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In this chapter, the different basic assumptions for the development of assignment
models to transit networks (frequency-based, schedule-based) are presented toge-
ther with the possible approaches to the simulation of the dynamic system (steady
state, macroscopic flows, agent-based). The main functional components of
uncongested assignment and user equilibrium (route choice, flow propagation, arc
performances) are also illustrated here in their general form, while the various
demand and supply phenomena emerging in transit systems (regularity, congestion,
information) are dealt with in the following Chap. 7.
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6.1 Formulating and Solving Transit Assignment

Guido Gentile

In this section, a general mathematical framework for the formulation and solution
of transit assignment is presented, which allows for different models, ranging from
uncongested assignment to user equilibrium, from static to dynamic. The main
functional components of assignment models (route choice, flow propagation, arc
performances) are illustrated here with some specific reference to transit networks,
but the simulation of public transport services is analysed with more proper detail in
the sections that follow. The behavioural concept of strategy is introduced, together
with its formulation through hyperarcs and hyperpaths.

6.1.1 Schedule-Based Versus Frequency-Based Services
and Models

6.1.1.1 Information Provision and Passenger Decision-Making

Afundamental dichotomy inmodelling transit services arises from the questionwhether
or not passengers know or care about timetables. If service is so irregular or so frequent
that passengersfindno convenience in timing their arrival at a stopwith that of a specific
run, or simply the schedule is unavailable to them for whatever reason, then users
perceive the line in terms ofheadwaysbetween subsequent run departures from that stop
(often we refer to carrier arrivals instead of departures, ignoring dwell times).

Actually, while a timetable usually exists for management reasons (most transport
companies do program the service in terms of runs in order to allocate vehicles and
drivers), it is a specific choice of the operator to determine how much and which
schedule information shall be provided to the public. Indeed, there might be issues of
reliability and/or usefulness for such timetables. Due to road congestion (if transit
carriers share the infrastructure with private vehicles), driver random behaviour,
traffic signals, as well as passenger congestion (if dwell times depend on boarding and
alighting loads), service regularity may be so poor that it turns out misleading to
publish the programmed schedule. Moreover, when a service lags, some runs can be
delayed or cancelled by the operator without the need of informing the public. On the
other hand, it is not interesting to learn a published schedule by passengers when
regularity is so poor that it is not really possible to identify which run of a same line is
going to be served by an arriving carrier. Finally, it may be not useful nor possible to
memorize the timetable if lines are very frequent (e.g., a metro passing every 3 min).

On the contrary, if actual arrivals are fairly regular with respect to the schedule
(passengers are still able to associate a delayed carrier arrival with a specific run) and
carrier arrivals are fairly infrequent (e.g., a regional bus passing every 30 min), then
passengers perceive the service in terms of runs. This is particularly true for transit
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systems that require a seat reservation by users before boarding, as this clearly refers
to a specific run.

In the following, this model dichotomy in passenger behaviour on the demand
side is solved as an operator decision on the supply side.

In practice, we assume that if the operator publishes full information about the
timetable, then the scheduled arrival and departure times of all runs at all stops are
regular, and passengers are (at least in principle) able (and thus willing) to plan their
complete trip before departure. This form of information provision/perception and
consequent decision-making is called schedule-based.

Alternatively, scheduled times at stops remain unpublished and refer to a priori
planned operations, i.e., without disturbances, but they may differ from actual
arrival and departure times that occur in practice. Headways are then represented as
random variables with a given distribution, while the frequency is equal to the
inverse of the expected headway. The operator may publish only the stop sequence
of each line (and possibly their frequency). Based on their travel experience, pas-
sengers figure out the (expected) running and dwell times, as well as the frequency
and regularity of transit lines (but not the exact scheduled times). This form of
information provision/perception and consequent decision-making is called
headway-based or frequency-based services.

Clearly, in the same transit network, there can coexist services that are
frequency-based and schedule-based. This requires non-trivial treatment from the
modelling point of view; otherwise, we have to accept the limitations connected to
one of the two main approaches.

6.1.1.2 Model Results for Design and Operation

In the above section, the differentiation between schedule-based and frequency-based
services has been explained from the user point of view. On the other hand, the
purpose of modelling travel behaviour in transit assignment is functional to obtaining
passengers’ loads and service performances that are used for design and operation.

To this end, we can distinguish as follows:

• schedule-based models, which aim at determining passenger loads on each
single run of the service, as well as the actual run trajectories (diagram in time
and space along the line stops), since due to delays these may differ from the
planned timetables;

• frequency-based models, which aim at determining the average loads on the
lines and the possibly emerging phenomena of macroscopic congestion.

The first approach is more suitable for management in real time, because services
are daily operated in terms of runs by public transport companies, and the second
one is for planning offline, because services are usually yearly designed in terms of
lines by mobility agencies. However, in the future, more attention shall be probably
devoted to design the requirements of transit operations as an interconnected
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network of services, by also optimizing transfers in terms of total passenger delays;
this objective clearly requires schedule-based assignment models.

Moreover, schedule-based models are in general richer than frequency-based
models. Indeed, it is always possible to aggregate the results obtained for each run
into results for each line. Clearly, more detailed output is obtained with a more
detailed input, which might be unavailable or irrelevant during the preliminary
phases of service planning, and with more complex models, which may require
many parameters and high computing times. Therefore, the choice of the modelling
approach shall be strictly linked to the actual need of the design task.

In the following, we will often refer to schedule-based and frequency-based
assignment considering the above point of view of supply (model), rather than that
of demand (service).

6.1.2 Multiclass Flows and Performances on Multimodal
Networks

In this section, the topological (structural) relations among flows and among per-
formances (separately) at the two different levels of arcs and routes are presented;
no functional component is introduced here. We refer in general to ‘routes’ and not
simply to ‘paths’ to later include (next section) the concept of ‘hyperpaths’ that is
used in transit assignment to represent passenger strategic behaviour.

The topology of the transport network (supply) is represented through a directed
graph (N,A), with nodesN and arcsA, onwhich a set of routesK (paths, for themoment)
is defined to connect the different O–D pairs of trips made by users of various classes
G (demand)with somemodesM (seeSect. 5.1.2.8). In general, but evenmorenotably in
transit networks, each arc represents an atomic trip segment of a specific type (e.g.,
walking from one point to another, waiting for a given interval or for a given event,
riding on-board a line froma stop to the subsequent one, driving fromone intersection to
the next) on a specific transport system (e.g., public transport, car, bike). The sequence
of trip segments of the same type is called trip phase or trip leg. Different models may
disarticulate trips in different ways and identify different arc types.

Arcs and routes are characterized with variables to quantify flows and perfor-
mances for each class of users; arcs belong implicitly to one transport system
network (one road link is represented by different arcs for pedestrians, cars and to
support transit services), with the exception of those used for inter-modal changes
(e.g., the stop arcs that connect the pedestrian network and the line network
introduced in Sect. 6.2.2); routes belong explicitly to one (simple or combined)
mode (for details see Sect. 5.1.1.2).

In static models and in space-time network models (such as in schedule-based
models where a diachronic graph is used to represent the temporal dimension within
the network topology, as in Sect. 6.3), the reference to time is usually omitted; this
is the assumption adopted in the following, while extensions to other kind of
dynamic models are presented in Sects. 6.4 and 6.5.
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At the network level, flows and performances of arc a 2 A for users of class
g 2 G are defined as follows:

qag class specific flow;
qa volume (aggregation of all class flows);
ta travel time (the same for all classes);
γag value of time;
cntag non-temporal cost;
cag generalized cost.

Flows and volumes express in general the number of users passing through a
given section in a given time interval. But in space-time networks, where the arc
topology embeds natively the simulation time, flows represent actually a number of
users (loads); for example, the passengers travelling on a given run section.

The volume of arc a 2 A is obtained by summing up the flows of each class
g 2 G, possibly multiplied by a specific equivalency coefficient ωag, which may
differ by arc type, plus a base volume q0a, which represents flow components that are
not modelled directly:

qa ¼ q0aþ
X
g2G

qag � xag: ð6:1Þ

In case of passenger flows, the typical assumption is given as ωag = 1 and qa
0 = 0.

The generalized cost of arc a 2 A for users of class g 2 G is obtained multiplying
the travel time by the value of time plus the non-temporal cost:

cag ¼ cntagþ cag � ta: ð6:2Þ

The value of time of each class differs by arc type and may depend on volumes
(discomfort) like the travel time itself (congestion); these phenomena are the subjects of
later Sects. 7.2, 7.3 and 7.4 and are essential in transit equilibrium models. The
non-temporal cost is in turn the sum of several disutility components, including
monetary costs and user preferences with respect to a large variety of arc attributes (e.g.
, length, steepness, tortuosity, landscape, pollution, presence of economic activities).

At the trip level, flow and costs of route k 2 K for users of class g 2 G are
defined as follows (recall that the notion of route k embeds its origin Ok 2 O,
destination Dk 2 D and mode Mk 2 M):

cnakg non-additive cost;
ckg generalized cost;
qkg class specific flow.

The generalized cost of route k 2 K for users of class g 2 G can be obtained by
summing up the costs of the corresponding arcs plus a non-additive term, which
may represent fares or any nonlinear component of disutility perceived by users
(e.g., walking time):
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ckg ¼ cnakg þ
X
a2A

cag � Dak; ð6:3Þ

where Δak is the number of times that a user travelling on route k 2 K passes
through arc a 2 A. For acyclic paths, it is given as follows:

Dak ¼ 1; if a 2 Ak

0; otherwise

�
: ð6:4Þ

In case where the disutility associated with users to each route can be represented
as a linear combination of its network element costs, then the supply model is said
to be additive, i.e., the terms cnakg are all null.

The flow on arc a 2 A of class g 2 G users is the sum of each route flow (of that
same class) multiplied by the number of time it passes through that arc:

qag ¼
X
k2K

qkg � Dak: ð6:5Þ

The flow qkg on route k 2 Kodm of class g 2 G users results from the choice
among all routes connecting origin o 2 O to destination d 2 D on mode m 2 M, and
is thus obtained as:

qkg ¼ dodmg � pkg; ð6:6Þ

i.e., by multiplying:
dodmg is the demand flow of class g users travelling from o to d on mode m;
pkg is the probability that user of class g choose route k.

6.1.3 Strategies and Hyperpaths

A strategy is in general a plan to achieve a goal under conditions of uncertainty. In
game theory, a strategy refers to the rules that a player will use to choose among the
available options. A strategy may recursively look ahead and consider what can
happen in each contingent state of the game depending on the previous possible
actions.

Applying this concept to route choice, the goal of the traveller was to reach the
destination of his/her trip at a minimum expected (perceived and generalized) cost.

Travel strategies include diversion points (nodes), where users may exploit
information acquired along the trip, about variables that are preventively seen as
random unknowns, and on this base can make en-route decisions on how to proceed
towards the destination. In most cases, the information is actually acquired at the
diversion node, but modern information systems may change this circumstance.
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This is for example the case of a passengerwaiting at a stop for a subset of attractive
lines (among all those available at the stop) that he/she wishes to board for reaching
his/her destination. When he/she realizes which line is served by the vehicle that is
approaching the stop, then he/she can decide whether to board it or keep waiting,
depending on whether the line is attractive or not (line probabilities in Sect. 7.1).

In other cases, the outcome of the random variable that becomes known to the
user at the diversion point directly determines the action undertaken without an
actual decision made by the user. This is for example the case of a passenger
boarding a line vehicle who may get, or not, a seat depending on the availability
on-board and on how lucky he/she is with respect to the other boarding passengers
(fail-to-sit probabilities in Sect. 7.2.2). A similar example is that of a passenger
waiting for a line on a crowded platform who may get, or not, on the arriving
vehicle depending on the available space on-board and on how lucky he/she is with
respect to the other waiting passengers (fail-to-board probabilities in Sect. 7.3.3).

Strategic behaviour is thus connected with the presence of random variables
which determine a probability for each one of the considered options among those
available at a diversion point and the corresponding expected cost. A travel strategy
is then described by a ‘complete’ iterative sequence of route diversions, starting
from the origin, until the destination is reached for each possible combination of
events, given the considered options (in this sense, complete).

From a topological point of view, a convenient way of formalizing this kind of
strategies on a transit network (but not only) is to introduce hyperarcs and hyperpaths.

A hyperarc is a non-empty set of diversion arcs (also called its branches) exiting
from a diversion node i 2 Ndiv � N; i.e., a subset of its forward star i+. The set of
diversion arcs is Adiv = {i+: i 2 Ndiv}. Note that the number of hyperarcs that can be
defined on a network may be very large, because each of them identifies a different
combination of arcs exiting from a diversion node (the considered options among
those available).

The generic hyperarc ă � i+, with i 2 Ndiv, has a singleton tail, denoted ă– = i,
while a set of nodes constitutes its head, denoted ă+ = {a+: a 2 ă}. Let H be the set
of hyperarcs defined on the transport network (not necessarily all combinations of
diversion arcs exiting from a same diversion node make up a hyperarc of H). Each
branch a 2 ă of a hyperarc ă 2 H is characterized by the following variables:
pa|
ă

the diversion probability of using branch a among all branches ă of the
hyperarc;

ta|ă the conditional travel time connected using branch a as part of the hyperarc ă.

The (combined) travel time tă of the hyperarc is then given by:

t�a ¼
X
a2�a

taj�a � paj�a: ð6:7Þ

The conditional cost ca|ăg connected using branch a 2 ă as part of the hyperarc
ă 2 H for users of class g 2 G is proportional to its travel time through the value of
time γag:

6 The Theory of Transit Assignment: Basic Modelling Frameworks 293

http://dx.doi.org/10.1007/978-3-319-25082-3_7
http://dx.doi.org/10.1007/978-3-319-25082-3_7
http://dx.doi.org/10.1007/978-3-319-25082-3_7


caj�ag ¼ cag � taj�aþ cntag: ð6:8Þ

The (combined) cost căg of the hyperarc is then given by:

c�ag ¼
X
a2�a

caj�a g � paj�a ¼ c�a�g � t�aþ
X
a2�a

cntag � paj�a; ð6:9Þ

the latter assumes that the value of time γig is equal to all diversion arcs exiting from
the same tail node i = ă−. This expression is useful because models often provide
directly the combined travel time tă instead of the conditional travel time ta|ă.

In the following, for notation consistency, it is intended that if a 62 ă then pa|
ă = 0, ta|ă = 0, ca|ă g = 0.

The generic hyperpath k is a ‘bush’ of arcs that connects its origin to its des-
tination, i.e., an acyclic sub-graph (Nk, Ak) with:

• |k–| = 1, i.e., one origin node;
• |k+| = 1, i.e., one destination node;
• |ik

+| = 1, 8i 2 Nk − k+ − Ndiv, i.e., one successor arc, except for the destination
node which has none, and for diversion nodes which may have more than one;

• |ik
+| ≥ 1, 8i 2 Nk \ Ndiv, i.e., one or more successor arcs at diversion nodes,
which make up one hyperarc, i.e., ik

+ 2 H;
• |ik

–| ≥ 1, 8i 2 Nk − k–, i.e., one or more predecessors, except for the origin node
which has none;

• ik = ∅, 8i 62 Nk, just for notation consistency.

In the example of Fig. 6.1, there are 7 possible hyperarcs exiting from the
diversion node i 2 Ndiv, i.e., all the possible combinations of diversion arcs a, b and
c: {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}; but among them only one
hyperarc, i.e., ik

+ = ă = {a, b}, can belong to a given hyperpath k.

d 

 = {a, b} 

o 
i∈N div

a

b

j∈N div

c

Fig. 6.1 Example of a hyperpath k from origin o = k− to destination d = k+. The hyperpath is
depicted in dashed red lines. The diversion nodes are in red. The bold lines are diversion arcs
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It is intended that exiting from a diversion node, no diversion arc can be used per
se in a hyperpath but only hyperarcs can; clearly, it is possible to define a singleton
hyperarc made of only one diversion arc.

A path can be seen as a hyperpath that does not include diversions. In the
following, the term ‘route’ will then denote indifferently paths or hyperpaths; the
proposed formulation is valid for both cases, unless otherwise specified.

In particular, a strategy can be formalized, from a topological point of view, as a
hyperpath that connects the origin–destination pair of the trip. Each strategy has an
expected cost which is considered by users to make their route choice before
starting the trip.

The cost of a hyperpath (i.e., the cost of the underlined strategy) is defined as the
sum of its arc costs and of its hyperarc branch costs, multiplied by the probability of
using these arcs when following that route; in this sense, it may be additive (if the
non-additive cost is null). Equation (6.3) becomes:

ckg ¼ cnakg þ
X

a2A�Adiv

cag � Dak þ
X
a2Adiv

caj a�ð Þþk g � Dak; ð6:10Þ

where Δak denotes now the probability of using arc a (possibly as a branch of a
hyperarc) when travelling on route k, and (a−)k

+ 2 H is the one hyperarc made up by
the successor arcs of the diversion node a− 2 Ndiv on hyperpath k.

Note that the conditional cost ca|ăg may differ substantially from the cost cag; it is
usually lower, and from this derives the convenience of considering a hyperpath
instead of a simple path (this is the case of attractive lines). In other cases (e.g.,
fail-to-sit or fail-to-board), there is no cost difference, but a hyperpath is actually the
only available route.

The arc-route probabilities depend on the hyperarc diversion probabilities
through the following recursive equation, which can be solved in topological order
(from the origin to the destination of the route):

Dak ¼
1; if a 2 Ak � Adiv

p
aj a�ð Þþk

; if a 2 Ak\Adiv

0; otherwise
�

8<
:

1; if a� ¼ k�P
b2 a�ð Þ�

Dbk; otherwise;

(
ð6:11Þ

the first term is the conditional probability of using arc a from its initial node a−

along hyperpath k, and the second term is the absolute probability of using its initial
node.

The proper extension to hyperpaths of the structural cost Eq. (6.3) requires to
formally change the network model from a graph to a hypergraph (N, Ă = A [ H),
where hyperarcs are native elements:

ckg ¼ cnakg þ
X

a2A�Adiv

cag � Dak þ
X
a2H

c�ag � D�ak; ð6:12Þ

where Δăk denotes the probability of using hyperarc ă when travelling on route k.
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The structural flow equation, given by Eq. (6.5), can instead be extended imme-
diately to hyperpaths under the new interpretation of Δak as a arc-route probability.

However, in hyperpath-based models, the structural Eqs. (6.10) and (6.5) are not
merely related to the network topology, but are rather the result of a functional
model which describes en-route decisions and/or events connected with random
variables yielding the diversion probabilities.

In more advanced models (see the case of information about next arrival for each
line provided at stops presented in Sect. 7.1), the en-route diversions of a hyperarc
reproduce indeed a strategic rerouting which depends on the destination, mode and
class of the traveller; in this case, the diversion probabilities and the conditional travel
times are denoted pa|ă dmg and ta|ă dmg, respectively. As a consequence, based on Eq.
(6.11), the arc-route probabilities would depend also on the class (while destination
and mode are intrinsic in the route). Clearly, pa|ă dmg = 0 and ta|ă dmg = ∞ if a 62 Am.

Finally, the number of hyperpaths defined on the network can be huge, although
finite, because of the many possible combinations of diversion arcs each one rep-
resented by a different hyperarc.

Based on these considerations, although strategies can be formally represented
by hyperpaths, their explicit enumeration is prohibitive. Thus, an implicit enu-
meration approach is usually adopted, as explained in the following Sect. 6.1.5.

6.1.4 Sequential Route Choice and Flow Propagation

The route probabilities of Eq. (6.6) depend in turn on the route costs, for example,
through a random utility model (see Sects. 4.4 and 4.5):

pkg ¼ pkg chg; 8h 2 Kodm

� �
: ð6:13Þ

Route probabilities must satisfy the following consistency and non-negativity
constraints: X

k2Kodm

pkg ¼ 1; pkg� 0: ð6:14Þ

Equation (6.13) defines the route choice model in case of explicit enumeration of
routes, while Eqs. (6.6) and (6.5) define the corresponding flow propagation model.

