joins. Lines 2–8 execute
the inner similarity join. In line 6, the two elements that are in the threshold ξ
are concatenated and included in the result, together their the similarity. The
element pairs are kept ordered in Ttemp with respect to their similarity to t[S1].
The use of a priority queue eases storing the elements in that part of the algo-
rithm. As the diversity concept is applied for each element of the first relation,
the function Diverse (line 9) is applied after all the elements in the threshold ξ
are selected.

In Algorithm 2 (Diverse function), the intuition is to prune elements too
similar by keeping the maximum threshold requirement, such that the answer
is a subset of the traditional similarity join, reducing the cardinality of the
answer using only the elements in the relation T2 that can provide a broader
vision around each element in T1. Thus, the distance from a diverse candidate

Algorithm 1. Nested-loop DS-join
Input : Relations T1 and T2;
Output: The relation T with diverse elements of T1 joined to T2.

1: T ← ∅;
2: for t[S1] ∈ T1 do
3: Ttemp ← ∅;
4: Tdiv ← ∅;
5: for s ∈ T2 do
6: if (dist(t[S1], s) ≤ ξ) then
7: dist ← d(t[S1], s);
8: Ttemp ← Ttemp ∪ {〈t[S1], s, dist〉};
9: Tdiv = Diverse(Ttemp);

10: T ← T ∪ Tdiv;

Diversity in Similarity Joins 49

Algorithm 2. Diversifying Result Sets
Input : Relation Ttemp;
Output: The relation Tdiv with the diverse elements of Ttemp.

1: Tdiv ← ∅;
2: divCand ← The element s with the lower value of dist;
3: while Ttemp is not empty do
4: set divCand as diverse candidate;
5: for each t ∈ Tdiv do

6: if divCand ∈
”
T2(t, t[S1]) then

7: set divCand as non-diverse candidate.;
8: break

9: if divCand is a diverse candidate then
10: insert 〈t[S1], divCand, dist〉 in Tdiv ;

11: divCand ← next element s with the lower value of dist ;

in relation T2 to element t[S1] ∈ T1 must be minimal among all the elements
in T2. In such way, we start assuming that the minimum distance between the
elements T2 is zero. At each iteration, the closest element (divCand) is considered
a diverse candidate (Lines 3–4). Thereafter, that element is evaluated if it belongs
to the strong influenced set already selected. If so, then divCand is influenced
by t and it is tagged as non-diverse (lines 5–7). Moreover, if divCand is not
influenced by any element in Tdiv, then divCand is inserted into the result set
(lines 9–10). Notice that the number of diverse candidates depends on the data
space distribution around the element in T1. This process repeats until no other
element exists in Ttemp to be analyzed (line 3).

4 Experiments

In this section we compare the proposed DS-join operator to the traditional non-
diverse similarity range join (Sim-join) and to a diversity algorithm based on the
distinct nearest neighbors (Dist-join) [14], as the other diversity algorithms from
the literature can be only applied to k-nearest neighbor query operators. Dist-
join employs a concept similar to that used in DS-join, as it considers elements
diverse based on a separation distance (ξmin). However, Dist-join requires the
definition of a ξmin, which is fixed for every element in relation T1. All the
compared algorithms follow the nested-loop join strategy to enable fair compar-
isons. The objective here is to compare the impact of using different diversity
definitions on similarity joins.

We follow two strategies to evaluate our proposal: the first (Sect. 4.1) evalu-
ates the impact of varying parameter ξ on the performance and on the cardinal-
ity of the result using real datasets; the second strategy (Sect. 4.2) performs a
scalability analysis of the DS-join operator varying the cardinality of the joined
relations and the data dimensionality, using synthetic datasets.

50 L.F.D. Santos et al.

Table 1. Experimental setup

Parameter Dataset Values

|T1|
Aloi 100

Proteins 861
Synth (1,000); 2,500; 5,000; 7,500; 10,000

|T2|
Aloi 72,000

Proteins 12,005

Synth
1,000; 2,500; 5,000;
7,500; (10,000)

ξ
Aloi (1.0); 2.0; 3.0; 4.0; 5.0

Proteins (5); 6; 7; 8; 9

Dimension Synth 2; (4); 8; 16; 32

We evaluated the results by processing two real datasets (Aloi, Proteins)
and several synthetic ones (Synth) with distinct dimensionality and cardinal-
ity. The Aloi1 dataset is composed of 1,000 main objects rotated in steps of 5o

from 0 to 360o, generating 72 images per object and a total amount of 72,000
distinct images. This dataset has 144 features obtained using the color moment
extractor [15]. Additionally, the Manhattan distance was used to compute the
similarity between the elements. The Proteins2 dataset consists of 12,866 chains
of amino acids represented by characters. This is a purely metric dataset and
allows to evaluate DS-joins over data that cannot be represented in a multidi-
mensional space model. We retain proteins whose length varies between 2 and
15 amino acids. The metric employed in this dataset is the well-known Leven-
shtein Edit distance. The Synth datasets vary from 1,000 to 10,000 points in
2, 4, 8, 16 and 32 dimensions each set, generated at random (uniform). Every
Synth dataset used the Euclidean distance to evaluate the similarity among the
elements. Table 1 summarizes the parameter variations and indicates the default
values in parenthesis when they are not specified in the test description.

The experiments were executed in a computer with an Intel R© CoreTM i7-4770
processor, running at 3.4 GHz, with 16 GB of RAM on the operating system
Ubuntu 14.04. All the algorithms were implemented in C++, using the same
programming framework and both joined search spaces remains in disk, that is,
elements are loaded in memory only when they are required to be joined.

4.1 Performance and Result Size Evaluation

In order to evaluate the retrieval performance of our proposal, we measured the
running time and the number of elements in the final result obtained by DS-
join, Dist-join and the traditional Sim-join. We present the behavior analysis
in a high-dimensional (Aloi) and in a purely metric dataset (Proteins), since

1 Aloi: http://aloi.science.uva.nl Access: April 19, 2015
2 Proteins: http://www.uniprot.org/uniprot Access: April 19, 2015

http://aloi.science.uva.nl
http://www.uniprot.org/uniprot

Diversity in Similarity Joins 51

they encompass two representative cases regarding complex data. The maximum
threshold ξ was chosen so as its smaller value retrieves about 1% of the amount
of elements of the Cartesian product and the larger value retrieves about 10%
of that total. Naturally, each distinct dataset has a different range of values ξ.

Figure 2(a) shows the running time for the Aloi dataset. For this experiment,
we used two values for the separation distance parameter of Dist-join: 1.0 and
1.3. They accomplish respectively the best diversification and the fastest perfor-
mance according to the authors [14]. As it can be seen, all the algorithms have
almost the same execution time when the maximum threshold is small, as the
final result has only few elements. However, as the maximum threshold increases,
both configurations of Dist-join have their performance degraded, being on aver-
age 10 times slower than the Sim-join. This happens as the separation distance
parameter is fixed to each element for relation T1, without considering the dis-
tance distribution of the elements around it in the relation T2. However, the
experiments showed that DS-join is much faster than the Dist-join, and when
compared to the (non-diverse) Sim-join, it was on average 20% slower. Figure
2(d) shows the result set sizes for the Aloi dataset. For this experiment, the
intuition is that a good diversity join algorithm will select a reduced number of
elements that cover the same data space distribution of the non-diverse Sim-join.
Both configurations of the Dist-join was outperformed by DS-join, covering the
same data space, but using only 10% of elements used by Sim-join.

Figure 2(b) shows the running time for the Proteins dataset. In this exper-
iment, we defined the separation distance parameter of Dist-join as 6. DS-join
outperformed Dist-join been at least 2 times faster for smaller values of ξ and up
to one order of magnitude faster when 10% of the elements are retrieved by the
join. In addition, the large amount of time spent by Dist-join was not enough to
reduce the number of elements as DS-join does, since it retrieved, in average, 3
times more elements, as presented in Fig. 2(e).

The presented results highlights that our DS-join executes diversity in simi-
larity joins in a equivalent time to the “pure” similarity join (Sim-join), while the
closest diversity algorithm compared can be 10 times slower. Moreover, DS-join
does not require any new parameters. Allowing to make the use of diversity in
joins transparent and intuitive.

4.2 Scalability

In order to evaluate the scalability of the proposed DS-join algorithm, we per-
formed two experiments over synthetic datasets. We first employed the new
algorithm to a cardinality-behavior analysis regarding the running time. Figure
2(c) shows the effect of increasing the cardinality of both relations T1 and T2.
As it can be seen, the DS-join follows the same behavior of the non-diverse algo-
rithm Sim-join with a slightly difference (less than 7%). This result shows that
the inclusion of diversity in the similarity join operator does not degrade the
overall performance regarding both relation variations.

The second scalability experiment evaluates the effect of the dimensional-
ity variation in the DS-join performance. Figure 2(f) shows that the difference

52 L.F.D. Santos et al.

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5

T
im

e
(s

)

Radius

DS-join
Sim-join

Dist-join 1
Dist-join 1.3

(a) Aloi: ξ variation

 0

 50

 100

 150

 200

 250

 300

 350

 400

5 6 7 8 9

T
im

e
(s

)

Radius

DS-join
Sim-join

Dist-join 6

(b) Proteins: ξ variation

 0

 1

 2

 3

 4

 5

 6

1 2.5 5 7.5 10

T
im

e
(s

)

|T1| and |T2| (x 1000)

DS-join
Sim-join

(c) Synth: Cardinality.

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.5 1 2 3 4 5

C
ar

di
na

lit
y

(x
 1

00
0)

Radius

DS-join
Sim-join

Dist-join 1
Dist-join 1.3

(d) Aloi: Result set size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

5 6 7 8 9

C
ar

di
na

lit
y

(x
 1

00
0)

Radius

DS-join
Sim-join

Dist-join 6

(e) Proteins: Result set size

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32

T
im

e
(s

)

Dimensions

DS-join
Sim-join

(f) Synth: Dimensionality

Fig. 2. Performance and result set size graphs showing the impact of diversity in join
operators. In all graphs, lower values correspond to better algorithms.

between DS-join and Sim-join is always very close (less than 10%) regarding the
dimensionality of the relations. As already expected, the cost of DS-join increase
with the dimensionality, once the distance functions become more computation-
ally expensive to compute and DS-join must consider both similarity and the
diversity among the elements. However, the slim cost increase is surpassed by
the gain in the response meaning obtained by including the diversity.

5 Conclusion

The similarity operators are attracting considerable attention to process complex
data. However, similarity-based operators often retrieve result with elements too
much similar among themselves, which does not add valuable information to the
final answer.

Result diversification provides a promising solution, making it possible to
retrieve elements similar enough to satisfy similarity conditions but also consid-
ering the diversity among them. Until now, diversity have been applied only to
unary selection operators. In this paper we introduced the concept of diversity
in similarity joins, ensuring a diversified and more useful answer. We applied the
diversity over the range join operator to prune the elements that are too similar
to each other, reducing the cardinality of the answer. Our experiments showed
that it is possible to consider the diversity among the elements in the result of
the similarity join operator without significant impact on their performance.

As a future work, we are exploring the benefits of including diversity also in
the k-nearest neighbor joins. For this kind of join, the diversity concept provides a

Diversity in Similarity Joins 53

different vision, as it will prune too similar elements in T1, exchanging them with
others less similar to keep k elements in the answer, meeting the requirement
of pairing up each element of T2 to k elements in T1, but where there is no
commitment to represent the same data space distribution of the non-diverse
answers, which is more suitable for exploratory queries.

References

1. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.P.: Epsilon grid order: an algo-
rithm for the similarity join on massive high-dimensional data. In: ACM SIGMOD
Record, vol. 30(2), pp. 379–388 (2001)

2. Boim, R., Milo, T., Novgorodov, S.: Diversification and refinement in collaborative
filtering recommender. In: Proc. 20th CIKM, pp. 739–744 (2011)

3. Dittrich, J.P., Seeger, B.: Gess: a scalable similarity-join algorithm for mining large
data sets in high dimensional spaces. In: Proc. 7th ACM SIGKDD, pp. 47–56 (2001)

4. Dohnal, V., Gennaro, C., Zezula, P.: Similarity join in metric spaces using eD-index.
In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol.
2736, pp. 484–493. Springer, Heidelberg (2003)

5. Dou, Z., Hu, S., Chen, K., Song, R., Wen, J.: Multi-dimensional search result
diversification. In: Proc. 4th WSDM, pp. 475–484 (2011)

6. Drosou, M., Pitoura, E.: Disc diversity: result diversification based on dissimilarity
and coverage. Proc. VLDB Endowment 6(1), 13–24 (2012)

7. Fredriksson, K., Braithwaite, B.: Quicker range- and k-NN joins in metric spaces.
Information Systems 52, 189–204 (2015)

8. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM TODS 33(2), 7:1–7:38
(2008)

9. Kalashnikov, D.V.: Super-ego: fast multidimensional similarity join. The VLDB
Journal 22(4), 395–420 (2013)

10. Paredes, R., Reyes, N.: Solving similarity joins and range queries in metric spaces
with the list of twin clusters. Journal of Discrete Algorithms 7(1), 18–35 (2009)

11. Pearson, S.S., Silva, Y.N.: Index-based R-S similarity joins. In: Traina, A.J.M.,
Traina Jr, C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 106–112.
Springer, Heidelberg (2014)

12. Santos, L.F.D., Oliveira, W.D., Ferreira, M.R.P., Traina, A.J.M., Traina Jr., C.:
Parameter-free and domain-independent similarity search with diversity. In: Proc.
25th SSDBM, pp. 5:1–5:12 (2013)

13. Silva, Y.N., Aref, W.G., Larson, P.A., Pearson, S., Ali, M.H.: Similarity queries:
their conceptual evaluation, transformations, and processing. The VLDB Journal
22(3), 395–420 (2013)

14. Skopal, T., Dohnal, V., Batko, M., Zezula, P.: Distinct nearest neighbors queries
for similarity search in very large multimedia databases. In: Proc. 11th WIDM,
pp. 11–14 (2009)

15. Stricker, M., Orengo, M.: Similarity of color images. In: Proc. 3rd SPIE,
pp. 381–392 (1995)

16. Van Leuken, R.H., Garcia, L., Olivares, X., Van Zwol, R.: Visual diversification of
image search results. In: Proc. 18th Int. Conf. on WWW, pp. 341–350 (2009)

17. Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou, M., Srivastava, D.,
Traina Jr., C., Tsotras, V.J.: On query result diversification. In: Proc. 27th ICDE,
pp. 1163–1174 (2011)

CDA: Succinct Spaghetti

Edgar Chávez1(B), Ubaldo Ruiz1,3, and Eric Téllez2,3

1 Department of Computer Science, CICESE, Ensenada, Mexico
{elchavez,uruiz}@cicese.mx

2 INFOTEC, Mexico City, Mexico
eric.tellez@infotec.com.mx

3 Cátedra CONACYT, CONACYT, Mexico City, Mexico

Abstract. A pivot table is a popular mechanism for building indexes for
similarity queries. Precomputed distances to a set of references are used
to filter non-relevant candidates. Every pivot serves as a reference for all,
or a proper subset of, the objects in the database.Each pivot filters its
share of the database and the candidate list for a query is the intersec-
tion of all the partial lists.The spaghetti data structure is a mechanism
to compute the above intersection without performing a sequential scan
over the database, and consist of a collection of circular linked lists.

In this paper, we present a succinct version of the spaghetti. The pro-
posed data structure uses less memory and, unlike the original spaghetti,
it can compute the intersection using an arbitrary order of the component
sets. This later property enables more sophisticated evaluation heuristics
leading to faster intersection computation.

We present the analysis of the performance, as well as a comprehen-
sive set of experiments where the new approach is proven to be faster in
practice.

1 Introduction

One of the simplest methods to speed up proximity search is a pivot table. The
method consists in precomputing the distances of the elements of the database to
a fixed set of pivots. Those distances are used to filter out the database objects
that are unlikely to be in the query outcome. There are several variations of this
simple idea presented in the literature. Different pivot-based indexes compute
the intersection with different methods. The different techniques for computing
intersections are surveyed in the extended version of the paper, in this manuscript
we will only compare the standard spaghetti (SPA) against the succinct version
(CDA).

2 Spaghetti

The spaghetti [1] computes the intersection of a collection of k intervals from k
ordered sets. We will call pivots to the ordered sets, because they are obtained
from a pivot table. The algorithm is described briefly below.
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 54–64, 2015.
DOI: 10.1007/978-3-319-25087-8 5

CDA: Succinct Spaghetti 55

(a) The spaghetti (b) Following pointers.

Fig. 1. Following pointers in the spaghetti. The probability of traversing the entire
spaghetti is the product of the “chance” windows in each array.

Preprocessing

1. For each pivot calculate and save the distances to each database’s element.
2. Sort each array saving the permutation with respect to the preceding array

(as illustrated in Figure 1a)

Querying. Given k intervals, defining k sets, [a1, b1], · · · , [ak, bk] (with ai =
d(pi, q) − r and bi = d(pi, q) + r)

1. Obtain the index intervals [I1, J1], · · · , [Ik, Jk] corresponding to each set.
2. Follow each point through the pointers to find out if it falls inside all the

index intervals.
3. If a point falls inside all the index intervals it is in the intersection.

Figure 1a shows the construction of the data structure. In Figure 1b, the
thick pointer represents a successful path, that is, the object followed is in the
intersection.

3 Time Complexity Analysis

The spaghetti implements a practical way of finding the intersection of k sets.
For simplicity lets consider that each set si, associated with the i-th pivot, have
exactly m elements; hence the fraction of points captured in each set si is ε = m

n
with n the size of the database. The fraction ε depends on the radius of the
query, the intrinsic dimension of the database and the distance function used to
compare the elements. The goal is to analyze the complexity of the algorithm
for isolating the candidate list, i.e. for finding the intersection of the k sets.

3.1 Unsuccessful Search

Consider the probability of paying 1, 2, . . . , k operations for each point (one for
each pivot). We will proceed inductively on k. Let c be the random variable
describing the cost of traversing the spaghetti for one individual point, c will
take values in the discrete interval [1 . . . k − 1]. The analysis makes sense for
values of k ≥ 2 (for k = 1 we pay 0 in traversing the spaghetti).

56 E. Chavez et al.

(a) Cost for traversing the
spaghetti data structure, as a
function of the number of piv-
ots. Plots for different frac-
tions m/n are shown.

0

5

10

15

20

25

30

35

40

45

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction m/n

Asymtotic cost

asymtotic cost

(b) Asymptotic cost for
traversing the spaghetti, as
a function of the fraction
ε = m/n.

If k = 2 then for any point in the first set we pay exactly 1 for traversing the
spaghetti. If k = 3 we pay 1 with the probability of finding it in the second set
and not finding it in the third set e.g. P (1) = (1 − ε); similarly we pay 2 with
the probability of finding it in the first set, the second set and the third set e.g.
P (2) = ε2. For k > 3 the reasoning is similar.

The following formula accounts for the probability of an arbitrary k.

P (c) =
{

εc−1(1 − ε)ifc < k − 1
εk−1ifc =k − 1

}
(1)

The expected value of c is

E(c) =
k−1∑
i=1

cP (c) (2)

This sum is telescopic, and the final expression is

E(c) = (1−ε) + 2(ε(1 − ε)) + 3(ε2(1 − ε)) + · · · + (k − 1)εk−2 (3)

E(c) = 1 + ε + ε2 + · · · + εk−2 (4)

Hence the average cost or expected value is

k−2∑
i=0

εi =
1 + εk−1

1 − ε
≤ k (5)

CDA: Succinct Spaghetti 57

Figure 2a shows the traversal cost for spaghettis for different values of the
fraction m/n. From smaller to larger, the curves in the figure correspond to
fractions m/n of values 0.125, 0.25, 0.5 and 0.75. The respective asymptotic
costs, in the same order are 0.5, 1.0, 2.0 and 4.0.

The above analysis implies that on the average increasing the number of
pivots does not increase the cost of traversing the spaghetti; in other words for
each fraction m/n there is a k such that the cost of traversing the spaghetti for
any point is constant, as pointed in Figure 2b.

The above discussion proves that the average cost of traversing the spaghetti
is O(m) and it differs from the worst case complexity by the factor k

3.2 Successful Search

The above analysis is valid if the final intersection (i.e. the outcome of the
query) is empty; or in other words if the search is unsuccessful. If the size of the
intersection is s, then the total cost is at least ks; since for each element in the
intersection we cannot “quit” in examining the spaghetti.

In this case we have to add the fixed cost of ks to the above calculated
cost, hence the cost is obtained making ε = m−s

n ; accounting for the cost of an
unsuccessful search in the interval of size m − s plus the fixed cost ks. Observe
that s ≤ m in any case.

1 − (m−s
n)k−1

1 − (m−s
n)

+ ks (6)

4 CDA, the Succinct Spaghetti

In the original spaghetti, the distances from each pivot to all elements in the
database are stored in arrays (one per each pivot). Those distance arrays are
ordered according to their values, and the permutation of the elements in each
array with respect to the one preceding it is saved (see Figure 1a). Our contri-
bution is a new representation. Instead of saving the permutation between each
distance array and the one preceding it, the permutation of the elements in each
array with respect to the identity is saved (as it is shown in Figure 2). In the
identity each element has a unique identifier. The new representation can be
used to reduce the number of distance computations, as we will show later.

To solve a query in the spaghetti, we find the sets Si = {x : |d(x, Pi) −
d(q, Pi)| < r} for each pivot Pi where i = 1, . . . , k. The intersection of them gives
the candidate set. To compute it we need to check if each one of the elements in
the set Sj is also in each one of the remaining sets Sk where k �= j. Note that
for testing the elements, we need to know their positions in each distance array.

Each array is a permutation, we can compose the permutations to find the
position of an arbitrary element passing through the identity. We denote as I to
the identity (see Figure 2). Let πi be the permutation of I when the elements
are ordered w.r.t. the distance to Pi. Here πi(k) represents the position in I of

58 E. Chavez et al.

P

1 2 3 4 5

235 4 1 13 5 4242 153

13 54 2 1 3 5 2 4 3415 2

P P P
1 2 3

P
54

I

P
6

Fig. 2. An example of the new presentation of the spaghetti data structure.

the k-element in the distance array associated to pivot Pi, in Figure 2, π1(2) = 4
and π3(1) = 3. π−1

i (j) represents the relative position to Pi of the j-element in
I, in Figure 2, π−1

1 (4) = 2 and π−1
3 (3) = 1. To find the position of an element

with respect to a pivot, assuming we know the element’s position with respect to
another pivot, we just make a composition of the permutations. As a formative
example, assume we want to find the position in P5 of the element in position 3
in P2. First, we obtain the position of the element in I by computing π2(3) = 2.
Once we know the element’s position in I, we compute its position in P5 by
doing π−1

5 (2) = 4.

4.1 Compact Representation of Permutations

A key component in the new representation is the use of permutations. We are
interested in a representation of them that can help to save storage space and
also allows to perform fast computations. The problem of succinctly representing
a permutation was studied in [2]. Given an integer parameter t, the permutations
πi and π−1

i can be supported by simply representing πi using an array of n words
of �lg n� bits each, plus an auxiliary array S of at most n/t shortcuts or back
pointers. In each cycle of length at least t every t-th element has a pointer t
steps back. πi(k) is simply the k-th value in the primary structure, and π−1

i (k)
is found by moving forward until a back pointer is found and then continuing
to follow the cycle to the location that contains the value k. The key idea is
in encoding of the locations of the back pointers: this is done with a simple bit
vector B of length n, in which a 1 indicates that a back pointer is associated
with a given location. B is augmented using o(n) additional bits so that the
number of 1’s up to a given position and the position of the r-th 1 can be found
in constant time using the rank and select operations on binary strings [3]. This
gives the location of the appropriate back pointer in the auxiliary array S. For
more details, the reader is referred to [2,4].

4.2 Computing the Intersection

In practice, the candidate set for each pivot can contain thousands of elements
thus it can be helpful to develop an algorithm to quickly and efficiently evaluate

CDA: Succinct Spaghetti 59

those elements. Using the representation described above it is possible to decide
the order in which the candidate sets are going to be compared. In this work,
we make use of a strategy called Small vs Small (SVS) which we will describe in
the next paragraphs.

Small vs Small (SVS). Let Si = {x : |d(x, pi)−d(q, pi) ≤ q|} be the candidate
set for each pivot pi. Without lost of generality we consider that |S1| ≤ |S2| ≤
. . . ≤ |Sk|. The key idea is to identify the candidate set having the smallest
cardinality. This set is intersected with each one of the remaining sets. The sets
are visited following an ascending order according to their cardinalities. The final
candidates are given by ∩i=k

i=1Si. This algorithm guarantees that the number of
elements in the intersection is never bigger than the number of elements in the
set to be compared. Note that in worst case, the cardinality of the intersection
set equals the cardinality of the smallest candidate set.

4.3 Time Complexity Analysis

For simplicity, consider that each interval in each array has m elements. Let s be
the size of the intersection set, the minimal cost to compute the intersection is ks
since the execution stops until s elements are verified to belong to the k intervals.
From subsection 3.2, we have that the cost for computing the intersection of the
candidate sets is

1 − (
m−s
n

)k−1

1 − (
m−s
n

) + ks (7)

Also we have to consider the cost of computing πi which is t for each element
in each one of the k iterations, thus the cost is

t ·
(

1 − (
m−s
n

)k−1

1 − (
m−s
n

) + ks

)
(8)

Inverse Permutations. As a consequence of reducing the storage space we
have increased the cost of execution, although it is possible to improve the algo-
rithm. The inverse permutation is computed in worst case m(k − 1) times while
the direct permutation only m times, thus if during the construction of the index
we store π−1

i instead of πi we reduce the search time. Note that the time only
increases when we find the initial candidate set. We have that the cost is

1 − (
m−s
n

)k−1

1 − (
m−s
n

) + ks + tm (9)

In this paper, we evaluate the algorithm’s performance of the succinct rep-
resentation saving the inverse permutations.

60 E. Chavez et al.

5 Experimental Results

In this section, we analyze the improvements to the original spaghetti. First,
we study the size reduction of the index as a consequence of using a succinct
representation for the permutations. Second, we discuss the speed improvement
by using the SVS technique.

The experiments were performed on databases containing randomly-
generated vectors in six dimensions 4, 8, 12, 16, 20 and 24. The databases have
104, 105, 2.5×105, 106, 5×106, and 107 elements. We also performed experiments
with Nasa, Colors, and CoPhiR-1M databases. As usual, vector spaces are
indexed without using the coordinates. The query set for each database contains
256 randomly-generated vectors which are not contained in the index.

5.1 Index Size

The goal is to establish a comparison between the original and the succinct repre-
sentations of the spaghettis. In Figure 3a, we can observe the index size growing
for both representations as the number of elements in the database increases.
The indexes were built using 120 pivots. In the figure, we can also see how the
variation of the parameter t affects the size using the succinct representation.

(a) Index size as a function of the number
of elements in the database and the value
of t.

(b) Index size reduction as a function of
t.

Fig. 3. Index sizes for databases containing randomly-generated vectors.

Figure 3b shows a closer look to the index size as a function of t. In this case,
a database with 106 randomly-generated vectors was used. In the figure, we can
note that after some t = tm is reached, the index size remains almost constant if
we continue increase the value of t. Therefore for t > tm the size reduction does
not compensate the time increment to compute the inverse.

In Figures 4a, 4b and 4c we can observe the index size values as function of
t for the NASA, Colors and Cophir databases. They present a similar behavior
to the one described in the previous experiments.

CDA: Succinct Spaghetti 61

(a) NASA (b) Colors

(c) Cophir

Fig. 4. Index sizes as a function of t for the NASA, Colors and Cophir databases.

5.2 Computing the Candidate Set

One of the goals of the new representation is reducing the number of distance
evaluations to find the candidate set. Figure 5a shows the average size of the
candidate sets (after visiting each pivot) in different dimensions using the SVS
strategy. Note that the size of the candidate set after visiting a pivot is directly
related with the number of distance evaluation that need to be performed in the
next pivot. In the figure, we can observe that as the dimension of the database
increases also does the size of the candidate set and the number of distance
evaluations to find it. Figure 5b shows the results of using a random order
(original spaghettis) for the same experiment.

Figures 6a, 6b, and 6c show the size of the approximated candidate sets (after
visiting each pivot) for NASA, Colors and Cophir databases. From the previous
results, we can observe that in the SVS strategy the initial pivots are the ones
discarding the bigger amount of elements, this suggest that we can improve the
algorithm’s performance using an early stop strategy where only a small number
of the ordered pivots are used to compute the candidate set.

Figures 7a, 7b, 7c and 7d show the average time (in secs) to solve a query for
the Nasa, Colors, Cophir and Random databases. We test two implementations

62 E. Chavez et al.

(a) Number of candidates after each com-
parison using the SVS strategy.

(b) Number of candidates after each com-
parison using a random strategy (original
spaghetti).

Fig. 5. Computing candidate sets in databases with randomly-generated vectors.

(a) Number of candidates after each com-
parison for the Nasa database.

(b) Number of candidates after each com-
parison for the Colors database.

(c) Number of candidates after each com-
parison for the Cophir database.

Fig. 6. Computing a candidate set in the Nasa, Colors, and Cophir databases.

CDA: Succinct Spaghetti 63

(a) Average time to solve a query for the
Nasa database.

(b) Average time to solve a query for the
Colors database.

(c) Average time to solve a query for the
Cophir database.

(d) Average time to solve a query for the
Random database in 12 dimensions.

Fig. 7. Time to solve a query using the standard spaghetti, and the SVS strategy.

of the SVS strategy. In the first one, both the direct and inverse plain permu-
tations are stored. We use this implementation as a ground truth of the best
performance for the SVS strategy since no cost is involved to compute the direct
permutations. For the succinct version, the inverse permutations are saved in
order to improve the algorithm’s performance, as it was described in subsection
4.3. For both algorithms, only the first four pivots (early stop condition) where
used to compute the candidate set. In the figures, we can observe that the plain
version of the SVS strategy is the fastest. The figures also show that for small
values of t the succinct version of the SVS strategy is faster than the standard
spaghetti. As it is expected, as we increase the value of t (better compresion) it
takes more time to compute the direct permutation in the succinct representa-
tion and thus the overall time to compute the query also increases. Note that
the standard and plain versions of the spaghettis are independent of t and the
small variations in time are related to the random process to create the indexes.

64 E. Chavez et al.

6 Conclusions and Future Work

In this paper, we introduce a new representation for the spaghetti data structure
based on the permutations of the elements in each pivot to an identity array.
Using a succinct representation of those permutations we have shown that it is
possible to save memory, that can be used to increase the number of pivots.

We also presented a new method to compute set intersections for using pivot
tables. We have shown how the small-vs-small heuristic can be used to quickly
trim candidate list, faster than using the original spaghetti.

One key finding is that our method is able to compute almost the final
intersection using only a small fraction of the pivots. This fact can be used as
an alternate method to perform range queries in multidimensional data, as an
alternative to kd-trees. Those results will be reported elsewhere.

References

1. Chávez, E., Marroquin, J.L., Baeza-Yates, R.: Spaghettis: an array based
algorithm for similarity queries in metric spaces. In: String Processing and Infor-
mation Retrieval Symposium, 1999 and International Workshop on Groupware,
pp. 38–46. IEEE (1999)

2. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permuta-
tions. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

3. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing 31(3), 762–776 (2001)

4. Barbay, J., Munro, J.I.: Succinct encoding of permutations: applications to text
indexing. In: Encyclopedia of Algorithms, pp. 915–919. Springer (2008)

Improving Metric Access Methods
with Bucket Files

Ives R.V. Pola2(B), Agma J.M. Traina1, Caetano Traina Jr.1,
and Daniel S. Kaster2(B)

1 University of São Paulo, São Carlos, Brazil
{agma,caetano}@icmc.usp.br

2 University of Londrina, Londrina, Brazil
{ives,dskaster}@uel.br

Abstract. Modern applications deal with complex data, where retrieval
by similarity plays an important role in most of them. Complex data
whose primary comparison mechanisms are similarity predicates are usu-
ally immersed in metric spaces. Metric Access Methods (MAMs) exploit
the metric space properties to divide the metric space into regions and
conquer efficiency on the processing of similarity queries, like range and
k-nearest neighbor queries.

Existing MAM use homogeneous data structures to improve query
execution, pursuing the same techniques employed by traditional meth-
ods developed to retrieve scalar and multidimensional data. In this paper,
we combine hashing and hierarchical ball partitioning approaches to
achieve a hybrid index that is tuned to improve similarity queries target-
ing complex data sets, with search algorithms that reduce total execution
time by aggressively reducing the number of distance calculations. We
applied our technique in the Slim-tree and performed experiments over
real data sets showing that the proposed technique is able to reduce the
execution time of both range and k-nearest queries to at least half of the
Slim-tree. Moreover, this technique is general to be applied over many
existing MAM.

1 Introduction

The existing Data Base Management Systems (DBMS) were originally developed
to store and retrieve data represented in numeric and short character strings
domains. They are not able to efficiently manage the complex data handled by
current applications, such as multimedia data, georeferenced data, time series,
genetic sequences, scientific simulations, etc. The main reason precluding those
data to be appropriately managed by current DBMSs is because their internal
structures require the data domains to comply with the ordering relationship
(OR) properties, that is, they require that every data element from a domain
can be compared by the <,≤, > and ≥ operators. To manage complex data even
the equality comparison operators = and �= are almost useless, because identity
seldom occurs (or is not worth pursuing) when retrieving complex data. To query
complex data, comparing by similarity is the most important operation [6].
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 65–76, 2015.
DOI: 10.1007/978-3-319-25087-8 6

66 I.R.V. Pola et al.

Similarity search is the most frequent abstraction to compare complex data,
based on the concept of proximity to represent similarity embodied in the mathe-
matical concept of metric spaces [8]. The development of the Metric Access Meth-
ods (MAMs), also known as distance-based index structures, provides adequate
techniques to retrieve complex data, once they are based solely on the distances
(similarities) between pairs of elements in a data set. Evaluating (dis)similarity
using a distance function is desirable when the data can be represented in metric
spaces. Formally, a metric space is a pair 〈S, d〉, where S is the data domain and
d : S × S → R

+ is the distance function, or metric, that holds the following
properties for any s1, s2, s3 ∈ S:

– Identity (d(s1, s2) = 0 → s1 = s2);
– Symmetry (d(s1, s2) = d(s2, s1));
– Non-negativity (0 < d(s1, s2) < ∞ , s1 �= s2) and
– Triangular inequality (d(s1, s2) ≤ d(s1, s3) + d(s3, s2)).

Given a set S in a complex domain S, a similarity query returns a result
set TR = {si ∈ S} that meet a given similarity criterion, expressed through a
reference element sq ∈ S. For example, for image databases one may ask for
images that are similar to a given one, according to a specific criterion. There
are two main types of similarity queries: the range and the k-nearest neighbor
queries.

There are two broad classes of access methods that exploit the properties of
metric spaces: those based on the hierarchical division of the space based on ball-
shaped regions centered at one element, and those based on pivots sets, which
can be implemented as a hierarchy or as hash tables. Dynamic MAMs have had
special attention by academy and industry as they do not degrade with updates.

In this paper we propose the Bucket-Slim-Tree (BST), a MAM based both
on hash and on ball partitioning, aiming at reducing the number of distance
evaluations required to answer a similarity query. BST employs the dynamic
MAM Slim-tree as a kind of hash function mapping to buckets delimited by
a fixed radius. Such organization allows reducing the overlap among regions
improving the search performance in a great extent. Experiments over real data
sets reported in the paper show that BST demands less than half of the distance
calculations and of the execution to perform similarity queries when compared
to the original Slim-tree, in the best results.

The rest of the paper has the following outline. Section 2 discusses the back-
ground and existing works related to this one. Section 3 presents the proposed
data structure, the Bucket-Slim-Tree. Section 4 shows experiments performed
to demonstrate the improvement of the proposed structure. Finally, Section 5
concludes for this work.

2 Background

Metric access methods use only the distances between elements to prune fur-
ther comparisons in subsets of the elements during search. Pruning techniques

The Bucket-Slim-Tree 67

require the algorithms to store distances to take advantage of the metric proper-
ties and/or of statistics from the distance distribution over the data space. The
usual pruning techniques use lower bounds of distances derived from the trian-
gular inequality property. Another approach is to store the minimum and the
maximum distances within a group of elements to help discarding entire regions
during search algorithm execution.

Many indexing structures were developed exploiting those concepts, such as
the Geometric Near Access Tree (GNAT) of Brin [3], leading to the class called
Voronoi-based MAMs. The EGNAT [10] is a dynamic variation of GNAT, which
provides a mechanism to store elements on disk by creating buckets on the
leaf nodes and also enables deletion. Another approach, the ball decomposition
scheme, partitions the dataset based on distances from a distinguished element
called a Vantage Point (VP), thus creating the so-called VP-tree [14]. The VP-
tree construction process is based on finding the median element of a sorted
sample list of the elements, which leads to a recursive tree creation. Other disk-
based MAM have been proposed based on the VP-tree, such as the MVP-tree
[2], where multiple vantage points are used.

The BP-tree (Ball-and-Plane tree) [1] is constructed by recursively dividing
the data set into compact, low-overlap clusters. It is static and was designed to
deal with high dimensional data, where a data distribution analysis is used to
search in clusters.

Several dynamic, disk-based MAMs were proposed in the literature[13][4]. A
disk-based MAM requires the structure to hold many elements per node, in order
to decrease the number of disk accesses. They employ a bottom up strategy to
construct the trees, assuring the creation of balanced trees. The M-tree [4] was
the first of such trees proposed, followed by the Slim-tree [13], which includes the
Slim-down algorithm to reduce node overlaps. The OMNI concept [11] increases
the pruning power of search operations using a few elements strategically posi-
tioned as pivots, the foci set. These methods store distances among the elements
and the pivots, so the triangular inequality property can be used to prune nodes
and reduce the number of sub-tree accesses.

Most of the indexing structures presented above are based on ball partitioning
or pivot-based structures. Hashing, the “key to address” mapping, is the basis
for D-Index [5] and SH [7]. The LAESA algorithm [9] is a pivot table that uses a
matrix of distances between all pairs of pivots selected from the dataset. When
processing queries, it sequentially process the entire distance matrix (or parts
of it in multiple passes), pruning by using the triangle inequality property. But,
the internal cost of LAESA can be so high that it can be equivalent to perform
a sequential search when indexing high dimension datasets at low cost metrics
[12].

Both ball and hash based methods have particular advantages that can be
combined to achieve better metric structures. The way Ball-based MAM par-
titions the metric space leads to a better organization of the data structure,
so every resulting partition of the metric space groups similar elements. How-
ever, the best dynamic approaches produce regions that overlap, imposing to

68 I.R.V. Pola et al.

the search algorithm to visit many regions. The pivot partitioning methods are
affected by the pivots selection policy and how they are combined to prune
regions. Hash-based methods usually partition the data into subsets that are
addressed later to answer the queries.

Our proposal is innovative as it exploits the best properties from ball-based
and from pivot-based methods. Specifically, our method Bucket-Slim-Tree (BST)
uses the Slim-tree as a hash function to search within a bucket file to improve
performance. BST merges the usage of buckets of elements with the Slim-tree,
enabling to explore properties from both structures that results in an overall
reduced consumption of computational resources.

3 The Bucket-Slim-Tree

The Bucket-Slim-Tree (BST) is composed of a Slim-tree and a set of buckets
pointed by the Slim-tree leaf nodes. The Slim-tree acts as a hash function that
during query answering determines which bucket should be visited next. The
basic structure of a BST is shown in Figure 1. Each element in a leaf node has
a pointer to its respective bucket. Although each Slim-tree node have a limited
capacity, each bucket is (theoretically) limitless.

... ...

...

• • ... • • ... • • ... • ...

•••
• ••• • •••

• •• •••
• •••

Root

Index nodes

Leaf nodes

Buckets

Fig. 1. Structure of a Bucket-Slim-Tree.

The elements indexed in the index and leaf nodes are considered search keys,
and act like pivots in a hash structure. Inserting new elements or answering
queries require to traverse the tree structure using the search keys to determine
which leaf nodes will have their buckets accessed for inspection. The query result
will be composed of keys from the Slim-tree and also of elements stored in the
corresponding buckets that match the search criteria.

3.1 The Structure of the Buckets

A BST is constructed for a specific bucket radius η, given beforehand. A bucket
Bη(bci) represents a ball of radius η in the metric space, whose center is the

The Bucket-Slim-Tree 69

(a) Slim-tree (b) BST

Fig. 2. Ball partitioning comparison between regular Slim-tree and BST.

element bci stored in a Slim-tree leaf node pointing to that bucket. Thus, a
bucket stores elements si such that ∀si ∈ Bη(bci) : d(si, bci) ≤ η. Each element
si that belongs to a bucket does not belong to other buckets.

For example, consider Figure 2. In Figure 2(a) it shows a set of points in
R

2 indexed in a regular Slim-tree with four levels. But, in Figure 2(b) it shows
the same set of points with buckets of a fixed radius η centered at elements
{a, b, c, h, i, j, n}, indexed on a BST. As it can be seen, there can be empty
buckets, such as Bη(h), and elements that are covered by more than one bucket
are stored in only one bucket, such as element r. Note that, comparing both
figures, using buckets reduces the overall covering radius of the index elements,
reducing the overlap in the structure.

The bucket radius plays an important role in the performance of the
Bucket-Slim-Tree. Setting too large η values will result in large buckets, thus
creating long subsets of elements to be analyzed during queries. This degen-
erates into sequential scans in the buckets and few key elements to filter the
buckets in the tree. Furthermore, the larger is the region covered by a bucket
the more the overlap between sibling buckets, which leads to potentially more
unnecessary accesses. On the other hand, choosing too small values for η will
produce many small or empty buckets, leading the search cost to occur mostly
in the Slim-tree and an added internal cost to manage the buckets. Choosing the
bucket radius η = 0 the result is the Slim-tree itself, thus the Bucket-Slim-Tree
can be seen as a generalization of the Slim-tree.

Next we will discuss how to build the Bucket-Slim-Tree, i.e., how to choose
the keys and how to create the buckets.

3.2 Building the Bucket-Slim-Tree

The Bucket-Slim-Tree is a dynamic MAM able to be constructed either using
bulk-loading or adding elements one at a time. The BST is designed to group
similar elements into buckets centered at the key elements stored in the Slim-tree.
As elements are added, some of them are stored in the Slim-tree leaf nodes, thus

70 I.R.V. Pola et al.

becoming keys to the buckets, and others are stored in the buckets. The way that
those keys are organized in the Slim-tree affects how many buckets are necessary
to answer each query. The more bucket regions overlap the more buckets need
to be visited in a query. Therefore, it is important to choose an index creation
policy that reduces such overlap, even if it results in a deeper tree.

Elements are added to a Bucket-Slim-Tree following Algorithm 1. When a
new element sn arrives, the basic insertion algorithm of the Slim-tree is executed
to find the appropriate leaf node Lm where it would be inserted. However it is not
inserted yet. Next, the buckets from the keys stored in node Lm are evaluated
looking for the keys bci ∈ Lm such that d(bci, sn) ≤ η. The new element sn

is stored in the qualifying bucket whose center is the closest to sn, along with
the distance from the bucket center. If no bucket qualifies, sn is stored in Lm

splitting the node if required, as in the regular Slim-tree insertion algorithm,
and sn becomes a new bucket center. However, the corresponding bucket is not
created now – it will be created only when another element is stored in it. Once
the structure is constructed, similarity queries can be performed considering η
as an additional pruning radius, as is explained following.

Algorithm 1. BST:ADD(sn)
Input: new element sn
var candidate : bucket center that covers sn
var leaf : leaf node of Slim-tree
Set chooseSubTree policy of Slim-tree to ’MINDIST’
Set leaf to the proper leaf node that covers sn
foreach element bci in leaf do

if d(bci, sn) ≤ η then
Add bci as a candidate

if there are candidates then
Choose the first center bci where d(bci, sn) is minimum
Insert sn in the bucket of bci and store d(bci, sn)

else
Add sn to leaf
Split leaf if necessary

End

3.3 Querying the Bucket-Slim-Tree

The BST structure allows performing both range (Rng) and k-nearest neighbor
(k-NN) similarity queries. The algorithms to answer those queries visit both
the nodes in the tree and the buckets. For both query types, radius η must be
taken into account to correctly prune subtrees at each index level. As radius η is
a fixed value defined beforehand of the BST construction, it is possible to avoid
the need to adjust each region formed in the Slim-tree during construction by
adding η to every query radius.

An example of a range query Rng(sq, ξ) is shown in Figure 3, considering
a two-dimensional set of points using the Euclidean distance. The element ds1
shown in the figure is a representative in an index node, so it is also stored in

The Bucket-Slim-Tree 71

a leaf node Lm. Elements bc1 to bc4 are elements stored in leaf node Lm of the
Slim-tree. Thus, node Lm has five elements stored: {ds1, bc1, bc2, bc3, bc4}, and
each one is the center of a bucket.

sq

ds1

bc1
s1

bc2s2

bc3

bc4

s3
s4

ξ

ηξ + η

Query region

Slim-tree node

Node repre-sentative
Bucket

s

Fig. 3. Querying a Bucket-Slim-Tree.

Each bucket is shown as a dashed
ball in Figure 3, which represents the
space region whose corresponding ele-
ments (e.g. s1, s2 . . .) will be stored.
Thus, to avoid pruning valid buckets
(like the one centered at bc1 in the sub-
tree centered at ds1) the query radius
ξ must be adjusted to ξ + η. In Figure
3, this corresponds to change the query
ball drawn in solid line centered at sq

to the one drawn in dotted line. In this
example, only the bucket centered at
element bc1 must be evaluated, adding
element s1 to the result. The same idea
applies to the k-nearest neighbor query,
which requires to enlarge the dynamic
radius by η.

The similarity query algorithms use
the triangular inequality to prune sub-
trees as in the original Slim-tree and also inside each bucket. In Figure 3 example,
instead of calculating every distance d(sq, bci), bci ∈ Lm, just evaluate the lower
bound of the required distance using the triangular inequality, avoiding a cal-
culation whenever d(sq, bci) ≥ |d(sq, ds1) − d(ds1, bci)|. Notice that the values
d(sq, dsi) are already stored in BST, and that d(sq, dsi) is evaluated only once
for each leaf node. Thus, assuming the pruning radius rp = η + ξ, whenever
|d(sq, dsi) − d(ds1, bci)| > rp + η then bucket bci can be safely pruned without
evaluating d(sq, bci).

The steps to evaluate a range queryRng(sq, ξ) is shown in Algorithm 2, where
sq is the query center and ξ is the query radius. To traverse the tree, the algorithm
evaluates the index nodes using both η and ξ to qualify the subtrees that must
be visited. To process the leaf nodes, only the radius η is used.

The procedure of a k-nearest neighbors query k-NN(sq, k) in the BST is
analogous to the range query, but now we update the result list maintaning k
elements and updating the active radius. the technique of a shrinking active
radius starts with a value larger than the dataset diameter (or infinity), and
reduces when the ongoing result list achieves k elements and updates.

4 Experiments

In this section we show experiments to evaluate the proposed index structure,
the Bucket-Slim-Tree. We compare it with the original Slim-Tree, using different
values for bucket radius (η). The experiments show that using the bucket-based

72 I.R.V. Pola et al.

Algorithm 2. RangeQuery(sq, ξ, root)
Input: Query center sq, Query radius ξ, Slim-tree root
if root is index node then

foreach dsi ∈ root do
//Evaluate if the triangular inequality allows pruning;
if |d(dsi, root) − d(root, sq)| > η + ξ + dsi.Radius then

Prune subtree of dsi;
foreach element dsi not pruned do

if d(dsi, sq) ≤ η + ξ + dsi.Radius then
RangeQuery(sq, ξ, dsi.Subtree);

if root is a leaf node then
foreach bci ∈ root do

if d(bci, sq) ≤ ξ then
add bci to result;

//Evaluate if the bucket can be pruned
if d(bci, sq) ≤ η + ξ then

foreach si ∈ B(bci) do
//Evaluate if the triangular inequality allows pruning;
if |d(si, root) − d(root, sq)| ≤ ξ then

if d(si, sq) ≤ ξ then
add si to result;

approach increases the query answering performance being up to twice faster
than slim-tree. They also show how the query performance is affected when
different bucket sizes are employed.

We used three datasets for the experiments. The Corel Dataset consists of
10 thousand color histograms in a 32 dimension space extracted from an image
set, using the L1 distance. The USCities Dataset consists of the latitude and
longitude coordinates of 25,376 cities in the USA, using the great-circle distance
modified to return distances in kilometers. The HCimages Dataset was obtained
from a collection of 500,000 DICOM images from the Ribeirão Preto Medical
School Clinics Hospital of the University of São Paulo (HCFMRP-USP). From
each image, we extracted a 256-bin grayscale normalized histogram. All the
experiments were performed in a machine with a Intel Core i7 920 processor
with 8 Gb RAM of memory.

The first experiment measured how the buckets are filled with elements accord-
ing its radius η. The plots in Figure 4 show the percentage of element distributed
among the slim-tree and the buckets, with bucket radius η varying from 0.10 to 0.15
for Corel (Figure 4(a)), from 10 Km to 60 Km for USCities (Figure 4(b)) and from
10 to 60 for HCimages (Figure 4(c)). The plots for Corel show that, as the bucket
radius increases, the percentile of elements stored in the buckets increases from36%
to 75%. Similar behavior occur in the plot for HCimages, but in this case the num-
ber of elements in the buckets increase slower. Exemplifying the case where a high
value for η produces dense buckets, the plot for USCities shows that as the radius
η we increases from 10 to 60 Km for the USCities dataset, the number of elements
stored in the buckets reaches almost 95%, meaning that almost all elements are

The Bucket-Slim-Tree 73

(a) Corel Dataset (b) USCities Dataset.

(c) HCimages Dataset.

Fig. 4. Distribution of elements in the Bucket-Slim-Tree components varying the
bucket radius η.

stored in the buckets, probably degenerating the structure, where queries would
sequentially scan dense buckets.

The performance of a BST depends on the chosen value for η. This value
changes for different datasets and should be set close to the frequently used radius
on range queries in order to achieve good results. An initial value can be given
by a percentage of the value of the dataset maximum radius, or estimating the
mean distance from all elements in the dataset. All experiments were performed
using different values of η for both range and k-nearest neighbor queries. As
previously noted, the BST uses a modified Slim-tree with the mindist policy for
the ChooseSubTree algorithm. For comparison purposes, we also evaluated the
results if it is employed a Slim-tree with the usual minoccup policy. Every query
was performed 500 times with the same radius ξ or k but different centers, in
order to evaluate the average of the number of performed distance calculations
and the total time spent.

The plots in Figure 5 show the results of measuring the performance for both
types of queries using the Corel Dataset. They show that in the beginning, as the
value of η increases, the query performance increases. However, if η becomes too
high, the performance is decreased, as shown in Figure 5(c) when η > 0.12. This
is because buckets become larger and the sequential scans inside each bucket
spend more time.

The plots in Figures 6 show the performance measurements for both types of
queries using the USCities dataset, obtained using η set to 10, 20 and 40 Km.
As it can be noticed, all configurations lead to BST with a performance better

74 I.R.V. Pola et al.

than that of a slim-tree for all queries, where the value of 20 Km produced the
best one. It is important to notice that for η = 40km, the performance was worse
than for η = 20km. This is because for radius larger than η = 20km, the number
of elements in the buckets tends to increase too much, as shown in Figure 4(b).

The plots in Figures 7 show the performance results for queries using the
HCimages dataset, using η with the values 10, 20 and 30. As this dataset has a
high dimensionality, any variation of the radius will strongly change the covering
of elements, as expected of the curse of the high dimensionality. From the results
we can note that our technique still enhances the performance of queries when
choosing η next to the query values. This is because any decrease in the index
level covering radius greatly reduces the overlap on nodes.

5 Conclusion

In this paper we proposed the Bucket-Slim-tree (BST), a MAM based on hash
and ball partitioning that aims at reducing the number of distance calculations
required to answer similarity queries. The BST is composed of a slim-tree and a
set of buckets assigned to each element in the Slim-tree leaf nodes. The slim-tree
acts as a hash function which maps the stored elements to the buckets that will
be visited during search. The leaf nodes contain all key elements associated with
a bucket of radius η, and all of them must be compared to the query element
during query executions.

(a) Distance calculations measures. (b) Total time spent.

(c) Distance calculations measures. (d) Total time spent.

Fig. 5. Results using the Corel dataset indexed in a slim-tree and BSTs with η = 0.10,
0.12, 0.13 and 0.15. (a) Number of distance calculations for k-NN queries; (b) Time
spent for k-NN queries; (c) Number of distance calculations for Rq queries; (d) Time
spent for Rq queries;

The Bucket-Slim-Tree 75

(a) Distance calculations measures. (b) Total time spent.

(c) Distance calculations measures. (d) Total time spent.

Fig. 6. Results using the USCities dataset. (a) and (b): Nearest Neighbor query eval-
uation; (c) and (d): Range query evaluation.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 n
um

be
r o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

k

k Nearest Query

(a) Distance calculations measures.

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
Sp

en
t (

m
s)

k

k Nearest Query

(b) Total time spent.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 10 15 20 25 30

A
ve

ra
ge

 n
um

be
r o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

Radius

Range Query

(c) Distance calculations measures. (d) Total time spent.

Fig. 7. Results using the HCimages dataset. (a) and (b): Nearest Neighbor query eval-
uation; (c) and (d): Range query evaluation.

76 I.R.V. Pola et al.

Experiments performed over real data sets show that the proposed MAM was
able to reduce up to half the execution time of both range and k-nearest queries,
reducing also the number of distances calculations under different values of η.

Acknowledgments. This research has been partially suported by CAPES, CNPq
and by FAPESP.

References

1. Almeida, J., Torres, R.d.S., Leite, N.J.: Bp-tree: an efficient index for similarity
search in high-dimensional metric spaces. In: Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management, CIKM 2010,
pp. 1365–1368. ACM, New York (2010)

2. Bozkaya, T., Özsoyoglu, Z.M.: Distance-based indexing for high-dimensional met-
ric spaces. In: ACM SIGMOD International Conference on Management of Data,
Tucson, AZ, pp. 357–368. ACM Press (1997)

3. Brin, S.: Near neighbor search in large metric spaces. In: Dayal, U., Gray, P.M.D.,
Nishio, S. (eds.) International Conference on Very Large Databases (VLDB),
break pp. 574–584. Morgan Kaufmann, Zurich (1995)

4. Ciaccia, P, Patella, M., Rabitti, F., Zezula, P.: Indexing metric spaces with m-tree.
In: Atti del Quinto Convegno Nazionale SEBD, Verona, Italy, pp. 67–86 (1997)

5. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index
for metric data sets. Multimedia Tools and Applications Journal (MTAJ) 21(1),
9–33 (2003)

6. Faloutsos, C.: Indexing of multimedia data. In: Multimedia Databases in Perspec-
tive, pp. 219–245. Springer Verlag (1997)

7. Gennaro, C., Savino, P., Zezula, P.: Similarity search in metric databases through
hashing. In: 3rd International Workshop on Multimedia Information Retrieval,
Ottawa, Canada, pp. 1–5 (2001)

8. Kelley, J.L.: General Topology. Springer (1955)
9. Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbor approx-

imating and eliminating search (aesa) with linear processing-time and memory
requirements. Pattern Recognition Letters 15, 9–17 (1994)

10. Navarro, G., Uribe-Paredes, R.: Fully dynamic metric access methods based on
hyperplane partitioning. Inf. Syst. 36, 734–747 (2011)

11. Santos Filho, R.F., Traina, A.J.M., Traina Jr., C., Faloutsos, C.: Similarity
search without tears: the omni family of all-purpose access methods. In: IEEE
International Conference on Data Engineering (ICDE), Heidelberg, Germany,
pp. 623–630. IEEE Computer Society (2001)

12. Skopal, T.: Where are you heading, metric access methods?: a provocative survey.
In: Proceedings of the Third International Conference on SImilarity Search and
APplications, SISAP 2010, pp. 13–21. ACM, New York (2010)

13. Traina Jr, C., Traina, A.J.M., Faloutsos, C., Seeger, B.: Fast indexing and visual-
ization of metric datasets using slim-trees. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 14(2), 244–260 (2002)

14. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in
general metric spaces. In: Fourth Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms (SODA), Austin, TX, pp. 311–321 (1993)

Faster Dual-Tree Traversal
for Nearest Neighbor Search

Ryan R. Curtin(B)

Georgia Institute of Technology, Atlanta, GA 30332, USA
ryan@ratml.org

Abstract. Nearest neighbor search is a nearly ubiquitous problem in
computer science. When nearest neighbors are desired for a query set
instead of a single query point, dual-tree algorithms often provide the
fastest solution, especially in low-to-medium dimensions (i.e. up to a
hundred or so), and can give exact results or absolute approximation
guarantees, unlike hashing techniques. Using a recent decomposition of
dual-tree algorithms into modular pieces, we propose a new piece: an
improved traversal strategy; it is applicable to any dual-tree algorithm.
Applied to nearest neighbor search using both kd-trees and ball trees, the
new strategy demonstrably outperforms the previous fastest approaches.
Other problems the traversal may easily be applied to include kernel
density estimation and max-kernel search.

1 Introduction

The task of nearest neighbor search arises continually in machine learning,
data mining, and related domains. For instance, many computer vision algo-
rithms require forms of similarity search [1]; recommendation systems may use
k-nearest-neighbor search internally: BellKor’s Netflix prize solution does this [2].
Nearest neighbors are also often used in machine learning applications as simple
classifiers [3]; more advanced machine learning techniques may also depend on
the calculation of nearest neighbors [4].

To formally describe the problem, take Sr to be the reference set. The nearest
neighbor search task is, for a given query point pq, find argminpr∈Sr

d(pq, pr) for
some metric d(·, ·).1 The most straightforward technique for solving this problem
is a linear scan over all points in Sr, but for large Sr—or for situations where
answers are desired not just for one query point pq but instead an entire query
set Sq—this approach is computationally infeasible. Given |Sr| = N , a result for
a single query point pq takes O(N) time.

Owing to both this computational difficulty and the wide applicability of
nearest neighbor search, much ink has been spilled describing fast algorithms
to solve the nearest neighbor search problem. The first fast algorithms for

The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

1 Extending this to the k-nearest neighbor search task is straightforward: replace
argmin with k argmin.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 77–89, 2015.
DOI: 10.1007/978-3-319-25087-8 7

78 R.R. Curtin

nearest-neighbor search were based on tree structures [5] [6], where some type
of tree structure is built on the reference set Sr and then, to find the nearest
neighbor of a query point pq, a branch-and-bound algorithm is used. Other pop-
ular approaches include the use of nets [7] and also locality-sensitive hashing
[8] [9] [10]. In general, nets and hashing give approximate solutions, whereas
tree-based approaches can give both approximate and exact solutions.

In the situation where there is a query set Sq and not just a single query
point pq, it often makes sense to build a tree on both the reference set Sr and the
query set Sq, and simultaneously traverse both the query and reference trees.
This type of approach is known as a dual-tree algorithm [11] [12], and is generally
the fastest known way to perform nearest-neighbor search, for sufficiently large
query sets in low-to-medium dimensions (i.e. up to a hundred or so, depending
on the type of tree and the properties of the dataset). Further, when cover trees
are used, and Sq ∼ O(N), search time for all points in Sq is worst-case O(N)
[13] [14]; though, this bound depends on dataset-dependent quantities.

Dual-tree algorithms exist for problems other than nearest neighbor search;
some examples include range search [12], kernel density estimation [15], minimum
spanning tree calculation [16], mean shift clustering [17], kernel summations [18],
max-kernel search [19], and other problems [20] [21] [22]. Thus, results for any
dual-tree algorithm are often readily applied to other dual-tree algorithms.

Curtin et al. recently proposed a generalizing abstraction for all dual-tree
algorithms, which allows dual-tree algorithms to be understood as four separate
components: a type of tree, a dual-tree traversal, a problem-specific pruning rule,
and a problem-specific base case [12]. This convenient, modular abstraction lets
us focus on only one component at a time, independent of the other three pieces.

For tree-based nearest neighbor search, whether single-tree or dual-tree, the
order that tree nodes are visited makes a noticeable difference in both the quality
of the results (for approximate search) and the speed of the results. This is
why single-tree algorithms such as the original kd-tree nearest neighbor search
algorithm [5] first recurse into the nearest node to a query point.

In this paper, we exploit the tree-independent dual-tree algorithm abstraction
in order to develop an improved general depth-first dual-tree traversal. By apply-
ing this traversal to the problem of nearest-neighbor search, we obtain significant
speedup over previous dual-tree traversal strategies, and outperform competing
strategies, such as single-tree search and LSH, in both the approximate and
exact nearest neighbor search tasks. Because of the traversal’s generality, it can
be applied to problems other than just nearest neighbor search.

2 Trees

First, we must introduce the concepts underlying dual-tree algorithms more for-
mally, and we must also introduce notation. As in [12] and more recent contribu-
tions [14] [23], we will use the tree-independent dual-tree algorithm framework.
This means that given some dual-tree algorithm that works on a set of query
points Sq and a set of reference points Sr, we may understand this algorithm as
the combination of four distinct parts:

Faster Dual-Tree Traversal for Nearest Neighbor Search 79

– A type of space tree.
– A pruning dual-tree traversal, which visits combinations of nodes from the

query tree and reference tree, and is parameterized by a BaseCase() and
Score() function.

– A Score() function, which determines if a combination of two nodes can be
pruned.

– A BaseCase() function, which defines the action to take on a combination
of query point and reference point.

If we have each of these four pieces, then, we may assemble a dual-tree
algorithm: using a pruning dual-tree traversal with the given BaseCase() and
Score() functions on two space trees that are built on the query and reference
sets will yield a working dual-tree algorithm. A formal definition of each of these
components is necessary for complete understanding. These definitions are taken
from the original introduction of Curtin et. al. [12].

Definition 1. A space tree on a dataset S ∈ Rn×d is a rooted, undirected,
connected, acyclic simple graph satisfying the following properties:

– Each node (or vertex) holds a number of points (possibly zero) and is con-
nected to one parent node and a number of child nodes (possibly zero).

– There is one node with no parent; this is the root of the tree.
– Each point in S is contained in at least one node of the tree.
– Each node N of the tree corresponds to a convex subset of Rd that con-

tains each of the points in the node as well as each of the convex subsets
corresponding to each child of the node.

Most tree structures in the literature fall under the umbrella definition of
a space tree: kd-trees [5], PCA trees, metric trees, cover trees, R trees and
variants, and even spill trees [24], where the subsets of child nodes are allowed
to overlap. In this document formal script letters will be used to notate trees
and corresponding quantities; this is the same notation used in [12]. In specific,

– A node in a tree will be denoted with the letter N .
– For some node Ni, the set of children of Ni will be denoted Ci.
– For some node Ni, the set of points contained in Ni will be denoted Pi.
– The convex subset of Rd corresponding to the node Ni will be denoted Si.
– For some node Ni, the set of descendant nodes of Ni will be denoted Dn

i .
This set is defined as C (Ni) ∪ C (C (Ni)) ∪

– For some node Ni, the set of descendant points of Ni will be denoted Dp
i .

This set is defined as Pi ∪ P(Dp
i).

The utility of trees stems from the ability to quickly place bounds on various
distance-related quantities for a single node. Consider two space tree nodes Ni

and Nj , and suppose our task is to find the minimum distance between any two
descendant points in the nodes:

dmin(Ni,Nj) = min
pi∈Dp

i ,pj∈Dp
j

d(pi, pj). (1)

80 R.R. Curtin

Now, suppose Si is a ball centered at some point μi ∈ Rd with radius λi,
and Sj is a ball centered at some point μj ∈ Rd with radius λj . Then, we may
easily place a lower bound: dmin(Ni,Nj) ≥ max(d(μi, μj) − λi − λj , 0). Note
that the bound truncates to 0 when the balls are overlapping. This bound may
be calculated with just one distance calculation, instead of |Dp

i ||Dp
j | distance

calculations. During the traversal, bounds like the one on dmin(Ni,Nj) are often
used to prune away large amounts of work.

3 Traversals

Next, we formally introduce the notion of a dual-tree traversal, again from [12].

Definition 2. A pruning dual-tree traversal is a process that, given two space
trees Tq (the query tree, built on the query set Sq) and Tr (the reference tree,
built on the reference set Sr), will visit combinations of nodes (Nq,Nr) such
that Nq ∈ Tq and Nr ∈ Tr no more than once, and call a function Score(Nq,

Nr) to assign a score to that node. If the score is ∞ (or above some bound),
the combination is pruned and no combinations (Nqc, Nrc) such that Nqc ∈ Dn

q

and Nrc ∈ Dn
r are visited. Otherwise, for every combination of points (pq, pr)

such that pq ∈ Pq and pr ∈ Pr, a function BaseCase(pq, pr) is called. If no
node combinations are pruned during the entire traversal, BaseCase(pq, pr) is
called at least once on each combination of pq ∈ Sq and pr ∈ Sr.

Although the definition is quite complex, real-world dual-tree traversals tend
to be straightforward. The standard depth-first dual-tree traversal is shown in
Algorithm 1; this is the same traversal used in most dual-tree algorithms that use
the kd-tree [11] [16] [18]2 and is often used in practice [25]. Generally, a depth-
first traversal is preferred because many space trees in practice only hold points
in the leaves; breadth-first traversals do not perform well in these situations.

The traversal is originally called with the root of the query and reference
trees: (Tq,Tr). First, BaseCase() is called with every pair of query and reference
points (lines 4–6). Then, for recursion, we collect a list of combinations to recurse
into, sorted by their score. Any combinations with score ∞ are not recursed into.
If both nodes have children, then we recurse into combinations of query children
and reference children. If only the reference node has children, we recurse into
combinations of the query node and the reference children. If only the query
node has children, we recurse into combinations of the query children and the
reference node. If neither node has children, there is no need to recurse.

The algorithm first recurses into those node combinations with lowest score.
Depending on the task being solved (that is, which Score() and BaseCase()
functions are being used), this prioritized approach to recursion can provide
significant speedup over unprioritized recursion. For nearest neighbor search, a
prioritized recursion gives significant speedup; Section 6 will demonstrate this.

2 The algorithms in each of the referenced papers tend to look very different because
they are not derived in a tree-independent form, but using the kd-tree with the
traversal in Algorithm 1 and simplifying will yield the same algorithm.

Faster Dual-Tree Traversal for Nearest Neighbor Search 81

Algorithm 1 DualDepthFirstTraversal(Nq, Nr).

1: Input: query node Nq, reference node Nr

2: Output: none

3: {Perform base cases for points in node combination.}
4: for all pq ∈ Pq do
5: for all pr ∈ Pr do
6: BaseCase(pq, pr)

7: {Assemble list of combinations to recurse into.}
8: q ← empty priority queue
9: if Nq and Nr both have children then

10: for all Nqc ∈ Cq do
11: for all Nrc ∈ Cr do
12: si ← Score(Nqc,Nrc)
13: if si �= ∞ then push (Nqc,Nrc) into q with priority 1/si
14: else if Nq has children but Nr does not then
15: for all Nqc ∈ Cq do
16: si ← Score(Nqc,Nr)
17: if si �= ∞ then push (Nqc,Nr) into q with priority 1/si
18: else if Nq does not have children but Nr does then
19: for all Nrc ∈ Cr do
20: si ← Score(Nq,Nrc)
21: if si �= ∞ then push (Nq,Nrc) into q with priority 1/si

22: {Recurse into combinations with highest priority first.}
23: for all (Nqi,Nri) ∈ q, highest priority first do
24: DualDepthFirstTraversal(Nqi, Nri)

4 Nearest Neighbor Search

With the notions of space tree and dual-tree traversal established, we may now
introduce the problem-specific BaseCase() and Score() functions used to per-
form dual-tree nearest neighbor search. These are the same rules introduced by
Curtin et. al. [12] and used in mlpack [25]. The rules depend on auxiliary arrays
N and D; during the traversal, N [pq] holds the current nearest neighbor candi-
date for query point pq, and D[pq] holds d(pq, N [pq]). At the beginning of the
traversal, each element in D is initialized to ∞. At the end of the traversal, N [pq]
will hold the nearest neighbor of pq, and D[pq] will hold the distance between pq
and its nearest neighbor.

The BaseCase() function (Algorithm 2) receives a query point pq and a
reference point pr as input. The distance between the points is calculated, and if
this is better than the current best candidate distance for pq, d(pq, pr) is taken as
the new best candidate distance and pr as the new nearest neighbor candidate.

82 R.R. Curtin

Algorithm 2. BaseCase(pq, pr) for nearest neighbor search.
1: Input: query point pq, reference point pr, candidate point N [pq], candidate dis-

tance D[pq]
2: Output: none

3: if d(pq, pr) < D[pq] then
4: N [pq] ← pr

5: D[pq] ← d(pq, pr)

Algorithm 3. Score(Nq, Nr) for nearest neighbor search.
1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination (Nq,Nr), or ∞ if it should be pruned

3: if dmin(Nq,Nr) > Bdf (Nq) then
4: return ∞
5: return dmin(Nq,Nr)

The Score() function is significantly more complex due to the bound func-
tion Bdf (Nq)3. Given a query node Nq and a reference node Nr, we can prune
if we can determine that no descendant point of Nr can possibly be the near-
est neighbor of any descendant point of Nq. If we had perfect knowledge, this
condition is easily expressed; we would prune if

dmin(Nq,Nr) > max
pq∈Dp

q

D[pq]. (2)

But of course, because this requires looping over every descendant point in
Nq, we cannot calculate this every time Score() is called. Instead, we can use
caching. Define the depth-first traversal bound function, Bdf (Nq), recursively:

Bdf (Nq) = max
{

max
pq∈Pq

D[pq], max
Nqc∈Cq

Bdf (Nqc)
}

. (3)

When we visit a node combination (Nq,Nr), we may cache the result of
the calculation Bdf (Nq), for use by subsequent calls to Score(). Then, a call
to Score() takes just one distance calculation (dmin(Nq,Nr)) and |Pq| + |Cq|
accesses. Proving the correctness of this algorithm is straightforward.

We may use this to construct a generalized dual-tree algorithm for nearest
neighbor search. Any type of space tree can be paired with any type of pruning
dual-tree traversal that uses the BaseCase() and Score() above, and correct
nearest-neighbor search results will be obtained. With this algorithm established,
we will now turn towards improving the depth-first dual-tree recursion strategy.

3 Our formulation here is specialized for depth-first traversals, unlike some more gen-
eral formulations [12]. We are only considering depth-first traversals in this work,
though, so there is no need to introduce a more complicated bound function.

Faster Dual-Tree Traversal for Nearest Neighbor Search 83

5 Delaying Reference Recursion

Algorithm 1 is the standard depth-first dual-tree traversal that is used in prac-
tice, and it prioritizes recursions: node combinations with lower scores (from
Score()) are recursed into first. So, for instance, consider nearest neighbor
search, where the result of Score(), if the node combination is not pruned, is
dmin(Nq,Nr). In the situation depicted in Figure 1(a), combination (Nq,Nr1)
should be visited before combination (Nq,Nr2). It is clear that this is the right
choice, because a depth-first traversal of (Nq,Nr1) is more likely to tighten the
bound Bdf (Nq) such that (Nq,Nr2) can be pruned when it is recursed into.

But, consider a more tricky case, depicted in Figure 1(b). Here,
dmin(Nq,Nr1) = dmin(Nq,Nr2) = 0, so we are unable to tell whether
it is better to recurse into (Nq,Nr1) first or into (Nq,Nr2) first. Indeed
Algorithm 1 will select arbitrarily. This situation may occur in Algorithm 1
from lines 11 to 13 if, for a given child query node Nqc, two or more reference
children Nrc have the same score si.

We can do better than arbitrary selection. Consider some child Nqc of Nq.
Figure 1(c) shows an example Nqc. In this example, the choice is now clear: the
combination (Nqc,Nr1) should be recursed into before (Nqc,Nr2). Thus, the
correct answer to the question “should we recurse into (Nq,Nr1) or (Nq,Nr2)
first?” is to sidestep the question entirely: we should not recurse in the reference
node, but instead in the query node. Then, at the level of the query child, the
decision may be clearer.

In essence, the strategy is to delay recursion in the reference nodes until it is
clear which reference node should be recursed into first. This improvement, once
generalized, is encapsulated in Algorithm 4. Lines 15–20 check if reference recur-
sion should be delayed because the scores of all reference children are identical.
If so, the recursion will proceed by recursing only in the queries. If necessary, this
reference recursion delay will continue until no longer possible. This delay is not
possible when the query node does not have any children. This improved strategy
can make a huge difference in the performance of the algorithm; recursing into
a suboptimal reference child first can cause the bound Bdf (·) to be unnecessar-
ily loose, whereas first recursing into the best reference child will tighten Bdf (·)
more quickly and possibly allow other reference children to be pruned entirely.

Nr2

Nr1

Nq

(a) Nq closer to Nr1.

Nr2

Nr1
Nq

(b) Nq equidistant.

Nr2

Nr1Nqc

(c) Nqc is not equidistant.

Fig. 1. Different situations for recursion.

84 R.R. Curtin

Algorithm 4. ImprovedDualDepthFirstTraversal(Nq, Nr).

1: Input: query node Nq, reference node Nr

2: Output: none

3: {Perform base cases for points in node combination.}
4: for all pq ∈ Pq do
5: for all pr ∈ Pr do
6: BaseCase(pq, pr)

7: {Assemble list of combinations to recurse into.}
8: q ← empty priority queue
9: if Nq and Nr both have children then

10: for all Nqc ∈ Cq do
11: qqc ← {}
12: for all Nrc ∈ Cr do
13: si ← Score(Nqc,Nrc)
14: if si �= ∞ then push (Nqc,Nrc, si) into qqc
15: if all elements of qqc have identical score then
16: si ← Score(Nqc,Nr)
17: push (Nqc,Nr) into q with priority 1/si
18: else
19: for all (Nqi,Nri, si) ∈ qqc do
20: push (Nqi,Nri) into q with priority 1/si
21: else if Nq has children but Nr does not then
22: for all Nqc ∈ Cq do
23: si ← Score(Nqc,Nr)
24: if si �= ∞ then push (Nqc,Nr) into q with priority 1/si
25: else if Nq does not have children but Nr does then
26: for all Nrc ∈ Cr do
27: si ← Score(Nq,Nrc)
28: if si �= ∞ then push (Nq,Nrc) into q with priority 1/si

29: {Recurse into combinations with highest priority first.}
30: for all (Nqi,Nri) ∈ q, highest priority first do
31: ImprovedDualDepthFirstTraversal(Nqi, Nri)

For trees such as the kd-tree where each node has two children only, the extra
implementation overhead for this strategy is trivial and simplifies to the addition
of a single if statement. However, note that there are some situations where
the modified traversal will not outperform the original prioritized traversal. For
instance, for nearest neighbor search, if the query tree is identical to the reference
tree and nodes in the tree cannot overlap, then it is very unlikely that the
situation described in Figure 1(a) will be encountered: during the recursion, the
query node will only overlap itself and possibly be adjacent to a sibling node.

6 Experiments

To test the efficiency of this strategy, we will observe the performance of our
recursion strategy on the tasks of exact and approximate nearest neighbor search,
with multiple types of trees, and with many different datasets. For approximate

Faster Dual-Tree Traversal for Nearest Neighbor Search 85

search, we compare with LSH (locality-sensitive hashing). The datasets utilized
in these experiments are described in Table 1. Each dataset is from the UCI
dataset repository [26], with the exception of the birch3 dataset [27], LCDM
dataset [28], and SDSS-DR6 dataset [29].

The first test focuses on exact nearest neighbor search: Algorithms 2
and 3 paired with a type of tree and traversal. Using the flexible mlpack library
[25], we test with the kd-tree and the ball tree, using three dual-tree traversal
strategies: a depth-first unordered recursion (equivalent to Algorithm 1 where
the recursion priority is ignored); the standard depth-first prioritized recursion
(Algorithm 1); and our improved recursion (Algorithm 4). In addition, a single-
tree algorithm is used; this is the canonical tree-based nearest neighbor search
algorithm [5] with a prioritized recursion, run once for each query point. The
dataset is randomly split into 60% reference set and 40% query set, and the
algorithm is run ten times. The number of distance evaluations and the total
runtime are collected. Table 2 shows the average number of distance calculations
and the average runtime for each algorithm. Preprocessing time (tree building)
is not included, but generally was a minor fraction of search time.

Table 1. Datasets.

Dataset n d
cloud 2048 10
winequality 6497 11
birch3 100000 2
miniboone 130064 50
covertype 581012 55
power 2075259 7
lcdm 16777216 3
sdss-dr6 39761242 4

We can see from the results that our improve-
ment is, in many cases, significant. In the best case,
it gives more than 2x speedup over the next fastest
strategy. This effect is especially pronounced on
larger datasets, which will have deeper trees: a bad
recursion decision early on can significantly affect
the ability to prune during the algorithm. Ball trees
exhibit less pronounced effects. This is because the
bounding structure is a ball of fixed radius, whereas
the kd-tree is adaptive in all dimensions. Therefore,
two child nodes of a ball tree node may overlap,

Table 2. Runtime (distance evaluations) for exact nearest neighbor search.

algorithm cloud winequality birch3 miniboone

kd-tree, unordered 0.036s (270k) 0.288s (2.15M) 7.310s (62.2M) 62.481s (214M)
kd-tree, prioritized 0.005s (34.2k) 0.039s (222k) 0.419s (2.90M) 25.081s (78.8M)
kd-tree, improved 0.005s (27.7k) 0.021s (104k) 0.201s (1.10M) 12.643s (34.5M)

single kd-tree 0.005s (32.9k) 0.017s (112k) 0.262s (1.65M) 6.637s (19.2M)

ball tree, unordered 0.011s (356k) 0.104s (3.08M) 1.817s (71.6M) 32.947s (616M)
ball tree, prioritized 0.003s (104k) 0.023s (666k) 0.285s (10.9M) 27.934s (514M)
ball tree, improved 0.003s (86.8k) 0.017s (455k) 0.160s (5.65M) 22.332s (351M)

single ball tree 0.002s (69.6k) 0.012s (315k) 0.165s (5.38M) 26.357s (254M)

algorithm covertype power lcdm sdss-dr6

kd-tree, unordered 302.8s (1.09B) 1163.0s (18.7B) 5628.7s (41.5B) 24717s (156B)
kd-tree, prioritized 15.823s (52.5M) 30.072s (302M) 319.871s (1.87B) 9069s (50.3B)
kd-tree, improved 4.469s (12.8M) 12.714s (200M) 71.587s (350M) 428.9s (2.14B)

single kd-tree 6.207s (16.3M) 19.684s (232M) 120.6s (476M) 471.4s (2.24B)

ball tree, unordered 163.027s (2.90B) 771.975s (25.3B) 1861.9s (71.1B) 9444s (363B)
ball tree, prioritized 52.487s (902M) 113.437s (3.90B) 386.74s (14.4B) 5202s (192B)
ball tree, improved 27.251s (392M) 83.744s (2.58B) 195.175s (6.46B) 5150s (136B)

single ball tree 29.948s (228M) 138.422s (2.49B) 402.6s (5.93B) 7226s (101B)

86 R.R. Curtin

Table 3. Runtime (distance calculations) [ε or M/W] for approximate NN search.

algorithm cloud winequality birch3 miniboone

kd-tree, unordered 0.005s (34.5k) [1.5] 0.025s (148k) [1.44] 0.267s (2.14M) [1.44] 6.831s (22.6M) [1.38]
kd-tree, prioritized 0.003s (17.4k) [1.5] 0.012s (74.5k) [1.5] 0.140s (1.16M) [1.5] 4.863s (15.5M) [1.38]
kd-tree, improved 0.002s (13.7k) [1.7] 0.010s (51.2k) [1.63] 0.107s (654k) [1.63] 3.360s (9.28M) [1.38]

single kd-tree 0.003s (23.2k) [2.45] 0.013s (78.0k) [2.33] 0.198s (1.47M) [2.33] 1.845s (5.75M) [1.5]

ball tree, unordered 0.002s (50.8k) [27.6] 0.007s (186k) [32.3] 0.079s (2.72M) [11.5] 2.942s (50.4M) [285]
ball tree, prioritized 0.002s (49.2k) [27.6] 0.006s (167k) [32.3] 0.072s (2.46M) [11.5] 3.266s (54.2M) [249]
ball tree, improved 0.002s (45.1k) [27.6] 0.006s (161k) [32.3] 0.072s (2.25M) [11.5] 3.494s (50.3M) [99]

single ball tree 0.002s (43.2k) [999] 0.006s (176k) [36.0] 0.111s (3.56M) [10.1] 3.812s (36.1M) [99]

multiprobe LSH 0.031s (19.3k) [20/122] 0.011s (472k) [37/33] 1.614s (8.85M) [8/16k] 175.995s (1.77B) [13/328]

algorithm covertype power lcdm sdss-dr6

kd-tree, unordered 7.796s (27.4M) [1.5] 419.725s (13.0B) [1.27] 75.432s (508M) [1.33] 512.829s (2.89B) [1.27]
kd-tree, prioritized 2.954s (10.6M) [1.5] 8.392s (189M) [1.44] 44.187s (306M) [1.38] 380.047s (2.17B) [1.27]
kd-tree, improved 2.045s (6.25M) [1.5] 11.044s (191M) [1.56] 29.069s (160M) [1.44] 242.624s (1.11B) [1.27]

single kd-tree 3.869s (11.2M) [1.86] 16.674s (226M) [2.33] 85.821s (397M) [1.78] 329.663s (1.58B) [1.27]

ball tree, unordered 2.187s (33.0M) [99] 415.964s (13.0B) [11.5] 19.776s (668M) [19] 73.638s (239M) [49]
ball tree, prioritized 2.183s (32.3M) [75.9] 6.753s (233M) [13.3] 20.158s (660M) [19] 75.687s (237M) [49]
ball tree, improved 2.539s (33.8M) [49] 8.269s (248M) [15.7] 25.749s (702M) [21.2] 299.8s (451M) [49]

single ball tree 5.496s (40.3M) [27.6] 19.097s (431M) [15.7] 113.299s (1.46B) [21.2] 2054.8s (3.06B) [19]

multiprobe LSH 130.699s (963M) [0.51] 1181.32s (14.0B) [63/9.6] timeout [14/0.968] timeout [7/0.29]

causing the improved strategy of delaying reference recursions to not pay off
at lower levels. Nonetheless, especially for large datasets, where the dual-tree
strategy is faster than the single-tree strategy, the improved traversal is a clear
best choice.