This basic model, where routes are chosen jointly, may be inadequate to describe
passenger behaviour; as the number and complexity of paths increases, users can
become unable to memorize and compare the available alternatives, as this would
require too high cognitive faculties. Moreover, explicit path enumeration may be
heavy from a computational point of view.

Decision-makers tend to simplify choice contexts that are too complex. A path,
after all, is not an elementary concept, because it is constituted by a sequence of arcs.
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In case of additive supply models, we can then assume that users reach their
destination through a sequence of (more simple) choices at nodes, where the local
alternatives are the arcs of the forward start. This approach is based on implicit
enumeration of routes and requires to introduce the following variables, referred to
users of class g 2 G directed towards destination d 2 D on mode m 2 M:

• padmg probability that users take arc a 2 A conditional on being at its tail node;
• widmg expected cost perceived by users to reach the destination from node i 2 N;
• qidmg flow of users traversing node i 2 N.

Sequential route choice models are generally referred to destinations, as this is
the most natural way to address the problem from user’s perspective, and it is also
the only possible way to proceed if one wants to introduce the concept of strategies
(see Sect. 6.1.3). Travelling passengers aim to reach their destination and can take
en-route decisions only in reaction to future events based on incoming information.

Consider the local choice at node i 2 N − {d}, while for i = d it is: widmg = 0,
padmg = 0 8a 2 i+.

The cost of each alternative, also called remaining cost and denoted as wbdmg, is
obtained as the sum of the arc cost b 2 i+ \ Am and the expected cost perceived by
the user to reach the destination from its final node b+:

wbdmg ¼ cbgþwbþ dmg: ð6:15Þ

These costs jointly determine the conditional probabilities of each arc a 2 i+

through a discrete choice model:

padmg ¼
padmg wbdmg; 8b 2 iþ\Am

� �
; if a 2 Am

0; otherwise

8<
: : ð6:16Þ

Note that users of mode m can take only arcs of this mode.
Arc conditional probabilities must satisfy the following consistency and

non-negativity constraints: X
a2iþ

padmg ¼ 1; padmg� 0: ð6:17Þ

Any discrete choice model provides together with the probability of each
alternative the so-called satisfaction, i.e., the expected value of the maximum utility
resulting from the choice. We assume that the expected cost perceived by users
coincides with the opposite of the satisfaction in the local choice at the node:

widmg ¼ widmg wbdmg; 8b 2 iþ\Am
� �

: ð6:18Þ

Equation (6.18) for all nodes i 2 N − {d} (given a triplet dmg) can be seen as a
system of nonlinear equations, where unknowns are the node costs widmg. Under the
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assumption that only efficient routes are considered, i.e., paths getting closer to the
destination with respect to some fixed cost or distance metric, which is typically
acceptable in transit networks, the above system is triangular and can be easily
solved by substitution, processing nodes in reversed topological order with respect
to the chosen metric. Then, Eq. (6.16) can be computed in no particular order. It is
interesting to recall that in case of Logit model, by introducing the concept of
‘weights’ as the negative exponential of costs scaled by the distribution parameter,
the above system can be transformed in a system of linear equations (the first step of
Dial’s algorithm).

The case of deterministic choices deserves particular attention. Equations (6.18)
and (6.16) for each i 2 N − {d} and a 2 i+ \ Am, respectively, become the
following:

widmg ¼ Min wadmg; 8a 2 iþ\Am

� �
; ð6:19Þ

padmg � wadmg � widmg

� �
¼ 0: ð6:20Þ

The complementarity condition represented by Eq. (6.20) is the formulation of
Wardrop’s First Principle for the local choice. The result is a one-to-many mapping
where multiple flow patterns may correspond to one cost pattern if there are
alternatives of equal cost.

The probability of each path k 2 Kodm from origin o 2 O to destination d 2 D on
mode m 2 M can be determined a posteriori as the product of all the arc conditional
probabilities making up the route (this result does not apply to hyperpaths):

pkg ¼
Y
a2A

padmg
� �Dak : ð6:21Þ

This equation is not required in the assignment model itself; however, path
information is necessary to undergo post-evaluation (see Sect. 5.2.3), because many
result indicators are calculated on the basis of path flows, regardless the fact that a
sequential or strategic approach (both yielding arc probabilities) has been used in
the route choice model.

Indeed, in sequential models, the typical way of performing flow propagation
avoids the need to introduce paths, by solving a system of linear equations for all
nodes i 2 N (given a triplet dmg), where unknowns are the node (exit) flows qidmg.
Each equation represents the following conservation of flows at the node.

qidmg ¼ didmgþ
X
a2i�

qa�dmg � padmg; ð6:22Þ

where the exit flow is equal to the demand flow plus the entry flow. The latter is in
turn given by the sum over the node backward star of each arc tail flow multiplied
by the corresponding arc conditional probabilities. The demand flow didmg is null if

298 G. Gentile et al.

http://dx.doi.org/10.1007/978-3-319-25082-3_5


i is not an origin. Under the assumptions of efficient routes, the above system is
triangular and can be easily solved by substitution, processing nodes in direct
topological order with respect to the chosen metric (such as in the second step of
Dial’s algorithm). In the general (non-triangular) case, the coefficient matrix of
system (6.22) is highly sparse, given that each equation involves only the adjacent
arcs entering a node; this feature can be exploited by solution algorithms such as
BiCGstab. Preconditioning by a triangularized solution (i.e., solving the problem
without taking into account non-efficient arcs) has great advantages.

The arc flows of a specific user class can then be obtained as an aggregation of
all contributions for each destination and mode:

qag ¼
X
d2D

X
m2M

qadmg; ð6:23Þ

where qadmg is the product of the node flow and the arc conditional probability:

qadmg ¼ qa�dmg � padmg: ð6:24Þ

It is worth warning that sequential models provide the same results (flows) of the
corresponding route choice models only for some elementary case (e.g., deter-
ministic, logit).

6.1.5 Sequential Model and Strategies

The proposed sequential model for route choice can be immediately extended to
represent a strategy-based behaviour. In this case, the conditional probability padmg
of a diversion arc a 2 Adiv is the result of two models:

• the local choice pădmg among the hyperarcs exiting from the diversion node a−,
and

• the hyperarc diversion probabilities pa|ă dmg depending on random events.

padmg ¼
X

�a� a�ð Þþ \Amð Þ:�a2H
p�admg � paj�admg: ð6:25Þ

The local choice probabilities require to compute the remaining cost wb ̌dmg for
reaching the destination using each hyperarc b ̌ available at node i = a−. This is equal
to the average, weighted by the diversion probabilities pb|b ̌ dmg, among its branches
b 2 b ̌, of the sum between the arc conditional cost cb|b ̌ dmg and the expected cost wb

+dmg from its final node b+. Based on (6.9) and (6.15), it is given as follows:
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w�bdmg
¼

c�bdmgþ
P

b2�b pbj�b dmg
� wbþ dmgP

b2�b pbj�b dmg

¼
c�b�g � t�bdmgþ

P
b2�b pbj�b dmg

� wbdmgP
b2�b pbj�b dmg

;

ð6:26Þ

the latter assumes that the travel time of the arc branches per se is null as it is
already included in that of the hyperarc.

The reason for rescaling the probabilities in Eq. (6.26) and not on Eq. (6.25) is to
allow models, such as the fail-to-board probabilities of Sect. 7.3.3, where the sum
of the hyperarc diversion probabilities is less than one, i.e., where some flow is
eliminated from the network during the flow propagation.

The hyperarc diversion probabilities result from an adaptation strategy to cir-
cumstances rather than a choice among alternatives. They are strictly related to the
particular stochastic process under consideration; on transit networks, en-route
random events may depend on line frequencies and on remaining capacities, as well
as on expected costs to destination (see Sects. 7.1, 7.2.2 and 7.3.3). Equations (6.
16) and (6.18) become, respectively:

p�admg ¼ p�admg w�bdmg
; 8�b� a�ð Þþ \Am

� �
: �b 2 H

� �
; ð6:27Þ

widmg ¼ widmg w�bdmg
; 8�b� iþ\Amð Þ : �b 2 H

� �
: ð6:28Þ

It is worth noting again that there is a noticeable difference between the hyperarc
choice probabilities pădmg and the arc diversion probabilities pa|ădmg. The former are
choice shares among possible route alternatives, the latter are the outcome percent-
ages from random events. The arc conditional probabilities padmg resulting from the
route choice model are a combination of both, as evident from Eq. (6.25). Therefore,
in the presence of hyperarcs and consequent strategy-based behaviour (in case of
fail-to-sit and fail-to-board probabilities, there is no other option than strategies), the
transit assignment model shall be extended to include the representation of physical
phenomena providing, possibly congested, diversion probabilities.

6.1.6 Shortest Paths and All-or-Nothing Assignment

The computation of shortest trees rooted at zone centroids is at the base of most
assignment algorithms, even when the route choice model is not deterministic but
stochastic, and even when a sequential (arc-based) model is adopted instead of a
path-based one. Therefore, in the following, we give some basic information about
this problem.

In case of transit networks, the root of the tree is typically a destination and not
an origin; this is a natural choice for strategic models.
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Let us consider the problem for users of class g 2 G directed towards destination
d 2 D on mode m 2 M. Most shortest tree algorithms solve actually the dual
problem of finding the minimum cost to reach the destination from each node
i 2 N by repeatedly applying to every arc a 2 Am the following Bellman update,
until no further cost improvement is possible (Bellman 1958):

wa�dmg  Min wa�dmg;wadmg

� �
: ð6:29Þ

The aboveminimization checkswhether using arc a at a cost ofwadmg= cag+wa+dmg

can improve the current cost wa−dmg to reach the destination d from its initial node a−.
The (expected) cost of each node (also called label) is initially set to infinity,

except for the destination, whose cost is obviously zero.
Whenever a cost label is updated, that node is inserted in a list of nodes to be

visited. The algorithm starts by initializing this list with the destination. Nodes are
iteratively extracted from the list and Eq. (6.29) is applied to each arc of its
backward star. If at each iteration a node with the least cost is extracted, then no
node will be extracted twice, provided that all arc costs are non-negative. An
effective way of (pseudo) ordering the nodes is by introducing a bucket list, where
the space of expected costs is partitioned in (many small) nb buckets of equal span
δb; identifying the proper bucket for the insertion of a node i with cost widmg in the
list requires just an integer division: widmg\δ

b. The resulting algorithm of Dijkstra
(1959) is particularly suited for transit networks, which are characterized by ani-
sotropic costs and non-planar graphs, and provides also a topological order of the
nodes given by the inverse order of their extraction from the list.

In case of acyclic graphs, the Bellman update can be applied in inverse topo-
logical order, without the need of handling a list of nodes to be visited.

At each successful (convenient) update, the algorithm records also a, as the
successor arc of its tail node a− (or equivalently a+ as its successor node); in other
terms, padmg is set to one, while for the other arcs of the node forward star the
probability is set to zero. This information can be exploited in a so-called All-Or-
Nothing assignment to shortest paths, where the travel demand is propagated by
solving (6.22) in topological order. Then (6.24) is applied to obtain arc flows for
each destination.

This yields one of the possible (extremal) outcomes of the deterministic model
for route choice (6.19) and (6.20).

6.1.7 Extension to Shortest Hyperpaths

In principle, the computation of shortest hypertrees requires applying to every
hyperarc ă 2 H and the following revised version of the Bellman update, in
addition of applying (6.29) to every arc a 2 Am, until no further cost improvement is
possible:
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w�a�dmg  Min w�a�dmg;w�admg

� �
: ð6:30Þ

However, the extension of the proposed Dijkstra algorithm to strategies is not
trivial and some issues arise:

• to calculate in (6.30) the value of wădmg through (6.26), the algorithm has to wait
for all the heads of hyperarc ă to be extracted (indeed, all such nodes must have
a cost value and the head cost of the branch included in the backward star of the
node currently visited is not enough);

• the resulting node cost of the hyperarc tail can be lower than those of (some of)
its heads (such as when arcs with negative cost are considered), which preju-
dices the label setting approach of the Dijkstra algorithm (although nodes are
extracted from the list in order of cost, a node with a lower cost will be extracted
after a node with a higher cost, so that a node already extracted can be further
optimized);

• this implies that the optimal strategy can involve so-called absorbing cycles
(e.g., an unlucky boarding passenger unable to seat, who then alights at next
stop and walks back to wait again for the line at the previous stop, thus gaining
another chance of seating on-board);

• each further cycle would have a smaller probability to happen, but a label
correcting approach (i.e., the node cost can be modified even if the node has
been already extracted form the list, thus requiring its insertion again—so, nodes
can be extracted more than once) would induce infinite updates; shortest
hyperpath would then require to solve the problem as a system of nonlinear (the
minimum function) equations.

However, a hyperpath is by definition an acyclic sub-graph; to avoid this kind of
paradoxes requires some additional rules in the search. For example, a label setting
approach (i.e., the cost is not updated if the node has already been extracted) can be
forced, unless the node is a diversion (to allow waiting for hyperarcs to be pro-
cessed), or unless the correction derives from the successor of the node. This allows
to eliminate absorbing cycles (if no cycle of diversion nodes exists), which can be
justified with a risk-adverse behaviour: passengers never take twice chances, even if
on average this maybe convenient, because it can result sometime in a higher cost.
A complete analysis of this heuristic goes beyond the scope of this short note,
whose aim was rather to raise some concern on the implementation.

6.1.8 Uncongested Assignment Versus User Equilibrium

If no congestion phenomena are considered to be relevant, then transit assignment
reduces to a simple chain of sub-models: a flow-independent performance model, a
route choice model, a flow propagation model. This can be solved by computing the
following sequence of equations that for given arc performances yield arc flows:
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with explicit path enumeration: 6:2ð Þ ! 6:3ð Þ ! 6:13ð Þ ! 6:6ð Þ ! 6:5ð Þ; or

ð6:31Þ

with implicit path enumeration: 6:2ð Þ ! 6:15ð Þ ! 6:18ð Þ ! 6:16ð Þ ! 6:22ð Þ
! 6:24ð Þ ! 6:23ð Þ:

ð6:32Þ

In presence of congestion or discomfort, we have to replace (6.2) with proper arc
performance functions:

cag ¼ cag qbg0 ; 8b 2 A; 8g0 2 G
� �

: ð6:33Þ

Using (6.33) and (6.5) in (6.3) as follows:

ckg ¼ cnakg þ
X
a2A

cag
X
h2K

qhg0 � Dbh; 8b 2 A; 8g0 2 G

 !
� Dak; ð6:34Þ

yields the so-called supply function:

ckg ¼ ckg qhg0 ; 8h 2 K; 8g0 2 G
� �

: ð6:35Þ

The relation represented by (6.33) closes an ‘internal’ loop in the model, because
the arc flows provided by the uncongested assignment will change the arc costs,
thus requiring to update route choice, and so on.

In case of recurrent congestion phenomena (discomfort and delay occurring
every day at the same time), the most common paradigm adopted in the simulation
of transit networks is the well-known User Equilibrium.

By definition, a User Equilibrium on a transit network is achieved when no
passenger finds convenient to change route (as mentioned earlier, a route can be a
single path connecting the O–D pair defining the trip of the passenger, or a
hyperpath, in case of strategy modelling). This implies assuming that passengers are
rational decision-makers, i.e., they minimize their (perceived) cost.

The introduction of arc performance functions that are able to reproduce the
relevant congestion phenomena on transit networks makes the assignment problem
more complex than the case of road networks. This is due to the non-separability of
these phenomena: the cost of an arc depends on the flows of other adjacent arcs, and
not only on the flow of the arc itself. Moreover, this dependency is in general not
symmetric nor monotonic. The only noticeable exception is the case of over-
crowding on-board discomfort.

In essence, the existence of an equilibrium is guaranteed (sufficient condition) by
the continuity of the arc cost function, while the uniqueness of the equilibrium is
guaranteed (sufficient condition) by the positive definiteness of the arc cost function
Jacobian (in strict form, for deterministic choice models). As mentioned above, the
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latter does not hold in general; however, in standard situations, the non-uniqueness
does not typically occur but counterexamples can be made.

In the particular case of separable (and monotone) arc cost functions, the
equilibrium assignment can be formalized and solved through an (convex) opti-
mization model where the objective function is the sum of cost integrals (see
Sect. 7.2.3). Otherwise, more complex formulations are required, such as varia-
tional inequalities or fixed-point problems. The framework that follows is based on
the latter paradigm.

In the two figures below, white boxes indicate variables, grey boxes indicate
functions, green boxes indicate input, and red boxes denote post-evaluation.

In the case of transit assignment, the cost functions will also provide the
hyperarc diversion probabilities, which are essential in strategic route choice
models, through the computation of line probabilities and fail-to-board or fail-to-sit
probabilities (see Chap. 7).

The above schemes describe how the outlined variables and their structural
relations can be organized in a concatenation of models to yield different kinds of
fixed-point problems that can be introduced to formulate transit equilibrium
assignment.

In general, a fixed-point problem finds a point x in a given subset X of a
multidimensional space. This point x is mapped by the fixed-point function ƒ
(x) 2 X on the point itself:

find x 2 X: x ¼ f xð Þ: ð6:36Þ

In case of a one-to-many mapping ƒ(x) � X, we shall substitute in the problem
defined by Eq. (6.36) the equality symbol ‘=’ with the belonging symbol ‘2’;
deterministic choice models are the examples of this modified instance.

In transport assignment, the space of search can be that of arc flows, arc costs,
route flows or route costs, while the mapping results from the chain of models in the
above schema that starting from the chosen fixed-point variable with a full round
brings back to it. Figures 6.2 and 6.3 present in particular the case where x is the
vector of arc flows, which is the typical modelling choice.

Fixed-point problems constitute thus a natural framework for equilibrium
assignment. However, they present a drawback with respect to more classical
optimization models: the lack of rapidly convergent algorithms prevents precise
calculations of the equilibrium solutions which may be required when comparing
scenarios.

In assignment models, the simple iteration of the fixed-point function does not
converge in general (it is not a so-called contraction). Therefore, to solve the
fixed-point problem, we typically use the method of successive averages (MSA),
where at each iteration n = 1, 2, … the new equilibrium iterate is obtained as a
convex combination between the current equilibrium flows and the application (to
them) of the fixed-point function; in case of arc flows, the latter is also called
Network Loading Map and the resulting flows are denoted qag

nlm:

304 G. Gentile et al.

http://dx.doi.org/10.1007/978-3-319-25082-3_7
http://dx.doi.org/10.1007/978-3-319-25082-3_7


qag  qagþ 1
n
� qnlmag � qag
� �

: ð6:37Þ

The MSA (see Sect. 4.2) is presented above in its simpler form, where the
coefficient of the convex combination is the inverse 1/n of the iteration number.
This actually provides the average of all the flows resulting in the network loading
maps obtained so far; thus, slow convergence is somehow intrinsic.

qag cag

cost functions

arc attributes

ckgqkg

ckg = a A cag akqagnlm = k∈ ∈K qkg ak

dodmgqkg = dodmg . pkg

route choice

pkg elastic demand
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uncongested assignment

(flow dependent) arc performances
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demand
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Fig. 6.2 Fixed-point formulation of equilibrium models on multimodal networks with explicit
path enumeration
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6.1.9 Fixed Versus Elastic Demand

Elastic demand is in general the dependence of O–D demand (flow) matrices from
O–D skim (cost) matrices. This may involve different levels (stages) of the demand
model (see Sect. 4.2.3.2), from generation rate, to distribution pattern and/or modal
split (including departure time choice in case of dynamic models).

Elastic demand introduces a second ‘external’ loop in the model scheme of
Figs. 6.2 and 6.3. But this can also be regarded as a fork and join, without the need
of formulating a bi-level problem. Nevertheless, for traditional reasons, the

qag cag

cost functions

arc attributes

qadmg

qagnlm= d D m M qadmg

dodmg

route choice

qkg = dodmg pkg

padmg

elastic demand

widmg

uncongested assignment

(flow dependent) arc performances

pkg = a A (padmg) ak

internal loop

ex
te

rn
al

 lo
op

demand

MSA

ckg = a A cag ak

flow propagation

pa|ădmg

Fig. 6.3 Fixed-point formulation of equilibrium models on multimodal networks with implicit
path enumeration. Path variables are obtained a posteriori for evaluation purposes
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(few) commercial software that allows for elastic demand modelling adopt a
two-step iterative approach, solving the internal loop before updating the external
loop; typically, the external loop is not solved with a high precision and no aver-
aging process such as the MSA is applied to it.