The second task is approximate nearest neighbor search, and in this situation
we will also be able to compare with locality-sensitive hashing. Relative-value
approximation means that for an approximation parameter ε, we are guaranteed
for a query point pq with true nearest neighbor p∗

r , the algorithm will return
an approximate nearest neighbor p̂r such that d(pq, p̂r) ≤ (1 + ε)d(pq, p∗

r). It is
easy to modify the given Score() function to enforce this condition; replace the
equation in line 3 with dmin(Nq,Nr) > (1/(1 + ε))B(Nq).

After applying this change, testing is performed in the same way as for exact
nearest neighbor search. ε for each tree-based approach is selected to give an
average per-point relative error of 0.1 (±0.01) for each dataset. Because our
scheme does not allow the error for an individual point to exceed ε, the actual
relative error for an individual query point is often much lower. Thus, it is often
necessary to set ε far higher than the target average error of 0.1. For LSH, the
LSHKIT package is used, which implements multi-probe LSH and autotunes the
hashing parameters [30]. We use the suggested number of hash tables (L = 10)
and probes (T = 20), and then autotune to select the number of hash functions
(M) and bin width (W). Autotuning failed for the larger power, lcdm, and sdss-
dr6 datasets; in these cases suggestions of the LSHKIT authors are used [31].

The results are given in Table 3. With approximation, the improved dual-
tree traversal performs fewer distance calculations on smaller datasets, and is
still dominant for the larger datasets with kd-trees. But with ball trees, the
bounds are looser and thus nodes are more likely to be overlapping. Because
only an approximate nearest neighbor is required, finding the absolute best ref-
erence child to recurse into is of less importance, and the added overhead of
delaying query recursions may not necessarily be helpful. Thus, the benefit of

Faster Dual-Tree Traversal for Nearest Neighbor Search 87

the improved traversal may be related to the type of tree being used and the
problem being solved. LSH is not competitive on the larger datasets, and on the
largest datasets LSH did not complete within 3 days, but it should be noted that
the low-dimensional setting is where trees are most effective.

Overall, for large datasets in low-to-medium dimensions, dual-tree search is
faster, and the improved traversal we have proposed is the fastest. These experi-
ments, as well as further investigations (not shown here due to space constraints)
seem to show for smaller datasets, single-tree search may be fastest; for suffi-
ciently high dimensions, LSH is faster. This corroborates existing results [32]; as
the dimension of data gets higher, pruning rules become less effective. Regard-
less, in low-to-medium dimensions, the improved dual-tree traversal is dominant.

7 Conclusion

Using the recent abstraction of tree-independent dual-tree algorithms, we have
proposed a novel depth-first dual-tree traversal which compares favorably against
other techniques for exact and approximate nearest neighbor search. Addition-
ally, because of the generic nature of the traversal, it may be applied to many
problems: the traversal simply needs to be paired with a type of space tree
and Score() and BaseCase() functions. Examples of problems with existing
Score() and BaseCase() functions include kernel density estimation [12] and
max-kernel search [23]. These problems, as well as nearest neighbor search, all
stand to benefit from the improved traversal strategy we have proposed.

Acknowledgements. Thanks to Rich W. Vuduc and Chad D. Kersey for help-
ful discussions and comments during the preparation of this work. This material
is based on work supported by the U.S. National Science Foundation (NSF)
Award Number 1339745. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author and do not necessarily
reflect those of NSF.

References

1. Kumar, N., Zhang, L., Nayar, S.K.: What is a good nearest neighbors algorithm
for finding similar patches in images? In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part II. LNCS, vol. 5303, pp. 364–378. Springer, Heidelberg (2008)

2. Koren, Y.: The BellKor solution to the Netflix Grand Prize (2009)
3. Cunningham, P., Delany, S.J.: k-nearest neighbour classifiers. Technical Report

UCD-CSI-2007-4, University College Dublin (2007)
4. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large mar-

gin nearest neighbor classification. In: Advances in Neural Information Processing
Systems 18 (NIPS 2005), pp. 1473–1480 (2005)

5. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

6. Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Transactions on Computers 100(7), 750–753 (1975)

88 R.R. Curtin

7. Clarkson, K.L.: Nearest neighbor queries in metric spaces. Discrete & Computa-
tional Geometry 22(1), 63–93 (1999)

8. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: Forty-Seventh Annual IEEE Symposium of Foun-
dations of Computer Science (FOCS 2006), pp. 459–468. IEEE (2006)

9. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing (STOC 1998), pp. 604–613. ACM (1998)

10. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry (SoCG 2004), pp. 253–262. ACM (2004)

11. Gray, A.G., Moore, A.W.: ‘N-body’ problems in statistical learning. In: Advances
in Neural Information Processing Systems, vol. 14, no. 4, pp. 521–527 (2001)

12. Curtin, R.R., March, W.B., Ram, P., Anderson, D.V., Gray, A.G., Isbell Jr., C.L.:
Tree-independent dual-tree algorithms. In: Proceedings of the 30th International
Conference on Machine Learning (ICML 2013) (2013)

13. Ram, P., Lee, D., March, W.B., Gray, A.G.: Linear-time algorithms for pairwise
statistical problems. In: Advances in Neural Information Processing Systems, vol.
22 (2009)

14. Curtin, R.R., Lee, D., March, W.B., Ram, P.: Plug-and-play runtime analysis for
dual-tree algorithms. The Journal of Machine Learning Research (2015)

15. Gray, A.G., Moore, A.W.: Nonparametric density estimation: toward computa-
tional tractability. In: Proceedings of the 3rd SIAM International Conference on
Data Mining (SDM 2003), San Francisco, pp. 203–211 (2003)

16. March, W.B., Ram, P., Gray, A.G.: Fast Euclidean minimum spanning tree:
algorithm, analysis, and applications. In: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2010),
Washington, D.C., pp. 603–612 (2010)

17. Wang, P., Lee, D., Gray, A.G., Rehg, J.M.: Fast mean shift with accurate and
stable convergence. In: Proceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics (AISTATS 2007), pp. 604–611 (2007)

18. Lee, D., Gray, A.G.: Faster gaussian summation: theory and experiment. In: Pro-
ceedings of the 22nd Conference on Uncertainty in Artificial Intelligence (2006)

19. Curtin, R.R., Ram, P., Gray, A.G.: Fast exact max-kernel search. In: SIAM Inter-
national Conference on Data Mining (SDM 2013), pp. 1–9 (2013)

20. Klaas, M., Briers, M., De Freitas, N., Doucet, A., Maskell, S., Lang, D.: Fast parti-
cle smoothing: if I had a million particles. In: Proceedings of the 23rd International
Conference on Machine Learning (ICML 2006), pp. 25–29 (2006)

21. Van Der Maaten, L.: Accelerating t-sne using tree-based algorithms. The Journal
of Machine Learning Research 15(1), 3221–3245 (2014)

22. Moore, D.A., Russell, S.J.: Fast Gaussian process posteriors with product trees. In:
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence
(UAI 2014), Quebec City, July 2014

23. Curtin, R.R., Ram, P.: Dual-tree fast exact max-kernel search. Statistical Analysis
and Data Mining 7(4), 229–253 (2014)

24. Liu, T., Moore, A.W., Yang, K., Gray, A.G.: An investigation of practical approx-
imate nearest neighbor algorithms. In: Advances in Neural Information Processing
Systems 17 (NIPS 2004), pp. 825–832 (2004)

25. Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A.,
Gray, A.G.: mlpack: A scalable C++ machine learning library. Journal of Machine
Learning Research 14, 801–805 (2013)

Faster Dual-Tree Traversal for Nearest Neighbor Search 89

26. Lichman, M.: UCI machine learning repository (2013)
27. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: A new data clustering algorithm

and its applications. Data Mining and Knowledge Discovery 1(2), 141–182 (1997)
28. Lupton, R., Gunn, J.E., Ivezic, Z., Knapp, G.R., Kent, S.: The SDSS imaging

pipelines. In: Astronomical Data Analysis Software and Systems X, vol. 238,
p. 269 (2001)

29. Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Prieto, C.A., Anderson,
K.S.J., et al.: The sixth data release of the Sloan Digital Sky Survey. The Astro-
physical Journal Supplement Series 175(2), 297 (2008)

30. Dong, W., Wang, Z., Josephson, W.K., Charikar, M., Li, K.: Modeling LSH for
performance tuning. In: Proceedings of the 17th ACM Conference on Information
and Knowledge Management (CIKM 2008), pp. 669–678. ACM (2008)

31. Dong, W.: Personal communication (2015)
32. Moore, A.W.: The anchors hierarchy: using the triangle inequality to survive high

dimensional data. In: Proceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence (UAI 2000), pp. 397–405 (2000)

Optimizing the Distance Computation Order
of Multi-Feature Similarity Search Indexing

Marcel Zierenberg(B) and Ingo Schmitt

Institute of Computer Science, Information and Media Technology, Chair of Database
and Information Systems, Brandenburg University of Technology Cottbus -

Senftenberg, P.O. Box 10 13 44, 03013 Cottbus, Germany
{zieremar,schmitt}@b-tu.de

Abstract. Multi-feature search is an effective approach to similarity
search. Unfortunately, the search efficiency decreases with the number
of features. Several indexing approaches aim to achieve efficiency by
incrementally reducing the approximation error of aggregated distance
bounds. They apply heuristics to determine the distance computations
order and update the object’s aggregated bounds after each computation.
However, the existing indexing approaches suffer from several drawbacks.
They use the same computation order for all objects, do not support
important types of aggregation functions and do not take the varying
CPU and I/O costs of different distance computations into account. To
resolve these problems, we introduce a new heuristic to determine an effi-
cient distance computation order for each individual object. Our heuris-
tic supports various important aggregation functions and calculates cost-
benefit-ratios to incorporate the varying computation costs of different
distance functions. The experimental evaluation reveals that our heuris-
tic outperforms state-of-the-art approaches in terms of the number of
distance computations as well as search time.

1 Introduction

Similarity search means to find objects that are similar to the given query object.
Object (dis-)similarity is computed by a distance function δ based on feature
data extracted from a query object q and each database object oi . The effec-
tiveness of the search is frequently improved by combining partial distances
di
j = δ j (q,oi) of m different features into a aggregated distance di

agg by aggre-
gation function agg : Rm

≥0 �→ R≥0. However, the benefits of multi-feature search
come at the expense of efficiency, since the number of required distance compu-
tations increases with each added feature.

Indexing approaches to single-feature similarity search aim to reduce the
number of required distance computations by estimating lower and/or upper
bounds of a exact distance di for each object oi with low computational costs
[1]. Objects with a lower distance bound lb i greater than current pruning thresh-
old tmax cannot belong to the query result. They are excluded from the search
without computing their exact distance. Indexing approaches for multi-feature
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 90–96, 2015.
DOI: 10.1007/978-3-319-25087-8 8

Optimizing the Distance Computation Order 91

similarity search compute partial bounds lb ij and ub ij for each partial distance di
j

separately [2–6]. They dynamically combine these partial bounds into aggregated
bounds lb iagg and ub iagg of the exact aggregated distance di

agg .
Unfortunately, the approximation error ε iagg increases with the number of

features. Thereby, the efficiency of indexing approaches decreases significantly.
Several techniques aim to solve this problem by incrementally reducing the
approximation error ε iagg of objects [4–6]. They compute each partial distance di

j

of object oi separately and recalculate the aggregated distance bounds lb iagg and
ub iagg after each computation. This allows them to reduce the approximation
error ε iagg in a step-by-step manner and thus, to exclude many objects, before
all of their exact partial distances have been computed.

1.1 Contribution

Because the indexability of features can vary greatly, the existing indexing
approaches [4–6] use different heuristics to determine the computation order of
partial distances. However, we argue that these heuristics have several drawbacks
in terms of their applicability and efficiency (see Section 2).

The main contribution of this paper is the introduction of a new heuristic to
determine the order of partial distance computations for multi-feature queries
(see Section 3). Our proposed heuristic has several advantages over state-of-the-
art approaches. In contrast to ASAP [5], our heuristic is not restricted to vector
spaces and individually adapts the computation order to each object. Addition-
ally, it efficiently supports a greater variety of important aggregation functions
than Quick-Combine [4] and Partial Refinement [6]. Furthermore, our heuris-
tic is the only approach that takes the computation costs of distance functions
(CPU and I/O costs) into account. This enables us to further decrease the search
time in cases where these costs vary greatly between distance functions.

We extended our recently published Partial Refinement approach [6] with the
heuristic and experimentally compared it against state-of-the-art approaches.
Even though our evaluation (see Section 4) is rather preliminary, it already
suggests that the new heuristic frequently outperforms other approaches (linear
scan, Onion-tree [7], FlexiDex [3], Partial Refinement [6]) in terms of distance
computations and search time.

2 Related Work

The following section describes several indexing approaches for multi-feature
search briefly and discusses their drawbacks. We focus on approaches for k-
Nearest-Neighbor (kNN) queries [1] and their heuristics for determining the dis-
tance computation order.

ASAP [5] stores compact bit signatures of multi-feature objects in a B+-tree.
The computation order of partial distances is based on the relative energy of each
feature. ASAP is restricted to vector spaces and uses the same computation order

92 M. Zierenberg and I. Schmitt

for all objects, which is usually less efficient than individually adapting the order
to each object.

Quick-Combine [4] merges the results of incremental subqueries for each sepa-
rate feature into an aggregated result. The computation order of these subqueries
relies on the partial derivatives of the aggregation function. It prioritizes partial
distance computations with the most impact on result of the aggregation function
in the last iterations. However, it is not applicable to several important types of
aggregation functions that are non-differentiable (e.g., the minimum/maximum
function used in logic-based search [3]).

Partial Refinement [6] is divided into a filtering and a refinement phase.
It is based on precomputed distances to pivot objects. Candidate objects are
managed with a priority queue ordered according to the aggregated lower bounds.
In each iteration, the refinement phase computes one exact partial distance for
a candidate object, updates its aggregated bounds and subsequently reinserts it
into the candidate list.

To determine the distance computation order, Partial Refinement assumes
that computing the partial distance with the highest individual approximation
error ε ij reduces the approximation error ε iagg the most. The approach is appli-
cable to various important types of aggregation functions (including minimum
and maximum function) and performs reasonably well for many of them, espe-
cially for linear functions (e.g., arithmetic mean or sum). However, it is inefficient
for non-linear aggregation functions (e.g., harmonic or quadratic mean). Even
though the approximation error ε ij of a partial bound may be small, computing
it’s corresponding exact partial distance di

j can cause a large reduction of the
approximation error ε iagg for non-linear aggregation functions.

Finally, none of the existing approaches takes the varying computation costs
of different distance functions (CPU and I/O cost) into consideration when deter-
mining the computation order. However, in cases where these costs vary signifi-
cantly (e.g., euclidean vs. quadratic form distance function), it is frequently pos-
sible to reduce the overall search time at the expense of additional (but faster)
partial distance computations.

3 Optimizing the Distance Computation Order

This sections describes our main contribution, a new heuristic that optimizes
the order of partial distance computations for multi-feature queries. After a
brief overview of some preliminaries, we explain how the computation order of
each object is determined based on the expected approximation error. Afterward,
we show how to incorporate the computation costs of partial distance functions
into the heuristic, in order to further decrease the search time.

3.1 Partial and Aggregated Bounds

For reasons of simplicity we only consider metric distance functions [1] and glob-
ally monotone increasing aggregation functions [3] in the following. However, our

Optimizing the Distance Computation Order 93

approach is also applicable to other types of distance and aggregation functions
(e.g., locally monotone aggregation functions [3]).

Lower lb ij and upper bounds ub ij (partial bounds) for the partial distance
di
j = δ j (q,o

i) of a metric distance function δ j can be derived from the triangle
inequality and precomputed distances to a reference object p (pivot object) as
follows [1]:

lb ij = |δ j (q, p) − δ j (p,oi) | ≤ di
j ≤ δ j (q, p) + δ j (p,oi) = ub ij . (1)

The lower lb iagg and upper bounds ub iagg (aggregated bounds) of the aggregated
distance di

agg = agg(di
1, . . . ,d

i
m) are then given by [3]:

lb iagg = agg
(
lb i1, . . . , lb

i
m

)
≤ di

agg ≤ agg
(
ub i1, . . . ,ub

i
m

)
= ub iagg . (2)

3.2 Expected Approximation Error

Our goal is to determine a computation order of partial distances that minimizes
the approximation error ε iagg = ub iagg − lb iagg with each consecutive partial dis-
tance computation, in order to maximize the chances of excluding each object.
Therefore, we have to estimate the potential impact of computing a partial dis-
tance di

j on the approximation error ε iagg for each feature.
As described in Section 2, computation orders based on the individual approx-

imation error ε ij = ub ij−lb ij of partial distances tend to be inefficient for non-linear
aggregation functions (Partial Refinement [6]). Instead, our new heuristic esti-
mates the potential impact of each partial distance computation with the help of
inexpensively computed expected partial distances d̃i

j and the according expected
approximation error ε̃ ij as follows:

d̃ij =
1

2

(
ub ij − lb ij

)
, (3)

ε̃ ij = agg
(
ub i1, . . . ,ub

i
j−1, d̃

i
j ,ub

i
j+1, . . . ,ub

i
m

)
− agg

(
lb i1, . . . , lb

i
j−1, d̃

i
j , lb

i
j+1, . . . , lb

i
m

)
.

(4)

From the monotonicity of the aggregation function follows that ε̃ ij ≤ ε iagg . Con-
sequently, we can derive an individual computation order of partial distances for
object oi that minimizes the expected approximation error ε̃ ij with each partial
distance computation (i.e., sorted from lowest to highest expected approximation
error ε̃ ij).

In contrast to Quick-Combine [4], our heuristic relies only on the aggregation
function itself, instead of its partial derivatives, and is therefore also applicable
to non-differentiable aggregation functions (e.g., minimum function).

Example 1. Consider a multi-feature search with three features (m = 3) and
the harmonic mean as the aggregation function. Let exemplary partial bounds
between query object q and an object oi be given by: (lb i1,ub

i
1) = (2.0,5.0),

(lb i2,ub
i
2) = (2.5,4.5) and (lb i3,ub

i
3) = (1.5,4.0). The resulting aggregated bounds

94 M. Zierenberg and I. Schmitt

are (lb iagg ,ub
i
agg) = (1.91,4.46) and the approximation error is ε iagg = 2.55. Now,

the expected partial distances are d̃i
1 = 3.5, d̃i

2 = 3.5, and d̃i
3 = 2.75. The corre-

sponding expected approximation errors are ε̃ i1 = 1.74, ε̃ i2 = 2.01 and ε̃ i3 = 1.44.
Consequently, partial distance di

3 = δ3(q,oi) will be computed first, since it
minimizes the expected approximation error for object oi .

3.3 Computation Costs of Distance Functions

The computation costs (CPU and I/O costs) can vary significantly between
different distance functions (e.g., euclidean vs. quadratic form distance function).
Therefore, it can be beneficial to prioritize a partial distance computation that
has a smaller impact on the the aggregated bounds, if the respective computation
costs are lower than the costs of the other partial distance computations.

To incorporate the computation costs, we calculate a cost-benefit-ratio Ci
j

between the expected change of the approximation error of object oi for each
feature j and the average computation costs Tj of the corresponding partial
distance function δ j :

Ci
j =

1
Tj

(
ε iagg − ε̃ ij

)
. (5)

The according computation order of object oi is determined by sorting the cost-
benefit-ratios Ci

j from highest to lowest.

Example 2. Given the same situation as in Example 1, we now assume the exem-
plary average computation costs of T1 = 1, T2 = 2 and T3 = 5. The resulting
cost-benefit-ratios are Ci

1 = 0.81, Ci
2 = 0.27 and Ci

3 = 0.22. Accordingly, partial
distance di

1 will be computed first, because it allows the fastest improvement of
the aggregated bounds.

4 Experimental Evaluation

This section describes our experimental setup and explains the results of our
evaluation.

We extended our recently published Partial Refinement approach [6] with
our new heuristic and utilized an image-retrieval system with the Caltech-256
Object Category Dataset [8] image collection (30,607 images) for the experimental
evaluation.

The efficiency was measured by determining the average number of required
distance computations and the average search time (wall-clock time) of 100
randomly selected 10-Nearest-Neighbor queries. The queries were based on sev-
eral aggregation functions (quadratic mean, median, maximum, minimum) for
five features (m = 5) and their respective distance functions: δ1 – CEDD with
Minkowski distance function L2 (T1=8.7 μs), δ2 – FCTH with L1 (T2=5.8 μs),
δ3 – EdgeHistogram with weighted L1 (T3=6.9 μs), δ4 – DominantColor with
Earth Mover’s distance function (T4=295.5 μs), and δ5 – ColorHistogram with
quadratic form distance function (T5=686.6 μs).

Optimizing the Distance Computation Order 95

21,8%

9,0%
4,8% 1,9% 1,9%

22,3%

14,4%
7,7% 5,6% 5,7%

0%

10%

20%

30%

O F P E C

Minimum

65,2%

28,8%

6,5% 6,3% 6,0%

66,8%

34,6%

11,8% 11,4% 7,1%

0%

20%

40%

60%

80%

O F P E C

Maximum

68,7%

31,5%

8,2% 7,7% 7,8%

70,3%

37,6%

14,4% 11,2% 8,0%

0%

20%

40%

60%

80%

O F P E C

Quadratic Mean

30,8% 24,9%

10,2% 7,5% 7,8%

31,7% 31,0%

20,9% 19,0%
11,4%

0%

10%

20%

30%

40%

O F P E C

Median dist. comp.
search time

Fig. 1. Efficiency of 10-Nearest-Neighbor queries (relative to linear scan)

For indexing we used an Onion-tree [7] (O), FlexiDex [3] (F), Partial Refine-
ment [6] (P) and both variants of our new heuristic (E, see Section 3.2) and
(C, see Section 3.3). The pivot-based indexes were build with the same 16 pivot
objects and we kept all index and feature data in main memory.

Figure 1 shows the results of our experiments relative to the performance of
the linear scan of all objects, which required 153,035 distance computations and
an average search time of 31,604 ms. The first variant of our heuristic (E) signifi-
cantly decreased the required number of distance computations and search time
for all aggregation functions in comparison to original Partial Refinement [6] (P)
and the other state-of-the-art approaches. This means that our heuristic is inex-
pensive to compute and efficiently applicable to several important aggregation
functions.

The second variant (C) took the computation costs of distance functions
into account. It required more distance computations than the first variant in
most cases. However, these additional distance computations had the benefit of a
lower search time for quadratic mean and the median function. The search time
increased only slightly in case of the minimum function. We conclude that this
variant of our heuristic can further improve the efficiency, if the computation
costs Tj vary significantly between distance functions.

5 Summary and Outlook

This paper introduced a new heuristic to determine the computation order of
partial distance computations for multi-feature similarity search indexing. Even
though our experimental evaluation is rather small and therefore preliminary, the
new heuristic shows promising results and is widely applicable. Future research
will focus on an extended evaluation and the introduction of an analytical cost
formula for the heuristic.

96 M. Zierenberg and I. Schmitt

References

1. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric
Space Approach. Advances in Database Systems, vol. 32, pp. 1–191. Springer-Verlag
New York Inc., Secaucus (2006)

2. Böhm, K., Mlivoncic, M., Schek, H.-J., Weber, R.: Fast evaluation techniques for
complex similarity queries. In: Proc. of the 27th International Conference on Very
Large Data Bases, VLDB 2001, pp. 211–220. Morgan Kaufmann Publishers Inc.,
San Francisco (2001)

3. Zierenberg, M., Bertram, M.: FlexiDex: flexible indexing for similarity search with
logic-based query models. In: Catania, B., Guerrini, G., Pokorný, J. (eds.) ADBIS
2013. LNCS, vol. 8133, pp. 274–287. Springer, Heidelberg (2013)

4. Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing multi-feature queries for image
databases. In: Proc. of the 26th International Conference on Very Large Data Bases,
VLDB 2000, pp. 419–428. Morgan Kaufmann Publishers Inc., San Francisco (2000)

5. Jagadish, H.V., Ooi, B.C., Shen, H.T., Tan, K.-L.: Toward Efficient Multifeature
Query Processing. IEEE Trans. on Knowl. and Data Eng. 18, 350–362 (2006)

6. Zierenberg, M.: Partial refinement for similarity search with multiple features. In:
Traina, A.J.M., Traina Jr, C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821,
pp. 13–24. Springer, Heidelberg (2014)

7. Carélo, C.C.M., Pola, I.R.V., Ciferri, R.R., Traina, A.J.M., Traina Jr, C., de Aguiar
Ciferri, C.D.: Slicing the Metric Space to Provide Quick Indexing of Complex Data
in the Main Memory. Inf. Syst. 36(1), 79–98 (2011)

8. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Tech. rep.
7694. California Institute of Technology (2007)

Dynamic Permutation Based Index
for Proximity Searching

Karina Figueroa1(B) and Rodrigo Paredes2(B)

1 Facultad de Ciencias F́ısico-Matemáticas, Universidad Michoacana, Morelia, Mexico
karina@fismat.umich.mx

2 Departamento de Ciencias de la Computación, Universidad de Talca, Curicó, Chile
raparede@utalca.cl

Abstract. Proximity searching consists in retrieving objects from a
dataset that are similar to a given query. This kind of tool is an elemen-
tary task in different areas, for instance pattern recognition or artificial
intelligence. To solve this problem, it is usual to use a metric index. The
permutation based index (PBI) is an unbeatable metric technique which
needs just few bits for each object in the index. In this paper, we present
a dynamic version of the PBI, which supports insertions, deletions and
updates, and keeps the effectiveness of the original technique.

1 Introduction

Similarity (or Proximity) Searching consists in retrieving the most similar ele-
ments to a given query from a dataset. This makes the proximity searching an
elementary task in many areas where the exact searching is not possible. Exam-
ples of these areas are machine learning, speech recognition, pattern recognition,
multimedia information retrieval or computational biology, to name few. The
core of such areas is precisely a searching task and the common part is a dataset
and a similarity measure among its objects.

Proximity queries can be formalized using the metric space model [3,6,8].
Given a universe of objects X and nonnegative distance function defined among
them d : X×X → R+ ∪ {0}, we define the metric space as a pair (X, d). Objects
in X do not necessarily have coordinates (think, for instance, in strings). On
the other hand, the function d provides a dissimilarity criterion to compare
objects from X. In general, the smaller the distance between two objects, the
more “similar” they are. The function d satisfies the metric properties, namely:
positiveness d(x, y) ≥ 0, symmetry d(x, y) = d(y, x), reflexivity d(x, x) = 0, and
triangle inequality d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈ X.

In practice, we are working with a subset of the universe, denoted as U ⊂ X,
of size n. Later, when a new query object q ∈ X \U arrives, its proximity query
consists in retrieving relevant objects from U.

This work is partially funded by National Council of Science and Technology (CONA-
CyT) of México, Universidad Michoacana de San Nicolás de Hidalgo, México, and
Fondecyt grant 1131044, Chile.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 97–102, 2015.
DOI: 10.1007/978-3-319-25087-8 9

98 K. Figueroa and R. Paredes

There are two basic queries, namely, range and k-nearest neighbor ones. The
range query (q, r) retrieves all the elements in U within distance r to q. The k-
nearest neighbor query NNk(q) retrieves the k elements in U that are closest to
q. Both queries can be trivially answered by exhaustively scanning the database,
requiring n distance evaluations. However, as the distance function is assumed to
be expensive to compute (think, for instance, when comparing two fingerprints),
frequently the complexity of the search is defined in terms of the total number of
distance evaluations performed, instead of using other indicators such as CPU
or I/O time. Thus, the ultimate goal is to build an offline index that, hopefully,
will accelerate the process of solving online queries.

2 Previous and Related Work

To solve this problem, a practical solution consists in building offline an index
which is later used to solve online queries. Among the plethora of indices for
metric space searching [3], the Permutation Based Index (PBI) [2] has shown an
unbeatable performance. Let P ⊂ U be a subset of permutants. Each element u ∈
U computes the distance towards all the permutants p1, . . . , p|P| ∈ P. The PBI
does not store distances. Instead, for each u ∈ U, stores a sequence of permutant
identifiers Πu = i1, i2, . . . , i|P|, called the permutation of u. Each permutation
Πu stores the identifiers in increasing order of distance, so d(u,Pij) ≤ d(u,Pij+1).
Permutants at the same distance take an arbitrary but consistent order. Thus,
a simple implementation needs n|P| space. For the sake of saving space, we
can compact several permutant identifiers in a single machine word. There are
several improvements built on top of the basic PBI technique [1,5,7], however
all of them are static indices.

The crux of the PBI is that two equal objects are associated to the same
permutation, while similar objects are, hopefully, related to similar permuta-
tions. In this sense, when Πu is similar to Πq one expects that u is close to q.
The similarity between the permutations can be measured by Kendall Tau Kτ ,
Spearman Footrule SF , or Spearman Rho Sρ metric [4], among others. As these
three distances have similar retrieval performance [2], for simplicity we use SF ,
defined as SF (Πu,Πq) =

∑
j=[1,|P|] |Π−1

u (ij) − Π−1
q (ij)|, where Π−1

u (ij) denotes
the position of permutant pij in the permutation Πu. For example, if we have
two permutations Πu = (42153) and Πv = (32154), then SF (Πu,Πv) = 8.

Finally, at query time, we compute Πq and compare it with all the permuta-
tions stored in the PBI. Next, U is traversed in increasing permutation dissimi-
larity. If we limit the number of distance computations, we obtain a probabilistic
search algorithm that is able to find the right answer with some probability.

3 Our Approach

We propose a dynamic scheme for the PBI. That is, we grant the PBI the capa-
bility of inserting or deleting objects in the index while preserving the searching
performance. Bestowing dynamism on the PBI allows us to manage real-world

Dynamic Permutation Based Indexfor Proximity Searching 99

applications, where the whole dataset is unknown beforehand and objects are
inserted or deleted as the retrieval system evolves. At the rest of the paper, we
show how to do that.

3.1 Dynamic Permutants

A dynamic permutant based index has to support object insertions and deletions,
while preserving the retrieving performance. We note that when we insert a new
object into the index, a new permutant can also be added. So, each object in
the index has a dynamic permutation. On the other hand, we need to support
the case when we delete an object which is a permutant.

In order to deal with permutations that are continuously changing, for each
object we split its permutation in buckets. This way, we can limit the scope of
the changes. The number of buckets is a parameter we study experimentally.
All these buckets make a valid permutation and the last bucket is considered
in process. Formally, let B be the size of a bucket, then every object has a
permutation divided in pieces of size B. That is, every object u ∈ U has a
permutation Πu divided in � |Πu|

B 	 = m pieces.
The main idea is processing small permutations of size B. Therefore, we will

consider three sections: a list of bucket completed, a bucket of size B (which
store the bucket in process), and a list of computed distances D of size B, to
manage the distances for the bucket in process. Formally, for an object u ∈ U,
we have its complete permutation Πu divided in m = � |Π|

B 	 pieces. Therefore,
Πu = Π1

u,Π2
u, . . . , Πm

u . Particularly, Πm
u is the permutation in process. We also

need a small array D for the distances of the bucket Πm
u .

Inserting an Object. When inserting an object into the database we have
two possibilities: it is a simple object or is also a new permutant. In first case,
the object computes all the distances to the set of permutants and computes its
permutation Π. The cost is O(k) distances.

The interesting case is when an object v becomes a permutant (in this work,
we chose the permutants at random). Firstly, v computes d(u, v) for all u ∈ U.
Next, u modifies both its Πm

u and its vector of distances D. In Algorithm 1 we
show details of the insertion process as permutant.

Algorithm 1.. InsertionAPermutant(p)
1: INPUT: Let p be the new permutant
2: Let U = {u1, . . . , un} be our database
3: for each u ∈ U do
4: d1 = d(p, u)
5: insert p in bucket Πm

u and d1 at D
6: Rebuild the small bucket Πm

u

7: end for

100 K. Figueroa and R. Paredes

Notice that when the bucket m is completed, it is transfered to the list of
bucket completed and when a new permutant arrives, we use a new small bucket,
and this is now the bucket Πm

u .
For example: Let be u an element of the database, B = 4 and Πu =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, that is:

– List of bucket completed = {Π1
u = {1, 2, 3, 4},Π2

u = {5, 6, 7, 8}}.
– Permutation in process = Π3

u = {9, 10}
– Distances D = [d(u, p9), d(u, p10)]

Comparing Small Permutations. Using Spearman Footrule, we can compare
two permutations in two ways. Let Πu and Πq be the permutations of an element
u and a query q:

– If we consider use a sequential number for every permutant like the previous
example, then we can compare all the permutation in a classic way, that is:
SF (Πu,Πq) =

∑
1≤i≤k

∣∣Π−1
u (i) − Π−1

q (i)
∣∣.

– If we numerate each bucket separately, we just need numbers in [1, B].
So, we have Πu = {1, 2, 3, 4, 1, 2, 3, 4, 1, 2}, where {Π1

u = {1, 2, 3, 4},Π2
u =

{1, 2, 3, 4}} and Π3
u = {1, 2}. In this case we compute:

SF (Πu,Πq) =
∑

1≤i≤m

∑
1≤j≤B

∣∣(Πi
u)−1(j) − (Πi

q)
−1(j)

∣∣

Notice, that we can get the same performance that the original technique.
However, this alternative allows better compaction of the permutation.

Deleting Permutants. In this case, we consider two element types. The first
one is a simple object, which can be deleted without any consideration from
the database. The second type is a permutant, that can also be deleted without
modify the permutations of objects in U, because the order in the rest of elements
is conserved. A bucket with less than three permutants can be deleted, because
is too short to help in the retrieving process.

Searching. The search process is almost identical to the basic PBI one. The
only consideration is that we need to compute the query permutation according
to the buckets, and then we compare the permutations as we explain above.

4 Experiments

In this section we evaluate and compare the performance of our technique in
different metric spaces, such as synthetic vectors on the unitary cube and NASA
images. The experiments were run on an Intel Xeon workstation with 2.4 GHz
CPU and 32 GB of RAM with Ubuntu server, running kernel 2.6.32-22.

Dynamic Permutation Based Indexfor Proximity Searching 101

Fig. 1. Example of our technique. All points use the same amount of memory in the
index. For example, line with × means 32 permutants and the first point has B = 4
that is 32/4 = 8 buckets. The next point is 32/8 we are using 4 buckets, and so on. The
last point has 32/32 = 1 bucket, that is the original idea. Notice that axe x represents
the size of bucket.

4.1 Synthetic Databases

In these experiments, we used a synthetic database with vectors uniformly dis-
tributed on the unitary cube [0, 1]D, in order to control the dimensionality of the
space. This also allows us to define some extra parameters. We use 80,000 points
in different dimensions D = 16, 32, 64, and 128, under Euclidean distance.

4.2 Optimal Value of B

For this experiment, different values of B (bucket size) are plotted in Fig. 1 for
different dimensions. Notice that if B = m then we have the original permutation
based index. In axe x, we change the size of bucket, the values start at 4, and
increases in values of 4. In this case, we represent distances computed for 1NN
in dimension 16, 32, 64, and 128. Notice that the last point is the value of the
original technique. This plot shows that we can get a better performance with a
dynamic technique. For example, in dimension 128 the original technique makes
1224 distances (1 completed bucket of B = 128) while using B = 24 (that is,
5 buckets), only 948 computations of distances are required for the same query,
that is a 27% less distances.

4.3 NASA Images

We use a set of 40,700 images from NASA, represented as 20-dimension feature
vectors. For simplicity we compare the vectors with the Euclidean distance. This
dataset is available at www.dimacs.rutgers.edu/Challenges/Sixth/software.html.

Notice that in this datase, our proposal keeps its performance. Fig 2 shows
that after some B size our technique can improves the original idea. For example,
128 permutants with B = 100, or B = 52.

www.dimacs.rutgers.edu/Challenges/Sixth/software.html

102 K. Figueroa and R. Paredes

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 20 40 60 80 100 120 140

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Bucket size (B)

Nasa images, 1NN

128 permutants total
64 permutants total
32 permutants total

Fig. 2. Our approach keeps its performance on the real database of NASA images. All
points use the same amount of memory.

5 Conclusions

In this paper we present a technique to turn the permutation based index (PBI)
into a dynamic one. That is, an index that support both insertions and deletions
of objects, while preserving the unbeatable performance of the original PBI. To
do so, we process the complete permutation by parts.

As future work, we plan to test our technique in other metric spaces and
research another alternatives to grant dynamism to the PBI strategy.

References

1. Amato, G., Savino, P.: Approximate similarity search in metric spaces using inverted
files. In: Proc. 3rd Intl. Conf. Scalable Information Systems, ICST (2008), article 28

2. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
30(9), 1647–1658 (2009)

3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric spaces.
ACM Computing Surveys 33(3), 273–321 (2001)

4. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete
Math. 17(1), 134–160 (2003)

5. Figueroa, K., Paredes, R.: List of clustered permutations for proximity searching.
In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp.
50–58. Springer, Heidelberg (2013)

6. Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM
Transactions Database Systems 28(4), 517–580 (2003)

7. Mohamed, H., Marchand-Maillet, S.: Quantized ranking for permutation-based
indexing. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol.
8199, pp. 103–114. Springer, Heidelberg (2013)

8. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space
Approach. Advances in Database System, vol. 32. Springer (2006)

Finding Near Neighbors Through Local Search

Guillermo Ruiz1, Edgar Chávez2(B), Mario Graff3, and Eric S. Téllez3

1 Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
gruiz@dep.fie.umich.mx

2 CICESE, Ensenada, Mexico
elchavez@cicese.mx

3 INFOTEC México, Mexico, Mexico
{mario.graff,eric.tellez}@infotec.com.mx

Abstract. Proximity searching can be formulated as an optimization
problem, being the goal function to find the object minimizing the dis-
tance to a given query by traversing a graph with a greedy algorithm.
This formulation can be traced back to early formulations defined for
vector spaces, and other recent approaches defined for the more general
setup of metric spaces.

In this paper we introduce three searching algorithms generalizing
to local search other than greedy, and experimentally prove that our
approach improves significantly the state of the art. In particular, our
contributions have excellent trade-offs among speed, recall and memory
usage; making our algorithms suitable for real world applications. As a
byproduct, we present an open source implementation of most of the
near neighbor search algorithms in the literature.

1 Introduction

The problem of proximity search consists in identifying objects from a collection
that are near a given query. In spaces with high intrinsic dimension it is difficult
to avoid a sequential scan. For those kind of situations, the only practical option
is to use approximate indexes with recall smaller than one.

A large portion of the literature in proximity searching is devoted to
spaces with coordinates with some Minkowsky distance. In this realm, vector
quantization[1] is the fastest option; although with low recall in practice. One
interesting option is the Randomized Neighborhood Graph(RNG)[2] with ver-
tex set the database and random edges in circular cones attached to the objects.
With O(n2) construction cost and O(n log n) space, the RNG is impractical, and
cannot be generalized to general metric spaces; however the ideas are appealing.

Combinatorial Approaches and Rank Cover Trees. In [3], the authors introduced
the Range Cover Trees (RCT), where a tree is built using ordered rank for
pruning instead of rules derived from distances and the triangle inequality. Node
descendants in the tree are obtained using the rank order.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 103–109, 2015.
DOI: 10.1007/978-3-319-25087-8 10

104 G. Ruiz et al.

Approximate Proximity Graph. Malkov et al [4] introduced the Approximate
Proximity Graph (APG), an index with excellent searching times. APG can
trade speed and accuracy for memory usage.

The construction is incremental and consists of a simple rule. To insert the
j-th element, simply find the (approximate) t-nearest neighbors among the j −1
elements already in the collection and link them to the newly inserted element.

In a subsequent paper [5], the searching is improved, as decribed below in
Algorithm 1.

Algorithm 1. The search algorithm for k nearest neigbors of APG as described
in [5]. We use our notation N (u) to describe the connected vertices of u, see
Section 2 for more details.
Name: Search algorithm APG
Input: A transition function N (neighbors), the database S, and the query q, the number of
restarts m
Output: The set res of near neighbors of q.

1: Let res be an empty min-queue of fixed size k
2: Let candidates be an empty min-queue
3: for i = 1 to m do
4: Define r as current distant radius in res, empty res defines r = ∞
5: Randomly select c ∈ S \ visited
6: Append c into visited and (d(q, c), c) into candidates and res
7: loop
8: Let (rb, best) be the nearest pair in candidates
9: Remove best from candidates
10: if rb > r then
11: break loop
12: end if
13: for u ∈ N (best) do
14: if u �∈ visited then
15: Add u to visited and (d(q, u), u) to candidates and res
16: end if
17: end for
18: end loop
19: end for

k-Nearest References (KNR). In some indexes, every node is associated with a
set of k nearest references (KNR), where the set of references is a sample of the
database. The similarity between items is hinted by a similarity function over the
shared neighbors. In this approach there is no navigation and proximity queries
are solved using an inverted index. This structural similarity was systematically
explored in [6] adding several indexes to the list, like the KNR-Cos that uses
the cosine similarity. The experimental evidence suggests that it surpasses the
majority of the state of the art KNR indexes, so we will use it in our experimental
section.

Contribution. We introduce three new indexes for near neighbor search i)
APG* an improvement over APG computing online m (the number of restarts),
ii) APG*-R that improves APG* limiting the shared state among search steps,
and iii) BS, which is a beam search based algorithm.

Finding Near Neighbors Through Local Search 105

2 Improving APG

Let S be the database, define N : S → S+ as a transition function describing
the connection among items, i.e., N (u) returns the neighborhood of u. We can
think of N as the edges of a graph over S. Consider the nearest neighbor (nn)
problem and let dq(u) = d(q, u). We want to find w ∈ S that is the global
minimum of dq and we only have access to N (u) for a given u. We only have
local information. An optimal N has minimum size and allows to find the global
minimum using local search. It turns out that the construction of an optimal
N is NP-hard and in some cases, this optimal N defines the complete graph
(equivalent to sequential scan). In order to overcome this, we need to relax our
constraints allowing approximate results. For approximate search, it is accepted
to locate a good enough local minimum for dq.

Recall from Section 1 that APG’s search is repeated m times to improve
the expected recall. As the authors suggest in [5], m must be adjusted for each
dataset. A significant overestimation of m would impact both search and con-
struction performances.

Algorithm 2. Beam Search over S and N for k nearest neighbors.
Name: Beam Search
Input: A transition function N , the database S, the query q, the size of the beam b
Output: The set res of near neighbor of q.

1: Let res be an empty min-queue of fixed size k
2: Let beam be an empty min-queue of fixed size b
3: Let visited ← ∅
4: Let beam ← {}
5: for i = 1 to b do
6: Randomly select u from S
7: Add u to visited and (d(u, q), u) to res and beam
8: end for
9: repeat
10: Let cov∗ ← cov(res)
11: for i = 1 to σ do
12: Let beam∗ ← {} {Fixed sized priority min-queue of size b as beam}
13: for c ∈ beam do
14: for u ∈ N (c) do
15: if u �∈ visited then
16: Add u to visited and (d(q, u), u) to res and beam∗
17: end if
18: end for
19: end for
20: beam ← beam∗
21: end for
22: until cov∗ = cov(res) {Stops when there is no improvement over dq , i.e., cov(res)}

Let result be a min priority queue (min-queue) of fixed size k. If result is
under its full capacity then cov(result) equals to the maximum possible distance
value; if it is full, then cov(result) is the radius of the furthest item.

The objective of our first search algorithm is to compute m online checking
the changes over the global result set, i.e., the covering radius cov(res). Here, we
are minimizing dq, and stopping the algorithm when our guess of dq cannot be

106 G. Ruiz et al.

improved after σ tries. All our new algorithms use the same technique as stop
condition. σ should be small, in the range of 2 to 4. The idea is to relax the
stop condition, but not to introduce an extra parameter. This search algorithm
is used to produce the index APG*.

Our second index is named APG*-R. APG*-R uses random starting points,
not the best known in APG and APG*, and also, both candidates and res∗ are
local to each step. This modification helps to escape from a local minima. For
lack of space we do not include the full, formal description of the algorithm.

Our final index is BS (produced by Algorithm 2), a novel index using beam
search over S and N . As in the previous algorithms, at least σ steps are taken
before stopping the search. Hence, if after some steps dq does not change, then
we claim a good local minimum. The main parameter is the size of the beam b,
which can be adjusted at any time. Notice that beam search does not need to
restart; however, it needs to know b.

3 Experimental Results

All experiments were performed in a 24-core Intel Xeon 2.60 GHz workstation
with 256GB of RAM, running CentOS 7, without using the multiprocessing
capabilities in the search process. Both, the index and the database where main-
tained in memory. Our implementations were created in the mono framework,
in C#. For the RCT [3] we used the C++ implementation, kindly shared by
authors. We fixed our attention in the recall and search speed. Since comparing
them by time would be unjust, we measure the time of the search compared with
the sequential scan (speedup).

Our benchmarks consist of synthetic databases called RVEC which are ran-
dom vectors using the L2 distance. We tested the effect of varying the dimension
and database size. First, we used datasets of 16, 32, 64, 128 and 256 dimensions,
each one with 105 randomly generated items. Next, the performance as the
size increases was measured using 16, 32 and 64-dimensional datasets of sizes
3 × 105, 106, and 3 × 106 items.

The Effect of the Dimension on the Search Performance. On Figure 1,
each point on the lines represents the result for a dimension. We show the recall
and the speedup for each instance on the same figure. The results are grouped
by size of the indexes on the figures (controlled by the parameter t).

Figure 1(a) shows the speedup for the indexes that take from 1 to 10 integers
per element of the database. The APG and APG* are very fast because of the
small number of distances they have to compute but their poor recall makes
them useless. The APG*-R variant shows a big improvement on the recall. The
different instances of the BS gain in recall but lose speed when we increase the
number of searches. The KNR gets good recalls but is slower than the average
of the others. Finally, the RCT has a good overall performance specially for
c = 128.

The Figure 1(b) contains the speeds for indexes using 10 to 30 integers per
element. Because of their small recall, the APG and APG* are very fast. The

Finding Near Neighbors Through Local Search 107

APG*-R and BS with b = 8 are very similar, one a little faster and the other with
better recall. As expected, the other configurations of BS have higher recalls.

Note how the APG and APG* are always very similar, also they need more
memory to achieve good recalls. The APG*-R and BS have a great range of
action with the option to get recalls very close to one with good speeds.

The Figures 1(c) and 1(d) are very similar. The APG and APG* are not very
fast. The APG*-R is faster for the dimension 16, 32, and 64 but the BS with
b = 8 becomes faster for the big dimension.

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

recall

APG m=8
APG m=16
APG m=32
APG*
APG-R*
BS b=8
BS b=16
BS b=32
KNR-Cos k=7
KNR-Cos k=12
RCT c=32
RCT c=64
RCT c=128

(a) 1 to 10 integers

 0

 2

 4

 6

 8

 10

 12

 14

0.6 0.7 0.8 0.9 0.95 0.97 0.99

sp
ee

du
p

recall

APG m=8
APG m=16
APG m=32
APG*
APG-R*
BS b=8
BS b=16
BS b=32

(b) 10 to 30 integers

 1

 2

 3

 4

 5

 6

 7

 8

 9

0.6 0.7 0.8 0.9 0.95 0.97 0.990.999

sp
ee

du
p

recall

APG m=8
APG m=16
APG m=32
APG*
APG-R*
BS b=8
BS b=16
BS b=32

(c) 30 to 100 integers

 0

 1

 2

 3

 4

 5

 6

 7

0.6 0.7 0.8 0.9 0.95 0.97 0.990.999

sp
ee

du
p

recall

APG m=8
APG m=16
APG m=32
APG*
APG-R*
BS b=8
BS b=16
BS b=32

(d) 100 to 300 integers

Fig. 1. Recall and speedup comparison in four different classes of memory among our
indexes and several state of the art techniques for fixed n = 105 over several dimensions.
Here we show performance for low to medium memory resources (i.e., 1 to 30 integers
per item). Each curve corresponds to a different dimension 16, 32, 64, 128, and 256; as
a hint to review figures, large dimensions correspond to smaller recalls and scale is
exponential.

Scalability. We used the randomly generated database of dimension 16 with
sizes 3 × 105, 106, and 3 × 106. Each point in a curve is produced by a different
database size; speed ups are larger as n increases.

Figure 2(a) shows the recall and the search speed for the different sizes of
the database for 16 dimension. The APG and APG* scored a recall below 0.7
on all the sizes even when using 32 searches for the query. As shown in the
previous experiments, the APG*-R gets a boost on the recall compared to the
APG*. Note how the lines of the BS are practically vertical meaning that the

108 G. Ruiz et al.

index gains in speed much more than it loses in the recall. Compare this to the
KNR with k = 7, its recall is very affected as the size increase. Also, in general
the KNR are not very fast. The RCT does not get a recall as good as the BS
and is considerable slower. On Figure 2(d) we see the recall and the number of
distances for the queries. This general behavior is the same in the next figures.

Figure 2(b) shows the same tendency, the APG*-R being an improvement
over the APG’s, the BS having very good recalls and speeds, the KNR being
slow, and the RCT behind the BS. The Figure 2(e) shows the same but with
the distances computed. The same can be said about the Figure 2(c) and 2(f)
but the interesting part is to note how the change of dimension affects more the
indexes than the size of the database. For 16 dimensions, the performance is
maintained for increasing database size.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.60.7 0.8 0.9 0.95 0.97 0.98 0.99

sp
ee

du
p

recall

APG m=8
APG m=16
APG m=32
APG*
APG* R
BS b=8
BS b=16
BS b=32
KNR-Cos k=7
KNR-Cos k=12
RCT c=128

(a) Speedup/16dimensions

 0

 20

 40

 60

 80

 100

 120

0.60.7 0.8 0.9 0.95

sp
ee

du
p

recall

APG m=8
APG m=16
APG m=32
APG*
APG* R
BS b=8
BS b=16
BS b=32
KNR-Cos k=7
KNR-Cos k=12
RCT c=128

(b) Speedup/32dimensions

 0

 10

 20

 30

 40

 50

 60

 70

0.6 0.7 0.8

sp
ee

du
p

recall

APG m=8
APG m=16
APG m=32
APG*
APG* R
BS b=8
BS b=16
BS b=32
KNR-Cos k=7
KNR-Cos k=12
RCT c=128

(c) Speedup/64dimensions

 100

 1000

 10000

 100000

 1e+06

0.60.7 0.8 0.9 0.95 0.97 0.98 0.99

di

st
an

ce
s

/ n

recall

APG m=8
APG m=16
APG m=32
APG*
APG* R
BS b=8
BS b=16
BS b=32
KNR-Cos k=7
KNR-Cos k=12
RCT c=128

(d) Cost / 16 dimensions

 1000

 10000

 100000

 1e+06

0.60.7 0.8 0.9 0.95

di

st
an

ce
s

/ n

recall

APG m=8
APG m=16
APG m=32
APG*
APG* R
BS b=8
BS b=16
BS b=32
KNR-Cos k=7
KNR-Cos k=12
RCT c=128

(e) Cost / 32 dimensions

 1000

 10000

 100000

 1e+06

0.6 0.7 0.8

di

st
an

ce
s

/ n

recall

APG m=8
APG m=16
APG m=32
APG*
APG* R
BS b=8
BS b=16
BS b=32
KNR-Cos k=7
KNR-Cos k=12
RCT c=128

(f) Cost / 64 dimensions

Fig. 2. Speedup as function of the expected recall for our indexes and the state of the
art. We use datasets with dimensions 16, 32, and 64. Each dataset has three instances
with sizes of 3 × 105, 106, and 3 × 106. We also limited memory to be under 8 direct
neighbors per item, i.e. 16 undirected neighbors in average.

4 Conclusions

We introduced three near neighbor searching indexes, called APG*, APG*-R and BS.
These indexes use an underlying graph and several variants of local search to navigate
them. As part of our contribution, we compare our techniques among the current state
of the art indexes. Our indexes significantly surpass the performance of the majority
of the alternatives, in almost all of our benchmarks.

In the present work we used N as introduced by APG; however, there exists several
open questions about it, such as how to determine its precise parameters online, i.e.,
without having any a priori knowledge about it.

Finding Near Neighbors Through Local Search 109

References

1. Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching.
In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008,
pp. 1–8, June 2008

2. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions.
In: Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, pp. 271–280, Austin, Texas, 25–27 January 1993 (1993)

3. Houle, M.E., Nett, M.: Rank cover trees for nearest neighbor search. In: Brisaboa, N.,
Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 16–29. Springer,
Heidelberg (2013)

4. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Scalable distributed algo-
rithm for approximate nearest neighbor search problem in high dimensional general
metric spaces. In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404,
pp. 132–147. Springer, Heidelberg (2012)

5. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neigh-
bor algorithm based on navigable small world graphs. Information Systems 45,
61–68 (2014)

6. Chávez, E., Graff, M., Navarro, G., Téllez, E.: Near neighbor searching with K
nearest references. Information Systems 51, 43–61 (2015)

Metrics and Evaluation

When Similarity Measures Lie

Kevin A. Naudé(B), Jean H. Greyling, and Dieter Vogts

Computing Sciences, Nelson Mandela Metropolitan University,
Port Elizabeth, South Africa

{kevin.naude,jean.greyling,dieter.vogts}@nmmu.ac.za

Abstract. Do similarity or distance measures ever go wrong? The inher-
ent subjectivity in similarity discernment has long supported the view
that all judgements of similarity are equally valid, and that any selected
similarity measure may only be considered more effective in some chosen
domain. This paper presents evidence that such a view is incorrect for
structural similarity comparisons. Similarity and distance measures occa-
sionally do go wrong, and produce judgements that can be considered
as errors in judgement. This claim is supported by a novel method for
assessing the quality of similarity and distance functions, which is based
on relative scale of similarity with respect to chosen reference objects.
The method may be applied in any domain, and is demonstrated for
common measures of structural similarity in graphs. Finally, the paper
identifies three distinct kinds of relative similarity judgement errors, and
shows how the distribution of these errors is related to graph properties
under common similarity measures.

Keywords: Similarity measures · Distance measures · Similarity judge-
ment errors · Similarity judgement quality · Information retrieval

1 Introduction

Numeric measures of similarity are versatile tools for solving information
retrieval problems. They serve both in classification and similarity search, and
have been used effectively in a variety of problem domains [1–6]. Similarity is
typically quantified as either a notional proportion of matching (similarity func-
tions), or as a cumulative sum of differences (distance functions).

The performance of similarity measures may be evaluated in two orthogonal
dimensions: resource performance and task performance. The former of these is
easy to study, as computational resource usage may be either directly observed
through empirical research, or studied through theoretical models of computa-
tion. This research concerns itself with the second dimension of performance.
Specifically, it examines the general efficacy with which different similarity mea-
sures are able to judge similarity between structured object representations. The
most important of such discrete structures are graphs.

K.A. Naudé—This research was supported by the National Research Foundation,
South Africa.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 113–124, 2015.
DOI: 10.1007/978-3-319-25087-8 11

114 K.A. Naudé et al.

There are well established methods of evaluating the task performance of
classification and similarity search algorithms that incorporate measures of sim-
ilarity. Section 2 highlights the main processes of these conventional evaluation
techniques, as they form a basis for the present work. An important problem
with such methods is that the conclusions they provide are confined to a spe-
cific problem domain tested, leaving general conclusions about the embedded
similarity measures hard to obtain.

There is a significant need to understand the judgement quality of similarity
measures directly. The present research introduces a new evaluation technique
which directly characterises the decision behaviour of similarity measures. The
motivation for direct evaluation is advanced throughout Section 3, with the
main processes such and evaluation set out in Sections 3.1 and 3.2. The new
method focuses upon relative judgements, such as claiming that objects A and
B are more alike than objects A and C. Consequently, there are no specific
requirements about the scale of difference between similarity scores.

The main difficulty in directly assessing the judgement quality of similarity
measures is the lack of justifiable ground truth data. The new evaluation method
circumvents the problem by transforming a dataset of graphs into test instances
that have determinable outcomes. The ground truths obtained are related to
graph edit distances, but are procedurally created to ensure that test instances
satisfy constraints that provide a justification for the relative decision outcomes.

The new method of evaluation is particularly valuable in that it produces
new kinds of information about the decision behaviour of the tested similarity
measures. In particular, it provides frequency data for three different kinds of
inconsistent judgements that can be made. Section 4 demonstrate the application
of the evaluation method to a selection of graph similarity measures. The first
evaluated measure is the similarity derived from the maximum common induced
subgraph (MCIS), a popular alternative to the maximum common subgraph
(MCS), which is itself seldom computationally feasible. The second evaluated
measure is attributed to Blondel et al.[7]. The Blondel measure is an example of
a family of contemporary fixed-point graph similarity measures that are discover
pair-wise vertex similarity scores. The experiments are described in Section 4,
followed by the findings and general performance characteristics for each measure
reported in Section 5.

2 Conventional Task Performance

The conventional approach for evaluating systems of indexing, search and classi-
fication originates with the Aslib Cranfield projects of the 1960s [8]. The assess-
ment of task performance of modern similarity search and classification follows
very much the same method, although present day researchers benefit from the
wide variety of collected datasets. One such dataset, the Columbia Object Image
Library [9], shall now be used to illustrate the method and limitations of con-
ventional task performance evaluation.

When Similarity Measures Lie 115

Fig. 1. The software components for object recognition, using a similarity measure.

Consider the task of identifying an ordinary object from a source photograph,
based on a library of previously observed photographs. The internal organisa-
tion of a software solution for the task is abstractly represented in Fig. 1. The
figure describes solutions that use an explicitly computed measure of similarity1.
Note that there are several computational sub-tasks besides computing similarity
scores. The main sub-tasks are

– building a graph representation of the object,
– querying an index for related known objects, using the similarity measure

strategically to minimise comparisons, and
– using a selection of the query response to classify the specimen object.

A popular and effective representation for an object found in an image is a
Region Adjacency Graphs (RAG) [10,11]. In the present scenario, a RAG would
be constructed to represent each known object, and these would be inserted
into the index. During classification, the index treats the representation of the
specimen object as a query, and selects a subset of the known objects with which
to compare it. It is here that the distance or similarity measure comes to the
foreground as a measure quantifying relatedness. However, the similarity scores
still do not constitute a response to the stated task. Instead, the results of the
index query are delivered to a classifier to perform object identification. A simple
k nearest neighbour classifier would treat the k most relevant query responses
as votes in favour of the matched classes. The recogniser identifies the object

1 Other machine learning techniques could also be applied to the task, but these are
not relevant to the subject of this paper.

116 K.A. Naudé et al.

according to the class with the greatest number of votes, and reports that class
as the identification of the object.

The evaluation of classification task performance depends upon the existence
of test instances, which do not appear in the index, and for which ground truth
data are known. For example, Fig. 1 shows an image identified as a duck, which
is correct. The set of test data for which expected outcomes are known is called
the ground truth data for the problem task.

For classification tasks there are many suitable datasets available. Riesen
and Bunke have collected ten distinct dataset specifically for investigating the
application of graph similarity to classification in a variety of fields of study [12].
However, the situation is more difficult for other kinds of tasks, such as similarity
search. The greatest difficulty in applying the conventional evaluation method
for task performance remains obtaining relevant ground truth data. A rising
solution to the deficient supply of ground truths is to extract knowledge from
crowdsourced judgements [13,14].

If ground truth data are available, the conventional evaluation method is
effective in providing meaningful answers about how effectively the software
stack solves the problem under investigation. However, if the researcher intends
to understand the behaviour of the similarity measure in particular, the results
are not informative. If, for example, the object recogniser of Fig. 1 performs
poorly in the recognition task, little is learned about the judgement performance
of the similarity measure. The reason for this is that the prevailing evaluation
techniques are holistic in nature. They produce task performance data for a
complex arrangement of several software components working together. Conse-
quently, poor task performance could be attributed to inappropriate choices in
the object representation, or aspects within the indexer, or classifier. The extent
to which the judgements of the similarity measure are correct remain unclear.
The next section seeks to address this problem through direct evaluation of the
similarity measure itself.

3 Direct Performance Assessment

The direct evaluation of similarity judgements requires ground truth data, as
described for conventional evaluation. However, similarity is intrinsically subjec-
tive, so it is important that ground truths are only asserted for test cases that
can be objectively motivated. Three possible scenarios for ground truth data
items are now considered:

single pairs having expected similarity scores,
i.e. s(A,B) is provided,

independent pairs having expected relative similarity,
i.e. s(A,B) − s(C,D) is provided, and

dependent pairs having expected relative similarity,
i.e. s(A,B) − s(A,C) is provided.

When Similarity Measures Lie 117

Two of the three possibilities are non-viable sources of ground truth. Firstly,
since the scale of scores is subjective, single scores between pairs can appear
anywhere on the accepted scale of values. It is therefore not usually meaning-
ful to impose any specific similarity score outcome for any single pair of test
graphs. The second suggestion is therefore more interesting as it considers rel-
ative strength of observed similarity. However, differences between independent
pairs are not required to be measured on the same scale. Consider, for exam-
ple, that the very well-known Jaccard measure scales scores with the inverse of
the combined size of the source structures. Consequently, differences are mea-
sured relative to the scale of the pair under consideration. Ground truth data
for independent pairs is therefore not recommended.

The third option is more compelling. It is reasonable to establish ground
truth data for relative similarity between graph pairs, provided that the pairs
are dependent. The presence of graph A common to pairs (A,B) and (A,C)
makes it possible to relate their similarity scores. Furthermore, if the graphs are
carefully chosen, it may be reasonable to expect sensitive similarity measures
to rank the differences between the pairs in a consistent way. The next sections
describe a procedure for generating such pairs, and a method for using them in
task performance evaluation.

3.1 Procedurally Generated Truths

The task of obtaining ground truth similarity data can now be separated into
two distinct steps: i) selecting graphs triples (A,B,C) such that the sign of
s(A,B)−s(A,C) has an expected value, and ii) discovering that expected value.
The first step of selecting three graphs may seem easy, if some supply of graphs
is available. However, it is ill-advised to select graphs that differences that are
trivially ordered. For instance, if B and C have substantially different size, that
information alone may be enough to order B and C with respect to A. For the
purpose of comparing the quality of similarity judgement, it is best to present cases
of graphs that are not easily distinguished. Hence, it is required that graphs A, B,
and C have shared topological features. In particular, they should have equal

– number of vertices,
– number of edges,
– frequency distribution for vertex attributes, and
– frequency distribution for edge attributes.

It is clear by these requirements that differences between such graphs would
not manifest in easily observable divergent features. The suggested process for
constructing such graph triples is to assign graph A from a source of interesting
graphs. Graphs B and C can then be derived from A by applying a chosen num-
ber of independent transformations. A suitable transformation which preserves
all of the stated graph features is edge rewiring [15]. Edge rewiring is accom-
plished by selecting a single edge at random for removal, and then inserting a
new edge at a random location, with the same edge attribute as that which was
previously removed.

118 K.A. Naudé et al.

For the purposes of this paper, rewiring is applied once to obtain B, and twice
to obtain C (but independently of B). The effect is that B is either isomorphic
with A, or exactly one edge-rewiring distance away from it. C is likewise either
isomorphic with A, or one at most two edge-rewiring steps from A. Hence, there
are three possible outcomes:

– B is nearer to A than C is,
– the graphs B and C are equally similar to A, or
– C is the nearer graph (perhaps surprisingly).

The final step in establishing the ground truth data is to determine the
expected outcome, or alternatively, the expected sign of s(A,B) − s(A,C). The
authors have found it quite practical to employ a fast isomorphism check to
determine if A and B are equivalent. If the isomorphism check fails, then a
single edge-rewiring operation separates the graphs. The minimum number of
changes required to reproduce C may be determined in a similar manner.

It may be tempting to instead compute D(A,C)−D(A,B), where D is some
preferred graph edit distance. However, there are important reasons to avoid
using a conventional edit distance to determine ground truth. The most impor-
tant of these is that there are many edit distances, and they are not necessarily
consistent with one another. Rather they each provide a selected set of edit oper-
ations, and are parameterised with a vector of costs associated with the chosen
edit operations. Two edit distances that employ the same edit operations may
still disagree considerably if they operate with different cost vectors. Since the
costs assigned to edit distances are arbitrary, there is no reason to favour the
judgements of one edit distance over another.

The process described above is different from the use of edit distances because
it employs only a single edit operation, and it only considers graphs that differ
in that specific form of change. In particular, it does not assert relative ordering
between arbitrary graphs. In this way, the choice of graphs A, B, and C is
considerably constrained to avoid the possibility that some competing structural
similarity claim could be justifiable.

3.2 Evaluation Procedure

The ground truths described in the preceding section may be directly used for
evaluation purposes. The evaluation process follows conventional task perfor-
mance evaluations, by examining a chosen number of test graph triples. For
each triple, the similarity measure’s judgement over the triple is compared with
the ground truth outcome, and tabulated in a multinomial contingency table, as
illustrated in Fig. 2.

The conventional measures of task performance are precision, sensitivity
(recall), and the recognition rate (global sensitivity). These may be computed
directly from the contingency table. It is suggested that the sensitivity is the
most useful measure of judgement quality, as it describes the proportion of order-
able graphs which are correctly ordered. These performance measures may be

When Similarity Measures Lie 119

Ground Truth

B is
nearer

neither
is nearer

C is
nearer

S
im

il
a
ri
ty

B is
nearer

r1 a1 c1 r = ro + rb

ro = r1 + r3
rb = r2

a = a1+a2,
b = b1 + b2,
c = c1 + c2

: correct cases

: ordered
: balanced

: arbitrary order
: unordered
: inverse order

neither
is nearer

b1 r2 b2

C is
nearer

c2 a2 r3

Fig. 2. Bivariate frequency distribution of similarity judgements and ground truth.

computed using the following formulae.

precision =
number correctly ordered
number of order assertions

=
ro

ro + a + c
(1)

sensitivity =
number correctly ordered
number of orderable cases

=
ro

ro + b + c
(2)

recognition rate =
number correct

number of instances
=

r

r + a + b + c
(3)

The contingency table also shows that similarity measures may make three
distinct kinds of judgement errors. For purposes of discussion, the proportion of
correct judgements shall be denoted ρ, while the proportions of the three kinds
of errors shall be denoted α, β, and γ, respectively. These types of errors are
analogous to errors that may be made during directional hypothesis testing, and
so they carry similar names here. They are:

– Type I errors: ordering differences that are actually equal in scale,
– Type II errors: failing to note orderable differences, and
– Type III errors: produce an inverse ordering of orderable graphs.

4 Experiment

An experiment was performed to demonstrate the application of the new method
for evaluating and characterising the decision behaviour of common structural
graph similarity measures. Two similarity measures were examined. The first is

120 K.A. Naudé et al.

the similarity derived from the size of the maximum common induced subgraph
of the source graphs, giving by (4).

sMCIS(X,Y) = 2
|MCIS(X,Y)|
|X| + |Y | where |g| = number of vertices in g (4)

The second similarity measure is attributed to Blondel et al.[7]. It is a mem-
ber of a family of measures that propagate local vertex similarity scores within
a product graph iteratively, until a fixed point is reached. This family of simi-
larity measures are an interesting contemporary approach to computing graph
similarity. The computed scores are, however, between vertex pairs taken from
each of the source graphs. In order to obtain a final similarity score between the
graphs, the method used by Zager and Vergese [16] is followed. First the Hun-
garian algorithm is applied to find the optimal assignment between the vertices
of the source graphs, using their local vertex similarity scores, and accounting
for labels. Following this, the average vertex similarity score across the optimal
assignment is taken as the final graph similarity score.

The similarity measures were examined across a collection of 555 synthetic
graph datasets. All of these datasets were constructed using the Erdös-Rényi
Gn,m model for random graphs with fixed edge densities. The graph datasets
were chosen to reflect a wide range of different graph properties. Two broad
cases were considered: a) fixed edge density (50%) with the number of vertices
varying between 10 and 30, and b) a fixed number of vertices (20) with edge
density varying between 10% and 90%, in 5% increments. Therefore, there are
37 distinct combinations of graph sizing parameters. The number of distinct label
categories was varied between 1 (equivalent to unlabelled graphs), and 15. The
labels were assigned with uniform probability to all edges and vertices. Thus,
there is a total of 555 distinct datasets generated, each having different graph
properties.

Every dataset was comprised of two samples: one of 500 instances, and
another of 10 000 instances. The smaller samples are sufficient for hypothesis
testing, as the tests available (such as Boschloo’s test) are very powerful. How-
ever, the small samples do not give narrow confidence intervals for the descriptive
statistics. Thus, the large samples were provided to obtain high-precision esti-
mates of binomial proportions.

5 Results

The results shown in Fig. 3 highlight a selection of important cases2. A close
examination of error distribution for the MCIS similarity reveals two interesting
facts. The first is that the errors distribution is dominated by Type II errors. The
Type II errors are instances in which the graph triples should be strictly ordered,
but the MCIS measure does not observe any particular ordering. In other words,

2 All raw data is available upon request.

When Similarity Measures Lie 121

Correct (ρ) Type I errors (α) Type II errors (β) Type III errors (γ)

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of vertices

D
is
tr
ib
ut
io
n

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Edge density (%)

D
is
tr
ib
ut
io
n

(a) MCIS judgement distribution over unlabelled graphs

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of vertices

D
is
tr
ib
ut
io
n

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Edge density (%)

D
is
tr
ib
ut
io
n

(b) MCIS judgement distribution over graphs with 15 labels

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of vertices

D
is
tr
ib
ut
io
n

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Edge density (%)

D
is
tr
ib
ut
io
n

(c) Blondel judgement distribution over unlabelled graphs

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of vertices

D
is
tr
ib
ut
io
n

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Edge density (%)

D
is
tr
ib
ut
io
n

(d) Blondel judgement distribution over graphs with 15 labels

Fig. 3. Multinomial outcome distributions for MCIS and Blondel similarity.

122 K.A. Naudé et al.

10 15 20 25 30
1

5

10

15

Number of vertices

N
um

be
r
of

la
be

ls

MCIS Blondel

(a)

20 40 60 80
1

5

10

15

Edge density (%)

N
um

be
r
of

la
be

ls

MCIS Blondel

(b)

Fig. 4. Blondel vs. MCIS: tests for sensitivity improvement, highlight cases with
p < 0.05.

the MCIS measure frequently does not observe fine detail in the graphs. Para-
doxically, this leads to high precision as Type II errors do not contribute to the
precision score. However, the sensitivity is adversely affected.

The second interesting detail regarding the MCIS measure is that it is not
at all sensitive to changes in the edge density. The distribution of outcomes is
nearly constant across the full range of edge densities examined. The effect of
labels is similarly passive, as a diverse supply of labels has little effect upon
the outcome distribution. However, the measure is quite clearly sensitive to the
number of vertices contained in the graphs, with larger numbers of vertices
leading to a reduction in the Type II error rate. The sensitivity and precision
for larger graphs are therefore improved. It is unfortunate that the measure is
not computationally feasible for large graphs.

The Blondel measure stands in contrast to the MCIS measure in that it
makes essentially no Type II errors, but incurs a larger proportion of Type I
and Type III errors. This fact is easily explained. The nature of the iterative
process for determining similarity scores in Blondel’s measure gives it access to
very fine grained scoring. Hence, it is very unlikely that two strictly ordered
graphs will appear to be equally similar to the reference graph. Achieving the
precisely equivalent scores on the real number scale would be a peculiarity, unless
the source graphs were genuinely isomorphic. Consequently, Type II judgement
errors are exceedingly rare under Blondel similarity.

The low Type II error rate creates opportunities for other kinds of judgement
errors. For unlabelled graphs, the Blondel measure incurs a large proportion of
Type III errors, which are the least desirable kind: asserting order in the wrong
direction. Fortunately, the case of labelled graphs shows that Blondel similarity
has much reduced error rates when there is increased label diversity.

When Similarity Measures Lie 123

Finally, hypothesis testing was applied using Boschloo’s test for binomial
proportions [17], and simultaneously directional hypotheses [18] to determine
the improvement direction between the two measures. Fig. 4 shows a graphical
representation of the one of the two measures producing statistically improved
sensitivity, with p < 0.05.

The hypothesis tests are consistent with the earlier observations. The eval-
uation shows that the MCIS measure dominates Blondel in sensitivity if the
number of distinct labels is low (less than 5), or if the edge density is low (less
than 30%). When neither of these conditions are present in the source graphs,
Blondel’s measure outperforms MCIS similarity convincingly. This is particu-
larly encouraging, as it shows that the Blondel similarity measure is a robust
substitute for MCIS similarity in larger graphs.

6 Conclusion

The empirical evidence gathered under the new evaluation method shows a vari-
ety of useful results that were not previously known. The most valuable of these
is that the Blondel similarity measure is a reliable substitute for MCIS similar-
ity when the source graphs are labelled and not sparse. In addition, the MCIS
similarity has difficulty detecting fine grained differences between very simi-
lar graphs. These facts illustrate how the new evaluation method can establish
general characteristics of structural similarity measures. Most importantly, the
characteristics are independent of any specific application domain.

References

1. Morain-Nicolier, F., Landré, J., Ruan, S.: Binary symbol recognition from local
dissimilarity map. In: 8th International Workshop on Graphic Recognition GREC
2009, pp. 143–148 (2009)

2. Boyer, L., Habrard, A., Sebban, M.: Learning metrics between tree struc-
tured data: application to image recognition. In: Kok, J.N., Koronacki, J.,
Lopez de Mantaras,R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007.
LNCS (LNAI), vol. 4701, pp. 54–66. Springer, Heidelberg (2007)

3. Rahman, S.A., Bashton, M., Holliday, G.L., Schrader, R., Thornton, J.M.: Small
Molecule Subgraph Detector (SMSD) toolkit. Journal of Cheminformatics 1(1), 12
(2009)

4. Cao, Y., Jiang, T., Girke, T.: A maximum common substructure-based algorithm
for searching and predicting drug-like compounds. Bioinformatics 24(13), i366–i374
(2008)

5. Islam, A., Inkpen, D.: Semantic similarity of short texts. In: Nicolov, N., Angeliva,
G., Mitkov, R. (eds.) Text, pp. 227–236. John Benjamins Publishing Company
(2009)

6. Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Stumme, G.: Evalu-
ating similarity measures for emergent semantics of social tagging. In: Proceedings
of the 18th International Conference on World Wide Web, pp. 641–650. ACM, New
York (2009)

124 K.A. Naudé et al.

7. Blondel, V.D., Gajardo, A., Heymans, M., Senellart, P., Van Dooren, P.: A measure
of similarity between graph vertices: applications to synonym extraction and web
searching. SIAM Review 46(4), 647–666 (2004)

8. Cleverdon, C., Mills, J., Keen, M.: Factors Determining the Performance of Index-
ing Systems. ASLIB Cranfield project, Cranfield University, Cranfield, Technical
report (1966)

9. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100).
Technical report CUCS-006-96, Columbia University (1996)

10. Colantoni, P., Laget, B.: Color image segmentation using region adjacency graphs.
In: Sixth International Conference on Image Processing and its Applications, vol.
2, pp. 698–702, July 1997

11. Chevalier, F., Domenger, J., Benoispineau, J., Delest, M.: Retrieval of objects in
video by similarity based on graph matching. Pattern Recognition Letters 28(8),
939–949 (2007)

12. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F.,
Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) Struc-
tural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287–297.
Springer, Heidelberg (2008)

13. Agrawal, R., Gollapudi, S., Kannan, A., Kenthapadi, K.: Similarity search using
concept graphs. In: Proceedings of the 23rd ACM International Conference on Con-
ference on Information and Knowledge Management, Shanghai, China, pp. 719–728
(2014)

14. Zafarani, R., Liu, H.: Evaluation Without Ground Truth in Social Media.
Communications of the ACM 58(6), 54–60 (2015)

15. Albert, R., Barabasi, A.L.: Topology of evolving networks: local events and
universality. Physical Review Letters 85(24), 5234–5237 (2000)

16. Zager, L., Verghese, G.: Graph similarity scoring and matching. Applied Mathe-
matics Letters 21(1), 86–94 (2008)

17. Boschloo, R.: Raised conditional level of significance for the 2×2-table when testing
the equality of two probabilities. Statistica Neerlandica 24(1), 1–9 (1970)

18. Shaffer, J.P.: Recent developments towards optimality in multiple hypothesis test-
ing. Lecture Notes-Monograph Series, 16–32 (2006)

An Empirical Evaluation of Intrinsic
Dimension Estimators

Cristian Bustos1, Gonzalo Navarro2, Nora Reyes1, and Rodrigo Paredes3(B)

1 Departamento de Informática, Universidad Nacional de San Luis,
San Luis, Argentina

{cjbustos,nreyes}@unsl.edu.ar
2 Department of Computer Science, Center of Biotechnology and Bioengineering,

University of Chile, Santiago, Chile
gnavarro@dcc.uchile.cl

3 Departamento de Ciencias de la Computación, Universidad de Talca, Curicó, Chile
raparede@utalca.cl

Abstract. We study the practical behavior of different algorithms that
aim to estimate the intrinsic dimension (ID) in metric spaces. Some of
these algorithms were specifically developed to evaluate the complexity
of searching in metric spaces, based on different theories related to the
distribution of distances between objects on such spaces. Others were
originally designed for vector spaces only, and have been extended to
general metric spaces. To empirically evaluate the fitness of various ID
estimations with the actual difficulty of searching in metric spaces, we
compare one representative of each of the broadest families of metric
indices: those based on pivots and those based on compact partitions.
Our preliminary conclusions are that Fastmap and the measure called
Intrinsic Dimensionality fit best their purpose.

1 Introduction

Similarity search in metric spaces has received much attention due to its applica-
tions in many fields, ranging from multimedia information retrieval to machine
learning, classification, and searching the Web. While a wealth of practical algo-
rithms exist to handle this problem, it has been often noted that some datasets
are intrinsically harder to search than others, no matter which search algorithms
are used. An intuitive concept of “curse of dimensionality” has been coined to
denote this intrinsic difficulty, but a clear method to measure it, and thus to
predict the performance of similarity searching in a space, has been elusive.

The similarity between a set of objects U is modeled using a distance function
(or metric) d : U × U �→ R

+ ∪ {0} that satisfies the properties of triangle
inequality, strict positivity, reflexivity, and symmetry. In this case, the pair (U, d)
is called a metric space [6,21,24].

Partially funded by basal funds FB0001, Conicyt, Chile and Fondecyt grant 1131044,
Chile.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 125–137, 2015.
DOI: 10.1007/978-3-319-25087-8 12

126 C. Bustos et al.

In some applications, the metric spaces are of a particular kind called “vector
spaces”, where the elements consist of D coordinates of real numbers and the
distance is some Minkowski metric. Many works exploit the geometric properties
of vector spaces, but they usually cannot be extended to general metric spaces,
where the only available information is the distance between objects. Since in
most cases the distance is very expensive to compute, the main goal when search-
ing in metric spaces is to reduce the number of distance evaluations. In contrast,
vector space operations tend to be cheaper and the primary goal when searching
them is to reduce the CPU cost or the number of I/O operations carried out.

Similarity queries are usually of two types. For a given database S ⊆ U with
size |S| = n, q ∈ U and r ∈ R

+, the range query (q, r)d returns all the objects
of S at distance at most r from q, whereas the nearest neighbor query kNNd(q)
retrieves the k elements of S that are closest to q.

A näıve way to answer similarity queries is to compare all the database
elements with the query q and return those that are close enough to it. This
brute force approach is too expensive for real applications. Research has then
focused on ways to reduce the number of distance computations performed to
answer similarity queries. There has been significant progress around the idea of
building an index, that is, a data structure that allows discarding some database
elements without explicitly comparing them to q.

In uniform vector spaces, the curse of dimensionality describes the well-
known exponential increase of the cost of all existing search algorithms as the
dimension grows. Non-uniform vector spaces may be easier to search than uni-
form ones, despite having the same explicit dimensionality. The phenomenon
also extends to general metric spaces despite their absence of coordinates: some
spaces are intrinsically harder to search than others. This has lead to the concept
of intrinsic dimensionality (ID) of a metric space, as a measure of the difficulty
of searching it. A reliable measure of ID has been elusive, despite the existence
of several formulas.

Computing the ID of a metric space is useful, for example, to determine
whether it is amenable to indexing at all. If the ID is too high, then we must
just resort to brute-force solutions or to approximate search algorithms (which
do not guarantee to find the exact answers). Even when exact indexing is pos-
sible, the ID helps decide which kind of index to use. For example, pivot-based
methods work better on lower dimensions, whereas compact partiioning methods
outperform them in higher dimensions [6].

In this work we aim to empirically study the fitness of various ID measures
to predict the search difficulty of metric space searching. Some measures were
specifically developed for metric spaces, based on different theories related to
the distribution of distances between objects. Others were originally designed
for vector spaces and have then been adapted to general metric spaces. We
chose various synthetic and real-life metric spaces and two indexing methods
that are representatives of the major families of indices: one based on pivots
one and another based on compact partitions. Our comparison between real and

An Empirical Evaluation of Intrinsic Dimension Estimators 127

estimated search difficulty yield, as preliminary conclusions, that Fastmap [10]
and the formula by Chávez et al. [6] are currently the best predictors in practice.

2 Intrinsic Dimension Estimators for Vector Spaces

There are several interesting applications where the data are represented as
D-dimensional vectors in R

D. For instance, in pattern recognition applications,
objects are usually represented as vectors [14]. So, data are embedded in R

D,
even though this does not imply that its intrinsic dimension is D.

There are many definitions of ID. For instance, the ID of a given dataset is
the minimum number of free variables needed to represent the data without loss
of information [2]. In general terms, a dataset X ⊆ R

D has ID M ≤ D, if its
elements fall completely within an M -dimensional subspace of RD [12]. Another
intuitive notion is the logarithm of the search cost, as in many cases this cost
grows exponentially with the dimension.

Even in vector spaces, there are many reasons to estimate the ID of a dataset.
Using more dimensions (more coordinates in the vectors) than necessary can
bring several problems. For example, the space to store the data may be an
issue. A dataset X ⊆ R

D with |X| = n requires to store n × D real coordinates.
Instead, if we know that the ID of X is M ≤ D, we can map the points to R

M

and just store n × M real coordinates. The CPU cost to compute a distance is
also reduced. This can in addition help identify the important dimensions in the
original data.

There are two approximations to estimate the ID of a vector space [2,14],
namely, local and global methods. The local ones make the estimation by using
the information contained in sample neighborhoods, avoiding the data projection
over spaces of lower dimensionality. The global ones deploy the dataset over an
M -dimensional space using all the dataset information.

In this work we focus on global ID estimators. That is, we consider all the
dataset information to estimate the ID as accurately as possible. Global methods
can be split into three families: projection techniques, multidimensional scaling
methods, and fractal based methods. The last two are more suitable to extend
to metric spaces, so we have selected and adapted some representatives of these
groups.

3 Intrinsic Dimension Estimators for Metric Spaces

In this section we analyze various methods to estimate the ID of vector spaces
and others to general metric spaces. We discuss how to adapt the former to the
case of general metric spaces. Note that, since multidimensional spaces are a
particular case of metric spaces, our estimators can also be applied to obtain the
ID of D-dimensional vector spaces.

128 C. Bustos et al.

3.1 Fractal Based Methods

Unlike other families, fractal based methods can estimate non-integer ID values.
The most popular techniques of this family are Box Counting [17], which is a
simplified version of the Haussdorff dimension [9,18], and Correlation [3].

The dimension estimation by Box Counting DB of a set Ω ⊆ R
D is defined

as follows: if v(r) is the number of boxes of size r needed to cover Ω, then
DB = limr→0

ln(v(r))

ln(1
r)

.

In this method, the boxes are multidimensional regions of side r on each
dimension (that is, they are hypercubes of side r). Regrettably, even though
efficient algorithms have been proposed, the Box Counting dimension can be
computed only for low dimension datasets, because its algorithmic complexity
grows exponentially with the dimension.

Estimating the dimension by Correlation is an alternative to Box Count-
ing. It is defined as follows. Let Ω = {x1, x2, . . . , xn} ⊂ R

D and the correla-
tion integral Cm(r) = limn→∞ 2

n(n−1)

∑
1≤i<j≤n I(||xj − xi|| < r), where I(·) is

the indicator function. Intuitively, Cm(r) is the fraction of object pairs whose
distance is lower than r. So, the dimension estimation by Correlation DC is
DC = limr→0

ln(Cm(r))
ln r .

The most popular method to estimate the dimension by Correlation and
Box Counting is the log-log plot. It consists in plotting ln(Cm(r)) versus ln(r).
The dimension by Correlation is the slope of the linear section of the curve. To
estimate the dimension by Box Counting we replace ln(Cm(r)) by ln(v(r)).

In the general case of metric spaces, we do not have coordinates in general.
Thus, to adapt the Box Counting method, we consider balls of radius r, that is,
the set of objects within a distance r from a reference object o. We randomly
pick the reference objects from the dataset, and count the number B(r) of balls
of radius r needed to cover the dataset. To do so, we use the List of Clusters
(LC) index [5], whose code is available from SISAP [11], with the variant of fixed
radius and centers chosen at random. Then the ID is just the length of the LC.

To estimate the dimension by Box Counting, which in this case is Ball Count-
ing, we replace ln(v(r)) by ln(B(r)), plot ln(B(r)) versus ln

(
1
r

)
in log-log and

obtain the slope of the linear section of the curve by using linear regression with
least squares over the experimental data

(
ln(B(r)), ln

(
1
r

))
.

3.2 Distance Exponent

Traina et al. [22] discuss the problem of the selectivity estimation for range
queries in real-world metric spaces, including spatial or multidimensional
datasets as special cases. Their main finding is that several datasets follow the
so-called Power Law. They call Distance Exponent the exponent of the power
law, and show how to use it to derive formulas for estimating the selectivity
of range queries. For instance, the number of objects relevant to the query, the
number of I/Os to answer the query when the data is stored on disk, the amount
of time needed to answer the query, and so on.

An Empirical Evaluation of Intrinsic Dimension Estimators 129

To find a formula that estimates the number of neighbors of objects within
a distance r in a n-objects dataset, they introduce the following notions: (i) the
Distance Plot of a metric set is the number of object pairs at distance at most
r versus the distance r, and both axes are drawn in logarithmic scale; and (ii)
the Distance Exponent is the slope of the line that better fits the distance plot
in case it is linear for a range of scales. Using these two notions, they define the
Distance Law.

Distance Law - Given a dataset of n objects from a metric space with distance
function d(x, y), the average number of distances lower than a radius r follows
a power law; that is, the average number of neighbors nb(r) within a distance r
is proportional to rD. Formally, N · Φ(r) = nb(r) ∝ rD.

If a dataset has a metric to evaluate the distance between every object pair,
then this plot can always be drawn. They show that the distance plot has an
almost linear behavior for many databases, both real and synthetic. Building the
distance plot requires O(n2) distance computations. To reduce this cost, nb(r) is
estimated using an index [22], in particular the M-tree [7]. Since in this work we
are only interested in comparing the different ID measures, indexing the space
is not necessary and we compute nb(r) directly, considering a reference object
chosen at random from the dataset. We only determine the number of elements
at distance r from that object. The result is averaged over various choices for
the object.

3.3 Fastmap

This method arises from the proposal [13] of a fast algorithm to map objects of
any metric space onto points of a k-dimensional space (k being defined by the
user), so that the dissimilarities are preserved. Its goal is to speed up searches
in traditional or multimedia databases.

To do so, the objects are mapped onto the k-dimensional space using k feature
extraction functions, provided by domain experts [13]. The main issue is how to
define such feature extraction functions. For example, in the metric case of strings
with the edit distance [16], it is not clear which features can be considered.

For a domain expert, it is generally easier to provide a distance function to
compare objects than to provide feature extraction functions. Fastmap [10] is a
generalization of the original method [13], where the objects are mapped using
only a distance function.

Fastmap finds, given a dataset of n objects from a metric space (U, d), n
image points in a k-dimensional target space, such that the distances between
the objects in the original space are preserved as much as possible in the target
space.

For evaluating the dissimilarity preservation in the target space, a stress func-

tion is defined as follows, stress2 = (∑i,j(d̂ij−dij)
2)

(∑i,j d2
ij)

, where dij is the dissimilarity

measure (the distance of the original space) between objects oi and oj , and d̂ij

is the Euclidean distance between their respective images pi and pj . The stress

130 C. Bustos et al.

function gives the relative error that the distances in the target space suffer
on average after the transformation. Fastmap begins with an estimation that is
iteratively improved, until no additional improvement is possible.

In the metric case, we can assume that we have the n × n matrix of dis-
tances between all the dataset objects, and Fastmap must find n points in the
k-dimensional space whose Euclidean distances are close to the original matrix
of n × n distances. The crux is to assume that objects are points in some m-
dimensional space, with unknown m, and to project these points over k mutually
orthogonal directions. The challenge is to compute all these projections using
only the distance matrix. Fastmap projects the objects over carefully selected
lines. It chooses two objects oa and ob, and considers the “line” passing through
them in the original space. The projections of the objects over this line are
obtained using the cosine law :

Theorem 1 (Cosine Law). Any triangle
�

oaoiob satisfies:

d(ob, oi)2 = d(oa, oi)2 + d(oa, ob)2 − 2x′
id(oa, ob). (1)

Eq. 1 can be solved for x′
i to compute the projection of object oi with the

formula x′
i = d(oa,oi)

2+d(oa,ob)
2−d(ob,oi)

2

2d(oa,ob)
.

Thus, the input of Fastmap is a set S of size n and, in each iteration, it
computes the coordinates of all the n objects over the new axis. So, after k
iterations, it produces a k-dimensional target space S′ where each object oi ∈ S
is mapped to a k-coordinate vector pi = (x′

i,1, x
′
i,2, . . . , x

′
i,k) ∈ S′, where x′

i,j is
the j-th projection of the image pi of the object oi.

In our case, we want to estimate the number of projections needed so that the
target space reaches a mapping with a small enough stress, that is, preserving
the distances sufficiently well. Thus, we modify the Fastmap algorithm so that
it computes the stress of the target space after each new dimension is added. If
the difference between the current and the previous stress values is significative,
we compute another projection (thus increasing the dimensionality of the target
space). Otherwise, the current dimension of the target space is reported as the
estimation of the ID of the original metric space.

3.4 Intrinsic Search Difficulty

Chávez et al. [6] introduced a measure of the intrinsic complexity of searching
in general metric spaces. It is easy to estimate and independent of the search
algorithm.

Several authors [1,4,8] have proposed to use the distance histogram to char-
acterize the hardness of searching in arbitrary metric spaces, yet the cost was
tailored to a specific index. Instead, this measure [6] depends only on the his-
togram and not on any assumption on the indexing method.

The intuition behind this measure is that, in random vectors in D dimensions,
the histogram has a larger mean μ and a smaller variance σ2 as D increases. In
fact, it holds D = c · μ2/σ2 for some constant c [23]. Thus, the same formula

An Empirical Evaluation of Intrinsic Dimension Estimators 131

could be used to estimate a dimension D from the mean and variance of the
histogram of distances in a general metric space. We do not have the histogram
of the whole universe U, but we can approximate it using the histogram of the
dataset S ⊂ U.

Definition: Let μ be the mean and σ2 be the variance of the histogram of
distances of a metric space. Then, its intrinsic search difficulty is ρ = μ2

2σ2 .
An obvious advantage of this measure, which has contributed to its popular-

ity, is that it is easy to compute from a reasonable sampling of pairs in S. Other
techniques require more complex and expensive computations.

Pestov [19] presents a system of three axioms an intrinsic dimension function
must satisfy. He proves that the intrinsic dimension measure ρ satisfies a weak
version of these axioms. Later [20], he introduces a set of goals an intrinsic
dimension function should fulfill, and ρ achieves many of them.

As the measure ρ has been designed for general metric spaces, we use it as is.
We consider the dataset S and we compute all the distances d(x, y),∀ x, y ∈ S.
Then we compute the average μ = 1

n2

∑
x,y∈S

d(x, y) and the variance σ2 =

1
n2

∑
x,y∈S

(d(x, y) − μ)2. Finally, we obtain the value of ρ = μ2

2σ2 and report it

as the ID of the metric space.

4 Experimental Results

We evaluate experimentally the four ID estimators described, on general metric
spaces. We consider two kinds of metric spaces, depending on the data source:

Synthetic: these are spaces generated artificially so that they present some
interesting characteristic to be evaluated. For instance, uniformly distributed
vectors in R

D with known dimension.
Real world: these are metric spaces obtained from real-world applications. For

instance, a feature vectors space of images obtained from a NASA image set.

4.1 Synthetic Metric Spaces

These are vector spaces with Euclidean distance. They are treated as metric
spaces, as we do not consider the coordinate information. A first set is formed
by vectors with uniform distribution, so that the representational dimension
matches the ID. Here we can test the estimators in a case where the ID is
known. A second set is formed by vectors with Gaussian distribution, so that
the representational dimension is greater than the ID (the more clustered is the
space, the lower is the ID). The distance is also Euclidean. Here we aim to check
whether the estimators give lower values as the ID decreases.

132 C. Bustos et al.

Uniformly Distributed Vectors with Euclidean Distance. We generate
four datasets of 100,000 vectors uniformly distributed in the unitary cube [0, 1)D,
with D = 5, 10, 15 and 20. The spaces are called C5, C10, C15 and C20,
respectively.

Fig. 1(a) depicts the estimations for these four metric spaces. As it can be
seen, the Fractal estimator (Ball counting) is insensitive to the correct dimension.
The Distance Exponent increases with D, but not proportionally. The other two
estimations grow at the same rate of D, with Fastmap matching it almost per-
fectly and Intrinsic Search Difficulty showing a consistent factor multiplying D.

Search degradation as ID grows. To verify that the dataset ID is responsible
of the search degradation, we pick C5 and extend its vectors with zeroes to
produce spaces with 10, 15 and 20 representational dimensions, and study the
search performance over it.

We perform 10 executions of the algorithms, building the index with 90%
of the database elements, and reserving the remaining 10% (chosen at random)
for the queries. So, the query objects do not belong to the index. We average
the results over the 10 executions. In each execution, the objects in the metric
space are permuted at random. Therefore, each of the 10 indices uses a different
dataset S, and the query objects are also different.

We use a pivot index and a compact partition index. For the pivot index
family, we use the generic pivot algorithm. We choose at random a set of pivots
P = {P1, P2, . . . , Pk} ⊂ S of size |P| = k. We store the kn distances between
pivots and objects, and use them to filter out candidates using the triangle
inequality. For each space, we experimentally determine the number of pivots
that obtains the best search performance. Thus, the results shown for each case
correspond to the best possible ones for this method, in the corresponding metric
space.

For the case of compact partition based algorithms, we consider the LC,
which is one of the best indexes for medium and high dimensions [5]. We use
the LC variant that has a maximum size for each cluster. For each metric space
considered, we experimentally determine the cluster size whose perfomance is
the best, and this is the result shown in the plots.

In Fig. 2, we show the cost of range queries retrieving 0.01%, 0.1% and 1%
of the vector dataset per query, using the generic pivot index (Fig. 2(a)) and
the LC (Fig. 2(b)). These results are compared with the ones for searching C10,
C15 and C20. Both plots show that the four spaces of ID 5 overlay each other
(independently of the representational dimension of the space), while the curves
for C10, C15 and C20 show the usual degradation.

Gaussian Distributed Vectors with Euclidean Distance. We generate
100,000 vectors in R

D with mean μ = 1 and variance σ2 = 0.1, for D = 5, 10, 15
and 20. In these spaces, there are no, a priori, clusters of elements. These spaces
are called G5, G10, G15 and G20.

An Empirical Evaluation of Intrinsic Dimension Estimators 133

 0

 5

 10

 15

 20

 25

 30

C20C15C10C5

E
st

im
at

io
n

of
 d

im
en

si
on

al
ity

Metric space

Estimations of dimensionality for uniform spaces

Fractal
Exponent
Fastmap
Intrinsic

(a) Uniform spaces.

 0

 5

 10

 15

 20

 25

G20G15G10G5G101

E
st

im
at

io
n

of
 d

im
en

si
on

al
ity

Metric space

Estimations of dimensionality for gaussian spaces

Fractal
Exponent
Fastmap
Intrinsic

(b) Gaussian spaces.

Fig. 1. Comparison of dimensionality estimations for synthetic metric spaces.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage retrieved

Search cost per element with Pivots, n = 100,000 uniform vectors

Dim. 5, Rep. 5
Dim. 5, Rep. 10
Dim. 5, Rep. 15
Dim. 5, Rep. 20

Dim. 10, Rep. 10
Dim. 15, Rep. 15
Dim. 20, Rep. 20

(a) Generic pivot index.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage retrieved

Search cost per element with LC, n = 100,000 uniform vectors

Dim. 5, Rep. 5
Dim. 5, Rep. 10
Dim. 5, Rep. 15
Dim. 5, Rep. 20

Dim. 10, Rep. 10
Dim. 15, Rep. 15
Dim. 20, Rep. 20

(b) List of clusters.

Fig. 2. The searching effort does not vary when the ID of the space does not change.

We also generate 100,000 vectors in R
101 with mean μ = 1 and variance

σ2 = 0.1 with 200 clusters (the cluster centers are uniformly distributed in the
space). This space is called G101.

Fig. 1(b) shows the estimations obtained with Fractal, Distance Exponent,
Fastmap, and Intrinsic Search Difficulty, for these metric spaces. Again, the
Fractal estimation fails in these spaces, being insensitive to the dimension, and
the Distance Exponent grows very slowly. The other two measures grow propor-
tionally to D as they should, although Fractal is less sensitive to the fact that
the distribution is not uniform. Instead, the Intrinsic Search Difficulty gives
markedly lower values than in the uniform case.

4.2 Real Metric Spaces

We pick four spaces from the Metric Library [11] 1 in order to estimate their IDs
with the four ID estimators. The selected spaces are varied:

Dictionary: it is a dictionary of 69,069 English words. In this space, we use a
discrete function, the Edit Distance or Levenshtein Distance [16].

1 Available at http://www.sisap.org/library/dbs/.

http://www.sisap.org/library/dbs/

134 C. Bustos et al.

NASA: this is a set of 40,700 images from NASA, represented as feature vectors
of 20 real coordinates per vector, under the Euclidean distance. They were
generated from images downloaded from the NASA site.

Histograms: this is a dataset of 112,682 histograms of medical images, each one
composed by 8-D color histograms of 112 real components. As any quadratic
form function can be used as the distance in this case, we also have chosen
the Euclidean distance, as it is the simplest alternative.

Documents: this space has 1,265 documents, represented as vectors accord-
ing to the vectorial model of documents used in the Information Retrieval
field. To compare documents we use the cosine distance. Each vector has
a coordinate for each vocabulary term in the colection, and documents can
be seen as points in a vector space of high representational dimension. The
documents are files obtained form the trec-3 collection.

To measure the intrinsic hardness of the searching, we consider the same two
indices as before, using range queries:

Dictionary: As the metric is discrete, we use radii 1, 2, 3, and 4, retrieving on
average about 0.003%, 0.037%, 0.326%, and 1.757% of the database.

NASA: In this continuous metric we use radii 0.012, 0.285, and 0.53, retrieving
on average approximately 0.01%, 0.1%, and 1% of the dataset.

Histograms: This metric is also continuous. To retrieve on average approxi-
mately 0.01%, 0.1%, and 1% of the dataset, we use query radii 0.051768,
0.082514, and 0.131163.

Documents: The distance is also continuous. We use query radii 0.14, 0.15,
and 0.195, which retrieve on average 0.01%, 0.1%, and 1% of the database.

Figs. 3 and 4 show the correlation between the search cost with the Pivot
index and the List of Clusters, respectively, and the estimation reported for each
considered ID estimator. For lack of space, we only show the results of the search
that retrieve 0.01% and 0.1% of the database.

We plot the ratio between the logarithm of the search cost and the estimations
of the ID. This measures how close is the logarithm of the predicted ID to the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with Pivots for real metric spaces, 0.01% retr.

Fractal
Exponent
Fastmap
Intrinsic

(a) Retrieving 0.01%.

 0

 1

 2

 3

 4

 5

 6

 7

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with Pivots for real metric spaces, 0.1% retr.

Fractal
Exponent
Fastmap
Intrinsic

(b) Retrieving 0.1%.

Fig. 3. Comparison of ID estimators for real metric spaces, using Pivots.

An Empirical Evaluation of Intrinsic Dimension Estimators 135

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with LC for real metric spaces, 0.01% retr.

Fractal
Exponent
Fastmap
Intrinsic

(a) Retrieving 0.01%.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with LC for real metric spaces, 0.1% retr.

Fractal
Exponent
Fastmap
Intrinsic

(b) Retrieving 0.1%.

Fig. 4. Comparison of ID estimators for real metric spaces, using List of Clusters.

actual search costs: if the search cost is consistently s = cd, where d is the
predicted ID and c is a constant, then the plots should always be close to log c.
Thus the best methods are those that give roughly the same value regardless of
the query radius and index used.

As on the synthetic spaces, Fastmap and the Intrinsic Search Difficulty turn
out to be the best predictors for both types of indices. The Distance Exponent
performs generally well, except for the NASA dataset.

5 Conclusions

The intrinsic dimension (ID) of metric spaces measures their search difficulty,
independently of the type of index used. Computing the ID is useful to determine
whether a metric space can be indexed at all (or we must resort to sequential
scanning or approximate methods), which kind of index would perform better,
and what search performance to expect.

In this paper we have analyzed several ID estimators in a practical per-
spective. Some were defined for D-dimensional coordinate spaces, and we have
adapted them to the more general metric spaces. We compared their predictions
with the actual search cost using various synthetic and real-life metric spaces,
so as to verify which are better at predicting the search difficulty.

Although our results are preliminary, they suggest that the best perform-
ing measures in practice are Fastmap [10] and the simple measure proposed by
Chávez et al. [6]. Instead, the Distance Exponent [22] and our generalization of
Box Counting [17] did not perform so well.

The reason for the failure of Box Counting may be that it needs an
extremely large number of objects to correctly estimate D. An estimation [2]
is D < 2 log10 N , which in our case implies that the method could have worked
well up to D = 10 only. However, in our experiments the adapted method failed
even in this case. It may be that our adaptation to computing it using the List
of Clusters [5] is too crude (as other clustering methods may cover the dataset
with fewer balls). In any case, this shows that the method is not easy to apply,

136 C. Bustos et al.

but we plan to further study this issue with more points and other clustering
methods. The reason for the failure of the distance exponent, which does not
present issues to be adapted, is also unclear and deserves further research.

We also plan to analyze other estimators. For instance, we can study the cor-
relation dimension [3], the concentration dimension [19], or the classical Principal
Component Analysis (PCA) method [15] (which is defined on vector spaces).

References

1. Brin, S.: Near neighbor search in large metric spaces. In: Proc. 21st Conf. on Very
Large Databases (VLDB 1995), pp. 574–584 (1995)

2. Camastra, F.: Data dimensionality estimation methods: a survey. Pattern
Recognition 36(12), 2945–2954 (2003)

3. Camastra, F., Vinciarelli, A.: Estimating the intrinsic dimension of data with a
fractal-based method. IEEE TPAMI 24(10), 1404–1407 (2002)

4. Chávez, E., Marroqúın, J.: Proximity queries in metric spaces. In: Proc. 4th
South American Workshop on String Processing (WSP 1997), pp. 21–36. Carleton
University Press (1997)

5. Chávez, E., Navarro, G.: A compact space decomposition for effective metric index-
ing. Pattern Recognition Letters 26(9), 1363–1376 (2005)

6. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: Proc. 23rd VLDB, pp. 426–435 (1997)

8. Ciaccia, P., Patella, M., Zezula, P.: A cost model for similarity queries in metric
spaces. In: PODS, pp. 59–68 (1998)

9. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev.
Mod. Phys. 57, 617 (1985)

10. Faloutsos, C., Lin, K.-I.: Fastmap: a fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In: Proc. 1995 ACM SIGMOD
Intl. Conf. on Management of Data, pp. 163–174. ACM Press (1995)

11. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007). http://www.
sisap.org/Metric Space Library.html

12. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic
Press Professional Inc, San Diego (1990)

13. Jagadish, H.V.: A retrieval technique for similar shapes. In: SIGMOD Conference,
pp. 208–217. ACM Press (1991)

14. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc, Upper
Saddle River (1988)

15. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics.
Springer (2002)

16. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

17. Mandelbrot, B.: Fractals: Form, Chance and Dimension. W. H. Freeman, San
Francisco (1977)

18. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge
(1993)

19. Pestov, V.: Intrinsic dimension of a dataset: what properties does one expect? In:
Intl. Joint Conf. on Neural Networks (IJCNN), pp. 2959–2964 (2007)

http://www.sisap.org/Metric_Space_Library.html
http://www.sisap.org/Metric_Space_Library.html

An Empirical Evaluation of Intrinsic Dimension Estimators 137

20. Pestov, V.: An axiomatic approach to intrinsic dimension of a dataset. Neural
Networks 21(23), 204–213 (2008). Advances in Neural Networks Research: 2007
International Joint Conference on Neural Networks (IJCNN)

21. Samet, H.: Foundations of Multidimensional and Metric Data Structures (The
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Mor-
gan Kaufmann Publishers Inc., San Francisco (2005)

22. Traina Jr., C., Traina, A.J.M., Faloutsos, C.: Distance exponent: a new concept for
selectivity estimation in metric trees. Research Paper 99–110, School of Computer
Science, Carnegie Mellon University, 03/1999 (1999)

23. Yianilos, P.: Excluded middle vantage point forests for nearest neighbor search. In:
DIMACS Implementation Challenge, ALENEX 1999, Baltimore, MD (1999)

24. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer (2006)

A Belief Framework for Similarity Evaluation
of Textual or Structured Data

Sergej Znamenskij(B)

Ailamazyan Program Systems Institute of RAS,
Pereslavl-Zalesskii, Yaroslavl Region 152021, Russia

svz@latex.pereslavl.ru

Abstract. This paper discovers the major shortcomings of the Lev-
enshtein Distance method, the longest common subsequence (LCS)
method, and other general approaches to finding common parts, includ-
ing the unjustified fragmentation of selected parts, the lack of sensitivity
to transposition of large blocks, and no mechanisms to prevent acciden-
tal matches. The belief function theory leads to a flexible framework for
similarity evaluation.The framework is aimed on new similarity models
which are free of described shortcomings and can be effectively calcu-
lated. A sketch of better sequence alignment algorithm illustrates the
framework’s utility.

Keywords: Levenshtein distance · Longest common subsequence ·
Sequence alignment · Change detection · Graph similarity · Diff util-
ity · Fuzzy measure · Belief function

Introduction

The Levenshtein Distance, which measures the similarity of two sequences of
objects, is widely used in various tools. Its quantification involves a search for a
common subsequence of objects, which determines how many elements need to
be deleted or inserted in order to obtain the second specified sequence from the
first one.

As there may be multiple common subsequences, the longest common subse-
quence (LCS) is chosen among them to minimize the edit distance (also called
Damerau-Levenshtein Distance) — the total number of objects deleted and
inserted.

It has long been known that the longest subsequence may not be the best one.
In many cases, the lengths of sequential deletions and (or) insertions (substitu-
tions) series are also accounted while quantifying the edit distance. Therefore,
the chosen subsequence may not be the longest one eventually; nevertheless, the
practical outcome is often improved.

S. Znamenskij—This work was performed under financial support from the Govern-
ment, represented by the Ministry of Education and Science of the Russian Federa-
tion, within the scope of Project No. FMEFI60414X0138.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 138–149, 2015.
DOI: 10.1007/978-3-319-25087-8 13

A Belief Framework for Similarity Evaluationof Textual or Structured Data 139

Identifying the longest common subsequence can be inefficient in practical
applications as well [1]. For example, the following sequences of letters and spaces

“ineffective common efforts”
“self-finance comes ineffective”

have the nonsensical longest common subsequence “effie com efft”, instead of
the obviously meaningful long common substring “ineffective”. When track-
ing changes in a source code file, this approach yields (see, for example, [2])
hardly meaningful repeated strings that are either empty or contain a single
character, usually a curly brace, identified as common parts.

Even one or two decades ago, it was possible to edit a macro in LATEX and use
diff or another similar utility to track changes in logs in order to analyze errors
in the test file via the \tracingall command. But as the size of logs increased,
the change tracking tool virtually became ineffective because it yielded a useless
long chain of short, frequently repeated fragments as a common part of long
files. For exactly the same reasons, change tracking in logs generated by tracing
system calls and signals (strace), which had been quite helpful during the era of
short logs, also ceased to function.

This situation calls for a study in order to understand whether the length of
a common subsequence should be substituted by another criterion that better
reflects the infortmativeness of the selection.

A sense of the ”similarity” term may differ even for textual data: one can
consider similarity of character encodings, languages, styles of writing, subjects,
ideas and so on. This paper treats similarity only as an expected value of most
valuable common part. Both the common part identification and the identifica-
tion of its value may also have different meaning. For example, have the strings
“expected value” and “value expected” common part consisting of two words or
not, depends on the common part meaning.

This paper aims moving from a choice between a too slow optimal algo-
rithms and fast unsafe heuristic algorithms to a framework for constructing a
meaningful problem formulation with fast and reliable solution algorithms. The
framework should contain a general plan for the convenient formulation of sim-
ilarity problem. This plan must be extremely flexible, giving a chance to select
a formulation which can be solved with a fast parallel reliable algorithm.

Starting at a measuring of common subsequence value, we need a function μ
which takes a subsequence and return appropriate positive number. It is the set
function like the cardinality and the measure. If it is shift invariant and additive,
it directly leads to LCS.

Replacing additivity by superadditivity, we comes to belief function [3], also
known as fuzzy measure [4] or (non-harmonic) capacity [5].

A finite sequence appears to be a directed graph of linear ordered finite set.
Next we introduce possibly generic definition of believed similarity framework.
The section 2 discuss a problem of choice for the proper belief function and
describe large application areas of Levenshtein distance (and also LCS), where
it sometimes gives obviously improper solution.

140 S. Znamenskij

The exact proper solution is known to be too expensive. The section 3 con-
tains some explanations how the framework lead to very scalable and robust
similarity algorithms. Unfortunately they are not so simple to fit this paper.

1 Framework Definition

Let’s start with convenient notation of commonly used terms to define common
part of two graphs which is a base for similarity.

A graph X = (Xo,Xi) is a set of objects (vertices and edges) Xo = Xv ∪Xe

with the incidence relation Xi ⊂ Xv × Xe such that

∀e∈Xe
1 �

∣∣{v ∈ Vx

∣∣ (v, e) ∈ Xi

}∣∣ � 2 . (1)

The number 2 in the last formula can be replaced by greater value if hyper-
graphs are wanted. A map ϕ of graph X to graph Y is a map ϕ : Xo → Yo such
that

(v, e) ∈ Xi ⇐⇒ (ϕ(v), ϕ(e)) ∈ Yi . (2)

A map is isomorphic if it puts Xo to one-to-one correspondence onto Yo. We
note G the set of all graphs, O = V ∪E the set of all their objects (vertices and
edges), and Φ(X,Y) the group of all isomorphic maps from X ∈ G to Y ∈ G.

A graph X is called to be a subgraph of Y and write X ⊂ Y if Xo ⊂ Yo

and Xi = Yi ∩ (Xv ×Xe). The set of all subgraphs of graph X is usually noted
as 2X .

Definition 1. A common part p of graphs X,Y means a triple of p1 ⊂ Xo,
p2 ⊂ Yo and p3 ∈ Φ(p1, p2) We note P(X,Y) the set of all common parts for
X,Y . A subset P(X,Y) ⊂ P(X,Y) is Φ-invariant if both

∀ψ∈Φ(X,Z) (p1, p2, p3) ∈ P(X,Y) ⇐⇒ (ψ(p1), p2, ψ−1 ◦ p3) ∈ P(Z, Y) (3)

and

∀ψ∈Φ(Y,Z) (p1, p2, p3) ∈ P(X,Y) ⇐⇒ (p1, ψ(p2), p3 ◦ ψ−1) ∈ P(X,Z) . (4)

As far as finite sequences or related objects are compared for similarity iden-
tification, the inclusion X ⊂ Y appears to be a very special similarity case, just
because (X ⊂ Y)&(Y ⊂ X) ⇐⇒ X = Y . We doomed to miss it if we focus only
on symmetric similarity functions such as metric. For example, if we compare
the versions of document, the deleting of the last half is a simple change, but
the opposite isn’t.

The classic idea is that the believed property is a total amount of all features
of X which potentially can be regarded as common. Believed similarity is just
a common features amount. Then the difference looks like distance but may be
asymmetric. It satisfies the basic similarity inequalities:

S(X,X) � S(X,Y) � S(Y, Y) � S(X,Y) + S(Y,Z) − S(X,Z). (5)

A Belief Framework for Similarity Evaluationof Textual or Structured Data 141

The last inequality is equivalent to triangle equality

dq(X,Y) + dq(Y,Z) � dq(X,Z) (6)

for an asymmetric similarity distance function dq(X,Y) = S(X,X) −
S(X,Y) and also for symmetric similarity distance

d(X,Y) =
dq(X,Y) + dq(Y,X)

2
=

S(X,X) − S(X,Y) + S(Y, Y) − S(Y,X)
2

.

(7)
If similarity happen to distinguish objects (dq(X,Y) = dq(X,X) =⇒ X ⊂

Y), then d is a metric and dq is a quasi-metric1 [12,13].

Definition 2. We call a believed similarity framework (BSF) any fixed
triple of following grounds:

1. An object similarity function s : (V × V) ∪ (E × E) → R+ which satisfies
basic similarity inequalities 5.

2. A Φ-invariant subset of acceptable common parts P(X,Y) ⊂ P(X,Y).
3. A Φ-invariant superadditive fuzzy measure also called belief function

μ over any X ∈ G which maps subgraphs to their informativity values μ :
2X → R+.

The first usually initially given only as a relation between vertex elements
or as a similarity matrix [9]. It can incorporate information on local structure
similarities (e.g. vertex valences or bridges).

The second implements beliefs related to structures of common parts (should
they be connected or not, linearly ordered or not, embeded or minor, etc.) and
may be asymmetric.

The third (μ) either reflects a priori beliefs and may also benefit from learn-
ing. It effects in reliability and quality of application result. A Φ-invariance of μ
means ∀X∈G∀ϕ∈Φ μ(A) = μ(ϕ(A)).

Definition 3. BSF identifies a weight w of common part p ∈ P(X,Y) for
graphs X and Y as the Choquet integral [5] of object similarity sp(o) = s(o, p3(o))
over μ

w(p) = (C)

∫
p1

sp dμ (8)

and believed similarity S(X,Y) = maxp∈P(X,Y) w(p).

Here the Choquet integral can be calculated by formula

w(p) = (C)

∫
p1

sp dμ =
∑

A⊂p1

m(A) min
o∈p1

sp(o) (9)

where m is the the Möbius transform of μ

1 Don’t mix with quasimetric - this term by mischance has different meaning!

142 S. Znamenskij

m(A) =
∑
B⊂A

(−1)|A\B|μ(B) (10)

which is non-negative for superadditive fuzzy measure, and the original set func-
tion can be recovered from m through the zeta transform [14]:

μ(A) =
∑
B⊂A

m(B) . (11)

Here m(A) is the expected value of special information contained in A which
does not appear in its subsets. For brevity we shall call m(A) significance of A
for our belief function. As a result of learning it may reflect a set of graphs G
as a number of occurences μ(A) =

∣∣{G ∈ G ∣∣ ∃ϕ∈Φ ϕ : A → G
}∣∣ for use in

similarity search.

Theorem 1. The believed similarity S satisfies basic similarity inequalities (5).

Proof. The first two inequalities immediately follows from the definitions. Let’s
prove the last inequality.

Let’s fix for each A,B ∈ {X,Y,Z} the common part pmax(A,B) which has a
maximal weight w. We can select their intersection in Y and construct a common
part pc(X,Z) from intersection (pmax(X,Y))2 ∩ (pmax(Y,Z))1 and their maps.
By a similarity inequalities for object similarity function we get

w(pmax(Y, Y)) � w(pc(X,Z)) = w(pmax(X,Y))+w(pmax(Y,Z))−w(pmax(X,Z))
(12)

just from reduction of similar terms after applying the formula 9 and a basic
similarity inequalities for object similarity function.

Computational complexity is the main challenge for graph similarity algo-
rithms. Non-polinomial complexity of the search for the best common part of
graphs is mentioned in a number of publications, for example in [15]. Nonetheless,
the big data applications depends on algorithms of nearly linear time complexity.

To speed up the algorithm, while preserving the required accuracy and reli-
ability, it is customary to slightly modify the definition of the problem. Instead
of a precise solution, the accelerated algorithm most often provides an approxi-
mate one. “Greedy” algorithms, which are way off the mark sometimes, are also
popular.

In order to use the framework in applications we have to get a special frame-
work grounds to match the concrete practical needs in unknown fancy way. The
framework needs careful preparation for use based on research of framework
grounds under discovering of peculiarities of the practical problem and ideas of
effective algorithm development.

2 Selection of a Belief Function

Let’s apply the believed similarity framework to the diff utility problem which
was already mentioned in the introduction.

A Belief Framework for Similarity Evaluationof Textual or Structured Data 143

We focus on the basic probability mass assignment to a subsets m which is
known to be a general approach to define μ. The idea is to select subsets with a
special meaning and identify their significance.

2.1 Subsets with Special Significance

Table 1. Informative parts in applications of LCS and Levenshtein distance

Applied task: Significant part

Data comparison and
synchronization of:

- LATEX documents

word, sentence, phrase,
paragraph, or section,

balanced code fragment
- XML code tag, node, branch
- file systems file, directory, block
- source code procedure, function, block
- system logs function call trace

Similarity search for:
- fuzzy matching of records

in textual database
geographic name,

standard term or combination
- melodic theme in a music

records database [6]
particular fragment of the composition

- recognizing human speech and
voices of birds and animals [7,8]

phoneme, syllable, word, phrase

Plagiarism detection text fragment containing an idea
Clustering textual data simple or compound term
Analyzing genetic information RNA complementary fragments . . .

The Table 1 outlines typical examples of informative parts from various areas
of applications. They leads to important observations:

1. Exact identification of each subset significance seems to be impossibly hard.
2. All identified significant subsets are substrings.
3. Significant substrings may be long.

We may limit for mentioned in the Table 1 consideration of significant subsets
by the class of substrings as finite linear ordered set graphs. In order to simplify
identifying of substring significance, we consider m to be a function of its length
m(A) = p(|A|) and compare different approaches.

2.2 Longest Common Subsequences as a Belief Function

The classic LCS approach obviously fits into the simplified scheme. If m is equal
to 1 for a singletons and vanishes on other sets, then μ(A) = |A|. It explains why

144 S. Znamenskij

LCS works correctly only when contributions of long matches can be neglected,
which occurs more frequently when short sequences are compared.

If the cost of deleting or inserting an element is equal to half the cost of
replacing the element, then the Levenshtein Distance is explicitly expressed in
terms of the LCS distance and therefore, represents the sum of contributions
(equal to 1) of substrings containing 1 character.

2.3 Linear Gaps Accounting as a Belief Function

The Needleman–Wunsch algorithm [9] targets approximate matches and adds
the quantified similarity of the values in the identified common subsequence to
the sum of the values of a linear2 (affine) function of the gap size.

Remark 1. Let the sequences to align A and B consist of common part C and
indels and n2 is a total number of strings in C of length 2. Suppose that there
is no replacement, insertions and deletions are separated. Then

1. The common part contains |C| strings of lengths 1.
2. The total amount of gaps (new-indel cost) is equal to number of substrings

in C, which is equal to |C| − n2.
3. The total number of gaps (extend-indel cost) is equal to |A| + |B| − 2|C| -

n2.

Therefore the Levenshtein score for |C| with linear gap function is equal to linear
combination of n1 = |C|, n2 and |A| + |B|.

We see that the score of linear gap function depends linearly on the sum
of the contributions of the strings with the lengths of 1 and 2. Therefore, the
enhancement of LCS method by the linear gap function accounting, could also
lead to unjustified fragmentation of the common subsequence.

For instance, for the strings

“mathematical informatics”
“informatics for mathematics”

the common subsequence, “matic formatics”, as compared to “informatics”,
has more common substrings with the lengths of 1 to 3, but fewer common
substrings with the lengths of 5 to 11. One does not need to have a dictionary or
know the language in order to reasonably select “informatics” based on these
numbers. It is sufficient to be aware of the scarcity of English words shorter than
four letters among major parts of speech, and compare the chances of finding a
common word.

2 Use of nonlinear dependencies does not produce any major quality improvement
[10,11].

A Belief Framework for Similarity Evaluationof Textual or Structured Data 145

2.4 Longest Common Substrings as a Belief Function

If the dependence of the contribution on the length of strings grows very quickly,
then it is often possible to speed up the search for the most informative common
part. For example, SCM Revlog and Mercurial [2] feature a heuristic “greedy”
algorithm that first finds the longest substrings and then, if their choice is unique,
these substrings are definitely part of the final solution. The algorithm is in use
and often helps find precise solutions to practical optimization tasks.

Striving to avoid fragmented common subsequences, the algorithm goes to
the opposite extreme: searching for the sole longest common substring sometimes
leads it away from a much more informative common subsequence consisting of
an arbitrary large number of substrings that are almost as long. For example,
given the strings

“31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20”
“31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20”

it will identify the following common subsequence “1, 2”, instead of much more
informative “31,29,28,27,26,25,24,23,22,21,20”.

The algorithm yields the optimal subsequence for a problem when the sub-
string of any length has a contribution greater than any sequence of shorter
substrings. A sufficient condition for this is obviously a rapid growth of con-
tributions with increasing length, accelerating along with the growth of |S1|
and |S2|. It is sufficient, for example, that the following inequality hold true:
p(n + 1) > (1 − 1

n)p(n)|S1|. So a simple definition m(A) = p(|A|) = |S1||A| is
sufficient.

2.5 The Belief Function for All Substrings Accounting

As we have seen, classic sequence comparison algorithms can be divided into two
groups. The first one focuses on short common substrings and finds fragmented
common subsequences. The second one, to the contrary, focuses on the longest
common substrings, and sometimes the resulting match is too scarce.

In order to account for the substrings of all lengths, let us simply assume
the significance of all the substrings to be equal m ≡ 1. Then, the subsequence
containing the maximum possible number of common substrings (NCS) will be
the optimal one [1].

The number of all substrings in a subsequence consisting of disjoint substrings
with lengths l1, . . . lk is equal to

n =
k∑

j=1

lj(lj + 1)
2

. (13)

As the number of strings increases quadratically along with the size of the
graph, one can scale the similarity measure to some comparable with string
lengths value. The value may be equal to the size of the string with the obtained
S = n:

146 S. Znamenskij

l(S) =
√

2S + 1 − 1 . (14)

Be aware that this non-linear scale may disrupt the basic similarity inequalities.
The Table 2 illustrate the NCS method of quantifying similarity of sequences

is free from the above-noted shortcomings of the classic methods (n1 and n2

were described in subsection 2.3).

Table 2. Scores for sample selections

Common part selection n1 n2 S l(S)

“effie com efft” 13 7 25 6.1
“ineffective” 10 9 55 10.0

“matic formatics” 14 11 52 9.3
“informatics” 10 9 55 10.0

“1, 2” 3 2 6 3.0
“31,29,28,27,26,25,24,23,22,21,20” 36 24 72 11.0

Remark 2. In the absence of longest common substrings with the length between
l and 2l − 1, when identifying strings of the length 2l − 1 and above, contained
in the NCS-optimal common part, shorter strings can be skipped without effect
to total weight.

This statement points to the possibility of first identifying a sufficient number
of the longest strings, and then updating the solution found by accounting for
shorter ones. Its proof directly follows from the lemma below.

Lemma 1. Let’s assume that, when comparing two sequences, there were no
common substrings in the length range between l and 2l − 1 for some natural
number l > 0. Then, for any NCS-optimal subsequence S and any common
substrings longer than l there is a substring s′ ⊂ S longer than l, contained
entirely in S and having a non-empty intersection with s.

Let’s prove the lemma by contradiction. Let only strings of length l or less inter-
sect with s. Then all strings intersecting with s are contained in an enveloping
string of the length 4l − 3. Because the length of each of the intersecting strings
does not exceed l, each of their characters provides a contribution of not more
than l+1

2 , and their joint contribution does not exceed (4l − 3) l+1
2 , which is

less than the contribution of s, equal to (2l − 1)l. The contradiction proves the
lemma.

2.6 Semi-structured Data and Block Transposition

Even without a dictionary, contributions of substrings could be assigned in a
more distinctive way. For example, when comparing ordinary text, a substring

A Belief Framework for Similarity Evaluationof Textual or Structured Data 147

containing spaces and finishing in the middle of a word, or a substring finishing
right before a space and clearly containing parts of two different sentences (a
capital letter after a lower-case word followed by a period and a space), is not
significant. It seems not to be so difficult to write simple and fast algorithm
which discounts unfinished words and sentences from a large weight fragments.

The same idea is applicable to comparing software source code files, texts
in the XML format or other poorly structured information, relatively simple
rules could be used to identify balanced substrings — that is, the substrings
with both opening and closing brackets as well as both opening and closing
tags. The difficulty of accounting for regular expressions that are masked or
contained in comments, character substrings or text could be partially overcome
by assignment of fractional contribution values in doubtful cases.

This approach to assignment of contributions could help to improve the qual-
ity of the algorithms applied to identify common parts. Particularly noticeable
improvements could be derived with respect to the usability of visual text com-
parison tools; moreover, there would be an opportunity to account for transpo-
sitions of large blocks of text.

The longer string accounting will help to quantify similarity of subsequences
in such a way that transposition of large blocks would have a smaller negative
impact on similarity than removal of one and insertion of a completely different
substring of the same size in another location. For example, the string “next
run” is more similar in this sense to “run next” than to “new next”.

3 Acceptable Parts and Algorithm Performance

Transposition of large blocks is one of the basic capabilities of text editors, yet
the current edit distance method cannot deal with it. The detection of large
block transposition largely depends on appropriate acceptable common part
selection. The commonly used restriction of order preserving by isomorphism
pφ on acceptable common parts suppress block transposition detection and sim-
plifies calculations. Remembering a dominant significance of longer substrings,
suppose most valuable common parts to be identified in three stages also in the
alternative case P(X,Y) = P(X,Y):

1. Searching for all the long common substrings, including calculation of
believed significance m and rough sorting by m.

2. Selecting the optimal subset of non-conflicting significant long strings in the
order: the subset with more strings of large significance is considered earlier.

3. Extending the identified common part by adding common strings in its close
proximity.

The last item means reducing the set of acceptable parts to only ones without
far isolated short common substrings. This provide both algorithm accelerating
and random noise filtering.

The only known way to reflect dominant significance of longer substrings is
the NCS solution which has too expensive for modern applications algorithm [1]

148 S. Znamenskij

of cubic worst case complexity. Practical problems on block transposition detec-
tion or graph similarity are well known to have non-polynomial complexity. The
big data needs sublinear or near to linear algorithms. There are at least three
way that usually combined to get a fast algorithm:

1. Get approximate solution, sufficiently close to optimal.
2. Get a solution with a probability very close to 1.
3. Modify problem formulation by extra constrains usual in practical applica-

tions.

In case with graphs, stage 1 will involve identification of matching vertices,
which could be performed randomly, and for each identified pair, it will be neces-
sary to check whether the neighboring vertices match and so on, until a sequence
that cannot be further extended is identified. Sorting could be based on lists of
identified strings, differing in length by a factor of two.

If a graph has a known simple structure, the process can be simplified. For a
sequence, the complexity of matching long substrings is certainly limited by the
cubic and could likely be brought down to quadratic complexity or in practically
useful cases, even to less then linear complexity (for example, when the number
of possibly matching strings and the lower boundary of their relative size and
the chance of allowed error are all fixed).

For example, for two huge files (e.g. terabyte), it should be possible to detect
if they have huge common substrings (e.g. 100 gigabytes). It should be done in a
few minutes without total string processing with a probability of 1 − 10100. The
algorithm for solving this problem will be a key to our first stage.

The search tree depth required at stages 2 and 3 could be proportionally
limited. Even if we take the first possible option and get result immediately, we
will get a “greedy” heuristic algorithm, which could turn out to be sufficiently
effective in some applications.

The following resource restrictions should be defined: the total number of long
strings or their minimum length, the number of searched versions of subsets of
long strings, maximum length of an adjacent chain of short strings. If the task
complexity for specific graphs compared is low relative to the allocated resources,
the resulting solution will be precise; otherwise, it will be an approximate one
and it is possible to estimate a chance to get an exact result with increased
search depth. Any of the stages could be performed in parallel.

These capabilities are also valuable for a database search. A combination of
speed, accuracy, and completeness could be achieved by utilizing a fast search
with subsequent slow updating on a positive forecast. Double-sided estimates for
similarity and execution completeness could be fixed and utilized for each of the
stages.

Conclusion

A new believed similarity framework for sequences and graphs produced an idea
of comparison technique promising a new level of speed, accuracy and reliabil-

A Belief Framework for Similarity Evaluationof Textual or Structured Data 149

ity. This looks like a way to nearly linear execution time algorithm which may
practically solve problem expected to be NP-complete.

Practical implementation and experimental performance evaluation will come
soon for diff utility application.

Acknowledgments. This work was performed under financial support from the Gov-
ernment, represented by the Ministry of Education and Science of the Russian Feder-
ation (Project ID FMEFI60414X0138).

References

1. Znamenskij, S.V.: A model and algorithm for sequence alignment. Program
Systems: Theory and Applications 6(1), 189–197 (2015)

2. Mackall, M.: Towards a better SCM: revlog and mercurial. In: Proceedings of Linux
Symposium, vol. 2, pp. 83–90 (2006)

3. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
4. Sugano, M.: Fuzzy measure and fuzzy integrals. Trans. of the Soc. of Instrument

and Control Engineers 8(2) (1972) (in Japanese)
5. Choquet, G.: Theory of capacities. In: Annales de l’Institut Fourier, vol. 5,

pp. 131–295 (1953)
6. Rho, S., Hwang, E.: FMF: Query adaptive melody retrieval system. Journal of

Systems and Software 79(1), 43–56 (2006)
7. Wieling, M., Bloem, J., Mignella, K., Timmermeister, M., Nerbonne, J.: Measuring

foreign accent strength in English. Validating Levenshtein Distance as a Measure,
The Mind Research Repository (beta) 1 (2013). http://openscience.uni-leipzig.de/
index.php/mr2/article/view/41/30

8. Wu, X., Wu, Z., Jia, J., Meng, H., Cai, L., Li, W.: Automatic speech data clustering
with human perception based weighted distance. In: ISCSLP 2014, September
12–14, Singapore, pp. 216–220. IEEE (2014)

9. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. Journal of Molecular Biology
48(3), 443–453 (1970)

10. Cartwright, R.A.: Logarithmic gap costs decrease alignment accuracy. BMC Bioin-
formatics 7, 527 (2006)

11. Wang, C., Yan, R.X., Wang, X.F., Si, J.N., Zhang, Z.: Comparison of linear gap
penalties and profile-based variable gap penalties in profile-profile alignments.
Computational Biology and Chemistry 35(5), 308–318 (2011)

12. Künzi, H.-P.A.: Nonsymmetric distances and their associated topologies: about
the origins of basic ideas in the area of asymmetric topology. In: Handbook of
the History of General Topology, vol. 3, pp. 853–968. Kluwer Academic Publisher,
Dordrecht (2001)

13. Stojmirović, A., Yi-Kuo, Y.: Geometric Aspects of Biological Sequence Compari-
son. Journal of Computational Biology 16(4), 579–610 (2009)

14. Chateauneuf, A., Jaffray, J.-Y.: Some characterizations of lower probabilities and
other monotone capacities through the use of Mobius inversion. Mathematical
Social Sciences 17, 263–283 (1989)

15. Sippl, M.J., Wiederstein, M.: A note on difficult structure alignment problems.
Bioinformatics 24(3), 426–427 (2008)

http://openscience.uni-leipzig.de/index.php/mr2/article/view/41/30
http://openscience.uni-leipzig.de/index.php/mr2/article/view/41/30

Similarity of Attributed Generalized Tree
Structures: A Comparative Study

Mahsa Kiani(B), Virendrakumar C. Bhavsar, and Harold Boley

Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada
{mahsa.kiani,bhavsar,harold.boley}@unb.ca

Abstract. In our earlier attributed generalized tree (AGT) structures,
vertex labels (as types) and edge labels (as attributes) embody seman-
tic information, while edge weights express assessments regarding the
(percentage-)relative importance of the attributes, a kind of pragmatic
information. Our AGT similarity algorithm has been applied to e-Health,
e-Business, and insurance underwriting. In this paper, we compare sim-
ilarity computed by our AGT algorithm with the similarities obtained
using: (a) a weighted tree similarity algorithm (WT), (b) graph edit
distance (GED) based similarity measure, (c) maximum common sub-
graph (MCS) algorithm, and (d) a generalized tree similarity algorithm
(GT). It is shown that small changes in tree structures may lead to unde-
sirably large similarity changes using WT. Further, GT is found to be
not applicable to AGT structures containing semantic as well as prag-
matic information. GED and MCS cannot differentiate AGT structures
with edges having different directions, lengths, or weights, all taken into
account by our AGT algorithm.

Keywords: Tree similarity · Attributed generalized tree · Generalized
tree similarity · Weighted tree similarity

1 Introduction

We introduced earlier an attributed generalized tree (AGT) similarity algorithm,
which matches pairs of AGT structures [4].

Generalized trees [1] are hierarchical and directed graphs, which were intro-
duced as an extension of rooted tree structure. The edge set of a generalized tree
is unconstrained, since edges in a generalized tree, as in a general graph, can
form cycles. Generalized trees can model more contextual information compared
to trees, and as a result, they are able to represent complex relational objects in
practical applications. While non-attributed generalized trees (GT) [2] are only
defined based on the topological structure (i.e., the vertex and edge sets), our
attributed generalized trees (AGT) [4] can represent semantic and pragmatic
information using vertex labels, edge labels, as well as edge weights. The root
vertex of an AGT carries a class label, which types the main object; therefore,
the root has the highest importance. The importance of vertices decreases as

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 150–161, 2015.
DOI: 10.1007/978-3-319-25087-8 14

Similarity of Attributed Generalized Tree Structures 151

their depth increases. While our attributed generalized tree structures can have
arbitrary size, they are always finite.

In this paper, Weighted tree similarity algorithm (WT), generalized tree sim-
ilarity algorithm (GT), Graph Edit Distance (GED) based similarity measure,
and maximum common subgraph (MCS) algorithm for matching AGT struc-
tures are examined, and the computational results are compared with our AGT
similarity algorithm.

The remainder of this paper is organized as follows. Section 2 briefly reviews
various algorithms and outlines our methodology for computing similarities using
the algorithms. In Sections 3 and 4, similarity approaches with the weighted
tree similarity algorithm (WT) and the generalized tree similarity algorithm
(GT) are compared to our AGT similarity algorithm. In Section 5, graph edit
distance (GED) based similarity measures and the maximum common subgraph
(MCS) approach are again compared to the AGT similarity. For each method,
its application for matching of attributed generalized tree structures is analyzed,
and its computational results are compared with the AGT similarity algorithm.
Finally, we conclude with Section 6.

2 Methodology

WT algorithm is a recursive similarity algorithm for comparing vertex-labeled
edge-labeled edge-weighted trees [6]. In order to compute structure similarity,
the algorithm visits all vertices of two trees starting from their roots. If root
vertex labels of two (sub)trees are identical, their similarity is computed by top-
down traversal of the (sub)trees accessible through identical edge labels. Vertex
attributes as well as edge attributes are compared using exact string comparison
resulting in either 0.0 or 1.0. The algorithm calculates arithmetic mean of the
weights of corresponding edges; and the results are considered while integrat-
ing the similarities of vertex attributes, edge attributes, as well as structures.
The pair of structures being compared could have different sizes. If the con-
cepts represented by roots of two trees are the same, the missing substructure
could have existed in the structure. The effect of missing substructures in the
overall similarity is considered using simplicity. Simplicity of a substructure is
computed by calculating its similarity to a corresponding empty substructure.
In WT approach, breadth, depth, and weight factors are considered in simplicity
computation. Simplicity is a value in real interval [0, 1]. The WT approach has
a linear time complexity.

In GT algorithm [7], structures of two generalized trees are compared by
transforming each tree to property strings. Property strings are formed based on
out-degree and in-degree sequences of vertices on each level of hierarchy. Optimal
sequence alignments of the corresponding property strings are determined; and
the structure similarity is computed by aggregating the local similarity for out-
degree and in-degree alignments on each level of generalized trees. The time
complexity of GT approach is O(|V̂1| · |V̂2|) were |V̂1| and |V̂2| are the matrices
representing the number of vertices in various levels of generalized trees.

152 M. Kiani et al.

Graph Edit Distance (GED) [9] [10] [11], a transformation-distance app-
roach, is an extension of the string edit distance [12] to the domain of graphs. In
this paper, GED transforms the corresponding generalized trees using insertion,
deletion, and substitution operations on vertex, edge, and weights. As the gen-
eralized trees are based on a common schema, vertices in corresponding levels
are matched. Also, the structure similarity measure for generalized trees has the
symmetric property; therefore, the costs of deletion and insertion of vertices are
equal. Similarly, the costs of deletion and insertion of edges are equivalent. In
GED based similarity measure, the distance value obtained from GED approach
is transformed into a similarity value.

Also, the Maximum Common Subgraph (MCS) [13] approach is applied to
generalized trees; a pair of generalized trees are given and the purpose is finding
the largest induced substructure common to both of them; therefore MCS finds
a substructure of both generalized trees such that there is no other substruc-
ture with more vertices. Note that the complexity of the GED based similarity
measure as well as the MCS approach is linear.

Before similarity computation using our AGT algorithm, AGT structures are
transformed to an internal representation, a weighted extension of Object Ori-
ented RuleML (OO RuleML) [5], which preserves all structural information of
generalized trees. Then, our AGT similarity algorithm [4] recursively traverses
a pair of OO RuleML representations top-down and computes the similarity
bottom-up based on matching corresponding pairs of edge labels, edge weights,
and vertex labels. A depth-first search traversal with a cycle-detection strategy
is used to handle cycles in the generalized trees. Labels attached to both ver-
tices and edges are strings, and both vertex labels and edge labels are compared
using an exact string matching approach. When we compute the similarity of
two generalized trees, a substructure in one generalized tree might be missing in
the other one. The contribution of missing substructures to the overall structure
similarity is computed using a recursive simplicity algorithm. In computing sim-
plicity, the numbers of vertices and edges are considered, as wider and deeper
substructures have smaller simplicity values. Edges in a substructure can have
different lengths, directions, positions, and weights; therefore, these factors are
taken into account when computing simplicity of edges as well. We found that the
complexity of our AGT similarity algorithm is linear in the number of vertices
and edges [4].

3 WT Versus AGT Algorithm

The structures of generalized trees are more complex than the structures of trees,
as edges in a generalized tree can form cycles. A rooted tree is a special case of a
generalized tree. WT can only consider direct hierarchical relations (i.e., edges)
between vertices in rooted trees; as a result, this approach is not suitable for
comparing generalized trees [2].

Some shortcomings of WT have been discussed in [3]. WT considers edge
weights only as scaling factors to ensure that the overall similarity value is in

Similarity of Attributed Generalized Tree Structures 153

the real interval [0, 1]. As a result, the similarity of a pair of trees with identical
structures but different edge weights would always be considered equal to 1.0,
while in some applications, these structures are not considered identical.

In addition, the simplicity approach in WT does not support the simplicity
of edges with different lengths, and directions (i.e., cross and back edges in gen-
eralized tree structure). Also, the effect of hierarchical levels in all the structural
factors (e.g., branch factor) are not considered. WT provides lower accuracy in
the ranked results compare to our AGT similarity algorithm.

In order to evaluate the results of WT, a dataset containing 25 metadata
having tree structures is represented in Figure 1. While H, A, and B represent
vertex labels, edge labels are expressed as la and lb. If there is only one outgoing
edge, the edge weight would be equal to 1.0. When a pair of outgoing edges exist,
the weight of each edge is considered to be 0.5.

G25 represents the full binary tree, whereas other trees are subtrees of this
tree. Therefore, to compare the performance of the AGT algorithm and the
WT algorithm, we compute similarities of G1 through G24 compared to G25

(see Figure 2). Note that complexity of the tree structures slowly increases (or
remains the same) as we consider trees from G1 to G25. Therefore, we expect
the similarity to be monotonic w.r.t. G25.

As it is illustrated in Figure 2, compared to our AGT similarity, trend of the
computedsimilarityvaluesusing theWTalgorithmisnotmonotonic.Furthermore,
small changes in a tree structure can cause large changes in the similarity value.

We have also found similarities of the two subsets of metadata, (G8, G9, and
G25) as well as (G18, G19, and G25). Using WT, similarity between G25 and G8

trees, Sim(G25, G8) = 0.664, is found to be greater than the similarity between
G25 and G9, Sim(G25, G9) = 0.376, structures; this result does not agree with
intuition. In addition, the computed similarity value between G25 and G8 struc-
tures (i.e., 0.664) is a higher value than expected. However, using our AGT sim-
ilarity algorithm, the similarities of G25 to G8 and G9 are found to be 0.2722,
and 0.6554, respectively (i.e., Sim(G25, G8) < Sim(G25, G9)). Furthermore using
WT, the computed similarity value between G25 and G18 trees is greater than the
similarity value betweenG25 andG19 structures. However, using our AGT similar-
ity algorithm, similarity of G25 to G18 and G19 is 0.5293 and 0.6031, respectively,
Sim(G25, G18) < Sim(G25, G19), which is what we expect.

In addition, WT cannot differentiate all the trees with different structures.
For instance, while structures of G21 and G25 are not identical, the computed
similarity value between G9 and G21, Sim(G9, G21) = 0.6456, (not shown in
the figure) is found to be equal to the similarity value of G9 and G25. However,
using our AGT similarity, the similarity of G9 to G21 and G25 is 0.4312 and
0.3775, Sim(G9, G21) �= Sim(G9, G25). Also, WT uses edge weights only as
scaling factors, and as a result it cannot differentiate trees with different edge
weights having identical structures, vertex labels, as well as edge labels.

154 M. Kiani et al.

[G1]
H

[G2]

H

A

la

[G3]

H

B

lb

[G4]

H

A B

la lb

[G5]

H

A

A

la

la

[G6]

H

A

B

la

lb

[G7]

H

B

A

lb

la

[G8]

H

B

B

lb

lb

[G9]

H

A B

A

la lb

la

[G10]

H

A B

B

la lb

lb

[G11]

H

A B

A

la lb

la

[G12]

H

A B

B

la lb

lb

[G13]

H

A

A
B

la

la
lb

[G14]

H

B

A
B

lb

la
lb

[G15]

H

A B

A A

la lb

la la

[G16]

H

A B

A B

la lb

la lb

[G17]

H

A B

B A

la lb

lb la

[G18]

H

A B

B B

la lb

lb lb

[G19]

H

A B

A B

la lb

la
lb

[G20]

H

A B

A B

la lb

la
lb

[G21]

H

A B

A B
A

la lb

la
lb

la

[G22]

H

A B

A B

B

la lb

la
lb

lb

[G23]

H

A B

A A

B

la lb

la la
lb

[G24]

H

A

B

B

A

B

la
lb

lb
la

lb

[G25]

H

A B

A

B A

B

la lb

la lb la
lb

Fig. 1. Trees in dataset.

Similarity of Attributed Generalized Tree Structures 155

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tree(Gi)

S
im

il
a
ri
ty

B
A

Fig. 2. Similarity of G25 with G1 through G25 shown in Figure 1. A: weighted tree
similarity algorithm (WT) [6] and B: AGT similarity algorithm [4].

4 GT Versus AGT Algorithm

In the GT algorithm, generalized trees are considered to have homogeneous
vertices which are connected by homogeneous edges. Vertex-labels and edge-
labels of attributed generalized tree structure are not considered in the matching
process by GT; as a result, this approach only takes into account the similarity of
structures, and it is not applicable in domains containing semantic and pragmatic
information.

Consider the generalized trees corresponding to Figure 3 defined in Table 1
having identical edge labels and edge weights. Vertex labels of G1 and G2,
and G3 are illustrated in Table 1. The similarity of G1 to G2 and G3 is com-
puted using the GT and AGT similarity algorithms. While the similarity val-
ues computed using GT similarity algorithm are equivalent (Sim(G1, G2) =
Sim(G1, G3) = 1.0); our AGT similarity algorithm could differentiate G2 and
G3 (Sim(G1, G2) = 1.0; Sim(G1, G3) = 0.6994).

v1

v2

v3

v4
e1 e2

e3

e4

Fig. 3. Structure of AGTs having different vertex labels.

Now we show that the GT similarity algorithm cannot differentiate AGTs
having different edge weights. Generalized trees G1, G2 and G3 corresponding to
Figure 4 given in Table 2 have identical vertex labels and edge labels; however,
their edge weights are different (Table 2). While GT similarity algorithm ignores
the difference between their edge weights (Sim(G1, G2) = Sim(G1, G3) = 1.0),

156 M. Kiani et al.

Table 1. Vertex labels of G1, G2, and G3 with the structure given in Figure 3

AGT l(v1) l(v2) l(v3) l(v4)

G1 H A B C
G2 H A B C
G3 H A B D

v1

v2 v2

e1 e2
e3

Fig. 4. Structure of AGTs having different edge weights.

Table 2. Edge weights of generalized trees G1, G2, and G3 with the structure given
in Figure 4

AGT w(e1) w(e2) w(e3)

G1 0.8 0.2 1.0
G2 0.5 0.5 1.0
G3 0.1 0.9 1.0

our AGT similarity considers the edge weights in similarity computation,
and as a result G2 and G3 could be differentiated (Sim(G1, G2) = 0.5916;
Sim(G1, G3) = 0.2606).

Generalized trees G2 and G3 defined in Table 3 (see also Figure 5) have
identical vertex labels and edge weights; however, their edge labels are different.
GT similarity algorithm is used to compute similarity of G1 to G2 and G3. As
this approach does not consider edge labels in the similarity computation, it
generates identical similarity values (i.e., Sim(G1, G2) = Sim(G1, G3) = 1.0).
The AGT similarity algorithm takes into account edge labels and it is able to
distinguish G2 and G3 (i.e., Sim(G1, G2) = 1; Sim(G1, G3) = 0.7349).

5 GED and MCS Versus AGT Algorithm

Intuitively, two generalized trees are not identical, if they have edges with differ-
ent directions, lengths, or weights. Also, two generalized trees are not considered
identical if the level in which their edges exist are different. GED based similarity
measure and MCS cannot differentiate attributed generalized trees having edges
with different directions, lengths, or weights as discussed below. Also, GED based
similarity measure and MCS approach cannot be used to differentiate general-
ized trees having edges in different levels. The computational results from our
experiments are illustrated in this section.

Similarity of Attributed Generalized Tree Structures 157

v1

v2 v3

e1 e2
e3

Fig. 5. Structure of AGTs having different edge labels.

Table 3. Edge labels of G1, G2, and G3 with the structure given in Figure 5

AGT l(e1) l(e2) l(e3)

G1 lb lc ld
G2 lb lc ld
G3 la lc ld

In order to evaluate the results of GED on generalized trees, GED based simi-
larity measure is integrated with Depth-First Search. Two versions of GED based
similarity measure, GED1 and GED2, are developed based on two sets of costs
for edit operations. In GED1, the cost of deletion\insertion of one edge\vertex as
well as the cost of substitution of one edge weight is equal to 1. While in GED2,
the cost of deletion\insertion of a vertex is 2. The cost of deletion\insertion of an
edge weight is equal to 0.25; however, the cost of deletion\insertion of an edge
equals 1.

MCS is integrated with Depth-First Search as well; and two versions of MCS
approach are defined. In MCS1 only the difference between vertices of two gen-
eralized trees are considered; the cost of insertion and deletion of a vertex is
equal to 1. MCS2 considers difference between both vertices and edges of two
generalized trees; the cost of insertion\deletion of a vertex\edge are equal to 1.

Generalized trees in the following datasets are compared using GED1,
GED2, MCS1, and MCS2, and the results are compared with our AGT simi-
larity algorithm.

Generalized trees G2 and G3 in Figure 6 have identical number of missing
edges compared to G1; however, they appear in different levels of hierarchy. Their
vertex labels, edge labels, and edge weights are considered to be identical. The
similarity of G1 to G2 and G3 is illustrated in Table 4. Using the AGT similarity
algorithm, G2 and G3 are differentiated; however, using GED1, GED2, MCS1,
and MCS2, the similarity of vertices and edges in different levels of hierarchy
have the same contribution in similarity and therefore these approaches generate
identical similarity values.

GED1, GED2, MCS1, and MCS2 cannot differentiate edges with different
lengths as well. Generalized trees G2 and G3 in Figure 7 have two missing edges
compare to G1. Note that length of back edges are different in G2 and G3.
These structures are considered to have identical vertex labels, edge labels, and
edge weights. G1 is compared to G2 and G3 and the results are illustrated in
Table 5. In our AGT similarity, edges between concepts in different levels are
differentiated; however, GED1, GED2, MCS1, and MCS2 only consider the

158 M. Kiani et al.

[G1]

H

A B

A

B A

B

e1 e2

e3
e4

e5
e6

[G2]

H

A B

A

B A

B

e1 e2

e3
e4

e6
e7

e5 e8

[G3]

H

A B

A

B A

B

e1
e2

e3
e4

e6
e7

e5
e8

Fig. 6. AGTs having edges in different levels.

Table 4. Similarity of G1 to G2 and G3 in Figure 6

AGT AGT-Sim GED1 GED2 MCS1 MCS2

G2 0.7736 0.9047 0.9450 1.0 0.8666
G3 0.6692 0.9047 0.9450 1.0 0.8666

number of missing edges and ignore the difference of edges between concepts in
different levels of hierarchy.

[G1]

H

A B

A

B A

B

e1 e2

e3
e4

e5
e6

[G2]

H

A B

A

B A

B

e1 e2

e3
e4

e6
e7

e5 e8

[G3]

H

A B

A

B A

B

e1 e2

e3
e4

e6
e7

e5
e8

Fig. 7. Structures of AGTs having edges with different length.

Consider the generalized trees in Figure 8. These structures have identical
vertex labels, edge labels, and edge weights. Missing edges in generalized trees
G2 and G3 compared to G1 have different directions (forward edges and back
edges).

Similarity of Attributed Generalized Tree Structures 159

Table 5. Similarity of G1 to G2 and G3 in Figure 7

AGT AGT-Sim GED1 GED2 MCS1 MCS2

G2 0.7736 0.9047 0.9450 1.0 0.8666
G3 0.7401 0.9047 0.9450 1.0 0.8666

Table 6. Similarity of G1 to G2 and G3 in Figure 8

AGT AGT-Sim GED1 GED2 MCS1 MCS2

G2 0.6766 0.7142 0.8571 1.0 0.8666
G3 0.6624 0.7142 0.8571 1.0 0.8666

[G1]

H

A B

A

B A

B

e1 e2

e3
e4

e5
e6

[G2]

H

A B

A

B A

B

e1 e2

e4
e5

e6
e7

e3
e8

[G3]
H

A B

A

B A

B

e1 e2

e4
e5

e6
e7

e3
e8

Fig. 8. Structures of AGTs having edges in different directions.

Similarity of G1 to G2 and G3 in Figure 8 is illustrated in Table 6. Although
the directions of the edges in pairs of structures are not identical, the similarity
value computed using GED1, GED2, MCS1, and MCS2 approaches are equiv-
alent. However, our AGT similarity algorithm could differentiate G2 and G3.

Also, using GED1, GED2, MCS1, and MCS2 approaches, structures with
different edge weights cannot be differentiated. In G1 (see Figure 9), edge weights
of substructures beneath the root are different; Weights of e1, e2, and e3 are 0.1,
0.2, 0.7 respectively. Generalized tree G1 is compared to generalized trees G2

and G3 in Figure 9 and the results are illustrated in Table 7.

While the AGT similarity algorithm generates different similarity values for
G2 and G3, MCS1 and MCS2 approaches fail to distinguish G2 and G3. The
reason is that MCS1, and MCS2 do not consider the edge weights in similarity
computation. While GED1 and GED2 consider the cost of difference in edge
weights between the generalized trees, edge weights in a higher level of hierarchy

160 M. Kiani et al.

[G1]

H

A

B

C

A B A B

e1 e2
e3

e4
e5

e7
e8

e6 e9

[G2]

H

A

B

C

B A B

e1 e2
e3

e4
e5

e6

e7

[G3]

H

A

B

C

A B A

e1 e2
e3

e4
e5

e7

e6

Fig. 9. Structures of AGTs having edges with different weights.

Table 7. Similarity of G1 to G2 and G3 in Figure 9

AGT AGT-Sim GED1 GED2 MCS1 MCS2

G2 0.5384 0.8936 0.9024 0.875 0.8823
G3 0.3859 0.8936 0.9024 0.875 0.8823

do not effect the similarity of substructures beneath them, as in these approaches
the similarity of each level is computed independently. This is in contrast to the
AGT similarity algorithm in which difference in substructures reaching through
edges with higher weights has more effect in the similarity value. Therefore, the
AGT similarity algorithm generates different similarity values for comparing G1

with G2 and G3, while GED1 and GED2 are unable to differentiate them.
Thus, GED1, GED2, MCS1, as well as MCS2 approaches could not differ-

entiate G2 and G3 in Figures 6, 7, 8, and 9, as edge factors (i.e., length, direction,
position, and weight) are not considered in the definitions of insertion, deletion,
and substitution costs.

We can clearly see that our AGT similarity algorithm can achieve higher accu-
racy (i.e., higher degree of agreement with intuition) by considering attributes
(i.e., vertex label, edge label, as well as edge weights) in similarity computation
process. The AGT similarity algorithm is applicable in domains having concepts
with complex relations as well as rich semantic and pragmatic information. In
[4] and [8], we have demonstrated application of the AGT similarity algorithm
for the retrieval of Electronic Medical Records (EMRs) as well as life-insurance
application underwriting.

Similarity of Attributed Generalized Tree Structures 161

6 Conclusion

In this paper, we have compared similarity computed by our AGT algorithm with
the similarities obtained using various inexact similarity measures: a weighted
tree similarity algorithm (WT), graph edit distance (GED) based similarity mea-
sure, maximum common subgraph (MCS) algorithm, and a non-attributed gen-
eralized tree similarity algorithm (GT). We have illustrated that applicability
of existing similarity measures for comparing AGTs is limited and our AGT
similarity algorithm could achieve higher accuracy by integrating the similarity
of attributes with structure similarity as well as considering directions, lengths,
and weights of edges.

References

1. Mehler, A., Dehmer, M., Gleim, R.: Towards logical hypertext structure-a graph-
theoretic perspective. In: Böhme, T., Larios Rosillo, V.M., Unger, H., Unger, H.
(eds.) IICS 2004. LNCS, vol. 3473, pp. 136–150. Springer, Heidelberg (2006)

2. Dehmer, M., Emmert-Streib, F., Mehler, A., Kilian, J.: Measuring the Structural
Similarity of Web-based Documents: a Novel Approach. J. Computational Intelli-
gence 3, 1–7 (2006)

3. Kiani, M., Bhavsar, V.C., Boley, H.: Combined structure-weight graph similar-
ity and its application in e-health. In: 4th Canadian Semantic Web Symposium,
Montreal, pp. 12–18 (2013)

4. Kiani, M., Bhavsar, V.C., Boley, H.: Structure similarity of attributed generalized
trees. In: 8th IEEE International Semantic Computing, pp. 100–107. IEEE Press,
Newport Beach (2014)

5. Boley, H.: Object-oriented RuleML: User-level roles, URI-grounded clauses, and
order-sorted terms. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS,
vol. 2876, pp. 1–16. Springer, Heidelberg (2003)

6. Bhavsar, V.C., Boley, H., Yang, L.: A Weighted-tree Similarity Algorithm for
Multi-agent Systems in e-Business Environments. J. Computational Intelligence
20, 584–602 (2004)

7. Dehmer, M., Emmert-Streib, F., Kilian, J.: A Similarity Measure for Graphs with
Low Computational Complexity. J. Applied Mathematics and Computation 182,
447–459 (2006)

8. Kiani, M., Bhavsar, V.C., Boley, H.: A fuzzy structure similarity algorithm for
attributed generalized trees. In: 13th IEEE International Conference on Cognitive
Informatics and Cognitive Computing, pp. 203–210. IEEE Press, London (2014)

9. Bunke, H.: What is the Distance between Graphs?. J. Bulletin of the European
Association for Theoretical Computer Science, 35–39 (1983)

10. Sanfeliu, A., Fu, K.S.: A Distance Measure between Attributed Relational Graphs
for Pattern Recognition. IEEE Transactions on Systems, Man and Cybernetics 3,
353–362 (1983)

11. Bunke, H.: On a relation between Graph Edit Distance and Maximum Common
Subgraph. J. Pattern Recognition Letters 18, 689–694 (1997). Elsevier Science

12. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. JACM 21,
168–173 (1974). ACM

13. Bunke, H., Shearer, K.: A Graph Distance Metric based on the Maximal Common
Subgraph. J. Pattern Recognition Letters 19, 255–259 (1998)

Evaluating Multilayer Multimedia Exploration

Juraj Moško1(B), Jakub Lokoč1, Tomáš Grošup1, Přemysl Čech1,
Tomáš Skopal1, and Jan Lánský2

1 SIRET Research Group, Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University in Prague,

Prague, Czech Republic
{mosko,lokoc,grosup,cech,skopal}@ksi.mff.cuni.cz
2 Department of Computer Science and Mathematics,

University of Finance and Administration, Prague, Czech Republic
lansky@mail.vsfs.cz

Abstract. Multimedia exploration is an entertaining approach for mul-
timedia retrieval enabling users to interactively browse and navigate
through multimedia collections in a content-based way. The multimedia
exploration approach extends the traditional query-by-example retrieval
scenario to be a more intuitive approach for obtaining a global overview
over an explored collection. However, novel exploration scenarios require
many user studies demonstrating their benefits. In this paper, we present
results of an extensive user study focusing on the comparison of 3-layer
Multilayer Exploration Structure (MLES) structure with standard flat
k-NN browsing. The results of the user study show that principles of the
MLES lead to better effectiveness of the exploration process, especially
when searching for a first object of the searched concept in an unknown
collection.

Keywords: Similarity search · Multimedia exploration · Content-based
retrieval · Exploration operation · Multimedia browsing · User study

1 Introduction

Traditional similarity retrieval scenarios based on single query-by-example
approaches are not sufficient in applications where advanced system/retrieval
features are required. To fulfill this gap, when progressive factors like a restricted
GUI (e.g., smart phones) or the need of interactivity/entertainment directly
affect a retrieval process, novel retrieval scenarios were recently investigated.
The typical example of such scenario is multimedia exploration [2]. The multi-
media exploration is an advanced retrieval scenario where users want to explore
and get an idea of an unknown multimedia collection. Usually, the only thing a
user has in the beginning of the exploration process is an idea of the result in
her/his mind and thus a single query-by-example similarity search does not have
to be sufficient for effective retrieval. On the other hand, the multimedia explo-
ration systems often use the query-by-example principles as a basic supportive
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 162–169, 2015.
DOI: 10.1007/978-3-319-25087-8 15

Evaluating Multilayer Multimedia Exploration 163

task for more complex exploration operations. Usual tasks that the users expect
from the exploration system are iterative navigation, browsing and visualization
of the collection, therefore we can see an analogy between operations used in
multimedia exploration and navigating in a map (zooming, panning)[1].

In this paper, we evaluate properties of a multilayer multimedia exploration
structure that natively supports zoom in, zoom out and pan exploration opera-
tions and compare the structure to simulated flat k-NN browsing in an extensive
user study.

2 Multilayer Multimedia Exploration

In the following, we present a structure for multimedia exploration that utilizes
similarity indexes for efficient horizontal browsing and employs multiple layers
enabling vertical browsing [4].Weassume that the explorationprocess always starts
with a limited number of representative objects displayed on a screen. Starting in
the initial view, users can consecutively zoom in to specific parts of the view, pan
to other groups of objects, or zoom out if the actual view is filled with undesired
objects. Note that the users see the same number of objects all the time. Given such
exploration use case, a good exploration structure should provide representative
distinct objects for earlier phases of the exploration, while objects more similar to
selected examples should be retrieved in later stages. Based on these assumptions,
we define a Multilayer Exploration Structure (Figure 1):

Definition 1. (Multilayer Exploration Structure). Given a dataset S of objects
(descriptors of the respective multimedia objects), the Multilayer Exploration
Structure, MLES(S,m, v, φ), is a system of m + 1 subsets Li (layers), where
the subset condition holds:

Li ⊂ Li+1,∀i = {0, ..,m − 1}
The smallest subset L0 represents the first depicted v objects (i.e., page zero
view) and the proper subset Lm = S represents the whole database. Selection of
objects for each layer is determined by a selection function φ : N → 2S that has
to comply with the subset condition.

The Multilayer Exploration Structure enables retrieval on different levels
of detail if the subsets (e.g., randomly selected) correspond to representative
samples of the dataset. Furthermore, each layer can be indexed independently
by a similarity index suitable for a specific layer (e.g., memory-based pivot table
[6] for upper layers, or disk-based PM-Tree [7] for lower layers).