6.1.10 User Equilibrium Versus Day-to-Day Evolution

As shown in the previous section, from an algorithmic point of view the compu-
tation of a user equilibrium consists of an iterative process. Each iteration corre-
sponds to a single assignment on the transport network, which represents the
interaction of supply and demand through route choice, flow propagation and
performance functions. This process resembles also the chronological evolution of
the system from non-equilibrium to a possible equilibrium state, with the single
assignment time frame being one day; indeed, a day is the typical temporal horizon
considered in cyclic travel decisions, as well as in most human activities. Hence,
one fixed-point iteration can be regarded as a day and everything that happens in
this time frame as within-day. The internal loop of the user equilibrium model
therefore corresponds to a day-to-day dynamic process of route choice, while the
external loop corresponds to longer term travel choices (e.g., mode, destination and
trip frequency); however, if the fork and joint approach is considered in the analysis
of elastic demand, then also these choices are seen as part of day-to-day dynamics.

While user equilibrium models define a priori the relevant state of the system as
that in which average flows and costs (demand and supply) are mutually consistent,
inter-period (or day-to-day) dynamic assignment models simulate the evolution of
the system over a sequence of similar periods (days), and its possible convergence
over time to a stable condition. Under some rather mild assumptions, the equilib-
rium configurations can be interpreted as attractors of the dynamic system. This
allows us to analyse the stability of equilibria and provides a statistical description
of transient states. Although the mathematical analysis of dynamic systems is out of
the scope of this book, it must be clear that the existence of a unique equilibrium is
just one of the possible cases; the day-to-day process does not necessarily lead to a
steady state (static or within-day dynamic) and may oscillate among different
equilibria or even show a chaotic pattern.

Each user may update the route choice made for the current day based on the
information gathered on the route costs during the previous trips. Possibly, all
previous experiences contribute to the knowledge of the network developed by the
user, although the learning process typically privileges the relevance of latest trips.
In this evolutionary interpretation of equilibrium, in general users would experience
every day a different cost on the same route, because congestion may induce other
users to change their route or because random events may affect loads and per-
formances; whether the experienced costs or other information sources induce a
considerable change in the expectations that motivated the current choice, then a
user will consider changing route.
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Thus, day-to-day dynamic assignment models require the explicit representation
of two phenomena:

• users’ learning and forecasting mechanisms for utility updating; that is, how
present route choices are influenced by experience on previous transport costs
(memory);

• users’ choice updating behaviour; that is, how present route choices are influ-
enced by the choices made on previous days (habit).

The utility updating model describes in which way expected (or predicted)
utilities on day n are influenced by experienced utilities on previous days (and
possibly by other sources of information). In principle, a disaggregate approach can
describe the updating of the individual perceived utilities of each single user
(agent); otherwise, the utility updating can be applied to their averages (systematic
utilities) considered by several users (demand component), or directly to the gen-
eralized costs, which are the main drivers of route choice.

In the following, it is assumed that referring to the generic path k 2 Kodm utilized
by the travellers of class g 2 G in day n, the expected costs ~cnþ 1

kg of next day n + 1
are a convex combination (exponential filter) of the actual costs cnkg incurred in day
n resulting from the supply function given in Eq. (6.35) based on the actual flows
qnkg and the current expected costs ~cnkg:

cnkg ¼ ckg qnhg0 ; 8h 2 K; 8g0 2 G
� �

; ð6:38Þ

~cnþ 1
kg ¼ alearng � cnkgþ 1� alearng

� �
� ~cnkg; ð6:39Þ

where the average weight alearng 2 0; 1ð � attributed by the users of class g to the
actual costs is usually assumed to be independent of the day. Note that given the
structural linear relationship given by Eq. (6.3) between arc and (additive) path
costs, the exponential filter can also be applied to arc costs; this would also have a
physical interpretation, since during each trip on the network a traveller gathers
experience on arc costs that are part of several paths.

The choice updating model describes in which way route choices on day n + 1
are influenced by choices made on previous days. In the following, it is assumed
that each day some users repeat the choices made in the previous day, and others
reconsider (although do not necessarily change) their choices. Then, the flows qnþ 1

kg

of next day n + 1 are a convex combination (exponential filter) of the flows ~qnþ 1
kg

that would result from the route choice model (6.13) based on the expected costs
~cnþ 1
kg of next day n + 1 and the current flows qnkg:

~qnþ 1
kg ¼ pkg ~cnþ 1

hg ; 8h 2 Kodm

� �
� dodm; ð6:40Þ
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qnþ 1
kg ¼ achoupg � ~qnþ 1

kg þ 1� achoupg

� �
� qnkg; ð6:41Þ

where the probability achoupg 2 0; 1ð � that a user of glass g reconsiders the choice
made on the previous day is usually assumed to be independent of the day, while
the complement 1 − αg is the probability that the choice of the previous day is
repeated. In some models, the choice updating is neglected assuming achoupg ¼ 1.

Under this evolutionary interpretation of the equilibrium model, the main system
variables are both the costs (utilities) and the flows (choice probabilities), which can
be summarized in a state vector x = (cKG, qKG), as in Fig. 6.4.

The within-day dynamic consists of a flow propagation procedure plus a new
computation of performances; these may be possibly calculated at once (see 6.
Dynamic Network Loading in Sect. 6.4). During the day, travellers execute their
trip and accumulate experience concerning generalized costs.

Then, day-to-day dynamic takes place. The learning process filters the latest
information about the network cost pattern gathered during the last day with the

Fig. 6.4 Iterative flow propagation/congestion (within-day-dynamic) and cost learning/route
choice updating process (day-to-day dynamic)
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experience accumulated during all previous trips, updating the latter. The next day,
the travellers can update their route choice on this basis in order to improve their
objectives. But only a portion of them will actually reconsider the previous choice,
probabilistically; the actual path flows that will load the network follow
accordingly.

As travellers increase their experience with the system, their mental map extends
and their expectations reflect more closely to the actual network performance. But a
major issue in the application of the cost learning filter regards the update of path
costs that have not been utilized by travellers in the previous day. In theory, only
the cost of the utilized path should be actually revised by each single traveller.
Instead, it is common practice to update the cost of all paths, independently from
the fact that they have been used or not. To justify this approach, we can assume
some form of collective awareness where information is shared among users; this is
not far from reality in a changing world of social networks and travel information
based on crowd sourcing. This is more credible in the context of probabilistic
models where each path available to a demand component is travelled in a given
day by at least a small proportion of users.

Clearly, this assumption accelerates the day-to-day process towards a possible
equilibrium. If instead travel demand is represented through individual agents (see
Sect. 6.5) with their own memory (in contrast to the collective memory of the above
schema), the proposed process (possibly) leading towards equilibrium (which
involves learning, choosing and congestion) is slower and must be guided neces-
sarily by random perturbation of expected costs for each simulated day, as other-
wise there is the risk of having individuals trapped on bad paths because of wrong
estimation of their available alternatives.

6.1.11 Path-Based Versus Arc-Based

Similar to route choice and flow propagation, from a topological point of view,
there are two main kinds of assignment models: path-based and arc-based.

In the first case, the relevant routes are explicitly enumerated; they can be
identified in advance or generated during the assignment process (column gener-
ation). The route cost can include non-additive terms.

In the second case, the arc conditional probabilities result from a sequential
model with implicit enumeration of routes, where users directed towards a given
destination are recursively split among the arcs of the node forward star. Only
additive cost structures are allowed.

Looking at route choices, path-based models are the most natural approach and
are also richer in terms of modelling opportunities. In this case, for example,
sophisticated stochastic models can be easily formulated using random utility
theory, including correlation among alternatives (e.g., Probit, Cross Nested Logit,
C-Logit). Moreover, route costs do not have to be necessarily additive with respect
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to arc cost, thus allowing to evaluate fancy fares structures and nonlinear disutilities
(see Sect. 4.5.2).

However, path-based models usually require to preliminary identify and
explicitly enumerate all the relevant route alternatives. Although on transit networks
the number of good alternatives is definitely less than those emerging (due to
congestion and grid topology) on an urban road network, this task may be cum-
bersome in terms of computation and hard in terms of modelling. Actually, explicit
route enumeration requires a specific selection model, since the number of acyclic
paths (and even more, hyperpaths) on a transport network is finite but can be
extremely large, so much to make the problem with exhaustive enumeration
practically unsolvable.

Column generation during equilibrium assignment (i.e., build up and store new
paths at each iteration) is actually available only for deterministic models (in a
stochastic framework the process would hardly converge) and provides a reduced
set of used paths with respect to the whole set of possible equilibrium paths. Indeed,
it is well known that the solution of deterministic equilibrium may be unique (under
monotonicity conditions on the arc performance function) in terms of arc flows, but
it is not in general unique in terms of path flows. Because equilibrium solutions in
terms of paths obtained through column generation are rather poor, they are not
suitable for post-processing procedures, such as O–D matrix estimation from traffic
counts and critical link analysis (i.e., to identify all path flows using a given link).

Arc-based models are more robust with respect to these issues and are therefore
often chosen for the implementation of commercial software. Moreover, it is always
possible to retrieve a practical set of used paths starting from the arc conditional
probabilities, using Eqs. (6.21) and (6.6), for example not considering paths whose
probability is below a certain threshold. Finally, when considering strategies,
arc-based models are almost a necessity.

6.1.12 Deterministic Versus Stochastic Route Choice

From a behavioural point of view, there are two main kinds of route choice models:
deterministic and stochastic (or probabilistic). More details about route choice
models are provided in Sect. 4.5; the purpose of this section is then to highlight
some issues related to the assignment model.

Deterministic models assume homogeneity of attribute preferences for users of
the same class and perfect information, i.e., passengers have a good knowledge of
the network performance pattern (travel costs and speeds) in space and time for the
current-day type. In this case, the rationality of the decision maker brings to the
choice of minimum-cost alternatives.

The alternatives are routes connecting an O–D pair, in case of path-based
models, or arcs exiting from a node, in case of arc-based models.

The most commonly applied paradigm for stochastic models is random utility
theory, where it is assumed that users are rational decision-makers who associate a
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utility to each travel alternative of a (finite) choice set and choose the best among
them. The modeller is not able to evaluate exactly these utilities for each user, due
to several factors, among which:

• heterogeneity of preferences among users of a same class with respect to the
same attributes of alternatives;

• subjective errors in the perception of objective attributes by users (incomplete
information);

• measure errors in the evaluation of real attributes by the modeller.

Then, the modeller can represent the utility of these alternatives as a multivariate
random variable with a joint distribution (if correlations among alternatives are
relevant). As a result, it is only possible to calculate the probability that each
alternative has to be chosen, i.e., to have the highest utility. If the variance of
random utilities is null, the model reduces to the case of deterministic behaviour
with perfectly informed users who choose (the) best alternatives.

Despitemany years of research about stochastic assignmentmodels, also for transit
assignment, the fact is that still most of the methods implemented in commercial
software and actually used in practice consider a deterministic behaviour. Clearly,
stochastic models are much more flexible and realistic in reproducing passenger flow
patterns. Nonetheless, advantages of deterministic model are given as follows:

• easier to understand from a theoretical point of view (not from the mathematical
one);

• their results are easier to interpret and analyse;
• have no behavioural parameter to be calibrated; and
• are more reliable and robust from a computational point of view.

For these reasons, if the actual aim of the modeller is to analyse the sensitivity to
design variables in a project and not to reproduce reality, deterministic models can
represent a valid opportunity.

Another reason for opting to deterministic models is that the stochastic models
which are able to suitably reproduce the correlations (e.g., due to path overlapping)
among alternatives are not yet robust enough for scenario comparisons; in partic-
ular, the Probit model requires too many Monte carlo iterations of the main
assignment loop to achieve a reasonable stability.

However, we shall be aware that deterministic models tend to transfer the
motivation for a plurality of used paths serving a same O–D pair from behaviour
heterogeneity in route choice to congestion.

6.1.13 Static Versus Dynamic Assignment

Static models are based on the following assumptions of stationarity: the network
can be described with constant flows and performances during the assignment
period. This requires that travel demand as well as all supply features is constant for
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a sufficient period of time and that the network works in under-saturated conditions,
i.e., no permanent queue is observed. Thus, queues at transit stops can be suitably
modelled in a static framework only if each waiting passenger is able to board the
next-arriving vehicle.

In dynamic models, the fact that travelling takes time and that network elements
have a capacity is explicitly considered, not merely as a component of disutility.
The following phenomena can be modelled:

• the route costs and the corresponding choices refer to specific departure times
and shall be computed considering the concatenation of travel times, i.e., each
arc cost shall be evaluated at the instant when a passenger following that route
enters it (dynamic route choice);

• passenger flows move on the network consistently with travel times (dynamic
propagation);

• exit flows on network elements satisfy the presence of capacity constraints
(queues);

• entry flows on network elements satisfy the presence of occupancy constraints
(spillback).

Five ways of incorporating dynamic aspects in transit assignment can be
identified:

• space-time network models, where daytime is built-in the topological structure
of a diachronic graph (see Sect. 6.3);

• quasi-dynamic models, where a layer sequence of static models is defined, each
referred to a time interval, to reproduce some dynamic phenomena, such as
queuing;

• macroscopic models, where passengers and vehicles are represented as a (semi)
continuous fluid characterized by temporal profiles (see Sect. 6.4);

• microscopic models, where individual passengers and vehicles are represented
as discrete particles;

• mesoscopic models, where in terms of travel behaviour passengers and vehicles
are represented as individual agents or packets of agents, and moved accord-
ingly on the network, while their interaction (congestion and travel times) is
reproduced through aggregated traffic models (see Sect. 6.5.4).

Space-time network models consider the concatenation of dynamic route choice
but adopt a graph-based representation of flow propagation, with no possibility of
reproducing the effects of passenger congestion on run delays (dwell times) in a
consistent way. Moreover, some limitations arise in the simulation of passenger
queues at stops and their effects on travel times; for example, FIFO queues cannot
be reproduced and only mingling is possible.

Quasi-dynamic models introduce a chronological sequence of static layers each
representing a fairly long-time interval. Usually, this time discretization is such that
passengers complete a relevant portion of their trip within a same interval (e.g.,
15 min). The concatenation of times is neglected in the route choice, by assuming
instantaneous route costs that are computed separately for each static layer; this
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holds true also for the dynamic flow propagation on the network as travel demand is
loaded from origins to destinations during the same layer, without considering that
the movement of passengers takes time. However, a proper congestion model can
be adopted which allows for explicit reproduction of queues at stops, and the extra
passengers who are not able to board during the current time interval due to
capacity constraints can be shifted to the next temporal layer as additional demand
components which behave according to current costs of the new layer.

Macro-, micro- and meso-models allow the simulation of all dynamic phe-
nomena (dynamic route choice, dynamic propagation, queues and spillback).

6.1.14 Simulation-Based Versus Analytical Models

Public transport systems involve lots of complex relations among variables, many
of which can be suitably described as random outcomes of erratic events that may
change significantly from day-to-day (e.g., the actual number of passengers waiting
at the stop, the actual arrival time of a vehicle and the actual travel time of a run).
Most of the aspects regarding passenger information and service congestion that
affect route choice on transit networks (see Chap. 7) are highly dependent on these
unpredictable phenomena.

Random events involve both demand and supply. On the demand side, indi-
vidual trip decisions are taken each day regarding the actual departure time or route
choice. On the supply side, actual travel times of line vehicles are affected by road
traffic and driver behaviour. Moreover, dwell times of vehicles at stops and queuing
times of passengers at stops depend on the loads of passengers boarding, alighting
and riding each line run (congestion), while the propagation of flows along pas-
senger routes depend on the travel times on the transit network. The strategic
behaviour of passengers at stops may amplify the effect of random events because
in reaction en-route decisions are taken which further divert flows. On this basis,
travel times and passenger flows become all correlated random variables.

A major distinction among the available approaches to transit assignment can
then be made between:

• analytical formulations, where model results yield directly the expected values
of the output variables (loads and performances),

• simulation tools, where model results yield one possible outcome of the output
variables, so that (in theory) several repetitions of the model are necessary to
obtain a stable average of each variable and (more interestingly) the shape of its
distribution.

Simulation-based models for within-day transit assignment are highly flexible
and more suitable to reproduce all such complex-correlated phenomena. This comes
at the price of unstable results, which can be a serious drawback when the final aim
is that of comparing design scenarios. However, this disadvantage may be allevi-
ated if each within-day simulation is considered in the context of a day-to-day
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evolution framework (see Sect. 6.1.10), as this gives some justifications to the lack
of (enough) repetitions.

However, also the design based on precise results in terms of expected values
presents some limitations. For example, a robust project should be taken into
consideration the random distribution of the output, rather than only the average
values of the outcomes, so as to guarantee good performances in the majority of
cases. In this respect, simulation-based models can effectively support robust design
with the calculation of results in terms of percentiles based on the a priori definition
of safety margins against unfavourable cases.

There are two main contexts of application for simulation-based models:

• in real-time applications, many of the variables can be retrieved directly from
the field (e.g., the current estimation and forecast of vehicles arrival provided by
an AVL system);

• in offline applications, the same information must instead be elaborated on the
basis of synthetic values extracted from random variables with known
distributions.

Different levels of aggregation are possible in simulation-based transit assign-
ment and some models actually make use of relations among average variables,
such as travel times and flows, instead of looking at individual passengers and
vehicles (mesoscopic models). If individual passengers are simulated then also their
preferences can be synthesized and the user classes are substituted by distribution of
parameters.

Simulation models can really make a difference in reproducing the effect of
information about random events and the reaction of travellers. We can define and
distinguish the following types of events:

• minor events are perturbations of the cost pattern in which passengers incur
while travelling without anticipated knowledge, whose relevance or frequency is
not sufficient to induce a strategic or rerouting behaviour;

• recurrent events are outcomes of systematic phenomena on which passengers
have expectations and may be informed at some point en-route, thus allowing a
strategic behaviour;

• major events are relatively rare but serious accidents on which passengers do not
have expectations because their frequency is low, but whose relevant impact
may induce rerouting.

Minor events affect the distribution of the corresponding arc costs which are
perceived by users. But without prior information, users will choose the best path
on average, possibly associating an additional risk-adverse cost to variances.
Analytical formulations, which are based directly on the averages, are still appro-
priate because the expected value of a sum of random variables (path cost) is the
sum of the expected values (arc costs), and the same is true for variance.

Recurrent events induce a strategic behaviour where the cost and the probability
of local alternatives depend recursively on the expected costs of the diversions
possibly encountered later during the trip towards the destination (see Sect. 7.1).
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Only if the events are independent and are informed locally, then analytical for-
mulations through the introduction of hyperarcs are actually suitable to reproduce
average phenomena.

If the information is anticipated (which today is possible through mobile com-
munication) and/or the random events are strongly correlated, then the simulation
approach becomes unavoidable to reproduce the reaction of passenger in terms of
en-trip route choices. Decision points are not anymore fixed (e.g., stops) as in the
classical strategy representation based on hyperarcs, because the information can
reach the passenger virtually anywhere and at any time. Upon each further injection
of information, the passenger will reconsider all available alternatives to reach
his/her destination and possibly update his/her route choice.

This usually requires the recomputation of attributes (in primis, travel and wait
times) for a predetermined choice set of paths from that point to the destination.
However, this practical approach (paths can be stored in computer memory) is not
fully satisfactory because it does not take into account that the alternatives should
be strategies with recursive diversions and not simple paths: this way only the first
(current) diversion is properly considered. On the other hand, the explicit selection
and storage of hyperpaths is prohibitive.

A possible alternative to path storage is the sequential route choice (see
Sects. 6.1.4 and 6.1.5), where decisions are reconsidered locally by hypothesis;
hyperpaths do not have to be explicitly enumerated but instead the expected cost of
optimal strategies from nodes to destination is constantly updated. In this case, also
the knowledge possibly acquired in a day-to-day learning process is stratified on
node variables (expected cost to destination) and not on paths, by considering the
cost actually suffered in the last within-day simulation from that node to the
destination.

Major events and rerouting can be reproduced, not only with simulation models,
but also through analytical models with a rolling horizon approach. This means that
the analytical model is restarted every say 5 min to provide a prediction for the next
say 60 min, by considering as a ‘warm’ initial state the result of the previous
simulation; each iteration yields possibly different results from the previous one
because new information and events are included in the simulation, affecting both
supply characteristics and passenger behaviour.

6.1.15 Reference Notes and Concluding Remarks

The introduction of hyperarcs and hyperpaths for the representation of strategies on
transit networks is due to work of Gallo et al. (1993).

A detailed presentation of stochastic (and deterministic) equilibrium models
based on fixed-point problems for multiclass assignment on multimodal networks
with elastic demand is provided in Cantarella (1997). With particular reference to
transit networks, Nielsen (2000) uses a type of probit model to represent stochastic
route choice.
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Sequential route choice models have been proposed by many authors, among
which Gentile and Papola (2006), who provide a general theoretical framework and
several solution algorithms. Its consistent formalization with respect to multimodal
transport networks and strategies, with the specific role of hyperarc diversion
probabilities, can be considered an original contribution of this book.

Day-to-day dynamic processes in transport modelling were first proposed by
Cascetta and Cantarella (1995) and by Watling (1999) in the framework of car
assignment to road networks.

6.2 Frequency-Based Assignment on Transit Static
Networks

Guido Gentile and Michael Florian

In this section, frequency-based (or headway based) models for static assignment on
transit networks are presented in their basic version, without involving strategic
behaviour of passengers with respect to common lines and information or con-
gestion phenomena on the supply side, which will be analysed in Chap. 7.

Although the public transport service is organized with runs for each transit line
and is thus actually available at stops only at discrete times, in frequency-based
models the basic representation of supply is continuous (like that of cars on a road
network) and the flow of vehicles can be seen as a moving walkway. The main
issue is then the representation of the passenger wait times required at stops to
access the available transit lines, which depend on the vehicle headways.

In this framework, the service is perceived by passengers in terms of proba-
bilistic departure events of lines from the stops, because the timetable is not relevant
in the route choice due to high frequency or low regularity. The line headway at any
stop can be then represented as a random variable with given statistical distribution,
and the frequency is defined as the inverse of its expected value.

The main characteristic of frequency-based models is thus their capability of
reproducing discontinuous transit services by means of a continuous network
representation. This implies to identify waiting as a separate trip phase through
specific arcs. To this end it is necessary, on one side to calculate the expected wait
time corresponding to a given headway distribution, on the other side to build up a
proper topological representation of the transit graph.

6.2.1 Headway Distributions and Wait Times

Frequency-based models were originally based on the assumption that passengers
arrive randomly at stops and service headways are deterministic (regular) and
independent. In this case, the wait time has a uniform distribution equal to the
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frequency from zero to the inverse of the frequency (i.e., the given headway, which
is also the maximum wait time); the expected wait time is simply equal to one half
of the frequency inverse. However, these assumptions are inconsistent with sta-
tistical analysis of real-world data since constant headways can be obtained only
under perfect service regularity (see Sect. 7.4).

On the other hand, instead of evenly spaced headways, one can consider the case
where transit service is completely unpredictable (irregular) and can thus be
described as a Poisson arrival process of rare events. This assumption results in a
(negative) exponential distribution of the headways and of the wait times, which
implies the ‘memory less’ property: the elapsed wait time gives no further indi-
cation about the remaining wait time (the conditional distribution of an exponential
function is indeed that same exponential function). The expected wait time is equal
to the inverse of the frequency; it is thus twice as long than the case with deter-
ministic headways. This shows the relevance of the assumption regarding headway
distributions.

In frequency-based assignment, the headway distribution is typically a charac-
teristic of the whole line; but to represent service perturbation along the line (e.g.,
bouncing), it should be modelled as stop specific; the AVL systems today allow for
such a more detailed input (see Sect. 5.1.2). In the following, we refer in general to
a service headway h of a given line at a given stop during a given interval (thus the
indices ‘st are omitted).

The headway is modelled as a random variable with an independent probabilistic
distribution, i.e., a density function φh(h). As mentioned earlier, the inverse of its
expected value f = 1/E(h) is called the frequency, which is the main parameter of the
headway distribution.

A flexible representation of service regularity can be obtained under the
assumption that headways adhere to an Erlang distribution, which describes the
sum of n independent Poisson processes:

uh hð Þ ¼
Exp �n�f �hð Þ� n�fð Þn�hn�1

n�1ð Þ! ; if h� 0
0; otherwise:

�
ð6:42Þ

This distribution (see Fig. 6.5) can bridge the gap between the two above
extreme cases, by letting the parameter n vary from 1 (exponential—perfect
uncertainty) to ∞ (deterministic—perfect regularity). Note that in the above for-
mula f · n is the frequency of the n independent Poisson processes, while f is the
frequency of vehicle departures from the stop.

The minimum of independent exponential random variables is also distributed
exponentially with a frequency parameter that equals the sum of the random
variable parameters. Therefore, the expected wait time for the first vehicle serving a
set of attractive lines equals the inverse of the cumulative frequency.

To obtain the analogous result in case of common lines with deterministic
headways, i.e., to obtain an expected wait time which is half the inverse of the
cumulative frequency, would require that departures from the same stop of different
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lines are equally spaced and in that sense perfectly coordinated, which is in contrast
to the assumption of independent headways. But this would be theoretically pos-
sible only in case of identical line headways. Perfect correlation is thus practically
impossible and assuming the above wait time expression for common lines with
deterministic headways is just an optimistic approximation.

This justifies a more detailed analysis of independent headways and resulting wait
times for the case of common lines that is developed in Sect. 7.1. Instead, in the
following, we address the case of just one line for general headway distributions.

6.2.1.1 Mathematical Derivation

Because the headway h is random, then also the wait time (for a given line at a
given stop) is random. Assuming that passengers arrive uniformly distributed at the
stop, the probability density function φw(t) of the wait time is related to the headway
distribution through the formula:

uw tð Þ ¼ f � �Uh tð Þ; ð6:43Þ

where, by definition, it is:

�Uh hð Þ ¼ 1� Uh hð Þ ¼
Zhmax
h

uh hð Þ � dh; ð6:44Þ
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Fig. 6.5 Probability density function of the Erlang headway distribution for different values of
n ranging from 1 to 100 and f = 1/30. For n → ∞ the impulse function at h = 1/f = 30 is obtained
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and hmax is the maximum headway (it can be hmax = ∞).

Proof We now prove the validity of Eq. (6.43).
To this end, we shall first show that:

f ¼ 1R hmax
0

�Uh hð Þ � dh
: ð6:45Þ

Differentiating by parts, it is:

�Uh hð Þ � dh ¼ d �Uh hð Þ � h� �� h � d �Uh hð Þ: ð6:46Þ

The following 3 statements hold true:

�Uh hð Þ � h� �hmax
0 ¼ �Uh hmax

� � � hmax � �Uh 0ð Þ � 0 ¼ 0 � hmax � 1 � 0 ¼ 0

� h � d �Uh hð Þ ¼ �h � d 1� Uh hð Þ� � ¼ h � dUh hð Þ ¼ h � uh hð Þ � dh
Zhmax
0

h � uh hð Þ � dh ¼ E h½ � :
ð6:47Þ

Based on (6.47), taking the integral of (6.46) on both sides between h = 0 and
h = hmax yields:

Zhmax
0

�Uh hð Þ � dh ¼ E h½ �: ð6:48Þ

Because by definition it is: f = 1/E(h), then Eq. (6.48) is equivalent to (6.45),
which shows the relation between the frequency and the integral of the distribution
function; this is actually a general property of non-negative random variables.

Now, the fact that the wait time is exactly equal to t occurs for some value of
headway h not lower than t (otherwise the passenger cannot have waited that long),
if the passenger arrives at the stop h − t time units (e.g., minutes) after the previous
vehicle departure. Given that passenger arrivals at stops are uniformly distributed,
each one of these possible events has a probability that is proportional to φh(h),
through a constant, say α. Therefore, summing up these probabilities yields the
(density) of probability that the wait time is equal to t:

uw tð Þ ¼ a �
Zhmax
t

uh hð Þ � dh ¼ a � �Uh tð Þ: ð6:49Þ
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Like any probability density function, the integral of φw(t) over all possible wait
times is 1:

Zhmax
0

uw tð Þ � dt ¼ 1: ð6:50Þ

Then, substituting the right-hand side of Eq. (6.49) into to the integrand of
Eq. (6.50), based on Eq. (6.45) gives:

a ¼ 1R hmax
0

�Uh hð Þ � dh
¼ f : ð6:51Þ

Finally, based on Eqs. (6.51), (6.49) gives Eq. (6.43), which proves the assertion.
♦

In the case of Erlang headway distributions, based on formula (6.43), the
probability density function of the wait time is given as:

uw tð Þ ¼ f � Exp �n � f � tð Þ � Pn�1
i¼0

n�f �tð Þi
i! ; if t� 0

0; otherwise;

8<
: ð6:52Þ

while the probability of waiting for more than t is:

�Uw tð Þ ¼ Exp �n � f � tð Þ � Pn�1
i¼0

1� i
n

� � � n�f �tð Þi
i! ; if t� 0

1; otherwise:

8<
: ð6:53Þ

In case of deterministic headways, we obtain a uniform distribution of wait
times:

uw tð Þ ¼ f ; if 0� t� 1
f

0; otherwise

�
; ð6:54Þ

while the probability of waiting for more than t is:

�Uw tð Þ ¼
1� f � t; if 0� t� 1

f

0; if t[ 1
f

1; otherwise

8<
: : ð6:55Þ
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Based on Eq. (6.52) with n = 1, for exponential headways (irregular service), the
expected wait time is given as:

twait ¼
Z1
0

uw tð Þ � t � dt ¼ 1
f
: ð6:56Þ

Based on Eq. (6.54), for deterministic headways (regular service), the expected
wait time is given as:

twait ¼
Z 1

f

0

uw tð Þ � t � dt ¼ 0:5
f

: ð6:57Þ

The general formula for the expected wait time, under the assumption of uniform
passengers’ arrivals at stops depends only on the first and second moments of the
headway distribution and not on its pdf:

twait ¼ 0:5 � E h2ð Þ
E hð Þ : ð6:58Þ

Proof We now prove the validity of Eq. (6.58).
Assume that a sequence of n independent random headways is given, which

represent time intervals between two consecutive carrier arrivals at a stop, each of
duration hj, with j = 1, …, n. Let passengers’ arrivals at the stop be uniformly
distributed.

The probability pj that a passenger arrives during interval j is proportional to the
headway hj:

pj ¼ hjPn
i¼1 hi

: ð6:59Þ

The expected value of the wait time t, conditional to the above event is given as:

E tjjð Þ ¼ 0:5 � hj: ð6:60Þ

Based on the law of total probability, the expected wait time is obtained from the
conditional expectations as follows:

E tð Þ ¼
Xn
j¼1

E tjjð Þ � pj: ð6:61Þ
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Using Eqs. (6.59) and (6.60) in Eq. (6.61), we obtain:

E tð Þ ¼
Xn
j¼1

0:5 � hj � hjPn
i¼1 hi

	 

¼ 0:5 �

Pn
j¼1 h

2
jPn

j¼1 hj
¼ 0:5 �

Pn

j¼1 h
2
j

nPn

j¼1 hj
n

¼ 0:5 � E h2ð Þ
E hð Þ ;

ð6:62Þ

which proves the assertion. ♦

6.2.1.2 Service Irregularity and Variation Coefficient

From an engineering point of view, the effect of service irregularity on the expected
wait time can be reproduced through the variation coefficient σ ≥ 0, introduced in
Sect. 5.1.2.4. Because in general it is:

Var hð Þ ¼ E h� E hð Þð Þ2
� �

¼ E h2
� �þE hð Þ2�2 � E hð Þ � E hð Þ ¼ E h2

� �� E hð Þ2;
ð6:63Þ

and considering the definition σ = SD(h)/E(h), it is:

1þ r2 ¼ 1þ SD hð Þ
E hð Þ

	 
2

¼ 1þ Var hð Þ
E hð Þ2 ¼

E h2ð Þ
E hð Þ2 : ð6:64Þ

Then, Eq. (6.58) can be rewritten as:

twait ¼ 0:5
f
� 1þ r2
� � ¼ 1

f
� r2þ 0:5

f
� 1� r2
� �

: ð6:65Þ

Again, for deterministic headway, it is: σ = 0; while, for exponential headway it
is: σ = 1. Therefore, the above equation can be seen as the convex combination
between the exponential wait time and the deterministic wait time through the
square of the variation coefficient.

In case of Erlang headway distribution, where it is E(h) = 1/f and E(h2) = (1 + 1/
n)/f 2, based on Eq. (6.58), the expected wait time is given as:

twait ¼ 0:5
f
� 1þ 1

n

	 

: ð6:66Þ

A simple comparison between Eqs. (6.65) and (6.66) shows how the second
parameter of the Erlang distribution is related to the headway variation coefficient:
n = 1/σ2.
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The variation coefficient of the headway is the most common measure of service
(ir)regularity and can be easily obtained from Automated Vehicle Location
(AVL) data. Common values for different levels of transit right-of-way are available
from transit planning guides (e.g., TCQSM, TRB 2013).

6.2.2 The Static Transit Network

In this section, the network topology for the static transit assignment with
frequency-based services is derived starting from the input data (see Sect. 5.1).

A transit trip consists in general of several phases:

• accessing a transit stop from the origin, usually by walking;
• waiting at that stop for a transit vehicle;
• boarding a dwelling vehicle;
• travelling (or running, or riding) in the vehicle (on board) through a sequence of

stops;
• alighting the vehicle at another stop;
• (possibly) transferring between two transit stops, usually by walking;
• (possibly) repeat the phases from waiting to transferring a certain number of

times;
• and finally, egress from a transit stop to the destination, usually by walking.

Each trip phase is (possibly) represented by a sequence of arcs with a same type
(which specifies the nature of the trip phase) on the transit network; the latter is
composed by:

• the pedestrian network, including centroids and connectors, as well as access,
egress, walking and transfer links;

• the line network, with a sub-network for each transit line articulated in boarding,
running, dwelling and alighting arcs plus the stops shared by several lines;

• intermodal arcs at each stop to connect the pedestrian network with the line
network.

In the frequency-based approach, to represent the topology of the transit net-
work, several layers of nodes are then introduced, among which we can distinguish:

• the base nodes Nbase = B, coinciding with the vertices B, including
• the origin nodes O ¼ fBorig

z : 8z 2 Zg�Nbase (each zone z 2 Z is associated with
an origin vertex, denoted Borig

z 2 B), and
• the destination nodes D ¼ fBdest

z : 8z 2 Zg�Nbase (each zone z 2 Z is associated
with a destination vertex, denoted Bdest

z 2 B);
• the stop nodes Nstop = S, coinciding with the stops S (each stop s 2 S is asso-

ciated with a stop vertex, denoted Bstop
s 2 B);

• the line nodes N‘, with one layer for each line ‘ 2 L.
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A further specialization of line nodes is required by different models to represent
specific phenomena. The key feature of frequency-based models is the represen-
tation of waiting as a separate trip phase. To this aim, when building-up the graph
supporting the transit assignment model, the stop must be exploded into a set of arcs
and nodes. There are several ways to do so; the scheme depicted in Fig. 6.6 allows
to track most passenger flows and to reproduce (later on) the relevant congestion
phenomena. Two nodes for each stop of line ‘ 2 L are then introduced, so as to
represent consistently dwelling and running:

• the arrival node Narr
‘s 2 N‘; 8s 2 S‘ � S�‘ ;

• the departure node Ndep
‘s 2 N‘; 8s 2 S‘ � Sþ‘ .

A typical way of building-up the transport network is to introduce the following
types of arcs:

• the pedestrian arcs Awalk = Ewalk;
• the stop arcs Astop ¼ Bstop

s ; s
� �

: 8s 2 Sg[ f s;Bstop
s

� �
: 8s 2 S

� �
;

• the running arcs Arun ¼ fðNdep
‘s ;Narr

‘s þ ‘½ �Þ : 8S 2 S‘ � Sþ‘ ; 8‘ 2 Lg;
• the dwelling arcs Adwell ¼ Narr

‘s ;Ndep
‘s

� �
: 8s 2 S‘ � S�‘ � Sþ‘ ; 8‘ 2 L

n o
;

• the waiting arcs Await ¼ s;Ndep
‘s

� �
: 8s 2 S‘ � Sþ‘ ; 8‘ 2 L

n o
;

• the alighting arcs Aalight ¼ Narr
‘s ; s

� �
: 8s 2 S‘ � S�‘ ; 8‘ 2 L

� �
.

It is useful to denote La 2 L the line associated with arc a 2 A, if any. It is also
useful to distinguish stops from base nodes, as this allows us to separate the line
network (to which the stop node belongs) from the base network, which includes
pedestrian and support arcs; the two may even derive from two separate data source.

dwelling arc running arc

waiting arcalighting arc

line ℓ

stop s

pedestrian arcs
base node

stop node

line node

Nℓs
arr Nℓs

dep

Bsstop

stop arcs

Fig. 6.6 Typical topology of the public transport network for frequency-based models. Arcs and
nodes of the sub-network for this specific line are depicted in red
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Two dummy stop (inter-modal) arcs are, in this case, introduced to connect each
stop s 2 S to the associated base node Bstop

s 2 B (e.g., the closest one), from the
latter to the former and vice versa. Note that the arcs describing the walking paths
internal to a station are pedestrian arcs, and not stop arcs.

In some model, the stops S are directly a subset of vertices B, i.e., Bstop
s ¼ s, in

which case it is: Nstop � Nbase and no stop arc is required.
In some model, the pedestrian network is not explicitly introduced. The stops are

directly part of the base nodes, while two stops are possibly connected by a con-
nection arc that represents the shortest path on the hidden/implicit pedestrian net-
work between the two stops.

Each zone centroid is connected to one or several base nodes (and vice versa) via
particular pedestrian arcs that are called connectors, which represent the average
access (egress) time/cost from a location in the zone to that node (or stop). But
connectors should not be used to cross a zone. This rule can be enforced on the
network by splitting the centroid of each zone z 2 Z into two different nodes, the
origin vertex Borig

z 2 B and the destination vertex Bdest
z 2 B.

Support arcs represent the transport infrastructures used by line vehicles (e.g.,
road, reserved lanes, rail and tram tracks) and are not used by passengers directly.
They are introduced for aggregating inputs and outputs, for plotting on maps the
itineraries of the lines, and possibly to reproduce the mixed traffic congestion deriving
from the concomitant use of roads between public and private transport means.

The proposed configuration has one major limitation: it does not allow us to
identify the flow of passengers transferring from one line to another line within the
same stop, based solely on the arc volumes. This can be obviated by introducing, as
in Fig. 6.7, the following additional arc type:

• the transfer arcs Atran ¼ fðNarr
‘s ;Ndep

‘0s Þ : 8s 2 S‘; 8‘ 2 L; 8‘0 2 L� ‘ : s 2 S‘0 g.
Transfer arcs have the same time/cost of the corresponding arcs for waiting the

same line at that stop. A small cost is associated with the stop arcs, so that direct
transfers are convenient when alighting and boarding at the same stop. More
articulated topologies of stops can be defined to consolidate alighting and boarding
flows including transfers on one single arc, which may be useful (but not necessary)
to reproduce congestion phenomena.

In the following, we will refer to the more classical set-up of Fig. 6.6.

6.2.3 Arcs Travel Times and Costs

Once the topology of the transport network is defined, the relevant performance
attributes for each arc are to be specified, with particular reference to the factors
yielding the generalized costs of Eq. (6.2) that are travel time, value of time and
non-temporal cost. The time associated with the different types of trip phases is
typically perceived differently by passengers of a given user class g 2 G; it is then
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transformed into costs multiplying a base value of time cvotg by different weights; for
example, walking and waiting are usually perceived as considerably more costly
than riding.