In the following text, we present formal definitions of basic exploration oper-
ations over the Multilayer Exploration Structure. Note that a popular k-NN
query is considered as a supportive task for exploration operations.

Definition 2. Given a Multilayer Exploration Structure E = MLES(S,m, v, φ),
a query object q ∈ Li and a parameters k, i, the operation Zoom-In(E, q, k, i) on a
layer Li,∀i = {0, ..,m − 2} returns a set of objects being the k nearest neighbors to
the query object q from objects in layer Li+1.

164 J. Moško et al.

L0

L1

L2

Index1

Zoom In

Zoom In

Pan

Pan

Index2

Zoom Out

Fig. 1. MLES with indexes Index1 for layer L1 and Index2 for layer L2.

The Zoom-In operation enables users to select a query object from actually
investigated layer Li to query for objects from more populated layer Li+1, thus
seeing more details in the new view.

Definition 3. Given aMultilayer Exploration Structure,E = MLES(S,m, v, φ),
a query object q ∈ Li and a parameters k, i, the operation Zoom-Out(E, q, k, i) on a
layer Li,∀i = {1, ..,m − 1} returns a set of objects being the k nearest neighbors to
the query object q from objects in layer Li−1.

The Zoom-Out operation enables users to hide details by moving from more
populated layer Li+1 to less populated layer Li. Since Li does not contain all
objects from Li+1, the selected query object does not necessary have to be in
the new view.

Definition 4. Given aMultilayer Exploration Structure,E = MLES(S,m, v, φ),
a query object q ∈ Li and a parameters k, i, the operation Pan(E, q, k, i) on a layer
Li,∀i = {0, ..,m − 1} returns a set of objects being the k nearest neighbors to the
query object q from objects in layer Li.

The Pan operation employs the k -NN query just for objects in the same
layer, enabling users to reach objects not accessible by the Zoom-In operation.

3 User Study

In this section, we present our user study focusing on the effectiveness of multi-
layer exploration. We have investigated 3-layer MLES and compared it to simple
2-layer MLES corresponding to a standard flat k-NN browsing baseline.

In order to fully compare different exploration approaches, various explo-
ration tasks have to be utilized to challenge the performance of the structures.
In our study, we have focused on known-item search tasks, where users receive
a simple textual description of a searched class. Then, starting from the initial
view, users have to find as much objects of the searched class as possible using
just limited number of exploration operations (in our study we have used 15
operations). Let us note that the initial view was the same for all search tasks
and that the initial view did not contain objects of the searched classes. For
each search task, we have measured the number of clicks to find a first object

Evaluating Multilayer Multimedia Exploration 165

of the searched class and the cumulative number of found objects for each step.
Although it was not the objective of the search tasks, we have measured also the
cumulative number of visited classes for each step.

In the following, we present results of our extensive user study with 94 partici-
pants from different countries (47 men and 47 women) that altogether performed
1661 search tasks. The participants are students of the University of Finance and
Administration attending different study programs (IT, economics). The partic-
ipants were from different groups. The participants of one group have received
the instructions from one person. In order to diversify the groups even more,
some groups were motivated to find as much images of the search class as possi-
ble and others have received few more keywords describing the searched class. In
each group, the tasks were distributed uniformly for both compared indexes. In
the following, we describe the Find the image application used for testing, test
settings, results of the tests and then we discuss the results of the user study.

3.1 Find the Image Application

The user study was performed using the Find the image web application [5]. It
is an open platform for image exploration user studies that can be used also as
a web service. In the application, users are presented with the current search
task and their progress on the top of the screen. The application shows and
monitors wall-clock time, number of remaining exploration steps and number
and percentage of found objects fulfilling the current task. The main part of the
screen is dedicated to results of exploration operations. The results are visualized
using a force-directed layout which uses images as nodes and image similarities
as weights for edges between nodes. Depending on the current level of the multi-
layer index structure, each node provides interactive zoom in, zoom out and pan
operations. Zooming out can be performed by double-clicking the right mouse
button, buttons for zoom-in and/or pan operations are offered when hovering
over a node. The bottom of the screen shows the images found so far in a grid
of thumbnails. When a user spends 15 exploration operations, the application
saves the exploration statistics and offers another search task.

3.2 Settings

As a dataset, the PROFIMEDIA test collection [3] comprising 21993 small
thumbnail images divided into 100 classes was employed. The position-color-
texture feature signatures and the signature quadratic form distance were used
as a similarity model. In the study, 2-layer and 3-layer variants of MLES were
compared. Both variants of the structures have shared the same set of images for
the initial view with 50 images and the last layer comprising the whole dataset.
The three layer structure used middle layer with one eighth of the objects from
the third layer. The PM-Tree index [7] was used to process k-NN queries.

The query classes for search tasks were selected from classes not present in
the initial view. More specifically, 10 homogeneous (objects of the same class
are visually similar) and 10 heterogeneous (objects of the same class can be

166 J. Moško et al.

less visually similar) query classes were manually selected. Each participant has
received an ID, where for each ID there was a sequence of 20 search tasks. The
sequence always consisted of permuted 10 homogeneous query classes followed by
permuted 10 heterogeneous query classes. Using such sequences, the participant
always started with easier tasks and then continued with more complex tasks.
The participant could access the next search task only if he finished the actual
search task. Before starting the sequence of tasks, each participant had also one
test task for each MLES structure with simple query class that appeared in the
initial view. Results of these test tasks were not considered in this study.

3.3 Results

In the first part of this section, we focus on the number of exploration operations
to find first objects of the query class (the initial view did not contain objects
from query classes). In some search tasks, users were not able to find any object
of the query class, as depicted in Figure 2. We may observe that for query classes
grain, pizza, running track and bee, it was difficult for the users to find objects
of the searched class given just a short textual description. Finding objects of
these four classes was difficult for both compared MLES structures, however,
the 2-layer MLES resulted in more unsuccessful searches (in case of bee, only
30% of searches using 2-layer MLES were successful). Except five query classes,
the 3-layer MLES outperformed the 2-layer MLES. Overall, there was 10% of
unsuccessful searches for the 3-layer MLES and 18% of unsuccessful searches for
the 2-layer MLES. Men participants were slightly more successful than women
participants for both indexes.

In the top part of Figure 3, the average number of exploration operations to
find first object of a searched class is depicted. Since the number of exploration
operations to find first object is unknown for unsuccessful searches, we have
used number 16 as the minimal number of operations required for the unsuc-
cessful searches. We may observe that in most cases five exploration operations
were sufficient to find first object of the class. Except few cases the number of
exploration operations to find first object was lower for the 3-layer MLES.

Fig. 2. Unsuccessful search.

Evaluating Multilayer Multimedia Exploration 167

Fig. 3. Average number of exploration operations to find first object of the searched
class.

As the users started always from the same initial view, the learning effect
could take significant part of the exploration effectiveness. In the bottom part
of Figure 3, we may observe the average number of exploration operations to
find first object of a searched class for each search task. Although the numbers
are slightly lower for tasks solved later, there is not a significant evidence of the
learning effect. This is caused probably by the fact that the query classes were
presented only after the previous search task was finished and that the descrip-
tion of the classes was textual. Therefore, any remembered visual information
was not often connected to the actual search task. On the other side, in some
cases the participants have reported that the previous experience has helped
them to find quickly some searched classes.

In the second part of this section, we present graphs depicting how many
objects of the searched classes were found using 15 exploration operations. In
the top part of Figure 4, we may observe that searching objects of the homoge-
neous query classes resulted in higher percentage of found objects (even though
the heterogeneous query classes could benefit from the learning effect). This is
probably caused by the fact that by finding a first object of the query class the
participant accesses a large cluster of visually similar objects which can be sim-
ply explored by k-NN queries. On the other side, a heterogeneous query class

168 J. Moško et al.

Fig. 4. Found objects and classes during exploration.

consists of more visually dissimilar clusters and thus the participant often gets
stuck in just one of them during 15 exploration steps.

In the bottom left part of Figure 4, the average percentage of found objects
from searched classes is depicted for each exploration step. We may observe that
from the second step the 3-layer MLES starts to outperform the 2-layer MLES.
We may also observe that in later steps men participants were able to find more
objects of the searched class than women participants for both structures. In the
bottom right part of Figure 4, the average percentage of found classes is depicted
for each exploration step. We may observe that in each exploration step, the user
visited more classes when using the 3-layer MLES. This behavior is caused by
the middle layer of the 3-layer MLES that provides higher variability of classes
already after first exploration operation (which is always Zoom in).

3.4 Discussion

The results of the user study show that using more layers in multimedia explo-
ration could bring better effectiveness to the exploration process, especially in
tasks focused on finding a first object of the searched class. On the other side,
when the first object of the searched class is found, then simple k-NN queries are
utilized to explore the cluster of visually similar objects. In this study, we did not

Evaluating Multilayer Multimedia Exploration 169

primarily focus on searching of more visually dissimilar clusters of the same class
and therefore we cannot conclude if more layers can help with such task. Con-
sidering the results presented in Figure 4, there is not a significant performance
gain of the three layer exploration structure for heterogeneous query classes. We
can just intuitively guess from results of Figure 3 that when using more than
15 exploration operations, the users could find a first object of another visually
homogeneous cluster of the searched class sooner. The results would show bigger
differences between both compared structures if the utilized database contained
an order of magnitude higher number of objects and classes. For example, given
1 billion images and 1 million query classes, it would be probably much more
complicated to find the searched class when using just 2-layer MLES.

4 Conclusion

In this paper, we have performed an extensive user study on MLES, a gen-
eral structure for multilayer multimedia exploration. The MLES proved to be
a more suitable concept for multimedia exploration than standard flat k-NN
querying (simulated by 2-layer MLES). So far, the defined operations are based
just on exact k-NN queries, however, further enhancements like approximate k-
NN queries could be used for more efficient retrieval in lower layers of MLES,
or multiple k-NN queries or similarity models could be combined in one explo-
ration operation, to make the exploration process performed on the MLES more
scalable.

Acknowledgments. This research has been supported in part by Czech Science Foun-
dation project 15-08916S, by Grant Agency of Charles University projects 201515 and
910913 and by project SVV-2015-260222.

References

1. Barthel, K.U., Hezel, N., Mackowiak, R.: ImageMap - visually browsing millions of
images. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM
2015, Part II. LNCS, vol. 8936, pp. 287–290. Springer, Heidelberg (2015)

2. Beecks, C., Driessen, P., Seidl, T.: Index support for content-based multimedia
exploration. In: International Conference on Multimedia, pp. 999–1002. ACM (2010)

3. Budikova, P., Batko, M., Zezula, P.: Evaluation platform for content-based image
retrieval systems. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.) TPDL
2011. LNCS, vol. 6966, pp. 130–142. Springer, Heidelberg (2011)

4. Heesch, D.: A survey of browsing models for content based image retrieval.
Multimedia Tools Appl. 40(2), 261–284 (2008)

5. Lokoč, J., Grošup, T., Čech, P., Skopal, T.: Towards efficient multimedia exploration
using the metric space approach. In: Content-Based Multimedia Indexing (2014)

6. Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB
Journal 11(1), 28–46 (2002)

7. Skopal, T., Pokorný, J., Snášel, V.: PM-tree: pivoting metric tree for similarity
search in multimedia databases. In: Advances in Databases and Information Systems
(2004)

Semantic Similarity Between Images:
A Novel Approach Based on a Complex Network

of Free Word Associations

Enrico Palumbo1(B) and Walter Allasia2(B)

1 Physics University of Torino, via Giuria, 1, 10025 Torino, Italy
enrico.palumbo@edu.unito.it

2 EURIX, via Carcano, 26, 10153 Torino, Italy
allasia@eurix.it

Abstract. Several measures exist to describe similarities between digi-
tal contents, especially for what concerns images. Nevertheless, distances
based on low-level visual features embedded in a multidimensional linear
space are hardly suitable for capturing semantic similarities and recently
novel techniques have been introduced making use of hierarchical knowl-
edge bases. While being successfully exploited in specific contexts, the
human perception of similarity cannot be easily encoded in such rigid
structures. In this paper we propose to represent a knowledge base of
semantic concepts as a complex network whose topology arises from
free conceptual associations and is markedly different from a hierarchical
structure. Images are anchored to relevant semantic concepts through an
annotation process and similarity is computed following the related paths
in the complex network. We finally show how this definition of semantic
similarity is not necessarily restricted to images, but can be extended to
compute distances between different types of sensorial information such
as pictures and sounds, modeling the human ability to realize synaesthe-
sias.1

Keywords: Semantic similarity · Complex networks · Free word asso-
ciations · Image analysis

1 Introduction

Content-based image retrieval is a well established research branch, working on
low-level visual features, such as color or texture, that can be automatically
extracted from digital contents [7,19]. Unfortunately, it is often the case that
purely visual features do not encode similarities regarding high-level concepts.
Smeulders et al. define the semantic gap as “the lack of coincidence between the
information that one can extract from the visual data and the interpretation
that the same data have for a user in a given situation” [19]. Image annotation
1 This work was partially funded by the European Commission in the context of the

FP7 ICT project ForgetIT (under grant no: 600826)

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 170–175, 2015.
DOI: 10.1007/978-3-319-25087-8 16

Semantic Similarity Between Images: A Novel Approach 171

attempts to fill the semantic gap by mapping low-level visual features into high-
level concepts, either manually or through machine learning algorithms such as
Support Vector Machines (as done in [13], possibly combined with more struc-
tured hierarchical knowledge bases [7,21]). After the annotation, a picture is
represented as a Bag of Words, namely a vector whose elements indicate the
presence (or the absence) of the concepts utilized in the annotation process and
distances are evaluated in multidimensional Lp Lebesgue spaces or more gener-
alized topological spaces [17].

2 Graph-Based Similarity

The representations of images as vectors in a metric space all rely on the assump-
tion of independence between the words used in the annotation process [8]. As
also argued in [12], this is rarely true. Let us suppose to make use of three con-
cepts for the annotation, tree, leaf and window, and to have three pictures, one
containing only a tree, one only a leaf and one only a window. The vector rep-
resentation would be: tree = (1, 0, 0), leaf = (0, 1, 0), window = (0, 0, 1) and the
distance between the images would be the same, even if intuitively the concept
of tree should be closer to the concept of leaf than to that of window. Indeed,
the natural semantic correlations among the concepts used in the annotation
make inadequate the euclidean representation. To comply with the necessity of
a structure which well expresses relations, it is common to make use of semantic
graphs. A semantic graph is a pair of sets G = (C,A) where C is the set of nodes
and A is the set of edges, i.e. links between nodes. In semantic graphs the nodes
are concepts (or words) and the edges represent either logical relations between
them, e.g. ‘is-a’, ‘has-a’, or simple conceptual associations. Notable examples
of semantic graphs are the models of semantic memory developed by Collins
and Quillian [5] and Collins and Loftus [4] or networks of words such as Word-
Net [14], Roget’s Thesaurus [18], Word Association networks or network of tags
such as those of [3] and the like. Ontologies as well may be seen as semantic
graphs whose structure must be logically consistent and is often hierarchical
and in which formal rigor is added by means of logical axioms and inference
rules [11]. In the last years, many have tried to overcome the limitations of the
euclidean representation utilizing semantic graphs [8,9,12]. In [8], for instance,
the authors use ImageNet, a logically organized database of images, analogous
to WordNet, to evaluate semantic similarities between images. These methods,
however, only account for logical similarities, namely for shared taxonomical cat-
egories. Oppositely, humans can analyze images at different semantic levels [21]
and can establish more complex relations between them, which cannot be easily
encoded in a hierarchical structure (Fig. 1). A pair of images can be consid-
ered to be related because the objects represented often occur together, because
they evoke similar feelings or belong to the same context. Statistical evidence of
this fact is presented in [10]. The authors compare the associations of the Word
Association Network of the Human Brain Cloud [22], a web-based “massively
interplayer word association game”, which they have validated for scientific pur-
poses, with the logical relations of WordNet. They map the word association

172 E. Palumbo and W. Allasia

Fig. 1. Sketch of the structure of ImageNet. The only way to reach Window from
Tree is to go up and down the hierarchy: ‘Tree-WoodyPlant-VascularPlant-Plant-Root-
Artifact-Structure-SupportingStructure-Framework-Window’. On the Word Association
Network built from the data of [16] the path is ‘Tree-Shade-Window’.

network, which completely lacks of semantics, onto WordNet and what they
observe is that “human beings often construct associations with probabilities
that could strongly deviate from what would be the pure statistical structure
of WN”, entailing that conceptual associations are often based on other criteria
than pure logic.

3 Complex Networks

A further limitation of the hierarchical models is that they rarely exhibit complex
structures. In fact, in the last years, starting from the article of Steyvers and
Tenenbaum [20], many have pointed out the strong analogies between semantic
graphs and complex networks. The study of complex networks is a new and
emerging field, born in the late 90s as a consequence of the discovery that many
real networks (WWW, Internet, science collaboration graph, the web of human
social contacts,...) are small world, i.e. the distance between two nodes scales
logarithmically with the number of nodes N , highly clustered and heterogeneous,
i.e. the degree distribution is considerably different from binomial, poissonian or
gaussian distributions, since it is markedly right-skewed and fat-tailed, often well
approximated by a power-law distribution [1,2].

In [20] the authors have shown that Wordnet, the Roget’s thesaurus and the
Word Association network built from the experiment done by the University of
South Florida [16] exhibit a small average path length, a high clustering coef-
ficient and a power-law distribution of degree. Word associations are obtained
through a simple experiment: subjects are asked to write down the first word
that comes to their mind which is meaningfully related to a cue word, provided
by the experimenters. A network can be built by identifying the words as nodes
and the edges as associations, which can be weighted by the frequency of that

Semantic Similarity Between Images: A Novel Approach 173

particular association. In [10] this analysis is extended to another network of
word association, the Human Brain Cloud [22], an online multiplayer word asso-
ciation game. In [15] similar results are obtained, without aggregating data from
different individuals. In [3] the topological properties of the semantic networks
spontaneously emerging from co-occurring tags of digital resources on website
such as del.icio.us also exhibit the typical properties of complex networks. These
independent studies, obtained from semantic graphs of diverse nature and origin,
yielding similar conclusions suggest that complexity is a fundamental property
of the structure of semantic networks. This fact has remarkable consequences on
the shortest paths, therefore on similarities. Scale-free networks are more than
small world, with average shortest path < l >� log N

log log N [2] with N vertices.
This is due to the hubs of the networks which act as bridges between “distant”
nodes, providing shortcuts across the web.

4 The Model

To account for the role of complexity and to encompass the possibility of free
conceptual association, we propose a model for evaluating semantic similarities
between images based on a Complex Network of Free Word Associations. Both
the Word Association Network built from the experiment of the University of
South Florida [16] and the one built from the web-based experiment of Human-
BrainCloud, have been proven to be complex networks and to share a similar
structure [10,20]. Therefore, in the following, we shall generically refer to a Word
Association Network (WAN). The model works as follows (Fig. 2):

1) Build a Word Association Network
2) Annotate the images Ii and Ij with words of the WAN: fi and fj are the vec-
torial representations of Ii and Ij , whose component fk

i ∈ [0, 1] is a confidence
score of the word k in Ii

3)Turn the most relevant words into weighted links and anchor the images to
the WAN
4)The distance is the shortest weighted path length [6], namely d(Ii, Ij) =
minγi,j

∑
l∈γi,j

l, where l = 1
w is the length of a link (the stronger the asso-

ciation, the closer the nodes) and γi,j is a generic weighted path connecting Ii

and Ij

Note that “most relevant” is vague and needs to be further specified. Different
criteria may be applied to determine what number of words should be turned into
links, but a robust method is to normalize fi, sort the components by magnitude
and select the first k concepts containing a fixed percentage α of the total norm.
In the demonstration of Fig. 2, we have used α = 0.9, but different values may be
selected. We suggest that this free parameter could be set optimally through a
learning process onto a training set of images whose similarity have been already
evaluated by well established methods.

174 E. Palumbo and W. Allasia

Fig. 2. Suppose that the annotation yields f1 = (window = 0.4, shade = 0.3, light =
0.2, nature = 0.05, sheep = 0.05) and f2 = (tree = 0.6, nature = 0.2, shade =
0.1, branch = 0.1). Setting α = 0.9 we select the first three attributes and turn them into
weighted links (represented in red and black). The shortest path (in black) between the
two images is Img1 → Shade → Img2, hence the similarity is d = 1/0.1+1/0.3 ≈ 13.3
in the WAN built from [16].

5 Conclusions

In this position paper, we have highlighted two possible weak points of the state-
of-the-art measures of semantic similarity between images: the excessive rigidity
of purely hierarchical structures and the absence of complexity. Therefore, we
have proposed a model which could possibly solve these issues. We want to
underline the fact that this definition of similarity can be extended to digital
contents of diverse nature, such as images, sounds and more generally media
objects. Once the objects are semantically annotated, the proposed algorithm
allows to measure distances between different sensorial information, modeling
the natural human ability to associate sensations. The model still necessitates a
thorough evaluation and its performances have to be compared with the avail-
able and consolidated IR techniques in order to confirm its proximity to human
behaviors. However, if our intuition is right, it can provide a general method
to evaluate relations between digital contents in a way more comprehensible to
humans. This approach could have a vast array of applications in information
management such as retrieval, clustering and the like.

Semantic Similarity Between Images: A Novel Approach 175

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74(1), 47 (2002)

2. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical processes on complex net-
works, pp. 116–135. Cambridge University Press (2008)

3. Cattuto, C., Barrat, A., Baldassarri, A., Schehr, G., Loreto, V.: Collective dynam-
ics of social annotation. Proceedings of the National Academy of Sciences 106(26),
10511–10515 (2009)

4. Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing.
Psychological Review 82(6), 407–428 (1975)

5. Collins, A., Quillian, M.: Retrieval time from semantic memory. Journal of Verbal
Learning and Verbal Behavior 8, 240–248 (1969)

6. Dall’Asta, L., Barrat, A., Barthélemy, M., Vespignani, A.: Vulnerability of weighted
networks, March 2006. arXiv:physics/0603163v1

7. Datta, R., Li, J., Wang, J.Z.: Content-based image retrieval: approaches and trends
of the new age. In: Zhang, H., Smith, J., Tian, Q. (eds.) Multimedia Information
Retrieval, pp. 253–262. ACM (2005)

8. Deselaers, T., Ferrari, V.: Visual and semantic similarity in imagenet. In: Proceed-
ings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2011, pp. 1777–1784. IEEE Computer Society, Washington, DC (2011)

9. Fang, C., Torresani, L.: Measuring image distances via embedding in a semantic man-
ifold. In: European Conference on Computer Vision, pp. 402–415, October 2012

10. Gravino, P., Servedio, V.D.P., Barrat, A., Loreto, V.: Complex structures and
semantics in free word association. Advances in Complex Systems 15(3–4) (2012)

11. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, 2nd edn. Springer (2009)

12. Kurtz, C., Beaulieu, C.F., Napel, S., Rubin, D.L.: A hierarchical knowledge-based
approach for retrieving similar medical images described with semantic annota-
tions. J. of Biomedical Informatics 49(C), 227–244 (2014)

13. Markatopoulou, F., Mezaris, V., Kompatsiaris, I.: A comparative study on the
use of multi-label classification techniques for concept-based video indexing and
annotation. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H.,
O’Connor, N. (eds.) MMM 2014, Part I. LNCS, vol. 8325, pp. 1–12. Springer,
Heidelberg (2014)

14. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to word-
net: an on-line lexical database. Int. J. Lexico. 3, 235–244 (1990)

15. Morais, A.S., Olsson, H., Schooler, L.: Mapping the structure of semantic memory.
Cognitive Science 37, 125–145 (2012)

16. Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The university of south florida word
association norms. http://w3.usf.edu/FreeAssociation

17. van Rijsbergen, K.: The Geometry of Information Retrieval. Cambridge University
Press (2004–2007)

18. Roget, P.: Roget’s thesaurus of English words and phrases. TY Crowell Co. (1911)
19. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based

image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach.
Intell. 22(12), 1349–1380 (2000)

20. Steyvers, M., Tenenbaum, J.B.: The large scale structure of semantic networks: Sta-
tistical analyses and a model of semantic growth. Cognitive Science 29, 41–78 (2005)

21. Tousch, A., Herbine, S., Audibert, J.: Semantic hierarchies for image annotation:
a survey. Pattern Recognition 45, 333–345 (2012)

22. Gabler, K.: The human brain cloud. http://www.humanbraincloud.com

http://arxiv.org/abs/physics/0603163v1
http://w3.usf.edu/FreeAssociation
http://www.humanbraincloud.com

Applications and Specific Domains

Vector-Based Similarity Measurements
for Historical Figures

Yanqing Chen, Bryan Perozzi, and Steven Skiena(B)

Department of Computer Science, Stony Brook University,
Stony Brook, NY 11794, USA

{cyanqing,bperozzi,skiena}@cs.stonybrook.edu

Abstract. Historical interpretation benefits from identifying analogies
among famous people: Who are the Lincolns, Einsteins, Hitlers, and
Mozarts? We investigate several approaches to convert approximately
600,000 historical figures into vector representations to quantify similar-
ity according to their Wikipedia pages. We adopt an effective reference
standard based on the number of human-annotated Wikipedia categories
being shared and use this to demonstrate the performance of our similar-
ity detection algorithms. In particular, we investigate four different unsu-
pervised approaches to representing the semantic associations of individ-
uals: (1) TF-IDF, (2) Weighted average of distributed word embedding,
(3) LDA Topic analysis and (4) Deepwalk embedding from page links.
All proved effective, but Deepwalk embedding yielded an overall accuracy
of 91.33% in our evaluation to uncover historical analogies. Combining
LDA and Deepwalk yielded even higher performance.

Keywords: Vector representations · People similarity · Deepwalk

1 Introduction

Historical interpretation benefits from identifying analogies among famous peo-
ple: Who are the Lincolns, Einsteins, Hitlers, and Mozarts? Effective analogies
should reflect shared personality traits, historical eras, and domains of accom-
plishment, but usually only particular facets of these individuals are captured.
Analogies are of course highly subjective, and hence rest at least partially in
the eyes of the beholder: “there are a thousand Hamlets in a thousand people’s
eyes”. For instance, Figure 1 gives closest analogies on different aspects of Isaac
Newton:

Detailed similarity quantification cannot create a perfect ranking to satisfy
everyone, especially for pairs of people that sit on the same “level” of similarity.
However, people on different “level” are definitely comparable. We are interested
in developing a generalized model to identify analogous figures of a reasonably
high similarity level, based on semantics in text and connections of history. It
could be very evocative when correctly identified examples like: Martin Luther
King and Nelson Mandela; George Washington and Mao Zedong; Babe Ruth and
Sachen Tendlukar.
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 179–190, 2015.
DOI: 10.1007/978-3-319-25087-8 17

180 Y. Chen et al.

Fig. 1. Sample analogous historical figures of Isaac Newton and corresponding expla-
nations of similarity. Analogies are highly subjective, making it impossible to find
perfectly fair and objective gold standards.

In this paper, we propose methods for identifying historical analogies through
the large-scale analysis of Wikipedia pages, as well as a reference standard to
judge the effectiveness of our methods. The most obvious applications of this are
in historical interpretation and education, but we believe that the problem runs
considerably deeper since being able to identify similar individuals goes to the
heart of algorithms for suggesting friends in social networks, or even matching
algorithms pairing up roommates or those seeking romantic partners.

Specifically, our work makes the following contributions:

– We propose to use information extracted from Wikipedia categories to be
as reference standards to solve this task. Though not perfect, these human
labeled features imply relationships and are shared between similar people.
We generated in total 3,000,000 triples of variable and prescribed difficulty,
providing an effective standard to evaluate the performance of our similarity
measurement algorithms.

– We investigate four different unsupervised approaches to extract semantic
associations from Wikipedia. All proved effective and our best approach of
Deepwalk yielded an overall accuracy of 91.33% in agreement with human
annotated Wikipedia categories. We provide an interactive demonstration of

Vector-Based Similarity Measurements for Historical Figures 181

our historical analogies at http://peoplesimilarity.appspot.com/, where you
can identify the most similar historical figures to any individual you query.

– We did a careful search to find the best distance function for each vector
model. All these approaches yield good qualities, but may focus on different
aspects of feature vectors. We also generated a model using linear combina-
tion of previously mentioned models to get a better tradeoff between graph
structures and text semantics.

The rest of this paper proceeds as follows: In Section 2 we describe related
work. Section 3 talks about data collection and resource processing. Section 4
focuses on model constructions. In Section 5 we introduce how we setup our
experiment. Finally in Section 6 we show results and evaluations.

2 Related Work

Similarity measurements on documents are gaining popularity [6,8]. Traditional
methods of TF-IDF and LDA [3] are proved to be valuable in topic similarity
measurements. Topics from LDA highly agree with real tags when finding most
important feature words of a page [11]. However, such as an excellent approach
still has some defects. One is that the probability distribution is not determin-
istic, especially when there are many closely-related topics. The other is that
LDA focus only on co-occurrence of words but a robust sematic grouping of
topics needs more language dependent resources, like stemming and synonyms
[7], which makes the procedure semi-supervised. We will show later that unsu-
pervised models can perform as well as, or even better than LDA in our tasks.

On the other hand, researchers have developed network-based similarity mea-
surements instead of pairwise comparisons. Adopting networks in this tasks is
valuable. It generalizes classification and local graph features on large scale doc-
ument collections [10], provides unsupervised hierarchic similarity structure [18]
and also benefits visualization of the task to better understand “similarity” [13].

Learning vector representation of words or articles can help convert semantic
features into high-dimensional spaces for easy quantification. Word-level repre-
sentations are proved to be useful [2] and arouse significant interests. SENNA
[5] shows that embedding are able to perform well on several NLP tasks in the
absence of any other features. Embedding with local information can lead to bet-
ter and more precise clustering of words [9]. It is even possible to extract specific
analogies of words from embedding [4,14]. Additionally, word embedding can be
easily constructed for many other languages [1], making it perfectly extensible
in multilingual world.

On sentence or article level, proposed vector model in [12] demonstrates the
possibility as well as the potential usage in related NLP tasks. Deepwalk [15]
seeks vector representations using recent advancements in language modeling
and unsupervised feature learning (or deep learning) from sequences of words to
graphs. Deepwalk uses truncated random walks to learn latent representations
by encoding social relations in a continuous vector space that is easily exploited

182 Y. Chen et al.

by statistical models. Applying Deepwalk on Wikipedia will create vector repre-
sentation for each page thus provides statistical comparison between entries in
this huge graph.

3 Data Collection

We start the whole corpus processing from English Wikipedia dumps. We first
split each page into content part and reference part: Content part contains main
body of text while Reference part includes Wikipedia category information and
links to supplemental materials. We then collect links between Wikipedia pages
to create a huge adjacent list for all pages. We keep only links in content part
that point to another main page (not supplemental materials and categories
links). This procedure helps us collect adjacent list of totally 4,517,721 pages
which will be used in Deepwalk training.

We search each remaining page in Freebase to check whether this page falls
in the category of people. In order to make the similarity comparison more
reasonable, we ignore pages that have less than 50 hits which may probably
indicate insignificant people. We parse and tokenize all remaining pages with
reasonable length and keep track of all raw texts. We finally record 557,965
people’s Wikipedia text. In our experiment we use these Wikipedia raw texts to
refer to corresponding people when calculate similarities.

At last that we extract Wikipedia category information from reference part
to generate standards called “category description” of people. Such human-
annotated labels are good for summarizing the history of famous people and
will be used to create our experiment test bed.

4 Model Description

In this section we will describe four candidate models which convert the content
part of Wikipedia article – a neutral description of one’s history – to feature
vectors to fuel similarity detection methods.

These models are TF-IDF, distributed word embedding, LDA probability of
topics and Deepwalk embedding.

4.1 TF-IDF Model

TF-IDF is a frequently used bag-of-words processing in NLP tasks to reflect
importance of words in a target document. One advantage of TF-IDF model is
that rare words are usually emphasized due to their uniqueness in the corpus,
which makes it easy to handle words that do not appear in pre-defined dictio-
nary. Calculation of TF-IDF basically involve all words appeared in the corpus
collection. We use standard TF-IDF vector representation of documents in Gen-
sim [16] to convert each Wikipedia article into feature vector. Pairwise similarity
is calculated using cosine similarity.

Vector-Based Similarity Measurements for Historical Figures 183

4.2 Distributed Word Embedding Model

Distributed word embedding model represents an article using a weighted aver-
age embedding of words in it. By using TF-IDF value as weight of each word and
combining SENNA word embedding, feature vector of an article will be pulled to
the barycenter of the most important and descriptive words in the article. Since
word embedding cluster syntactically and semantically similar words together
in embedding space, potential synonyms can be detected easily to improve the
performance of very basic bag-of-words processing, thus to provide a better esti-
mate of similarity. However, word embedding model has a disadvantage that
it can only handle words with an existing embedding – words not appear in
SENNAs dictionary will be discarded. Distance measurement in our experiment
could be Euclidean distance, Manhattan distance or cosine similarity. Figure 2
is a simplified 2-D projection illustrating party leaders, musicians and physicists
in our embedding space.

concerto

composer

violin

piano

music

Vienna

theory

physics

motion

EinsteinMozart

Beethoven Max Planck

Mao Zedong

Joseph Stalin

partycommunist

government

leader

mountain

hill

river

basketball

Copenhagen

move

Fig. 2. Sample entities and words in projected embedding space. Entities will be
attracted by the most descriptive words in embedding space and locate at the “barycen-
ter” of these words, which can later on be used in distance calculation to show relevance
between pairs.

4.3 LDA Model

LDA model provides probability distribution of possible topics. It is based on
co-occurrence of words and has an advantage that the output of each topic would
be easy for human beings to read and understand. We calculate LDA model for
the corpus using 500 topics, converting each Wikipedia page in the corpus into
a probability distribution of possible topics. Figure 3 shows an example of top
related topics for some entities. Pages have higher probability to fall into same

184 Y. Chen et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

physics
 physicist

theory
 professor

only
 one

composer
 musician

government
 president

communist
 party

P
ro

ba
bl

ity
 o

f w
or

ds
 fa

lli
ng

 in
to

 a
 to

pi
c

Different Topics

Einstein
Max Planck

Mozart
Beethoven

Mao Zedong
Stalin

Fig. 3. Examples of entities and top six related topics in LDA method. We display top
two representative words in each topic. The distribution of topics for Wikipedia people
differs a lot but historical figures with comparable contributions or related professional
fields are much more similar than the others.

topics should be considered more similar and the probability of topic distribution
differs a lot for party leaders, musician and physicists.

We try several metrics to measure similarity distance of the final LDA vec-
tor, including previously used distance functions of Euclidean distance, Manhat-
tan distance and cosine similarity. Additionally, KullbackLeibler divergence and
JensenShannon divergence can be applied since feature vectors from LDA are
probability distributions.

4.4 Deepwalk Embedding Model

Deepwalk is an online algorithm that creates statistical representation of graph
by learning via random walks in the graph. Walks are considered as sentences
metaphor and generate latent dimensions according to adjacent list. With a
hierarchical Softmax layer these latent dimensions will be finally converted into
vector representations. In our experiment, we propose that Wikipedia pages
sharing more common links will sit closer in Deepwalk embedding space since
random walks in corresponding pages visit through very similar paths. Groups
with large fraction of links between corresponding Wikipedia people will indicate
stable relationships on similarity as random walks have lower chances to step out
of the group.

We use the package described in [15] with 128 output dimensions to train
Deepwalk embedding on adjacent lists of all Wikipedia pages. Distance function
between two Wikipedia people can be either Euclidean distance or Manhattan
distance between Deepwalk embedding output of corresponding pages.

Vector-Based Similarity Measurements for Historical Figures 185

5 Experimental Setup

Wikipedia pages usually contain category information as human-annotated
labels. In peoples Wikipedia pages, categories include eras, nationalities, occupa-
tions, awards and honors, educations, important historical events and other sum-
maries of their lives. Categories usually have strong signals to distinguish people,
such as “Nobel laureates in Physics” and “Presidents of the United States”. We
assume categories can construct memorable labels to indicate “similarities” and
to remind us of the images of historical figures, thus we adopt Wikipedia cate-
gories as reference standards to make distinction between groups of people.

However, some categories provide less valuable information in our task, such
as “Living people” and “Born in 1957”. In order to create better test bed, we did a
manual pre-processing to eliminate category patterns that are too broad to be rep-
resentative, including “living people”, “year of birth / death” and “Birthplace”.
We show in Figure 4 the distribution of Wikipedia categories for all peoples pages
after preprocessing. “Famous level” is measured according to Wikipedia hits, arti-
cle length and links, which is described as “ranking of significance” in [17]. Famous
people usually have many Wikipedia categories but most non-significant people
only have less than 5 representative categories – that’s why we cannot measure
people similarity based only on these category descriptions. We build up our sim-
ilarity references according to number of categories shared between people, the
more categories being shared, the more similar they are.”

Let F (X,Y) be the number of shared categories between X and Y . F (X,Y)
can be calculated for any pair (X,Y) according to extracted category infor-
mation. We then randomly select tuples of people (X,Y,Z) with condition
F (X,Y) > F (X,Z), indicating X shares more common Wikipedia categories
with Y than with Z and Y is more similar to X than Z is.

According to distribution of Wikipedia category numbers, we consider pairs
(X,Y) have high similarity if F (X,Y) > 3 and pairs (X,Y) have low similarity if
0 < F (X,Y) ≤ 3. Additionally, F (X,Y) = 0 indicate zero similarity. We sample
500,000 tuples of (X,Y,Z) in each of the following 3 cases sorted in difficulty
level:

– Case I: High similarity VS Zero: F (X,Y) > 3 and F (X,Z) = 0
– Case II: Low similarity VS Zero: 0 < F (X,Y) ≤ 3 and F (X,Z) = 0
– Case III: High similarity VS Low similarity: F (X,Y) > 3 and 0 <

F (X,Z) ≤ 3 and F (X,Y) − F (X,Z) ≥ 2

Notices that Case III has an extra constraint to guarantee statistic difference
between two similarity levels. We construct such test bed for all 557, 965 people
and most famous 50,000 people. Examples of our test bed are shown in Table 1.

To evaluate, we try to measure how well our feature vectors agree with these
test bed entries. We calculate distances between X, Y and X, Z for each tuple
entry (X,Y,Z) in our test bed. For a single tuple test, our feature vector passes
if distance between X, Y is closer than distance between Y and Z. The final
performance of each model is reported as the percentage of passed tuples tests
among 3 test cases as well as the overall percentages.

186 Y. Chen et al.

Fig. 4. Distribution of Wikipedia categories on pages of people. As expected, we usually
have more detailed information on famous historical figures and category comparisons
could be more precise on these people. Overall average number of categories between
people lies between 8 and 9.

Table 1. Tuple examples (X, Y, Z) in 3 different cases. Pair (X, Y) is always closer than
Pair (X, Z) in our tuples. Cases are sorted according to difficulty so making correct
judgements on Case III is harder.

Case (X, Y, Z)

I
(Einstein, Oppenheimer, Michael Jackson)
(Lincoln, Reagan, Gaddafi)
(Mozart, Brahms, Michael Phelps)

II
(Einstein, Aristotle, Celine Dion)
(Lincoln, Bill Clinton, Heath Ledger)
(Mozart, Charlie Chaplin, Larry Bird)

III
(Einstein, Richard Feynman, John Jacob Abel)
(Lincoln, Ulysses Grant, George W. Bush)
(Mozart, Beethoven, Dmitri Shostakovich)

6 Results and Analysis

Table 2 gives the accuracy of 4 models under 5 distance metrics, on tests over
all people in Wikipedia and then restricted to the 50,000 most famous people.

TF-IDF model can answer approximately 4 out of 5 questions correctly,
undoubtedly better than random guess (50% accuracy), which shows a quick
glance at the most important words can induce similarity well. However, TF-IDF
considers no syntactic changes of words (e.g. great vs greatest) and synonyms
(e.g. emperor vs monarch). Study on error cases shows that TF-IDF focus too
much on locations and names (e.g. the last name of James Simons ranked highly

Vector-Based Similarity Measurements for Historical Figures 187

Table 2. Accuracy performance of candidate models with different distance function.
LDA model has extra metrics since the output feature vectors are probability distri-
butions. Deepwalk slightly outperforms LDA.

Overall

Model Distance Case I Case II Case III Overall

TF-IDF Cosine 87.01% 76.23% 77.98% 80.08%

Word embedding
L2 96.95% 84.40% 74.97% 85.44%
L1 96.56% 84.26% 75.57% 85.46%

Cosine 96.43% 84.13% 75.45% 85.34 %

LDA

L2 98.70% 88.22% 75.39% 87.43 %
L1 98.17% 88.35% 77.26% 87.92 %

Cosine 98.43% 88.60% 77.53% 88.18 %
KL 97.57% 87.86 % 76.10% 87.16 %
JS 97.69% 87.98 % 76.22% 87.29 %

Deepwalk
L2 99.51% 89.50% 84.97% 91.33%
L1 99.11% 89.13% 84.59% 90.98%

Most Famous 50,000 people

Model Distance Case I Case II Case III Overall

TF-IDF Cosine 87.88% 77.06% 78.37% 81.10%

Word embedding
L2 96.89% 82.92% 90.23% 90.01%
L1 96.51% 82.90% 89.04% 89.48 %

Cosine 96.31% 82.68% 88.85% 89.29 %

LDA

L2 97.68% 83.71% 80.99% 87.46%
L1 97.95% 83.31% 81.26% 87.51%

Cosine 97.63% 83.65% 80.94% 87.41 %
KL 96.86% 83.58 % 80.84% 87.11 %
JS 97.15% 83.89 % 81.14% 87.40%

Deepwalk
L2 98.73% 85.47% 91.59% 91.93%
L1 98.11% 84.85% 90.79% 91.24%

in TF-IDF), which reduces the ability to recognize more important words in
similarity measurement. Word embedding model clusters synonyms in embed-
ding space thus allow feature vectors to capture various topic words with similar
semantic meaning, resulting in better performance compared against original
TF-IDF.

LDA model performs well in Case I and Case II, comparing to other models.
However in Case III where entities have shared categories in our references,
LDA failed to capture the similarity from topic distributions due to the fact
that detailed topics might not benefit similarity measurement. For instance, Yao
Ming is recognized as “the famous Chinese basketball player in NBA” and so
does Jeremy Lin. However, it is hard to find supporting evidence from text since
their positions, styles and even images as a basketball player are different. This
phenomenon indicates that we may need to control topic numbers to limit the
detail level in our task. Additionally, we found that distance metrics does not lead

188 Y. Chen et al.

Table 3. Examples of 10 closest neighbors we find using our vector based models and
corresponding human evaluations. C column represents count of common Wikipedia
categories between pairs of people and HE column shows human evaluation after read-
ing their bibliography with ++, + or - rating according to general knowledge.

Model
Albert Einstein Yao Ming Larry Page

Candidates C HE Candidates C HE Candidates C HE

LDA

Wolfgang Pauli 5 ++ Yi Jianlian 4 ++ Simson Garfinkel 0 ++
Emmy Noether 1 - Chris Bosh 2 ++ Robert Metcalfe 1 ++

Erwin Schrdinger 2 ++ Sun Yue 3 ++ John Mashey 0 -
Eugene Wigner 4 ++ Luol Deng 1 + Ray Tomlinson 0 -
Norbert Wiener 1 - Bob Cousy 1 - M. J. Dominus 0 -
Esther Lederberg 0 - Steve Nash 2 + R. Piquepaille 0 -
David Hilbert 0 + Herschel Walker 0 - Ellen Spertus 1 -
Felix Ehrenhaft 0 + R. Tomjanovich 2 + Jon Lebkowsky 0 +
Paul Ehrenfest 1 + A. Kavaliauskas 1 + R. P. Garbriel 2 ++
Ralph Kronig 1 + Mengke Bateer 5 ++ D. Giampaolo 1 +

Deepwalk

Richard Feynman 4 ++ Yi Jianlian 4 ++ Sergey Brin 12 ++
Max Planck 3 ++ Jeremy Lin 0 ++ Eric Schmidt 6 ++

Freeman Dyson 3 + Kobe Bryant 2 + Bill Gates 6 ++
David Bohm 1 + Wang Zhizhi 5 ++ Marc Andreessen 2 ++

Stephen Hawking 2 ++ Michael Jordan 1 + Mark Zuckerberg 6 ++
David Hilbert 0 + Deron Williams 2 + Esther Dyson 0 -
Oppenheimer 4 ++ Mengke Bateer 5 ++ John Doerr 3 +

Werner Heisenberg 4 ++ Dwyane Wade 3 + John Battelle 0 ++
Hermann Bondi 1 - LeBron James 3 + Joi Ito 0 -
Erwin Schrdinger 2 ++ Steve Francis 2 + Jimmy Wales 1 +

Linear
Max Planck 3 ++ Yi Jianlian 4 ++ Bill Gates 6 ++

Erwin Schrdinger 2 ++ Mengke Bateer 5 ++ Eric Schmidt 6 ++

comb
Richard Feynman 4 ++ Chris Bosh 2 ++ Simson Garfinkel 0 ++
Freeman Dyson 3 + Michael Jordan 1 + Sergey Brin 12 ++

of
Wolfgang Pauli 5 ++ LeBron James 3 + Robert Metcalfe 1 ++
David Bohm 1 + Jeremy Lin 0 ++ Marc Andreessen 2 ++

Deepwalk
Eugene Wigner 4 ++ Charles Barkley 2 ++ Mark Zuckerberg 6 ++

R. Millikan 2 + Tony Parker 1 + John Battelle 0 ++

and LDA
Stephen Hawking 2 ++ Steve Francis 2 + Marissa Mayer 4 +
George Gamow 2 + Juwan Howard 2 ++ Steve Jobs 5 ++

to huge performance improvements in LDA, showing LDA feature vectors are
robust and well-shaped in embedding space, reflecting good hierarchic similarity
structure.

Deepwalk embedding yielded an overall accuracy of 91.33% on all people
test and an even higher 91.93% on 50,000 most famous people test, winning
all other vector based model. Noticeable drop in Case II accuracy is caused by
“weak” categories that do not provide strong support on similarity measurement.
Another discovery is that important historical event will usually pull people
closer in Deepwalk embedding space, for instance, Ward Hill Lamon is considered
close enough to Abraham Lincoln due to the famous assassination. However,
Lamon was no match of Lincoln since he is actually not a politician.

Though we consider Case III (quantification of similarities) to be more dif-
ficult than Case II (detecting minor similarities), TF-IDF model (as well as
Deepwalk and Distributed word embedding model when targeting most famous
50,000 Wikipedia figures) answers Case III questions more accurately.

Vector-Based Similarity Measurements for Historical Figures 189

We did a manual human evaluation on random selected 200 people using
LDA, Deepwalk and linear combination of both. Result shows that text-based
methods like LDA plays complementary roles to Deepwalk since these two
approaches emphasize different part in similarity. Agreement from both methods
undoubtedly increase the confidence level of quantifying similarity. Table 3 shows
10 examples and corresponding analogous historical figures, as well as human
evaluations using single or combined distance measurement from our previous
experiments.

7 Conclusion

We have proposed models for constructing feature vectors and measuring the
similarity between historical figures, and demonstrated that it works effectively
over a representative evaluation environment. We tested our models on approx-
imately 600,000 historical figures from Wikipedia pages, and our Deepwalk
embedding yielded an overall accuracy of 91.33% in our evaluation, showing
high agreement with human annotated Wikipedia categories. We show that lin-
ear combination of Deepwalk and LDA make results even more reasonable.

These models naturally extending to analyzing figures in different languages,
and also to extend to other classes of entities like locations (i.e. cities and coun-
tries) and organizations (companies and universities) and we are able to identify
similar individuals for suggesting friends in social networks, or even matching
algorithms pairing up roommates or those seeking romantic partners.

Parameterizing can capture different tradeoffs between personality, tempo-
ral, and topic-based analogies. An inspection of our closest matches suggests
that topic-based analogies dominate the nearest matches when considering text
only, but more revealing analogies may result from restricting the analyzed word
features to particular parts of speech or sentiment polarity.

Finally, explain or naturally represent the reasons for the observed similarity
or analogy require finding human-interpretable names for the dimensions/topics
obtained using our learning procedures, or at least better understanding the
meaning of particular strong or overrepresented features in our analysis which
is an advantage for LDA model. We believe that properly defined weights in com-
bination of different models could better generalize the definition of “similarity”
and greatly improve the performance.

Acknowledgments. This research was partially supported by NSF Grants DBI-
1355990 and IIS-1017181, and a Google Faculty Research Award.

190 Y. Chen et al.

References

1. Al-Rfou, R., Perozzi, B., Skiena, S.: Polyglot: Distributed word representations
for multilingual NLP. In: Proceedings of the Seventeenth Conference on Compu-
tational Natural Language Learning, pp. 183–192 (2013)

2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. Journal of Machine Learning Research 3, 1137–1155 (2003)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of
Machine Learning Research 3, 993–1022 (2003)

4. Chen, Y., Perozzi, B., Al-Rfou, R., Skiena, S.: The expressive power of word embed-
dings. In: ICML 2013 Workshop on Deep Learning for Audio, Speech, and Lan-
guage Processing (2013)

5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. The Journal of Machine Learn-
ing Research 12, 2493–2537 (2011)

6. Elsayed, T., Lin, J., Oard, D.W.: Pairwise document similarity in large collections
with mapreduce. In: Proceedings of the 46th Annual Meeting of the Association
for Computational Linguistics on Human Language Technologies (2008)

7. Fellbaum, C.: WordNet. In: Theory and Applications of Ontology: Computer Appli-
cations, pp. 231–243 (2010)

8. Huang, A.: Similarity measures for text document clustering. In: Proceedings of
the Sixth New Zealand Computer Science Research Student Conference (2008)

9. Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representa-
tions via global context and multiple word prototypes. In: Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (2012)

10. Kim, M., Zhang, B.T., Lee, J.S.: Subjective document classification using network
analysis. In: 2010 International Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pp. 365–369. IEEE (2010)

11. Krestel, R., Fankhauser, P., Nejdl, W.: Latent dirichlet allocation for tag recom-
mendation. In: Proceedings of the third ACM conference on Recommender Sys-
tems, pp. 61–68. ACM (2009)

12. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
In: Proceedings of the 31st International Conference on Machine Learning (ICML-
2014), pp. 1188–1196 (2014)

13. Maiya, A.S., Rolfe, R.M.: Topic similarity networks: visual analytics for large doc-
ument sets. In: 2014 IEEE International Conference on Big Data (Big Data),
pp. 364–372. IEEE (2014)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013). arXiv preprint arXiv:1301.3781

15. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

16. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45–50 (2010)

17. Skiena, S., Ward, C.B.: Who’s Bigger?: Where Historical Figures Really Rank.
Cambridge University Press (2013)

18. Wang, C., Yu, X., Li, Y., Zhai, C., Han, J.: Content coverage maximization on word
networks for hierarchical topic summarization. In: Proceedings of the 22nd ACM
international conference on Conference on Information & Knowledge Management,
pp. 249–258. ACM (2013)

http://arxiv.org/abs/1301.3781

Efficient Approximate 3-Dimensional Point
Set Matching Using Root-Mean-Square

Deviation Score

Yoichi Sasaki1(B), Tetsuo Shibuya2, Kimihito Ito3, and Hiroki Arimura1

1 IST, Hokkaido University, Sapporo, Japan
{ysasaki,arim}@ist.hokudai.ac.jp
2 University of Tokyo, Tokyo, Japan

tshibuya@hgc.jp
3 CZC, Hokkaido University, Sapporo, Japan

itok@czc.hokudai.ac.jp

Abstract. In this paper, we study approximate point subset match
(APSM) problem with minimum RMSD score under translation, rota-
tion, and one-to-one correspondence in d-dimension. Since this problem
seems computationally much harder than the previously studied APSM
problems with translation only or distance evaluation only, we focus on
speed-up of exhaustive search algorithms that can find all approximate
matches. First, we present an efficient branch-and-bound algorithm using
a novel lower bound function of the minimum RMSD score. Next, we
present another algorithm that runs fast with high probability when a
set of parameters are fixed. Experimental results on real 3-D molecular
data sets showed that our branch-and-bound algorithm achieved signif-
icant speed-up over the naive algorithm still keeping the advantage of
generating all answers.

Keywords: 3D point set matching · RMSD · Geometric transforma-
tion · One-to-one correspondence · Branch and bound · Probabilistic
analysis

1 Introduction

1.1 Background

The approximate point set matching (APSM) is one of the fundamental prob-
lems in computer science, while it plays important roles in many application
areas including molecular biology, image retrieval, pattern recognition, music
information retrieval, and geographic information systems [12]. For every d ≥ 1,
the d-dimensional approximate point set matching problem considered in this
paper can be described as follows. An input consists of a data set T and a pattern
set P of n and k points in R

d, respectively, and a positive integer r > 0, called
distance threshold. The task is finding some point subset Q ⊆ T of k data points

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 191–203, 2015.
DOI: 10.1007/978-3-319-25087-8 18

192 Y. Sasaki et al.

that are similar to P ⊆ R
d w.r.t. a given distance measure under some transfor-

mation f , such as translation and rotation, and under some correspondence π
between the elements of two sets.

In molecular biology, for instance, such an algorithm for solving 3-D APSM
can be used to predict the unknown function of a given target protein with known
structure. To do this, we search a database of proteins with known functions
for structurally similar proteins that may indicate the unknown function. In real
molecular databases, individual data entry of molecules in a database may con-
tain measurement errors, and may have different origin, coordinate, and number-
ing of data points from data to data. Therefore, a point set matching algorithm
should have capability of finding approximation matches, and moreover should be
tolerant under translation, rotation, and also one-to-one correspondence between
points. For this reason, we focus on point set matching of this kind.

1.2 Related Work

APSM and its variants have been extensively studied for many years (See sur-
vey [12,17]). Our version of APSM problem in this paper is equipped with full
of invariance requirements, that is, all of invariance under translation, rotation,
and one-to-one correspondence, that is, rigid motion with one-to-one correspon-
dence. However, this invariance makes the problem computationally much harder
than the previously studied APSM problems. Most of previous theoretical results
on efficient APSM problems seem to fall into two categories: one is an APSM
problem [2] for finding data subset under translation only , and another is the
congruence problem with rigid motion [3] that detects the congruence between
two point sets of the same size.

In the first category, for point subset matching, de Rezende and Lee [8]
presented O(knd) time exact matching algorithm for d ≥ 2 under rigid motion
and global scaling. However, it seems difficult to extend their algorithm for
approximate matching. For approximate point subset matching, Goodrich et
al. [10], and later Cho and Mount [6], presented simple constant approximation
algorithms for d = 2, 3 under directed Hausdorff distance based on aligning
pairs of points. Although this algorithm has quadratic time complexity in n, it
only has constant approximation ratio larger than three [6]. On the hardness,
Akutsu [1] showed that the APSM problem under rigid motion is NP-hard when
d is not bounded In the second category, Alt et al. [3] presented an algorithm for
the congruence problem under rigid motion that runs in O(nd−2 log n) time in d
dimension. Akutsu [1] improved this by presenting O(n(d−1)/2 log n) time Monte-
Carlo type randomized algorithm. We note that all of above results were obtained
for Hausdorff distance which allows many-to-one correspondence between points.

The selection of distance score gives another dimension to the APSM prob-
lem. In this paper, we consider the minimum root-mean-square deviation score
(minimum RMSD score) between point sets, which is widely used similarity
score in molecular biology [5]. This score requires that there is a one-to-one cor-
respondence π between a transformed set f(P) and Q such that the sum of the

Efficient Approximate 3-Dimensional Point Set Matching Using RMSD Score 193

squares of Euclidean distances between each point p in f(P) and its counterpart
q in Q is within a given threshold r, that is,

r ≥ min
π

min
f

√√√√ 1
n

n∑
i=1

||f(pi) − qπ(i)||2 (1)

for some candidate subset Q ⊆ T . This minimum RMSD score resembles the
directed approximate congruence [3] between two k-point sets except that the
latter requires that there is a one-to-one correspondence that maps each point
in f(P) to its counterpart q in Q within distance ε. In other words, the distance
between f(P) and Q is measured in L2-norm in our problem, while it is measured
in L∞-norm in [3]. Overall, from the above discussions, most of the previous
results on APSM do not apply to our problem.

1.3 Research Goal

In this paper, we consider the approximate 3-D point set matching problem
with respect to the minimum RMSD score for sets under both of translation and
rotation and under one-to-one correspondence (APSM(trans, rot, 1-1; RMSD),
for short). In addition,we are also interested in finding all approximate matches
rather than just one or some matches. A straightforward approach to solve this
problem is to use exhaustive search, which enumerates all candidate point subsets
of T and all one-to-one correspondences between a pattern and each of them.
Then, for each enumerated candidate, we test the minimum RMSD score under
translation and rotation by some matrix computation such as [15]. However, in
practice, one serious problem with this exhaustive search method is its exact
exponential time complexity. Since the method must exactly enumerate all of(
n
k

)
= nΘ(k) combination of k data points in T , it always visits the leaves of the

search tree regardless of the content of input sets.

1.4 Main Results of this Paper

To overcome this difficulty, we study a branch-and-bound algorithm for
APSM(trans, rot, 1-1; RMSD) problem. This algorithm finds all approximate
matches within threshold r by systematically enumerating all one-to-one corre-
spondences between candidate subsets of k data points from smaller to larger
prefixes based on recursive computation. At each iteration of the search, it tests
if the current candidate prefix of size i < k satisfies a given lower bound func-
tion, and then prune the search if the test failed. As a key of the algorithm,
we show that the proposed lower bound function is sound in the sense that it
cannot prune any successful search branches. Although the time complexity of
the obtained algorithm is still nO(k) in n and k in the worst case, the algorithm
can make early pruning depending on the content of input data.

We also present a fixed-parameter-tractable style algorithm [9] that runs par-
ticularly fast in terms of the data set size n when the parameters, namely, the

194 Y. Sasaki et al.

size k and radius � of a pattern set, and the distance threshold r are fixed. For
each data point, the algorithm forms a small sample set consisting of all data
points within some fixed distance, and then applies any APSM algorithm to the
sample set. Assuming the spatial Poisson process [14] in R

d, we show that the
algorithm runs in linear time in expected case, and runs in O(n logk n) time and
O(log n) space with high probability for fixed parameters.

Finally, the experimental results on real data sets of 3-D molecules showed
that the proposed branch-and-bound algorithm was one to two order of magni-
tude faster than the straightforward exhaustive search algorithm. Hence, our
lower bound function and pruning technique achieve significant speed-up of
approximate 3-D point subset matching.

1.5 Organization of This Paper

In Sec. 2, we introduce the basic definitions and notations related to the approxi-
mate point subset matching problem with the minimum RMSD under translation,
rotation, and 1-1 correspondence. First in Sec. 3, we present the branch-and-bound
algorithm using lower bound function over candidate prefixes. In Sec. 4, we present
the fixed-parameter-style algorithm and gives analysis of its complexity. Finally,
Sec. 6 concludes the paper.

2 Preliminaries

We give brief review of basic concepts and notations in geometry [7]. Then, we
introduce our point subset matching problem.

2.1 Basic Definitions

We denote by R and N the sets of all real numbers and integers, respectively. For
a real-valued k-vector Q = (q1, . . . , qk) ∈ R

k, we denote its L2- and L∞-norms
by L2(Q) =

{
1
k

∑
i |qi|2

}1/2 and L∞(Q) = maxi |qi|. For any k-vector Q, we
have the inequality 1

k1/2 L∞(Q) ≤ L2(Q) ≤ L∞(Q). For a matrix or a vector A,
A� denotes the transpose of A.

Let d ≥ 1 be the dimension of the space. In this paper, we consider the 3-D
space R

3, but all the results also apply to the d-dimensional space for every fixed
d ≥ 1. An element P = (p1, . . . , pd)� ∈ R

d of the space R
d is called a point . The

Euclidean distance (or distance, for short) between points p and q is given by
the L2-norm ||p − q|| = L2(p − q).

For a point sequence S = (s1, . . . , sk) ∈ (Rd)k of length k in R
d and any

0 ≤ i ≤ k, we define the i-prefix of S as the subsequence S[1..i] consisting of
the first i points of S. A point set is an unordered collection T = {t1, . . . , tn}
of points in the space. We define the size of T by the number of its elements
|T | = n. In what follows, we represent a set as a point sequence by assuming
some fixed ordering of the elements. For any k ≥ 0, a point set P is a k-point
set (or k-set , for short) if |P | = k.

Efficient Approximate 3-Dimensional Point Set Matching Using RMSD Score 195

2.2 The Minimum RMSD Score for k-point Sets

From now on, we introduce the distance score MinRMSD between two k-point
sets under translation, rotation and one-to-one correspondence.

Let P = {p1, . . . , pk} and Q = {q1, . . . , qk} be two k-point sets in R
3. In

what follows, we assume an arbitrary fixed ordering over the indices since the
following discussion does not depend on this choice of ordering. Based on this, we
often regard P and Q as point sequences by assuming underlying ordering. We
first try to align the points in P with the points in π(Q) = {Qπ(1), . . . , Qπ(k)}
permuted by a one-to-one correspondence π between P and Q, that is, any one-
to-one mapping π over indices so that pi and qπ(i) correspond each other. We
denote by O the class of all one-to-one correspondences over {1, . . . , k}.

A geometric transformation is any one-to-one mapping f : R
d → R

d over
d-dim space [3,7]. A rigid motion is a transformation generated by any combi-
nation of translation, rotation, and reflection. A rigid motion is a ransformation
that does not change the distance. It is known that matching for P under rigid
motion can be reduced to matching for P and its reflection under translation
and rotation [3]. We denote by RT the class of all compositions of rotations and
translations. It is well known that any transformation f in RT is obtained by
application of one d-dim rotation matrix R ∈ R

d×d and one d-dim translation
vector v ∈ R

d such that f(p) = R p+v for any point p ∈ R
d (See [3]). For a k-set

P = {p1, . . . , pk}, we extend f by f(P) = {R p1, . . . , R pk} = R P assuming the
correspondence. In what follows, we identify a transformation f in RT and the
associated pair (R, v) if it is clear from context.

Assuming a one-to-one correspondence π between k-sets P and Q, the root-
mean-square deviation (RMSD) between P and π(Q) is defined as the average
of the squared Euclidean distances between the corresponding pairs of points
||pi − qπ(i)|| for i = 1, . . . , k. Then, the minimum root-mean-square deviation
under the class RT of rotations and translations, denoted by MinRMSD(P,Q),
is defined as the minimum value of the RMSD score between f(P) and π(Q)
over all transformations in RT given by

MinRMSD(P,Q) = min
π

min
f

√√√√1
k

k∑
i=1

||f(pi) − qπ(i)||2, (2)

where π ranges over all one-to-one correspondences over {1, . . . , k}, and f ranges
over all transformations fR,v in RT specified by a rotation R and a translation
v in d-dim space. If π is already specified, it is known that the optimal transfor-
mation f in RT minimizing RMSD(P, π(Q)) can be computed in linear time in
fixed d ≥ 1 [11,16] by using singular value decomposition (SVD) after aligning
the centroid of P and π(Q). Such a linear time procedure does not seem to be
known for Hausdorff distance.

2.3 Approximate Point Subset Matching Problem

Let 1 ≤ k ≤ n be any positive integers. A data set and a pattern set are
sets T = {t1, . . . , tn} and P = {p1, . . . , pk} of points in R

d, respectively.

196 Y. Sasaki et al.

Algorithm 1 . A naive algorithm for solving the enumeration version of 3-D
APSM(trans, rot, 1-1; RMSD) problem using exhaustive search

1: procedure MatchNaive(P, T, r)
Input: A text point set T [1..n], a pattern point set P [1..k],a real number r > 0.
Output: All matchings of P in T with minimum RMSD score no larger than r.

2: FindNaive((), 0, |P |, |T |, P, T);

3: procedure FindNaive(Q = (q1, . . . , qi), i, k, n, P, T)
4: if i = k then � Q becomes a k-subset
5: if MinRMSD(P, Q) ≤ r then
6: Report Q as a match;
7: return;

8: for j = 1, . . . , n do
9: if T [j] �∈ Q then

10: FindNaive((q1, . . . , qi, T [j]), i + 1, k, n, P, T); � Recursive call

Each member of P (Q, resp.) is called a data point (a pattern point , resp.).
A distance threshold is any positive real number r > 0. A match for pattern set
P w.r.t. r is any k-subset Q of T such that MinRMSD(P,Q) ≤ r holds.

Now, we state our approximate pattern matching problem as follows. A can-
didate k-subset in T is any k-subset of T .

Definition 1 (APSM(trans, rot, 1-1; RMSD) problem). The approximate
point set matching problem with MinRMSD score under translation, rotation,
and one-to-one correspondence, abbreviated as APSM(trans, rot, 1-1; RMSD),
is defined as follows: Given a data set T ⊆ R

d of n points, a pattern set P ⊆ R
d

of k points, and a positive real number r > 0, find all match Q ⊆ T of k data
points that satisfy the condition RMSD(f(P), π(Q)) ≤ r,

The above definition is the enumeration version of APSM problem. In the
decision version of the APSM problem, given T , P , and r, an algorithm must
decide if MinRMSD(P,Q) ≤ r. In the optimization version, given T and P ,
an algorithm must find some one-to-one correspondence π and transformation
f in RT that minimizes MinRMSD(f(P), π(Q)). In what follows, we present
algorithms for the enumeration version of APSM. It is not hard to convert these
algorithms to solve the decision and optimization versions in the same time and
space complexity though the converse is not true in general.

2.4 A Naive Algorithm for Approximate Point Subset Matching

As the basis of our discussion, in Algorithm 1, we show the naive exhaustive
search algorithm for 3-D APSM(trans, rot, 1-1; RMSD) problem in knΘ(k) time.
In this algorithm, the subprocedure FindNaive starts with the empty prefix
Q = () and i = 0. Then, it recursively traverses the search space of i-candidate
prefixes Q = Q[1..i] from smaller to larger for all i = 0, . . . , k, where each Q[1..i]

Efficient Approximate 3-Dimensional Point Set Matching Using RMSD Score 197

represents an ordered set of i data points {Qπ(1), . . . , Qπ(i)} with correspondence
π. At each iteration, it grows the current candidate prefix by appending a new
data point from T \ Q. Whenever the condition |Q| = k holds, it tests if the
condition MinRMSD(P [1..i], Q[1..i]) = minf MinRMSD(f(P [1..i]), π(Q)) ≤ r in
linear time in k assuming π as mentioned in Sec. 2.2. Since each iteration takes
O(k) time, the total running time is O(ks) = knO(n) time, where s = nO(k) is
the number of all i-prefixes with i ≤ k. One problem with this algorithm is that
it cannot make early termination, and thus always takes knΘ(n) time regardless
of the data content.

3 A Faster Point set Matching Algorithm with Pruning

In this section, we discuss speed-up of the naive algorithm in the previous section.
We present an efficient point set matching algorithm MatchFast based on
branch-and-bound search with early pruning.

The basic idea of our algorithm is using a lower bound function LB of
MinRMSD score to make early pruning of unsuccessful branches. We design the
lower bound function LB such that for any candidate i-prefix Q = Q[1..i] consist-
ing of i ≤ k data points, LB(P [1..i], Q[1..i]) > r implies MinRMSD(P,R) for any
k-subset R = R[1..k] of T that is an extension of Q such that R[1..i] = Q[1..i].
Based on this idea, we present a simple lower bound function for MinRMSD
that our branch-and-bound algorithm uses.

Theorem 1 (sound lower bound function). Let P and Q be k-point sets as
sequences. For any integer 1 ≤ i ≤ k, it holds that

MinRMSD(P,Q) ≥
(

i
k

)1/2

MinRMSD(P [1..i], Q[1..i]) (3)

Proof. Consider the sum of squared distances SSD(P,Q) =
∑k

i=1 ||fR,v(P [i]) −
Q[i]||2. Suppose that we append a pair of new points P [i] and Q[i] to P and Q.
Then, we see that the minimum of SSD(f(P [i]), Q[i]) over all transformations
f is larger than or equal to the sum of the squared distance ||P [i] − Q[i]||2 and
the minimum of SSD(f ′(P [i−1]), Q[i−1]) over all transformations f ′. Since the
minimum of SSD(f(P [i]), Q[i]) over all f equals k ·(MinRMSD(P,Q))2, we have
the equality k ·MinRMSD(P [1..k], Q[1..k])2 ≥ i ·MinRMSD(P [1..i], Q[1..i])2 (∗).
By taking the square root of the both side of (*), the theorem follows. �	

From the above Theorem, we propose (i/k)1/2 MinRMSD(P [1..i], Q[1..i]) as
the lower bound function for MinRMSD(P,Q). Based on the proposed lower
bound function, in Algorithm 2, we present the MatchFast with the modified
subprocedure FindFast. At each iteration, it searches for all i-prefixes as in
the same manner as the naive algorithm does except that it makes the test the
current candidate i-prefix Q[1..i] at Line 10 based on the lower bound function
LB, and prunes the search when the test failed. From Theorem 1, this pruning
is sound without eliminating any successful branches. Furthermore, the test at
Line 8 ensures to avoid duplicated enumeration of the same one-to-one corre-
spondence. From the above discussion, we have the main theorem of this section.

198 Y. Sasaki et al.

Algorithm 2. A faster branch-and-bound algorithm for solving the enumeration
version of 3-D APSM(trans, rot, 1-1; RMSD) problem using exhaustive search

1: procedure MatchFast(P, T, r)
2: FindFast((), 0, |P |, |T |, P, T);

3: procedure FindFast(Q = (q1, . . . , qi), i, k, n, P, T) � candidate prefix Q
4: if i = k then � Q becomes a k-subset
5: if MinRMSD(P, Q) ≤ r then
6: Report Q as a match;

7: for j = 1, . . . , n do
8: if T [j] �∈ Q then then continue;
9: R := (q1, . . . , qi, T [j]); � Append a new data point

10: if (i/k)1/2MinRMSD(P [1..i + 1], R) > r then continue; � Pruning
11: FindFast(R, i + 1, k, n, P, T); � Call itself recursively

Theorem 2. The algorithm MatchFast in Algorithm 2 solves the enumera-
tion version of APSM(trans, rot, 1-1; RMSD), the approximate 3-D point set
matching problem with minimum RMSD score under translation, rotation, one-
to-one correspondence, in O(

(
n
k

)
k)) = nO(k)k time.

Although the worst case time complexity of MatchFast still remains nO(k)k
time, it can make early termination depending on the content of an input data.

4 A Fixed-parameter-like Algorithm Using Spatial
Constraint

In this section, we present the second modified algorithm MatchFP, which
is inspired by fixed-parameter tractable algorithms [9], that is particularly fast
for small patterns on uniformly distributed data points. In the followings, let
d = 2, 3 be a fixed dimension, and θ = (k, r, �) be the tuple of parameters such
that k and � is the size and radius of pattern P , r > 0 is a distance threshold,
and ε > 0 is a positive number explained later.

4.1 Basic Idea

For any positive number � > 0, we define the ball Bc,� = { q ∈ R
d | ||q − c|| ≤ � }.

with radius � > 0 centered at a point c ∈ R
d, whose volume is |Bc,�| = (4π/3)�3

for d = 3. Then, the radius of a point set P , denoted by radius(P), is the
minimum radius of the ball containing all points of P . The maximum neighbor
distance within a given ball B ⊆ R

d is the maximum of the distance to the
nearest neighbor of each data point in B defined by ε = maxp∈B minq∈T ||p−q|| >
0. The next lemma says that if there is a match between P and some k-subset
Q ⊆ T , such a candidate can be found in a small ball around P when the size
and radius of P , threshold r, and the maximum neighbor distance are bounded.

Efficient Approximate 3-Dimensional Point Set Matching Using RMSD Score 199

Algorithm 3 . A fixed-parameter algorithm MatchFP that solves the enu-
meration version of 3-D approximate PSM with RMSD score under translation,
rotation, and one-to-one correspondence.
Given a data point et T , a pattern point set P , distance threshold r > 0, and real
number 0 < δ ≤ 1, the algorithm MatchFP executes the following steps for each data
point t in T :

• Step 1: Compute the set Tt of all data points in the ball Bt,L with radius L =
L(k, r, �) := 2(k1/2r + �).

• Step 2: Apply the algorithm MatchFast(Tt, P, r) in Sec. 3 to the restricted data
set Tc centered at t to find and output all matchings Q ⊆ Tt within Tt.

Theorem 3 (Locality of match). Let P be any pattern set with the center
c ∈ R

d and radius � > 0, and r > 0 be any number. If RMSD(f(P), Q) ≤ r
holds for some transformation f in RT and some candidate k-point set Q ⊆ T ,
then Q must be contained within the ball centered at c′ = f(c) ∈ R

d with radius

L = L(k, r, �) := 2(k1/2r + �) (4)

Proof. Let P = (pi)k
i=1 and Q = (qi)k

i=1. It is sufficient to show ||f(c) − qi|| ≤ L
holds for any i. Let 1 ≤ i ≤ k be any index. Note that ||f(c) − qi|| ≤
||f(c) − f(pi)|| + ||f(pi) − qi|| (*) from the triangular inequation on L2-norm.
First, we see that ||f(c) − f(pi)|| ≤ � since ||c − pi|| ≤ radius(P) = � by assump-
tion. Next, by assumption, r ≥ RMSD(f(P), Q) = L2(f(P) − Q) holds. Since
L2(X) ≥ (1/k)1/2L∞(X) holds for any k-vector X, we have L2(f(P) − Q) ≥
(1/k)1/2L∞(f(P) − Q) ≥ (1/k)1/2||f(pi) − qi||(∗∗). Multiplying the both side of
(**) by k1/2 ≥ 0, we have ||f(pi) − qi|| ≤ k1/2r. By combining above arguments
with (*), we have ||f(c) − qi|| ≤ � + k1/2r. Applying this formula again, we
also see that f(c) has the nearest data point tc ∈ T such that ||tc − f(c)|| ≤ ε
for ε := � + k1/2r. Thus, again from triangular inequality, we have the result
||tc − f(pi)|| ≤ ||tc − f(c)|| + ||f(c) − qi|| ≤ ε + (� + k1/2r) = L. �	

In Algorithm 3, we present the algorithm MatchFP for APSM(trans, rot,
1-1; RMSD) based on Theorem 3 that runs particularly fast on uniformly dis-
tributed data points for fixed parameter values θ = (k, r, �). This algorithm first
computes the parameter L = L(k, r, �) according to Theorem 3. Then, it works
on iterations with each t among n data points in T . In Step 1, it computes the
local data set Tt in O(polylog(n)×|Tt|) time using, e.g., the range tree index [7].
In Step 2, the algorithm computes matchings on Tt using MatchFast in Sec. 3
in t = O(N(Bt,L)kk) time and s = O(N(Bt,L)) working space. Then, it repeats
the above process for all of n data point t.

Lemma 1. If L ≥ L(k, r, �), then the algorithm MatchFP in Algo-
rithm 3 solves the 3-D APSM(trans, rot, 1-1; RMSD) problem in t =
O(

∑
t∈T N(Bt,L)kk) time and s = O(maxt∈T N(Bt,L)) working space.

200 Y. Sasaki et al.

4.2 Probabilistic Analysis

The spatial Poisson process (SPP, for short) with mean parameter λ > 0 is a
model of uniform distribution of random points in R

d [14] having density λ. In
SPP, (S1) for any ball B, the distribution of count N(B) obeys Poisson distri-
bution with mean λ|B| > 0, i.e., Pr(N(B) = k) = ((λ|B|)k/k!)e−λ|B|. Moreover,
(S2) for any disjoint regions A1, . . . , Am, N(A1), . . . , N(Am) are independent.
Now, we show the main theorem of this section which says that MatchFP runs
particularly fast when parameter k, r, and � are small constant over uniformly
generated data sets.

Theorem 4. Suppose that data points are generated by SPP with density λ > 0.
We fix the following parameters θ = (k, �, r): the maximum size k > 0 and radius
� > 0 of a pattern, a distance threshold r > 0. Then, for any δ > 0, the following
conditions holds:

For any data set T of n points of arbitrary radius and a pattern set P of
k points with radius at most �, if we set the radius of the local data set Tt

to be L = L(k, r, �) in Theorem 3, then MatchFP in Algorithm 3 solves
the 3-D APSM(trans, rot, 1-1; RMSD) problem in O(n logk n) time and
O(log n) working space with probability at least 1 − δ.

Proof. We give a proof sketch. By assumption of SPP, for any ball BL = Bt,L,
Pr(N(BL) = k) is given by Poisson distribution with mean λ|BL| regardless
of the location of t. Let c > 0 be a number that will be specified later. From
Lemma 1, we see that the algorithm has the claimed complexity if the following
situation does not happen; err∗: the local set size |Ti| exceeds cλ|BL|. Assuming
SPP, we can show upper bounds of the failure probability Pr(err∗) as follows.
By applying tail bound for Poisson distribution to the union bound, we can show
that Pr(err∗) ≤ ∑

t∈T Pr{N(Bt,L) > cλ|Bt,L|} = n · Pr{N(BL) > cλ|BL|} ≤ δ
for some c ≥ (1/λ|B|){− ln(δ) + ln(n) + ln(2)} = const(δ) + O(ln(n)). From
the above discussion, the local set size satisfies |Ti| ≤ cλ|B| = O(ln(n)) with
probability at least 1 − δ. Hence, the theorem follows from Lemma 1. �	

5 Experiments

In this section, we give experimental results on real point data sets to evaluate
the efficiency of the proposed algorithms in Sec.3.

5.1 Data and Method

As a real data set, we used the molecular 3-D point set of one variation 1 of
the protein called Hemagglutinin HA1 chain of influenza A virus (H10N8) from
RCSB Protein Data Bank (PDB) 2. In the followings, the units of length and
1 The variation with structure ID 4XQ5 of H10N8 in PDB.
2 http://www.rcsb.org/pdb/

http://www.rcsb.org/pdb/

Efficient Approximate 3-Dimensional Point Set Matching Using RMSD Score 201

distance are Å(=0.1nm = 1.0×10−10m). For each parameter n up to 100, among
3722 atoms including 477 Cα atoms in the original data, we formed a data set
of size n by extracting a subset of n locations of Cα carbon atoms, which give
the approximated skeleton of a part of the molecule. The radius and the average
distance between neighbor atoms were 45.31 unit and 2.2 unit, respectively. For
each k up to 50, a pattern set of size k was formed by randomly selecting k
points from the data set.

We implemented the naive algorithm in Sec.2 (naive) and the modified algo-
rithm in Sec.3 (pruned)in C++ with Eigen linear algebra package 3. As the exper-
imental environment, we used a PC (CPU Intel Core i5 2.6 GHz,8GB memory)
and compiler (g++, Apple LLVM version 6.0, clang-600.0.54) with -O3 option.
In the experiments, we measured the average of running time over four trials
as well as the number of matches by varying input size n = |T |, pattern size
k = |P |, and distance threshold r. We used default values of n = 100, k = 3,
and r = 0.1 otherwise stated.

5.2 Results

We show the experimental results in of (a)–(d) of Fig. 1.

Exp 1: Running Time and Number of Visited Prefixes Varying Input
Data Size: First, in (a) and (b) of Fig. 1, we show the number of visited
candidates and running time by varying the data set size n from 10 to 150.
From (a), we observed that the proposed branch-and-bound algorithm pruned
using the lower bound function in Sec. 3 could effectively reduce the number
of visited candidates to the 1/4 to 1/4800 of the original naive. From (b), we
also observed that by this reduction of the number of visited candidates, pruned
successfully achieved 50 to 600 times speed-up over naive,

Exp 2: Running Time Varying Pattern Size: In (c) of Fig. 1, we show the
running time by varying the pattern size k from 1 to 50, where n = 100 and
r = 0.1. Note that we could run naive up to k = 3 because its running time
exceeded the upper bound of 120 seconds for k > 3. From the figure, we see
that the running time of naive showed exponential growth in k as expected from
theoretical upper bound nΘ(k), while that of pruned quickly grew up to k = 2
as same as naive and was slowly increasing after k = 3. Hence, we can conclude
that the proposed pruning method with lower bound function is effective for
matching with large pattern size k.

Exp 3: Running Time Varying Distance Threshold: In (d) of Fig. 1, we
show the running time by varying distance threshold r from 0.01 to 10.0. Note
that the average neighbor distance and radius of the data set is 2.2 and 45.3
units, respectively. From the figure, we observed that the time reduction ratio of
pruned to naive gets larger when r goes smaller, while the ratio approaches almost
one when r goes larger. Thus, our technique is more effective for smaller r.

3 http://eigen.tuxfamily.org/

http://eigen.tuxfamily.org/

202 Y. Sasaki et al.

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

10 100

nu
m

be
r o

f m
at

ch
es

database size n (points)

naive (k = 3)
pruned (k = 3)
pruned (k = 10)

(a) Number of matches varying input
size n, where r = 0.1, and k = 3 or 10.

0.001

0.01

0.1

1

10

100

10 100

se
ar

ch
 ti

m
e

(s
ec

)

database size n (points)

naive (k = 3)

pruned (k = 3)

pruned (k = 10)

(b) Running time varying input size n,
where r = 0.1, and k = 3 or 10.

0.001

0.01

0.1

1

10

100

1 10 100

se
ar

ch
 ti

m
e

(s
ec

)

pattern size k (points)

naive
pruned

(c) Running time varying pattern size k,
where n = 100 and r = 0.1.

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10

se
ar

ch
 ti

m
e

(s
ec

)

distance threshold r

naive (k = 3)
pruned (k = 3)

(d) Running time varying distance thresh-
old r, where n = 100 and k = 3.

Fig. 1. Comparison of the naive and proposed algorithms, naive and pruned, resp.,
where we set n = 100, k = 3, and r = 0.1 unless they are explicitly specified.

6 Conclusion

In this paper, we considered the approximate 3-D point set matching problem
with the MinRMSD score under rotation, translation, and one-to-one correspon-
dence, and then presented an efficient branch-and-bound algorithm based on a
lower bound function. We also presented a FPT-style algorithm for fixed param-
eters. Experimental results showed that the first algorithm was one to two order
of magnitude faster than the naive algorithm.

It will be a future work to compare the proposed algorithms and the existing
constant approximation algorithms such as [6,10] to study trade-off between the
time and accuracy. We also plan to apply the proposed algorithms to real world
data sets in bioinformatics, 3D-modeling, and spatio-temporal data. Point subset
mining [4,13] is a problem of finding point subsets from a point data set that
meet a given criterion. Hence, it will be an interesting research problem how to
use the proposed technique to speed-up point subset mining [4,13].

Efficient Approximate 3-Dimensional Point Set Matching Using RMSD Score 203

Acknowledgments. The authors are grateful to anonymous reviewers for their com-
ments which significantly improved the correctness and the presentation of this paper,
and also to Takeaki Uno, Kunihiko Sadakane, Koji Tsuda, Shin-ichi Minato, and Yutaka
Akiyama for their comments on this work. This research is supported in part by MEXT
Grant-in-Aid for Scientific Research (A), 24240021, and the second author is also sup-
ported in part by CREST, JST, “Foundations of Innovative Algorithms for Big Data”.

References

1. Akutsu, T.: On determining the congruence of point sets in d dimensions. Com-
putational Geometry 9(4), 247–256 (1998)

2. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and
approximation, pp. 121–153. Elsevier Science Publishers B.V. North-Holland
(1999)

3. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity and sym-
metries of geometric objects. Discret. Comput. Geom. 3, 237–256 (1988)

4. Arimura, H., Uno, T., Shimozono, S.: Time and space efficient discovery of maximal
geometric graphs. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS
(LNAI), vol. 4755, pp. 42–55. Springer, Heidelberg (2007)

5. Carpentier, M., Brouillet, S., Pothier, J.: Yakusa: a fast structural database scan-
ning method. Proteins 61(1), 137–151 (2005)

6. Cho, M., Mount, D.M.: Improved approximation bounds for planar point pattern
matching. Algorithmica 50(2), 175–207 (2008)

7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer-Verlag (2000)

8. de Rezende, P.J., Lee, D.: Point set pattern matching in d-dimensions. Algorithmica
13(4), 387–404 (1995)

9. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer (1999)
10. Goodrich, M.T., Mitchell, J.S., Orletsky, M.W.: Approximate geometric pattern

matching under rigid motions. IEEE Trans. PAMI 21(4), 371–379 (1999)
11. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta

Crystallographica A32(5), 922–923 (1976)
12. Mäkinen, V., Ukkonen, E.: Point pattern matching. In: Kao, M. (ed.) Encyclopedia

of Algorithms, pp. 657–660. Springer (2008)
13. Nowozin, S., Tsuda, K.: Frequent subgraph retrieval in geometric graph databases.

In: 8th IEEE Int’l Conf. on Data Mining, pp. 953–958 (2008)
14. Pinsky, M., Karlin, S.: An introduction to stochastic modeling. Academic Press

(2010)
15. Schwartz, J.T., Sharir, M.: Identification of partially obscured objects in two and

three dimensions by matching noisy characteristic curves. The Int’l J. of Robotics
Res. 6(2), 29–44 (1987)

16. Shibuya, T.: Geometric suffix tree: Indexing protein 3-d structures. Journal of the
ACM 57(3), 15 (2010)

17. Tam, G.K., et al.: Registration of 3d point clouds and meshes: a survey from rigid
to nonrigid. IEEE Trans. Vis. Comput. Graphics 19(7), 1199–1217 (2013)

Face Image Retrieval Revisited

Jan Sedmidubsky(B), Vladimir Mic, and Pavel Zezula

Masaryk University, Botanicka 68a, 602 00 Brno, Czech Republic
xsedmid@fi.muni.cz

Abstract. The objective of face retrieval is to efficiently search an image
database with detected faces and identify such faces that belong to the
same person as a query face. Unlike most related papers, we concen-
trate on both retrieval effectiveness and efficiency. High retrieval effec-
tiveness is achieved by proposing a new fusion approach which integrates
existing state-of-the-art detection as well as matching methods. We fur-
ther significantly improve a retrieval quality by employing the concept of
multi-face queries along with optional relevance feedback. To be able to
efficiently process queries on databases with millions of faces, we apply
a specialized indexing algorithm. The proposed solutions are compared
against four existing open-source and commercial technologies and exper-
imentally evaluated on the standardized FERET dataset and on a real-
life dataset of more than one million face images. The retrieval results
demonstrate a significant gain in effectiveness and two-orders of magni-
tude more efficient query processing, with respect to a single technology
executed sequentially.

1 Introduction

Face recognition (FR) is a problem of verifying or identifying a face appearing
in a given image. FR has become a popular biometric technology because it
does not require expensive capturing devices and does not force users to carry
or remember something to verify their identity, while enables to surreptitiously
reveal wanted persons from surveillance cameras. The current situation in FR
technology can be fairly summarized by the following quotation: “Claims that
face recognition is a solved problem are overly bold and optimistic. On the con-
trary, claims that face recognition in real-world scenarios is next to impossible are
simply too pessimistic” [7]. FR algorithms can achieve an impressive true accept
rate of up to 99% in controlled conditions (frontal face of cooperative users and
controlled indoor illumination) [7]. However, there are still many challenges for
uncontrolled environments, such as partial occlusions, difference in age of query
and database faces, large pose variations, and ambient illumination. When a
query face is captured in an unconstrained environment, true accept rate falls
below 60% [12]. These challenges make it more difficult to exploit automated
face recognition for forensic applications using low-quality query images obtained
from mobile devices or surveillance cameras.

P. Zezula—Supported by the national project No. VG20122015073.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 204–216, 2015.
DOI: 10.1007/978-3-319-25087-8 19

Face Image Retrieval Revisited 205

We focus on the problem of face recognition from the retrieval perspective.
Having specified a query face image, the objective is to efficiently search for
database faces belonging to the same person as the query face, based on simi-
larity of face features. Similarity between features of two faces is calculated by
a matching method, so-called matcher. In general, there are two main issues
when applying a given matcher on large datasets: effectiveness and efficiency.
The former one refers to the quality of retrieval, which is generally decreasing
with an increasing number of persons and face images in a dataset. The latter
one represents the retrieval speed, which has to be taken into account especially
when the database starts to contain millions of faces.

In this paper, we propose a complex solution for effective and efficient face
retrieval, taking the face detection preprocessing step into account. More specif-
ically, the main contributions of this paper are:

– proposal of fusion approaches to integrate multiple face detection methods
as well as matchers for more effective face detection and retrieval purposes;

– exploitation of multi-face queries along with relevance feedback for more
effective retrieval in comparison to single-face queries;

– proposal of application of an indexing solution for efficient retrieval in data-
bases containing more than 1 million faces, which is more than two orders
of magnitude larger than the size of the standardized FERET dataset;

– experimental comparison of existing face technologies with our proposals on
datasets of different image quality.

2 Face Detection

Face detection aims at localizing bounding boxes of faces within an image. This
task is necessary as the first stage for all face retrieval methods. Most face
detection methods utilize the idea of a different-size sliding window [14,24] to
decide whether the given image area represents a face or not. Since analysis of
all possible windows is very time consuming, some methods prune the search
space [8,22] to further reduce the number of windows. Each window is usually
analyzed by localizing low-level features such as edges [19], skin color [11], or
skin texture. To decide whether the given image area represents a face, the
positions of localized features can be geometrically compared. Other approaches
construct 2D/3D face models [8] or deformable part models [9,25] and fit them
into the given image area. Such models can be constructed artificially or as a
result of a learning process applied to training images [29]. There are also fusion
detection methods combining different spatial information. Degtyarev et al. [4]
take outputs of several face detectors to make a final decision. Other fusion
methods combine sliding-window detectors with local-region ones [26] or still
images with depth images [3]. In this paper, we propose a simple spatial-based
fusion method which is able to integrate arbitrary detectors returning bounding
boxes as the face detection result, in contrast to related approaches that need
to compare the specific face features.

206 J. Sedmidubsky et al.

Fig. 1. Bounding boxes of faces determined by: (a) three independent methods of
different color (m = 3) and (b) our approach requiring matching of at least two of
them (td = 2).

Our fusion approach consists of two consecutive steps. In the first step, we
utilize several face detection methods to localize bounding boxes of faces inde-
pendently. All the boxes are then clustered by merging boxes whose areas overlap
at least from 20% into the same cluster. In the second step, we analyze each
cluster to determine how many detection methods have marked the same image
area as a face. If most methods mark the area as a face, there is a high proba-
bility that it is. Formally, having m independent detection methods, then each
cluster should contain from 1 to m bounding boxes. We define user parameter
td ∈ N (1 ≤ td ≤ m) as the lowest number of bounding boxes within a single
cluster so that the image area determined by this cluster is considered as a face.
If the cluster contains fewer than td bounding boxes, the area is considered as a
non-face. By changing the value of td, a user can control the trade-off between
precision and recall.

We evaluate the quality of the open-source OpenCV 1 technology and three
commercial NeuroTech 2, PittPatt 3 and Luxand 4 technologies against the
proposed fusion approach. While the OpenCV technology is based on Haar
feature-based cascade classifiers, the commercial technologies do not provide
any information about their implementation. Experiments are evaluated on

1. the standardized FERET dataset containing 11, 338 face images captured
in a controlled environment with the average face width of 261 pixels,

2. our own CELEBS dataset with 1, 026, 029 images captured in uncontrolled
environments (like the image in Figure 1), and

1 http://opencv.org
2 www.neurotechnology.com/verilook.html
3 www.pittpatt.com
4 www.luxand.com

http://opencv.org
www.neurotechnology.com/verilook.html
www.pittpatt.com
www.luxand.com

Face Image Retrieval Revisited 207

Table 1. Effectiveness results of face detection approaches.

CELEBS-mini FERET

recall precision recall precision

OpenCV 55 % 89 % 57 % 93 %

Luxand 63 % 82 % 51 % 90 %

NeuroTech 25 % 39 % 86 % 78 %

PittPatt 78 % 90 % 84 % 77 %

Fusion (td = 1) 83 % 57 % 91 % 63 %

Fusion (td = 2) 66 % 95 % 74 % 94 %

Fusion (td = 3) 52 % 98 % 58 % 100 %

Fusion (td = 4) 18 % 99 % 49 % 100 %

3. the CELEBS-mini dataset as a subset of the previous dataset with 1, 261
representative face images and the average face width of only 35 pixels.

From the dataset quality point of view, FERET is considered as a high-quality
dataset with sufficiently large face resolution, while CELEBS and CELEBS-mini
constitute examples of low-quality datasets. To evaluate the quality, we consider
only the FERET and CELEBS-mini datasets that provide ground truth in form
of bounding boxes of face images. The quality is calculated by standard measures
of recall and precision:

– recall – a ratio between the number of correctly detected faces and the
number of ground-truth faces;

– precision – a ratio between the number of correctly detected faces and the
number of detected faces.

As correctly detected faces are treated faces whose areas overlap with ground-
truth face areas at least for 20%.

Recall and precision measures are depicted in Table 1 for (1) each of four
testing technologies and (2) four cases of the proposed “Fusion” approach that
aggregates their results by changing parameter td : 1 ≤ td ≤ 4. The results show
that there is no clear winner among four existing technologies. This confirms our
intuition that individual technologies focus on the specific detection problems.
For example, NeuroTech is very good for detection of high-resolution faces taken
in controlled conditions, especially with indoor illumination and slightly rotated
faces, but falls down on low-quality face images. On the other hand, the proposed
fusion with setting td = 1, which unionizes resulting bounding boxes of individual
technologies, achieves a non-trivially higher recall (about 5%) compared to the
recall of the best testing technology, disregarding the dataset quality. While
setting td = 1 aims at maximizing recall, setting td = 4 maximizes precision by
intersecting resulting boxes. The results show almost the 100% precision even
when td = 3, with no regards to the quality of faces. If the objective is to achieve

208 J. Sedmidubsky et al.

a high precision and keep recall at a reasonable value, a suitable setting is td = 2
which keeps about the 95% precision and 70% recall.

In summary, the proposed fusion approach allows us to integrate any number
of face detection technologies that can be treated as black boxes. It also enables
to control the trade-off between recall and precision by changing parameter td. To
detect faces in large datasets, we recommend to prefer a high precision by setting
the td parameter to a half of the number of integrated detection technologies.
In later experiments, we process the one-million CELEBS image dataset by
fusing OpenCV, Luxand and NeuroTech technologies with setting td = 2. As
a consequence, we can also utilize multiple face features – extracted by the
integrated technologies – to improve face matching effectiveness.

3 Face Retrieval

Face retrieval requires a preprocessing step to extract characteristic features of
faces detected within an image dataset and store them into a database. In the
consecutive retrieval step, the features of a query face and database faces are
compared by a given matching method (so-called matcher) to retrieve a set of
the most similar database faces. The retrieved set of faces can be optionally
analyzed to recognize (classify) the identity of the query face.

The most important component is a matcher that determines similarity of
two faces. Existing matchers are usually designed to compute geometric prop-
erties and relationships between significant local features, such as eyes, nose
and mouth [1,27]. In contrast to local features, holistic-based matchers [10,23]
describe an entire face globally. They often transform face images by the Princi-
pal Component Analysis and match them through underlying statistical regulari-
ties [13] or linear combination of class-specific galleries [17]. Face matching can be
further improved by transforming face images into different color spaces [28], con-
sidering information of common scene, clothing and gender [2,31], or exploiting
supplemental characteristics like scars, moles and freckles [20]. Besides research
papers, there are a lot of open-source and commercial solutions provided by, e.g.,
Luxand, KeyLemon, Betaface, NeuroTechnology, and Cognitec.

Despite face matchers, there are fusion approaches which aggregate existing
biometric matching methods [6,15,16]. For example, Nanni et al. [16] fuse differ-
ent fingerprint matchers to achieve more effective recognition. In the following
sections, we (1) propose a general fusion approach to aggregate face matchers,
(2) introduce multi-face queries along with relevance feedback to further increase
the retrieval quality, and (3) speed-up the retrieval process by organizing face
features in a metric-based search structure. Our main goal is to achieve higher
efficiency and effectiveness compared to individual integrated matchers which
can be treated as black boxes.

3.1 Fusion of Multiple Matching Methods

Most existing matchers deal with the specific problem, such as rotated faces,
face resolution and ambient illumination, which makes them dependent on

Face Image Retrieval Revisited 209

dataset properties. To be possibly independent of the specific dataset, we pro-
pose a transformation-based fusion method to integrate appropriate face match-
ers together. The proposed method can integrate such matchers that provide a
functionality for computing the distance (i.e., similarity) between two faces. Hav-
ing available m matchers, m independent distances for the same pair of faces
are obtained. These distances are then normalized (transformed) and finally
aggregated to determine the matching result.

The most crucial step is normalization of distances. Since each matcher can
return distances within a completely different range, we normalize such distances
into interval [0, 1]. A simple way is to divide the distance by the maximum dis-
tance defined independently for each corresponding matcher. However, if distri-
butions of distances returned by individual matchers on the same sample of faces
do not correlate, such normalization cannot be used – normalized distances of
different matchers would not be meaningfully comparable. This is the reason we
transform an original distance into a probability that given two faces belong to
the same person.

To transform distances into probabilities, we need to know what distances
return individual matchers for pairs of faces belonging to the same persons as
well as to different people. In particular, for each matcher we take a training
sample of l faces whose identities are provided in advance. Then, we apply the
given matcher to compute the distance for each pair of faces, i.e., lΔ = l ·(l+1)/2
distances. We sort these distances and divide them uniformly into lΔ/100 distinct
buckets. The i-th bucket (i ∈ [1, lΔ/100]) then contains exactly 100 distances
(with eventual exception of the last bucket) from the following interval:

[d(i−1)·100, di·100),

where d0 < d1 < . . . < dlΔ−1 represent the sorted distances. Each bucket is
further processed to calculate its recognition probability as the ratio between the
number of face pairs connecting the same person and the number of all pairs in
the bucket. We assume that this probability should reflect general probability
of successful recognition for the given distance range. This probability generally
decreases from the first bucket towards the others as the distances gradually
increase but monotonicity is not required. Figure 2 visualizes a dependence curve
between the distance and recognition probability for three different matchers.

As recognition probabilities are computed, we simply normalize an input
distance by localizing the i-th bucket corresponding to the input distance and
returning the bucket’s probability as the normalized distance. In this way, we
apply m matchers to independently compute the distance of the given pair of
faces and then normalize these d1, . . . , dm distances according to the normal-
ization process into probabilities p1, . . . , pm. We recommend to aggregate these
probabilities by selecting the highest one, i.e., max{p1, . . . , pm} – it represents
the maximum probability that the given pair of faces belongs to the same per-
son, over probabilities returned by integrated matchers. The matching result is
finally determined as a reverse value of the highest probability, i.e, the resulting
distance is defined as 1 − max{p1, . . . , pm}.

210 J. Sedmidubsky et al.

We present retrieval effectiveness of the proposed fusion method in compari-
son with Luxand and NeuroTech commercial technologies and the Advanced
Face Descriptor [21] defined within the MPEG-7 standardization. These tech-
nologies are compared by evaluating a testing set of 220 and 3, 058 k-nearest-
neighbors (kNN) queries defined for the CELEBS-mini and FERET dataset,
respectively. Each query is evaluated 400 times with different values of k to
express trade-offs between precision and recall:

– recall – a ratio between the number of retrieved faces corresponding to the
query person and the number of dataset faces belonging to the query person;

– precision – a ratio between the number of retrieved faces corresponding to
the query person and number k.

Figure 3 illustrates trade-offs between recall and precision on the CELEBS-mini
and FERET dataset. Our approach significantly outperforms other technologies
on the CELEBS-mini dataset. The biggest gap can be observed with respect to
NeuroTech which is not capable of achieving recall higher than 10 % on CELEBS-
mini. On the other hand, it achieves slightly better recall about 4 % on FERET
by fixing precision at 70 %. It is caused by its intended usage to recognize faces of
high resolution taken in controlled conditions. Focusing on MPEG-7 and Luxand
technologies, they achieve clearly worse results on both the datasets. The most
important fact is that the proposed fusion approach achieves top results with no
respect to the dataset quality, which is not true for individual technologies.

We also evaluate how different aggregation policies influence retrieval effec-
tiveness. Figure 4 illustrates the results by aggregating probabilities on the basis
of the minimum, maximum, average and median function. As expected, the min-
imum and maximum functions provide the worst and best results, respectively.
The average function also achieves the top results since it preserves a similar
ordering of faces as the maximum function on both the datasets.

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0 50 100 150 200

R
ec

og
ni

tio
n

pr
ob

ab
ili

ty

Distance

(a) MPEG-7

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0 0.2 0.4 0.6 0.8 1

R
ec

og
ni

tio
n

pr
ob

ab
ili

ty

Distance

(b) Luxand

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 8800 9070 9334

R
ec

og
ni

tio
n

pr
ob

ab
ili

ty

Distance

(c) NeuroTech

Fig. 2. Recognition probabilities computed on the CELEBS-mini dataset for three
matching methods: (a) MPEG-7 [21], (b) Luxand, and (c) NeuroTech.

Face Image Retrieval Revisited 211

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

Retrieval effectiveness on CELEBS-mini

Fusion
MPEG-7
Luxand

NeuroTech

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

Retrieval effectiveness on FERET

Fusion
MPEG-7
Luxand

NeuroTech

Fig. 3. Retrieval effectiveness measured on low-quality CELEBS-mini and high-quality
FERET datasets for three existing matching technologies and the fusion approach.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

Retrieval effectiveness on CELEBS-mini

Min
Max
Avg

Median

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

Retrieval effectiveness on FERET

Min
Max
Avg

Median

Fig. 4. Effectiveness of the fusion approach using different aggregation policies.

3.2 Multi-face Queries and Relevance Feedback

To further improve retrieval effectiveness, we propose to utilize the concept of
multi-face queries along with relevance feedback. Multi-face queries allow us to
specify several examples of query faces within evaluation of a single query [23].
Similarity between the set of query faces and a given database face is computed
as the highest similarity between the database face and each query face. We
assume that the more different examples of query faces of the same person are
provided, the higher effectiveness of the retrieved set of the most similar faces
is. Our assumption should be especially true when individual query faces mutu-
ally differ, e.g., they represent frontal and rotated faces, faces of low and high
resolution, and faces in different illumination conditions. We also incorporate
the concept of relevance feedback for evaluation of multi-face queries. A typical
usage of relevance feedback starts after evaluation of a single-face query. At this
moment, a user is asked to mark retrieved true positives – faces belonging to
the same person as the query face. The true positives are then exploited as the
query faces for another query (the second search iteration). In this way, the user

212 J. Sedmidubsky et al.

can iteratively increase the number of query faces and thus improve retrieval
effectiveness.

We experimentally verify how consecutive search iterations improve retrieval
effectiveness. The first iteration is initialized by evaluating the same testing set
of single-face kNN queries as in the previous section. For the 80% precision,
the first iteration achieves recall of 17% while the second and third one further
increases recall up to 53% and 66% on the CELEBS-mini dataset, respectively.
On the FERET dataset, recall of 20% in the first iteration increases up to
46% and 82% in the second and third iteration, respectively. Fourth and next
iterations achieve only slightly better recall than third iterations disregarding the
dataset. Note that the 100% recall is not achievable in any number of iterations
if (1) faces corresponding to all true positives are not detected in the dataset
or (2) the number of true positives is higher than 50 since relevance feedback
is provided only the 50 most similar faces. In summary, the most important
observation is that recall can dramatically increase when a user participates in
marking true-positive faces in two search iterations.

3.3 Efficient Query Processing

Face retrieval technologies usually evaluate queries in a sequential way by cal-
culating similarity between a query face and each database face. The sequential
evaluation is only sufficient for databases containing a limited number of faces.
Our fusion detection method (with setting td = 2) localizes 1, 118, 316 faces in
the CELEBS dataset. The characteristic features extracted from these faces by
MPEG-7 [21], Luxand and NeuroTech approaches take about 0.8 GB, 39.1 GB
and 34.3 GB, respectively, i.e., 74 GB of disk space in total. To evaluate a single-
face query sequentially, such huge amount of data has to be read from disk into
main memory and the proposed aggregated distance has to be computed between
the query face and each database face. This operation takes about 25 minutes
on the server with 8 cores at 2 GHz, 16 GB RAM and harddisks in the RAID
5 configuration – reading all the features takes 23.2 minutes while computing
aggregated distances 1.7 minutes. This process could be speed-up by applying
the threshold algorithm [5] in case the features of individual matchers could be
efficiently retrieved from harddisk. However, we treat Luxand and NeuroTech as
black-box face matchers and thus non-efficiently indexable. To evaluate queries
in a couple of seconds and without a significant loss in retrieval effectiveness, we
apply an approximate indexing solution.

The idea of indexing is to (1) select an appropriate kind of face features
according to which the index structure is built, (2) utilize the index structure
to efficiently retrieve a reasonably large candidate set of faces, (3) read all the
features of the candidate faces from a harddisk (I/O costs), (4) re-rank the
loaded candidate faces according to the proposed fusion method, and (5) select
the k most similar re-ranked faces as the kNN query result. To construct the
index structure, we need to select appropriate face features along with a dis-
tance function according to which the faces can be indexed. We have chosen the

Face Image Retrieval Revisited 213

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000
 0

 20

 40

 60

 80

 100

 120

 140

P
re

ci
si

on

I/O
 c

os
ts

 (
s)

Candidate set size

(a) Trade-off between retrieval prec. and efficiency

Precision
I/O costs (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

k

(b) Influence of candidate set size to retrieval prec.

500
5,000

10,000

20,000
50,000

100,000

Fig. 5. Comparison of retrieval precision and efficiency for different candidate set sizes.

Advanced Face Descriptor [21] features defined within the MPEG-7 standard-
ization. These features are represented in form of 174-dimensional vectors of inte-
gers and can be compared by a weighted Euclidean distance function. Since the
weighted Euclidean distance satisfies the postulates of metric space [30], i.e., the
reflexivity, symmetry and triangle inequality, we can employ any metric-based
index structure for indexing and searching MPEG-7 features. In particular, we
exploit the recent M-Index structure [18] which requires about 20 minutes in the
preprocessing step to index MPEG-7 features of all 1, 118, 316 faces. The whole
index occupies 1.5 GB and thus easily fits into main memory.

The M-Index structure is then utilized to efficiently obtain a candidate set of
the most similar faces according to the MPEG-7 features. The size of the can-
didate set has to be significantly larger than k so that it possibly includes the
desired k faces that would be retrieved sequentially by the fusion method. On
the other hand, the candidate set size has to be significantly smaller with respect
to the database size. Figure 5 depicts the influence of the size of candidate set to
search efficiency as well as effectiveness. Specifically, Figure 5a shows the average
time (in seconds) needed to read and re-rank the candidate set of different sizes
for a single kNN query (k = 10) – times are averaged across the testing set of
220 queries defined for the CELEBS-mini dataset. Note that only I/O costs are
considered since they constitute the main search bottleneck – retrieving candi-
date sets of different sizes using M-Index takes more or less the same portion of
time of about 0.8 s. We can observe that I/O costs grow linearly while retrieval
precision only logarithmically with respect to the candidate set size. Since the
ground truth is not provided on the CELEBS dataset, retrieval precision repre-
sents the fraction of faces retrieved by the indexing approach and faces obtained
in a sequential way on the basis of the fusion method. Figure 5b further illus-
trates that retrieval precision decreases only slightly for the particular sizes of
candidate sets with respect to increasing answer size k.

Based on these results, we recommend to use a smaller size of candidate set
to obtain the answer in a couple of seconds. In our scenario with more than one
million faces and k fixed to 100, a reasonable size of the candidate set has been

214 J. Sedmidubsky et al.

experimentally determined as 1, 000. This setting enables to evaluate queries
in 2 seconds which is about 750-times more efficient than evaluating integrated
technologies (i.e., MPEG-7, Luxand and NeuroTech) sequentially. Although such
setting decreases retrieval precision to 46% on average, the search quality can
be then improved significantly by applying user’s relevance feedback.

4 Conclusions

We focus on efficient and effective face retrieval. As a preprocessing step, we
propose the fusion detection method to integrate any number of existing face
detectors. This method allows us to control a trade-off between recall and pre-
cision and achieves stable results disregarding the dataset quality, in contrast
to individual OpenCV, Luxand, NeuroTech and PittPatt detectors. To improve
retrieval effectiveness, we propose the fusion method which normalizes similari-
ties of integrated matchers into a common domain and selects the most promising
value as a matching result. This method provides higher-quality and more stable
results than integrated MPEG-7, Luxand and NeuroTech matchers evaluated on
both CELEBS-mini and FERET datasets. To get near to real-time retrieval,
we organize face features within an index structure. By indexing one-million
CELEBS dataset according to MPEG-7 features and re-ranking the retrieved
set of 1, 000 candidate faces, we are able to evaluate a single query within 2 s,
which is about 750-times more efficient than the sequential scan. Although this
setting decreases retrieval precision to 46%, the search quality can be further
enhanced significantly by applying relevance feedback.

In the future, we plan to integrate more face matching technologies to improve
the retrieval quality. We would also like to evaluate different ways of re-ranking
of candidate sets, e.g., according to variants of threshold algorithms [5].

References

1. Chan, C.H., Tahir, M.A., Kittler, J., Pietikäinen, M.: Multiscale local phase quan-
tization for robust component-based face recognition using kernel fusion of multiple
descriptors. IEEE Trans. on Pattern Analysis and Mach. Int., 1164–1177 (2013)

2. Chen, B.C., Chen, Y.Y., Kuo, Y.H., Hsu, W.H.: Scalable face image retrieval using
attribute-enhanced sparse codewords. IEEE Transactions on Multimedia 15(5),
1163–1173 (2013)

3. Choi, W., Pantofaru, C., Savarese, S.: Detecting and tracking people using an rgb-
d camera via multiple detector fusion. In: International Conference on Computer
Vision Workshops, pp. 1076–1083 (2011)

4. Degtyarev, N., Seredin, O.: A geometric approach to face detector combining. In:
Sansone, C., Kittler, J., Roli, F. (eds.) MCS 2011. LNCS, vol. 6713, pp. 299–308.
Springer, Heidelberg (2011)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
Journal of Computer and System Sciences 66(4), 614–656 (2003)

6. Górecki, T.: Sequential combining in discriminant analysis. Journal of Applied
Statistics, 398–408 (2015)

Face Image Retrieval Revisited 215

7. Hua, G., Yang, M.H., Learned-Miller, E., Ma, Y., Turk, M., Kriegman, D.J.,
Huang, T.S.: Introduction to the special section on real-world face recognition.
IEEE Trans. on Pattern Analysis and Machine Int. 33(10), 1921–1924 (2011)

8. Huang, Y., Liu, Q., Metaxas, D.N.: A component-based framework for generalized
face alignment. IEEE Trans. on Systems, Man, and Cybernetics, 287–298 (2011)

9. Cech, J., Franc, V., Matas, J.: A 3d approach to facial landmarks: detection, refine-
ment, and tracking. In: Int. Conf. on Pattern Recognition (ICPR 2014), p. 6 (2014)

10. Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. Journal of Infor-
mation Processing Systems, 41–68 (2009)

11. Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling
and detection methods. Pattern Recognition, 1106–1122 (2007)

12. Klontz, J.C., Klare, B.F., Klum, S., Jain, A.K., Burge, M.J.: Open source biometric
recognition. In: BTAS 2013, pp. 1–8 (2013)

13. Lai, J.H., Yuen, P.C., Feng, G.C.: Face recognition using holistic fourier invariant
features. Pattern Recognition, 95–109 (2001)

14. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: object
localization by efficient subwindow search. In: International Conference on Com-
puter Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008)

15. Nanni, L., Lumini, A., Brahnam, S.: Likelihood ratio based features for a trained
biometric score fusion. Expert Systems with Applications, 58–63 (2011)

16. Nanni, L., Lumini, A., Ferrara, M., Cappelli, R.: Combining biometric matchers by
means of machine learning and statistical approaches. Neurocomputing, 526–535
(2015)

17. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition.
IEEE Trans. on Pattern Analysis and Machine Int., 2106–2112 (2010)

18. Novak, D., Batko, M., Zezula, P.: Metric Index: An Efficient and Scalable Solution
for Precise and Approximate Similarity Search. Inf. Sys. 36(4), 721–733 (2011)

19. Segundo, M.P., Silva, L., Bellon, O.R.P., Queirolo, C.C.: Automatic face segmenta-
tion and facial landmark detection in range images. IEEE Transactions on Systems,
Man, and Cybernetics, 1319–1330 (2010)

20. Park, U., Jain, A.K.: Face matching and retrieval using soft biometrics. IEEE
Transactions on Information Forensics and Security, 406–415 (2010)

21. Sikora, T.: The mpeg-7 visual standard for content description-an overview. IEEE
Transactions on Circuits and Systems for Video Technology 11(6), 696–702 (2001)

22. Subburaman, V.B., Marcel, S.: Alternative search techniques for face detection
using location estimation and binary features. Computer Vision and Image Under-
standing, 551–570 (2013)

23. Tan, X., Chen, S., Zhou, Z.H., Zhang, F.: Face recognition from a single image per
person: A survey. Pattern Recognition, 1725–1745 (2006)

24. Tsao, W.K., Lee, A.J.T., Liu, Y.H., Chang, T.W., Lin, H.H.: A data mining app-
roach to face detection. Pattern Recognition, 1039–1049 (2010)

25. Uřičář, M., Franc, V., Hlaváč, V.: Detector of facial landmarks learned by the
structured output SVM. In: Int. Conf. on Computer Vision, Imaging and Computer
Graphics Theory and Applications. vol. 1, pp. 547–556. SciTePress (2012)

26. Wang, X., Han, T., Yan, S.: An hog-lbp human detector with partial occlusion
handling. In: 12th International Conference on Computer Vision, pp. 32–39 (2009)

27. Wu, Z., Ke, Q., Sun, J., Shum, H.Y.: Scalable face image retrieval with identity-
based quantization and multireference reranking. In: Int. Conf. on Computer Vision
and Pattern Recognition (CVPR 2010), pp. 3469–3476. IEEE (2010)

216 J. Sedmidubsky et al.

28. Yang, J., Liu, C., Zhang, L.: Color space normalization: Enhancing the discrimi-
nating power of color spaces for face recognition. Pattern Recognition, 1454–1466
(2010)

29. Yang, M.H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34–58 (2002)

30. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer (2006)

31. Zhang, L., Kalashnikov, D.V., Mehrotra, S.: A unified framework for context
assisted face clustering. In: Int. Conf. on Multimedia Retrieval, pp. 9–16. ACM
(2013)

Semiautomatic Learning of 3D Objects
from Video Streams

Fabio Carrara, Fabrizio Falchi, and Claudio Gennaro(B)

ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
{fabio.carrara,fabrizio.falchi,claudio.gennaro}@isti.cnr.it

Abstract. Object detection and recognition are classical problems in
computer vision, but are still challenging without a priori knowledge of
objects and with a limited user interaction. In this work, a semiautomatic
system for visual object learning from video stream is presented. The sys-
tem detects movable foreground objects relying on FAST interest points.
Once a view of an object has been segmented, the system relies on ORB
features to create its descriptor, store it and compare it with descriptors
of previously seen views. To this end, a visual similarity function based
on geometry consistency of the local features is used. The system groups
together similar views of the same object into clusters relying on the
transitivity of similarity among them. Each cluster identifies a 3D object
and the system learn to autonomously recognize a particular view assess-
ing its cluster membership. When ambiguities arise, the user is asked to
validate the membership assignments. Experiments have demonstrated
the ability of the system to group together unlabeled views, reducing the
labeling work of the user.

1 Introduction

In this work, a user assisted clustering system for online visual object recognition
is presented. Our approach enables a single smart camera to learn and recognize
objects exploiting change detection in the scene: given the evolution of the scene
during time, the system incrementally builds a knowledge that can be exploited
for the subsequent recognitions of the object when reappear on the scene. The
user is queried when ambiguities cannot be automatically resolved.

Object detection is carried out by a local feature based background subtrac-
tion method [1] which distinguishes the foreground local features of the image
from the background ones and segments new objects in the scene relying on
FAST interest points. Each detected object, together with its extracted ORB
local features, is maintained in a local database forming the knowledge base
for object recognition. All the views of detected objects are incrementally orga-
nized in clusters based on the similarity among them. A similarity function
between two object views is defined relying on local features matching and geom-
etry constraints on their positions. The main goal of the system is to maintain
gathered views in clusters where each cluster contains only views of the same
3D object, even if it has been observed under different poses or illuminations
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 217–228, 2015.
DOI: 10.1007/978-3-319-25087-8 20

218 F. Carrara et al.

(see Figure 1). Clusters can be labeled anytime by the user and object recogni-
tion is performed assessing the membership of a view to a particular cluster.

Fig. 1. Visualization of the system goal: online clustering of detected objects as recog-
nition task.

The system has not been designed for a particular smart camera platform in
mind, but it has been tested on the Raspberry Pi platform equipped with a Pi
Camera module. Experiments have been made using the Stanford 3D Objects 1

[9] public available dataset in order to evaluate the ability to build a knowledge
base for object recognition.

The rest of the paper is organized as follows: Section 2 describes the main fea-
tures of some studied object recognition methods. Section 3 presents our method,
describing the similarity function we have defined between detected objects.
Section 4 describes the strategy used for similar object clustering. Section 5
reports the experiments performed and the metrics used to evaluate our method.
Conclusive remarks are addressed at the end of this paper.

2 Related Work

Many solutions have been proposed to the problem of 3d object model learning
for recognition task, starting from different 2d views of the object of interest.

Murase and Nayar [7] model each object as a manifold in the eigenspace
obtained compressing the training image set for that object. Given an unknown
input image, it is projected on the eigenspace and labeled relying on the manifold
it lies on. Moreover, the exact point of the projection gives a pose estimation of
the input object. However, only batch training is possible and the training set
must be composed by a large number of normalized images with different poses
and illuminantion and uncluttered background.
1 http://cvgl.stanford.edu/resources.html

http://cvgl.stanford.edu/resources.html

Semiautomatic Learning of 3D Objects from Video Streams 219

More recent studies address object modelling relying on local features of
training images.

Weber et al. [5,10] developed a method to learn object class models from
unlabeled and unsegmented cluttered scenes. The authors combine appereance
and shape in the object model using the constellation model. In this model,
objects are represented as flexible constellations of rigid parts (features). Most
robust parts are automatically identified applying a clustering algorithm to
parts detected from the training set. An expectation-maximization algorithm
is applied to tune the parameters of a joint probability density function (pdf) on
the shape of the constellation and the output of part detectors. An enhanced ver-
sion of this method using Bayesian parameter estimation is proposed by Fei-Fei
et al. [4] for the purpose of scale-invariant object categorization capable of both
batch and incremental training. However, this approach performs poorly with
few training images and is more suitable to the modeling of classes of objects
rather than individual 3D objects. Moreover it does not cope with multi-pose
3D object recognition.

The work in this paper follows the approach of Lowe [6], who addresses the
problem of view clustering for 3D object recognition using a training set of
images with uncluttered background. Each view is described by its SIFT local
features and adjacent views are clustered together relying on feature matching
and similarity transformation error. The presented method relies on a different
geometric consistency check based on homographies which is capable of relating
views under different perspectives with low false positive rates.

3 Object Extraction and Matching

A specialized local feature based background subtraction method [1] has been
implemented to segment stable foreground objects from a video stream relying on
their FAST keypoints. A 2-level background model is created and updated using
temporal statistics on the positions of the keypoints. The first level is trained
to segment keypoints in background and foreground, while the second level seg-
ments the foreground keypoints in moving or stationary keypoints. Stationary
foreground keypoints are used to extract views of stable foreground objects from
the video removing the part of the image containing keypoints coming from the
cluttered background.

The system ciclycally a) updates the background model untils it is steady, b)
waits for stable new objects to be detected in the scene, c) extracts the view of
the detected object, d) compares it to already collected views and e) organizes
cluster of views.

Each extracted view oi is described by a) Ki, the set of the positions of its
local features (keypoints) and b) Di, the set of their extracted ORB descriptors.
ORB is a rotation invariant version of the BRIEF binary descriptor based on
binary tests between pixels of the smoothed image patch [8]. It is suitable for
realtime applications since it is faster than both SURF and SIFT but it has
similar matching performance and is even less affected by image noise [2].

220 F. Carrara et al.

3.1 Observations Matching

A similarity function S : (o1, o2) → [0, 1] is defined on a pair of object views
(o1, o2), representing the quality of the visual match between them. The similar-
ity value among two views is computed in steps shown in Figure 2 and described
below.

(a) (b) (c)

(d) (e)

Fig. 2. Example of similarity computation among two different views (a) and (b) of
the same 3D object. The homography relating the matching keypoints is shown in (d).
The view (a) is transformed using the found homography in (c) and all matching steps
are reapplied: the second homography found (e) confirms the match. The computed
similarity value is 0.48.

Feature Matching. Let K1,K2 be the sets of keypoints of the compared views
and D1,D2 their sets of corresponding descriptors.

A preliminary list L of descriptor matches is created finding for each descrip-
tor in D1 its nearest neighbor in D2 using the bruteforce method. Distances
between descriptors are computed using the method suggested by the authors
of the descriptor. In case of ORB, Hamming distance between the binary repre-
sentation of the descriptors is used.

Matches in L are then filtered keeping only the ones having distance between
descriptors below Tm. We chose Tm = 64 as suggested by Rublee et al. [8] despite
not being the most stringent value to filter bad matches, but we preferred high
recall of matches rather than high precision at this step.

If there are less than 4 matches left in the list, the following steps cannot be
applied and the similarity value is set to 0.

Semiautomatic Learning of 3D Objects from Video Streams 221

RANSAC Filtering of Matches. Bad matches in L are filtered out checking
whether the points that match are geometrically consistent.

Two images of the same planar surface in space are related by a homography
[3]. A homography is a invertible transformation represented by a 3 × 3 real
matrix that maps the 2D coordinates of points in a image plane into the 2D
coordinates in another plane.

H =

⎛
⎝h11 h12 h13

h21 h22 h23

h31 h32 1

⎞
⎠

Let K�
1 ,K

�
2 be the sets of keypoints corresponding to the descriptors belong-

ing to L. In order to find the homography that relates correctly the most of the
points in K�

1 and K�
2 , RANSAC is applied [3]. RANSAC is an non-deterministic

algorithm to estimate parameters of a mathematical model from a set of observed
data which contains outliers. RANSAC algorithms iteratevly executes the fol-
lowing steps:

1. takes 4 matches (couples of points) at random from K�
1 and K�

2 ,
2. computes the homography H relating those points,
3. counts the number of other matches that are correctly related by H (inliers).

After a certain number of iterations, the matrix H which gave the maximum
number of inliers is returned.

Using the homography found by the RANSAC algorithm (Figure 2d), we
can further filter the matches in L, keeping only the inliers of the perspective
transformation.

Quasi-degenerate and flipping homographies can be detected analizing the
homography matrix. Three checks are done:

– flipping homographies can be discarded checking if det(H) < 0.
– very skewed or prospective homographies can be discarded if det(H) is too

small or too big: given a parameter N , H is discarded if det(H) > N or
det(H) < 1

N .
– homographies transforming the matching keypoints bounding box in a con-

cave polygon can be filtered out with a convexity check.

In those cases, it is very unlikely that the views under analysis are really
related by this perspective transformation, therefore the system assumes there
is no similarity between them and returns a similarity value of 0.

Second Stage RANSAC. Some views may pass the homography matrix check
even if the perspective transform described by H is very unlikely to be observed.
In order to filter out false positives homography matrices, the image of the first
view o1 is transformed in ô1 using the homography to be validated (Figure 2c)
and the similarity computation steps are repeated considering the views ô1 and
o2. Features are re-detected and re-extracted from ô1, matched with o2 and a

222 F. Carrara et al.

second RANSAC is executed to estimate a new homography Ĥ describing the
prospective transformation among ô1 and o2 4. If the original views o1 and o2
were really different views of the same object, Ĥ should be very near to the
identity transformation (Figure 2e), otherwise the similarity between o1 and o2
is set to 0.

Similarity Output. After the system found a good homography relating the
views, the ratios r̂1, r2 among the number of inliers and the total number of
detected features are computed for each view:

r̂1 =
I

|K̂1|
, r2 =

I

|K2|

where I are the number of inliers of the homography estimated between views
ô1 and o2, |K̂1| and |K2| are respectively the number of detected keypoints in
ô1 and in o2. The similarity value among original views under analysis S(o1, o2)
is defined as the harmonic mean between r̂1 and r2 (Figure 3):

S(o1, o2) =
2r̂1r2
r̂1 + r2

(a) (b) (c) (d)

A B C D

A 1 0 0 0.63

B 0 1 0.57 0

C 0 0.62 1 0

D 0.68 0 0 1

(e)

Fig. 3. Values of similarity among object views (a-d) reported in table (e).

4 Online Object Clustering

Everytime a new view of an object is gathered from the video stream, the system
a) assigns it to a cluster and b) maintains clusters of views that potentially
represent the same 3D object (Figure 4).

Each cluster is identified by a label assigned to views. The system puts a new
view in a cluster relying on the similarity it has with other already clustered
views, following an agglomerative clustering approach. The new view can bring
informations useful to cluster reorganization: for example, let c1 and c2 be two
clusters of views representing the same 3D object viewed from two different
poses. An intermediate view of the 3D object could suggest the system to merge
c1 and c2 in a unique cluster (see Figure 5).

Semiautomatic Learning of 3D Objects from Video Streams 223

(a) table calendar

(b) poetry book

Fig. 4. Example of two object view
clusters (a) and (b).

(a) side view cluster

(b) frontal view cluster (c)

Fig. 5. Example of cluster merging : The
new view (c) is similar to both clusters and
can lead to a cluster merge.

Given a new view ô, a list Ls of similar views is generated scanning the local
database. For each object view oi the similarity value si = S(ô, oi) is computed
and if it is above a similarity threshold Ts, oi is inserted in Ls.

When trying to label ô, the following scenarios can occur:

1. ô does not match with any views, hence a new cluster is created and a new
label is assigned to ô.

2. ô matches with one or more views all belonging to the same cluster, hence
the system assigns the corresponding cluster label to ô.

3. ô matches with more than two views beloging to different clusters. Many
actions may be taken by the system in this situation:

(a) the clusters containing the views similar to the new one are merged
together in a unique bigger cluster to which the new view will belong
(Figure 5).

(b) the new view is inserted into only one among the candidates clusters.
(c) a new cluster is created containing only the new view.

Up to now, the system does not decide automatically in the third scenario
and asks the user which action should be taken. Interaction between multiple
cameras and similarity values between views and clusters may be exploited to
take the correct action automatically, but are not discussed in this paper and
are left to future work.

In the case a new view is incorrectly put in a new cluster instead of being
grouped with the other views representing the same object, the agglomerative
cluster algorithm can eventually build a unique cluster if intermediate views of
the same object will be collected by the system.

5 Experiments

The presented system autonomously groups object views into clusters without
knowing their labels, but cannot recognize them before the user labels at least

224 F. Carrara et al.

Fig. 6. Object learning and recognition in a test video sequence: objects are added,
moved and removed from the scene. The system segments objects from the background
and incrementally creates clusters of similar object views. An object is recognized
assessing the membership of its current view to a pre-existent cluster.

some of them, hence the system cannot be compared with traditional trained
classifiers. Instead the ability of the system to build good and easy to label
clusters is measured.

To do so, the publicly available 3D Objects dataset [9] has been used. This
dataset is composed by images of 10 object categories. For each category, 9-10
objects are present and for each object, several images are reported in which the
specific object is shown in different poses. Each image comes with a foreground
mask which denotes exactly in which part of the image the object is located.
Images are taken from 8 different angles using 3 different scales and 3 different
heigths for the camera, leading to around 5500 labeled images of 100 specific
objects (see Figure 7).

Let O = {(o1, l1), (o2, l2), . . .} the set of labeled views. The entire dataset O is
randomly shuffled and splitted in training set Otrain (90%) and testing set Otest

(10%): training views are presented to the system as coming from the output of
the foreground extraction stage. The system builds clusters of views while they

Category Object Views

cellphone cellphone 1 . . .

.

cellphone 9 . . .

mouse mouse 1 . . .

.

toaster toaster 1 . . .

.

Fig. 7. Excerpt from the Stanford “3D Objects” dataset: only some views of some
objects of some classes are reported.

Semiautomatic Learning of 3D Objects from Video Streams 225

Algorithm 1. Clustering algorithm simulating user interaction used for evalu-
ation tests

for all (oi, li) ∈ Otrain do
find the set Os of views similar to oi, Os = {oj ∈ Database : S(oi, oj) > Ts}
if |Os| = 0 then

put oi in a new cluster
else if |Os| = 1 or (all views in Os belong to the same cluster) then

put oi in the cluster of the similar views
else � simulate user interaction

find set Cs of all clusters to which the similar views belong
for all c ∈ Cs do

find the majority groundtruth label of c (the label appearing the most in
the cluster)

end for
create a new cluster merging together all clusters having its majority label

equal to li (the label of oi)
put oi in the newly created cluster

end if
end for

are processed. In the case a supervised clustering is needed, the test code uses
the groundtruth labels of involved views to simulate user interaction applying
Algorithm 1.

Once the clusters are built, they must be labeled to produce a labeled training
set. Since the user usually does not want to waste time in cleaning clusters or
labeling singular objects, the test code simulates a labeling technique based on
major voting : an entire cluster is labeled with the label of the most frequent
object present in it.

The training set thus labeled is used for training a k-NN classifier. The cluster
k-NN classifier finds the k most similar views (the ones with the higher value
of similarity S) and assigns a score for each label of those views. The winning
label is assigned to the processed test view. Another k-NN classifier is trained
using the training set with correct labels and another labeling of the test set is
generated in the same way.

Test set labelings are evaluated extracting precision, recall and F-score for
each 3D object and then aggregating them using macro- and micro-averaging
techniques defined as follows:

micro-avgd macro-avgd

precision pmicro =
∑n

i=1 TPi∑n
i=1(TPi+FPi)

pmacro =
∑n

i=1 pi

n

recall rmicro =
∑n

i=1 TPi∑n
i=1 Pi

rmacro =
∑n

i=1 ri

n

f-score Fmicro = 2pmicrormicro

pmicro+rmicro
Fmacro = 2pmacrormacro

pmacro+rmacro

226 F. Carrara et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

similarity threshold

pr
ec

is
io

n

macroP
microP
clusterMacroP
clusterMicroP

(a) Micro- and
macro-averaged
precision values
when varying the
similarity threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

similarity threshold

re
ca

ll

macroR
microR
clusterMacroR
clusterMicroR

(b) Micro- and
macro-averaged
recall values when
varying the similarity
threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

similarity threshold

F−
sc

or
e

macroF
microF
clusterMacroF
clusterMicroF

(c) Micro- and
macro-averaged
F1-score values when
varying the similarity
threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

similarity threshold

qu
er

ie
s

to
 u

se
r

groundtruth
cluster

(d) The number of
queries to the user
when varying the
similarity threshold

Fig. 8. Comparison of the performance of the recognition task, solved by a k-NN
classifier trained with the groundtruth training set (blue lines with circle markers)
and by a k-NN classifier with training set made by cluster labeling (red lines with
cross markers). Solid and dashed lines indicate respectively micro- and macro-averaged
metrics.

Semiautomatic Learning of 3D Objects from Video Streams 227

where n is the number of object classes, TPi the true positives, FPi the false
positives, Pi the total number of views, pi the precision, ri the recall and Fi the
F-score of the object i.

Macro-averaged metrics tends to give the same weight to each class, while
micro-averages metrics takes into account possible biases introduced by each
class and gives a more accurate global performance index. Another measured
metric is the number of interactions the system must have with the user in
order to label the training set: the groundtruth k-NN classifier needs the user to
label each training view individually, which corresponds to a number of query
to the user equal to the number of views in the training set. The cluster k-NN
classifier needs to interact with the user a) when a cluster merging can not be
resolved automatically during the online clustering and b) when a cluster has to
be labeled.

6 Conclusions

In Figure 8, the performance of the two classifiers for various similarity thresholds
Ts are reported.

It can be seen that for Ts around 0.2, the cluster k-NN classifier has almost
the same performance of the groundtruth k-NN classifier, having only around
half the interactions with the user.

However, performance degradation of the cluster k-NN classifier is due to
the fact that we simulated a unique user interaction after the training phase
which used major voting paradigm to label all clusters at once. Since the sys-
tem is incrementally building richer and richer clusters, this is not the best
way to interact with the user asking for labels: user interaction may be proac-
tively requested only when big homogeneous clusters are involved, maximizing
the amount of information collected. Moreover, smarter techniques than major
voting may be implemented to simulate a more precise user labeling session. In
the performed tests, many singleton or small clusters are present at the end of
the training phase, raising the number of queries to the user needed to label the
entire training set.

References

1. Carrara, F., Amato, G., Falchi, F., Gennaro, C.: Efficient foreground-background
segmentation using local features for object detection. In: Proceedings of the
International Conference on Distributed Smart Cameras, ICDSC 2015, Septem-
ber 08–11, 2015, Seville, Spain (submitted for publication). http://puma.isti.cnr.
it/rmydownload.php?filename=cnr.isti/cnr.isti/2015-TR-012/2015-TR-012.pdf

2. De Beugher, S., Brône, G., Goedemé, T.: Automatic analysis ofin-the-wild mobile
eye-tracking experiments using object, face and persondetection. In: Proceedings of
the International Conference on Computer Vision Theory and Applications (VISI-
GRAPP 2014), vol. 1, pp. 625–633 (2014)

3. Dubrofsky, E.: Homography estimation. Ph.D. thesis, University of British
Columbia (2009)

http://puma.isti.cnr.it/rmydownload.php?filename=cnr.isti/cnr.isti/2015-TR-012/2015-TR-012.pdf
http://puma.isti.cnr.it/rmydownload.php?filename=cnr.isti/cnr.isti/2015-TR-012/2015-TR-012.pdf

228 F. Carrara et al.

4. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental bayesian approach tested on 101 object cate-
gories. Computer Vision and Image Understanding 106(1), 59–70 (2007)

5. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised
scale-invariant learning. In: 2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2003. Proceedings, vol. 2, pp. II–264. IEEE (2003)

6. Lowe, D.G.: Local feature view clustering for 3d object recognition. In: Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2001, vol. 1, pp. I–682. IEEE (2001)

7. Murase, H., Nayar, S.K.: Visual learning and recognition of 3-d objects from
appearance. International Journal of Computer Vision 14(1), 5–24 (1995)

8. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to
sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV),
pp. 2564–2571. IEEE (2011)

9. Savarese, S., Li, F.F.: 3D generic object categorization, localization and pose esti-
mation. In: ICCV, pp. 1–8 (2007)

10. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recogni-
tion. Springer (2000)

Banknote Recognition as a CBIR Problem

Joan Sosa-Garćıa(B) and Francesca Odone

Dipartimento di Informatica, Bioingegneria, Robotica E Ingegneria Dei Sistemi,
Università degli Studi di Genova, Genova, Italy

joan.sosa.garcia@dibris.unige.it, francesca.odone@unige.it

Abstract. Automatic banknote recognition is an important aid for
visually impaired users, which may provide a complementary evidence
to tactile perception. In this paper we propose a framework for ban-
knote recognition based on a traditional Content-Based Image Retrieval
pipeline: given a test image, we first extract SURF features, then adopt
a Bag of Features representation, finally we associate the image with the
banknote amount which ranked best according to a similarity measure
of choice. Compared with previous works in the literature, our method is
simple, computationally efficient, and does not require a banknote detec-
tion stage. In order to validate effectiveness and robustness of the pro-
posed approach, we have collected several datasets of Euro banknotes on
a variety of conditions including partial occlusion, cluttered background,
and also rotation, viewpoint, and illumination changes. We report a
comparative analysis on different image descriptors and similarity mea-
sures and show that the proposed scheme achieves high recognition rates
also on rather challenging circumstances. In particular, Bag of Features
associated with L2 distance appears to be the best combination for the
problem at hand, and performances do not degrade if a dimensionality
reduction step is applied.

Keywords: Banknote recognition · Computer vision for visually
impaired · Content-based image retrieval · Bag of features representa-
tions

1 Introduction

Automatic banknote recognition is wide-spread in vending machines, banking
system, supermarkets, currency exchange services. In all those applications, the
processing occurs in very controlled conditions. In recent years a very different
application scenario arose: banknote recognition as a tool for elderly and visu-
ally impaired citizens. An automatic system that can assist people with severe
vision impairment to independently recognize banknotes is supposed to be highly
portable, or even wearable, to perform the recognition in a wide variety of con-
ditions, including cluttered backgrounds, changing illumination, and different
viewpoints. Moreover, a recognition system should be able to recognize ban-
knotes from each side, direction and rotation. At the same time, this application

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 229–236, 2015.
DOI: 10.1007/978-3-319-25087-8 21

230 J. Sosa-Garćıa and F. Odone

offers some peculiarities: first, banknotes are normally held by the user or, in any
case, we can assume they are close to the user. Then, assuming the user acquires
an image by means of a smartphone or a wearable camera, the bill will occupy
the majority of the image. Also, the reference class of users we are considering,
will not guarantee images of good quality or carefully chosen framing. Thus we
must consider the problem of occlusions or partial information.

Banknote recognition has been addressed in several ways, although in general
size, colour [13] and texture [6] or a combination of both [4] are employed. In
most cases the methods are based on rather complex procedures which include
detection and recognition steps[1,7,11,13,20–23] — most methods assume the
whole bill is included in the image and few works take into account illumination
variations. Usually RGB images are used, although other sensor information has
been employed, such as a combination of infra-red (IR) and visible images which
seems to be rather appropriate with relatively new currencies such as euro [1].

Local features are adopted in [17] and in [5]. The latter proposes a component-
based framework for banknote recognition which is effective in collecting more
class-specific information and robust in dealing with partial occlusion and view-
point changes, but the computational cost of the feature matching procedure
is significant. To control the computational cost of the recognition process and
attenuate the effect of noise, often they are associated with bag of words rep-
resentations [2,9,10,14,16,18]. In this work we adopt this strategy to address
banknote recognition.

In this paper, we propose a new banknote recognition scheme based on a clas-
sical CBIR pipeline. Given a test image, we first extract SURF features, which
we chose for their computational cost, then adopt a Bag of Features represen-
tation, finally we associate the image with the banknote amount which ranked
best according to an appropriate similarity measure following a kNN procedure.
Compared with previous works in the literature, our method is simpler and com-
putationally more efficient. Besides, it is worth noticing that does not require a
banknote detection stage – i.e. the whole image is represented in a single vector.
At the same time it is very effective even in the case of blur, partial occlusions,
clutter, as we will show in our experimental analysis.

The remainder of this paper is organized as follows: Section 2 describes the
proposed banknote recognition system. Section 3 reports an exhaustive experi-
mental analysis of the proposed system on the introduced datasets, while Section
4 is left to a final discussion.

2 Banknotes Retrieval

In this section we describe our banknote recognition pipeline based on image
retrieval.

The Gallery Dataset. Our gallery is composed of 112 images, 16 per class, where
the classes are EUR 5 (first and second series), 10 (first and second series), 20,
50 and 100. The dataset includes images of both front and reverse sides and

Banknote Recognition as a CBIR Problem 231

Fig. 1. EUR 20 samples from the gallery dataset.

different orientations (8 equally spaced angles between 0◦ and 315◦), which have
been acquired on a uniform background and manually annotated (see Fig. 1).

Banknote Recognition as a Retrieval Problem. A typical CBIR pipeline includes
an offline phase, which consists in the preparation of the gallery, and an online
recognition phase. In the offline phase, the gallery images are represented as
feature bags, as follows. First, we extract SURF features (chosen for their com-
putational efficiency) on each image. Then, we compute a visual dictionary by K-
means. Further, we associate a global image descriptor, based on the dictionary,
with each gallery image. Our reference approach is a classical Bag of Features
(BoF) [3,14,16,18], although we will show how, in some cases, the recently pro-
posed Mean of Bag of Features per Quadrant (MBoFQ [19]) is quite effective.
The global BoF descriptor corresponds to a vector quantization of the image
features with respect to the visual dictionary. The feature vector v = (v1, ..., vD)
is finally normalized by the so-called power-law normalization, which have been
shown very effective in image retrieval (see[15]): vi =| vi |β ×sign(vi), with
0 ≤ β < 1 a fixed constant. The updated vector v is then L2-normalized. We
fixed β = 0.1 in all experiments.

In the online phase, a new query image is first represented coherently with the
gallery (in the same manner), then it is compared with all the gallery images via a
kNN procedure. Different similarity measures can be adopted, in the experiments
section we will compare different classical choices. Then gallery images are ranked
according to their similarity, and a voting procedure is applied to the first k
positions of the ranking list.

3 Method Assessment

Test Set. For a quantitative performance evaluation, we acquired a test-set of 370
query images, with about 36 to 90 images for each class of banknote. Each image
has a resolution of 665×1182 pixels. The images (acquired by three different users
with smart phones cameras) cover a wide variety of conditions, such as partial
occlusion, blur, rotations, changes of illumination and viewpoints (see Fig. 2).
Differently from other literature datasets [23], typically collected by scanners or

232 J. Sosa-Garćıa and F. Odone

Fig. 2. Samples of query images taken under different conditions. Row 1: blurry images;
row 2: clutter; row 3: occlusions; row 4: viewpoint changes; row 5: rotations; row 6:
illumination changes.

in constrained conditions, our dataset represents a better approximation of real
world scenarios, covering a wider variety of conditions. In particular, we consider
situations which may arise in a practical usage, with a banknote lying on a flat
surface in front of the user, or being held by the user.

Different Image Descriptors. We first evaluate the use of SURF features in
combination with different image descriptors in the context of banknote recog-
nition. Our analysis compares BoF [3], Fisher [15], VLAD [8], Spatial Pyra-
mid (SPM) [12], MBoFQ [19]. We choose different vocabulary sizes in order
to obtain descriptors of similar dimensionality, considering a trade off between
smaller representations and performances. In all experiments, the vector size of
Fisher, VLAD, SPM and MBoFQ is equal to 20000 while BoF allows us to obtain
comparable performances with 10000. Table 1 reports the retrieval performances
on the query dataset obtained with k = 12 and the similarity evaluated by the
euclidean distance. The BoF achieves an overall recognition rate of 96.49%. A
similar performance is obtained by MBoFQ but with larger vectors. Notice that,

Banknote Recognition as a CBIR Problem 233

Table 1. Recognition rates (%) with different image descriptors.

Descriptor Denomination class (EUR) Average

5 10 20 50 100

BoF 97.53 91.82 98.90 98.08 100 96.49
MBoFQ 96.30 95.45 100 90.38 100 96.49
VLAD 91.36 96.36 95.60 86.54 94.44 93.51
FISHER 98.77 90.91 98.90 92.31 97.22 95.41
SPM 83.95 67.27 93.41 82.69 94.44 82.16

Table 2. Recognition rates (%) for different values of k (Euclidean Distance).

Descriptor top−k positions

12 7 5 3 1

BoF 96.49 97.57 96.22 96.49 96.49
MBoFQ 96.49 95.14 95.14 95.14 94.32
VLAD 93.51 94.86 93.78 94.05 94.59
FISHER 95.41 96.49 95.95 95.95 95.14
SPM 82.16 80.54 80.54 80.27 87.03

previous methods [20,23] obtained results never above 95% on different but com-
parably difficult datasets.

Different Values of k. Table 2 shows the recognition rate for different values
of k. The highest recognition rates are obtained with the BoF method for all
values of k. It can be observed that the performance of MBoFQ vectors decreases
when smaller number of k-positions is considered. Note that the performance of
VLAD, FISHER and SPM descriptors increases for some values of k with respect
the initial value k = 12, but in general their behavior is unstable.

Different Similarity Measures. Table 3 shows the results obtained by using differ-
ent similarity measures in the ranking phase on the query dataset. By comparing
the results of Table 3, the recognition rate is more accurate by using Euclidean
Distance for all image descriptors considered.

The Effect of Image Size. Figure 3 shows the performance of the descriptors
at different image size. The initial query dataset is resized at several image
resolutions, starting from 90% resolution of the initial images to a 40% image
resolution. Each of the resolution reductions of the initial dataset produces a new
query dataset and the system is evaluated on each individual dataset. It can be
observed in Figure 3 that there is a significant increase in the performance up
to 98.1% of BoF descriptors at 70% image resolution. By observing the results
shown in Figure 3, the recognition rates of the BoF and MBoFQ methods remain

234 J. Sosa-Garćıa and F. Odone

Fig. 3. Recognition rates (%) at several image resolutions.

Table 3. Recognition rates (%) via different image descriptors and similarity measures.

Descriptor Similarity Measure

L1 L2 Sign−X 2 X 2 Hist. Inter. (dis)

BoF 71.89 96.49 76.22 72.43 95.68
MBoFQ 81.08 96.49 84.05 84.05 93.24
VLAD 84.05 93.51 21.89 25.95 31.62
FISHER 84.86 95.41 22.16 16.49 24.59
SPM 64.59 82.16 58.10 65.95 71.35

above 95% from 90% to 60% image resolution. Where the latter corresponds to
an image size equal to 400 × 710, similar to the resolution of webcams.

Dimensionality Reduction. Today, in image retrieval, it is common practice to
include a dimensionality reduction step over the final feature vector. This process
helps reducing the size of the descriptor, improving retrieval performances, but
as an additional benefit controls data redundancy. Table 4 compares different
descriptors after a PCA and whitening procedure [8] on banknote recognition.
In this experiment, the reference and query dataset are represented following the
procedure described in Section 2 and then each image vector is reduced applying
PCA. The ranking of the reference dataset given a query image is obtained by
comparing the reduced vectors (128-D) of the query and reference images. Given
the results of Table 4, it can be seen that the dimensionality reduction does not
affect much the recognition performance. Besides, there is a slight increase in
the performance for MBoFQ, VLAD and SPM vectors. High-speed processing is
performed by using low-dimensionality vectors and therefore the computational

Banknote Recognition as a CBIR Problem 235

Table 4. Comparison of image descriptors of low dimensionality (128-D).

Descriptor Initial Size Recognition Rate (%) Reduced Size Recognition Rate (%)

BoF 10000 96.49

128

95.14
MBoFQ

20000

96.49 96.76
VLAD 93.51 94.05
FISHER 95.41 95.14
SPM 82.16 86.49

costs decrease. This speed-up allows to enlarge the reference dataset as well as
incorporate new banknotes from other countries.

4 Discussion

In this paper we proposed a banknote recognition method based on a simple,
although effective, CBIR pipeline. We evaluated our method on the Euro cur-
rency on a very challenging query dataset that covers a wide variety of conditions,
such as partial occlusion, blur, rotation, changes of illumination, scale and view-
points. Our experimental analysis compared different image descriptors; here we
found out that a standard BoF has a high recognition performance (about 98%)
on the proposed datasets and is robust to handle scale changes, partial occlusions
(e.g. user’s hands). Good performance is also achieved by other image descrip-
tors, such as MBoFQ and Fisher vectors. Our reference application domain is the
development of aids for visually impaired people. Currently we are testing the
generality of the method to different scenarios, by means of a demo application.

We conclude by observing our approach can be easily extended to other cur-
rencies, simply by acquiring an appropriate image gallery. For its simplicity and
low time-space computational cost, the proposed system can be easily incorpo-
rated into wearable devices to assist visually impaired people to automatically
recognize banknotes in their daily activity.

References

1. Aoba, M., Kikuchi, T., Takefuji, Y.: Euro banknote recognition system using a
three-layered perceptron and rbf networks. Transactions on Mathematical Model-
ing and Its Applications 44, 99–109 (2003)

2. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic
query expansion with a generative feature model for object retrieval. In: ICCV,
pp. 1–8 (2007)

3. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: SLCV, ECCV 2004, vol. 1, p. 22 (2004)

4. Garćıa-Lamont, F., Cervantes, J., López, A.: Recognition of mexican banknotes
via their color and texture features. Expert Systems with Applications 39(10),
9651–9660 (2012)

5. Hasanuzzaman, F.M., Yang, X., Tian, Y.: Robust and effective component-based
banknote recognition for the blind. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 42(6), 1021–1030 (2012)

236 J. Sosa-Garćıa and F. Odone

6. Hassanpour, H., Farahabadi, P.M.: Using hidden markov models for paper currency
recognition. Expert Systems with Applications 36(6), 10105–10111 (2009)

7. Jahangir, N., Chowdhury, A.R.: Bangladeshi banknote recognition by neural
network with axis symmetrical masks. In: 10th International Conference on Com-
puter and Information Technology, ICCIT 2007, pp. 1–5. IEEE (2007)

8. Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the
benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato,
Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 774–787. Springer,
Heidelberg (2012)

9. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: CVPR,
pp. 1169–1176 (2009)

10. Jégou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for
accurate and efficient image search. In: CVPR, pp. 1–8. IEEE (2007)

11. Kosaka, T., Omatu, S., Fujinaka, T.: Bill classification by using the lvq method.
In: 2001 IEEE International Conference on Systems, Man, and Cybernetics,
vol. 3, pp. 1430–1435. IEEE (2001)

12. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories. In: CVPR, vol. 2, pp. 2169–2178.
IEEE (2006)

13. Lee, J.K., Jeon, S.G., Kim, I.H.: Distinctive point extraction and recognition
algorithm for various kinds of euro banknotes. International Journal of Control
Automation and Systems 2, 201–206 (2004)

14. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR,
vol. 2, pp. 2161–2168. IEEE (2006)

15. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with
compressed fisher vectors. In: CVPR, pp. 3384–3391. IEEE (2010)

16. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: CVPR, pp. 1–8. IEEE (2007)

17. Reiff, T., Sincak, P.: Multi-agent sophisticated system for intelligent technologies.
In: IEEE International Conference on Computational Cybernetics, ICCC 2008,
pp. 37–40. IEEE (2008)

18. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching
in videos. In: ICCV, pp. 1470–1477. IEEE (2003)

19. Sosa-Garćıa, J., Odone, F.: Mean bof per quadrant - simple and effective way to
embed spatial information in bag of features. In: VISAPP (2015)

20. Takeda, F., Nishikage, T.: A proposal of structure method for multicurrency simul-
taneous recognition using neural networks. Transactions of the Japan Society of
Mechanical Engineers 66(648) (2000)

21. Takeda, F., Nishikage, T.: Multiple kinds of paper currency recognition using neural
network and application for euro currency. In: Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 2,
pp. 143–147. IEEE (2000)

22. Takeda, F., Omatu, S.: High speed paper currency recognition by neural networks.
IEEE Transactions on Neural Networks 6(1), 73–77 (1995)

23. Takeda, F., Sakoobunthu, L., Satou, H.: Thai banknote recognition using
neuralnetwork and continues learning by dsp unit. In: Palade, V., Howlett, R.J.,
Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 1169–1177. Springer, Heidelberg
(2003)

Efficient Image Search with Neural Net Features

David Novak1(B), Jan Cech2, and Pavel Zezula1

1 Masaryk University, Brno, Czech Republic
{david.novak,zezula}@fi.muni.cz

2 Czech Technical University, Prague, Czech Republic
cechj@cmp.felk.cvut.cz

Abstract. We present an efficiency evaluation of similarity search tech-
niques applied on visual features from deep neural networks. Our test
collection consists of 20 million 4096-dimensional descriptors (320 GB
of data). We test approximate k-NN search using several techniques,
specifically FLANN library (a popular in-memory implementation of k-d
tree forest), M-Index (that uses recursive Voronoi partitioning of a met-
ric space), and PPP-Codes, which work with memory codes of metric
objects and use disk storage for candidate refinement. Our evaluation
shows that as long as the data fit in main memory, the FLANN and the
M-Index have practically the same ratio between precision and response
time. The PPP-Codes identify candidate sets ten times smaller then the
other techniques and the response times are around 500 ms for the whole
20M dataset stored on the disk. The visual search with this index is avail-
able as an online demo application. The collection of 20M descriptors is
provided as a public dataset to academic community.

1 Introduction: Content-Based Image Retrieval

The content-based image retrieval (CBIR) is an area that naturally requires simi-
larity techniques to match the image data. A successful CBIR system must stand
on two pillars: effective image processing to achieve high quality of the retrieval,
and efficient search to make the system work in real time and on a large scale.
Specifically, the image processing typically leads to certain features (descriptors,
stimuli) that capture the application-driven characteristics of the image data;
the actual searching process is then realized in space of these features.

Currently, the state-of-the-art image recognition approach is based on deep
convolutional neural networks (details follow). The objective of this paper is to
study how current similarity techniques can manage visual features obtained by
this approach. These features are 4096-dimensional real vectors, which makes
it a challenge to efficiently search in large collections. These vectors can be
compared using various distance functions, and thus we focus mainly on metric-
based search techniques. We analyze the space properties of the visual features
extracted from a 20 million image collection and we evaluate the search efficiency
of different approaches.

This work was supported by Czech Research Foundation project P103/12/G084.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 237–243, 2015.
DOI: 10.1007/978-3-319-25087-8 22

238 D. Novak et al.

The Deep Convolutional Neural Networks (DCNN) have a long history
in computer vision and machine learning. LeCun et al. [6] introduced an archi-
tecture with many hidden layers where weights of lower-level layers are shared
as convolution filters. Two decades later, a similar architecture was applied to
a large scale visual recognition problem by Krizhevsky et al. [5] and won the
ILSVRC 2012 challenge by a large margin. The network was trained to recog-
nize 1k selected ImageNet categories from more than 1M training images. The
network consisting of 5 convolutional and 3 fully connected layers takes raw
size-normalized images as an input. The network having about 60M parameters
represents a very flexible classifier with a great class capacity.

After the great success of [5], researches started to consider a possibility to
re-use the representation power of the Krizhevsky’s network to solve other recog-
nition problems, i.e. to adapt the classifier to recognize classes the network was
not trained for, by using a much smaller dataset [3,12]. The last network layer
that outputs the class scores is in fact a linear classifier taking a non-linear rep-
resentation of an image (the previous layer response). The response of the last
hidden layer of Krizhevsky’s network is coined the DeCAF feature in [3]. The
feature is demonstrated to hold a great representation power and ability to gen-
eralize to other recognition tasks by training a simple linear classifier. Moreover,
a semantic information is carried implicitly which is shown by tendency of the
DeCAF features to cluster semantically similar images of categories on which
the network was never explicitly trained.

The DCNN methods were also studied in the context of CBIR [13], using the
deep features and a suitable metric. A good generalization to various datasets is
shown, but attempts to learn a metric are reported to have a minor effect.

2 Similarity Indexing and Searching

In this section, we describe selected techniques for similarity-based indexing.

FLANN. FLANN is a popular library for performing fast approximate nearest
neighbour search developed by Muja and Lowe [7]. It is often used in various
computer vision problems where a large dataset is involved and it is incorporated
into OpenCV. FLANN contains two main algorithms: (1) a forest of randomized
k-d trees, and (2) a hierarchical k-means tree. Additionally, FLANN includes a
method for an automatic selection of the most suitable algorithm and its param-
eters given the target dataset. The choice depends on the nature of the set of
features where the search is performed; on its size, on the dimensionality, on
the structure of the data, and of course on the desired precision of the approx-
imate nearest neighbour search. The auto-tuning algorithm optimizes a score
that consists of a weighted combination of the search time, tree build time and
memory overhead. The weights are optionally set by a user. The optimization
can run on a representative fraction of the dataset only, which further speeds
the auto-tuning up and makes the approximate search system easy to set up.

Metric-Based Approaches. Further, we focus on the metric access methods
(MAMs), that model the data as a metric space (D, δ), where D is the domain

Efficient Image Search with Neural Net Features 239

p3

p4

p1

p2

p3

p2

p4

C3,2

C2,1

C1,2

C4,3

4,1C

C3,4

1,3C

p1

C3

C2

C1

C4

C1,4

C2,3C3,1

Fig. 1. Voronoi partitioning (left) and of second level Voronoi partitioning (right).

and δ is a metric (distance) function. Specifically, we describe a class of MAMs
based on recursive Voronoi partitioning of the space as depicted in Figure 1 for
pivots p1, . . . , p4. The left part shows standard partitioning which generates four
Voronoi cells C1, . . . , C4; on the right, each of these cells is partitioned using
the rest of the pivots. Cell Ci,j then contains objects for which pi is the closest
pivot and pj is the second closest. This principle can be used recursively l-times
and it is often formalized as permutations of pivots: objects from Voronoi cell
Ci1,...,il can be “mapped” onto a vector 〈i1, . . . , il〉, which is an l-prefix of a
certain permutation of the pivot indexes [8].

This principle has been successfully applied by several MAMs, for instance
by a structure called M-Index [8]. This index builds a dynamic trie-like structure
over the recursive Voronoi diagram, so that only the overfilled cells are parti-
tioned to another level. Given a k-nearest neighbor query k-NN(q), the M-Index
forms a candidate set of indexed objects by accessing data objects x from the
“most promising” Voronoi cells; these candidate objects are refined by evalua-
tion of δ(q, x) and the best k objects are returned. The Voronoi cell data can be
stored either in memory or on the disk in continuous chunks. This approach can
be further improved by combining several independent Voronoi partitions [10]
in a similar way as in case of randomized k-d forest.

The same space partitioning is used also in a recent technique called PPP-
Codes [11]. This MAM defines a mapping of the metric objects onto small codes
composed of the pivot permutation prefixes from several pivot spaces. These
codes are kept in memory; given a k-NN query, the PPP-Codes search algorithm
combines candidate sets from the independent pivot spaces into a small but very
accurate candidate set. Only objects from this candidate set are retrieved from
the disk and refined. As these objects are read one-by-one (via their identifiers),
this approach assumes an efficient key-value store, ideally kept on an SSD disk.

3 Efficiency Evaluation

According to the state of the art in computer vision, we use the DeCAF7 feature
produced by the last hidden layer of the neural network model provided by the
Caffe project1 [4], which was trained according to [5]. This 4096-dimensional float
1 http://caffe.berkeleyvision.org

http://caffe.berkeleyvision.org

240 D. Novak et al.

 0 1000 2000 3000 4000
L1 distance

 0 0.2 0.4 0.6 0.8 1
cosine distance

 0 20 40 60 80 100 120 140 160

fr
eq

ue
nc

y

L2 distance

Fig. 2. Distance histograms of the data space with different metric functions; corre-
sponding intrinsic dimensionality values are: L2: 26.8, L1: 36.0, cosine distance: 46.9.

vector was extracted from a collection called Profiset [1] consisting of 20 million
images provided for research purposes by a microstock photography company.
This set of 20M features is public for research purposes at http://disa.fi.muni.
cz/profiset/.

In the beginning of this evaluation, we we provide analysis of the feature
space properties. Figure 2 shows histogram of distances calculated on a sample
of 1M images with three metrics: L2, L1 and cosine distance; the figure caption
shows also respective values of intrinsic dimensionality calculated as μ2/(2 ·σ2),
where μ and σ2 are the mean and variance of the distance histogram [2].

The core of this section is evaluation of k-NN processing efficiency using L2.
Denoting A the approximate k-NN search answer and AP the precise NN answer,
the answer quality is measured by recall(A) = precision(A) = |A∩AP |

K · 100%.
The key performance indicator is the wall-clock time of the query processing. All
results were averaged over 1,000 queries from the outside of the dataset. We use
several subsets of the collection of sizes from 100K to 20M. The evaluation was
realized on a 12-core Intel Xeon @ 2.0 GHz machine with 60 GB of main memory,
and SSD disk with transfer rate about 270 MB/s with random accesses.

3.1 In-memory Indexes

First, the in-memory FLANN and M-Index were tested on subsets up to 3M
objects (48 GB in main memory). The FLANN auto-tuning procedure (running
on a 100K sample) chose the randomized k-d tree forest with 32 trees; parameter
“number of accessed leaves” varied for different required values of 1-NN recall.
The M-Index was configured to use four Voronoi trees [10], each with 512 pivots
and the parameter “number of accessed objects” was altered.

Plots in Figure 3 show dependence between the single-thread search times
and k-NN recall for FLANN and M-Index on 1M dataset (various values of k).
We can see that the results are very similar; this is quite surprising since the
partitioning principles and the implementation platforms (C++ vs. Java) of the
two indexes differ significantly. FLANN is able to return some results within
milliseconds while the M-Index has a minimum response time about 20 ms. This
is caused especially by initial calculation of distances between the query object
and the set of 4 × 512 pivots. On the other hand, the recall values grow faster
for M-Index, especially for higher values of k.

http://disa.fi.muni.cz/profiset/
http://disa.fi.muni.cz/profiset/

Efficient Image Search with Neural Net Features 241

 100

 0

auto−tuning
99%

auto−tuning
95%

 50 100 150 200 250
average search time [ms]

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250
average search time [ms]

90%

k−
N

N
 r

ec
al

l [
%

]

k=100
k=10
k=1

FLANN

 0

 20

 40

 60

 80

k=1000
 150 200 250

k=10

average search time [ms]

M−Index in memory

k=100

k−
N

N
 r

ec
al

l [
%

]

 0
k=1000

 20

 40

 60

 80

 100

 0 50 100 150 200 250
average search time [ms]

 0

 20

 40

 60

 80

 100

 0 50 100

k=1

Fig. 3. Recall of k-NN queries vs. search time (single thread) for FLANN and main
memory M-Index on 1M data collection.

Figure 4 shows the same type of dependence for 10-NN and collection sizes
varying between 100K and 3M. We can see that both indexes scale quite well;
the M-Index has again “slower start” but it outruns FLANN in the end.

3.2 Disk-Oriented Indexes

Finally, we analyze how disk-oriented indexes perform on collections up to 20M.
First, we test the disk version of M-Index with the same configuration as in the
memory case (four indexes, each with 512 pivots, 1M dataset). Since we use four
independent space partitioning (in a similar way as locality-sensitive hashing
approaches do), the physical data is now replicated four times. The left graph in
Figure 5 shows the k-NN recall with respect to percentage of data accessed by
the index; these results are independent of the memory/data implementation.
The right graph compares the search time for various implementations: memory
vs. disk and single- vs. multi-thread query evaluation. We can see that the disk
variant is feasible with multi-treading. For all disk-oriented experiments, the disk
caches were dropped before running every 1000-query batch.