For pedestrian arcs, the walking time, obtained as the ratio between the length of
the arc la and the walking speed swalka (introduced in Sect. 5.1.2), is multiplied by:

• the base value of time cvotg ;

• a walking discomfort coefficient cwalkg which differs for each user class g 2 G (for
example, elderly people suffer a higher discomfort for walking with respect to
young people).

Monetary costs are assumed null. Thus, we have the following:

ta ¼
la

swalka
; cag ¼ cvotg � cwalkg ; cntag ¼ 0; 8a 2 Awalk: ð6:67aÞ

Pedestrian arcs is one of the few noticeable cases in transit assignment where it
would make some sense distinguishing the travel time per user class; but this would
complicate the data structure unworthily.

Stop arcs are dummy; therefore, we assume a null cost and time:

ta ¼ 0; cag ¼ cvotg ; cntag ¼ 0; 8a 2 Astop: ð6:67bÞ

line Red

pedestrian arcs
base node

stop node

line node

line Blue

transfer arcs

waiting arcs

Fig. 6.7 Alternative topology with transfer arcs. Arcs and nodes of the sub-network for each one
of the two lines are depicted in red and blue, respectively
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For alighting arcs, the alighting time talight‘ (introduced in Sect. 5.1.2) is multi-
plied by the base value of time; monetary costs are assumed null, but a positive
non-temporal cost associated with transfers is usually introduced:

ta ¼ talight‘ ; cag ¼ cvotg ; cntag ¼ ctrang ; 8a ¼ Narr
‘s ; s

� � 2 Aalight: ð6:67cÞ

The transfer cost for each user class g 2 G may represents a bundle of disutility
components related to alighting and transferring, not necessarily connected with a
measurable delay:

• the psychological stress of alighting (e.g., being aware of the current station);
• the psychological stress of possibly changing line;
• the additional travel time variance induced by the transfer.

For running arcs, the travel time ttran
‘s

of the line segment (introduced in Sect. 5.1.
2) is multiplied by:

• the base value of time cvotg ;
• the line discomfort coefficient cvotg (introduced in Sect. 5.1.2);

• the crowding discomfort coefficient ccrowd
‘g

of the line segment s 2 S of line

‘ 2 L for user class g 2 G that possibly depends on (separable) congestion
through the (same) arc volume (as detailed in Sect. 7.2.1).

Monetary costs of the line segment are given by the kilometric fee ckfee
‘s

(intro-
duced in Sect. 5.1.2) that is multiplied by a possible fee multiplier cmfeeg for user
class g 2 G. Thus, we have the following:

ta ¼ trun‘s ; cag ¼ cvotg � cline‘g � ccrowd‘sg qað Þ;
cntag ¼ ckfee‘s � l‘s � cmfeeg ; 8a ¼ Ndep

‘s ;Narr
‘sþ ‘

� �
2 Arun:

ð6:67dÞ

For dwelling arcs, the travel time tdwell‘s (introduced in Sect. 5.1.2) that possibly
depends on (non-separable) congestion through the volumes of the alighting and
waiting arcs (as detailed in Sect. 7.4.4) is multiplied by the base value of time cvotg .
Monetary costs are null. Thus, we have the following:

ta ¼ tdwell‘s qAð Þ; cag ¼ cvotg ; cntag ¼ 0; 8a ¼ Narr
‘s ;Ndep

‘s

� �
2 Adwell: ð6:67eÞ

The cost of waiting arcs and transfer arcs derives mainly from the service
discontinuity in time. The expected wait time twait‘s of line ‘ 2 L at stop
s 2 S depends on the headway distribution through (6.58) or (6.65) and possibly
depends on (non-separable) congestion (effective frequency) through the volume of
the next running arc (as detailed in Sect. 7.3.2). This time is multiplied by:
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• the base value of time cvotg ;
• the waiting discomfort coefficient cwaitg which differs for each user class g 2 G;
• the stop discomfort coefficient cstopsg (introduced in Sect. 5.1.2);

• the crowding discomfort coefficient ccrowdsg of user class g 2 G at stop s 2 S that
possibly depends on (non-separable) congestion through the volume of the
waiting arcs (as detailed in Sect. 7.2.1).

The fixed fare of the line is applied here as a boarding fee c‘s
kfee (introduced in

Sect. 5.1.2). Thus, we have the following:

ta ¼ twait‘s qAð Þ; cag ¼ cvotg � cwaitg � cstopsg � ccrowdsg qAð Þ;

cntag ¼ cbfee‘s � cmfeeg ;
8a ¼ s;Ndep

‘s

� �
2 Await

8a ¼ Narr
‘0s ;N

dep
‘s

� �
2 Atrans:

ð6:67fÞ

The Eqs. (6.67)–(6.67f) allow to compute Eq. (6.2) and to obtain arc costs for the
whole transit network.

As detailed in the following chapters, cost functions shall be associated with
specific arc types to reproduce the effect of congestion on: crowding coefficients
(Sect. 7.2.1), dwell times (Sect. 7.4.4) and wait times (Sect. 7.3).

The arc performance model proposed in this section includes many coefficients
expressing the attitudes and preferences of the different user classes. The most
effective way of determining their values is to calibrate a random utility model for
route choice, based on an ad hoc survey with interviews to passengers of the study
area including both revealed and stated preference questions (see Sect. 4.4.6).

6.2.4 Waiting Costs in the Case of Known Timetable
and Regular Service

In case of lines with low frequency, the waiting cost resulting from Eqs. (6.67f) and
(6.2) may be overestimated. Indeed, if the service is regular (i.e., σ‘s = 0), we can
assume that passengers have the possibility of knowing the timetable; then, they
will adopt a schedule-based behaviour (see Sect. 6.1.1). At least for the first line
used in their journey, passengers can stay at home (or at the office, in the case of a
return trip), where (see Sect. 6.3.7) the value (disutility) of time ðcdelg � cvotg Þ is lower
than that of waiting at the stop [γag in Eq. (6.67f)], as some more useful activity can
be done there, until it is time to walk towards the stop (the user delays his/her
desired departure time). In general, we can then assume that the passenger faces the
following alternative:
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• stay at home until possible for a time equal on average to half of the headway
minus the boarding time tboard‘ (introduced in Sect. 5.1.2 as a safety margin),
which implies a disutility related to the delay with respect to the desired
departure time (see Sect. 6.3.7), and then wait at the stop only for time tboard‘ ;

• go directly at the stop and wait on average for half of the headway.

Of course, a rational passenger will choose the most convenient in terms of
generalized costs of the above two options; then, the wait time at the stop and the
additional cost due to departure delay are, respectively, as follows:

ta ¼ Min tboard‘ ; 0:5
f‘s

� �
;

8a ¼ s;Ndep
‘s

� �
2 Await

8a ¼ Narr
‘0s ;N

dep
‘s

� �
2 Atrans;

ð6:68Þ

cntag ¼ Min 0:5
f‘s
� tboard‘

� �
� cdelg � cvotg ; 0

� �
þ cbfee‘s � cmfeeg

8a ¼ s;Ndep
‘s

� �
2 Await

8a ¼ Narr
‘0s ;N

dep
‘s

� �
2 Atrans:

ð6:69Þ

This model is typically applied to given lines on the whole network, without
distinguishing between the first stop and additional transfers that are relative to a
specific passenger trip. Thus, it can lead to some cost underestimation for trans-
ferring to regular lines with low frequency.

6.2.5 Route Choice and Uncongested Assignment

Any of the static methods for uncongested assignment presented in Sect. 6.1 can be
used to analyse the transit network with a frequency-based model. In particular, we
can adopt the path-based model of Eq. (6.31) or the arc-based model of Eq. (6.32),
where arc performances given by Eq. (6.2) are specified by Eq. (6.67); route choice
can be stochastic or deterministic, or a mixture for the different user classes.

In the following, an all-or-nothing assignment to shortest paths is illustrated for
the example of Sect. 5.1.3. With respect to the network construction described in
Sect. 6.2.2, the assignment graphs depicted in Fig. 6.8 simplify dwelling arcs and
stop arcs. For the sake of simplicity, the only disutilities considered are the running
times and the wait times (also depicted in the Figure). The latter are equal to the
expected value of the headways assuming their exponential distribution. Demand
flows to the destination stop 4 are reported below the origin stops. The colour of
arcs is red for line 1, green for line 2, maroon for line 3 and black for line 4. The
grey arc is a pedestrian connection.

The numerical computation presented in Table 6.1 results from the Dijkstra
algorithm described in Sect. 6.1.6. The figures in brackets denote the Bellman
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Fig. 6.8 Input data and results of an AoN assignment to shortest paths are applied to the example
network

Table 6.1 Shortest tree computation for destination node 4 following the Dijkstra algorithm

Node Expected cost (min) Successor Insertion order Extraction order

1 (53 = 30 + 23)
31 = 6 + 25
(32 = 6 + 26)

(2)
11
(21)

14 14

2 23 = 15 + 8
(25 = 6 + 19)
(61 = 30 + 31)

32
(22)

10 11

3 (19 = 15 + 4)
13 = 3 + 10

(33)
43

8 8

4 0 1 1

11 25 = 25 + 0 14 5 12

14 0 = 0 + 0 4 2 2

21 26 = 7 + 19 22 13 13

22 19 = 6 + 13
(23 = 0 + 23)

23
(2)

12 10

23 13 = 0 + 13 3 11 9

32 8 = 4 + 4 33
22

9 6

33 4 = 4 + 0
(13 = 0 + 13)

34
(3)

6 5

34 0 = 0 + 0 4 3 3

43 10 = 10 + 0 44 7 7

44 0 = 0 + 0 4 4 4
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updates of node costs and successors which are not convenient and/or are later
replaced by a better solution.

The shortest tree is identified recursively by following the successor nodes. The
results of Table 6.1 show that all passengers take a direct route with no transfer. In
particular, the shortest path from 1 to 4 is to use the red line; the shortest path from
2 to 4 is to use the maroon line, and the shortest path from 3 to 4 is to use the black
line. The dashed arcs in Fig. 6.8 are not included in the shortest tree. The arc flows
can be easily determined by propagating the demand flows along these paths; all
flows are depicted in yellow in Fig. 6.8, where for simplicity only the running arcs
are valorised.

6.2.6 Criticism of the Non-strategic Approach

The frequency-based model presented in this section ignores the possibility of
combining transit lines that serve the same stop. At node 1, passengers have the
choice between the red and the green line; at node 2 between the green line and the
maroon line; and at node 3 between the maroon and the black line. But, a rational
transit passenger could choose to board either lines, since he can actually reach the
destination with both alternatives at a similar cost (see Table 6.1), while the wait
time at the stop would decrease considerably since the resulting service frequency
would combine that of two lines.

This leads to the notion of attractive lines at a stop, which is the set of transit
lines at a given stop that a passenger may willing to board. These may be common
lines that operate on the same corridor (a sequence of streets and stops) or transit
lines that operate on different routes, but provide service with transfers to the same
destination, which form a whole strategy formalized by a hyperpath (see
Sect. 6.1.3).

More in general, the formulation of frequency-based model for choice route on
transit networks depends on the assumptions made on the information that is
available to passenger during the trip. If no information is available then the best
choice would be the shortest (costliest) path.

The additional information that may become available during the trip is given as
follows:

• departure of vehicles from the stop (visually obtained),
• some knowledge of transit timetables,
• estimated arrival time of vehicles at stops (also from remote via apps or vms),
• elapsed wait time at a stop,
• information on other transit lines by looking out the window once on board,
• vehicle occupancies.

On this basis, models of increasing complexity are formulated and solved in
Sects. 6.3 and 7.1.
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6.2.7 Reference Notes and Concluding Remarks

6.2.7.1 The Impact of ITS in Frequency-Based Models

The impact of ITS in frequency-based models emerges mainly through two indirect
effects on variables:

• the reduction of headway variation coefficient that can be obtained by imple-
menting a fleet control policy (e.g., holding vehicles at stops); this can lead up to
halving the wait time (say from exponential headways with σ‘s = 1 to deter-
ministic headways σ‘s = 0) obtaining the same effect of doubling the service
frequency, especially for stops towards the end of the line;

• the reduction of waiting discomfort coefficient that can be obtained through
better information to passengers at stops (e.g., displaying vehicle arrival times);
also in combination with other measures (more comfortable stops), this can lead
up to halving the cost of waiting, from say cwaitg ¼ 2 to cwaitg ¼ 1.

These interventions can produce a relevant impact on the quality of public
transport, acting specifically on its peculiar cost components due to service dis-
continuity (wait times) and thus greatly helping to bridge the performance gap with
private transport.

6.2.7.2 The Evolution of Frequency-Based Models in the Literature

The development of transit assignment models can be traced to a contribution by
Dial (1967), who proposed a variant on the shortest path algorithm, originally used
for routing private vehicles on road networks that takes into account the wait time
of passengers at stops, which is the main phenomenon characterizing public
transport networks. The wait times at the transfer stops were computed as half of the
inverse of the combined frequency of all the lines serving the stop, thus already
embedding an embryonal idea of the common line dilemma (Chriqui and Robillard
1975). This concept was later developed into an efficient algorithm for large net-
works by De Cea and Fernandez (1989).

Other early contributions to the transit route choice literature are those of
Fearnside and Draper (1971), Le Clercq (1972), Andreasson (1976) and Last and
Leak (1976). Most of these initial methods employed heuristic approaches, where a
behavioural assumption leads directly to an algorithm without stating a formal
model that would be solved by the computational procedure. These were largely
inspired from assignment algorithms used on car networks, such as the
all-or-nothing assignment to shortest paths and the stochastic (logit) multipath
assignment, modified to reflect the wait times at stops which are inherent to transit
networks.

Since the 1980s, a significant body of research (references in Sect. 7.1.8) was
contributed to the study of transit route choice models where passengers are
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assumed to know the frequency of the offered services but not the exact timetable.
This assumption is reasonable for transit services in urban areas that operate with
high line frequency; passengers arrive at a stop, either to start the trip or by
transferring from another lines, and their wait time is related to the distribution of
time intervals between successive vehicle arrivals, which is commonly referred to
as the line headway. The typical hypothesis is that headways are independent with
exponential (random) distribution (minimum regularity), or uniform (deterministic)
distribution (maximum regularity), while the arrival of passenger at stops has a
uniform distribution.

Another important stream of research is the theoretical analysis of headway
distributions and their calibration with respect to real data. The proof of Eq. (6.58)
is due to the seminal contribution of Osuna and Newell (1972). Further contribu-
tions were provided in the late 1970s and early 1980s (Jolliffe and Hutchinson
1975; Larson and Odoni 1981; Bowman and Turnquist 1981). A more general
proof is given in Amin-Naseri and Baradaran (2014), who take also into account the
correlation among subsequent arrivals. The formal derivation of wait time from the
headway variation coefficient for Erlang distributions is an original contribution of
this book.

6.3 Scheduled-Based Assignment on Transit Space-Time
Networks

Guido Gentile, Younes Hamdouch and Markus Friedrich

In this section, schedule-based (or timetable based) models for transit assignment
are presented in their basic version, without involving strategic behaviour and/or
congestion phenomena.

The representation of supply shall take explicitly into account the fact that the
public transport service is organized with runs for each transit line and is thus
actually available not only at discrete places (the stops) but also at discrete times
(the schedule). The main issue is then the representation of a discrete service, which
can be accomplished through a suitable topological description of the transit net-
work that incorporates timetables and other dynamic aspects of supply by intro-
ducing a diachronic graph.

There exist other approaches for the representation of schedule-based supply.
One is to introduce a specific agent for the vehicle of each run in the context of a
simulation model, as explained in Sect. 6.5.2. Another one can be achieved through
a standard graph by macroscopic flow modelling with queuing; this requires the
definition of proper temporal profiles of the exit time for waiting arcs and alighting
arcs, to compress and decompress the passenger flows, respectively, as explained in
Sect. 7.3.5. Considerations about such alternative frameworks will be provided in
the referred sections, while this section is devoted to diachronic graphs.
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In schedule-based assignment, the typical assumption is that passengers do
consider the service timetable in their route choice, because this is available and
reliable; they therefore select a path on the diachronic graph, which by construction
embeds the departure time choice.

However, as already explained in Sect. 6.1.1, the schedule-based approach can
be also confined to the description of the dynamic network loading, while a
frequency-based perception of services, possibly including strategies, is considered
for route choice. This can be simply achieved through a proper definition of arc
costs on the diachronic graph, as shown in Sect. 6.3.3 (the cost of waiting arcs is
null, while the cost of boarding will include the expected waiting).

Hyperpaths can be, explicitly or implicitly, defined on the diachronic graph to
represent mingling queues of passengers at stops, as shown in Sect. 7.3.3 (the
fail-to-board probability is associated with a hyperarc and a sequential route choice
is considered, while iteration is required to reach equilibrium), or their strategic
behaviour with respect to line arrivals at stop, as shown in Sect. 7.1.7 (the attractive
set is built-up at stops in reverse chronological order and transmitted backward in
time through waiting arcs on the diachronic graph).

6.3.1 The Diachronic Graph

The key feature of schedule-based transit services, from a modelling point of view,
is that they can be easily represented through a space-time network, also called
diachronic graph, where each single run has its own layer of topology.

In general, in a space–time network, each node has a specific time coordinate,
beside space geo-coordinates. For the sake of simplicity, in the graphical repre-
sentation, the x–y space is often reduced to one dimension, as depicted in Fig. 6.9;

travel arc

time

waiting arc

space

latitude

longitude

Fig. 6.9 Generic space-time network, or diachronic graph, and the corresponding base network.
Waiting arcs are depicted in black, travel arcs are depicted in green
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only in case of one transit line, it is easy to keep the metric of space consistent with
the progressives of stops. Note that the same edge of the base network can have
different travel times, for different entry times; but the FIFO rule is typically sat-
isfied at the link (and path) level.

In particular, each node is defined here as a ordered couple of a vertex i 2 B,
which identifies its point in space, and a time index t 2 T [ η + 1, which identifies
its instant in time (see Sect. 5.1.1), thus adopting a discrete representation of both
dimensions (space and time). Recall that the additional instant η + 1, with τη+1 = ∞
is introduced here to represent events occurring after the assignment period [τ0, τη]
or events not referred to a specific time.

To guarantee the consistency of the time-space network, we introduce the fol-
lowing index functions, which are used to shift any given instant τ ≥ τ0 to an instant
of the predefined time discretization:

• t+(τ) identifies the (next) time index t 2 T [ η + 1 such that τt−1 < τ ≤ τt;
t+(τ0) = 0;

• t−(τ) identifies the (previous) time index t 2 T such that τt ≤ τ < τt+1.

In the following, the network topology of the diachronic graph for transit
assignment with schedule-based services is derived starting from the input data (see
Sect. 5.1).

Like in the frequency-based approach, each trip phase (refer to the list in
Sect. 6.2.2) is (possibly) represented by a sequence of arcs with a same type on the
transit network; the latter is composed by:

• the pedestrian network, including centroids and connectors, as well as access,
egress, walking and transfer links;

• the line network, with a sub-network for each transit run (and not for each line,
like it is in frequency-based models), plus the stops and the waiting arcs shared
by different lines;

• intermodal arcs at each stop to connect the pedestrian network with the line
network.

To represent the topology of public transport services through a space-time
network, several layers of nodes are introduced, among which we can distinguish:

• the base nodes Nbase = {(i, t): 8i 2 B, 8t 2 T [ η +1}, including
• the origin nodes O ¼ Borig

z ; t
� �

: 8z 2 Z; 8t 2 T
� ��Nbase, and

• the destination nodes D ¼ Bdest
z ; gþ 1

� �
: 8z 2 Z

� ��Nbase, without a specific
time coordinate;

• the stop nodes Nstop ¼ s; tð Þ : 8s 2 S; 8t 2 T [ gþ 1f g;
• the run nodes Nr, with one layer for each run r 2 R‘ of line ‘ 2 L.

Figure 6.10 shows a typical structure of the diachronic graph with the different
node layers.

A further specialization of run nodes is required by different models to represent
specific phenomena. Like in frequency-based models, there are several ways to
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explode stops; the scheme depicted in Fig. 6.11 allows to track most passenger
flows and to reproduce (later on) the relevant congestion phenomena. Two nodes
for each stop of run r 2 R‘ are introduced, so as to represent consistently dwelling
(the idle vehicle at one stop) and running (the moving vehicle between two con-
secutive stops):

• the arrival node Narr
rs 2 Nr; 8s 2 S‘ � S�‘ , with time coordinate t+(τrs) for a given

scheduled time τrs;
• the departure node Ndep

rs 2 Nr; 8s 2 S‘ � Sþ‘ , with time coordinate t−(θrs) for a
given scheduled time θrs.

A typical way of building-up the diachronic graph is to introduce the following
types of arcs:

• the pedestrian arcs Awalk ¼ a�; tð Þ; aþ ; tþ ðst þ la=swalka Þ� �� �
: 8a 2�

Ewalk; 8t 2 Tg;
• the destination arcs Adest ¼ Bdest

z ; t
� �

; Bdest
z ; gþ 1

� �� �
: 8z 2 Z; 8t 2 T

� �
;

Fig. 6.10 Typical topology of the diachronic graph for schedule-based models
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• the running arcs Arun ¼ Ndep
rs ;Narr

rs½ þ ‘�
� �

: 8s 2 S‘ � Sþ‘ ; 8r 2 R‘; 8‘ 2 L
n o

;

• the stop arcs Astop ¼ ð Bstop
s ; t

� �
; ðs; tþ 1ÞÞ : 8s 2 S; 8t 2 Tg[ fð s; tð Þ;�

ðBstop
s ; tþ 1ÞÞ : 8s 2 S; 8t 2 Tg

• the waiting arcs Await ¼ fð s; tð Þ; ðs; tþ 1ÞÞ : 8s 2 S; 8t 2 T ;
• the dwelling arcs Adwell ¼ f Narr

rs ;Ndep
rs

� �
: 8s 2 S‘ � S�‘ � Sþ‘ ; 8r 2 R‘;

8‘ 2 Lgg;
• the boarding arcs Aboard ¼ fððs; t�ðhrs � tboard‘ ÞÞ;Ndep

rs Þ : 8s 2 S‘ � Sþ‘ ; 8r 2
R‘; 8‘ 2 Lg;

• the alighting arcs Aalight ¼ fðNarr
rs ; ðs; tþ ðsrsþ talight‘ ÞÞÞ : 8s 2 S‘ � S�‘ ; 8r 2

R‘; 8‘ 2 Lg.
In this configuration, the intermodal arcs are only the stop arcs, while the

boarding and alighting arcs are part of the line network. Note that running arcs
connect two consecutive stops; they do not represent a trip leg that in some other
models is introduced to jointly identify a sequence of stops between possible
boarding and alighting.

Base and stop nodes are replicated for each instant of the predefined time dis-
cretization, while any arc shall connect two existing nodes by construction. For this
purpose, the index function has been introduced, so that the instants which are used
in the dynamic computation of route choice (concatenation) and flow propagation
are fictitiously shifted to keep the time-space network consistent and acyclic.
However, the travel time associated with each arc which is used in the computation
of costs can be evaluated precisely. The typical time discretization in

dwelling arc

running arc

alighting
arc

run r of line ℓ

stop s

boarding
arc

pedestrian
arcstime

base node

stop node

line node

waiting arcs

destination arc

stop arcs

Bsstop

(Bzdest, η+1)

Bzdes

space

Fig. 6.11 Detail of the stop topology and of the connection with the pedestrian network
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schedule-based model for transit assignment has one-minute intervals; but shorter
intervals shall be adopted to properly describe pedestrian networks with short
edges, such as the connections inside a station (e.g., la < 80 m). Clearly, larger time
intervals imply bigger approximations in the concatenation of costs and propagation
of flows, while shortest time intervals imply more precise calculations at the price of
higher computational costs due to the presence of many pedestrian and waiting arcs
(ram and run-time are proportional to the number of arcs).

Acyclicity is a key feature of the diachronic graph topology, which turns very
useful in the computation of shortest paths and flow propagation; in particular, the
chronological order is in this case a topological order.

Arcs and nodes of the sub-network for this specific run are depicted in green; the
bold arcs (including waiting at stops) make up the line network. Horizontal lines
represent the instants of the predefined time discretization. The grey vertical line
entails that a complex pedestrian network may be introduced to ensure the con-
nection between origin, destinations and the base nodes of stops (i.e., access, egress
and transfer).

6.3.2 Travel Costs in the Case of Run Choices

Once the space-time network is defined, the arcs can be characterized with exactly
the same performance variables introduced for the frequency-based static model,
since the representation of dynamics is here intrinsic in the topology of the dia-
chronic graph. However, the travel times are to be here interpreted as a cost
component used for route choice, while the speed of movements used in flow
propagation and cost concatenation, as well as for the construction of
paths/trajectories on the space-time network, are those connected with the temporal
dimension of the diachronic graph.

If passengers make their route choice using the run schedule, the arc perfor-
mance model developed in Sect. 6.2.3 for frequency-based services is still valid,
with two noticeable differences:

• the travel time of boarding arcs includes only the constant value tboard‘ that is
related to a safety margin compared to the departure, while the waiting phase is
represented with a specific arc type;

• the running times and the dwell times are provided by the timetable, respec-
tively, as τrs+‘ − θrs and θrs − τrs.

The Eqs. (6.70a)–(6.70h) presented below allow us to compute (6.2) and obtain
arc costs for the whole space-time network.

ta ¼
la

swalka
; cag ¼ cvotg � cwalkg ; cntag ¼ 0; 8a 2 Awalk; ð6:70aÞ
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ta ¼ 0; cag ¼ cvotg ; cntag ¼ 0; 8a 2 Astop; ð6:70bÞ

ta ¼ talight‘ ; cag ¼ cvotg ; cntag ¼ ctrang ;

8a ¼ Narr
rs ; s; tþ srsþ talight‘

� �� �� �
2 Aalight;

ð6:70cÞ

ta ¼ srsþ ‘ � hrs; cag ¼ cvotg � cline‘g � ccrowdrsg qað Þ;
cntag ¼ ckfee‘s � l‘s � cmfeeg ; 8a ¼ Ndep

rs ;Narr
rsþ ‘

� �
2 Arun;

ð6:70dÞ

ta ¼ hrs � srs; cag ¼ cvotg � cline‘g ; cntag ¼ 0; 8a ¼ Narr
rs ;Ndep

rs

� � 2 Adwell; ð6:70eÞ

ta ¼ tboard‘ ; cag ¼ cvotg � cwaitg ; cntag ¼ cbfee‘s � cmfeeg ;

8a ¼ s; t� hrs � tboard‘

� �� �
;Ndep

rs

� � 2 Aboard:
ð6:70fÞ

The crowding discomfort coefficient ccrowdsgt [ 1 of the segment s 2 S of run
r 2 R‘ of line ‘ 2 L for user class g 2 G possibly depends on (separable) congestion
through the number of passengers on-board given by the volume on the (same) arc
(as detailed in Sect. 7.2.1).

For waiting arcs, the duration of the interval τt+1 − τt is multiplied by:

• the base value of time cvotg ;
• the waiting discomfort coefficient cwaitg ;
• the stop discomfort coefficient cstopsg ;

• the crowding discomfort coefficient ccrowdsgt of stop s 2 S for class g 2 G users
entering the waiting arc at instant t 2 T that possibly depends on (separable)
congestion through the (load) number of waiting passengers given by the vol-
ume on the (same) arc (as detailed in Sect. 7.2.1).

Monetary costs are assumed null. Thus, we have the following:

ta ¼ stþ 1 � st; cag ¼ cvotg � cwaitg � cstopsg � ccrowdsgt qað Þ; cntag ¼ 0;
8a ¼ s; tð Þ; s; tþ 1ð Þð Þ 2 Await:

ð6:70gÞ

Note that given the possibility offered by longer waits, for scheduled services the
stop discomfort coefficient cstopsg (introduced in Sect. 5.1.2), besides ergonomy,
depends also on the activities (e.g., shopping) that can be developed by the pas-
senger at the specific stop.

Destination arcs are dummy; therefore, we assume a null cost and time:

ta ¼ 0; cag ¼ cvotg ; cntag ¼ 0; 8a 2 Adest: ð6:70hÞ
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6.3.3 Travel Costs in the Case of Line Choices

The cost model presented in the previous section is to be considered the reference
one for schedule-based assignment. However, there are cases where the assignment
of the diachronic graph is aimed to determine the load on each run, while passenger
behaviour is still connected with the perception of service in terms of line
frequencies.

In this case, the arc performance model developed in Sect. 6.2.3 for
frequency-based services can be still applied, with few exceptions:

• the cost of boarding arcs shall include the expected waiting time and its disu-
tility, but not the cost due to the crowding discomfort, as each coefficient ccrowdsgt

is arc specific and depends on the load of waiting passengers at the stop entering
at that specific instant;

• the cost of waiting arcs (that would in this case be null in principle) shall thus
include only the crowding discomfort.

In this case, Eqs. (6.71a)–(6.71e) and (6.71h) are identical to Eqs. (6.70a)–
(6.70e) and (6.70h), while for boarding and waiting arcs it is, respectively:

ta ¼ tboard‘ þ twait‘st qAð Þ; cag ¼ cvotg � cwaitg � cstopsg ;

cntag ¼ cbfee‘s � cmfeeg ;
8a ¼ s; tð Þ;Ndep

rs

� � 2 Aboard

t ¼ t� hrs � tboard‘

� � ;
ð6:71fÞ

ta ¼ stþ 1 � st; cag ¼ cvotg � cwaitg � cstopsg � ccrowdsgt qað Þ � 1
� �

;

cntag ¼ 0; 8a ¼ s; tð Þ; s; tþ 1ð Þð Þ 2 Await:
ð6:71gÞ

This way, the cost of waiting is arbitrarily separated in two discomfort com-
ponents that are associated with two different arc types, i.e., boarding and waiting,
respectively. This modelling choice is justified by several facts:

• the perceived wait time (6.71f) preventively estimated by passengers to make
their route choice is linked with the headway distribution and primarily with the
line frequency;

• the actual wait time (6.71g) suffered by passengers is that accumulated during
the wait, under the assumption that the timetable embedded in the diachronic
graph is a possible instance of what will actually occur in reality;

• by perceiving some cost also on the waiting arcs, passengers are induced
boarding the first available run(s) of each line (under the typical assumption that
ccrowdsgt [ 1);

• the crowding discomfort coefficient at the stop depends on the number of
waiting passengers, which may grow during the wait and is thus well repre-
sented by the load on the waiting arc.
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Once again, be aware that the travel times evaluated by the above arc perfor-
mance model are functional to the route choice model through perceived costs. The
correct computation of an output indicator such as the total travel time is properly
accomplished by taking into consideration the temporal coordinates embedded into
the diachronic graph; indeed, by considering (6.71f) and (6.71g) wait times would
be counted twice.

The expected wait time twait‘st at stop s 2 S for line ‘ 2 L at instant t 2 T depends
on the headway distribution through (6.65), where the frequency f‘st and the
irregularity σ‘st shall be evaluated through Eqs. (5.12) and (5.13), respectively,
starting from the schedule. This can be done by considering fairly long-time
intervals (say 1 h), which would be feasible with the memory ability of passengers
in recalling temporal profiles of attributes. As an alternative, the frequency can be
calculated as the inverse of the (departure) headway between the current run and the
previous one. In case of queuing, the perceived wait time can also possibly depend
on (non-separable) congestion (effective frequency) through the load of the next
running arc (as detailed in Sect. 7.3.2).

As already mentioned, the crowding discomfort coefficient ccrowdsgt of stop
s 2 S for user class g 2 G at instant t 2 T possibly depends on (separable)
congestion through the number of waiting passengers given by the load on the
corresponding arc (as detailed in Sect. 7.2.1).

The disutility connected with the possible difference between the desired
departure time and the actual one is discussed in Sect. 6.3.7.

6.3.4 Route Choice and Uncongested Assignment

Any of the static methods for uncongested assignment presented in Sect. 6.1 can be
used to analyse the transit network with a schedule-based model. In particular, we
can adopt the path-based model given in Eq. (6.31) or the arc-based model given in
Eq. (6.32), where arc performances in Eq. (6.2) are specified by Eq. (6.70) or by
Eq. (6.71); route choice can be stochastic or deterministic, or a mixture for the
different user classes.

Although there is no technical drawback in adopting an arc-based model, the
traditional approach to the schedule-based assignment on the diachronic graph is
path-based, because this allows to better represent some important attributes, such
as fares and walking distance, that may be modelled as nonlinear components in the
passengers disutility, as well as other behavioural aspects of route choice, such as
the correlation among alternatives.

The different preferences of users on the many relevant attributes (e.g., walking
time, wait time, on-board time, transfers, monetary cost, stop ergonomy and
comfort) are not easy to synthesize in the deterministic coefficients of a given class
segmentation. Hence, a random utility model can be used which incorporates
passenger heterogeneity in a stochastic framework.
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The correlation among route alternatives is a relevant aspect to take into account
in stochastic assignment when the model is conceived to distinguish the service
provided by each run of a same line. On the other hand, the number of
non-dominated routes available on the space-time network and practical to consider
for each O–D pair is usually limited.

In Sect. 4.5.2, some methods are presented to generate a ‘good’ set of paths,
which is a critical step in this kind of assignment procedure; moreover, in the next
section, the multi-path algorithm is presented as a route generation method
specifically conceived for schedule-based models of long distance trips.

Under these considerations, path-based models allow for more opportunities
than arc-based models:

• a proper selection of usable routes, which comes at the price of introducing rules
for their identification;

• a proper representation of their correlation, which comes at the price of a more
complex route choice model;

• the possibility of introducing non-additive costs, such as fares, which comes at
the price of a more complex supply model.

A connector exiting from the origin node represents the access to the pedestrian
network, which allows us to reach the first stop. The passenger waits at the platform
a specific run for a certain number of time intervals and then boards the vehicle at
the end of its dwell time, which instead occurs on the track (thinking of a railway
example). The run departs from the stop (with the passenger on-board) at the
scheduled time and arrives at the next stop again on schedule. The passenger travels
along a sequence of line segments on such run until he/she alights upon vehicle
arrival at the planned stop. The passenger may transfer to a new stop using the
pedestrian network, or stay in the same stop, and the waiting–boarding–alighting
sequence is repeated, until the last stop is reached. Finally, the passenger walks
towards the destination and egresses there from the transit network via a connector;
the trip on the diachronic graph actually ends with a dummy destination arc.

Each one of the above trip phases is represented through a sequence of arcs on
the diachronic graph. Thus, the route costs ckg can be obtained by summing up all
the arc costs of the path, plus possibly a non-additive term, as in Eq. (6.3). Route
probabilities pkg can then be reproduced through any discrete choice model (e.g.,
based on random utility), as in Eq. (6.13).

In the schedule-based approach with space-time network, a trip starting at instant
t 2 T from origin zone z 2 Z to destination zone z′ 2 Z is represented as an (acyclic)
path k 2 Kod from origin node o ¼ ðBorig

z ; tÞ 2 O to destination node d ¼
ðBdest

z0 ; gþ 1Þ 2 D on the diachronic graph; thus, the notion of departure time is
embedded in the origin.

Travel demand dodg represents here trips from origin node o ¼ ðBorig
z ; tÞ to

destination d, i.e., the number of passengers of class g who (wish to) depart from
origin zone z during a time interval (τt-1, τt] to reach d at a later time. It is assumed
that all such passengers will behave like the one departing in the final instant of the
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interval, who will consider the costs ckg of the paths k 2 Kod. The resulting path
flows qkg are consistent with the route probabilities pkg as in (6.6). Finally, the arc
flows and volumes are computed as in Eqs. (6.5) and (6.1).

Most of the existing models for schedule-based assignment adopt the above
path-based approach, which can support also the simulation of real-time information
about vehicle arrivals and the consequent en-route adaptation of the path choice. In
that case, random utility models are though forced to represent also the events
occurring at stop relative to the service departure time, in a context of imperfect
regularity, while actually the two phenomena (random utility and random headways)
follow in general quite different statistical laws. Moreover, service irregularity leads
passengers to a strategic behaviour, which cannot be represented satisfactorily by
stratifying the network knowledge, possibly acquired through a day-to-day learning
process, in terms of path costs. Instead, strategies are well formalized through
hyperpaths, which given their awkward explicit representation require de facto an
implicit modelling of sequential arc choice towards the destination. For this reason, as
already explained in Sect. 6.1.3, despite the advantages of path-based models in
reproducing nonlinear attributes, arc-based models can better provide a suitable
support for the future development of schedule-based algorithms, where:

• the assumption of perfectly reliable timetables is abandoned,
• the representation of supply variability becomes a key aspect of the simulation,

and
• the diachronic graph reduces to a technical tool for the analysis of the loads

resulting from the assignment on each run and is not anymore meant to reflect
the mental map of the passenger.

6.3.5 Branch and Bound Algorithm for Choice-Set
Generation

The multi-path algorithm (Friedrich et al. 2001) is here presented as a method for
generating the set Kod of all potential routes from origin node o ¼ ðBorig

z ; tÞ 2 O to
any destination node d ¼ ðBdest

z0 ; gþ 1Þ 2 D on the diachronic graph that are
compliant with a set of given rules.

The construction algorithm builds-up iteratively a connection tree which may
provide several paths from an origin (at a given time) to possibly every destination,
as depicted in Fig. 6.12. The root of the tree is the origin node; a walk leg (i.e., a
sequence of pedestrian arcs) is added to the tree to reach each stop of public
transport in the vicinity (a proper distance threshold is to be defined) and the
corresponding node (stop and arrival time) is added to a list of nodes to examine.

Then, for each one of the reached stops (contained in the list), a branch and
bound approach is applied to visit and possibly add to the connection tree all transit
legs (i.e., a sequence of line network arcs, such as board, run, dwell, run, dwell,
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alight) that bring from the current stop at the current time (current node) to another
stop and satisfy a set of rules (to be specified in the following). When this happens,
the final stop of the visited leg (at the arrival time) is added to the list of nodes to be
further examined. Once all stops of one level are visited, the depth of the tree is
increased to the next level. Moreover, additional walk legs are added to the tree if
destinations are reachable in the vicinity.

The use of entire connection legs as tree edges simplifies and accelerates the
search for new routes on the diachronic graph to a great extent; the combinatorial
explosion of connections is primarily limited by the maximum number of transfers.

The construction of the connection tree includes the definition of a search
impedance ck

imp for each route k:

cimpk ¼ btime � ttotk þ btrans � ntransk þ bfare � cfarek ; ð6:72Þ

where:

• ttotk is the total travel time of the path (undistinguished for trip phase),
• ntransk is the number of transfers and

•
cfarek

is the fare, while

• βtime, βtrans and βfare are global search parameters.

The functional form of this search impedance is thus similar but usually simpler
than that of the systematic utility. Indeed, while the utility should reflect at best the
perception of the travellers in the route choice, the impedance is used only to
generate an appropriate choice set of paths. This can justify some somewhat dif-
ferent parameter values.
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transfer stop
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Fig. 6.12 Structure of the connection tree
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Now, we present the set of rules that can be applied in the branch and bound
constructive search to determine if a given transit leg (i, u) → (j, v) from the stop of
the currently examined node (i, t) to another stop j reachable at a later time with no
transfer from i should be added to the connection or not:

• Rule 1. Temporal suitability. The run of the transit leg under consideration shall
depart after the arrival time at stop i: u > t.

• Rule 2. Dominance. No other connection k 2 Koj should already exist on the tree
from origin o to stop j that dominates in all relevant aspects the one h created by
adding the transit leg under consideration, i.e., such that ttotk \ttoth and

ntransk \ntransh and cfarek \cfareh .

• Rule 3. Tolerance. The following constraints are satisfied: cimph � aimp�
Minðcimpk : k 2 KojÞþ vimp and ntransh � vtransn, where αimp > 1 is the relative
tolerance with respect to the least impedance path, χimp is an additive absolute
tolerance with respect to the least impedance path, and χtrans is the maximum
number of transfers allowed within a connection.

When a connection is added, then its final stop is added to the list of nodes with
the resulting arrival time. A tree level is explored completely before connection legs
of the next level are considered. The procedure terminates when the list of nodes is
empty or the maximum number of transfers (levels) is reached. Finally, for each
destination d, one additional connection is added directly to the origin o, which
contains a walking leg using the shortest path on the pedestrian network.