Further, we focus on efficiency of the PPP-Codes index, which has been
designed for larger collections of voluminous data objects [11]. In our case, it

 150 200 250

size=300K

average search time [ms]

10
−

N
N

 r
ec

al
l [

%
]

size=1M

FLANN

 0
size=3M

 20

 40

 60

 80

 100

 0 50 100 150 200 250
average search time [ms]

 0

 20

 40

 60

 80

 100

 0 50 100

size=100K

 150 200 250

size=300K

average search time [ms]

10
−

N
N

 r
ec

al
l [

%
]

size=1M

M−Index in memory

 0
size=3M

 20

 40

 60

 80

 100

 0 50 100 150 200 250
average search time [ms]

 0

 20

 40

 60

 80

 100

 0 50 100

size=100K

Fig. 4. Recall of 10-NN operations vs. search time (single thread) for FLANN and
main memory M-Index on collections of different sizes.

242 D. Novak et al.

 3 4 5

k=10

accessed and refined objects [% of database]

k−
N

N
 r

ec
al

l [
%

]

k=100

M−Index

 0
k=1000

 20

 40

 60

 80

 100

 0 1 2 3 4 5
accessed and refined objects [% of database]

 0

 20

 40

 60

 80

 100

 0 1 2

k=1

 4 5
accessed and refined objects [% of database]

disk, multi thread

M−Index: various implementations

av
er

ag
e

se
ar

ch
 ti

m
e

[m
s] memory, single thread

 0

 500

memory, multi thread

 1000

 1500

 2000

 2500

 0 1 2 3

disk, single thread

Fig. 5. k-NN recall (left) and search times (right) for different settings (memory/disk
and single-/multi-thread processing) for variable perc. of accessed data (1M collection).

 0 0.1
search time [ms] (right)

 0.2 0.3 0.4 0.5
 0

 50

 100

 150

 200

 250

accessed and refined objects [% of database]

PPP−Codes, collection size: 1M
se

ar
ch

 ti
m

e
[m

s]

k−
N

N
 r

ec
al

l [
%

]

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5
 0

 50

 100

 150

 200

 250

accessed and refined objects [% of database]

 0

1−NN recall (left)
 20

 40

 60

10−NN recall (left)

 80

 100

100−NN recall (left)

 2000
search time [ms] (right)

 4000 6000 8000 10000
 0

 200

 400

 600

 800

 1000

accessed and refined objects

k−
N

N
 r

ec
al

l

se
ar

ch
 ti

m
e

[m
s]

PPP−Codes, collection size: 20M

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000
 0

 200

 400

 600

 800

 1000

accessed and refined objects

 0

1−NN recall (left)
 20

 40

 60

10−NN recall (left)

 80

 100

100−NN recall (left)

 0

Fig. 6. k-NN recall and search times with respect to accessed objects: 1M and 20M.

uses the same four sets of 512 pivots as the M-Index, it keeps a memory structure
(about 1 GB for the 20M collection) and the actual data objects are compressed
on the disk (124 GB for the 20M collection).

For comparison with the results above, left graph in Figure 6 shows values
of k-NN recall (left vertical axis) and of search times (right axis) with respect
to percentage of accessed objects of 1M collection. We can see that PPP-Codes
access one order of magnitude fewer objects than M-Index and the search times
are about 1/3 of the M-Index with multi-thread processing on the disk. The
search time improvement is not proportional to candidate set reduction since
the PPP-Codes have more demanding in-memory processing phase and the can-
didate set objects on the disk are accessed one-by-one [11].

The right graph presents the results on the 20M collection. In this case, the
horizontal axis shows the absolute number of accessed objects (out of 20M) and
we can see that high recall values are achieved for response times around 500 ms.
In practice, lower response times are achieved by not dropping the disk caches.

4 Conclusions

The fusion of the deep neural networks and similarity-based indexing has
many good applications in the area of content-based image retrieval. The high
dimensionality and bulkiness of the visual features from the neural networks

Efficient Image Search with Neural Net Features 243

calls for analysis of actual search efficiency of current indexing techniques on
large datasets of this data. We have introduced a test collection with 20M 4096-
dimensional image features and tested the k-NN search efficiency of selected
indexing techniques. The results indicate that if the data fit into main memory,
the metric-based structure M-Index [8] is as efficient as the FLANN [7] library.
With the disk version of M-Index, the search would not stay real-time for large
datasets because the index accesses over 1 % of the data to produce good results.

The PPP-Codes index [11] better fits this type of datasets as it can achieve
fine results accessing around 0.02 % out of the 20M dataset; the search times
are around 500 ms. There is an online demonstration application available at
http://disa.fi.muni.cz/demos/profiset-decaf/ which presents k-NN visual search
on this 20M dataset with the PPP-Codes index [9]. The collection of the 20M
descriptors is publicly available at http://disa.fi.muni.cz/profiset/.

References

1. Budikova, P., Batko, M., Zezula, P.: Evaluation platform for content-based image
retrieval systems. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.)
TPDL 2011. LNCS, vol. 6966, pp. 130–142. Springer, Heidelberg (2011)

2. Chávez, E., Navarro, G.: Measuring the dimensionality of general metric spaces.
Technical report, Department of Computer Science, University of Chile (2000)

3. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
DeCAF: a deep convolutional activation feature for generic visual recognition. In:
International Conference in Machine Learning (ICML), pp. 647–655 (2014)

4. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. In: International Conference on Multimedia (2014)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances In Neural Information Processing Systems
25, 1097–1105 (2012)

6. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel,
L.: Backpropagation applied to handwritten zip code recognition. Neural Compu-
tation 1(4) (1989)

7. Muja, M., Lowe, D.G.: Scalable Nearest Neighbour Algorithms for High Dimen-
sional Data. IEEE Trans. on PAMI 36(11), 2227–2240 (2014)

8. Novak, D., Batko, M., Zezula, P.: Metric Index: An Efficient and Scalable Solu-
tion for Precise and Approximate Similarity Search. Information Systems 36(4),
721–733 (2011)

9. Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net
descriptors. In: Proceedings of SIGIR 2015 (to appear, 2015)

10. Novak, D., Zezula, P.: Performance Study of Independent Anchor Spaces for
Similarity Searching. The Computer Journal 57(11), 1741–1755 (2014)

11. Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity
search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA
2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)

12. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: CVPR (2014)

13. Wan, J., Wang, D., Hoi, S., Wu, P., Zhu, J., Zhang, Y., Li, J.: Deep learning
for content-based image retrieval: a comprehensive study. In: Proc. of 22nd ACM
International Conference on Multimedia (2014)

http://disa.fi.muni.cz/demos/profiset-decaf/
http://disa.fi.muni.cz/profiset/

Textual Similarity for Word Sequences

Fumito Konaka and Takao Miura(B)

Department of Advanced Sciences, HOSEI University,
3-7-2 KajinoCho, Koganei, Tokyo 184–8584, Japan

fumito.konaka.2t@stu.hosei.ac.jp, miurat@hosei.ac.jp

Abstract. In this work, we introduce new kinds of sentence similar-
ity, called Euclid similarity and Levenshtein similarity, to capture both
word sequences and semantic aspects. This is especially useful for Seman-
tic Textual Similarity (STS) so that we could retrieve SNS texts, short
sentences or something including collocations. We show the usefulness of
our approach by some experimental results.

Keywords: Euclid similarity · Levenshtein similarity · Semantic textual
similarity

1 Introduction

Nowadays there exist a variety of documents spread over internet. One of the
typical examples is Social Networking Service (SNS), which is provided through
some platform to build community or social relations among people sharing
interests, activities, backgrounds or real-life connections in terms of messages,
tweets or documents (Wiki). A social network service is provided using some
mechanisms such as Blog and Twitter, some profiles and social links. These
messages are characteristic because they consist of short texts chained many
followers (or retweets), contain a few duplicate but special buzzwords (i.e., lol,
:)) and ignore grammatical rules very often.

Information retrieval for these kinds of information have been widely dis-
cussed. Among others, a model of Bag-of-Words is common in text information
processing. That is, every document is described as a vector over words with
an assumption of Distributed Semantic Model (DSM) [5] which means words in
similar contexts carry similar semantics. However, there exist serious deficiencies
for SNS texts since sentences in SNS are generally short and sparse so that word
sequences may carry characteristic semantics. For example, in two statements
"I hope to marry her" and "I hope to divorce her", we have same words
except one, thus the statements have completely different semantics.

In this work, we introduce new kinds of similarity, Euclid similarity and Lev-
enshtein similarity between sentences to provide a new approach towards infor-
mation retrieval of sentences including BLOG/Twitter. The basic idea comes
from semantic distance. Euclid similarity allows us to obtain better similar-
ity based on multiple word expression (as n-gram and collocation) considered
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 244–249, 2015.
DOI: 10.1007/978-3-319-25087-8 23

Textual Similarity for Word Sequences 245

as a unit. They happen to co-occur often closely positioned. We also introduce
semantic similarity into Levenshtein distance and the new difference of two words
reflect the similarity. This provides us with independence of sentence length for
similarity. In fact, we may have same context but much differnce of size1 and we
see the approach works better than dependent ones.

The rest of the paper is organized as follows. In section 2 we describe seman-
tic similarity for sentences as well as some related works. Section 3 contains a
framework of our approach including extended Levenshtein distance. Section 4
contains some experimental results. In section 5 we conclude this work.

2 Semantic Similarity

Semantic Textual Similarity (STS) provides us with new kinds of text retrieval.
In fact, it allows us to capture semantic structure directly by means of
word/phrase sense and the interrelationship same as grammatical structure
instead of word distribution (Bag-Of-Words, BOW) model. For instance, a small
elephant looks at a big ant is completely different in size from a big elephant looks
at a small ant, but the two are same from the viewpoint of BOW model.

Here we like to focus attention on sequences as a new feature. The typical
issue is collocation, which is a sequence of words or terms that co-occur more
often than would be expected by chance (WIKI). Note that an idiom means a
phrase carrying semantics different from the constituents2, and that collocation
means an expression of several words which likely happens more often3.

On the contrary, we have different expression to describe identical situa-
tion. For example, two sentences "His lecture came across well." and "His
lecture resonated well." talk about identical fact since come across means
resonate though different length. We should examine words and collocation
enough for powerful retrieval.

There have been several work of the similarity proposed so far. Tubaki
et al. discuss a fundamental model based on word-vector space and sentence
structures[5]. In fact, they examine model how to learn word description using
sentence structure optimization and decomposition, and propose semantic simi-
larity defined by kernel functions.

Islam et al. has proposed another similarity putting attention on word strings
and word similarity[2]. By this approach miss-spell aspects could be involved.

Feng et al. has discussed similarity between sentences using similarity of word
sequences[1]. The approach provides us with some improvement caused by short
sentences, although they ignore collocation aspects. However, let us note that
these approach show the results depending on the length (the number of words)
heavily. Also no discussion is found about collocation.

1 Some texts of different size talk about same content many times: ”Please don’t let
this get you down”, ”Keep fighting and never give up”, ”Be strong”. Love from
Britain, Dec.12, 2014 in FaceBook message for Julia Lipnitskaya.

2 ”I eat eyeball” means ”I am scolded” but not have any food.
3 We may say ”something like that” more likely as a custom.

246 F. Konaka and T. Miura

3 Semantic Distance

In this section, we discuss how we should think about semantic distance between
sentences putting attention on sequence of words and introduce 2 kinds of simi-
larity, Euclid similarity and Levenshtein similarity to do that. Here we consider
similarity as a certain value in 0 ∼ 1 and the smaller value means less similar.

3.1 Euclid Similarity

Assume word similarity SimE(wi, w̄i) for any two words wi and w̄i and we like
to extend the definition for capturing sentence similarity between S1, S2. If both
S1, S2 contain the same number (say, k) of words where each i-th word is wi

and w̄i respectively. Then we define the similarity SimE(S1, S2), called Euclid

Similarity, as follows: SimE(S1, S2) =

√∑k
i=1 Sim(wi, w̄i)2

k
,wi ∈ S1, w̄i ∈ S2.

Next, let us define similarity of any two sentences using Euclid similarity.
Note we assume the same number of words in two sentences in the definition of
Euclid similarity. In a sentence S, we call consecutive n words in S by a shingle.
To introduce the similarity, first we decompose the two sentences into the same
number (k) of shingles, and then we give the similarity between the two shingles.

In English, it is well-known that any collocation (n-gram) may carry its own
meaning with the length at most n = 4. We decompose S into the sequence of
shingles of n = 1, .., 4 so that we have s/4 ∼ s shingles. To decompose two sen-
tences S1 and S2 into k shingles, we obtain possible range of the decomposition
and select the common possibility suitable for both S1 and S2.

We obtain two ranges I1, I2 for S1, S2 respectively and calculate a new range
I0 as I1 ∩ I2 We say the similarity is 0 if no possibility is found (i.e., I0 = φ).

For each k in I0, we decomopose S1, S2 into k shingles (w1, .., wk) and
(w′

1, .., w
′
k). Let w, w̄ be two shingles and define the similarity SimE(w, w̄) of

the two shingles. Any shingle may or may not contain collocations which we
can be see by examining dictionary. If the case, we put the constituent words
together into one so that we still consider the shingle as a sequence of words.
When we have several collocations in the shingle, we make copies of shingle
containing different collocations to obtain similarity alternatively. Now the sim-
ilarity SimE(w, w̄) is defined as follows: SimE(w, w̄) = max

i,j
Path(ai, bj). Here

ai, bj mean each word/collocation in w and w̄ respectively, none of the two is
stopword or something like that4. Path(ai, bj) is calculated using WordNet5[4].

3.2 Levenshtein Similarity

Here let us introduce another kind of sentence similarity Levenshtein similarity,
denoted by SimL(S1, S2). Compared to Euclid similarity, we examine all the
pairs of words appeared in S1 and S2 while keeping word sequences.
4 In our approach, we extract only nouns and verbs so that, for instance, pronouns

are removed.
5 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

Textual Similarity for Word Sequences 247

For sentences S1, S2, we define Levenshtein similarity between S1 and S2,
denoted by SimL(S1, S2), as follows:

Levenshtein Similarity Calculate SimL(S1, S2)
(1) Mi,0 = i(0 ≤ i ≤ m),M0,j = j(0 ≤ j ≤ n)
(2) Mi,j = min(

Mi−1,j−1 + (1 − Path(wi, w̄j)),
Mi,j−1 + (1 − Path(wi, w̄j)),
Mi−1,j + (1 − Path(wi, w̄j)))

(3) SimL(S1, S2) = 1 − Mm,n/max(m,n)

In the definition we examine WordNet many times for whole sentence. This
means our Levenshtein definition captures semantic similarity instead of char-
acter matching. Let us note we examine all the word pairs looking at WordNet.

3.3 Using Semantic Distances

Clearly it is hard to decide how well we obtain sentence similarity, because the
result depends on contexts, domains and language nature. In this work, we model
the situation by a parameter λ as well as the two similarities where 0 ≤ λ ≤ 1.0:
Sim(S1, S2) = λ × SimE(S1, S2) + (1 − λ) × SimL(S1, S2).

The parameter λ tells us how well sequences give similarity, it is impossible
to estimate λ automatically. In the following section, we show some experimental
results of our model.

4 Experiments

In this experiment, we examine 30 pairs of nouns among 65 pairs discussed in
[3] and referred in [1], [2], [3]. Then we have interpreted these nouns with the
first interpretation in the Collins Cobuild dictionary 6 and applied TreeTagger7

for morphological processing in advance.
We examine extended semantic distance. We construct Levenshtein similarity

distinguishing nouns from verbs by giving weight 0.5 for Euclid similarity, 0.3
for Levenshtein similarity on nouns and 0.2 for Levenshtein similarity on verbs.
These values have been devised through preliminary experiments.

To evaluate the experiment, we examine precision of ranking proposed by [3]
with two baseline results [1], [2].

Let us illustrate all the results of Precisions and Ranking in tables 1 and 3
respectively. In table 1, TopRank means the number of pairs ranked highly. A
table 1 shows that, compared to our result, Islam approach works 10 percent
worse and Feng et al. approach equally.

In table 3, we see that our approach contains a pair of ”coast&forest” in top
10 rank which is 21th in Answer, and that our approach doesn’t contain any
pair in top 10 rank which is 21th or below in Answer.

6 http://www.collinsdictionary.com/dictionary/english-cobuild-learners
7 http://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger/

http://www.collinsdictionary.com/dictionary/english-cobuild-learners
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

248 F. Konaka and T. Miura

Table 1. Precision

TopRank Ours Islam Feng
1 1 0 1
5 0.8 0.6 0.8
10 0.6 0.8 0.6
15 0.6 0.8 0.67
20 0.7 0.85 0.75
25 0.88 0.96 0.88
30 1 1 1

Average 0.8 0.72 0.81

Table 2. Unified Explanatory Notes

coast & shore
Position ”coast” ”shore”

1 the the, shore, or the
2 coast shore, of, a, sea
3 is lake, or, wide, river
4 an, area is, the, land, along
5 of, land the, edge, of, it
6 that, is some one, who, is on, shore
7 next, to is on, the, land, rather
8 the, sea than, on, a ship

coast & forest
Position ”coast” ”forest”

1 the a, forest, is
2 coast, is, an, area a, large, area
3 of, land, that, is where, trees
4 next, to, the, sea grow, close, together

Table 3. Ranking

Rank Answer Ours Islam Feng
1 midday&noon midday&noon cock&rooster midday&noon
2 cock&rooster cock&rooster midday&noon cock&rooster
3 cemetery&graveyard serf&slave gem&jewel cemetery&graveyard
4 gem&jewel forest&woodland boy&lad gem&jewel
5 forest&woodland gem&jewel automobile&car boy&lad
6 coast&shore cemetery&graveyard implement&tool cord&string
7 implement&tool coast&forest cemetery&graveyard serf&slave
8 boy&lad boy&rooster cord&string automobile&car
9 automobile&car journey&voyage coast&shore grin&smile
10 cushion&pillow automobile&car serf&slave boy&rooster
11 grin&smile hill&woodland journey&voyage boy&sage
12 serf&slave boy&lad magician&wizard magician&wizard
13 cord&string magician&oracle forest&graveyard journey&voyage
14 autograph&signature grin&smile grin&smile asylum&fruit
15 journey&voyage magician&wizard furnace&stove magician&oracle
16 magician&wizard boy&sage cushion&pillow coast&shore
17 furnace&stove autograph&signature hill&woodland autograph&signature
18 hill&mound forest&graveyard glass&tumbler cushion&pillow
19 oracle&sage coast&shore coast&forest furnace&stove
20 hill&woodland cord&string forest&woodland autograph&shore
21 glass&tumbler implement&tool magician&oracle glass&tumbler
22 coast&forest autograph&shore autograph&signature forest&woodland
23 magician&oracle glass&tumbler boy&rooster implement&tool
24 boy&rooster asylum&fruit boy&sage forest&graveyard
25 forest&graveyard furnace&stove hill&mound hill&woodland
26 boy&sage cushion&pillow bird&woodland oracle&sage
27 cord&smile oracle&sage autograph&shore hill&mound
28 asylum&fruit bird&woodland oracle&sage bird&woodland
29 bird&woodland hill&mound asylum&fruit cord&smile
30 autograph&shore cord&smile cord&smile coast&forest

To examine our approach and the baselines, let us discuss the differences. In
table 3, our approach says ”coast & shore” and ”coast & forest” are ranked as
19th and 7th respectively which are 6th and 22th in Answer.

Explanatory notes (in the Collins) of the words ”coast”, ”shore” and
”forest” are The coast is an area of land that is next to the sea.”, ”The shores

Textual Similarity for Word Sequences 249

or the shore of a sea, lake, or wide river is the land along the edge of it. Someone
who is on shore is on the land rather than on a ship.” and ”A forest is a large
area where trees grow close together.” respectively.

First we see big difference of the notes length of ”coast & shore”. Table 2
contains the unified result of the notes. We examine ”shore” and obtain collo-
cation, in fact, we have Paths values in similarities. Path(coast, shore) = 0.5,
Path(area, land) = 0.08, Path(sea, ship) = 0.08. Note that 1st, 3rd, 5th, 6th
and 7th have similarity 0.

As for ”coast & forest”, we get almost same lengh of the explanatory notes
(of ”coast” and ”forest”). Again a table 2 contains the unified result of the notes.
Also Path values show Path(area, area) = 1 and Path(land, tree) = 0.17. The
1st and 4th words contain similarity 0.

Similarly Path values see that ”land & tree” are more similar rather than
”area &land” and ”sea & ship”. That’s why ”coast & shore” is ranked lower
and ”coast & forest” higher. Though the result heavily depends on the notes (in
the Collins), we might expect our approach generally collects possible notation
fluctuations about focused terms in a sentence.

5 Conclusion

In this work, we introduced two kinds of similarity, Euclid similarity and Lev-
enshtein similarity to model sequence and semantics of words for the purpose of
STS and short text retrieval. Then we introduced semantic similarity between
sentences.

Our experimental result shows that the precision results are generally nice
results, say 10 percent better than Islam[2] in top 10 pairs, for example.

References

1. Feng, J., Zhou, Y.M., Martin, T.: Sentence similarity based on relevance. In:
Proceedings of IPMU, vol. 8, p. 833 (2008)

2. Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similar-
ity and string similarity. ACM Transactions on Knowledge Discovery from Data
(TKDD) 2(2), 10 (2008)

3. Li, Y., McLean, D., Bandar, Z.A., O’shea, J.D., Crockett, K.: Sentence similarity
based on semantic nets and corpus statistics. IEEE Transactions on Knowledge and
Data Engineering 18(8), 1138–1150 (2006)

4. Pedersen, T., Patwardhan, S., and Michelizzi, J.: WordNet: similarity: measuring
the relatedness of concepts. In: Demonstration Papers at HLT-NAACL 2004, pp.
38–41. Association for Computational Linguistics, May 2004

5. Tsubaki, M., Duh, K., Shimbo, M. and Matsumoto, Y.: Modeling and learning
semantic co-compositionality through prototype projections and neural networks.
In: Conf. on Empirical Methods in Natural Language Processing (EMNLP) (2013)

Motion Images: An Effective Representation
of Motion Capture Data for Similarity Search

Petr Elias, Jan Sedmidubsky(B), and Pavel Zezula

Masaryk University, Botanicka 68a, 602 00 Brno, Czech Republic
xsedmid@fi.muni.cz

Abstract. The rapid development of motion capturing technologies has
caused a massive usage of human motion data in a variety of fields, such
as computer animation, gaming industry, medicine, sports and security.
These technologies produce large volumes of complex spatio-temporal
data which need to be effectively compared on the basis of similarity. In
contrast to a traditional way of extracting numerical features, we pro-
pose a new idea to transform complex motion data into RGB images and
compare them by content-based image retrieval methods. We see these
images not only as human-understandable visualization of motion char-
acteristics (e.g., speed, duration and movement repetitions), but also as
descriptive features for their ability to preserve key aspects of performed
motions. To demonstrate the usability of this idea, we evaluate a pre-
liminary experiment that classifies 1, 034 motions into 14 categories with
the 87.4 % precision.

1 Introduction and Related Work

Motion capturing devices, such as Microsoft Kinect, ASUS Xtion, OptiTrack or
Vicon, can interactively digitize human movement into complex spatio-temporal
motion capture (mocap) data. The mocap data describe human movements by
simplified stick figures of human skeletons. The stick figure consists of bones that
are connected by joints. The positions of joints are estimated for each video frame
in form of 3D coordinates. The captured motion data have a great potential to
be automatically processed, e.g., in sports to compare performance of athletes, in
law-enforcement to identify special-interest persons or detect suspicious events,
in health care to determine the success of rehabilitative treatments or detect
disorders in musculoskeletal system, or in computer animation to synthesize and
generate realistic human motions for production of high-quality games or movies.

In any case, these potential applications require to efficiently and effectively
analyze, segment, search and classify complex spatio-temporal motion data on
the basis of similarity. Determining similarity of such data is a nontrivial task
which can even require an expertise when evaluated by humans, e.g., referees
and trainers in sports or physiotherapists and doctors in medicine. To determine
similarity of motions automatically and as much effectively as possible, various
kinds of motion features are usually extracted and compared on the basis of
distance-based functions or machine-learning approaches.
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 250–255, 2015.
DOI: 10.1007/978-3-319-25087-8 24

An Effective Representation of Motion Capture Data for Similarity Search 251

Motion features can be extracted in form of joint angles (rotations) [13],
distances between joints [12,17], relative joint velocity and acceleration [14],
joint trajectories [3], absolute and relative 3D joint coordinates [16] or covari-
ance matrices of subsequent frames [6,15]. Depending on the application, var-
ious features can be also combined [1,2] or only a key subset of descriptive
joints [10] can be considered. The extracted features are then usually repre-
sented as sequences of high-dimensional vectors which can be compared by (1)
distance-based functions like the dynamic time warping and its variants [10] and
(2) machine-learning approaches such as the support vector machines [1,4,6],
neural networks [3] or hidden Markov models [7].

A large diversity of motion features and comparison methods supports the
fact that there is no global-winner similarity model which would be usable for
a wide range of applications, e.g., for recognizing person-related aspects such as
gender [5] as well as for recognizing specific movement actions [10] like running
or fighting. In this paper, we propose a completely different idea which effectively
visualizes mocap data into color images and compares them by standard content-
based image retrieval (CBIR) methods. In this way we transform a hard problem
of computing similarity of spatio-temporal motion data into a well-known prob-
lem of similarity of images. A related idea is proposed by Milovanovic et al. [8]
who visualize mocap data in a similar fashion but for very specific application of
gait recognition. We rather focus on a broader scope of movements ranging from
simple gestures to complex performances. The main difference is that we make
the body position and orientation relative for each skeleton configuration to effi-
ciently utilize the used color space. The relative position and body orientation
allow us to visualize the same movements by the same colors disregarding their
placement within a motion. The power of the proposed concept is experimentally
verified on the action-recognition application.

2 Motion Image: Motion Capture Data as an Image

We propose an idea to transform mocap data of a single motion into a color
image. The transformation objective is to represent different motions, such as
walking, jumping or kicking, as visually distinctive images. The whole transfor-
mation idea is mainly motivated by the following facts:

– Visualization of mocap data provides humans with better understanding of
motion characteristics, such as speed, duration and movement repetitions;

– Comparison of images based on their visual similarity is a known concept
nowadays – many CBIR methods, e.g., methods based on MPEG-7, SIFT,
SURF and DeCAF features, might be employed;

– Image representation is more robust as it preserves key aspects of original
mocap data, in contrast to traditional high-dimensional numerical features
such as joint angle rotations, velocities and distances between joints.

Regardless of motion capturing device or data storing format, we define every
motion m as a sequence (p1, . . . , pn) of poses pi (i ∈ [1, n]) where n equals to the

252 P. Elias et al.

Fig. 1. Transformation process of a single pose into a stripe image.

motion length (i.e., the number of captured frames). Each pose pi is a vector
(c1, . . . , cl) of 3-dimensional real-world coordinates ci ∈ R

3 (i ∈ [1, l]) of the
specific body joints, where l denotes the number of these joints. Fig. 1a illustrates
a simplified body model with only l = 17 joints.

We firstly show how to transform a single pose pi into a “stripe” image
and then present transformation of the whole motion m by concatenating stripe
images of individual poses p1, . . . , pn. A pose is transformed into the stripe image
by positioning the human skeleton into a 3-dimensional cube, converting the
positioned skeleton into RGB color space, and visualizing the converted skeleton
as the stripe image. The whole process is described in the following four steps.

1. Centering – the skeleton is centered within a 3-dimensional cube [0..255]3 of
a base of 256 centimeters. This size is considerably high enough to envelop the
human skeleton performing an arbitrary movement. The skeleton is centered
by positioning the root joint (c1) in the middle of such cube, i.e., at the
position [128, 128, 128].

2. Rotation – after centering, the skeleton is rotated within the cube around
y-axis in such a manner that the subject faces the positive x-axis. The angle
of rotation is determined by positioning the left and right hip joints parallel
to the z-axis. Fig. 1b graphically illustrates the process of centering and
rotating the skeleton within the 3-dimensional cube.

3. RGB conversion – the centered and rotated skeleton is converted into RGB
color space [0..255]3 which perfectly suits for this purpose. The RGB space
is defined by mixing red, green and blue color, each of them with domain
of exactly 256 values. Thus we can easily obtain particular color for every
skeleton joint based on its location within the cube – see Fig. 1c.

4. Visualization – the converted skeleton within the RGB cube is visualized
by the stripe image of l × 1 pixels, where l = 31 corresponds to the number
of all joints. Pixel [i, 1] (i ∈ [1, l]) represents the location color of i-th joint
in the RGB cube. The example of the stripe image is shown in Fig. 1d.

The advantage of stripe images is that they preserve enough information to be eas-
ily reverted to relative coordinates of the original mocap data with error approxi-
mately up to 1 cm. Moreover, the skeleton rotation ensures the construction of the

An Effective Representation of Motion Capture Data for Similarity Search 253

Fig. 2. 9 motion images belonging to 4 different action categories. For example, three
repetitions of the “rotateArms” movement can be easily recognized by humans.

same stripe images for the sameposes performed in different directionswith respect
to real-world coordinates.

To transform a whole motion into a single image, we simply concatenate
stripe images of its individual poses in the same order. In particular, motion
m = (p1, . . . , pn) is processed to construct n stripe images which are gradually
concatenated into a motion image of l × n pixels. Rows of the resulting motion
image represent how the position of individual joints changes over time and
columns constitute the skeleton configuration at a given time. Figure 2 shows
examples of generated motion images representing four different actions.

3 Similarity of Motion Images and Its Evaluation

Once original mocap data are encoded within a single image, we might transform
a challenging problem of computing similarity of spatio-temporal motion data
into a problem of similarity of images. To determine similarity of motion images,
each image has to be firstly preprocessed in order to extract its descriptive
content-based features, e.g., MPEG-7, SIFT, SURF and DeCAF. The extracted
image features can be then compared by distance functions to determine their
similarity. In this work, we choose standard 282-dimensional MPEG-7 visual
features (scalable color, color structure, color layout, edge histogram and homo-
geneous texture) that are compared by a weighted aggregation distance function
combining the Manhattan and Euclidean distances. The more details about the
MPEG-7 features and the comparison function are available in [11].

We demonstrate the usability of the proposed concept of motion images on
the action-recognition application. The purpose of such application is to deter-
mine what kind of movement activity the person performs within a query motion.
We evaluate this scenario on the HDM05 [9] dataset that provides an action-level
ground truth. This ground truth classifies 1, 034 motion actions into 14 categories
– see Fig. 3. All the 1, 034 actions have been transformed into motion images
from which MPEG-7 visual features have been extracted. The experiment has
been evaluated by taking the extracted features of each motion as a query and
searching for its nearest neighbor. If the nearest neighbor is assigned the same
category as the query motion, the query is considered to be successful. The pre-
cision of the experiment is measured as a ratio between the number of successful
queries and the number of all (1, 034) queries.

As a preliminary result we achieve the precision of 87.4% by classifying all
the 1, 034 motions. Such high classification rate contributes to the fact that the

254 P. Elias et al.

Fig. 3. Confusion matrix denoting the classification precision (in %) of 1, 034 motions.

proposed concept of motion images constitutes a promising idea for determin-
ing similarity of mocap data. On the other hand, the biggest problem can be
observed with the “neutral” category where 31% of actions are misclassified into
the “turn” category. This is caused by rotating each motion pose into a fixed
direction within the RGB cube, thus the “turn” actions look similar to neutral
movements. Also 16% of actions in the “standUp” category is misclassified into
the “sitLieDown” category as both categories produce very similar images with
colors just in reverse order. The incorrectly classified cases bring new challenges
to utilize enhanced RGB transformations and advanced image retrieval methods.

4 Conclusions and Future Research Directions

We present a new concept of visualization and similarity for mocap data. Con-
trary to state-of-the art approaches that extract specific high-dimensional numer-
ical features, we transform mocap data into image representations by loosing
original information only about the absolute skeleton position and orientation.
By comparing transformed images on the basis of only MPEG-7 visual features,
we correctly classify 87.4% motions (out of 1, 034 samples) into 14 categories.
Motion images can also serve as human-understandable visualization from which
interesting characteristics, such as movement repetitions, can be easily observed.

We see a great potential for further improvement in using sophisticated image
features or domain-specific features trained by reinforcement learning methods.
We intend to inspect how various motion normalizations, different visualizations,
and various perceptually uniform color spaces affect the quality of similarity. We
also plan to compare effectiveness of the proposed solution against state-of-the-
art approaches for mocap data classification.

Acknowledgments. This research was supported by GBP103/12/G084.

An Effective Representation of Motion Capture Data for Similarity Search 255

References

1. Baumann, J., Wessel, R., Krüger, B., Weber, A.: Action graph: a versatile data
structure for action recognition. In: International Conference on Computer Graph-
ics Theory and Applications (GRAPP 2014). SCITEPRESS (2014)

2. Chen, X., Koskela, M.: Classification of RGB-D and motion capture sequences
using extreme learning machine. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA
2013. LNCS, vol. 7944, pp. 640–651. Springer, Heidelberg (2013)

3. Cho, K., Chen, X.: Classifying and visualizing motion capture sequences using deep
neural networks. CoRR abs/1306.3874 (2013)

4. Evangelidis, G., Singh, G., Horaud, R.: Skeletal quads: human action recognition
using joint quadruples. In: 22nd International Conference on Pattern Recognition
(ICPR 2014), pp. 4513–4518 (2014)

5. Hu, M., Wang, Y., Zhang, Z., Wang, Y.: Combining spatial and temporal informa-
tion for gait based gender classification. In: International Conference on Pattern
Recognition (ICPR 2010), pp. 3679–3682. IEEE Computer Society (2010)

6. Hussein, M.E., Torki, M., Gowayyed, M.a., El-Saban, M.: Human action recogni-
tion using a temporal hierarchy of covariance descriptors on 3D joint locations. In:
Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 2466–2472 (2013)

7. Liang, Y., Lu, W., Liang, W., Wang, Y.: Action recognition using local joints
structure and histograms of 3D joints. In: Computational Intelligence and Security
(CIS), pp. 185–188 (2014)

8. Milovanovic, M., Minovic, M., Starcevic, D.: Walking in colors: Human gait recog-
nition using kinect and CBIR. IEEE MultiMedia 20(4), 28–36 (2013)

9. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.:
Documentation Mocap Database HDM05. Tech. Rep. CG-2007-2, Universität Bonn
(2007)

10. Müller, M., Baak, A., Seidel, H.P.: Efficient and robust annotation of motion
capture data. In: ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA 2009), p. 10. ACM Press (2009)

11. Salembier, P., Sikora, T.: Introduction to MPEG-7: Multimedia Content Description
Interface. John Wiley & Sons Inc., New York (2002)

12. Sedmidubsky, J., Valcik, J., Balazia, M., Zezula, P.: Gait recognition based on nor-
malized walk cycles. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C.,
Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M.
(eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 11–20. Springer, Heidelberg (2012)

13. Sedmidubsky, J., Valcik, J., Zezula, P.: A key-pose similarity algorithm for motion
data retrieval. In:Blanc-Talon, J.,Kasinski,A.,Philips,W.,Popescu,D., Scheunders,
P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 669–681. Springer, Heidelberg (2013)

14. Thanh, T.T., Chen, F., Kotani, K., Le, B.: Automatic extraction of semantic action
features. In: Signal-Image Technology & Internet-Based Systems (SITIS 2013),
pp. 148–155. IEEE Computer Society (2013)

15. Vieira, A., Lewiner, T., Schwartz, W., Campos, M.: Distance matrices as invariant
features for classifying mocap data. In: 21st International Conference on Pattern
Recognition (ICPR 2012), pp. 2934–2937 (2012)

16. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recog-
nition with depth cameras. In: International Conference on Computer Vision and
Pattern Recognition (CVPR 2012), pp. 1290–1297. IEEE Computer Society (2012)

17. Zhao, X., Li, X., Pang, C., Zhu, X., Sheng, Q.Z.: Online human gesture recognition
from motion data streams. In: 21st International Conference on Multimedia (MM
2013), pp. 23–32. ACM (2013)

Implementation and Engineering
Solutions

Brute-Force k-Nearest Neighbors Search
on the GPU

Shengren Li and Nina Amenta(B)

University of California, Davis, USA
amenta@cs.ucdavis.edu

Abstract. We present a brute-force approach for finding k-nearest
neighbors on the GPU for many queries in parallel. Our program takes
advantage of recent advances in fundamental GPU computing primitives.
We modify a matrix multiplication subroutine in MAGMA library [6]
to calculate the squared Euclidean distances between queries and refer-
ences. The nearest neighbors selection is accomplished by a truncated
merge sort built on top of sorting and merging functions in the Modern
GPU library [3]. Compared to state-of-the-art approaches, our program
is faster and it handles larger inputs. For instance, we can find 1000
nearest neighbors among 1 million 64-dimensional reference points at a
rate of about 435 queries per second.

1 Introduction

Many important operations in data science involve finding nearest neighbors for
each element in a query set Q from a fixed set R of high-dimensional reference
points. The k-nearest neighbors problem takes sets Q and R as input, and a
constant k, and returns the k nearest neighbors (kNNs) in R for every q ∈ Q.
In this paper we consider the high-dimensional version of this problem and we
give a state-of-the-art implementation of a brute-force GPU algorithm.

High-dimensional data may be structured data with many variables, but
it also arises as long feature vectors derived from unstructured data such as
text, images, video, time-series or shapes. Finding nearest-neighbors is the first
step in using kernel and non-parametric regression to interpolate functions over
the data [8,26]. When learning classifiers, a nearest-neighbor algorithm [17] is
often the most accurate predictor in practice, especially in well-designed feature
spaces [13,15]. An important topic of continuing research is using the nearest-
neighbor algorithm with a distance function chosen specifically to improve the
classification accuracy on a particular reference data set R. One successful group
of algorithms in this area [21,27,47–49] chooses the distance function locally for
each query q, based on a large set of nearest neighbors in R. Our brute-force
algorithm would be particularly good in this situation, since it easily handles
large values of k as well as large R.

High-dimensional nearest-neighbor search suffers from the “curse of dimen-
sionality” [14]. This makes it impossible to construct index data structures of
reasonable size on R that can answer a nearest-neighbor query exactly in time
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 259–270, 2015.
DOI: 10.1007/978-3-319-25087-8 25

260 S. Li and N. Amenta

sub-linear in n = |R|, not only in the worst case but also in many reason-
able definitions of average case. Sub-linear solutions even to the approximate
version of the problem are surprisingly difficult, and only in recent years have
algorithms, most based on Locality Sensitive Hashing [19], provided provable
worst-case sub-linear query times using polynomial-sized index structures. Thus
brute-force approaches remain an important part of the solution space.

The GPU, with its massive SIMD parallelism, is well-suited to brute-force
approaches, providing exact worst-case results at the rate of a couple of mil-
liseconds per query for moderately-sized problems (e.g., a few million reference
points). As GPU speed and memory size continues to increase — AMD recently
released a 32GB GPU — the problem sizes appropriate for the GPU increase
as well. Large problems will always have to be handled from disk [28], but even
there, hybrid CPU-GPU implementations [32,46] rely on the GPU to solve large
subproblems by brute-force.

The efficiency of brute-force GPU implementations can themselves vary
greatly, particularly with respect to the optimization of data movement through
the memory hierarchy. Using better libraries for common operations such as
sorting and matrix multiplication can easily improve performance by an order of
magnitude over naive implementations. Our brute-force implementation makes
heavy use of recent highly optimized CUDA libraries.

Any brute-force implementation consists of two steps. First, we compute a
matrix d2(Q,R) giving the squared distance of each q ∈ Q to each r ∈ R. To
implement this step, we modify the inner loop of a well-optimized open source
matrix multiplication kernel, the SGEMM kernel in MAGMA library [6]. In
the second step, for each query, we search its row of the matrix to find the
k smallest squared distances. There is considerable variation in how this step
can be carried out in brute-force implementations. Our implementation uses the
merge-path function from the Modern GPU library [3], which has proved to be
very useful in other contexts, to implement a truncated merge sort, in which
only the k smallest items move forward from one level of merging to the next.

Together, these two steps form a CUDA program, that, to the best of our
knowledge, is currently the fastest kNN implementation on the GPU. Our code
scales linearly in m = |Q|, n = |R|, the dimension d, and k, and unlike other
codes, it handles large values of k (up to k = 3000). We compare our imple-
mentation to the two recent published algorithms for which code is available,
cuknns [1] and kNN CUDA [2], and to an implementation with the segmented sort
function in the Modern GPU library.

2 Related Work

There are many GPU approaches to brute-force kNN, applying different strate-
gies for the two major components of the algorithm.

Squared Distance Matrix: The two main existing approaches to computing
the squared distance matrix are to implement it directly with a custom kernel

Brute-Force k-Nearest Neighbors Search on the GPU 261

[9,23,24,29,30,33,35–37], or to derive the distances from an already well-
optimized matrix multiplication routine [10,18,24,31,45]. Custom direct imple-
mentations are typically optimized by tiling, which divides the distance matrix
into equal-sized submatrices (or tiles) and then assigns a thread block to each.
The tile size is set so that a group of query and reference points can be accom-
modated in the fast shared memory and reused by threads within the same
block.

The matrix multiplication approach to computing the squared distance
matrix d2(Q,R) is based on the equation

d2(Q,R) = NQ + NR − 2QTR, (1)

where the elements of the ith row of NQ are ‖Qi‖2, and the elements of the
jth column of NR are ‖Rj‖2. These can be computed using custom CUDA
kernels [18,24] or Thrust library [7] primitives [31]. A matrix multiplication
routine from a highly optimized library, e.g., cuBLAS [4] calculates the more
expensive third term, and the speed of the highly optimized library routine
compensates for the additional arithmetic operations.

Selecting Nearest Neighbors: The approaches for selecting nearest neighbors
are more diverse. Kuang and Zhao [33] simply sort all the distances to each query
using GPU radix sort; this relies on the speed of modern sorting libraries. Dashti
et al. [18] use radix sort as well, but on the entire matrix. The candidate distances
are first sorted all together and then stably sorted by query index to separate the
results for each query. Kato and Hosino [29,30] build a max-heap for each query
and parallel threads push new candidates to the heap using atomic operations.
Beliakov and Li [12] calculate the kth smallest distance to each query directly
using a GPU selection algorithm [11] based on Kelley’s cutting plane method, a
convex optimization technique.

Many approaches divide the distances to each query into blocks. Liang et al.
[35–37] find the local kNN within each block by testing each distance against all the
others in parallel; a single thread per query then merges the lists. Arefin et al. [9]
maintain an unsorted array of size k for each query and a pointer to the largest
element in the array. A single thread maintains this structure at each level with a
linear scan.

Several other approaches use a parallel reduction pattern, that is, a hierar-
chical pattern of comparisons. Barrientos et al. [10] create multiple heaps for
each query and then merge the heaps at each level. Miranda et al. [39] choose
the kNN at each level using quickselect. Komarov et al. [31] also use quickselect,
implemented with the CUDA warp vote function ballot(), bit count function
popc() and bit shift operations.

Truncated sort was introduced by Sismanis et al. [45]. Elements are discarded
from the sort when it is clear that they cannot belong to the smallest k. They
describe several algorithms, and show that their truncated bitonic sort has out-
standing performance on the GPU. Garcia et al. [23,24] use a truncated insertion
sort.

262 S. Li and N. Amenta

Besides brute-force approaches, some of the asymptotically more efficient
approximate kNN algorithms have been implemented on the GPU. Pan et al.
[42–44] and Lukac et al. [38] construct variants of Locality Sensitive Hashing. The
running times of these methods are competitive with existing brute-force imple-
mentations, but they return approximate results; like the brute-force approach,
the main bottleneck is the selection of the kNNs from a large set of candidates
from R, so our techniques may be useful in implementing these approaches as
well. There are also heuristic techniques that use various kinds of filtering to try
and avoid computing the entire squared distance matrix d2(Q,R) [16,20,46].

3 Implementation

Let m = |Q| be the size of the list Q of query points and let n = |R| be the num-
ber of reference points. In the input, the query and reference lists are organized
as d×m and d×n matrices, where d is the dimension. These matrices are stored
as row-major 1D arrays, so that, for each dimension i, the ith components of all
the points are contiguous; this facilitates coalesced access to global memory.

In the squared distance matrix d2(Q,R), we represent each of the distances as
a 64-bit integer, as follows. The high 32 bits contain the floating point distance
between the reference and the query, and the low 32 bits contain the integer
index of the reference point. When merging lists of kNNs for a particular query,
this composite representation allows us to swap the positions of two candidate
distances by swapping two 64-bit integers instead of swapping the distances and
indices separately.

3.1 Computing the Squared Distance Matrix

We leverage the efficiency of GPU matrix multiplication, which is a very well-
studied operation, to compute d2(Q,R). Listings 1.1 and 1.2 compare the com-
putation of the squared Euclidean distance matrix and matrix multiplication.
The only difference between them is in the innermost loop.

Listing 1.1. Squared Euclidean distances

for i = 0 to m-1
for j = 0 to n-1

distance[i,j] = 0
for k = 0 to d-1

diff = Q[k,i] - R[k,j]
distance[i,j] += diff * diff

Listing 1.2. Dot products

for i = 0 to m-1
for j = 0 to n-1

product[i,j] = 0
for k = 0 to d-1

product[i,j] += Q[k,i] * R[k,j]

Our computation of d2(Q,R) is a modification of a very efficient CUDA
matrix multiplication kernel [6,22,34,40], replacing the internal loop with the
squared Euclidean distance computation and then combining the resulting
squared distance with the index of the reference point r ∈ R to generate the
64-bit candidate representation described above.

This distance computation inherits a number of optimizations from the
matrix multiplication kernel. The most important is tiling. The squared dis-
tance matrix d2(Q,R) is divided into tiles of size mblk × nblk. The input for

Brute-Force k-Nearest Neighbors Search on the GPU 263

computing a tile is a d × mblk stripe of Q and a d × nblk stripe of R. Each tile
is processed by a block of threads. These data chunks are loaded into shared
memory in a coalesced fashion and reused by threads within the same thread
block. The tile size is tuned to the Fermi architecture.

Since the introduction of the Fermi architecture, accessing data in registers is
much faster than accessing data from shared memory. To take advantage of this,
one more level of tiling is employed at the thread level. Each thread computes
a mthd × nthd matrix with stride mblk/mthd and nblk/nthd. For each dimension,
nthd values are loaded from shared memory to registers and reused to compute
all mthd × nthd partial results.

The kernel also uses loop unrolling and double buffering [34]. Loop unrolling
replaces a loop with a single block of straight-line code. Not only is the cost of
looping eliminated, but also more instruction level parallelism can be obtained
by the compiler. Double buffering takes advantage of the Fermi GPU’s dual-issue
architecture. It overlaps the arithmetic operations of the current iteration with
the memory operations of the following iteration.

Other brute-force kNN search implementations [10,18,24,31,45] take advan-
tage of fast GPU matrix multiplication, but they use it as a subroutine as
described in Section 2. Clearly, our approach saves both memory and computa-
tion time. The only drawback is that we can only use it with open source matrix
multiplication codes. Fortunately, MAGMA [6] is competitive with proprietary
matrix multiplication kernels (see Section 4).

3.2 Selecting Nearest Neighbors

Overview: A naive approach to finding the k-nearest neighbors for each query
would sort the n candidates by distance and then return the first k. Following
Sismanis et al. [45], we use a truncated sorting algorithm instead, which discards
candidates as it becomes clear that they cannot belong to the top k.

The truncated merge sort is designed to use the GPU shared memory effi-
ciently. In the first stage, we divide the n candidates of a query into chunks of
size at least k that fit into shared memory, and sort each chunk in parallel with a
block of threads. In the second stage, we iteratively merge pairs of sorted chunks
and discard the larger half of each pair, so that the number of sorted chunks in
play decreases by a factor of two at each iteration (notice that this property lets
the k-nearest neighbors of one query be found in O(n) work). The second stage
stops when only one chunk is left, which contains the k-nearest neighbors. In
both the sorting and the merging stages, the operations for different queries are
executed in parallel, the sorts and merges on the different chunks of each query
are executed in parallel, and the chunk-level sorts and merges are themselves
parallel operations.

Merge Path: We use the Merge Path algorithm [3,25,41] for both sorting and
merging. In this section we briefly describe Merge Path and why it is so efficient.

Let a and b be the two input arrays, sorted from smallest to largest; for
simplicity assume all elements are unique. Let s(i, j) denote the set consisting

264 S. Li and N. Amenta

of the first i elements from a and the first j elements from b: a[0] . . . a[i− 1] and
b[0] . . . b[j − 1]. Finally, define the list Sp of possible choices of s(i, j) such that
i + j = p, ordered by i. For instance, if a = [2, 5, 11, 13] and b = [3, 8, 12, 17], we
get S3 = [[3, 8, 12], [2, 3, 8], [2, 3, 5], [2, 5, 11]]. The correct first p elements of the
output has to be one of the items of Sp ([2, 3, 5] in the example); call this sp.

Now consider mapping the function f(i, j) = b[j−1] < a[i] over Sp, where we
define b[−1] = −∞. In the example, we get [12 < 2 = False, 8 < 5 = False, 3 <
11 = True,−∞ < 13 = True]. And in fact, f(i, j) is always False to the left of
sp and True at and to the right of sp [41]. So we can find sp by binary search
on the Boolean array f(Sp), computing only the items of f(Sp) that we need to
evaluate. Once we know sp, we can break the problem of merging a and b into
two independent parts, one merging the first p output elements and the other
merging the rest.

In fact, we break the problem into several independent parts. Assuming that
there are r processors, we evenly divide the output array c into non-overlapping
segments of size l = |a|+|b|

r . Processor x finds slx and then generates the output
between positions lx and l(x + 1) − 1. Each processor works independently of
the others.

Merge Path works well on the GPU because it divides the work into roughly
balanced subtasks. Choosing the size of the subtasks is the key tuning parameter;
choosing r too large increases the number of subproblems and allows the binary
search to dominate, while choosing r too small allows the sequential merges to
dominate and fails to create enough work for all the processors.

Using MGPU: Modern GPU (MGPU) [3] is a library of high-performance
CUDA primitives, including Merge Path, that takes advantage of parallelism
at both the kernel and thread block levels. We demonstrate that the MGPU
primitives, particularly Merge Path, lead to a very efficient nearest-neighbors
selection algorithm.

In the first (sorting) stage of the selection algorithm, each thread block
loads a chunk of nearest neighbor candidates into shared memory and then
calls mgpu::CTAMergesort to sort them. In mgpu::CTAMergesort, each thread
first sorts a small number of candidates in registers. Next, the sorted arrays are
merged (still in shared memory) using a parallel reduction pattern. Each merge
operation is done with Merge Path. In the first step of the reduction, two threads
work on merging each pair of arrays. As the array length doubles, so does the
number of cooperating threads per array, so that each sequential merge opera-
tion ends up handling the same number of items (determined by the parameter
r, above).

At each iteration of the second (merging) stage, each thread block loads two of
the sorted chunks into shared memory and then uses the Merge Path algorithm.
Just the smaller half of the output c will be stored back to global memory, so
we only need to assign threads to construct the first half of the output array.

Brute-Force k-Nearest Neighbors Search on the GPU 265

Number of Queries
0 200 400 600 800 1000

0
100
200
300
400
500
600

Ti
m

e
(m

s)

Number of References (thousands)
0 200 400 600 800 1000

0
100
200
300
400
500
600

Ti
m

e
(m

s)

Number of Dimensions
0 200 400 600 800 1000

matrix
select
transfer

0
100
200
300
400
500
600

Ti
m

e
(m

s)

Fig. 1. Total running time, with the proportions of computing squared distance matrix
(denoted by matrix), selecting nearest neighbors (denoted by select and with k = 1000)
and transferring data (denoted by transfer) as we vary the number of queries, references
and dimensions, respectively.

The chunk sizes we use depend on the choice of k, when k is large; for k < 500,
we use the chunk size for k = 500 since making it smaller does not improve the
running time.

4 Results

Our experimental environment employs CUDA Toolkit 6.5 [5] and a GeForce
GTX 460 graphics card, which uses the Fermi architecture and has 1023 MB
global memory.

Since our implementation is brute-force, the distribution of input data does
not influence the performance of our program, so we use test data composed of
uniformly distributed random numbers between −1 and 1.

The size of input is determined by the number of queries (m), references
(n) and dimensions (d). We generated three test datasets to demonstrate the
influence of each of these factors on the running time:

– m ∈ [50, 1000], n = 100000 and d = 64.
– m = 90, n ∈ [50000, 1000000] and d = 64.
– m = 500, n = 100000 and d ∈ [50, 1000].

Evaluation and Analysis: Figure 1 shows the running time of our program
and each of its three major components, computing squared distance matrix,
selecting nearest neighbors and transferring data between CPU and GPU, on
the test data. The running time is indeed linear in each of the factors (m, n,
d), although the overall running time is O(mnd). In any fixed dimension, the
running time for the nearest neighbors selection step increases more quickly as
the input size grows, and eventually dominates the time required for the matrix
multiplication. The number of dimensions is irrelevant to the performance of the
nearest neighbors selection.

Because the optimal chunk size in the nearest neighbors selection phase is
achieved at k = 500, choosing k smaller than that does not improve the running
time by much. The running time increases linearly with k for k > 500, however.

266 S. Li and N. Amenta

Number of Queries
0 200 400 600 800 1000

0

50

100

150

200

Ti
m

e
(m

s)

Number of References (thousands)
0 200 400 600 800 1000

sort
merge

0

50

100

150

200

Ti
m

e
(m

s)

Fig. 2. Total running time of selecting nearest neighbors with k = 1000 and the pro-
portions of sorting and merging candidate chunks (denoted by sort and merge, respec-
tively) as we vary the number of queries and references, respectively.

Number of Queries
0 200 400 600 800 1000

0

10

20

30

40

50

60

Ti
m

e
(m

s)

Number of References (thousands)
0 200 400 600 800 1000

0

10

20

30

40

50

60

Ti
m

e
(m

s)

Number of Dimensions
0 200 400 600 800 1000

Euclidean
MAGMA
cuBLAS

0

100

200

300

400

Ti
m

e
(m

s)

Fig. 3. Running time comparison of our squared distance matrix computation kernel
(denoted by Euclidean) and the SGEMM subroutine in MAGMA [6] and cuBLAS [4]
as we vary the number of queries, references and dimensions, respectively.

Next, we take a closer look at selecting nearest neighbors and its two kernels,
sorting and merging candidate chunks, in Figure 2. We observe that the running
time of the sorting step increases more quickly with input size.

Comparisons: To evaluate the performance of the kernel that computes our
squared distance matrix d2(Q,R), we compare its performance to the two
SGEMM (single precision general matrix-matrix multiply) implementations in
MAGMA [6] and cuBLAS [4] (see Figure 3). Recall that both custom squared dis-
tance kernels and squared distance computations that use matrix multiplication
as a subroutine are less efficient than the heavily optimized matrix multiplication
subroutines.

Our implementation is modified from the SGEMM subroutine in MAGMA,
but it is only marginally slower. The proprietary SGEMM matrix multiply imple-
mentation in cuBLAS performs better than MAGMA as the number of dimen-
sions increases. In principle, any efficient matrix multiplication kernel can be
modified to compute squared distances; we could not use cuBLAS only because
it is not open source.

Finally, we evaluate the running time of our Merge Path nearest neighbors
selection step with that of two recent nearest neighbor algorithms for which
code is available. These are truncated insertion sort [2,24] and truncated bitonic
sort [1,45]. We also compare against segmented sort applied to all n candidates
for each query, as implemented in the Modern GPU library [3]. These comparisons

Brute-Force k-Nearest Neighbors Search on the GPU 267

0 100 200 300 400 500 600 700 800 900 1000
700

750

800

850

900

950

1000
Ti

m
e

(m
s)

0 100 200 300 400 500 600 700 800 900 1000

insertion

600

900

1200

1500

1800

Ti
m

e
(m

s)

Number of Queries
0 100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

250

300

Ti
m

e
(m

s)

Number of References (thousands)
0 100 200 300 400 500 600 700 800 900 1000

TBiS
segsort
k500
k1000
k2000
k3000

0

50

100

150

200

250

300

Ti
m

e
(m

s)

Fig. 4. Running time comparison of our nearest neighbors selection component for
different k (denoted by k500, k1000, k2000 and k3000, respectively), truncated insertion
sort [2] (denoted by insertion and with k = 100), truncated bitonic sort [1] (denoted by
TBiS and with k = 500) and segmented sort in the Modern GPU library [3] (denoted by
segsort and with k = n) as we vary the number of queries and references, respectively.

are shown in Figure 4. The running time of the truncated insertion sort is shown
in a separate graph because it is significantly slower, even for k = 100.

Our kernels are configured to find 500, 1000, 2000 and 3000 nearest neighbors
per query, respectively. 3000 is the maximum size of candidate chunk that our
kernels can handle (limited by the size of shared memory). In both graphs, the
truncated bitonic sort works well up to a certain point, after which it stops
producing correct results. Our program is twice as fast at k = 500, and only
when we reduce k to 16 does TBiS become faster than our program with k = 500.
Segmented sort [3] is robust at large input sizes, but it is slower and requires
much more memory.

5 Conclusions

Finding ways to use highly-optimized GPU library functions is an effective way to
achieve both speed and robustness in this important application. Our algorithm
advances the state of the art for all but the smallest values of k. It is unique in
its ability to handle large values of k, and large input datasets. The performance
of our algorithm for very small values of k is limited mainly by the performance
of the selection step. Possibly this could be improved by allowing one thread
block to perform multiple truncated merge sorts in parallel. The drawback of
this approach would be that it complicates the kernel.

Approximate kNN search approaches where nearest-neighbor candidates are
filtered so that not all squared distances need to be computed could benefit
from using our truncated merge sort to select the true nearest neighbors from
the candidates. This is true for Locality Sensitive Hashing as well as for heuristic
approaches.

Acknowledgments. We are grateful for NSF grant IIS-0964357, which supported
this work.

268 S. Li and N. Amenta

References

1. cuknns: GPU accelerated k-nearest neighbor library (2012). http://autogpu.ee.
auth.gr/doku.php?id=cuknns:gpu accelerated k-nearest neighbor library

2. kNN CUDA (2013). http://vincentfpgarcia.github.io/kNN-CUDA/
3. Modern GPU (2013). http://nvlabs.github.io/moderngpu/
4. cuBLAS in CUDA toolkit 6.5. (2014). https://developer.nvidia.com/cuBLAS
5. CUDA toolkit 6.5. (2014). https://developer.nvidia.com/cuda-toolkit-65
6. MAGMA 1.6.1. (2015). http://icl.cs.utk.edu/magma/
7. Thrust (2015). https://developer.nvidia.com/Thrust
8. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician 46(3), 175–185 (1992)
9. Arefin, A.S., Riveros, C., Berretta, R., Moscato, P.: GPU-FS-kNN: A software

tool for fast and scalable kNN computation using GPUs. PLOS ONE 7(8), e44000
(2012)

10. Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: kNN query
processing in metric spaces using GPUs. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 380–392. Springer, Heidelberg
(2011)

11. Beliakov, G., Johnstone, M., Nahavandi, S.: Computing of high breakdown regres-
sion estimators without sorting on graphics processing units. Computing 94(5),
433–447 (2012)

12. Beliakov, G., Li, G.: Improving the speed and stability of the k-nearest neighbors
method. Pattern Recognition Letters 33(10), 1296–1301 (2012)

13. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence
24(4), 509–522 (2002)

14. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neigh-
bor meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540,
pp. 217–235. Springer, Heidelberg (1998)

15. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image
classification. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2008, pp. 1–8. IEEE, June 2008

16. Cayton,L.:Acceleratingnearestneighbor searchonmanycore systems. In: 2012 IEEE
26th International Parallel and Distributed Processing Symposium, pp. 402–413.
IEEE, May 2012

17. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory 13(1), 21–27 (1967)

18. Dashti, A., Komarov, I., D’Souza, R.M.: Efficient computation of k-nearest neigh-
bour graphs for large high-dimensional data sets on GPU clusters. PLOS ONE
8(9), e74113 (2013)

19. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG 2004, pp. 253–262. ACM (2004)

20. Diehl, P., Schweitzer, M.A.: Efficient neighbor search for particle methods on
GPUs. In: Meshfree Methods for Partial Differential Equations VII, Lecture Notes
in Computational Science and Engineering, vol. 100, pp. 81–95. Springer (2015)

21. Domeniconi, C., Peng, J., Gunopulos, D.: Locally adaptive metric nearest-neighbor
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence
24(9), 1281–1285 (2002)

http://autogpu.ee.auth.gr/doku.php?id=cuknns:gpu_accelerated_k-nearest_neighbor_library
http://autogpu.ee.auth.gr/doku.php?id=cuknns:gpu_accelerated_k-nearest_neighbor_library
http://vincentfpgarcia.github.io/kNN-CUDA/
http://nvlabs.github.io/moderngpu/
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuda-toolkit-65
http://icl.cs.utk.edu/magma/
https://developer.nvidia.com/Thrust

Brute-Force k-Nearest Neighbors Search on the GPU 269

22. Dongarra, J., Gates, M., Haidar, A., Kurzak, J., Luszczek, P., Tomov, S., Yamazaki,
I.: Accelerating numerical dense linear algebra calculations with GPUs. In: Numer-
ical Computations with GPUs, chapter 1, pp. 3–28. Springer International Pub-
lishing (2014)

23. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops, CVPRW 2008, pp. 1–6. IEEE, June 2008

24. Garcia, V., Debreuve, É., Nielsen, F., Barlaud, M.: K-nearest neighbor search: fast
GPU-based implementations and application to high-dimensional feature match-
ing. In: Proceedings of 2010 IEEE 17th International Conference on Image Pro-
cessing, pp. 3757–3760, September 2010

25. Green, O., McColl, R., Bader, D.A.: GPU merge path - a GPU merging algorithm.
In: Proceedings of the 26th ACM International Conference on Supercomputing,
ICS 2012, pp. 331–340. ACM (2012)

26. Härdle, W.: Applied nonparametric regression. Number 19 in Econometric Society
Monographs. Cambridge University Press (1990)

27. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence 18(6), 607–616
(1996)

28. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1),
117–128 (2011)

29. Kato, K., Hosino, T.: Solving k-nearest neighbor problem on multiple graphics pro-
cessors. In: Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, CCGRID 2010, pp. 769–773. IEEE Computer
Society (2010)

30. Kato, K., Hosino, T.: Multi-GPU algorithm for k-nearest neighbor problem. Con-
currency and Computation: Practice and Experience 24(1), 45–53 (2012)

31. Komarov, I., Dashti, A., D’Souza, R.M.: Fast k-NNG construction with GPU-based
quick multi-select. PLOS ONE 9(5), e92409 (2014)

32. Krulǐs, M., Skopal, T., Lokoč, J., Beecks, C.: Combining CPU and GPU archi-
tectures for fast similarity search. Distributed and Parallel Databases 30(3–4),
179–207 (2012)

33. Kuang, Q, Zhao, L.: A practical GPU based KNN algorithm. In: Proceedings
of the Second Symposium International Computer Science and Computational
Technology (ISCSCT 2009), pp. 151–155. Citeseer, December 2009

34. Kurzak, J., Tomov, S., Dongarra, J.: Autotuning GEMM kernels for the Fermi
GPU. IEEE Transactions on Parallel and Distributed Systems 23(11), 2045–2057
(2012)

35. Liang, S., Liu, Y., Wang, C., Jian, L.: A CUDA-based parallel implementation of
k-nearest neighbor algorithm. In: International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery, CyberC 2009, pp. 291–296. IEEE,
October 2009

36. Liang, S., Liu, Y., Wang, C., Jian, L.: Design and evaluation of a parallel k-nearest
neighbor algorithm on CUDA-enabled GPU. In: 2010 IEEE 2nd Symposium on
Web Society (SWS), pp. 53–60. IEEE, August 2010

37. Liang, S., Wang, C., Liu, Y., Jian, L.: CUKNN: a parallel implementation of k-
nearest neighbor onCUDA-enabled GPU. In: IEEE Youth Conference on Infor-
mation, Computing and Telecommunication, YC-ICT 2009, pp. 415–418. IEEE,
September 2009

270 S. Li and N. Amenta

38. Lukač, N., Žalik, B.: Fast approximate k-nearest neighbours search using GPGPU.
In: GPU Computing and Applications, chapter 14, pp. 221–234. Springer (2015)

39. Miranda, N., Chávez, E., Piccoli, M.F., Reyes, N.: (Very) Fast (All) k -nearest
neighbors in metric and non metric spaces without indexing. In: Brisaboa, N.,
Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 300–311. Springer,
Heidelberg (2013)

40. Nath, R., Tomov, S., Dongarra, J.: An improved magma gemm for Fermi graphics
processing units. International Journal of High Performance Computing Applica-
tions 24(4), 511–515 (2010)

41. Odeh, S., Green, O., Mwassi, Z., Shmueli, O., Birk, Y.: Merge path - parallel
merging made simple. In: 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & Ph.D. Forum (IPDPSW), pp. 1611–1618.
IEEE, May 2012

42. Pan, J., Lauterbach, C., Manocha, D.: Efficient nearest-neighbor computation for
GPU-based motion planning. In: The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2243–2248. IEEE, October 2010

43. Pan, J., Manocha, D.: Fast GPU-based locality sensitive hashing for k-nearest
neighbor computation. In: Proceedings of the 19th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, GIS 2011,
pp. 211–220. ACM, November 2011

44. Pan, J., Manocha, D.: Bi-level locality sensitive hashing for k-nearest neighbor
computation. In: 2012 IEEE 28th International Conference on Data Engineering
(ICDE), pp. 378–389. IEEE, April 2012

45. Sismanis, N., Pitsianis, N., Sun, X.: Parallel search of k-nearest neighbors with
synchronous operations. In: 2012 IEEE Conference on High Performance Extreme
Computing (HPEC), pp. 1–6. IEEE, September 2012

46. Teodoro, G., Valle, E., Mariano, N., Torres, R., Meira Jr, W., Saltz, J.H.: Approx-
imate similarity search for online multimedia services on distributed CPU–GPU
platforms. The VLDB Journal 23(3), 427–448 (2014)

47. Vincent, P., Bengio, Y.: K-local hyperplane and convex distance nearest neigh-
bor algorithms. In: Advances in Neural Information Processing Systems 14 (NIPS
2001), pp. 985–992. MIT Press (2002)

48. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research 10, 207–244 (2009)

49. Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: Discriminative nearest
neighbor classification for visual category recognition. In: 2006 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2126–2136.
IEEE (2006)

Regrouping Metric-Space Search Index
for Search Engine Size Adaptation

Khalil Al Ruqeishi(B) and Michal Konečný

School of Engineering and Applied Science, Aston University, Birmingham, UK
{alruqeik,m.konecny}@aston.ac.uk

Abstract. This work contributes to the development of search engines
that self-adapt their size in response to fluctuations in workload. Deploy-
ing a search engine in an Infrastructure as a Service (IaaS) cloud facil-
itates allocating or deallocating computational resources to or from the
engine. In this paper, we focus on the problem of regrouping the metric-
space search index when the number of virtual machines used to run the
search engine is modified to reflect changes in workload. We propose an
algorithm for incrementally adjusting the index to fit the varying num-
ber of virtual machines. We tested its performance using a custom-build
prototype search engine deployed in the Amazon EC2 cloud, while cali-
brating the results to compensate for the performance fluctuations of the
platform. Our experiments show that, when compared with computing
the index from scratch, the incremental algorithm speeds up the index
computation 2–10 times while maintaining a similar search performance.

1 Introduction

A typical search engine distributes its search index into multiple processors to
achieve a sufficiently high throughput [4–8,13,16]. However, the workload of a
search engine typically fluctuates. Therefore, it is desirable that a search engine
adapts its size to avoid wasting resources when the workload is low and to avoid
unacceptable delays when the workload is high. If the engine is deployed in
an Infrastructure as a Service (IaaS) cloud, the cloud facilitates allocating or
deallocating compute resources to or from the engine.

Such an adaptive search engine repeatedly determines the number of proces-
sors to use, appropriately regroups the search data to form a new search index,
and re-deploys the data onto the processors according to the new index.

Fig. 1 illustrates the running of such an adaptive search engine obtained
using our small-scale prototype deployed on Amazon EC2.

In this paper, we focus on an important part of our prototype engine, namely
the mechanism for regrouping the search data for a small or larger number of
processors. We propose an algorithm for this task and evaluate its effectiveness
using controlled tests in the prototype engine. We observe that our algorithm
speeds up this task 2–10 times when compared with computing these groups from
scratch (see Fig. 6). In addition, the search performance does not deteriorate
significantly when using our algorithm (see Fig. 5).
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 271–282, 2015.
DOI: 10.1007/978-3-319-25087-8 26

272 K. Al Ruqeishi and M. Konečný

Fig. 1. Search engine updates number of processors whenever the workload changes.

The remainder of this paper is organized as follows. Section 2 recalls the back-
ground, in particular Subsection 2.1 describes the architecture of a search engine
with a distributed metric space index. Section 3 reviews related work. Section 4
describes our algorithm for regrouping the search data. Section 5 presents the
design and results of our experiments to validate and evaluate our algorithm.
Section 6 concludes and outlines opportunities for further development.

2 Background

We build on previous research on distributing search data onto processors, in
particular,

we use KmCol [7] for the initial grouping of search data. Let us recall the
main components of KmCol because some of them feature in our incremental
regrouping algorithm.

KmCol groups the search data in 3 steps, which leads to 3 levels of groupings.
We adopt the following notation for the 4 types of object in these groupings:

– Data points: points in a metric space, representing the objects of the search
– LC-clusters: groups of nearby data points
– H-groups: groups of nearby LC-clusters, optimising for sample queries Q
– G-groups: groups of H-groups, one per processor

LC-clusters are computed using the List of Clusters (LC) algorithm [2,5–7].
LC-clusters are created to reduce the number of objects that feed into the next,
more resource-intensive algorithm.

H-groups are formed from LC-clusters using K-means with the metric dQ,
derived from the set of sample queries Q, effectively optimising the engine for
queries similar to Q. Due to the nature of K-means, H-groups have varying sizes.

G-groups are computed from H-groups using a procedure we call Group-
Balanced, which attempts to balance their sizes.

The metric dQ is defined using the query-vector model proposed in [14].
The metric dQ makes pairs of points that are near in the natural metric seem

far away from each other if they are close to many queries from Q. Conversely,

Regrouping Metric-Space Search Index for Search Engine Size Adaptation 273

Fig. 2. Searching using distributed metric space index

the metric dQ makes pairs of faraway points seem almost identical if they are not
near any of the queries from the set Q. This means that H-groups finely separate
those LC-clusters that are more likely to contain results of queries, leading to a
good balance of load among processors.

2.1 Search Engine Distributed Architecture

We utilise the search engine parallel processing architecture outlined in Fig. 2.
This architecture is analogous to that used in [4,5,7,13]. The Index Planner node
is responsible for calculating G-groups and distributing them to the processors.
It sends each processor not only its LC-clusters, but also an index plan, which
is a map indicating for each LC-cluster on which processor it is. The index plan
is used by the processor when it acts as a ranker for a query to determine which
processors to contact regarding the query.

While search engines typically receive k-nearest neighbor (kNN) queries,
i.e., “find k nearest objects to a specified object q for a small k” [7], search engines
would translate such queries to range queries (q, r), i.e., “find all objects within
distance r from q”, because they are easier to distribute and process. Our engine
also adopts this approach.

274 K. Al Ruqeishi and M. Konečný

The ranker processor calculates the distance among the query and all of the
centers across processors and formulates a query plan, namely the set of LC-
clusters that intersect the ball of the range query (q, r).

The ranker sends the query and its query plan to the processor pi that con-
tains the first cluster to be visited, namely, the first LC-cluster that intersects
the query ball. Then pi processes all LC-clusters that intersect (q, r). For each
such cluster, pi compares (q, r) against the data points stored inside. The pro-
cessor pi then returns to the ranker the objects that are within (q, r) and passes
the query and its plan to the next processor specified in the plan. This contin-
ues until all the processors in the query plan have returned their results to the
ranker. The ranker sorts the query answers and passes the best k back to the
broker as shown in Fig. 2. Each processor acts both as a processor in charge of
processing a subset of LC-clusters and as a potential ranker.

Note that the architecture in Fig. 2 uses the Global Index Global Centers
(GG) strategy because it uses a single node (i.e., the Index Planner) to compute
the whole index. According to [6], such a global strategy performs better than
local indexing strategies.

3 Related Work

According to [5], distributed metric space query processing was first studied in
[12]. This work was extended in [6] for the LC-based approach, studying various
forms of parallelization. As we said earlier, this study concluded that the GG
strategy performs better than local indexing strategies.

An attractive feature of schemes without a global index is that they lend
themselves to Peer-to-Peer (P2P) processing, which naturally supports resizing
in response to load variations. For example, [11] presents a distributed metric
space index as a P2P system called M-index. Unfortunately, such schemes tend
to lead to a reduced search performance. Moreover, M-index is based on a pivot
partitioning model, which has a high space complexity. For further related work
using P2P metric space indexing see e.g. [3,9,10,15].

We note that [1,5] address the related problem of performance degradation
when query load becomes unbalanced across processors. The query scheduling
algorithm proposed in [5] balances the processing of queries by dynamically
skewing queries towards explicit sections of the distributed index. On the other
hand, [1] proposes dynamic load balancing based on a hypergraph model, but it
is not concerned with multimedia search and does not use metric space index.

4 Adapting Search Engine Size

An adaptive search engine will repeatedly re-evaluate its load and, when appro-
priate, switch over from p active processors to a different number of active pro-
cessors. Recall that the initial H-group and G-groups were computed using the
Km-COL algorithm as described in Sect. 2. Each switchover comprises the fol-
lowing steps:

Regrouping Metric-Space Search Index for Search Engine Size Adaptation 275

1. Determine the new number of processors p′ based on recent load.
2. (Re-)compute H-groups and G-groups (i.e., the index plan) for p′ processors.
3. Distribute the index plan and the relevant LC-clusters onto each processor.
4. Pause search.
5. Switch to new LC-clusters and plan, de/activating some processors.
6. Resume search.

Our main contribution is an algorithm for step 2 and experimental evidence
of how different ways of implementing step 2 impact search performance after the
switchover. To allow us to focus on step 2 and the resulting search performance,
we perform the switchovers while the engine is inactive, omitting steps 4 and 6.
We also skip step 1 as p and p′ will be determined by our experiment design.

4.1 Computing H-groups and G-groups

We compute G-groups from H-groups in the same way as in the KmCol algo-
rithm. We therefore focus on the computation of H-groups for p′ processors from
H-groups for p processors. We introduce the following three methods (called
transition types):

TT-R: Compute H-groups from scratch using K-means, like KmCol.
TT-S: Reuse the H-groups from previous configuration.
TT-A: Increase the number of H-groups using Adjust-H (Algorithm 1).

Algorithm 1. Adjust-H(d)(H,new size)

Tuning Parameters: d: a metric on C
Input:H: a set of H-groups partitioning C,

new size: the target number of H-groups
(new size > |H|)

Output: updated H with |H| = new size

1: Hsorted = sort by decreasing size(H)
2: while size(Hsorted) �= new size loop
3: largest group = Hsorted.getFirst()
4: new groups = K-means(d)(largest group, 2) // split
5: Hsorted.insert sorted(new groups)
6: Hsorted.delete(largest group)
7: end loop
8: return Hsorted

276 K. Al Ruqeishi and M. Konečný

Notice that the number of H-groups will never be decreased. This is appro-
priate because, as we show in Sect. 5, reducing the number of H-groups does not
improve search performance.

Adjust-H takes as parameters the number new size (= p′ ·w) and the old H-
groups. On line 1, it starts by arranging the H-groups in an ordered collection,
with the largest group first. On lines 2–7, the number of H-groups is increased
by repeatedly splitting the largest H-group into two using K-means, until there
are new size many of them. Thanks to the following observation, we do not need
to study the effect of repeated TT-A on search performance:

Proposition 1 (Repeated TT-A is equivalent to a single TT-A).
For any set H and sequence |H| < p1 < p2 < . . . < pn, it holds:
Adjust-H

(
. . .Adjust-H(Adjust-H(H, p1), p2), . . . , pn

)
= Adjust-H(H, pn)

Proof. A repeated execution of Adjust-H results in successive executions of the
loop that forms the algorithm. There are no commands to change the H-groups
between the successive executions of the loop. Thus the result of the repeated
loop executions is the same as running the loop only once with new size set to
the final value pn. ��

To pursue our goal to speed up switchovers while keeping a good search per-
formance, we will test the search performance implications of the three transition
types TT-R, TT-S and TT-A.

Based on preliminary observations, we formed the following hypotheses:

H1 The time it takes to compute H-groups grows significantly with the number
of these H-groups.

H2 Increasing the number of H-groups does not reduce search performance.
Equivalently, when reducing p, TT-S does not lead to a worse search
performance than TT-R.

H3 Computing a number of H-groups and then splitting them up using TT-A
does not impair search performance when compared to computing the same
number of H-groups directly using TT-R.

We provide experimental evidence supporting these hypotheses in Sect. 5.
Using these hypotheses, on the assumption that they are correct, we propose

the algorithm Regroup (Algorithm 2) to decide which of the three transition
types to use.

The algorithm takes as parameters the numbers wmin and winit. TT-R uses
winit to compute H-groups from scratch, while wmin is used by TT-A to recom-
pute H-groups. Due to hypothesis H2, the values of these tuning parameters
do not significantly affect search performance. We therefore use the fairly low
values winit = 2 and wmin = 1.5 in our experiments in order to reduce the time

Regrouping Metric-Space Search Index for Search Engine Size Adaptation 277

Algorithm 2. Regroup(winit, wmin)(p′,H, dQ, Q)
Tuning Parameters: winit, wmin ≥ 1
Input: p′: new number of processors,

H: a set of H-groups partitioning C (optional, needed if Q absent),
dQ: a metric on C (optional, needed if Q absent),
Q: sample set of queries (optional, needed if H absent)

Output:G: a partition of C with |G| = p′,
updated H and dQ

1: if Q is provided then
2: dQ := Query-Vector-Metric(C,Q)
3: H := K-means(dQ)(p′ ∗ winit, C) // TT-R
4: elseif |H| < p′ ∗ wmin then
5: H := Adjust-H(dQ)(H, p′ ∗ wmin) // TT-A
6: end // TT-S: the if block not executed
7: G := Group-Balanced(H, p′)
8: return G,H, dQ

it takes to compute the H-groups. At the beginning, if a new Q is provided, it
is necessary to update the metric dQ and recompute the H-groups from scratch
(TT-R, lines 2 and 3). If the number of H-groups is smaller than p′ ∗ wmin, the
number of H-groups is increased (TT-A, line 5). If there is no change in Q and
p > p′, then H is reused (TT-S). Finally, on line 7, new G-groups are computed
from the H-groups, using Group-Balanced, an algorithm borrowed from KmCol.

5 Experimental Evidence Supporting Hypotheses

In the experiments, the three transition types are compared in terms of their
effect on search performance and the time it takes to compute H-groups for
the new number of processors. (a component of switch-over performance). The
performance is influenced by the following parameters:

1. Search engine size evolution (SE): We consider only a single switchover
at a time and write it as p → p′. E.g., 5→8 encodes a single switchover
from 5 to 8 processors. In our experiments, we use increasing or decreasing
transitions of the sequence 2, 3, 5, 8, 12, 18 and contrast sets of transitions
sharing a similar ratio p/p′ or sharing the same p′.

2. Dataset (D): A dataset represents the set of objects that needs to be
searched. In our experiments, we used a randomly selected set of 1,000,000
objects from the CoPhIR Dataset1. Each object comprises 282 floating-point
number coordinates.

1 http://cophir.isti.cnr.it/

http://cophir.isti.cnr.it/

278 K. Al Ruqeishi and M. Konečný

3. Sample queries (Q): As explained in Sect. 2, the set defines the metric dQ
which is used to partition LC-clusters into H-groups. In our experiments, we
used as Q a randomly selected set of 1,000 objects from the CoPhIR Dataset.

4. Query profile (QP): Query profile simulates how users send queries to the
search engine. It is determined by a sequence of queries and the timing when
each query occurs. In our experiments, we use as queries 100,000 randomly
selected objects from the CoPhIR Dataset. We fire the queries at a constant
query rate. This rate is not a parameter of the experiment because it is
determined automatically in the process of measuring maximum throughput
as described below.

Search performance is measured using maximum throughput defined as fol-
lows. The current output throughput of a search engine is the rate at which
answers to queries are sent to clients. This is equal to the input throughput,
i.e., the rate at which the queries are arriving, except when the queries are
accumulating inside the engine.

Maximum throughput is the highest output throughput achieved when flood-
ing the input with queries. We have observed that the network stack efficiently
facilitates the queuing of queries until the engine is able to accept them. Each
of the search engine nodes (Fig. 2) was deployed on a separate Amazon EC2
medium virtual machine instance. In each experiment, we used the following
steps to obtain sufficiently reliable throughput measurements despite significant
performance fluctuations of the Amazon cloud platform:

– Conduct two speed tests: an initial and a final test. The two tests are iden-
tical. Each test comprises 4 repetitions of a fixed task based on distributed
searching.

– If the speed variation within these 4 repetitions is over 5%, the cloud is not
considered sufficiently stable.

– Also if the initial and final speed measurements differ by over 2%, the cloud
is not considered sufficiently stable.

– The average of the speed measurements in the initial and final tests is used
to calibrate the maximum throughput measurements obtained in the exper-
iment to account for longer-term variations in the cloud performance.