6.3.6 Computation of Shortest Tree on the Space-Time
Network

A practical alternative to the preliminary explicit generation of all relevant paths is
their iterative construction through the computation (and storage, if needed) of
minimum-cost trees on the diachronic graph.

In space-time networks, each node has a specific time coordinate, with the
exception of destination nodes, which have none. This way, with one shortest tree
rooted at the destination node the minimum-cost path starting from every origin
node (each one representing an origin centroid and a departure time) is obtained; let
us see why this is convenient.

Usually, in a dynamic assignment problem, we are faced with the computation of
the costless path to reach the destination centroid Bdest

d 2 B of zone d 2 Z (at any
time) starting from the origin centroid Borig

o 2 B of zone o 2 Z at a given instant
t 2 T, because the demand is specified and stratified for departure time. This can be
achieved at once for all possible origin zones o 2 Z and departure times t 2 T with
one single visit in reverse chronological order of the diachronic graph by initializing
to zero the labels of the base nodes (Bdest

d 2 B; 8e 2 T) corresponding to the
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destination centroid at all possible arrival times (these are not the destination node);
the result of the algorithm would be therefore a forest and not a tree. However, the
introduction of dummy destination arcs allows to initialize only the label of the
destination node (Bdest

d ; gþ 1) to zero.
Moreover, the computation of a shortest tree on the diachronic graph is trivial,

since the graph is acyclic and has a natural topological order that is the chrono-
logical order (we can assume destination nodes have an infinite time). Under such
conditions, a shortest tree can be easily computed by processing all nodes with
Eq. (6.19), i.e., by applying the Bellman relation given in Eq. (6.29) to each arc of
the forward star, in reverse chronological order starting from the destination,
without the need of introducing a list of nodes to be visited. This approach is here
referred to as the Pallottino algorithm (1998), who proposed and analysed several
variants of this problem.

The example below presents the computation of the shortest tree to destination 4
by considering (Fig. 6.13) a simplified version of the diachronic graph topology
with respect to that proposed in Sect. 6.3.1 applied to our test case of Sect. 5.1.3. In
particular, for the sake of simplicity, the stop is here represented as a single node;
thus, while the feasible connections among possible runs are correctly represented,
the resulting arc loads are not capable of explaining boarding, alighting and transfer
flows.
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Fig. 6.13 Results of an AoN assignment to shortest paths on the diachronic graph applied to the
example network
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The colour of running arc is that associated with the line: red for line 1, green for
line 2, maroon for line 3 and black for line 4. The grey time boxes represent the
base nodes replicated for each instant of the time discretization, while the white
time boxes represent departure and arrivals of runs. The grey lines between stops 1
and 2 represent the pedestrian arcs. The dashed arrows at stop 1 represent the
departure options (red for delay and green for anticipation) as explained in
Sect. 6.3.7.

In Table 6.2, each line shows the solution for a node of the diachronic graph.
Nodes are visited in reverse chronological order from the destination and the best

Table 6.2 Shortest tree computation for destination 4 following the Pallottino algorithm
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local alternative of the forward star (such that the arc cost plus its head cost is
minimum) is identified, thus providing expected cost and successor stop for the
node under analyses.

At the end of the process, it is possible to reconstruct the shortest path starting
from any origin node by following on the table the sequence of successor nodes.
For example (see dark cells of the table), starting from stop 1 at 7:30, the sequence
is: (board and ride the green line) stop 2 at 7:37, (ride the green line) stop 3 at 7:43,
(alight from the green line and wait) stop 3 at 7:45, (board and ride the black line)
stop 4 at 7:55, (reach the destination node) stop 4 at time η + 1.

The numbers at the left of the node and on the arcs in yellow depicted in
Fig. 6.13 identify the passenger loads resulting from an AoN assignment to shortest
paths on the diachronic graph; in red (stop 2 at 8:30) is depicted a demand load that
is unable to reach the destination.

6.3.7 Departure Time Choice

The results obtained with the simulation of route choice only are not particularly
satisfactory in the case of schedule-based models, because the departure time choice
is not properly taken into account in a context where the availability of service is
scarce in time.

For example, passengers who desire to depart at 8:30 from stop 2 do not have an
available travel alternative if they must necessarily start their trip at 8:30; but, they
may be willing to anticipate their trip, and this allows to have more travel alter-
natives. Passengers who desire to depart at 7:30 from stop 3 have a cost of 25 min
by starting their trip exactly at 7:30; but they may be willing to postpone their trip at
8:00 when the cost to destination is only 4 min. Passenger who desire to depart at
8:00 from stop 1 have a cost of 33 min by starting their trip exactly at 8:00; but they
may be willing to anticipate their trip at 7:30 when the cost to destination is only
25 min.

However, the shift from the desired departure time to the actual departure time
conveys a cost (disutility) for anticipation or delay; therefore, the final trip decision
will result from the combination of route opportunities available at different
departure times and the above shift disutility.

In the framework of diachronic graphs, it is fairly easy to couple the route choice
with the departure time choice. To this end, after the computation of the shortest
tree to destination d 2 D and before performing the flow propagation, the demand
dodg of class g 2 G users directed to d that desire to depart form origin zone z 2 Z at
instant t 2 T shall not be (necessarily) loaded on origin node o ¼ ðBorig

z ; tÞ 2 O, but
instead on the origin node i ¼ ðBorig

z ; eÞ 2 O, with actual departure instant e 2 T,
which shows the best utility. The latter is given by the combination of the route
(expected) cost widg from node i to destination d and of the cost (disutility) for
anticipation τt − τe (if e ≤ t) or delay τe − τt (if e ≥ t) due to the shift of the actual
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departure time τe with respect to the desired departure time τt. Usually, the choice
set of actual departure times that users of class g 2 G take into consideration is
identified by considering a maximum anticipation tantg and a maximum delay tdelg .

Typically, a linear expression of the above disutilities for users of class g 2 G is
assumed with different coefficients for anticipation tantg and delay tdelg ; because the

demand is specified for desired departure times, then usually cantg [ cdelg ; indeed, in
this case users are doing some activity at the origin which ends at a given time. The
total cost wodge to reach destination d for users of class g that desire to depart at
instant t from node o ¼ ðBorig

z ; tÞ but instead depart at instant e from node i ¼
ðBorig

z ; eÞ is then given by:

wodge ¼ widgþ
cantg � cvotg � st � seð Þ; if st � tantg � se� st
cdelg � cvotg � se � stð Þ; if st\se� st þ tdelg
1; otherwise

8<
: : ð6:73Þ

On the contrary, if the demand is specified for desired arrival times, then the user
is going to undertake an activity at the destination which will start at a given time.
However, in this case, the shortest paths shall be computed from the origin, basi-
cally inverting the described approach.

A probabilistic model based on random utility (see Sect. 4.4) can also be used to
split the demand on the alternative departure times, where the opposite of the above
cost combination works as a systematic utility.

In an equilibrium assignment including departure time choice, some commuters
will travel before the desired departure time and some after, so as to avoid the
congestion of the peak period.

Below an example of departure time choice from origin 1 is presented, under the
assumption of a disutility for delay equal to 6 min/h and for anticipation equal to
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Fig. 6.14 Departure time choice for passengers leaving from origin stop 1 destination stop 4
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10 min/h. Passengers who desire to depart at 8:00 find more convenient to depart at
7:30 (Fig. 6.14).

In the case where the departure time choice can be considered as part of the route
choice like if anticipation or departure delay are an additional phase of the trip, then
the departure time choice can be simulated within the assignment model simply by
extending the network into a super-network with departure arcs that connect the
origin node (with its desired departure time) and any other feasible departure time.
The cost associated with these arcs is the disutility of anticipation or delay which
can take any form (e.g., linear or quadratic) as a function of the above-mentioned
difference; interestingly in this particular case, the anticipation arcs will travel back
in time.

6.3.8 Networks with Mixed Schedule-Based
and Frequency-Based Services

This section shortly addresses the problem of modelling in transit assignment the
case of networks where both schedule-based (SB) and frequency-based
(FB) services are present.

When do passengers refer to timetables or not? This depends mainly on head-
ways and on their regularity. Typical threshold for regular headways is around 10–
20 min. But what if the network contains lines with both high and low headways?
The structures of FB models with static network and SB models with space-time
network are quite different and do not fit well together, so they cannot be combined
simply in a same model. Alternative solutions are then:

• use the FB approach for the whole model and approximate the passenger
behaviour for lines with low frequency, as proposed in Sect. 6.2.4;

• use the SB approach for the whole model and approximate the passenger
behaviour for lines with high frequency, as proposed in Sect. 6.3.3.

One way is then to introduce in a static transit network a proper limit to the
maximum wait time, so as to represent the convenience expected by passengers of
timing their arrival at the stop with that of vehicles, and wait at home instead of at
the stop, as in Eq. (6.69).

Another way of dealing with networks with mixed services is to apply the two
cost functions (6.70) and (6.71) on the diachronic graph of the same model where
appropriate. In this case, we shall assume that stops are dedicated either to SB or to
FB services.

Finally, note that dynamic models (macroscopic assignment and simulation) can
instead support natively the presence of both high and low-frequency services, as
explained in Sects. 6.4 and 6.5.
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6.3.9 Reference Notes and Concluding Remarks

Schedule-based model has been widely developed from the beginning of the new
millennium exploiting the conceptual framework of space-time networks, which
allow for the explicit representation of each single run, in contrast to the aggregated
representation of service in terms of lines used in frequency-based modes.

The most natural and well-established approach to model run-based assignment
involves the representation of transit supply, which is intrinsically discrete in time,
as a diachronic graph (Nuzzolo and Russo 1998; Nguyen et al. 2001), where each
run is modelled through a specific sub-graph whose nodes have space and time
coordinates according to the timetable. As an alternative, it is possible to define a
dual graph (Nielsen and Jovicic 1999; Moller-Pedersen 1999), where each run
section is a node, while the arcs represent the connections at stops satisfying
temporal consistency. A third approach is to explicitly generate a number of
alternative paths that constitute the passenger choice set and then assign on them the
demand by means of a random utility model (Tong and Wong 1999; Friedrich et al.
2001). In general, stochastic models are often considered to simulate route choice
on dynamic transit networks with timetables (Hickman and Bernstein 1997;
Nuzzolo et al. 2001; Nielsen 2004).

The use of super networks to explicitly represent the departure time choice in the
assignment model is an original contribution of this book, as Sheffi (1984) exploited
this approach to reproduce different forms of elastic demand (mode choice, desti-
nation choice) in the context of static assignment algorithms.

The presentation of a consistent approach to reproduce a frequency-based
behaviour on a schedule-based supply and a schedule-based behaviour on a
frequency-based supply (see Sect. 6.2.4), both obtained by introducing proper arc
costs, which paves the way to simulate networks with mixed services, is an original
contribution of this book.

6.4 Macroscopic Models for Dynamic Transit Assignment

Guido Gentile

Macroscopic models for dynamic assignment have been developed in the last
30 years, mostly for private traffic. Their aim was to reproduce road congestion and
more specifically how travel times are affected by the forming and vanishing of
vehicle queues. This gives rise to the so-called Dynamic Network Loading
(DNL) problem, where the flow propagation is performed using fixed route choices
(not to be confused with the Network Loading Map of Sect. 6.1.8, which includes
elastic route choice). A second use case of DTA involves, indeed, elastic route
choice and the focus is on how the flow pattern is affected by congestion, giving
rise to the so-called Dynamic User Equilibrium (DUE) problem.
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In transit assignment, the interest for macroscopic dynamic models derives
essentially from the possibility to describe FIFO queues at bus stops formed by
passengers that are not able to board the first arriving carrier due to a lack of
remaining capacity on the vehicle; these oversaturation queues are not to be con-
fused with the under saturation queues that are due to the discontinuity of the
service. Another relevant phenomenon that can be well captured by macroscopic
models is the variation of service frequencies along the line due to the impact of
boarding and alighting flows on dwelling times, which can even lead to bouncing
(see Sect. 7.4). On the contrary, the scheduled-based models based on space-time
networks presented in Sect. 6.3, which are the most common form of dynamic
models for transit networks, are not suited to represent congestion phenomena that
affect travel times.

In macroscopic models, vehicles are represented as a partially compressible
fluid, whose physical law in stationary flow states is fully described by the so-called
fundamental diagram. It is an experimental relation between flow density and its
speed; the assumption that this holds true also in transition states results in the
kinematic wave theory, which supports a number of (first order) traffic flow models.

In dynamic macroscopic models for transit networks, private vehicles are replaced
by passengers. In this case, though, the progression of the user fluid is not affected by
its density, as the speed of carriers is practically independent of on-board passenger
loads, if the vehicle has sufficient engine power. However, this is not true for
pedestrian arcs, where the congestion among walking passengers may resemble
vehicle congestion, as well as for boarding and alighting arcs, whose flows influence
the dwell times as explained in Sect. 7.4.4. In some model, indeed, transit line
vehicles are represented as another flow component which follows a fixed path; in this
case, the progression of the two flow components is strongly interdependent, thus
adding a degree of complexity (non-separability) to the assignment problem.

Congestion is the focus of dynamic models. On the supply side of the DUE
problem, the attention is thus essentially devoted to the passenger queuing at stops
and to the seating mechanism, with emphasis on the node models with capacities
and priorities, rather than on the arc model. On the demand side of the DUE
problem, however, other congestion phenomena play a relevant role affecting costs
through the value of time, rather than the travel time; these are primarily connected
through discomfort for overcrowding, as explained in Sect. 7.2.1.

In the following, we focus on the mathematical framework of the approach and on
the demand side of the DUE problem, leaving the description of congestion phe-
nomena to Chap. 7. Section 6.4.1 extends the equilibrium formulation for transit
assignment as a fixed-point problem to the dynamic case. Sections 6.4.2 and 6.4.3
illustrate how the concatenation of travel times influences the flow propagation and
route choice, respectively, in a dynamic model. Section 6.4.5 shows how dynamic
flow propagation applies to service frequency. Finally, Sect. 6.4.6 presents some
references.

While the general ideas embedded in macroscopic modelling for network
dynamics (presented in Sect. 6.4.1) are relevant for transit assignment as soon as
there are congestion phenomena affecting travel times (e.g., queues of passengers at
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stops), the specific formulation of each component (presented in Sects. 6.4.2 and
6.4.3) can be considered an advanced material that is not necessary to understand
the reminder of the book, with the exception of Sects. 7.3.4 and 7.3.5.

6.4.1 Fixed-Point Formulations of Arc-Based Dynamic
Assignment

In this section, the fixed-point scheme of Fig. 6.3, introduced to formulate User
Equilibrium problems on static transit networks, is extended to macroscopic models
for dynamic assignment, yielding Fig. 6.15; moreover, some details on the resulting
functional components are provided.

An arc-based (see Sect. 6.1.11) macroscopic model for dynamic transit assign-
ment consists of the four sub-models presented below, where the variables are
temporal profiles, i.e., (semi) continuous functions of the daytime τ. Here, in
contrast to the case of diachronic graph, the network is just a spatial and functional
representation of the transport system with no embedded time dimension. The
reference network element is the generic arc a 2 A; variables are referred to users of
class g 2 G directed towards destination d 2 D on mode m 2 M.

Network congestion model (NCM) takes as input the arc volumes qa(τ) that are
typically aggregated from destination-specific flows qadmg(τ), and the arc charac-
teristics δa(τ). It yields as output the arc exit times θa(τ) for a given entry time τ and
the corresponding value of time γag(τ). This sub-model aims at reproducing various
congestion phenomena, from discomfort to queuing, which introduce an increasing

Fig. 6.15 Fixed-point formulation of DUE and DNL for arc-based macroscopic models
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level of complexity; discomfort affects only costs, whereas queuing affects also
times. Moreover, in transit assignment, some conditional probabilities derive from
hyperarc diversion probabilities pa|ădmg(τ) (see Sect. 6.1.5); they are not the result of
route choices, but are rather related to random events on the supply side, such as the
attractive line probabilities (see Sect. 7.1) and the fail-to-board probabilities (see
Sect. 7.3.3). The NCM shall also represent these physical phenomena.

Arc cost model (ACM) takes as input the arc travel times θa(τ) − τ, the value of
times γag(τ) and the arc characteristics δa(τ). It yields as output the arc costs cag(τ)
perceived by each user class, considering their different values of time and pref-
erences. The need of handling the value of time as a separate variable from travel
times and not directly in the ACM (as usual for traffic models) derives from the
relevance of comfort in transit assignment, which can be heavily affected by
overcrowding congestion, on-board and at stops (see Sect. 7.2.1).

Route choice model (RCM) takes as input the arc costs, as well as the arc travel
times that allow for the dynamic concatenation of perceived utilities (see
Sect. 6.1.13). It yields as output the expected costs (un-satisfactions, if route choice
is based on a random utility model) to reach the destination from each node widmg(τ)
that are then used to compute the arc conditional probabilities padmg(τ) (the node
costs can be seen as the dual variables of the arc probabilities). Interestingly, from
an algorithmic point of view, it can be convenient to perform the computation of the
latter directly in the FPM.

Flow propagation model (FPM) takes as input the travel demand dodmg(τ) and the
local choices, as well as the travel times that allow for the dynamic propagation of
flows (see Sect. 6.1.13). It yields as output the arc flows of each class directed towards
each destination, which are then aggregated into arc volumes. Arc flows by desti-
nation are needed as such by the more advanced NCM based on macro-, micro- or
meso-simulations, as well as to apply gradient projection algorithms instead of MSA.

In the figure above, the rounded grey boxes are functionals; sharp white boxes
are variables; and sharp green boxes are input. The bold box denotes the pivot
variable of the fixed-point problem. The bold arrow closes the equilibrium loop and
recalls that an algorithmic transformation of the pivot (e.g., through MSA or
Gradient Projection) is required to ensure convergence. The dotted bold arrows
highlight the crucial role of travel times in dynamic models. The dashed elements
represent the extension to the case of strategic behaviour.

Two main cycles can be identified in the scheme of Fig. 6.15: inner and outer.
The whole outer cycle is the DUE problem, while the inner cycle between FPM and
NCM in the DNL problem. More specifically, the DUE can be then formalized as a
fixed-point problem in terms of the arc flows:

DUE ¼ NCM! ACM! RCM! FPM! MSA½ � ! NCM: ð6:74Þ

The DNL is a sub-problem of DUE, which consists of seeking, for given route
choices, an arc flow pattern consistent with the travel times through the arc per-
formance model. DNL can be seen as a simplified DUE, without route choice.
However, it still has a circular dependency to be solved iteratively in order to
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guarantee temporal consistency (not more than few iterations in practice). Arc flows
can be again considered as pivot variables of this fixed-point problem:

DNL ¼ NCM! FPM! MSA½ � ! NCM : ð6:75Þ

Both fixed-point problems, DUE and DNL, can be solved through the method of
successive averages (MSA) considering as pivot variable the arc flows by desti-
nation qadmg(τ).

As an alternative, the DNL can also be solved in chronological order as a
one-shot procedure (such as the link transmission models) without iteration by
exploiting the acyclicity of causalities in time (i.e., an event occurring on an arc
during a given time interval may have an effect on other arcs only in future time
intervals), although this requires in practice a fine time discretization for short arcs.
In general, the choice probabilities that are the input of DNL can be given in
different forms: path probabilities (which requires their explicit enumeration), arc
conditional probabilities per destination (which implies a sequential route choice
model, as in the proposed framework), or non-destination-specific arc splitting rates
(which does not guarantee the consistency of the loading with a given O–D matrix).

Note that in case of strategies, the DNL problem includes the update of the
hyperarc probabilities through the NCM and their consequent use in the FPM. To
correctly express this circumstance, in the scheme of Fig. 6.15 with respect to that
of Figs. 6.2 and 6.3, the arc conditional probabilities padmg(τ) derive explicitly from
the hyperarc probabilities pădmg(τ) and the diversion probabilities pa|ădmg(τ) as
illustrated in Eq. (6.25). Clearly, if no strategic behaviour is considered, then all the
dashed components of the scheme are discarded.