When the stability tests failed repeatedly, we relaxed the thresholds and took
the average of the measurements obtained from 3 repetitions of the experiment.

We observed that in many experiments, the throughput fluctuates at the
beginning and then stabilises. To discount the initial instability, we run each
search experiment as a sequence of blocks of 100 queries and we wait until there
are four consecutive blocks with a performance variation below 30%. We discount
the preceding blocks that have a higher variance.

Regrouping Metric-Space Search Index for Search Engine Size Adaptation 279

We artificially slowed down all processors by a factor of 5 to compensate for
the slow network in the EC2 cloud (around 240 MBits/s), simulating a faster
network, which would be found in typical clusters (around 1 GBit/s).

The full code for our experimental search engine and the experiments
described in this section is available on http://duck.aston.ac.uk/ngp.

5.1 The Number of H-groups

Experiment E1. To test hypothesis H1, we computed different numbers of H-
groups and observed how the computation time grows with size while the remain-
ing parameters are fixed.

The results (Fig. 3(a)) confirm hypothesis H1.

(a) TT-R computation time grows (b) Throughput is not significantly
affected

Fig. 3. Impact of increasing the number of H-groups (= w ∗ p) on performance.

Experiment E2. In a similar setup as experiment E1, we checked whether the
extra computation time spent creating more H-groups translates to better search
performance, in contradiction to hypothesis H2. We have done this for p = 8 and
p = 18 and the same values of w as for E1. The results of E2 in Fig. 3(b) show
that the throughput is not significantly affected by w, confirming H2.

5.2 Search Performance of TT-S

Experiments E3 and E4. Reusing H-groups for p′ < p (TT-S) is much faster than
recomputing H-groups (TT-R). The alternative phrasing of hypothesis H2 states
that this speed up does not come at a cost to the search performance. Here we
report on experiments that confirm hypothesis H2 in the alternative phrasing:

http://duck.aston.ac.uk/ngp

280 K. Al Ruqeishi and M. Konečný

Fig. 4. TT-S and TT-R produce similar throughput, measured separately for increasing
p′ (E3) and increasing p/p′ (E4).

The same switchover p → p′ is performed using TT-R and independently using
TT-S and the resulting search performance is measured.

These two experiments differ in the set of switchovers considered as follows:

– E3 varies p′ and fixes the ratio p/p′.
– E4 varies the ratio p/p′ and fixed p′.

The results of these experiments shown in Fig. 4 support H2: TT-S does not
lead to worse search performance than TT-R when switching over to a smaller
number of processors.

5.3 Comparing TT-A and TT-R

Experiments E5 and E6. In this section, we test hypothesis H3 by comparing
the results of experiments that measure the search performance after computing
H-groups using TT-R and TT-A. Moreover, we capture the computation time
of the transitions to measure the speed-up of TT-A over TT-R.

As with E3 and E4, the experiments differ in the set of switchovers considered
as follows:

– E5 varies the ratio p/p′ and fixed p′.
– E6 varies p′ and fixes the ratio p/p′.

The results of experiments E5 and E6 in Fig. 5 support hypothesis H3,
namely they show that the maximum throughputs after TT-A is similar to,
sometimes even better than the maximum throughput after TT-R. Plots in Fig. 6
show that in this context the speed-up of TT-A versus TT-R is 2–10 times.

Regrouping Metric-Space Search Index for Search Engine Size Adaptation 281

Fig. 5. TT-A and TT-R lead to a similar maximum throughput after switchovers with
various p′ and with various ratios.

Fig. 6. TT-A is faster than TT-R in switchovers with with various p′ and various
ratios.

6 Conclusions

We have proposed a new algorithm for planning an incremental regrouping of
a metric-space search index when a search engine is switched over to a differ-
ent size. This algorithm is inspired by the results of a set of experiments we
conducted. These experiments also indicate that our algorithm facilitates 2–10
times faster switchover planning and leads to a similar search performance when
compared with computing the index from scratch.

In this work, we studied only the re-computation of the metric-space index
when the search engine changes size. We plan to develop and study the
remaining aspects of an adaptive search engine, such as determining when
and how to change the engine size and re-distributing the search data among
processors processors according to the newly computed search index while keep-
ing the engine responsive.

282 K. Al Ruqeishi and M. Konečný

References

1. Catalyurek, U.V., Boman, E.G., Devine, K.D., Bozdağ, D., Heaphy, R.T.,
Riesen, L.A.: A repartitioning hypergraph model for dynamic load balancing.
Journal of Parallel and Distributed Computing 69(8), 711–724 (2009)

2. Chávez, E., Navarro, G.: A compact space decomposition for effective metric
indexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)

3. Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Peer-to-peer similarity
search in metric spaces. In: Proceedings of the 33rd International Conference on
Very Large Data Bases, pp. 986–997. VLDB Endowment (2007)

4. Gil-Costa, V., Marin, M.: Approximate distributed metric-space search. In: Pro-
ceedings of the 9th Workshop On Large-Scale And Distributed Informational
Retrieval, pp. 15–20. ACM (2011)

5. Gil-Costa, V., Marin, M.: Load balancing query processing in metric-space sim-
ilarity search. In: 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 368–375. IEEE (2012)

6. Gil-Costa, V., Marin, M., Reyes, N.: Parallel query processing on distributed
clustering indexes. Journal of Discrete Algorithms 7(1), 3–17 (2009)

7. Marin, M., Ferrarotti, F., Gil-Costa, V.: Distributing a metric-space search index
onto processors. In: 2010 39th International Conference on Parallel Processing
(ICPP), pp. 433–442. IEEE (2010)

8. Marin, M., Gil-Costa, V., Bonacic, C.: A search engine index for multimedia
content. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS,
vol. 5168, pp. 866–875. Springer, Heidelberg (2008)

9. Marin, M., Gil-Costa, V., Hernandez, C.: Dynamic P2P indexing and search based
on compact clustering. In: Second International Workshop on Similarity Search
and Applications, SISAP 2009, pp. 124–131. IEEE (2009)

10. Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solu-
tion for precise and approximate similarity search. Information Systems 36(4),
721–733 (2011)

11. Novak, D., Batko, M., Zezula, P.: Large-scale similarity data management with
distributed metric index. Information Processing & Management 48(5), 855–872
(2012)

12. Papadopoulos, A.N., Manolopoulos, Y.: Distributed processing of similarity
queries. Distributed and Parallel Databases 9(1), 67–92 (2001)

13. Puppin, D.: A search engine architecture based on collection selection. Ph.D.
thesis, PhD thesis, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy
(2007)

14. Puppin, D., Silvestri, F., Laforenza, D.: Query-driven document partitioning and
collection selection. In: InfoScale 2006: Proceedings of the 1st International Con-
ference on Scalable Information Systems. ACM Press, New York (2006)

15. Yuan, Y., Wang, G., Sun, Y.: Efficient peer-to-peer similarity query processing for
high-dimensional data. In: 2010 12th International Asia-Pacific Web Conference
(APWEB), pp. 195–201. IEEE (2010)

16. van Zwol, R., Rüger, S., Sanderson, M., Mass, Y.: Multimedia information
retrieval: new challenges in audio visual search. In: ACM SIGIR Forum, vol. 41,
pp. 77–82. ACM (2007)

Improving Parallel Processing of Matrix-Based
Similarity Measures on Modern GPUs

Martin Krulǐs(B), David Bednárek, and Michal Brabec

Parallel Architectures/Algorithms/Applications Research Group,
Faculty of Mathematics and Physics, Charles University in Prague,

Malostranské nám. 25, Prague, Czech Republic
{krulis,bednarek,brabec}@ksi.mff.cuni.cz

Abstract. Dynamic programming techniques are well-established and
employed by various practical algorithms which are used as similarity
measures, for instance the edit-distance algorithm or the dynamic time
warping algorithm. These algorithms usually operate in iteration-based
fashion where new values are computed from values of the previous iter-
ation, thus they cannot be processed by simple data-parallel approaches.
In this paper, we propose a way how to utilize computational power of
massively parallel GPUs to compute dynamic programming algorithms
effectively and efficiently. We address both the problem of computing
one distance on large inputs concurrently and the problem of computing
large number of distances simultaneously (e.g., when a similarity query
is being resolved).

Keywords: GPU · CUDA · Dynamic programming · Edit distance ·
Dynamic time warping

1 Introduction

Many similarity measures are based on an algorithmic paradigm called dynamic
programming. It is often employed when a problem (in our case similarity mea-
sure) is defined using a recursive formula that would directly lead to an algorithm
with exponential time complexity. The dynamic programming approach prunes
out redundant work or the recursive formula and yields a polynomial algorithm,
where each subproblem is computed exactly once.

In this work, we focus on dynamic programming algorithms whose subprob-
lems form a matrix. Each partial result in the matrix is computed from a small
subset of previous results, which permits a limited degree of concurrent eval-
uation. Typical examples of this approach are the edit distance problem origi-
nally described by Levenshtein [4], the dynamic time warping [9], or the Smith-
Waterman algorithm [14] for molecular sequence alignment.

We have selected the Wagner-Fischer dynamic programming algorithm [17]
for the Levenshtein distance problem as a representative for our implementation
since its computational simplicity emphasizes the communication and synchro-
nization overhead associated with parallel computation.
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 283–294, 2015.
DOI: 10.1007/978-3-319-25087-8 27

284 M. Krulǐs et al.

The data transfers between the threads computing different elements may
render a näıve parallel implementation memory-bound, although in theory, the
matrix does not require any memory representation as we are interested only in
its bottom-right corner. We will not employ any optimizations designed specif-
ically for the Levenshtein distance (like the Myers’ algorithm [10]), so our pro-
posed solution is applicable for similar dynamic programming algorithms as well.

The communication overhead becomes even more important in a massively
parallel environments like GPUs. In addition to the high degree of parallelism,
the specific execution model and complicated memory hierarchy of the GPUs
forces the programmers to deal with many technical issues which are not present
in multicore CPU programming.

This paper investigates the problems of matrix-based dynamic programming
on modern GPUs and proposes a solution that is suitable for their contemporary
architectures. We have taken the same approach as Tomiyama et al. [15], but
we have improved their solution by optimizing internal data transfers, which are
one of the most serious parallelization bottlenecks in dynamic programming. We
have utilized new thread-cooperative instructions that were introduced in the
NVIDIA Kepler architecture [11] (CUDA compute capability 3.0 and higher).
The results indicate that this optimization can improve overall performance by
a factor of 1.75 with respect to an unoptimized GPU solution.

In addition, we have investigated possible parallelization approaches to a
multi-distance problem – i.e., when multiple distances need to be computed. This
situation is typical for similarity queries, when a distance between query and each
database objects needs to be computed. Even though this may seem to be an
embarrassingly data parallel problem, the nontrivial memory requirements of the
algorithm impose serious performance limitations when executed on manycore
GPUs.

The paper is organized as follows. Section 2 overviews work related to GPU
implementations of dynamic programming algorithms. In Section 3, we revise the
fundamentals of GPU architectures with emphasis on data exchange. Section 4
presents our proposed solution and its implementation details. The empirical
evaluation is summarized in Section 5 and Section 6 concludes our paper.

2 Related Work

Most parallel algorithms are based on an observation of Delgado et al. [2], who
studied the data dependencies in the dynamic programming matrix. Two pos-
sible ways of processing the matrix were defined in their work – uni-directional
and bi-directional filling. The original idea allows limited concurrent processing,
but it needs to be modified for massively parallel environment.

One of the first papers that covers the whole issue of the parallelization of
Levenshtein distance on GPUs was presented by Tomiyama et al. [15]. Their app-
roach divides the dynamic programming matrix into parallelogram blocks. Inde-
pendent parallelograms are computed by separate CUDA thread blocks while
each block is computed in a highly cooperative manner. The main focus of the

Improving Parallel Processing of Matrix-Based Similarity Measures 285

work addressed the problem of appropriate block size and its automatical selec-
tion. On the other hand, their experiments are currently out of date, since they
were performed on a GPU with compute capability 1.3 only.

Perhaps the most recent work on the topic was presented by Chacón [1]. It is
based on Myers’ bit-parallel algorithm [10] which uses an observation made by
Ukkonen [16], that all the adjacent elements in the matrix differs at most by ±1.
The algorithm converts the data-dependency problem into a bit-carry problem,
which can be computed more efficiently using bit-wise operations.

Similar approach was taken by Xu et al. [18], but their work focused on
multi-query string matching, where multiple words are matched against a larger
text. They have used a pattern concatenation technique, so that multiple queries
can be processed by one distance computation.

A similar problem that uses dynamic programming is dynamic time warp-
ing (DTW) defined by Müller [9]. Since the performance issue is also quite
important for DTW applications, Sart et al. discussed parallelization techniques
for GPUs and FPGAs [13]. They focused mainly on a specific version of DTW
algorithm, which reduces the dependencies of the dynamic programming matrix,
thus allows more efficient parallelization.

Another example of a problem suitable for dynamic programming is the
Smith-Waterman algorithm [14], which is used for protein sequences alignment.
To our best knowledge, the first attempt to parallelize this algorithm on GPUs
was made by Liu et al. [6]. Their work was performed before the release of
CUDA framework, thus the computation had to be transformed into a rendering
problem, which was then implemented using OpenGL and GLSL shaders [12].

Manavski et al. [8] reimplemented the Smith-Waterman algorithm using
CUDA technology. Slightly different solution was presented by Ligowski et al. [5].
Their work focused on searching in the entire database of proteins. Khajeh-Saeed
et al. [3] utilized the computational power of multiple GPUs to solve this prob-
lem. Perhaps the most recent version was presented again by Liu et al. [7] and
it combines observations from the previous work.

Unlike these related papers, our work does not focus on a single dynamic
programming algorithm. Individual algorithms may be optimized using specific
observations, which are limited to a single application. We are proposing an
optimization, that can be used in several dynamic programing algorithms or
even adopted for similar problems where data transfers are the issue.

3 GPU Fundamentals

GPU architectures differ from CPU architectures in multiple ways. In this
section, we revise the GPU architectures (especially of NVIDIA GPUs [11])
fundamentals with particular emphasis on aspects, which have great importance
in the light of the studied problem.

286 M. Krulǐs et al.

3.1 GPU Device

A GPU card is a peripherial device connected to the host system via the PCI-
Express (PCIe) bus. The GPU is quite independent, since it has its own memory
and processing unit; however, it is not completely autonomous and its operations
must be controlled by host. Furthermore, the GPU computational cores cannot
access the host memory directly, so the input data must be transferred to the
GPU over the PCIe and computed results must be transferred back.

The GPU processor comprises several streaming multiprocessors (SMPs),
which can be roughly related to the CPU cores. The SMPs share only the main
memory bus and the L2 cache of the GPU, but otherwise they are almost inde-
pendent. Each SMP consists of a number of GPU cores1, one or more instruction
decoders and schedulers2, L1 cache, and shared memory. Each core has its own
arithmetical units for integer and float operations and a private set of registers.
As the number of GPU cores is larger than the number of schedulers, a scheduler
issues the same instruction into several cores which thus synchronously execute
the same code within different threads. This set is called a warp and always
constitutes 32 threads in the current NVIDIA architectures. Although a part of
the threads in the warp may be masked off, the respective cores are not freed for
other work. Furthermore, each SMP keeps a list of active warps whose execution
is interleaved in order to keep the cores busy when some warps are waiting due
to synchronization or memory access. Thus, a number of warps is effectively
running in parallel in each SMP.

3.2 Thread Execution

The true machine code is not exposed to the programmer, allowing to hide
hardware details and change code between generations. Thus, an additional layer
of abstraction is built above the underlying hardware; in our case determined by
the CUDA specification.

Code routines, called kernels, are fed into the GPU by the CPU. When
scheduled to run with a particular data set, the kernel becomes a CUDA grid.
Each grid is divided into CUDA blocks, each block consists of several warps and
each warp consist of 32 threads. While the warp size is fixed, the sizes of blocks
and grids are determined by the application.

The CUDA software/hardware stack schedules grids over entire GPUs and
assigns blocks to individual SMPs. Thus, all threads in a block may access the
same shared memory associated to the SMP, and synchronize using several prim-
itives. On the other hand, blocks in a grid share only the global memory and
their ability to synchronize is limited to atomic instructions. In most cases, syn-
chronization between blocks as well as data exchange with the host CPU occurs
only at the beginning and at the end of the grid.

1 E.g., 32 cores in Fermi or 192 cores in Kepler architecture [11].
2 E.g., one scheduler in Fermi or four schedulers in Kepler.

Improving Parallel Processing of Matrix-Based Similarity Measures 287

Threads in one warp are executed in a lockstep3 – i.e., they are all issued
the same instruction at a time. This model allows easier synchronization of
work performed by the warp and it also permits warp-specific instructions to
be implemented, such as the warp shuffle instructions which are used for direct
data interchange between threads in a warp.

On the other hand, branching in the code (e.g., in an ‘if’ statement) is
expensive under the lockstep execution as it must be converted to masking some
threads off and, thus, wasting resources.

3.3 Memory Organization

Another important issue is the memory organization, which is depicted in
Figure 1. We need to distinguish four types of memory:

• host memory (RAM),
• global memory (VRAM),
• shared memory,
• and private memory (GPU core registers).

Fig. 1. Host and GPU memory organization scheme

The host memory is the operational memory of the computer. Input data
needs to be transferred from the host memory to the global memory of the GPU
and the results need to be transferred back.

The global memory is accessible from all GPU cores/threads, so the input
data and the computed results are stored here. It is connected via global memory
bus, which has high latency and high bandwidth. The bus transfers data in wide
aligned blocks, so the threads in a warp are encouraged to access data which are
close together.

The shared memory is present on each SMP and dedicated to the running
thread block. It is rather small (tens of kB) but almost as fast as the GPU
registers. The shared memory can play the role of a program-managed cache,

3 Also called Single Instruction Multiple Threads (SIMT) model.

288 M. Krulǐs et al.

or it can hold intermediate results of the threads in the block. The memory is
divided into banks (usually 16 or 32), so that subsequent 32-bit words are in
subsequent banks. When multiple threads access the same bank (except if they
read the same address), their operations are serialized.

Finally, the private memory belongs exclusively to a single thread and cor-
responds to the GPU core registers. Private memory size is very limited (tens
to hundreds of words per thread), therefore it is suitable just for a few local
variables.

4 Implementation

As illustrated by Figure 2, the dependencies between elementary calculations in
the two-dimensional matrix allow parallel computation for all elementary tasks
on any diagonal line. Thus, the computation may be done by a single sequential
sweep through all the diagonals in the matrix whilst each diagonal is computed in
parallel. Unfortunately, such simple approach to parallelization suffers from two
deficiencies: First, the size of the diagonal (n) varies throughout the matrix which
requires frequent addition and removal of computing units (threads) during the
sweep. Second, regardless of the exact assignment of the physical threads to the
elementary tasks, each thread processing a task must interchange information
with at least one other thread when the computation advances to a subsequent
diagonal. The computational cost of the elementary tasks is assumed to be small,
thus the thread communication cost plays an important role as well.

Fig. 2. A single block with emphasized input, output, and data dependencies

When more than one instance of the problem is computed simultaneously,
it is also possible to compute the instances in parallel while each instance is
evaluated sequentially (e.g., row-wise). However, as we will demonstrate in the
evaluation, this approach suffers from the inability to fit sufficient number of
instances into fast memory, because the memory has limited size.

Thus, although the multi-instance problem seems to be embarrassingly par-
allel, non-trivial algorithms must be investigated to overcome the memory size
limitation. In general, we have the following options when assigning multiple
instances of the distance problem to a GPU:

Improving Parallel Processing of Matrix-Based Similarity Measures 289

• An instance per thread – the trivial data-parallel solution described above.
• An instance per warp – requires data exchange between threads using either

the shuffle instructions or shared memory
• An instance per block – data exchange between warps must be done using

shared memory.
• An instance per GPU – executing a sequence of instances. As each instance is

spread over several SMPs, data exchange must be done via global memory.
A trivial version of this approach is the diagonal sweep described above.
Nevertheless, we will describe a faster blocked algorithm.

Down through this list, the complexity of data exchange increases. On the
other hand, the number of instances present at a time decreases; thus, each
instance may occupy a larger portion of the GPU memory hierarchy. Conse-
quently, the applicability of these methods depends on the size of the instance
data and experiments are needed to determine optimal approach.

4.1 Parallelogram Blocks

Due to the nature of data-dependencies in the computation matrix, warps or
blocks work best when assigned to parallelogram-like portions of the matrix, as
depicted in Figure 2. The picture also shows the input values for such a block,
divided into left buffer (red), upper-left buffer (blue), and upper buffer (green).
The arrows show the dependencies for the first diagonal in the block which will
be computed in parallel. The output of the parallelogram block is shown in light
gray, the white fields inside the parallelogram correspond to temporary values
computed and later discarded during the block evaluation.

Each block is processed in three steps: load input data from the global mem-
ory, compute the values, and write the results back to the global memory for the
subsequent blocks. A block of height H and width W is computed by H threads
that synchronously perform W iterations. Between subsequent iterations, the
threads must exchange a part of the data.

If H equals to the warp size, the synchronous execution is ensured by the
lockstep nature of warps and the data interchange may be implemented by the
shuffle instructions. For larger H, shared memory and barriers must be involved
in the data exchange and synchronization.

4.2 Using Shuffle Instructions

The shuffle instructions allow direct exchange of values between threads within a
warp. To utilize this feature to its full potential, we have restricted the block size
(width and height) to be divisible by the warp size, thus all the warps are fully
occupied. Since the shuffle instructions work only within a warp, we additionally
employ shared memory transfers for data passed between threads in different
warps.

The shuffle instructions rotates the data as depicted in Figure 3a. Each thread
passes the last computed result to its neighbor and simultaneously receives a
value which is stored to upper variable.

290 M. Krulǐs et al.

(a) Rotating values (b) Initial upper buffer distribution

Fig. 3. Data transfers of the upper buffer values within warp

After the shuffling, the last thread (on the top) has to load its upper value
from the shared memory. This could be done directly, however, it would waste
the memory throughput as only one thread from the warp would be reading at
a time.

Instead of reading from shared memory one at a time, the upper values are
distributed among the registers of the threads and then another set of shuffle
instructions is used to feed the last thread with the correct value at the right
moment. Thus, the register capacity of the warp is used to hold all the upper
values instead of the shared memory, offering smaller latency.

All upper values are loaded at the beginning, so that each thread loads one
value to its register as shown in Figure 3b. Since the upper values are consumed
during the sweep through the block, they can be gradually replaced by the result
values computed by the first thread (in the bottom). This way, the space (regis-
ters) originally allocated for input are reused to store output values. Therefore,
when the iterations are concluded, the threads write their result values back to
the same global memory buffer, so they can be used as an input for another
diagonal block.

4.3 Synchronization via Shared Memory

For parallelogram blocks whose height is larger than the warp size, shuffle
instructions can not pass data over the warp boundaries. Therefore, the corre-
sponding results are written into and subsequently loaded from a shared memory
buffer. All the block threads must be synchronized on a barrier to ensure that
all the threads have written the data before they are read. The barrier also acts
as a memory fence, so the data are visible to all threads after the barrier.

4.4 Blocked Algorithm

The elements of the distance matrix are grouped into parallelogram blocks as
shown in Figure 4, where the numbers denote coarse diagonals. Blocks that are
not completely contained in the distance matrix are processed the same way as
the others, which allows us to avoid checking any conditions during the block
calculation. Gray area represents the input values for the left and upper blocks

Improving Parallel Processing of Matrix-Based Similarity Measures 291

Fig. 4. Distance matrix divided into parallelogram blocks

and the black square is the final result (computed edit distance). The blocks
communicate through global memory buffers which are allocated in advance,
since the algorithm does not need to vary their size. The division of the matrix
into the blocks follows a similar pattern as in the work of Tomiyama [15].

Similarly to the fine diagonals in Figure 2, the coarse diagonals allow par-
allel processing of blocks. Blocks retain the same scheme of dependencies as
single elements, thus the blocks in a coarse diagonal can be processed in par-
allel, because they depend only on blocks from two previous coarse diagonals.
The block numbers depicted in Figure 4 indicate the order in which they are
computed.

Each coarse diagonal of blocks is computed by a single CUDA grid where each
CUDA block corresponds to a single parallelogram block. Selecting appropriate
block size (i.e., its width and height) is an important factor that affects the
efficiency of the algorithm as demonstrated in the Section 5.

5 Experiments

In this section, we present experimental evaluation of two problems. In the first
scenario, we used GPU to accelerate one distance computation of two large
inputs and evaluate the benefits of our optimization that utilizes warp shuf-
fling instruction. The second scenario simulates a sequential scan in a similarity
search, where many distances are computed on much smaller inputs. We compare
our method with a simple data-parallel approach that computes each distance
in a separate thread.

In our experiments, the compared values (i.e., the string characters) had
always 32-bits. This may not be typical for ANSI strings, but some encodings
(e.g., UTF-32) use such chars and other algorithms often compare numerical
values of that size. We present only the results where both input strings of
a distance have the same size, since they show the full potential of parallel
processing.

The experiments were conducted on NVIDIA Tesla K20m (Kepler architec-
ture, compute capability 3.5) with 2496 cores and 5 GB of VRAM. Each test
was repeated five times and the measurements were within 1% deviation range.
Arithmetic averages of the repeated measurements are presented as the results.

292 M. Krulǐs et al.

5.1 Single Distance

For the single-distance test, we have selected only two string lengths (64k and
128k) due to the limited scope. Figure 5 summarizes the measured times for the
two selected sizes. The compared methods are denoted as follows: base stands for
the baseline algorithm implemented according to Tomiyama [15], cached stands
for the algorithm that uses texture cache for the string data, and shfl is the
optimized version that employs shuffle instructions to exchange data within the
thread warp.

32
x3

2

64
x3

2

12
8x

32

25
6x

32

64
x6

4

12
8x

64

25
6x

64

12
8x

12
8

25
6x

12
8

25
6x

25
6

64k strings

tim
es

 [m
s]

200

400

600

800

1000

1200
base
cached
shfl

32
x3

2

64
x3

2

12
8x

32

25
6x

32

64
x6

4

12
8x

64

25
6x

64

12
8x

12
8

25
6x

12
8

25
6x

25
6

128k strings

tim
es

 [m
s]

1000

1500

2000

2500

3000

3500
base
cached
shfl

Fig. 5. Measured times for various block sizes

Presented times compare different block sizes from 32 × 32 to 256 × 256 of
the individual parallelograms that are processed by different CUDA blocks. Let
us emphasize, that the size is width×height, where width is the number of items
processed by a thread and height is the number of thread in CUDA block. We
have observed that sizes which are powers of two perform much better than other
sizes (which are only multiple of warp size). A significant drop in performance
was observed in cases when either the width or height of the block exceeds 256.

Both baseline version and cached version exhibit the best performance for
128 × 128 and 256 × 256 block sizes. This can be easily explained, since these
sizes create the most workload for the SMPs of the GPU. On the other hand,
the optimized version using shuffle functions perform better when the warps can
perform more work without interruptions (i.e., without accessing the memory)
even at the cost that the SMPs are slightly more underutilized. Hence the opti-
mal blocks have width 256 and height 64 or 128 items. Proposed optimization
achieved 1.75× speedup over the baseline algorithm and 1.3× speedup over the
algorithm that uses texture cache for the string data.

Improving Parallel Processing of Matrix-Based Similarity Measures 293

5.2 Multiple Distances

In case of multiple distances, we used input strings of sizes from 32 to 256. The
simple denotes the näıve parallelization of Wagner-Fischer algorithm [17], where
each distance is computed in a separate thread and each thread hold exactly
one row of the internal matrix in shared memory. The shfl denotes our proposed
algorithm (that uses both texture cache and shuffling instructions).

256x256

128x128

64x64

32x32

time/distance [us] (log scale)

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0

20
.0

0

simple
shfl

Fig. 6. Computing multiple distances concurrently

In each case, we have computed 256k distances and the results are normalized
to time-per-distance values. The results indicate, that the turning point is the
string length of 64 characters. Smaller strings are better processed by the simple
algorithm, since it has smaller synchronization overhead. When the length grows,
each thread requires more space in shared memory to hold its internal data,
which inevitably leads to lower GPU core occupancy.

6 Conclusions

We have studied the problem of data dependencies in dynamic programming
matrix, which are essential for parallelization of various similarity distances on
GPUs. This problem cannot be easily eliminated, but we have proposed an opti-
mization that utilizes new warp-cooperative shuffle instructions of the NVIDIA
GPUs. The shuffle instructions have nontrivial impact on the overall perfor-
mance, since they reduce memory data transfers and increase occupancy of the
SMPs due to lowered shared memory consumption. We have also experimen-
tally verified the importance of the new read-only texture cache introduced in
the Kepler architecture.

Additionally, we have tested a multi-distance version of the algorithm where
multiple distances are computed concurrently. We have established that for very
small inputs, a simple data-parallel algorithm is better; however, when the length
of the input strings exceed 64 the proposed algorithm gets better results.

Acknowledgments. This paper was supported by Czech Science Foundation
(GAČR), projects P103-14-14292P and P103-13-08195, and by the Charles University
Grant Agency (GAUK) project 122214.

294 M. Krulǐs et al.

References

1. Chacón, A., Marco-Sola, S., Espinosa, A., Ribeca, P., Moure, J.C.: Thread-
cooperative, bit-parallel computation of Levenshtein distance on GPU. In: Proceed-
ings of the 28th ACM International Conference on Supercomputing, pp. 103–112.
ACM (2014)

2. Delgado, G., Aporntewan, C.: Data dependency reduction in dynamic program-
ming matrix. In: 2011 Eighth International Joint Conference on Computer Science
and Software Engineering (JCSSE), pp. 234–236. IEEE (2011)

3. Khajeh-Saeed, A., Poole, S., Perot, B.J.: Acceleration of the Smith-Waterman
algorithm using single and multiple graphics processors. Journal of Computational
Physics 229(11), 4247–4258 (2010)

4. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics doklady 10, 707 (1966)

5. Ligowski, L., Rudnicki, W.: An efficient implementation of Smith Waterman algo-
rithm on GPU using CUDA, for massively parallel scanning of sequence databases.
In: IEEE International Symposium on Parallel & Distributed Processing, 2009,
IPDPS 2009, pp. 1–8. IEEE (2009)

6. Liu, Y., Huang, W., Johnson, J., Vaidya, S.: GPU accelerated Smith-Waterman.
In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2006. LNCS, vol. 3994, pp. 188–195. Springer, Heidelberg (2006)

7. Liu, Y., Wirawan, A., Schmidt, B.: Cudasw++ 3.0: accelerating Smith-Waterman
protein database search by coupling CPU and GPU SIMD instructions. BMC
Bioinformatics 14(1), 117 (2013)

8. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hard-
ware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics
9(Suppl 2), S10 (2008)

9. Müller, M.: Dynamic time warping. In: Information Retrieval for Music and
Motion, pp. 69–84 (2007)

10. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM (JACM) 46(3), 395–415 (1999)

11. NVIDIA: Kepler GPU Architecture. http://www.nvidia.com/object/nvidia-kepler.
html. Accessed 10 July 2015

12. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In:
Computer Graphics Forum, vol. 26, pp. 80–113. Wiley Online Library (2007)

13. Sart, D., Mueen, A., Najjar, W., Keogh, E., Niennattrakul, V.: Accelerating
dynamic time warping subsequence search with GPUs and FPGAs. In: 2010 IEEE
10th International Conference on Data Mining (ICDM), pp. 1001–1006. IEEE
(2010)

14. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

15. Tomiyama, A., Suda, R.: Automatic parameter optimization for edit distance algo-
rithm on GPU. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR 2012.
LNCS, vol. 7851, pp. 420–434. Springer, Heidelberg (2013)

16. Ukkonen, E.: Finding approximate patterns in strings. Journal of Algorithms 6(1),
132–137 (1985)

17. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM (JACM) 21(1), 168–173 (1974)

18. Xu, K., Cui, W., Hu, Y., Guo, L.: Bit-parallel multiple approximate string matching
based on GPU. Procedia Computer Science 17, 523–529 (2013)

http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html

Time Series Subsequence Similarity Search
Under Dynamic Time Warping Distance

on the Intel Many-core Accelerators

Aleksandr Movchan(B) and Mikhail Zymbler

South Ural State University, Chelyabinsk, Russia
movchanav@susu.ru

Abstract. Subsequence similarity search is one of the most important
problems of time series data mining. Nowadays there is empirical evi-
dence that Dynamic Time Warping (DTW) is the best distance met-
ric for many applications. However in spite of sophisticated software
speedup techniques DTW still computationally expensive. There are
studies devoted to acceleration of the DTW computation by means of
parallel hardware (e.g. computer-cluster, multi-core, FPGA and GPU).
In this paper we present an approach to acceleration of the subsequence
similarity search based on DTW distance using the Intel Many Inte-
grated Core architecture. The experimental evaluation on synthetic and
real data sets confirms the efficiency of the approach.

1 Introduction

Subsequence similarity search is one of the most important problems of time
series data mining and appears in a wide spectrum of subject domains, e.g.
climate modeling [1], economic forecasting [5], medical monitoring [6], etc. The
problem assumes that a query sequence and a longer time series are given, and
the task is to find a subsequence in the longer time series, which best matches
with the query sequence.

Currently there is empirical evidence that the Dynamic Time Warping
(DTW) [2] is the most popular similarity measure in many applications [3].
DTW is computationally expensive and there are approaches to solve this prob-
lem, e.g. lower bounding [3], computation reusing [14], data indexing [11], early
abandoning [12], etc. However, DTW still costs too much and there are studies to
accelerate subsequence similarity search using parallel hardware, e.g. computer-
cluster [16], multi-core [15], FPGA and GPU [14,17,18].

In this paper we present a parallel algorithm for subsequence similarity search
based on DTW distance adapted for use on a central processor unit (CPU)
accompanied with the Intel Xeon Phi many-core coprocessor [4]. The remainder
of the paper is organized as follows. Section 2 contains formal definition of the
problem, briefly describes Intel Xeon Phi architecture and programming model
and discusses related work. The proposed algorithm is presented in the section 3.
The results of experimental evaluation of the algorithm are described in section 4.
Section 5 contains summarizing comments and directions for future research.
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 295–306, 2015.
DOI: 10.1007/978-3-319-25087-8 28

296 A. Movchan and M. Zymbler

2 Formal Definitions and Related Work

2.1 Formal Definitions

A time series T is an ordered sequence t1, t2, . . . , tN of real data points, measured
chronologically, where N is a length of the sequence.

Dynamic Time Warping (DTW) is a similarity measure between two time
series X and Y , where X = x1, x2, ..., xN and Y = y1, y2, ..., yN , is defined as
follows.

DTW (X,Y) = d(N,N), where

d(i, j) = |xi − yj | + min

⎧⎨
⎩

d(i − 1, j)
d(i, j − 1)
d(i − 1, j − 1),

d(0, 0) = 0; d(i, 0) = d(0, j) = ∞; i = j = 1, 2, . . . , N .

A subsequence Tim of time series T is its continuous subset starting from i-th
position and consisting of m data points, i.e. Tim = ti, ti+1, . . . , ti+m−1, where
1 ≤ i ≤ N and i + m ≤ N .

A query Q is a certain subsequence to be found in T . Let n is a length of the
query, n � N .

Subsequence similarity search problem aims to finding a subsequence, which
is the most similar to the query with respect to a given similarity measure. Let
D is a similarity measure, then the resulting subsequence is argmin

1≤i≤N−n
D(Tin, Q).

We will use DTW as a similarity measure.

2.2 The Intel Xeon Phi Architecture and Programming Model

The Intel Xeon Phi coprocessor is an x86 many-core coprocessor of 61 cores,
connected by a high-performance on-die bidirectional interconnect where each
core supports 4× hyperthreading and contains 512-bit wide vector processor unit
(VPU). Each core has two levels of cache memory: a 32 Kb L1 data cache, a
32 Kb L1 instruction cache, and a core-private 512 Kb unified L2 cache. The
Intel Xeon Phi coprocessor is to be connected to a host computer via a PCI
Express system interface. PCI Express is used for data transfer between CPU
and the coprocessor.

Being based on Intel x86 architecture, the Intel Xeon Phi coprocessor sup-
ports the same programming tools and models as a regular Intel Xeon processor.

The Intel Xeon Phi coprocessor supports three programming modes: native,
offload and symmetric. In native mode the application runs independently, on
the coprocessor only. In offload mode the application is running on the host
and offloads computationally intensive part of work to the coprocessor. The
symmetric mode allows the coprocessor to communicate with other devices by
means of Message Passing Interface (MPI).

Time Series Subsequence Similarity Search Under Dynamic Time 297

2.3 Related Work

Currently DTW is considered as best similarity measure for many applica-
tions [3], despite the fact that it is very time-consuming [8,16]. Research devoted
to acceleration of DTW computation includes the following.

The SPRING algorithm [13] uses computation-reuse technique. However,
this technique squeezes the algorithm’s applications because data-reuse supposes
non-normalized sequence. In [11] indexing technique to speed up the search was
used, which need to specify the query length in advance. Authors of [9] sug-
gested multiple indices for various length queries. Lower bounding [7] allows one
to discard unpromising subsequences using the lower bound of DTW distance
estimated in a cheap way. The UCR-DTW algorithm [12] integrates all the pos-
sible existing speedup techniques and most likely it is the fastest of the existing
subsequence matching algorithms.

All the aforementioned algorithms aim to decrease the number of calls of
DTW subroutine, not accelerating DTW itself. However, because of its com-
plexity, DTW still takes a large part of the total application runtime [18]. There
are approaches exploiting the allocation of DTW computation of different sub-
sequences into different processing elements. In [15] subsequences starting from
different positions of the time series are sent to different Intel Xeon processors,
and each processor computes DTW. In [16] different queries are distributed onto
different cores, and each subsequence is sent to different cores to be compared
with different queries. GPU implementation [18] parallelize the generation of
the warping matrix but still process the path search serially. GPU implementa-
tion proposed in [14] utilizes the same ideas as in [15]. FPGA implementation
described in [14] focuses on the naive subsequence similarity search, and do not
exploit any pre-processing techniques. It is generated by a C-to-VHDL tool and
should be recompiled if length of query is changed. This algorithm supports 8-bit
data precision and can not supports queries longer than 210, so it can not be
applied in big-scale tasks. To address these problems in [17] a stream oriented
framework was proposed. It implements coarse-grained parallelism by reusing
data of different DTW computations and uses a two-phase precision reduction
technique to guarantee accuracy while reducing resource cost.

In this work we present a parallel algorithm of the time series subsequence
similarity search under DTW on the Intel Xeon Phi many-core coprocessor where
the UCR-DTW serial algorithm is used as a basis.

3 Acceleration by the Intel Xeon Phi Coprocessor

3.1 Serial Algorithm

The UCR-DTW serial algorithm [12] is depicted in the Fig. 1. It uses a cascade
of three lower bounding of DTW distance, namely LBKim [10,12], LBKeogh [8]
and LBKeoghEC [12]. If the lower bound has exceeded some threshold, the DTW
distance also exceeds the same threshold, so the subsequence can be pruned
off. Here the bsf (best-so-far) variable stores the distance to the most similar
subsequence.

298 A. Movchan and M. Zymbler

[no Tij]Get Tij

dist = DTW(Tij, Q)bsf = min(bsf, dist)

else

[pruned]

else

LB_Kim(Tij, Q)

[lb_kim ≥ bsf] [lb_keogh ≥ bsf] [lb_keogh_ec ≥ bsf]

else

Lower Bound Cascade Pruning

else

pruned

non-pruned
LB_Keogh(Tij, Q) LB_KeoghEC(Tij, Q)

else

i = i + 1

UCR-DTW

Fig. 1. Serial algorithm

3.2 Parallel Algorithm

Fig. 2 depicts a parallel version of the UCR-DTW algorithm. Parallelization of
the original algorithm was performed through the OpenMP technology.

Open file Swap Buf_1
and Buf_2

Read data
in Buf_2

result = min_dist(result, res1, ..., resCPU_THREADS)

Output
result Close file

[Buf_2 is empty]
else

...

Read data
in Buf_1

UCR-DTW(segment)

Process Segments

segment := segments[k]

[k > H]

else

Process
Segments

Process
Segments

Process
Segments

k := k + 1

k := 0

Fig. 2. Parallel algorithm for CPU

The source time series T is partitioned into H equal-length segments. Let
P denotes the number of OpenMP-threads, S denotes a maximum length of
segment, then H is defined as

H = � N

P · S � · P
A k-th segment, 0 ≤ k ≤ H − 1, is defined as a subsequence Tsl, where

s =
{

1 , k = 0
k · �N

H � − n + 2 , else

Time Series Subsequence Similarity Search Under Dynamic Time 299

l =

⎧⎨
⎩

�N
H � , k = 0

�N
H � + n − 1 + (N mod H) , k = H − 1

�N
H � + n − 1 , else

It means that the head part of every segment except first overlaps with the
tail part of previous segment in n−1 data points, where n is length of the query.
This prevents from losing of possible resulting subsequences, which start at tail
part of previous segment.

The number of segments H is divisible by the number of threads P for better
load balancing.

The algorithm is based on dynamic distribution of segments across threads.
We use k variable, which is shared among all threads and identifies first unpro-
cessed segment. The k variable initialized by 0 and while there are unprocessed
segments (i.e. k ≤ H), a thread gets k-th segment, increments k by 1 and
processes the segment by means of UCR-DTW subroutine, which implements an
original serial algorithm. To provide correct processing of shared data we use
critical section to prevent multiple threads from accessing the critical section’s
code at the same time, i.e. only one active thread can get k-th segment and
update the k variable.

We reject static distribution of segments across threads (where each thread
is assigned by its own segments before calculations) due to the following reason.
Static distribution could result in worse load balancing because of unpredictable
amount of pruned and early abandoned subsequences for each thread. So, over-
head costs to provide the critical section in case of dynamic distribution is a
lesser evil than highly probable load imbalance in case of static distribution.

In contrast with the serial version the bsf variable is shared among the
threads. This allows each thread to prune off unpromising subsequence using
lower bounding.

This algorithm is ready-to-use on the Intel Xeon Phi coprocessor in native
mode. However, experiments have shown (Fig. 5) that the algorithm is slower
than on CPU. This implementation does not provide sufficient floating point
operations per byte of data to be effectively processed on the coprocessor. To
overcome this we combined CPU and coprocessor to process time series as
described in the next section.

3.3 Combining CPU and the Intel Xeon Phi

The parallel algorithm for CPU and the Intel Xeon Phi is depicted in Fig. 3.
The idea of the algorithm is that the coprocessor should be exploited only

for DTW computations whereas CPU performs lower bounding, prepares subse-
quences for the coprocessor and computes DTW in case if it really does not have
another job. CPU supports a queue of candidate subsequences and the coproces-
sor computes DTW for each candidate. Queue stores a tuple (i, A) corresponding
a candidate subsequence Tin, where A is an n-element array containing LBKeogh

lower bounds for each position of the subsequence which is used for early aban-
doning of DTW [12].

300 A. Movchan and M. Zymbler

CPU Intel Xeon Phi

Receive
candidates

...

phi_result = min_dist
(res1, ..., resPHI_THREADS)

Send phi_result

Wait for
candidates

Receive
phi_result

Open fileSwap Buf_1
and Buf_2

result = min_dist(result, res1, ..., resCPU_THREADS)

Output
resultClose file

[Buf_2 is
empty]else

Read data
in Buf_1

[no candidates and
all threads are finished]

Send candidates
else

DTW DTW

Send Buf_1 Receive Buf

Read data
in Buf_2

...
Process

Segments
by UCR-DTW*

Process
Segments

by UCR-DTW*

Process
Segments

by UCR-DTW*

Process Segments by UCR-DTW*

k := 0

UCR-DTW*(segment)segment := segments[k]
[k > H]

else
k := k + 1

Fig. 3. Parallel algorithm for CPU and the Intel Xeon Phi

To reduce the amount of data transferred to the coprocessor, CPU offloads
current buffer of the time series once whereas queue is offloaded each time it
is full. The number of elements in the queue is calculated as C · h · W , where
C is a number of cores of the coprocessor, h is a hyperthreading factor of the
coprocessor and W is a number of candidates to be processed by a coprocessor’s
thread.

The algorithm could be described in the following way. One of the CPU
threads is declared as a master and the rest as workers. At start master sends a
buffer with the current buffer with the time series to the coprocessor. If queue
is full then master offloads it to the coprocessor to perform DTW computation
for the corresponding subsequences by the coprocessor’s threads.

Worker’s activity is similar to activity of threads in parallel algorithm for
CPU only. Each worker processes segments by UCR-DTW* (see Fig. 4) subroutine.
The UCR-DTW* subroutine calculates cascade of lower bounds for the subsequence.
If it is dissimilar to the query then the worker prunes it off otherwise worker
pushes this subsequence to the queue. If the queue is full (and data previously
transferred to the coprocessor have not been processed yet), the worker calculates
DTW by itself.

At the end of offload section the information about most similar subsequence
found on the coprocessor is transferred to the CPU. The final result is calculated
among the most similar subsequence found on the CPU and same that found on
the coprocessor.

Time Series Subsequence Similarity Search Under Dynamic Time 301

[no Tin]

Get next Tin
else [pruned]

Lower Bound Cascade Pruning

dist = DTW(Tin, Q)

[Queue.IsFull]

Queue.Push (candidate) else

bsf = min(bsf, dist)

else

Fig. 4. UCR-DTW* subroutine

4 Experiments

Hardware. To evaluate the developed algorithm we performed experiments on
the Tornado SUSU1 supercomputer’s node (see Tab. 1 for its specifications).

Table 1. Specifications of the Tornado SUSU supercomputer’s node

Specifications Processor Coprocessor

Model Intel Xeon X5680 Intel Xeon Phi SE10X

Cores 6 61

Frequency, GHz 3.33 1.1

Threads per core 2 4

Peak performance, TFLOPS 0.371 1.076

Memory, Gb 24 8

Cache, Mb 12 30.5

Data Sets. Experiments have been performed on three time series, which are
summarized in Tab. 2. The PURE RANDOM data set was generated by a ran-
dom function. The RANDOM WALK data set is one-dimensional random walk
time series. The ECG (electrocardiographic) data set represents approximately
22 hours of one ECG channel sampled at 250 Hz.

Table 2. Data sets used in experiments

Time series Category Length

PURE RANDOM synthetic 106

RANDOM WALK synthetic 108

ECG [12] real 2 · 107

Goals. In the experiments we investigated a) performance of our algorithm,
b) impact of the queue size on the speedup and c) runtime of our algorithm in
comparison with analogues for GPU and FPGA.
1 supercomputer.susu.ru/en/computers/tornado/

supercomputer.susu.ru/en/computers/tornado/

302 A. Movchan and M. Zymbler

4.1 Performance

On the PURE RANDOM data set our algorithm shows (Fig. 5a) a two times
higher performance than the parallel algorithm for CPU only.

Experimental results on RANDOM WALK data set (Fig. 5b) show that our
algorithm is more effective for longer queries. In case of shorter queries the
algorithm has the same performance as parallel algorithm for CPU only.

For the experiments on ECG data set we used a subsequence TN−nn of the
whole time series T as a query to prevent from finding the most similar sub-
sequence at the early stage of computations and, in turn, to provide sufficient
amount of work on DTW computation. Our algorithm shows (Fig. 5c) almost
three times higher performance than the parallel algorithm for CPU only.

(a) PURE RANDOM data set (b) RANDOM WALK data set

(c) ECG data set

Fig. 5. Performance of the algorithm

Time Series Subsequence Similarity Search Under Dynamic Time 303

4.2 Impact of Queue Size

Results of the experiments are depicted in Fig. 6. In the current experimental
environment, i.e. number of cores of the coprocessor C is 602, hyperthreading
factor of the coprocessor h is 4, optimal number of candidates to be processed
by a coprocessor’s thread W is 10, so optimal number of the elements in the
queue is 2400. Experimental results described above have been achieved with
this queue size.

(a) PURE RANDOM data set (b) RANDOM WALK data set

(c) ECG data set

Fig. 6. Impact of queue size on the speedup.eps

4.3 Comparison with Algorithms for GPU and FPGA

We compared the performance of our algorithm with analogues for GPU and
FPGA developed in [14] (there is no comparison with results in [17] because
that research was devoted to a little bit different problem of search a set of
local-best-match subsequences). We repeated the experiments presented in that
paper using the same data set and query length.
2 One core is not involved in computations as it is recommended by the Intel Xeon

Phi programmer’s manual.

304 A. Movchan and M. Zymbler

The results of the experiments are depicted in Fig. 7, here percentage on
the top of the bar indicates a part of subsequences that have not been pruned
and subjected to the DTW computation in our experiments. We also add to the
chart results of experiments on random walk and ECG data sets.

Fig. 7. Comparison of performance

We took into account that the peak performance of the hardware we used
is significantly greater than its counterparts of that paper, i.e. overall peak per-
formance of our hardware was 1.44 TFLOPS whereas GPU as NVIDIA Tesla
C1060 had 77.8 GFLOPS and FPGA as Xilinx Virtex-5 LX-330 had 65 GFLOPS.
To provide more “fair” comparison we added to the chart hypothetical results
for modern NVIDIA Tesla K40 (1.43 TFLOPS)3 and Xilinx Virtex-7 980XT
(0.99 TFLOPS)4 multiplying real results of NVIDIA Tesla C1060 and Xilinx
Virtex-5 LX-330 by a respective scaling factor. As we can see our algorithm
does not concede to analogous on performance.

5 Conclusion

In this paper we have presented an approach to time series subsequence similar-
ity search under DTW distance on the Intel Many Integrated Core architecture.
The parallel algorithm combines capabilities of CPU and the Intel Xeon Phi
coprocessor. The coprocessor is exploited only for DTW computations whereas
CPU performs lower bounding, prepares subsequences for the coprocessor and
computes DTW as a last resort. CPU supports a queue of candidate subse-
quences and the coprocessor computes DTW for every candidate. Experiments

3 www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
4 www.xilinx.com/publications/prod mktg/Virtex7-Product-Brief.pdf

www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
www.xilinx.com/publications/prod_mktg/Virtex7-Product-Brief.pdf

Time Series Subsequence Similarity Search Under Dynamic Time 305

on synthetic and real data sets have shown that our algorithm does not concede
to analogous algorithms for GPU and FPGA on performance.

As future work we plan to extend our research for the cases of several copro-
cessors and cluster system based on nodes equipped with the Intel Xeon Phi
coprocessor(s).

Acknowledgments. This work was financially supported by the Ministry of educa-
tion and science of the Russian Federation (“Research and development on priority
directions of scientific-technological complex of Russia for 2014–2020” Federal Pro-
gram, contract No. 14.574.21.0035).

References

1. Abdullaev, S., Lenskaya, O., Gayazova, A., Sobolev, D., Noskov, A., Ivanova, O.,
Radchenko, G.: Short-range forecasting algorithms using radar data: Translation
estimate and life-cycle composite display. Bull. of South Ural State University.
Series: Comput. Math. and Soft. Eng. 3(1), 17–32 (2014)

2. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Fayyad, U.M., Uthurusamy, R. (eds.) KDD Workshop, pp. 359–370.
AAAI Press (1994)

3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. PVLDB 1(2), 1542–1552 (2008)

4. Duran,A.,Klemm,M.:The intelmany integrated core architecture. In: Smari,W.W.,
Zeljkovic,V. (eds.) HPCS, pp. 365–366. IEEE (2012)

5. Dyshaev, M., Sokolinskaya, I.: Representation of trading signals based on Kaufman
adaptive moving average as a system of linear inequalities. Bull. of South Ural State
University. Series: Comput. Math. and Soft. Eng. 2(4), 103–108 (2013)

6. Epishev, V., Isaev, A., Miniakhmetov, R., Movchan, A., Smirnov, A., Sokolinsky, L.,
Zymbler, M., Ehrlich, V.: Physiological data mining system for elite sports. Bull. of
SouthUral StateUniversity. Series: Comput.Math. and Soft. Eng.2(1), 44–54 (2013)

7. Fu, A.W.-C., Keogh, E.J., Lau, L.Y.H., Ratanamahatana, C.A.: Scaling and
time warping in time series querying. In: Böhm, K., Jensen, C.S., Haas, L.M.,
Kersten, M.L., Larson, P., Ooi, B.C. (eds.) Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August 30–September
2, 2005, pp. 649–660. ACM (2005)

8. Keogh, E.J., Lau, L.Y.H., Ratanamahatana, C.A., Wong, R.C.-W.: Scaling and
time warping in time series querying. VLDB J. 17(4), 899–921 (2008)

9. Keogh, E.J., Wei, L., Xi, X., Vlachos, M., Lee, S.-H., Protopapas, P.: Support-
ing exact indexing of arbitrarily rotated shapes and periodic time series under
Euclidean and warping distance measures. VLDB J. 18(3), 611–630 (2009)

10. Kim, S.-W., Park, S., Chu, W.W.: An index-based approach for similarity search
supporting time warping in large sequence databases. In: Georgakopoulos, D.,
Buchmann, A. (eds.) Proceedings of the 17th International Conference on Data
Engineering, Heidelberg, Germany, April 2–6, 2001, pp. 607–614. IEEE Computer
Society (2001)

11. Lim, S.-H., Park, H.-J., Kim, S.-W.: Using multiple indexes for efficient subsequence
matching in time-series databases. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.)
DASFAA 2006. LNCS, vol. 3882, pp. 65–79. Springer, Heidelberg (2006)

306 A. Movchan and M. Zymbler

12. Rakthanmanon,T.,Campana,B.J.L.,Mueen,A.,Gustavo,B.,Westover,B., Zhu,Q.,
Zakaria, J., Keogh, E.J.: Searching and mining trillions of time series subsequences
under dynamic time warping. In: Yang, Q., Agarwal, D., Pei, J. (eds.) KDD, pp. 262–
270. ACM (2012)

13. Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring under the time
warping distance. In: Chirkova, R., Dogac, A., Özsu, M.T., Sellis, T.K. (eds.) Pro-
ceedings of the 23rd International Conference on Data Engineering, ICDE 2007,
The Marmara Hotel, Istanbul, Turkey, April 15–20, 2007, pp. 1046–1055. IEEE
(2007)

14. Sart, D., Mueen, A., Najjar, W.A., Keogh, E.J., Niennattrakul, V.: Accelerating
dynamic time warping subsequence search with GPUs and FPGAs. In: Webb, G.I.,
Liu, B., Zhang, C., Gunopulos, D., Wu, X. (eds.) ICDM, pp. 1001–1006. IEEE
Computer Society (2010)

15. Sharanyan, S., Arvind, K., Rajeev, G.: Implementing the dynamic time warping
algorithm in multithreaded environments for real time and unsupervised pattern
discovery. In: Department of Computer Science and Motial Nehru National Insti-
tute of Technology Engineering, ICCCT, pp. 394–398. IEEE Computer Society
(2011)

16. Takahashi, N., Yoshihisa, T., Sakurai, Y., Kanazawa, M.: A parallelized data
stream processing system using dynamic time warping distance. In: Barolli, L.,
Xhafa, F., Hsu, H.-H. (eds.) 2009 International Conference on Complex, Intelli-
gent and Software Intensive Systems, CISIS 2009, Fukuoka, Japan, March 16–19,
2009, pp. 1100–1105. IEEE Computer Society (2009)

17. Wang, Z., Huang, S., Wang, L., Li, H., Wang, Y., Yang, H.: Accelerating subse-
quence similarity search based on dynamic time warping distance with FPGA. In:
Hutchings, B.L., Betz, V. (eds.) The 2013 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA 2013, Monterey, CA, USA, February
11–13, 2013, pp. 53–62. ACM (2013)

18. Zhang, Y., Adl, K., Glass, J.R.: Fast spoken query detection using lower-bound
dynamic time warping on graphical processing units. In: 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto,
Japan, March 25–30, 2012, pp. 5173–5176. IEEE (2012)

Subspace Nearest Neighbor Search - Problem
Statement, Approaches, and Discussion

Position Paper

Michael Hund1(B), Michael Behrisch1, Ines Färber2, Michael Sedlmair3,
Tobias Schreck4, Thomas Seidl2, and Daniel Keim1

1 University of Konstanz, Konstanz, Germany
{michael.hund,michael.behrisch,daniel.keim}@uni-konstanz.de

2 RWTH Aachen University, Aachen, Germany
{faerber,seidl}@informatik.rwth-aachen.de

3 University of Vienna, Wien, Austria
michael.sedlmair@univie.ac.at

4 Graz University of Technology, Graz, Austria
tobias.schreck@cgv.tugraz.at

Abstract. Computing the similarity between objects is a central task
for many applications in the field of information retrieval and data min-
ing. For finding k-nearest neighbors, typically a ranking is computed
based on a predetermined set of data dimensions and a distance func-
tion, constant over all possible queries. However, many high-dimensional
feature spaces contain a large number of dimensions, many of which may
contain noise, irrelevant, redundant, or contradicting information. More
specifically, the relevance of dimensions may depend on the query object
itself, and in general, different dimension sets (subspaces) may be appro-
priate for a query. Approaches for feature selection or -weighting typi-
cally provide a global subspace selection, which may not be suitable for
all possibly queries. In this position paper, we frame a new research prob-
lem, called subspace nearest neighbor search, aiming at multiple query-
dependent subspaces for nearest neighbor search. We describe relevant
problem characteristics, relate to existing approaches, and outline poten-
tial research directions.

Keywords: Nearest neighbor search · Subspace analysis and search ·
Subspace clustering · Subspace outlier detection

1 Introduction

Searching for similar objects is a crucial task in many applications, such as image
or information retrieval, data mining, biomedical applications, and e-commerce.
Typically k-nearest neighbor queries are used to compute one result list of similar
objects derived from a given set of data dimensions and a distance function.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 307–313, 2015.
DOI: 10.1007/978-3-319-25087-8 29

308 M. Hund et al.

However, the consideration of all dimensions and a single distance function may
not be appropriate for all queries, as we will discuss in the following.

For datasets with a high number of dimensions, similarity measures may
loose their discriminative ability since similarity values concentrate about their
respective means. This phenomenon, known as the curse of dimensionality [2],
leads to an instability of nearest neighbor queries in high-dimensional spaces. The
instability increases with the proportion of irrelevant or conflicting dimensions.

Consider the following clinical example: A physician is treating a patient
with an unknown disease and wants to retrieve similar patients along with their
medical history (treatment, outcome, etc.). In the search process, the physician
is confronted with a high number of unrelated diseases and respective symp-
toms. The most similar patients (nearest neighbors, NN) based on all features
are often not suited to guide the diagnostic process as irrelevant dimensions,
such as the hair color, may dominate the search process. Meaningful conclusions
can only be drawn if the characteristic dimensions for the particular disease are
considered. The challenging question is therefore, what is the relevant subset of
dimensions (=subspace) specific for a certain query? Do multiple relevant sub-
spaces exist? Many other application examples can be found, where NN search
in query-dependent subspaces is potentially relevant, e.g., in multimedia retrieval
a query may depend on the input object type; in recommender systems a query
may depend on user preferences; or a kNN-classifier may depend on the class
label.

Consequently, we can derive a novel research challenge, which we call sub-
space nearest neighbor search, for short SNNS. Its central idea is to incorpo-
rate a query-dependency focus into the relevance definition of subspaces. As one
example, SNNS allows deriving discriminative subspaces in which the NN of
a query can be separated from the rest of the data. Alternatively, in the above
example, the physician will focus on a large number of dimensions to maxi-
mize the semantic interpretability of the NN along with the query-dependent
subspace.

SNNS is inspired by works in subspace clustering and -search. However,
it differs from these fields, as the goal is to derive query-dependent subspaces.
Therefore, we define a novel problem definition. In SNNS, our goal is to (1)
detect query dependent and previously unknown subspaces that are relevant,
and (2) derive the corresponding nearest neighbor set to the query within that
corresponding subspace. This paper addresses the following questions: “What is a
relevant subspace for a given query?”, “How can we computationally extract this
relevance information?”, and “How can we adapt ideas from subspace clustering,
outlier detection, or feature selection for SNNS?”

2 Related Problems

Next, we give a concise overview of the fields related to SNNS. An overview
about the fields and its relation to SNNS is also given in Fig. 1 A - D .

Subspace Nearest Neighbor Search 309

Fig. 1. Focus of Subspace Nearest Neighbor Search (SNNS) and related approaches:
While SNNS aims at multiple, query-dependent subspaces, related fields focus on a
single result or on subspaces with different properties.

Feature Selection, Extraction and Weighting. The aim of feature selection
[10] is to determine one subspace that improves a global optimization criterion
(e.g., classification error). As shown in B , there are two main differences to
SNNS: Feature selection derives a single subspace (result view) for all analysis
tasks, and the resulting subspace is query independent. In contrast, SNNS is
aiming at a faceted result view of multiple, query-dependent subspaces.

Subspace Clustering. Subspace clustering aims at finding clusters in different
axis-parallel or arbitrarily-oriented subspaces [9]. The approaches are based on
subspace search methods and heuristics to measure the subspace cluster quality.
The computation of clusters and subspaces can be tightly coupled or decou-
pled, see e.g., [8]. As shown in C , subspace clustering and SNNS both aim
at a facetted result, but differ in their relevance definition of a subspace: dense
clusters vs. query-dependent nearest neighbors in multiple subspaces.

Subspace Outlier Detection. Methods in this area search for subspaces in
which an arbitrary, or a user-defined object is considered as outlier [13]. As
before, the search process consists of subspace search methods and criteria to
measure the subspace quality, e.g., by item separability [11]. Subspace outlier
detection is similar to SNNS as both approaches aim for query-dependent sub-
spaces D , however, the relevance definition of a subspace differs significantly as
SNNS searches for objects that are similar to the query, while subspace outlier
detection seeks for objects dissimilar to all other objects.

Query-Dependent Subspace Search. In [5] it was proposed to determine
one query-dependent subspace to improve NN -queries. The authors describe
an approach to measure the quality of a subspace by the separability between
all data records and the NN of a query. In their evaluation, they show that a
query-dependent subspace reduces the error of a NN -classification substantially.
The work can be seen as initial approach on SNNS and, therefore, most closely
relates to our work. However, the general aims of [5] differ, as it does not search
for a facetted result view, i.e. different NN sets in multiple, different subspaces.

310 M. Hund et al.

Fig. 2. Illustration of our subspace model: A subspace is considered relevant, iff the
nearest neighbors are similar to the query in all dimensions of the subspace.

Other Related Problems. Besides these main lines, another related field is
that of recommender systems [1], which focuses on similarity aspects to retrieve
items of interest. Intrinsic dimensionality estimation [3] shares the intuition of a
minimum-dimensional space that preserves the distance relationships. One other
recent work focuses on the efficient NN retrieval in subspaces [7].

3 Definition of Subspace Nearest Neighbor Search

In the following we define characteristics of the SNNS problem and introduce
an initial model to identify relevant candidate subspaces.

The aim of SNNS can be divided into two coupled tasks: (a) detect all
previously unknown subspaces that are relevant for a NN search of a given
query, and (b) determine the respective set of NN within each relevant subspace.
Different queries may change the relevance of subspaces and affect the resulting
NN -sets. Therefore, the characteristics of the query need to be considered for
the subspace search strategy and the evaluation criterion (c.f. Section 4).

We propose an initial subspace model1 to derive the relevance of a subspace
w.r.t. a NN -search. As illustrated in Fig. 2, a subspace is considered relevant, iff
the following holds: “A set of objects a, b, c are NN of the query q in a subspace
s, iff a, b, and c are a NN of q in all dimensions of s.” More formally:

∀n∈nn(q,s) and ∀d∈dim(s) : n ∈ nn(q, d)

whereby nn(q, s) indicates the NN of q in s, and dim(s) the set of dimensions
of the subspace. This principle of a common set of NN in different dimensions
is similar to the concept of the shared nearest neighbor distance [6] or consensus
methods. The intuition is that the member dimensions of a subspace agree (to
a certain minimum threshold) in their NN rankings, when considered individ-
ually.

This item-based subspace concept is different to the distance distribution-
based model presented in [5], or most subspace clustering approaches. Besides
1 Our model assumes axis-parallel subspaces. Further research is necessary to analyze

the usefulness of arbitrarily-oriented subspaces for NN search.

Subspace Nearest Neighbor Search 311

(a) Data distribution. (b) Characteristic dim. (c) Non-characteristic
dim.

Fig. 3. Distance distribution based measure to determine the characteristic of a dimen-
sion w.r.t. a NN search of a given queries p and q.

the advantage of a semantic NN interpretability, the model allows to compute
heterogeneous subspaces. The relevance of a subspace is independent of a global
distance function, but relies on individual NN computations in all dimensions.

Not every subspace, considered relevant by our model, is necessarily inter-
esting in all application scenarios. In the medical example from the beginning, a
physician will focus on the semantic interpretability of the results, while accept-
ing potential redundant information. In other scenarios, the minimal description
of a subspace may be preferred (c.f. intrinsic dimensionality [3]). Alternative
interestingness definitions, such as focusing on subspaces with a minimum –
respectively maximum– number of NN could be possible, too. Generally, the
quality criterion for nearest neighbor subspaces, has to be regarded as applica-
tion dependent.

4 Discussion and Open Research Questions

While initial experiments2 hint on the usefulness of SNNS, we have identified
six central research directions that should be explored in the future.

Determine NN per Dimension. A central question that arises from the
model definition is when a data record is considered as NN to q. Whenever
similarity is modeled by a distance function we need to define, detect, or learn
an appropriate NN membership threshold.

Efficient Search Strategy. The number of axis-parallel subspaces is 2d −1 for
a d-dimensional dataset. Consequently, an efficient search strategy is necessary
to quickly detect relevant subspaces. Top-down approaches, based on a locality
criterion [9], assume that relevant subspaces can be approximated in full space.
Yet, our initial tests lead to the assumption that shared NN in independent
dimensions, as required by our model, can benefit from a bottom-up strategy
starting from NN in individual dimensions. Our model fulfills the downward
closure property [9] which allows to make use of APRIORI-like algorithms.

Query-Based Interestingness for Dimensions. The subspace search strat-
egy can further benefit by focusing on interesting dimensions. We propose a
2 C.f. supplementary material on our website: http://files.dbvis.de/sisap2015/.

http://files.dbvis.de/sisap2015/

312 M. Hund et al.

measure for single dimensions, based on the idea described in [5] that extracts
the characteristic of dimension w.r.t. the query. As shown in Fig. 3, dimen-
sions in which most data records are similar to the query are considered as
non-characteristic, hence they are less interesting for possible subspaces.

Subspace Quality Criterion. Novel criteria are needed to rank the detected
subspaces by their interestingness. The intuition to measure a subspace’s quality
differs significantly from earlier approaches, as outlined in Section 2. In addition,
novel user interfaces and visualizations are necessary to understand and interpret
multiple, partially redundant, subspaces and their different rankings [4].

Evaluation. Evaluating subspace analysis methods is challenging, as obtaining
real-world dataset with annotated subspace information is expensive [12]. Like-
wise, synthetic data for the evaluation of subspace clustering (e.g., OpenSubspace
Framework [12]), differs in the analysis goals (c.f. Section 2). Hence, research will
benefit from a established ground-truth dataset for the evaluation of SNNS.

Multi-input SNNS. In many scenarios such as in the medical domain, a small
set of query records needs to be investigated by means of SNNS. One challenge
for multi-input SNNS are dimensions in which the set of queries differ.

5 Conclusion

This position paper outlines a novel research problem, called subspace nearest
neighbor search (SNNS), which aims at determining query-dependent subspaces
for nearest neighbor search. Initial experiments have proven the usefulness and
that it is beneficial to drive research in this field.

Acknowledgments. We would like to thank the German Research Foundation (DFG)
for financial support within the projects A03 of SFB/Transregio 161 “Quantitative
Methods for Visual Computing” and DFG-664/11 “SteerSCiVA: Steerable Subspace
Clustering for Visual Analytics”.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE TKDE 17(6),
734–749 (2005)

2. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neigh-
bor” meaningful? In: Proc. 7th Int. Conf. Database Theory, pp. 217–235 (1999)

3. Camastra, F.: Data dimensionality estimation methods: a survey. Pattern Recog-
nition 36(12), 2945–2954 (2003)

4. Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual
comparison for information visualization. Information Visualization 10(4), 289–309
(2011)

5. Hinneburg, A., Keim, D.A., Aggarwal, C.C.: What is the nearest neighbor in high
dimensional spaces? In: Proc. 26th Int. Conf. on VLDB, Cairo, Egypt (2000)

Subspace Nearest Neighbor Search 313

6. Houle, M.E., Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Can shared-
neighbor distances defeat the curse of dimensionality? In: Gertz, M., Ludäscher, B.
(eds.) SSDBM 2010. LNCS, vol. 6187, pp. 482–500. Springer, Heidelberg (2010)

7. Houle, M.E., Ma, X., Oria, V., Sun, J.: Efficient algorithms for similarity search in
axis-aligned subspaces. In: Traina, A.J.M., Traina Jr, C., Cordeiro, R.L.F. (eds.)
SISAP 2014. LNCS, vol. 8821, pp. 1–12. Springer, Heidelberg (2014)

8. Kailing, K., Kriegel, H.-P., Kröger, P., Wanka, S.: Ranking interesting subspaces for
clustering high dimensional data. In: Lavrač, N., Gamberger, D., Todorovski, L.,
Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 241–252. Springer,
Heidelberg (2003)

9. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
TKDD 3(1), 1 (2009)

10. Liu, H., Motoda, H.: Computational Methods of Feature Selection. Data Mining
and Knowledge Discovery Series. Chapman & Hall/CRC Press (2007)

11. Micenkova, B., Dang, X.H., Assent, I., Ng, R.: Explaining outliers by subspace
separability. In: 13th. IEEE ICDM, pp. 518–527 (2013)

12. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace
projections of high dimensional data. In: VLDB, vol. 2, pp. 1270–1281 (2009)

13. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection
in high-dimensional numerical data. Statistical Analysis and Data Mining 5(5),
363–387 (2012)

© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 314–319, 2015.
DOI: 10.1007/978-3-319-25087-8_30

Query-Based Improvement Procedure
and Self-Adaptive Graph Construction Algorithm

for Approximate Nearest Neighbor Search

Alexander Ponomarenko()

National Research University Higher School of Economics, Nizhny Novgorod, Russia
aponomarenko@hse.ru

Abstract. The nearest neighbor search problem is well known since 60s. Many
approaches have been proposed. One is to build a graph over the set of objects
from a given database and use a greedy walk as a basis for a search algorithm.
If the greedy walk has an ability to find the nearest neighbor in the graph start-
ing from any vertex with a small number of steps, such a graph is called a na-
vigable small world. In this paper we propose a new algorithm for building
graphs with navigable small world properties. The main advantage of the pro-
posed algorithm is that it is free from input parameters and has an ability to
adapt on the fly to any changes in the distribution of data. The algorithm is
based on the idea of removing local minimums by adding new edges. We real-
ize this idea to improve search properties of the structure by using the set of
queries in the execution stage. An empirical study of the proposed algorithm
and comparison with previous works are reported in the paper.

Keywords: Nearest neighbor search · Non-metric search · Approximate search

1 Introduction

The nearest neighbor search problem has naturally appeared in many fields of science.
The problem is formulated as follows. Let be a domain, be a finite set
of objects (database), be a distance function. We need to prepro-
cess in such a way that for a given query the k-closest objects from can

be found as fast as possible. Many methods have been proposed for searching an
exact nearest neighbor as well as an approximate. Some recent methods are [6], [7].
Also a good overview of methods for the exact nearest neighbor search can be found
in [1] and an empirical comparison of several approximate state of the art methods
can be found in [3]. One of the recent promising approaches for the approximate
nearest neighbor search problem is to build a graph over the set of objects

 and use the greedy walk algorithm as a base for the search algorithm. Thus, the
search of k-closest objects takes the form of the search of vertices in the graph ,
where each object from the set uniquely corresponds to a different vertex of the
graph. Several works based on this approach have been proposed [2,4,5]. Methods [2, 5]

D DX ⊂
);0[: +∞→× RDDd

X Dq∈ X

),(EXG

X
G

X

Query-Based Improvement Procedure and Self-Adaptive Graph Construction Algorithm 315

are based on the idea of connecting a set of approximate Voronoi regions into a network
where one region corresponds to one data point. Voronoi regions are approximated
by k-closest points together with a set of points for which the current point is one
of the k-closest. The main drawback of this method is that it requires initial setting
of the parameter k which in turn requires a priori knowledge about the properties of
the input data set (a small value of the parameter leads to a small accuracy of search;
too large value causes excessive search complexity and needs more memory to store
the graph).

In this paper we explore an idea how to form a graph without any a priori know-
ledge of input data. Instead of finding k-closest neighbors we explicitly try to build a
graph in such a way that the greedy walk algorithm is able to find a new data point
starting from any other random vertex of the current graph . Moreover we propose
a way to improve search properties of the structure with a similar idea by using the set
of incoming queries.

2 Greedy Walk Algorithm

As mentioned above we use an approach where each object from the set is uni-
quely mapped to a different vertices of the graph . Thus, the search of k-closest
objects takes the form of the search of vertices in the graph. As a search algorithm we
suggest to use a simple greedy walk algorithm. The pseudo code of the greedy walk
algorithm is presented below. The greedy walk algorithm is quite simple. It starts
from some vertex ; calculates the distance between the query and each neighbor

of ; goes to the vertex for which the distance is minimal; calculates the

distance

between the query and each object from neighbors

of vertex

 and so on, until the algorithm cannot improve the distance to the query. The

vertices in which the greedy walk stops we call “local minimums”. Note that the
Greedy_Walk algorithm with local minimum also returns the set . This set
contains all vertices that were contacted during a search (lines 2 and 5).

Greedy_Walk(, ,)

1

2

3 while do

4

5

6 end while
7 return ,

G

X
G

startv

startv currv

d q)(currvN

currv

P P

Dq∈),(EVG Vvstart ∈
startcurr vv ←

)(currvNPP ∪←
),()),((min

)(
curr

vNx
vqdxqd

curr

<
∈

)(
)),(min(arg

currvNx
curr xqdv

∈
←

)(currvNPP ∪←

currv P

316 A. Ponomarenko

3 Insertion Algorithm

The insertion algorithm is based on the idea, that each time when we insert a new
vertex to the graph , we can explicitly check the possibility of finding the new
vertex starting from other vertices by the greedy algorithm. We also exploit a trick of
keeping alive old links. Since time this links starting to be used as long links by the
greedy search algorithm. So, this trick allows us to produce the navigable small world
property for our graph.

At first we will describe the Get_Local_Minimums function. It returns the set
of local minimums in which randomly started greedy walks stop. The
Get_Local_Minimums algorithm has parameter which means how many
times we allow a randomly started greedy walk not to bring a new local minimum.
Also the Get_Local_Minimums function returns the set which we consider
as global view of the all greedy walks.

Get_Local_Minimums(, ,)
01 ;

02 while do
03 Random()//put to random vertex from

04 Greedy_Walk(, ,)

05 if then ;
08 else
09 end while
11 return ,

Insert_By_Repairing(, ,)

01 ;

02 Get_Local_Minimums(, ,)

03

04 for each do
05

06

07

08 end for

Now we ready to describe Insert_By_Repairing procedure. At first, we collect
in the set all local minimums (line 02) which we found by a number of randomly
started greedy walks. After that, we remove these local minimums in the following
way. For every local minimum in the set of all viewed vertices (points) we
select the vertex such that the distance from to is less than the distance
from to , and the distance from to is minimal. So, we make the local

G

τ

P

Dq∈),(EVG Ν∈τ
{}←L 0'←τ

ττ <'
←startv V startv V

←Pv, q G startv
Lv∉ 0'←τ vLL ∪←

1'' +← ττ

L P

Xx∈),(EVG Ν∈τ
xVV ∪← {}←P

←PL, x G τ
xPP ∪←

Lz∈
)},(),(:{' xzdxydPyP <∈←

)),((minarg' yzdx
P'y∈

←

)',(),'(xzzxEE ∪∪←

L

z P
'x 'x x

z x z 'x

Query-Based Improvement Procedure and Self-Adaptive Graph Construction Algorithm 317

Fig. 1. Recall after Improving by queries
applying Repair_By_Query procedure

Fig. 2. The overall efficiency of the structure
after applying Repair_By_Query procedure

minimum to be able to route the greedy walk to the vertex which is closer to
the destination point by adding edge between and .

Finally, we present procedure Add_All which builds a data structure over the set
. It sequentially selects a random object from the set and inserts it to the

graph by running the Insert_By_Repairing procedure.

Add_All(,)
01
02 while do

03 Random();
04 Insert_By_Repairing(, ,)
05 end while

4 Improvement Based on Queries

The idea of repairing by removing local minimums can be extended to improving
the search properties of the structure by queries at the query execution stage. In the
procedure Repair_By_Query we do the same as in Insert_By_Repairing
procedure with only one exception. We search the local minimums relative to the
query object instead of the inserted one.

Repair_By_Query(, ,)

01 Get_Local_Minimums(, ,)

02

03 for each do
04

05

06

07 end for

0

0,2

0,4

0,6

0,8

1

0E+00 2E+04 4E+04 6E+04 8E+04 1E+05

Re
ca

ll

Number of Queries
m=1 m=2 m=4

1

10

100

0,5 0,6 0,7 0,8 0,9 1

Im
pr

ov
. i

n
Ef

fic
ie

nc
y

Recall
100k queries 0 queries 1m queries

z 'x
x z 'x

X X

DX ⊂ Ν∈τ
{})({},←G

{}≠X
←x X xXX \←
←G x G τ

q
Dq∈),(EVG Ν∈τ

←PL, q G τ
)),((minarg qydx

Ly∈
←

xLz \∈
)},(),(:{' qzdqydPyP <∈←

)),((minarg' yzdx
P'y∈

←

)',(),'(xzzxEE ∪∪←

318 A. Ponomarenko

Fig. 3. Comparison with NN [5]

Fig. 4. Vertex Degree Distribution

5 Simulations

5.1 Improvement Based on Queries

We have performed simulations in order to verify the idea of improving the data
structure using the stream of incoming queries. We have built a graph by Add_All
algorithm with parameter = 9 on the set of 10,000 points uniformly distributed in
the 30-dimensional unit hyper cube. After that, we generate 100 times 1000 queries
with the same distribution. Each time after applying 1000 times the Re-
pair_By_Query procedure we have measured the value of recall for searching 5
nearest neighbors. As a search algorithm we have used Multi_Search algorithm
proposed in [5]. This algorithm uses the sequences of greedy based searches started
from a random vertex and selects the best results. The parameter “m” is the number of
searches. We have used m = 1, 2, and 4 correspondingly. As can been seen from Fig.
1 the accuracy of each search has increased after applying the Repair_By_Query
procedure.

Also we have measured how the overall efficiency of the structure has changed
when applying Repair_By_Query procedure. We have measured the values of
improvement in efficiency (how many times less the algorithm needs to calculate
distances than the exhaustive search) and values of recall after applying Re-
pair_By_Query procedure 100,000 and 1,000,000 times to the structure built over
the set of 100,000 30-dimensional points by Insert_By_Repairing algorithm
(Fig. 2). Unfortunately, it has not made a significant contribution to the overall effi-
ciency of the structure.

5.2 Insertion by Repairing

We have made the comparison of the search properties of the graphs produced by
Insert_By_Repairing (parameter = 9) algorithm with the algorithm of con-
necting with k-nearest neighbors [5]. The parameters were w=10; k=12 and 20 accor-
dingly. The parameter “w” is the number of searches used by Multi_Search pro-
cedure at the construction stage As a data set we have used one million random points

1E+02

1E+03

1E+04

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Im
ro

v.
 in

 e
ffi

ci
en

cy

Recall
NN12 Rep. t=9 NN20

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+00 1E+01 1E+02 1E+03 1E+04

Ve
rt

ex
 D

eg
re

e

Number of Vertices
Nearest Neighbor k=12 w=10 Insert by Repair

τ

τ

Query-Based Improvement Procedure and Self-Adaptive Graph Construction Algorithm 319

uniformly distributed in the unit 30-dimensional hyper cube. As a distance function
we use . The result of comparison is presented in Fig. 3 and a valuation of the

distribution of the vertex degrees is presented in Fig. 4.

6 Conclusion

In this paper we have explored the idea of using information about local minimums
during the insertion and during the search. We have proposed an algorithm which
uses this information to improve the accuracy of the search procedure. Also based on
this idea we have proposed a new graph construction algorithm. Despite that the pro-
posed algorithm cannot outperform the algorithm of connecting with k-nearest neigh-
bors, it demonstrates the idea that the information about local minimums can be used
for data insertion. Moreover we suppose that this idea can be used for tuning parame-
ters of other data insertion algorithms, for example for tuning the parameter k in the
algorithm of connection with k-nearest neighbors [5].

Acknowledgements. The work was conducted at National Research University Higher School
of Economics and supported by RSF grant 14-41-00039.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces.
In: ACM computing surveys (CSUR) 33, vol. 3, pp. 273–321 (2001)

2. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Scalable distributed algorithm for
approximate nearest neighbor search problem in high dimensional general metric spaces.
In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 132–147. Springer,
Heidelberg (2012)

3. Ponomarenko, A., Avrelin, N., Naidan, B., Boytsov, L.: Comparative analysis of data
structures for approximate nearest neighbor search. In: DATA ANALYTICS 2014, The
Third International Conference on Data Analytics, pp. 125–130 (2014)

4. Lifshits, Y., Shengyu, Z.: Combinatorial algorithms for nearest neighbors, near-duplicates
and small-world design. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 318–326. Society for Industrial and Applied Mathematics
(2009)

5. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neighbor
algorithm based on navigable small world graphs. Information Systems 45, 61–68 (2014)

6. Chávez, E., Graff, M., Navarro, G., Téllez, E.S.: Near neighbor searching with K nearest
references. Information Systems 51, 43–61 (2015)

7. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity spaces.
ACM Transactions on Database Systems (TODS) 32(4), 29 (2007)

2L

Posters

Is There a Free Lunch for Image Feature
Extraction in Web Applications

Martin Krulǐs(B)

Parallel Architectures/Algorithms/Applications Research Group,
Faculty of Mathematics and Physics, Charles University in Prague,

Malostranské nám. 25, Prague, Czech Republic
krulis@ksi.mff.cuni.cz

Abstract. Feature extraction is one of the essential parts of multimedia
indexing in similarity search and content-based retrieval methods. Most
applications that employ these methods also implement their client side
interface using web technologies. The world wide web has become a well-
established platform for distributed software and virtually all personal
computers, tablets, and smartphones are equipped with a web browser.
In the past, most applications employed a strict client-server approach,
where the client part (running in the browser) handles only the user inter-
face and the server side handles data storage and business logic. However,
the client-side technologies leaped forward with the new HTML5 stan-
dard and the web browser has become capable of handling much more
complex tasks. In this paper, we propose a model where the multimedia
indexing is handled at the client side, which reduces necessary computa-
tional power of the server to run a web application that manages large
multimedia database. We have implemented an in-browser image feature
extractor and compared its performance with a server implementation.

Keywords: HTML5 · Image · Feature extraction · Multimedia indexing

1 Introduction

The content-based multimedia retrieval [2] in connection with the query by
example paradigm has become an integral part of various multimedia retrieval
systems (e.g., web portals). The content-based retrieval complements traditional
keyword-based retrieval techniques that require expensive manual, automatic, or
assistive tagging [15]. In order to search the multimedia data in the content-based
way, the systems employ a suitable similarity model comprising data descriptors
and similarity measures reflecting particular retrieval needs.

In case of image data, the similarity model attempts to capture visual fea-
tures, that are easily differentiated by the human eye such as dominant colors
or shapes. The process of extracting these features is usually computationally
demanding. Even though the extraction is performed only once per each new
image, the process itself presents nontrivial costs for the whole system.

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 323–331, 2015.
DOI: 10.1007/978-3-319-25087-8 31

324 M. Krulǐs

On the other hand, the data are often inserted by users via specialized appli-
cations or web interface. Therefore, it might be beneficial to offload the indexing
process to the client side to reduce demands for computational power at the
server side or in the cloud.

In order to harness computational power of the connected users, the applica-
tion must shift significant amount of code to the client side. In the past, the only
way to do that was to provide a native application (i.e., a thick client) which
was installed and executed by the user. This approach is quite inconvenient and
possibly even dangerous for the user.

At preset, we recognize a massive shift in application platforms as many
desktop applications have moved to the web. With the standardization of new
HTML5 technologies, the web browser has become a convenient platform that
does not only display web pages, but also provide means for complex user inter-
action and a sandbox that can run scripts downloaded from the Internet in
a relatively safe manner. In this work, we have utilized HTML5 technologies
for a client-side image feature extraction. Hence, a multimedia application can
perform image indexing along with the image upload, which basically shifts its
computational cost from the application operator to the application users. We
also provide a comparison of the client-side extractor with a highly parallel
extractor [9], which could be used at server side.

Section 2 revises related work. The image feature extraction process which
was selected as a representative multimedia indexing operation is described in
Section 3. In Section 4, we introduce some innovations presented in HTML5 and
how they can be used to implement feature extraction at client side. Section 5
summarize our experimental results and compare the speed of the client-side
extractor with the GPU extractor. Section 6 concludes our paper.

2 Related Work

Utilizing unused resources of the desktop computers is not a new idea. Many
systems, such as Entropia [1] or SETI@home [13], have successfully used idle
CPU in the past. With new HTML5 technologies, this task become even easier
and could be employed for many various applications.

The idea of utilizing web client as a computational platform emerged as
soon as API for asynchronous HTTP transfers (generally called AJAX [4]) has
become supported in majority of web browsers. One of the first attempts in this
area was made by Merelo-Guervós et al. [11]. The have created a distributed
computing system in which the workers were implemented in JavaScript and run
in browsers of the users. The system was used to solve a genetic algorithm task,
which requires only small amount of data exchange to relatively large portions of
computational work. The main problem of the system was that the distributed
tasks had to be computed in the main thread of the browser which also needs
to handle all user interface events.

A more recent project that utilized web clients as distributed computational
nodes is the WeevilScout framework [12]. It also communicates with the server

Is There a Free Lunch for Image FeatureExtraction in Web Applications 325

that coordinates the work by the means of AJAX, but it utilizes Web Work-
ers [14] to perform the computations. The system was originally used to solve
a computationally demanding task from the domain of bio-informatics. Another
similar work was presented by Duda et al. [3]. Their framework was designed
to solve evolutionary algorithms and it was tested on the basis of permutation
flowshop scheduling problem.

New HTML technologies also allows additional resources such as operating
memory or persistent storage to be used for the purposes of a distributed system.
For instance, we may consider implementing a distributed data storage that
utilizes WebStorage or IndexDB API in the browser to hold the data at the
client side [8]. However, these resources are much harder to utilize and exploit
than the computational power of the client hardware.

3 Image Feature Extraction

We have selected image feature extraction as a representative of multimedia
indexing algorithm. Even though it is not one of the most computationally
demanding algorithms, it will suffice as a proof of concept and provide us with
general estimates of the client-based implementation overheads. We provide only
a brief review of this algorithm while, since it is detailed in our previous work [9].

The feature extraction process takes an image and produces its feature signa-
ture descriptor. The signature So of an object (image) o is a set of features, which
are points from feature space Fs. Our feature space is in fact a discrete subset of
R

7, where each dimension (domain) has a particular meaning. A point f ∈ Fs is
interpreted as f = (x, y, L, a, b, c, e). The (x, y) coordinates represent a position
within the image, the (L, a, b) properties hold the color information, and (c, e)
are the contrast and entropy values of the image texture. Each feature f from
the signature So is accompanied by a weight value wf ∈ R

+, that determines the
importance of the feature within the set. A larger area with the same color and
texture can be represented by a single feature with greater weight while more
heterogeneous areas are represented by multiple features with smaller weights.

Fig. 1. Example of an image and its feature signature visualization

326 M. Krulǐs

The feature extraction process consist of the following steps:
1. Image preprocessing
2. Feature sampling
3. Clustering

The image preprocessing can be used to change the size of the image or apply
some graphical filters such as blur distortion. These procedures can be used to
normalize the images in the database (e.g., to the same size and proportions)
and to reduce information noise. In our case, we only resample the image to
predefined size.

The feature sampling process uses sampling set of random points from the
image and extract the features (color and texture) at those points. The color is
simply taken from the pixel at the sampling point coordinates and converted to
a CIE Lab [10] color space. The contrast and entropy (c, e values) are computed
by scanning a small rectangular window around the sampling point coordinates
and statistically analysing differences in pixel illumination.

The final clustering algorithm aggregates the information produced by fea-
ture sampling. The produced cluster centroids are used as final feature points
and the feature weights are computed from cluster sizes. We employ a slightly
modified version of k-means algorithm [5]. It uses a fixed number of iterations
instead of producing fixed amount of clusters and the clusters may be dismissed
if they are too small or joined when their centroids are closer than specified
threshold.

4 Extraction in Web Browser

4.1 JavaScript and HTML5 Technologies

Before we describe our solution, we revise new web technologies and APIs, which
were introduced with the new HTML5 standard [6]. These innovations are quite
extensive with respect to previous capabilities of client-side scripts, so we narrow
our focus on features, which are closely related to our problem.

Accessing Files. Original HTML forms and AJAX API allowed uploading files
from the user to server, but the internal contents of the files were not accessible
to the client-side scripts. At present, the browsers implement the FileReader
API which allows reading files from the host system. To ensure security, the
reader can access only files that were explicitly selected by the user, either in
the <input> form element with file type or by a drag-and-drop operation.

The file itself is represented as the File object, which is an extension of
the Blob object. The reader can return the loaded contents of the file as a text
string, as a data URL (with base64 encoded data), or as an ArrayBuffer object
that handles binary contents. In case of the ArrayBuffer object, the binary data
may be subsequently accessed via typed array objects (e.g., Uint8Array) or via
DataView object.

Is There a Free Lunch for Image FeatureExtraction in Web Applications 327

Image Processing. Images are embedded into web pages by elements.
This concept expects that images are external files located by their URL; how-
ever, the image element may receive a data URI with contents of the image (in
base64 encoding) instead of traditional HTTP URL.

One of the most important innovations of HTML5 is the introduction of
<canvas> element. It provides a drawing area which may be used by client-side
scripts to render 2D or even 3D graphics. A canvas is tied with a drawing context
which provide a predefined set of drawing functions. All canvas implementations
support 2d context – i.e., context for basic drawing. Most current browsers also
support webGL context which is basically a binding for selected subset of OpenGL
functions, so the canvas acts as a viewport for GPU-accelerated 3D graphics
rendering engine.

The 2d context can be used for interaction with images. An element
may be drawn on the canvas and the canvas contents may be exported to a data
URI, which can be subsequently used as source for image element. Furthermore, a
rectangular section of canvas may be accessed through ImageData object, which
holds the color values of its pixels in a binary format.

Intensive Computations. Performing intensive computations in a web
browser is quite complicated. Besides the limitations imposed by the JavaScript
language (such as the fact that the code is interpreted or that all numeric values
are stored as 64-bit float numbers), the code is executed in a single thread in
event-driven manner. Therefore, all JavaScript functions invoked in the browser
must be sufficiently short (in the terms of computing time), so they will not
block the application loop that process events from the user interface.

To provide a more suitable environment for computations, HTML5 intro-
duced Web Workers [14] API. A worker code is executed in a separated thread,
so it does not interfere with the user interface operations. Furthermore, the
browser may utilize multiple threads for multiple workers, so the web appli-
cation may benefit from running on a multicore CPU or on a multiprocessor
system. The workers and the main thread communicate via messages. The mes-
sage contents must be cloneable to prevent workers from manipulating with the
DOM objects of the displayed document. However, read-only binary data (such
as image contents) can be cloned quite efficiently.

In addition to Web Workers, the Khronos consortium proposed a WebCL [7]
standard. Similarly to WebGL, the WebCL is a modified JavaScript binding for
OpenCL technology which is designed for parallel computing on various devices
such as multicore CPUs or GPUs. It executes pieces of code called kernels,
which are compiled dynamically at runtime, in a parallel manner on available
devices; Therefore, it could utilize computational resources of the host system
more efficiently or even utilize hardware which is inaccessible by Web Workers.
At present, a WebCL plugin is availabile for some browsers, but its wide-scale
support has yet to come.

328 M. Krulǐs

4.2 Proposed Solution

In traditional applications, the feature extraction (or any form of multimedia
indexing) is performed at server side after the user uploads its data (i.e., the
image). Our objective is to perform the extraction at client side whilst the image
is being uploaded and then upload the signature itself. Feature signatures are
orders of magnitude smaller than the original image; hence, the subsequent sig-
nature upload should take significantly less time than the image upload.

Our implementation works as follows. First, the image is loaded by the means
of FileReader into a data URI (i.e., into a special URI that holds the entire
contents of the image in base64 encoding). This URI is supplied to an
element and displayed to the user. The may remain hidden or it may not
be included in the displayed DOM tree, but many users would prefer to see the
pictures before they confirm their upload (and the subsequent processing).

The content of the element is drawn onto a <canvas> in desired
size (i.e., the drawing procedure ensures resampling). The entire canvas is then
exported to an ImageData object, which holds the pixel values in 32-bit RGBA
binary format (8-bits per channel). The image data (along with the extraction
parameters) are passed on in a message to one of available Web Workers. The
worker performs the extraction and sends a feature signature in a message back
to the main thread. Finally, the main threads initiates an asynchronous HTTP
transfer to upload the signature to the server.

The extraction process inside Web Workers is a quite straightforward imple-
mentation of the algorithms described in Section 3. All numerical values are
represented as JavaScript numbers (i.e., 64-bit floats). The sampled features
(and subsequently the centroids) are represented as an array of object, where
each object has attributes named by the attributes of the feature space.

We have considered applying more parallel approach to feature extraction,
but the empirical results indicate that it is not necessary in our case. The single-
threaded extraction (i.e., extraction performed by only one worker) is quite effi-
cient and in all our tests, the extraction was performed well within the time
required to upload the image. Furthermore, if the user uploads multiple image,
each image may be processed by a different worker. Finally, in some cases it
might be beneficial to perform the extraction multiple times (and thus by mul-
tiple workers) with different configurations and then select the best signature
produced.

4.3 Security and Reliability Issues

Even though the multimedia indexing can be hardly considered a security issue,
the offload model which let the client compute the feature signature creates a
vulnerability. A client that does not perform the extraction correctly (no matter
whether intentionally or unintentionally) may disrupt the functionality of the
similarity model.

A detailed solution to this problem is beyond the scope of this paper. How-
ever, we believe that the right approach is to employ redundant extraction or

Is There a Free Lunch for Image FeatureExtraction in Web Applications 329

signature verification process. If the images in the application are shared among
other users (which is one of the key points of most multimedia web applica-
tions), other users may perform feature extraction not only on images they have
uploaded, but also on selected images that were sent to them – e.g., as a result
of a search process. If the same (or very similar) signature is yielded by multiple
different users, it is more likely to be correct.

5 Experiments

We have tested our extractor on a commodity laptop with Intel Core i7-4700HQ
CPU (clocked at 2.4GHz) and 16GB of RAM. The laptop used Windows 8.1 as
an operating system and the implementation was tested on Firefox and Chrome,
which are two leading web browsers. Let us emphasize that the environment of
the browser is not ideal for exact time measurements and thus the presented
times should be perceived in such context.

A small set of 5Mpix photographs with average size of approximately 1MB (in
JPEG format) was selected as the testing data. The extractor resized the images
to 150× 150 pixel thumbnails, which were sampled by 3, 000 points with normal
distribution. The subsequent clustering selected 300 random samples as initial
centroids and then performed 10 refining iterations. The parameters match the
parameters used in the evaluation of the state-of-the-art extractor [9], so we can
compare their result directly.

upload 10 Mbps
extraction

resize
load

time [ms]

0

20
0

40
0

60
0

80
0

Fig. 2. Average times of individual operations

The measured results indicate, that the whole extraction process is much
faster than loading the image from the persistent storage and decoding it from
JPEG format. Furthermore, both operations are much faster than upload of the
image, even if it was performed by 10 Mbit uplink which is quite fast for most
users with DSL or wireless connection.

Finally, we have compared the performance of the in-browser implementation
with the state-of-the-art extractor. The JavaScript code is approximately 2.5×
slower than serial CPU version written in C++ and several hundred times slower
than the GPU extractor. On the other hand, we believe that the situation may
be improved when the WebCL technology will become widely available.

6 Conclusions

In this paper, we have proposed a multimedia indexing model which could be
adopted by web applications. It reduces performance requirements on the server

330 M. Krulǐs

side as it offloads the indexing process to the client side. As a proof of concept,
we have implemented an in-browser version of the image feature extraction algo-
rithm that utilized HTML5 technologies and run completely at the client side.
Even though this solution is less efficient than a compiled application, it is appli-
cable in the studied case since the client-side code usually requires to perform
only a few extractions.

In our future work, we would like to utilize the hardware of the client more
efficiently by the means of WebCL technology, which will hopefully be soon
available in all browsers. Furthermore, we are planning to open our prototype to
the public, so we get a better overview of the performance of current smartphones
and tablets.

Acknowledgments. This paper was supported by Czech Science Foundation
(GAČR), project number P103-14-14292P.

References

1. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: architecture and perfor-
mance of an enterprise desktop grid system. Journal of Parallel Distributed Com-
puting 65, 597–610 (2003)

2. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and
trends of the new age. ACM Computing Surveys (CSUR) 40(2), 5 (2008)

3. Duda, J., D�lubacz, W.: Distributed evolutionary computing system based on web
browsers with JavaScript. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS,
vol. 7782, pp. 183–191. Springer, Heidelberg (2013)

4. Garrett, J.J., et al.: Ajax: A new approach to web applications (2005)
5. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering algorithm.

Applied Statistics, 100–108 (1979)
6. Hickson, I., Hyatt, D.: Html5. W3C Working Draft, May 2011
7. Jeon, W., Brutch, T., Gibbs, S.: Webcl for hardware-accelerated web applications.

In: TIZEN Developer Conference May, pp. 7–9 (2012)
8. Krulis, M., Falt, Z., Zavoral, F.: Exploiting HTML5 technologies for distributed

parasitic web storge. In: Proceedings of the Dateso 2014 Annual International
Workshop on DAtabases, TExts, Specifications and Objects, Roudnice nad Labem,
Czech Republic, 16 April 2014, pp. 71–80 (2014). http://ceur-ws.org/Vol-1139/
poster10.pdf

9. Krulǐs, M., Lokoč, J., Skopal, T.: Efficient extraction of feature signatures using
multi-GPU architecture. In: Li, S., El Saddik, A., Wang, M., Mei, T., Sebe, N.,
Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013, Part II. LNCS, vol. 7733, pp.
446–456. Springer, Heidelberg (2013)

10. McLaren, K.: XIII–The Development of the CIE 1976 (L* a* b*) Uniform
Colour Space and Colour-difference Formula. Journal of the Society of Dyers and
Colourists 92(9), 338–341 (1976)

11. Merelo-Guervós, J.J., Castillo, P.A., Laredo, J.L.J., Mora Garcia, A., Prieto, A.:
Asynchronous distributed genetic algorithms with javascript and json. In: IEEE
Congress on Evolutionary Computation, CEC 2008, (IEEE World Congress on
Computational Intelligence), pp. 1372–1379. IEEE (2008)

http://ceur-ws.org/Vol-1139/poster10.pdf
http://ceur-ws.org/Vol-1139/poster10.pdf

Is There a Free Lunch for Image FeatureExtraction in Web Applications 331

12. Reginald, C., Putra, G., Belloum, A., Koulouzis, S., Bubak, M., de Laat, C.:
Distributed Computing on an Ensemble of Browsers (2013)

13. Univ. of Berkeley: SETI@Home (2006). http://setiathome.ssl.berkeley.edu/
14. W3C: Web Workers. http://www.w3.org/TR/workers/
15. Wang, M., Ni, B., Hua, X.S., Chua, T.S.: Assistive tagging: A survey of multime-

dia tagging with human-computer joint exploration. ACM Comput. Surv. 44(4),
25:1–25:24 (2012). http://doi.acm.org/10.1145/2333112.2333120

http://setiathome.ssl.berkeley.edu/
http://www.w3.org/TR/workers/
http://doi.acm.org/10.1145/2333112.2333120

On the Use of Similarity Search to Detect
Fake Scientific Papers

Kyle Williams1(B) and C. Lee Giles1,2

1 Information Sciences and Technology, The Pennsylvania State University,
University Park, State College, PA 16802, USA

2 Computer Science and Engineering, The Pennsylvania State University,
University Park, State College, PA 16802, USA

kwilliams@psu.edu

Abstract. Fake scientific papers have recently become of interest within
the academic community as a result of the identification of fake papers
in the digital libraries of major academic publishers [8]. Detecting and
removing these papers is important for many reasons. We describe an
investigation into the use of similarity search for detecting fake scien-
tific papers by comparing several methods for signature construction
and similarity scoring and describe a pseudo-relevance feedback tech-
nique that can be used to improve the effectiveness of these methods.
Experiments on a dataset of 40,000 computer science papers show that
precision, recall and MAP scores of 0.96, 0.99 and 0.99, respectively, can
be achieved, thereby demonstrating the usefulness of similarity search in
detecting fake scientific papers and ranking them highly.

Keywords: Similarity search · Fake papers · SciGen

1 Introduction

In recent years their has been increasing pressure on academics to publish large
numbers of articles in order to sustain their careers, obtain funding and ensure
prestige. As a result, it has been argued that there has been a decrease in the
quality of articles submitted for publication [3] as well as a surge in the number
of for-profit, predatory, and low quality journals and conferences to meet the
demand for venues for publication [2]. As a result, it is reasonable to expect that
fraudulent and and fake scientific papers may exist in document collections [8]
and their identification and removal is important for many reasons.

In this paper we address the problem of using similarity search to detect fake
scientific papers as generated by SciGen1, which is a computer science paper
generator. The benefit of using similarity search as opposed to other methods,
such as supervised text classification, is that the latter requires training. When
one has the code to automatically generate fake papers, as is the case for Sci-
Gen, then it is relatively simple to generate training data. However, in the case
1 http://pdos.csail.mit.edu/scigen/

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 332–338, 2015.
DOI: 10.1007/978-3-319-25087-8 32

http://pdos.csail.mit.edu/scigen/

On the Use of Similarity Search to Detect Fake Scientific Papers 333

where the code for generating fake papers is not available, it becomes a tedious
task to create training data since training cases first need to be identified. In
contrast, similarity search only requires one sample of a fake paper if we make
the assumption that there exists some regularity among fake papers generated
by the same method.

We investigate the use of several methods for similarity search for detecting
SCIGen papers, including state of the art near duplicate detection methods and
simpler keyword and keyphrase-based methods and demonstrate their effective-
ness in retrieving fake SCIGen papers. One of the challenges of this approach,
however, is that it requires documents to have features in common in order for
them to be retrieved. We exploit the fact that we expect some regularity to
exist among automatically generated documents and devise a pseudo-relevance
feedback mechanism to improve the performance of similarity search.

2 Related Work

There has already some work on identifying fake scientific papers. Early work
was based on the intuition that in a SciGen generated paper, the references are
to fake or non-existent papers [10]. Thus, by analyzing the references, one is able
to determine if a paper is fake or not. Thus, the authors extract the references
from fake papers and submit them to a public Web search engine and a paper is
classified as being fake or not based on the extent to which its references match
actual search results. While this method is useful, it can easily be fooled by
making the references in fake papers actually refer to real papers.

Labbé and Labbé do an analysis of the extent to which fake and duplicate
papers exist in the scientific literature [4]. Their method is based on calculat-
ing the inter-textual distances between documents based on the similarity and
frequency of the words appearing in the documents. Once the inter-textual dif-
ferences have been calculated, texts are grouped using agglomerative hierarchical
clustering.

A problem related to fake paper detection is plagiarism detection since in
both cases the goal is to detect suspicious text. There has already been several
efforts to use similarity search to detect plagiarism. For instance, one of the
tasks in the annual PAN workshop and competition on uncovering plagiarism,
authorship, and social software misuse focuses on the source retrieval problem
[7]. In this task, the input is a suspicious document and the goal is to retrieve
potential sources of plagiarism from the Web. Most of the approaches in this
task view the problem as a similarity search problem where the goal is to retrieve
search results that are similar to the query document. Competitive approaches
have considered both supervised and unsupervised solutions to the problem [7].

This section has discussed various studies that have dealt with fake academic
papers or using similarity search to retrieve content of interest. An important
thing to note is that relatively small datasets were used in all of the studies
involving SciGen. For instance, in [4], most of the corpora only contained 10s
or 100s of documents, though the corpora based on the Arxiv contained a few

334 K. Williams and C.L. Giles

thousand documents. By contrast, we perform our experiments on a dataset
containing over 40,000 real papers to which we add 100 fake papers.

3 Approach

Given a sample SCIGen paper q as a query, we seek to retrieve all SCIGen
documents in a collection C. To do this, we perform automatic feature extraction
on every document in the collection and index the documents. At query time,
we select a retrieval feature and use it to automatically extract features from q,
which we then use to retrieve all documents that have at least one feature in
common with q and rank the results.

3.1 Feature Extractors

Shingle Features. Shingles are sequences of words that occur in documents
and were originally used for calculating the similarity of documents [1] and are
considered as state of the art for near duplicate detection. Due to space con-
strains, we do not describe the method for generating the shingle features but
use the same approach as in [9]. We experimented with different shingle lengths
and found a length of 5 to work well for this study.

Simhash Features. Simhash is a state of the art algorithm duplicate detection
algorithm [5]. For each document, the simhash is calculated as described in [9]
and the output is a 64-bit hash. Each hash is partitioned into k + 1 sub-hashes
and these sub-hashes are indexed [5]. At query time, the simhash of the query
document is also partitioned into k + 1 sub-hashes that are used to query the
index and retrieve documents that have at least one sub-hash in common with
the query document. We experimented with different values of k and found k = 4
to work well. Thus, we use this value of k in this study.

Keyphrase Features. We extract keyphrases from each document using the
Maui tool [6] and use these keyphrases as features. For each document, the top
10 keyphrases are identified for querying. Thus a document will be retrieved if
its text contains at least one of the top 10 keyphrases in the query document.

TF-IDF Features. We also investigate the use of features based on TF-IDF.
Each term in a query document is scored using TF-IDF. We then form a Boolean
OR query with the top 10 TF-IDF scored terms and a document will be retrieved
if it contains a term that matches one of the top 10 terms in the query document.

For each document retrieved using the features extracted by one of the feature
extractors, we perform full-text based ranking based on cosine similarity.

On the Use of Similarity Search to Detect Fake Scientific Papers 335

3.2 Dataset

43,390 ACM papers from the CiteSeerX collection constitute our collection of real
scientific papers. We then used SciGen to generate 100 fake papers and added
these to the existing collection of real papers. We then generated an additional
10 fake papers for testing. In our experiments, the goal is to use the testing
papers to retrieve the 100 known fake papers in the dataset.

4 Experiments

4.1 Retrieving SCIGen Papers

We consider the use of the four feature extractors for retrieving SCIGen papers
using similarity search. For each of the 10 query documents, we extract features
which we use to formulate a query and we report the averages over the 10 doc-
uments. Figure 1 shows the different metrics for the different feature extractors
(the Shingles+Feedback approach is described in Section 4.2).

Fig. 1. Performance metrics for different feature extractors.

As can be seen from Figure 1, the different features perform quite differently
in their ability to retrieve SCIGen papers. The first thing to notice is that almost
perfect recall can be achieved by the TF-IDF and keyphrase-based methods, with
average recall values of 0.999 and 0.997, respectively. This clearly indicates that
these simple features are very good at identifying SCIGen papers; however, this
comes at the cost of precision which, as can be seen from the figure, is very low

336 K. Williams and C.L. Giles

for these two methods at 0.0251 and 0.0074, respectively. The reason for the
very low precision for these methods is that many of the TF-IDF ranked terms
and keyphrases are common among computer science papers and thus many
documents are retrieved. The F-scores show that these methods perform worst
overall in terms of overall retrieval with F-scores of 0.0489 and 0.0147. The TF-
IDF scored keyword and keyphrase methods, however, achieve good rankings
with Precision@10 of 1.0 and MAP of 0.999 and 0.997, respectively.

For the shingles method, the overall precision is perfect thereby implying that
only SCIGen papers were retrieved. The downside of this approach, however, is
that the recall is relatively low at 0.467. Overall though, the shingles method
achieves the highest F1 score. Shingles also lead to perfect Precision@10; how-
ever, MAP is 0.467 since not all 100 SCIGen documents were retrieved.

The simhash method performs worst overall and achieves precision of 0.1052,
recall of 0.06, Precision@10 of 0.45 and MAP of 0.06. This is somewhat expected
since the simhash method is based on a single hash that represent a full document
whereas the other methods are based on sub-documents. Since simhash is state
of the art for near duplicate detection there is sufficient evidence to conclude
that SCIGen documents are not similar enough to be called near duplicates.

The metrics that take into consideration the ranking of results are all rela-
tively good and one can deduce from this that, in general, the cosine similarity-
based ranking function is suitable since it places almost all retrieved SCIGen
documents in the top 100 documents. While this is highly desirable, the one
shortcoming is that, in this case, we know that there are 100 fake SCIGen doc-
uments and thus calculating MAP among the top 100 makes sense. However,
in the general case, we do not know how many documents need to be detected.
We are faced with the situation where we can achieve high recall at the cost of
precision as is the case for the keyword and keyphrase-based methods, or we can
achieve high precision at the cost of recall as is the case with the shingles-based
method. In the next section, we describe a method whereby we can address this
shortcoming. Due to space constrains, we focus on the case of shingles but the
method is applicable to similarity search in general.

4.2 Improving Performance Through Pseudo-Relevance Feedback

In information retrieval, feature mismatch occurs when the terms that a user uses
to describe a document do not match the terms used by the document authors.
The standard way to address this problem is through query reformulation. We
extend this approach to the detection of SCIGen papers where we expect some
feature regularity among a sufficiently large number of SCIGen documents. We
devise a pseudo-relevance feedback mechanism whereby after the initial query is
submitted, we select the top k returned documents and submit each of them as
a query using the same method as for the original document. We then combine
and rank all the search results returned from the different query documents.
The motivation behind this approach is that, while the initial query document
may not have features in common with all relevant documents in the collection,
documents that are retrieved might. The Shingles+Feedback bar in Figure 1

On the Use of Similarity Search to Detect Fake Scientific Papers 337

shows the effect of performing this pseudo-relevance feedback on the top 10
documents returned by the initial query with shingle features.

As can be seen in Figure, the effect of the pseudo relevance feedback has a
large effect on recall, which was the initial shortcoming of the original shingle-
based method. When the pseudo-relevance feedback is included, their is a slight
decrease in overall precision from 1.0 to 0.96, however this comes at the benefit
of an almost 2-fold increase in recall from 0.467 to 0.987. As a result, the recall
becomes competitive with that achieved by the keyword and keyphrase-based
methods. This increase in recall is reflected in the change in the F-score which
increases from 0.64 to 0.97. The pseudo-relevance feedback has no effect on Pre-
cision@10, which remains at 1.0, but leads to a large increase in MAP which, like
recall, goes from 0.467 to 0.987. Thus, there is clear evidence from this exper-
iment that exploiting the expected regularity among automatically generated
documents is a reasonable approach in order to improve retrieval performance.

5 Conclusions

We have described a method whereby similarity search can be used to detect
fake scientific papers, which have increasingly become a problem as a result of
the increasing pressure on academics to publish or perish. We described several
methods for extracting features for similarity search and evaluated their use
in detecting SCIGen papers. Inspired by the fact that we expect some form
of regularity to exist among automatically generated documents, we devised a
pseudo-relevance feedback mechanism to improve the performance of similarity
search and showed how precision, recall and MAP scores of 0.96, 0.99 and 0.99,
respectively, can be achieved. We only presented an evaluation of the pseudo-
relevance feedback mechanism with shingle features; however, the approach is
general enough that it can be applied to any set of features for similarity search.

Acknowledgments. We gratefully acknowledge partial support by the National Sci-
ence Foundation.

References

1. Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic clustering of the Web.
Computer Networks and ISDN Systems 29(8–13), 1157–1166 (1997)

2. Butler, D.: Investigating journals: The dark side of publishing. Nature 495(7442),
433–435 (2013)

3. Gad-el Hak, M.: Publish or perish - an ailing enterprise? Physics Today 57(3),
61–62 (2004)

4. Labbé, C., Labbé, D.: Duplicate and fake publications in the scientific literature:
how many SCIgen papers in computer science? Scientometrics 94(1), 379–396
(2012)

5. Manku, G., Jain, A., Sarma, A.D.: Detecting near-duplicates for web crawling. In:
WWW, pp. 141–149 (2007)

338 K. Williams and C.L. Giles

6. Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using automatic
keyphrase extraction. In: EMNLP, vol. 3, pp. 1318–1327 (2009)

7. Potthast, M., Hagen, M., Beyer, A., Busse, M., Tippmann, M., Rosso, P., Stein, B.:
Overview of the 6th international competition on plagiarism detection. In: CLEF
(2014)

8. Van Noorden, R.: Publishers withdraw more than 120 gibberish papers. Nature,
February 2014

9. Williams, K., Giles, C.L.: Near duplicate detection in an academic digital library.
In: DocEng, pp. 91–94 (2013)

10. Xiong, J., Huang, T.: An effective method to identify machine automatically
generated paper. In: KESE, pp. 101–102. IEEE (2009)

Reducing Hubness for Kernel Regression

Kazuo Hara1(B), Ikumi Suzuki2, Kei Kobayashi2, Kenji Fukumizu2,
and Miloš Radovanović3

1 National Institute of Genetics, Mishima, Shizuoka, Japan
kazuo.hara@gmail.com

2 The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
3 University of Novi Sad, Novi Sad, Serbia

Abstract. In this paper, we point out that hubness—some samples in
a high-dimensional dataset emerge as hubs that are similar to many
other samples—influences the performance of kernel regression. Because
the dimension of feature spaces induced by kernels is usually very high,
hubness occurs, giving rise to the problem of multicollinearity, which is
known as a cause of instability of regression results. We propose hubness-
reduced kernels for kernel regression as an extension of a previous app-
roach for kNN classification that reduces spatial centrality to eliminate
hubness.

1 Introduction

Recently, hubness, a phenomenon occurring in high-dimensional datasets as a
result of curse of dimensionality [5], has attracted the attention of researchers
in the artificial intelligence community, especially for data mining and machine
learning. For instance, a new clustering algorithm was presented by taking advan-
tage of hubness [9]. The performance of k-nearest-neighbor (kNN) classification
was improved by eliminating hubness [7,6,8,3].

In this paper, we point out that the hubness influences the performance of
kernel regression as well. Because the dimension of feature spaces induced by
kernels is usually very high, hubness occurs. Therefore, in the learning phase
of kernel regression, hubs in training samples that are similar to many other
training samples provide highly correlated information to the learning model.
The problem caused by such correlation of input variables is known as multi-
collinearity, which degrades the generalization error on test samples [4,1].

We then propose hubness-reduced kernels for kernel regression as an extension
of localized centering [3], a technique for kNN classification, which transforms
similarity measures to reduce spatial centrality to get rid of hubness.

2 Multicollinearity in Kernel Regression

Let us assume that n pairs of input object and a scalar output value {xi, yi}n
i=1

are given as training samples, and that the goal is to predict the output ytest for

c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 339–344, 2015.
DOI: 10.1007/978-3-319-25087-8 33

340 K. Hara et al.

a new input xtest. In ordinary linear regression, an input object x is represented
as a d-dimensional vector. More formally,

x �→ f(x) = (f1(x), . . . , fd(x))T, (1)

where a set of d functions {fi(x)}d
i=1 are ad-hoc feature extractors designed

by domain experts. Then, weight wf of the functions, which is a d-dimensional
vector, is determined using training samples to minimize the least-squares loss
calculated as

∑n
i=1(yi − wT

f f(xi))2. Also, the output ytest for a new input xtest

is predicted as ŷtest = wT
f f(xtest).

In the situation described above, multicollinearity is related to cases in which
the functions {fi(x)}d

i=1 are highly correlated, or to cases in which a function
extracts feature values from input objects in a very similar way to that of the
other functions. In such a case, a problem occurs by which the prediction becomes
less reliable because the weight wf tends to be overfitted to noisy training sam-
ples [4,1].

In contrast, with kernel regression, an input object x is mapped to an n-
dimensional vector, such that

x �→ k(x) = (k1(x), . . . , kn(x))T, (2)

where {ki(x)}n
i=1 are kernel functions that give similarity between input x and

a training object xi. Some examples include ki(x) = 〈f(x), f(xi)〉 for linear
kernels, and ki(x) = exp(− 1

2γ2 ||f(x) − f(xi)||2) for Gaussian kernels. These
kernel functions ki(x) take larger values for input objects lying in the neighbor
of the training object xi, and smaller values for other input objects. If neighbor
objects are different for each of the training objects {xi}n

i=1, then corresponding
kernel functions {ki(x)}n

i=1 take large values for different objects. Therefore, no
correlation emerges between the kernel functions.

However, because a vector space (i.e., a reproducing kernel Hilbert space)
induced by kernels is usually high-dimensional, hub objects that are similar to
many other objects tend to occur, and the kernel function kh(x) corresponding to
a hub object xh gives large values for many objects. This fact implies that kh(x)
correlates with other kernel functions, and thereby produces multicollinearity.

3 Hubness in Kernel-Induced Spaces

The phenomenon of hubness is known to emerge when the nearest neighbors
(NNs) in a high-dimensional dataset are considered [5]. Let D ⊂ R

d be a dataset
in d-dimensional space and let Nk(x) denote the number of times a sample x ∈ D
occurs in the kNNs of other samples in D, under some similarity measure. When
the dimension is high, the shape of the Nk distribution skews to the right. A
small number of samples take large Nk values. Such samples, similar to many
other samples, are called hubs. This phenomenon is called hubness.

We next demonstrate the emergence of hubness using artificial data. we gen-
erate a dataset from a mixture of two Gaussian distributions with sample size

Reducing Hubness for Kernel Regression 341

N
10

0 50 100 150 200

F
re

qu
en

cy

10 0

10 1

10 2

10 3
Skewness=3.36

(a) Hubness exists.

N
10

0 50 100 150 200S
im

ila
rit

y
to

 lo
ca

l c
en

tr
oi

d

0.64

0.645

0.65

0.655

0.66

0.665
Correlation=0.75

(b) Spatial centrality.

N
10

0 5 10 15 20 25

F
re

qu
en

cy

10 0

10 1

10 2

10 3
Skewness=0.49

(c) Hubness disappears.

Fig. 1. (a) Hubness occurs: samples with a large N10 value occur, and the N10 distri-
bution is skewed to the right. (b) Correlation between the N10 value and the similarity
to the local centroid is strong. (c) Hubness is reduced (lower N10 value and smaller
skewness) by the transformation according to Equation (7).

n = 1000 and dimension d = 1000. Specifically, we generate 500 samples each
from i.i.d. Gaussian(0, I) and i.i.d. Gaussian(1, I), where 0, 1 respectively denote
d-dimensional vectors of zeros and ones and I is the d × d identity matrix.

To determine kNN samples, we use a positive definite kernel that is equal
to the inner-product on a Hilbert space induced by the kernel. Note that each
sample x ∈ D is mapped to the Hilbert space according to a function denoted
as φ(x). Here, we use a Gaussian kernel,1 where similarity between two samples
xi, xj ∈ D is given as

K(xi, xj) = 〈φ(xi), φ(xj)〉 = exp(− 1
2γ2

||xi − xj ||2) (3)

with a deviation parameter γ set as the median of pairwise distances among
samples in D. The distribution of N10 is shown in Figure 1(a). We can observe
the presence of hubs, i.e., samples with a particularly large N10 values.

Following Radovanović et al. [5], we evaluate the degree of hubness by the
skewness of the Nk distribution. A large skewness indicates strong hubness in a
dataset. Indeed, skewness is large (i.e., 3.36) in Figure 1(a).

3.1 Origin of Hubness: Spatial Centrality

For the artificial dataset described above, we form a scatter plot of samples with
respect to the N10 value and the similarity to the local centroid (Figure 1(b)).
A local centroid is defined for each sample φ(x) as

cκ(φ(x)) ≡ 1
κ

∑
φ(x′)∈κNN(φ(x))

φ(x′), (4)

which is the mean of the κ-nearest neighbor samples of φ(x) under some local
neighborhood size κ ∈ [1, n − 1] [3]. It is noteworthy that the local centroid is
1 Gaussian kernel is a shift-invariant kernel, where the NN based on the inner-product

〈φ(xi), φ(xj)〉 is equivalent to that based on the norm ||xi − xj ||.

342 K. Hara et al.

not always obtained explicitly using Equation (4), because it is computed not
in the original d-dimensional space but in a space induced by the kernel that
defines K(·, ·). Therefore, the similarity to the local centroid is calculated as

〈φ(x), cκ(φ(x))〉 =
1
κ

∑
φ(x′)∈κNN(φ(x))

K(x, x′). (5)

In the dataset generated from two Gaussians, strong correlation exists
between the N10 value and the similarity to the local centroid (κ = 20) as
shown in Figure 1(b). This is called spatial centrality of the dataset.

4 Reducing Hubness for Kernel Regression

Because the existence of spatial centrality is considered to be an ingredient of
hubness [5], hubness is expected to be suppressed by removing the spatial cen-
trality. Following this idea, Hara et al. [3] proposed a hubness-reduction method
called localized centering for kNN classification. The method transforms the sim-
ilarity measure such that the transformed similarity does not generate spatial
centrality. The transformation is given by subtracting similarity to the local
centroid in Equation (5) from the original similarity in Equation (3), such that

SimLCENT(xi, xj) ≡ 〈φ(xi), φ(xj)〉 − 〈φ(xj), cκ(φ(xj)〉 (6)

= K(xi, xj) − 1
κ

∑
φ(x′)∈κNN(φ(xj))

K(xj , x
′). (7)

After this transformation, the similarity to the local centroid for any database
sample xj becomes the same because substituting φ(xi) = cκ(φ(xj)) in Equa-
tion (6) yields a constant value (i.e., zero). This fact indicates that no spa-
tial centrality with respect to the local centroid exists after the transformation.
Therefore, the hubness is expected to be reduced. Indeed, by applying the trans-
formation to the dataset used to draw Figure 1, the skewness decreases from
3.36 (Figure 1(a)) to 0.49 (Figure 1(c)).

It should be noted that the resulting similarity measure SimLCENT(·, ·) is not
symmetric with respect to xi and xj . This does not matter for kNN classification
because it is assumed that similarity is computed between two samples that
have different roles, i.e., a query and a database sample. Indeed, xi and xj in
Equation (6) respectively correspond to a query and a database sample.

We now propose hubness-reduced kernels by a symmetrization of SimLCENT,
as follows.

KHR(xi, xj) ≡ 〈φ(xi) − cκ(φ(xj)), φ(xj)−cκ(φ(xi))〉
= 〈φ(xi), φ(xj)〉 − 〈φ(xi), cκ(φ(xi))〉 − 〈φ(xj), cκ(φ(xj))〉+〈cκ(φ(xi)), cκ(φ(xj))〉
= K(xi, xj) − 1

κ

∑
φ(x′)

K(xi, x
′) − 1

κ

∑
φ(x′′)

K(xj , x
′′) +

1
κ2

∑
φ(x′)φ(x′′)

K(x′, x′′)

(8)

Reducing Hubness for Kernel Regression 343

The transformed kernels are not always positive definite. For such a case, we
replace all negative eigenvalues of the transformed kernels with zeros.2

(a)

Dimension
1 5 10 20 30 40 50 60 70 80 90 100

M
ea

n
S

qu
ar

e
E

rr
or

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Linear Kernel (Original)
Linear Kernel (Transformed)
Gaussian Kernel (Original)
Gaussian Kernel (Transformed)

(b)

Fig. 2. (a) An illustration of the multi-centered dataset (generated with sample size
n = 1000, dimension d = 2, and δ = 4). Red and blue points respectively correspond to
samples with positive and negative outputs. (b) Mean squared error of kernel regression,
using multi-centered datasets with n = 100, d ∈ [1, 100], and δ = 1.

5 Experiment

We demonstrate that the proposed kernels KHR reduce the correlation between
input variables, i.e., multicollinearity. Thereby, they improve prediction accuracy.
We used artificial data generated from a mixture of two Gaussian distributions3

with a fixed sample size n = 100 and variation in dimension d from 1 to 100. More
precisely, the dataset consisted of {xi}

n
2
i=1 generated from i.i.d. Gaussian(0, I)

with output yi = sin(zi)exp(−|zi|) + ε, where zi = 〈xi,
1

||1|| 〉, and {xi}n
i=n

2 +1

generated from i.i.d. Gaussian(δ1, I) with output yi = sin(zi)exp(−|zi|) +ε,
where δ = 1, zi = 〈xi − δ1, 1

||1|| 〉, and ε is noise generated from Gaussian(0, σ2I)
where σ2 = 0.01. The dataset is illustrated in Figure 2(a).

In the manner described above, we generated samples of size n each for
training, validation, and testing. However, they were centered or shifted such
that the mean of the training samples was zero.

Forkernel regression,weuseda linearkernelK(xi, xj) = 〈xi, xj〉andaGaussian
kernel K(xi, xj) = exp(− 1

2γ2 ||xi − xj ||2) with a deviation parameter γ set as the
median of pairwise distances among training samples, following Gretton et al. [2].
For each kernel, we tested the proposed transformation according to Equation (8).
2 It is important to pursue if this is a good way of fixing the non-positive definiteness

as a future work.
3 We used multi-centered datasets, because the correlation between training samples

is not reduced by centering, a common pre-processing to avoid multicollinearity.

344 K. Hara et al.

To avoid overfitting to training samples, we used kernel ridge regression.
Given a kernel matrix K and a vector y of output values with respect to training
samples, the model parameter α was learned as a solution α = (K + λI)−1y,
where λ is a hyper-parameter of ridge regression. We selected λ as well as the
hyper-parameter κ of the proposed method using validation samples.

The output yt of a test sample xt was predicted as ŷt =
∑n

i=1 αik(xi, xt)
using training samples {xi}n

i=1. The methods were evaluated according to the
mean squared error (MSE) (yt − ŷt)2 over the test samples.

For each setting of dimension d ranging from 1 to 100, we repeated the
process described above 100 times. The average of the MSE obtained is shown
in Figure 2(b).

Figure 2(b) shows that when the number of dimensions is large (i.e., more
than 10), the proposed kernel transformation improves MSE for both linear and
Gaussian kernels. The result suggests that hubness emerges in high-dimensional
data, and affects kernel regression through the resulting multicollinearity. How-
ever, hubness, and hence the MSE can be reduced using our proposed kernels.

6 Conclusion

After pointing out that hubness gives rise to the multicollinearity problem, and
that it therefore influences the performance of kernel regression, we proposed
hubness-reduced kernels for kernel regression as an extension of a previous app-
roach for kNN classification. We demonstrated that reduction of hubness pro-
duces an effect on kernel regression for multi-centered datasets.

References

1. Chatterjee, S., Hadi, A.S., Price, B.: Regression Analysis By Example. Wiley Series
In Probability And Statistics. Wiley, New York (2000)

2. Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B., Smola, A.: A kernel
statistical test of independence. Advances in Neural Information Processing Systems
20, 585–592 (2008)

3. Hara, K., Suzuki, I., Shimbo, M., Kobayashi, K., Fukumizu, K., Radovanović, M.:
Localized centering: reducing hubness in large-sample data. In: AAAI (2015)

4. Montgomery, D.C., Peck, E.: Introduction to linear regression analysis. Wiley-
Interscience Publication, John Wiley & sons, New York (1992)

5. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular nearest
neighbors in high-dimensional data. Journal of Machine Learning Research 11,
2487–2531 (2010)

6. Schnitzer, D., Flexer, A., Schedl, M., Widmer, G.: Local and global scaling reduce
hubs in space. Journal of Machine Learning Research 13(1), 2871–2902 (2012)

7. Suzuki, I., Hara, K., Shimbo, M., Matsumoto, Y., Saerens, M.: Investigating the
effectiveness of laplacian-based kernels in hub reduction. In: AAAI (2012)

8. Suzuki, I., Hara, K., Shimbo, M., Saerens, M., Fukumizu, K.: Centering similarity
measures to reduce hubs. In: EMNLP, pp. 613–623 (2013)

9. Tomasev, N., Radovanovic, M., Mladenic, D., Ivanovic, M.: The role of hubness
in clustering high-dimensional data. IEEE Transactions on Knowledge and Data
Engineering 26(3), 739–751 (2014)

Demo Papers

FELICITY: A Flexible Video Similarity Search
Framework Using the Earth Mover’s Distance

Merih Seran Uysal(B), Christian Beecks, Daniel Sabinasz, and Thomas Seidl

Data Management and Exploration Group, RWTH Aachen University,
Aachen, Germany

{uysal,beecks,sabinasz,seidl}@cs.rwth-aachen.de

Abstract. In this paper, we demonstrate our novel system, called
FELICITY, which is capable of processing user-adaptive content-based
k-nearest-neighbor queries efficiently by utilizing video signatures and
the Earth Mover’s Distance (EMD). To this end, we implement an
optimal multi-step query processing algorithm by approximating the
EMD between any two video signatures by utilizing lower-bounding filter
approximation techniques. The system enables the user to adapt query
parameters and interact with the system, helping him to find out the
best parameter combination for the desired similarity tasks. Moreover,
our system incorporates a user-friendly visualization interface for the
EMD flow between video signatures, providing an intuitive understand-
ing of the EMD and video similarity.

Keywords: Earth mover’s distance · Video similarity search · Query
processing · Feature extraction

1 Introduction

Recently, the rapid increase in the dissemination of multimedia capture devices
and social networking websites have attracted the attention of researchers with
respect to query processing and similarity search in video databases. Not only the
utilization of efficient and effective query processing techniques, but also video
representation models are of crucial importance in order to carry out required
automatic similarity search tasks. In this demo, we present our novel Flexible
Video Similarity Search Framework Using the Earth Mover’s Distance (FELIC-
ITY) which utilizes the well-known similarity measure Earth Mover’s Distance
(EMD) [3] on flexible, compact object representation models, i.e. signatures, in
order to process k-nearest-neighbor (k-nn) queries in video databases.

A signature X which models the inherent content-based properties of the
corresponding video basically comprises a set RX of representatives each of which
is coupled with a real number, the so-called weight, denoting the number of
features assigned to that representative. Unlike frame-based and sequence-based
video models [1,2], the signature model utilized in this paper is not contingent
upon frames or keyframes, attaining great flexibility via exploiting all requested
feature types, such as color, position, contrast, and coarseness [6,7].
c© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 347–350, 2015.
DOI: 10.1007/978-3-319-25087-8 34

348 M.S. Uysal et al.

Model and DB

User

query video

results
query processor

video DB
GUI

visualizer

flow
analyzer

query
model model DB
quer

or

EMD indexing

feature extractor

i d

parameters

Fig. 1. Illustration of the system architecture of the FELICITY-framework

Given two signatures X and Y , the EMD computes the minimum amount
of work required to transform one signature into another one, where represen-
tatives of X and Y with their weights are represented as earth hills and earth
holes, respectively. For the EMD computation, a ground distance d is applied to
any pair of representatives x ∈ RX and y ∈ RY . The dimensions of the under-
lying feature space comprising all representatives play an important role in the
EMD computation. In particular, if the user is not familiar with feature space
dimensions, he needs an interactive system enabling flexible parameter selection
to attain the k-nn query processing with the desired parameter combination.
To this end, our new framework offers the user the flexibility to specify the
individual weighting of dimensions, such as position, color, texture, and tempo-
ral dimension, for the signature generation phase. In addition, our framework
exploits the state-of-the-art lower-bounding approximation techniques including
the recently introduced Independent Minimization for Signatures (IM-Sig) [5] in
order to overcome the limitation of super-cubic time complexity of the EMD.
Moreover, the user is able to interactively analyze the flows of the EMD via
individual illustrations, providing insights into its working principle with the
utilization of various parameters, such dimension weightings, number of repre-
sentatives, and k-nn query parameter k. Thus, the user has the opportunity to
analyze the EMD flows between the query signature and any signature in the
returned result list, which enables him to comprehend why returned videos match
the query video best. Last but not least, our framework provides a user-friendly
web-based interface.

2 System Overview

To the best of our knowledge, our framework is the first demonstration which
illustrates the EMD and its lower-bounding distance functions on signatures
in the context of video similarity search, offering various user parameters. As
depicted in Figure 1, the user can determine required parameters and load a
query video to the system which is displayed to the user by the visualizer mod-
ule. The feature extractor first extracts a sampling of video features in the given
feature space and then clusters them via k-means clustering algorithm to gener-
ate a video signature. The previously generated signatures of the videos in the
underlying database and the query signature are gathered by the query proces-
sor which utilizes a filter-and-refine architecture. The lower-bounding distance

FELICITY: A Flexible Video Similarity Search Framework Using the EMD 349

Fig. 2. Illustration of the system architecture of the FELICITY-framework

functions Rubner [3] and IM-Sig [5] are applied to generate a candidate set for
which the exact EMD distance computation is performed in the refinement step
later on. In addition, the query processor performs k-nn search by applying the
optimal multi-step algorithm [4]. The results are transferred to the visualizer
which displays them in ascending order with respect to the EMD value. The
flow analyzer offers the opportunity to analyze the EMD flows among repre-
sentatives of the query signature and another signature in the result set. The
visualizer not only visualizes the signatures for the flow analysis, but also the
videos via a video player embedded in the GUI.

We used HTML 5, CSS, and Javascript, and JAVA for the development of the
user interface, video signature extraction, and database-related functionalities.
As data sets, we downloaded video clips from YouTube (www.youtube.com) and
Vine (https://vine.co) and extracted signatures with different dimensionalities.

3 A Demonstration Scenario and GUI

The user can either use the upload file button or directly drag and drop the
video file in the interface to load the query video. The parameters of dimension
weightings, number of representatives for signature extraction, and k-nn query
parameter k are specified by the user. Figure 2 depicts a screenshot with respect
to 4-nn query results. Furthermore, after displaying query results, the system
enables the user to interactively play the query video and result videos. When
the user intends to understand how the EMD is computed between the query
signature and any returned video in the result list, he can deal with the flow

350 M.S. Uysal et al.

(a) Videos and their signatures (b) Flow analysis

Fig. 3. Illustration of the flow analyzer.

analyzer, as depicted in Figure 3. In this way, he can gain more insights into
the feature space dimensions and find out the best dimension weightings, i.e.
parameter combination, for the desired k-nn query processing.

4 Conclusion

We showcase a novel system processing user-adaptive k-nearest-neighbor queries
efficiently by utilizing signatures and the Earth Mover’s Distance (EMD). Our
system allows for flexible query parameter selection and EMD flow analysis,
helping the user to find out the best parameter combination for the desired
similarity tasks. The demonstrator will be attractive for database users and
researchers interested in query parameter selection for k-nearest-neighbor pro-
cessing in video databases. We anticipate to discuss with the SISAP audience the
parameter selection, flow analysis, and lower-bounding techniques for the EMD,
as well as the integration of further modules, such as efficiency improvement
techniques.

Acknowledgments. This work is funded by DFG grant SE 1039/7-1.

References

1. Huang, Z., Shen, H.T., Shao, J., Zhou, X., Cui, B.: Bounded coordinate system
indexing for real-time video clip search. ACM Trans. Inf. Syst. 27(3), 17:1–17:33
(2009)

2. Huang, Z., Wang, L., Shen, H.T., Shao, J., Zhou, X.: Online near-duplicate video
clip detection and retrieval: an accurate and fast system. In: ICDE, pp. 1511–1514
(2009)

3. Rubner, Y., Tomasi, C., Guibas, L.: A metric for distributions with applications to
image databases. In: ICCV 1998, pp. 59–66 (1998)

4. Seidl, T., Kriegel, H.-P.: Optimal multi-step k-nearest neighbor search. In: SIGMOD,
pp. 154–165 (1998)

5. Uysal, M.S., Beecks, C., Schmücking, J., Seidl, T.: Efficient filter approximation
using the earth mover’s distance in very large multimedia databases with feature
signatures. In: CIKM, pp. 979–988 (2014)

6. Uysal, M.S., Beecks, C., Schmücking, J., Seidl, T.: Efficient similarity search in
scientific databases with feature signatures. In: SSDBM, pp. 30:1–30:12 (2015)

7. Uysal, M.S., Beecks, C., Seidl, T.: On efficient query processing with the earth
mover’s distance. In: PIKM@CIKM, pp. 25–32 (2014)

© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 351–354, 2015.
DOI: 10.1007/978-3-319-25087-8_35

Searching the EAGLE Epigraphic Material
Through Image Recognition via a Mobile Device

Paolo Bolettieri1, Vittore Casarosa1(), Fabrizio Falchi1, Lucia Vadicamo1,
Philippe Martineau2, Silvia Orlandi3, and Raffaella Santucci3

1 CNR-ISTI, Pisa, Italy
casarosa@isti.cnr.it

2 Eureva, Paris, France
3 Università di Roma La Sapienza, Rome, Italy

Abstract. This demonstration paper describes the mobile application developed
by the EAGLE project to increase the use and visibility of its epigraphic ma-
terial. The EAGLE project (European network of Ancient Greek and Latin
Epigraphy) is gathering a comprehensive collection of inscriptions (about 80 %
of the surviving material) and making it accessible through a user-friendly por-
tal, which supports searching and browsing of the epigraphic material. In order
to increase the usefulness and visibility of its content, EAGLE has developed
also a mobile application to enable tourists and scholars to obtain detailed in-
formation about the inscriptions they are looking at by taking pictures with their
smartphones and sending them to the EAGLE portal for recognition. In this
demonstration paper we describe the EAGLE mobile application and give an
outline of its features and its architecture.

Keywords: Mobile application · Image recognition · Similarity search · Epigra-
phy · Latin and Greek inscriptions

1 The EAGLE Project

One of the main motivations of the project EAGLE (Europeana network of Ancient
Greek and Latin Epigraphy [1], a Best Practice Network partially funded by the Euro-
pean Commission) was to collect in a single repository information about the thou-
sands of Greek and Latin inscriptions presently scattered in a number of different
institutions (museums and universities) across all Europe. The collected information,
about 1,5 million digital objects (texts and images), representing approximately 80%
of the total amount of classified inscriptions in the Mediterranean area, is being in-
gested into Europeana and is also made available to the scholarly community and to
the general public, for research and cultural dissemination, through a user-friendly
portal supporting advanced query and search capabilities.

In addition to the query capabilities (full text search a la Google, fielded search, fa-
ceted search and filtering), the EAGLE portal supports two applications intended to
make the fruition of the epigraphic material easier and more useful. A Story Telling
application provides tools to assemble epigraphy-based narratives to be made available

352 P. Bolettieri et al.

at the EAGLE portal, intended for the fruition of the epigraphic material by
less knowledgeable users or young students. A Flagship Mobile Application (FMA)
enables a user to get information about one visible inscription by taking a picture with
a mobile device, and sending it to the EAGLE portal for recognition. This demo will
show the EAGLE Flagship Mobile Application (presently implemented on Android)
and the next sections will briefly describe the functionality and the architecture of
the FMA.

2 The Flagship Mobile Application

The FMA enables a user to get information about one visible inscription by taking a
picture with a mobile device, and sending it to the EAGLE portal, specifying the rec-
ognition mode. In “Similarity Search Mode” the result is a list of inscriptions (just
thumbnails and some summary information) ranked in order of similarity to the image
sent to the EAGLE server; by clicking on one of the thumbnails the user will receive
all the information associated with that inscription. In “Exact Match Mode” the result
is all the information associated with the image, if recognized, or a message saying
that the image was not recognized.

The Graphical User Interface (GUI) of the FMA, available on the touch screen of
the mobile device gives access to the functions listed below. The user can navigate
through the different functions with tabs, and at any moment has access to the initial
page.

• Search EAGLE content using image recognition in Similarity Search mode
• Search EAGLE content using image recognition in Exact Match mode
• Search EAGLE content using text search
• Login to the mobile application using an account already existing at the EAGLE

portal
• For logged-in users, annotate and save queries and their results
• For logged-in users, annotate and save pictures taken with the mobile device
• For logged-in user, access and review the navigation history.

The mobile application communicates (through the Internet) with the Flagship
Mobile Application (FMA) server, which in turn communicates with the EAGLE
server using the specific APIs supporting the mobile application. Figure 1 shows the
main functionality blocks of the EAGLE portal and the communication APIs between
the FMA server and the EAGLE server. Complete details of the architecture and the
mobile application can be found in [2].

The Image Recognizer (middle block on the right in the EAGLE server) has
three main functions: (i) Image Feature Extractor, (ii) Image Indexer and support of
Similarity Search Mode, (iii) Support of Exact Match Mode.

 Searching the EAGLE Epigraphic Material Through Image Recognition 353

Fig. 1. Basic Architecture of the EAGLE server and the FMA server

2.1 Image Feature Extractor

The Image Feature Extractor analyses the visual content of the EAGLE images and
captures certain local visual properties of an image (features). Local features are low
level descriptions of Keypoints (or salient points), which are interest points in an im-
age, whose description is invariant to scale and orientation. The result of extraction of
visual features is a mathematical description of the image visual content that can be
used to compare different images, judge their similarity, and identify common con-
tent. The Image Recognizer in EAGLE has a multi-threaded architecture for fast ex-
traction of features and for taking advantage of multicore processors. It has a plug-in
architecture, so that it is easy to add or delete the mathematical libraries supporting
the many different algorithms for the extraction of local visual features, such as SIFT,
SURF, ORB, etc. and their aggregations, such as BoF and VLAD [4].

2.2 Indexer and Support of Similarity Search and Exact Match Modes

The Image Indexer leverages the functionality of the Melampo CBIR System. Me-
lampo stands for Multimedia Enhancement for Lucene to Advanced Metric PivOting
[3]. It is an open source Content Based Image Retrieval (CBIR) library developed at
CNR-ISTI that allows efficient comparison of images by visual similarity through the
use of local features.

After the visual feature extraction, the local features are encoded using an approach
called “Bag of Features”, where a vocabulary of visual words is created starting from
all the local descriptors of the whole dataset. The set of all the local descriptors of all
the images is divided into a number of clusters (depending on the algorithms used,
this number can go from a few hundreds to tens of thousands) and a textual tag is
assigned to each cluster (usually in a random fashion). The set of all the textual tags

354 P. Bolettieri et al.

becomes the “vocabulary” of visual words related to the whole set of images. At this
point each image can be described by a set of “words” in this vocabulary, correspond-
ing to the clusters containing the visual features of the image.

The support of Similarity Search Mode is based on the use of the Lucene search en-
gine. Each image is represented by a set of words (the textual tags of the visual voca-
bulary), and Lucene builds the index of those words. At query time, the query image is
transformed into a set of words, and then Lucene performs a similarity search, return-
ing a list of images ranked according to the similarity with the query image.

The support of Exact Match Mode is based on a set of classifiers, each one recog-
nizing a specific epigraph. The construction of the classifiers is done off-line, select-
ing from the complete database those epigraphies for which several images are avail-
able. The set of images representing the same epigraph is the training set used for
building the classifier of that epigraph. At query time, the recognizer performs a simi-
larity search for the image to be recognized and then takes from the result list the first
k results for which there is also a classifier. The recognizer uses the RANSAC algo-
rithm to perform geometry consistency checks [5] and assign a score to each class.
We decided to assign to each class the highest matching score (i.e., percentage of
inliers after the RANSAC) between the query image and all the image in the classifi-
er. If the score is above a given threshold, the image is recognized.

3 Results

The Flagship Mobile Application has been tested on a preliminary database of about
17 thousand images for Similarity Search and 70 training sets for Exact Match, using
different vocabulary size and visual features representation. Presently, the best results
have been obtained using VLAD for visual features aggregations, with a codebook
size of 256.

References

1. The EAGLE Project. http://www.eagle-network.eu/
2. The EAGLE Project, Deliverable D4.1 – Aggregation and Image Retrieval system (AIM)

Infrastructure Specification
3. Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based image

retrieval based on the Lucene search engine library. In: Lalmas, M., Jose, J., Rauber, A.,
Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 55–66. Springer,
Heidelberg (2010)

4. Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C.: Aggregating local
image descriptors into compact codes. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34(9), 1704–1716 (2012)

5. Giuseppe, A., Falchi, F., Gennaro, C.: Geometric consistency checks for kNN based image
classification relying on local features. In: Proceedings of the Fourth International Conference
on SImilarity Search and APplications, pp. 81–88. ACM (2011)

Author Index

Al Ruqeishi, Khalil 271
Allasia, Walter 170
Amenta, Nina 259
Arimura, Hiroki 191

Bednárek, David 283
Beecks, Christian 347
Behrisch, Michael 307
Bhavsar, Virendrakumar C. 150
Bolettieri, Paolo 351
Boley, Harold 150
Brabec, Michal 283
Bustos, Cristian 125

Carrara, Fabio 217
Carvalho, Luiz Olmes 29, 42
Casarosa, Vittore 351
Cech, Jan 237
Čech, Přemysl 162
Chávez, Edgar 54, 103
Chen, Yanqing 179
Curtin, Ryan R. 77

Elias, Petr 250

Falchi, Fabrizio 217, 351
Färber, Ines 307
Figueroa, Karina 97
Fukumizu, Kenji 339

Gennaro, Claudio 217
Giles, C. Lee 332
Graff, Mario 103
Greyling, Jean H. 113
Grošup, Tomáš 162

Hara, Kazuo 339
Houle, Michael E. 15
Hund, Michael 307

Ito, Kimihito 191

Kaster, Daniel S. 65
Keim, Daniel 307
Kiani, Mahsa 150
Kobayashi, Kei 339

Konaka, Fumito 244
Konečný, Michal 271
Kruliš, Martin 283, 323

Lánský, Jan 162
Li, Shengren 259
Lokoč, Jakub 162

Ma, Xiguo 15
Martineau, Philippe 351
Mic, Vladimir 204
Miura, Takao 244
Moško, Juraj 162
Movchan, Aleksandr 295

Naudé, Kevin A. 113
Navarro, Gonzalo 125
Novak, David 237

Odone, Francesca 229
Oliveira, Willian D. 29, 42
Oria, Vincent 15
Orlandi, Silvia 351

Pagh, Rasmus 3
Palumbo, Enrico 170
Paredes, Rodrigo 97, 125
Perozzi, Bryan 179
Pola, Ives R.V. 65
Ponomarenko, Alexander 314

Radovanović, Miloš 339
Reyes, Nora 125
Ruiz, Guillermo 103
Ruiz, Ubaldo 54

Sabinasz, Daniel 347
Santos, Lucio F.D. 29, 42
Santucci, Raffaella 351
Sasaki, Yoichi 191
Schmitt, Ingo 90
Schreck, Tobias 307
Sedlmair, Michael 307
Sedmidubsky, Jan 204, 250
Seidl, Thomas 307, 347
Shibuya, Tetsuo 191

Silvestri, Francesco 3
Sivertsen, Johan 3
Skala, Matthew 3
Skiena, Steven 179
Skopal, Tomáš 162
Sosa-García, Joan 229
Suzuki, Ikumi 339

Téllez, Eric S. 54, 103
Traina, Agma Juci Machado 29, 42, 65
Traina Jr., Caetano 29, 42, 65

Uysal, Merih Seran 347

Vadicamo, Lucia 351
Vogts, Dieter 113

Williams, Kyle 332

Zezula, Pavel 204, 237, 250
Zierenberg, Marcel 90
Znamenskij, Sergej 138
Zymbler, Mikhail 295

356 Author Index

	Preface
	Organization
	Keynotes
	Large-Scale Similarity Joins with GuaranteesRasmus PaghIT University of Copenhagen, Copenhagen, Denmark The ability to handle noisy or imprecise data is becoming increasingly important in computing. In the information retrieval community the notion of similarity join has been studied extensively, yet existing solutions have offered weak performance guarantees. Either they are based on deterministic filtering techniques that often, but not always, succeed in reducing computational costs, or they are based on randomized techniques that have improved guarantees on computational cost but come with a probability of not returning the correct result.The aim of this talk is to give an overview of randomized techniques for high-dimensional similarity search, and then proceed to discuss two recent advances. First, we consider ways of improving the locality of data access by using a recursive approach. This provably lowers the I/O cost of large-scale similarity joins. Second, we consider new methods for eliminating the probability of error inherent in classical locality-sensitive hashing methods for similarity join in Hamming space, while almost matching their theoretical performance.
	Directions for Similarity Search in Television Recommender SystemsBilly WallaceFounding Developer, Think Analytics, Glasgow, UK Recommender systems require similarity search in order to find a movie or tv show that is similar to another. There are interesting constraints however, that differentiate this application from a pure similarity search. Just finding similar content does not give good recommendations, as we are trying to fulfil a business use-case such as up-selling paid-for content or exposing users to content on channels they don't normally watch. Instead, we use similarity almost as a bloom filter, where we populate a ``candidate set'' using similarity search and then use a second pass to select good recommendations based on the requirements of the use-case. It is common that we can't find enough recommendations to fulfil a request from the candidate set unless we supply some hints to the indexes being used to execute the similarity search, for example, prefer new content, prefer popular content or candidates must be in the user's ``package''. Measuring the success of such recommender systems is difficult. There are no standard test sets available, and it is difficult to convince broadcasters that they should share data that they may not own outright, or which may present privacy issues if shared. We will discuss an approach that we are starting to look at. Although the scale of the catalogues indexed is modest, with numbers of items in the hundred thousands rather than millions, there are scalability concerns due to the number of requests - millions of customers requiring thousands of requests per second with sub-second response times - and also the fact that the catalogue changes frequently - usually in it's entirety several times per day. It is hoped that by sharing insights from current commercial work in this area, that new research directions, or applications of existing research are suggested.
	Deep Learning and Similarity SearchBobby JarosYahoo Labs, San Francisco, California, USA Deep Learning has received tremendous attention recently thanks to its impressive results in computer vision, speech, medicine, robotics, and beyond. Although many of the highly visible results have been in a classification setting, a prime motivation for deep learning has been to learn rich feature vectors that are useful across a wide array tasks. One goal of such features --- for example, in perception-oriented tasks --- might be that items deemed similar by humans would have mathematically similar feature vectors. As deep learning continues to advance, we can expect continued improvement in our ability to identify more and more interesting and subtle notions of similarity. In the other direction, similarity search can also empower deep learning, as recent work invokes similarity search as a core module of deep learning systems.

	Contents
	Improving Similarity Search Methods and Techniques
	Approximate Furthest Neighbor in High Dimensions
	1 Introduction
	1.1 Related Work

	2 Algorithms and Analysis
	2.1 Provably Good Furthest Neighbor Data Structure
	2.2 A Lower Bound on the Approximation Factor

	3 Experiments
	4 Conclusions and Future Work
	References

	Flexible Aggregate Similarity Search in High-Dimensional Data Sets
	1 Introduction
	2 Problem Description
	3 Related Work
	3.1 Flexible Aggregate Similarity Search
	3.2 Multi-step Search
	3.3 Generalized Expansion Dimension

	4 The SUM and Avg Variants of FANN
	4.1 Algorithm
	4.2 Analysis
	4.3 Variants

	5 Experimental Results
	5.1 Experimental Framework
	5.2 Comparison with Other Methods

	References

	Similarity Joins and Beyond: An Extended Set of Binary Operators with Order
	1 Introduction
	2 Related Work
	3 Proposal
	3.1 Similarity Joins with Order: The Theory of Wide-Joins
	3.2 Single-term Predicates
	3.3 Negation of Single-term Predicates
	3.4 Multiple-Term Predicates
	3.5 Optimizing Wide-Joins Processing

	4 Experiments
	5 Conclusion
	References

	Diversity in Similarity Joins
	1 Introduction
	2 Related Work
	3 Diversified Similarity Joins
	4 Experiments
	4.1 Performance and Result Size Evaluation
	4.2 Scalability

	5 Conclusion
	References

	CDA: Succinct Spaghetti
	1 Introduction
	2 Spaghetti
	3 Time Complexity Analysis
	3.1 Unsuccessful Search
	3.2 Successful Search

	4 CDA, the Succinct Spaghetti
	4.1 Compact Representation of Permutations
	4.2 Computing the Intersection
	4.3 Time Complexity Analysis

	5 Experimental Results
	5.1 Index Size
	5.2 Computing the Candidate Set

	6 Conclusions and Future Work
	References

	Improving Metric Access Methods with Bucket Files
	1 Introduction
	2 Background
	3 The Bucket-Slim-Tree
	3.1 The Structure of the Buckets
	3.2 Building the Bucket-Slim-Tree
	3.3 Querying the Bucket-Slim-Tree

	4 Experiments
	5 Conclusion
	References

	Faster Dual-Tree Traversal for Nearest Neighbor Search
	1 Introduction
	2 Trees
	3 Traversals
	4 Nearest Neighbor Search
	5 Delaying Reference Recursion
	6 Experiments
	7 Conclusion
	References

	Optimizing the Distance Computation Order of Multi-Feature Similarity Search Indexing
	1 Introduction
	1.1 Contribution

	2 Related Work
	3 Optimizing the Distance Computation Order
	3.1 Partial and Aggregated Bounds
	3.2 Expected Approximation Error
	3.3 Computation Costs of Distance Functions

	4 Experimental Evaluation
	5 Summary and Outlook
	References

	Dynamic Permutation Based Index for Proximity Searching
	1 Introduction
	2 Previous and Related Work
	3 Our Approach
	3.1 Dynamic Permutants

	4 Experiments
	4.1 Synthetic Databases
	4.2 Optimal Value of B
	4.3 NASA Images

	5 Conclusions
	References

	Finding Near Neighbors Through Local Search
	1 Introduction
	2 Improving APG
	3 Experimental Results
	4 Conclusions
	References

	Metrics and Evaluation
	When Similarity Measures Lie
	1 Introduction
	2 Conventional Task Performance
	3 Direct Performance Assessment
	3.1 Procedurally Generated Truths
	3.2 Evaluation Procedure

	4 Experiment
	5 Results
	6 Conclusion
	References

	An Empirical Evaluation of Intrinsic Dimension Estimators
	1 Introduction
	2 Intrinsic Dimension Estimators for Vector Spaces
	3 Intrinsic Dimension Estimators for Metric Spaces
	3.1 Fractal Based Methods
	3.2 Distance Exponent
	3.3 Fastmap
	3.4 Intrinsic Search Difficulty

	4 Experimental Results
	4.1 Synthetic Metric Spaces
	4.2 Real Metric Spaces

	5 Conclusions
	References

	A Belief Framework for Similarity Evaluation of Textual or Structured Data
	1 Framework Definition
	2 Selection of a Belief Function
	2.1 Subsets with Special Significance
	2.2 Longest Common Subsequences as a Belief Function
	2.3 Linear Gaps Accounting as a Belief Function
	2.4 Longest Common Substrings as a Belief Function
	2.5 The Belief Function for All Substrings Accounting
	2.6 Semi-structured Data and Block Transposition

	3 Acceptable Parts and Algorithm Performance
	References

	Similarity of Attributed Generalized Tree Structures: A Comparative Study
	1 Introduction
	2 Methodology
	3 WT Versus AGT Algorithm
	4 GT Versus AGT Algorithm
	5 GED and MCS Versus AGT Algorithm
	6 Conclusion
	References

	Evaluating Multilayer Multimedia Exploration
	1 Introduction
	2 Multilayer Multimedia Exploration
	3 User Study
	3.1 Find the Image Application
	3.2 Settings
	3.3 Results
	3.4 Discussion

	4 Conclusion
	References

	Semantic Similarity Between Images: A Novel Approach Based on a Complex Network of Free Word Associations
	1 Introduction
	2 Graph-Based Similarity
	3 Complex Networks
	4 The Model
	5 Conclusions
	References

	Applications and Specific Domains
	Vector-Based Similarity Measurements for Historical Figures
	1 Introduction
	2 Related Work
	3 Data Collection
	4 Model Description
	4.1 TF-IDF Model
	4.2 Distributed Word Embedding Model
	4.3 LDA Model
	4.4 Deepwalk Embedding Model

	5 Experimental Setup
	6 Results and Analysis
	7 Conclusion
	References

	Efficient Approximate 3-Dimensional Point Set Matching Using Root-Mean-Square Deviation Score
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Research Goal
	1.4 Main Results of this Paper
	1.5 Organization of This Paper

	2 Preliminaries
	2.1 Basic Definitions
	2.2 The Minimum RMSD Score for k-point Sets
	2.3 Approximate Point Subset Matching Problem
	2.4 A Naive Algorithm for Approximate Point Subset Matching

	3 A Faster Point set Matching Algorithm with Pruning
	4 A Fixed-parameter-like Algorithm Using Spatial Constraint
	4.1 Basic Idea
	4.2 Probabilistic Analysis

	5 Experiments
	5.1 Data and Method
	5.2 Results

	6 Conclusion
	References

	Face Image Retrieval Revisited
	1 Introduction
	2 Face Detection
	3 Face Retrieval
	3.1 Fusion of Multiple Matching Methods
	3.2 Multi-face Queries and Relevance Feedback
	3.3 Efficient Query Processing

	4 Conclusions
	References

	Semiautomatic Learning of 3D Objects from Video Streams
	1 Introduction
	2 Related Work
	3 Object Extraction and Matching
	3.1 Observations Matching

	4 Online Object Clustering
	5 Experiments
	6 Conclusions
	References

	Banknote Recognition as a CBIR Problem
	1 Introduction
	2 Banknotes Retrieval
	3 Method Assessment
	4 Discussion
	References

	Efficient Image Search with Neural Net Features
	1 Introduction: Content-Based Image Retrieval
	2 Similarity Indexing and Searching
	3 Efficiency Evaluation
	3.1 In-memory Indexes
	3.2 Disk-Oriented Indexes

	4 Conclusions
	References

	Textual Similarity for Word Sequences
	1 Introduction
	2 Semantic Similarity
	3 Semantic Distance
	3.1 Euclid Similarity
	3.2 Levenshtein Similarity
	3.3 Using Semantic Distances

	4 Experiments
	5 Conclusion
	References

	Motion Images: An Effective Representation of Motion Capture Data for Similarity Search
	1 Introduction and Related Work
	2 Motion Image: Motion Capture Data as an Image
	3 Similarity of Motion Images and Its Evaluation
	4 Conclusions and Future Research Directions
	References

	Implementation and Engineering Solutions
	Brute-Force k-Nearest Neighbors Search on the GPU
	1 Introduction
	2 Related Work
	Squared Distance Matrix:
	Selecting Nearest Neighbors:

	3 Implementation
	3.1 Computing the Squared Distance Matrix
	3.2 Selecting Nearest Neighbors
	Overview:
	Merge Path:
	Using MGPU:

	4 Results
	Evaluation and Analysis:
	Comparisons:

	5 Conclusions
	References

	Regrouping Metric-Space Search Index for Search Engine Size Adaptation
	1 Introduction
	2 Background
	2.1 Search Engine Distributed Architecture

	3 Related Work
	4 Adapting Search Engine Size
	4.1 Computing H-groups and G-groups

	5 Experimental Evidence Supporting Hypotheses
	5.1 The Number of H-groups
	5.2 Search Performance of TT-S
	5.3 Comparing TT-A and TT-R

	6 Conclusions
	References

	Improving Parallel Processing of Matrix-Based Similarity Measures on Modern GPUs
	1 Introduction
	2 Related Work
	3 GPU Fundamentals
	3.1 GPU Device
	3.2 Thread Execution
	3.3 Memory Organization

	4 Implementation
	4.1 Parallelogram Blocks
	4.2 Using Shuffle Instructions
	4.3 Synchronization via Shared Memory
	4.4 Blocked Algorithm

	5 Experiments
	5.1 Single Distance
	5.2 Multiple Distances

	6 Conclusions
	References

	Time Series Subsequence Similarity Search Under Dynamic Time Warping Distance on the Intel Many-core Accelerators
	1 Introduction
	2 Formal Definitions and Related Work
	2.1 Formal Definitions
	2.2 The Intel Xeon Phi Architecture and Programming Model
	2.3 Related Work

	3 Acceleration by the Intel Xeon Phi Coprocessor
	3.1 Serial Algorithm
	3.2 Parallel Algorithm
	3.3 Combining CPU and the Intel Xeon Phi

	4 Experiments
	4.1 Performance
	4.2 Impact of Queue Size
	4.3 Comparison with Algorithms for GPU and FPGA

	5 Conclusion
	References

	Subspace Nearest Neighbor Search - Problem Statement, Approaches, and Discussion
	1 Introduction
	2 Related Problems
	3 Definition of Subspace Nearest Neighbor Search
	4 Discussion and Open Research Questions
	5 Conclusion
	References

	Query-Based Improvement Procedure and Self-Adaptive Graph Construction Algorithm for Approximate Nearest Neighbor Search
	1 Introduction
	2 Greedy Walk Algorithm
	3 Insertion Algorithm
	4 Improvement Based on Queries
	5 Simulations
	5.1 Improvement Based on Queries
	5.2 Insertion by Repairing

	6 Conclusion
	References

	Posters
	Is There a Free Lunch for Image Feature Extraction in Web Applications
	1 Introduction
	2 Related Work
	3 Image Feature Extraction
	4 Extraction in Web Browser
	4.1 JavaScript and HTML5 Technologies
	4.2 Proposed Solution
	4.3 Security and Reliability Issues

	5 Experiments
	6 Conclusions
	References

	On the Use of Similarity Search to Detect Fake Scientific Papers
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Feature Extractors
	3.2 Dataset

	4 Experiments
	4.1 Retrieving SCIGen Papers
	4.2 Improving Performance Through Pseudo-Relevance Feedback

	5 Conclusions
	References

	Reducing Hubness for Kernel Regression
	1 Introduction
	2 Multicollinearity in Kernel Regression
	3 Hubness in Kernel-Induced Spaces
	3.1 Origin of Hubness: Spatial Centrality

	4 Reducing Hubness for Kernel Regression
	5 Experiment
	6 Conclusion

	Demo Papers
	FELICITY: A Flexible Video Similarity Search Framework Using the Earth Mover's Distance
	1 Introduction
	2 System Overview
	3 A Demonstration Scenario and GUI
	4 Conclusion
	References

	Searching the EAGLE Epigraphic Material Through Image Recognition via a Mobile Device
	1 The EAGLE Project
	2 The Flagship Mobile Application
	2.1 Image Feature Extractor
	2.2 Indexer and Support of Similarity Search and Exact Match Modes

	3 Results
	References

	Author Index