6.4.2 Propagation of Continuous Flows

To cope with the complexity of dynamic assignment, the concept of travel time is to
be extended accordingly, as shown in Fig. 6.16. Let θa(τ) be the exit time from arc
a of a passenger who enters it at time τ. The inverse θa

−1(τ) of the exit time profile
yields the entry time of a passenger who exits it at time τ. The travel time ta(τ) for a
given entry time τ is then:

ta sð Þ ¼ ha sð Þ � s: ð6:76Þ

As the travel time of any arc of non-null length is positive, the exit time profile
θa(τ) is always above the bisection with derivative 1. When travel times are
increasing, its derivative is higher than 1; when travel times are decreasing, its
derivative is lower than 1. If (strict) FIFO rule holds true, i.e., no overtaking is
possible among passengers, then the derivative is always non-negative (positive).

In macroscopic models, passengers are represented as a partially compressible
fluid. The flow is the amount of fluid traversing a given section at a given instant. It
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is then not possible to talk generically of the passenger flow on a given network
element, path or arc; instead, instantaneous inflows and outflows are to be defined
and analysed, as well as entry and exit capacities. Indeed, at a solution of a DNL
problem, the flow shall be consistent with the available capacities.

If the FIFO rule holds true, the cumulative outflow qcountag at time θ = θa(τ) when

the passenger exits arc a 2 A is equal to the cumulative inflow qcinag at the time
τ = θa

−1(θ) when the passenger entered it:

qcoutag hð Þ ¼ qcinag sð Þ: ð6:77Þ

Figure 6.17 shows how these dynamic variables are intrinsically connected: the
horizontal distance between the cumulative outflow and inflow temporal profiles is
the travel time, while their vertical distance is the number of passengers on the arc.

By taking the derivative of Eq. (6.77) with respect to τ while considering
θ = θa(τ), the following result for instantaneous flows is obtained (cumulative flows
are the integral in time of instantaneous flows):

qoutag hð Þ ¼ qinag sð Þ
@ha sð Þ
@s

; ð6:78Þ

showing that the outflow qoutag at time θ when the passenger exits arc a 2 A is equal

to the inflow qinag at time τ when the passenger entered it, divided by the derivative
of the exit time at τ.

Fig. 6.16 The dynamic
extension of the travel time
variable: exit and entry time
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When the travel time is increasing (e.g., due to a growing queue), the outflow is
smaller than the corresponding inflow; the opposite is true when the travel time is
decreasing. Figure 6.19 shows how an arc speed va decreasing in time implies an
arc flow qa decreasing in space x, as the area of the two rectangles is equal.

Based on Eq. (6.78), the dynamic propagation of flows can be obtained by
extending Eq. (6.22) expressing the flow balance of the node (see Fig. 6.18), as
follows:

qidmg hð Þ ¼ didmg hð Þþ
X
a2i�

qa�dmg sað Þ
@ha sað Þ

@s

� padmg sað Þ; sa ¼ h�1a hð Þ; 8a 2 i�: ð6:79Þ

Fig. 6.17 Relation among the profiles of travel time, entry flow and exit flow, according to FIFO
rule, in the space of cumulative flows

Fig. 6.18 Flow balance of
node i at time θ for passengers
directed towards destination d
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The above time continuous model for network flow propagation can be trans-
formed into a time discrete model by introducing the entry–exit map maet which
denotes the share of users that enter arc a during interval e and exit it during interval
t. Figure 6.19 shows how this share can be obtained from the exit time functional
θa(τ), as follows:

maet ¼
Min Min h�1a stþ 1ð Þ; seþ 1

� ��Max h�1a stð Þ; se
� �

; 0
� �

seþ 1 � se
: ð6:80Þ

In this case, the dynamic flow propagation, given in Eq. (6.79), becomes a series
of systems, one for each interval t of duration ht, which can be solved in chrono-
logical order, so that the node flows of previous time intervals are always known:

qidmgt ¼ didmgt þ
X
a2i�

X
e\t

qa�dmge �
he
ht
� maet � padmgeþ

X
a2i�

qa�dmgt � matt � padmgt
ð6:81Þ

For sufficiently short-time intervals such that no user enters and exists any arc
during the same interval (i.e., the aciclicity of causalities holds) it is:matt=0; the above
systems become diagonal and their solution is trivial (nodes can be processed in any
order). Otherwise, the solution algorithms proposed in Sect. 6.1.4 can be applied.

Fig. 6.19 Relation among the profiles of travel time, entry flow and exit flow, according to FIFO
rule, in the case of discrete time intervals
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6.4.3 Temporal Layer Formulation of Route Choice

The concatenation of time in dynamic route choices (see Fig. 6.20) can be ensured
for arc-based models by substituting in Eqs. (6.18) and (6.16) the cost of each local
alternative b 2 i+, denoted wbdmg, with the cost of arc b for users entering it at time τ
plus the expected cost to reach the destination from its final node evaluated at exit
time θb(τ):

wbdmg sð Þ ¼ cbg sð Þþwbþ dmg hb sð Þð Þ: ð6:82Þ

When time is discretized, Eq. (6.82) becomes the following:

wbdmgt ¼ cbgt þwbþ dmgeþ hbt � seð Þ � wbþ dmg eþ 1 � wbþ dmge

he
; ð6:83Þ

the temporal profile of the head expected cost is interpolated at the exit time τt + tbt
as a piecewise linear function between times τe and τe+1, where time index e is such
that the corresponding interval of duration he = τe+1 − τe contains the exit time:
τe ≤ τt + tbt ≤ τe+1, as shown in Fig. 6.21.

For what concerns the computation of local probabilities it is worth mentioning
that to ensure the stability of equilibrium it is assumed that everybody behaves like
the last passenger of the interval, otherwise some passenger would not suffer the
effect of the congestion he/she generates.

For a suitable extension of the shortest paths problem to macroscopic dynamic
models, temporal layers can be solved in reverse chronological order by setting the
cost labels for passengers directed towards the current destination and leaving the
node at the current time. If the largest interval of the adopted time discretization is
smaller than the smallest arc travel time, then the dynamic shortest tree can be
obtained by applying the Bellman update to all arcs in no particular order, otherwise
the shortest path shall be processed in reverse topological order from destination to
the furthest node, possibly adopting a Dijkstra algorithm as explained in Sect. 6.1.6.

Fig. 6.20 Concatenation of
travel times and local
alternative cost
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6.4.4 Extension to Dynamic Hyperarcs

The extension of (6.82) and (6.26) to dynamic hyperarcs yields the following:

w�bdmg
sð Þ ¼

c�b�g � t�bdmg sð Þþ Pb2�b pbj�b dmg
sð Þ � cntbg sð Þþwbþ dmg hbj�b dmg sð Þ

� �� �
P

b2�b pbj�b dmg
sð Þ ;

ð6:84Þ

where the combined exit time θb|b̌ dmg(τ) = τ + tb|b ̌ dmg(τ) conditional to taking
branch b 2 b ̌ is introduced to represent correctly the concatenation of travel times.
This requires to modify also the flow propagation model by explicitly taking into
account the hyperarcs and their branches as in (6.25):

qidmg hð Þ ¼ didmg hð Þþ
X
a2i�

P
�a� a�ð Þþ \Amð Þ:�a2H

qa�dmg sað Þ
@haj�a dmg sað Þ

@s

� p�admg sað Þ � paj�a dmg sað Þ; if a 2 Adiv

saj�a ¼ h�1aj�a dmg hð Þ; 8a 2 i�
qa�dmg sað Þ

@ha sað Þ
@s

� padmg sað Þ; otherwise; sa ¼ h�1a hð Þ; 8a 2 i�

8>>>><
>>>>:

:

ð6:85Þ

Fig. 6.21 Linear
interpolation of cost label
profile
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6.4.5 Representation of Service Frequency as a Continuous
Vehicle Flow

Line frequencies are among the most important features of a transit network. In a
within-day, dynamic context frequencies are not a constant input but rather the
result of a propagation process, as shown in this section.

It is possible to represent frequencies as a flow of vehicles, for example, as an
additional class of users who travel from the first stop of the line to the last one with
disabled boarding and alighting arcs; the demand of this particular class is the
frequency profile f‘(τ) from the first stop. By construction, this flow has no route
choice and shall follow exactly the line route.

From a formulation point of view, nothing changes with respect to the
fixed-point scheme of Fig. 6.15 as frequencies can then be treated as an additional
flow variable. Frequencies are processed by the FPM based on the current travel
times and in turn influence, jointly with passenger flows, the travel times of both
passenger and line-vehicle flows through the NCM. Thus, they become part of the
DNL problem, which includes the averaging process.

More specifically, this particular flow can be propagated according to Eq. (6.78)
along the sequence of line stops. The arrival and departure frequency of the generic
line ‘ 2 L at each stop can then be obtained by applying recursively the following
equation starting from the first stop:

f dep‘s hð Þ ¼
f‘ hð Þ; if s ¼ S�‘

f arr
‘s sð Þ

@tdwell
‘s

sð Þ
@s þ 1

; s:tdwell‘s hð Þþ s ¼ h; otherwise

8<
:

f arr‘s hð Þ ¼ f dep
‘s�‘ sð Þ

@trun
‘s�‘ sð Þ
@s þ 1

; s:trun‘s�‘ sð Þþ s ¼ h

ð6:86Þ

The result is a frequency which varies in time and is different from stop to stop
depending on the travel time variation on running arcs and dwelling arcs. The latter
is more relevant because it is an internal congestion and will be specifically
addressed in Sect. 7.4.4.

6.4.6 Reference Notes and Concluding Remarks

As mentioned earlier, the development of macroscopic models for dynamic
assignment has been casted mainly in the context of road networks; in particular,
the proposed approach has been proposed in Bellei et al. (2005) and further
developed in Gentile et al. (2005), Bellei et al. (2006), Gentile and Papola (2006)
and Gentile (2015). Thus, the proposition of the framework presented in this section
for transit networks, which introduces also sequential route choice through
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hyperarcs to reproduce passenger strategic behaviour, is to be considered an orig-
inal contribution of this book.

Over the past few decades, many models were developed to solve dynamic
transit assignment problems. Sumi et al. (1990) proposed a stochastic approach to
jointly model departure times and route choices of passengers on a mass transit
system. Alfa and Chen (1995) developed a transit assignment model for forecasting
the temporal demand distribution along a corridor under a random assumption of
passenger boarding. But more recently, the introduction of schedule-based models
diverted most of the attention from macroscopic models for dynamic transit
assignment.

An exception to this trend is provided in Meschini et al. (2007), who proposed a
macroscopic DTA model based on continuous temporal profiles with variable
frequencies and passenger queues; this work will be further analysed in Sect. 7.3.4.
In the future, the link transmission models, developed by Yperman (2007) and by
Gentile (2010) for road networks, will be likely adapted to reproduce transit net-
works by introducing a suitable node model describing the stop, thus further
pushing the proposing approach.

6.5 Simulation-Based Models for Transit Assignment

Oded Cats, Umberto Crisalli and Agostino Nuzzolo

Computer simulations have become a useful framework for numerical modelling
and the analysis of complex systems in various domains. In particular, simulations
provide a powerful and attractive tool for representing system dynamics. This is
especially true for large-scale systems that involve several interrelated stochastic
processes that could not be solved analytically.

Agent-based simulations, in particular, allow to model complex systems that
involve numerous autonomous and responsive elements. The agent-based mod-
elling approach is used in a wide range of disciplines where the system dynamics
emerge from the execution of individual strategies and the interactions among
agents, as well as between each agent and the environment.

How can the simulation approach be used in the context of transit assignment
modelling? Can transit system performance be represented as an emerging rather
than a derived process? This section addresses these questions, exploring the
development of simulation-based models for transit assignment by focussing on
their potential capabilities, rather than on the formulation detail.
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6.5.1 The Simulation Approach and Its Advantages

The transit assignment problem is concerned with finding the passenger flows and
the corresponding travel times on the public transport network for a given travel
demand. This is typically solved by the iterative loading of an origin–destination
matrix consistently with a route choice model and the subsequent update of network
conditions that may be required due to congestion phenomena (see Chap. 7).
Simulation models enable to mimic the development of a global spontaneous order
from numerous inter-dependent local and/or individual decisions. This modelling
approach implies that the emerging equilibrium conditions are the results of com-
plex interactions among numerous agents and the transit network dynamics.

The simulation-based approach has intrinsic advantages in obtaining a realistic
representation of transit dynamics and in supporting the development of models that
are practical for large-scale networks. Moreover, simulation models natively
incorporate multiple classes through the synthesis of individual agents that are
extracted from any distribution of user attributes. A great flexibility is allowed in
the representation of agent interactions on the transport network (e.g., queuing,
mingling, discomfort, seating), as well as of information provision and the conse-
quent decision processes. In particular, simulation models are intended to mimic the
adaptive response of travellers to changing system conditions and the incorporation
of en-trip information in rerouting choices, thus making them a proper tool to
support real-time traffic forecast and fleet management.

The main drawbacks of simulation models are the inability to derive mathe-
matical functions that describe the system properties and the intrinsic randomness
of the results, which actually represent a possible outcome of the system rather than
the expected value of the desired output.

The combination of event-based mesoscopic modelling where passengers are
aggregated in flows or packets on the supply side (congestion), along with a dis-
aggregate modelling of individual decision-makers on the demand side (behaviour),
yields better conditions for analysing large-scale systems with respect to fully
microscopic models. This is particularly true when considering applications to
advanced traffic management systems and advanced traveller information systems,
where algorithm performance is an issue.

The more mature developments in the field of (road) traffic assignment models
point to the potential role that simulation models can play in the context of transit
assignment models. Coupling dynamic network loading (for the supply) and
multi-agent simulation (for the demand) has been identified as a promising
approach for modelling transit systems along with performance uncertainties and
adaptive user decisions. However, the evolution of transit simulation models into
dynamic transit assignment tools is at its early stages.

The mesoscopic approach in transit assignment consists of a dynamic disag-
gregated representation of both demand and supply, while their interaction is
achieved through more aggregated models (e.g., discomfort functions, instead of
pedestrian microsimulation). Assignment results are obtained from the iterative
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loading of individual passengers to individual-vehicles serving the runs of public
transport. This stands in strike difference to both frequency-based assignment
models on static network and schedule-based assignment models on diachronic
graph which consider travellers in terms of aggregate flows or loads. In contrast, the
simulation approach applied to transit assignment aims at reproducing traveller
behaviour at a microscopic level where each autonomous unit is considered an
agent. The progress of vehicles and passengers on the transit system yields the
temporal and spatial distribution of demand over supply.

Each iteration of the simulation is usually regarded, not as a repetition of a same
random outcome, but as the representation of a single day in the context of an
evolutionary day-to-day process which may be continued until the system possibly
reaches stable conditions (see Sect. 6.1.10). In this sense, the system performances
at equilibrium (if any) emerge in a ‘bottom-up’ rather than a ‘top-down’ fashion.

The simulation-based approach is especially appropriate in cases where the design
problem at hand is concernedwith travel demand attributes and their distribution, such
as the provision of information, possibly in real time and the consequent adaptive
behaviour of passengers, where the resulting travel strategies differ considerably
depending on heterogeneous preferences and socio-demographic characteristics.

Simulation is also useful when various travel decisions, such as trip departure
time and mode choice, are jointly considered as part of the assignment model
together with route choice.

The disaggregated representation of supply and demand dynamics (vehicles and
passenger trajectories), but, on the other side, the aggregated representation of
interaction between vehicles and passengers (e.g., dwell time, discomfort), facilitate
the explicit modelling of service uncertainties. In particular, simulation is well suited
for capturing the dynamic evolution of network performances under oversaturation
conditions due to queuing and crowding on vehicles and at stops. Service reliability
and passenger congestion are therefore endogenous variables which emerge from
system dynamics and their impact on individual travellers can be explicitly modelled.

6.5.2 Agent-Based Models

Agent-based models have been first developed in the domains of computer science,
artificial intelligence and cognitive science. The iterative process is therefore often
presented as either a computational method for optimization problem or a learning
algorithm. The former considers the assignment procedure in terms of an iterative
convergent method that seeks to obtain travellers’ flows under stable steady con-
ditions, while the latter formulates the iterative loading in terms of a cognitive
process. While these different perspectives may be associated with a different
interpretation and even implementation of modelling components, the simulation
framework can be ultimately summarized in the following agent-based assignment
algorithm, which adopts a day-to-day evolutionary approach, rather than an equi-
librium approach (see Sect. 6.1.10):
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Step 0 Initialization: generate traveller population U; select Ku 8u 2 U; reset cK̃U
1 ;

n ← 0
Step 1 New day: n ← n + 1
Step 2 Network Loading: perform within-day assignment pnku  pkuð~cnhu; 8h 2

KuÞ; obtain cKU
n for pKU

n

Step 4 Stop criteria: check steady condition, e.g., ~cnKU � cnKU
 \e

Step 5 Update: perform day-to-day learning ~cnþ 1
ku  alearnu � cnkuþð1� alearnu Þ � ~cnku

Step 6 Return to Step 1

where

• n is the generic day
• U is the set of travellers
• u 2 U is the generic traveller
• Ku is the set of paths considered by traveller u 2 U
• K 2 Ku is the generic path considered by traveller u 2 U
• ~cnku is the forecasted cost of path k 2 Ku for traveller u 2 U on day n
• pnku is the probability of path k 2 Ku for traveller u 2 U on day n (route choice)
• cnku is the actual cost of path k 2 Ku for traveller u 2 U on day n (congestion)
• alearnu is the coefficient of the exponential learning filter for traveller u 2 U
• ε is a small positive number

Note that in this scheme, the choice updating filter presented in Sect. 6.1.10 to
reproduce the tendency of users to conform to habits is not explicitly introduced,
but is indeed present is some of the implementations presented in the following.

Network loading (this is not the DNL of Sect. 6.4.1, but the NLM of Sect. 6.1.8)
is hence performed in Step 2 iteratively at the individual level for the entire trav-
ellers’ population at once, so that congestion phenomena can emerge and affect
passenger advancement. If the assignment results have not reached stable steady
conditions, then the experienced travel attributes are incorporated into traveller cost
anticipations for the following day/iteration.

The steps of the above algorithm are discussed in the remainder of this section,
starting with a description of how supply and demand are represented in the
simulation-based assignment model of transit networks, followed by the presenta-
tion of within-day and day-to-day dynamics. The discussion will refer to the fol-
lowing models which share the overarching schematic algorithm described above
but vary with respect to their development context and objectives:

• MATSim, where the transit assignment model is part of an activity-based
model;

• MILATRAS, which is tool for long-term planning of the transit system;
• BusMezzo, which is a joint traffic and transit assignment model oriented to

operations.

These differences are clearly reflected in how supply and demand are represented
in each one of these models as well as their overall design.
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6.5.2.1 Demand Representation

The conventional origin–destination matrix considers demand in terms of aggregate
traveller flows. However, travellers vary in their travel knowledge and preferences.
For example, some travellers are extremely familiar with service supply and net-
work prevailing conditions, such as the timetable and typical travel times, while
others may have a limited knowledge on potential connections. Individuals also
vary with respect to their travel preferences concerning alternative modes of
transport, departure time and the importance of various trip attributes. For example,
some travellers are very reluctant to transfer between transit services due to the
uncertainty as well as physical and mental effort it induces, while others may be
willing to transfer whenever it results with time savings.

The simulation of individual travellers enables, not only the representation of
various user groups or classes with heterogeneous characteristics and preferences,
but also the modelling of utility perception, strategy and experience at the indi-
vidual level.

The first initialization step of an agent-basedmodel for transit assignment involves
the generation of a synthetic population of travellers. Initial conditions matter in case
the learning and evolution processes are of interest, rather than only the (possible)
steady conditions obtained at the end of the iterative process. MILATRAS was
developed with the latter approach as it considers agents to have perfect knowledge
on network topology but lack prior knowledge on performance attributes.

The generation process converts the O–D matrix into a population of agents,
based on conditional probability functions for various user attributes. In case of
transit travellers, origins and destinations may correspond to any location in the
study area that is within walking distance to a transit stop. In the context of transit
assignment, system initial conditions correspond to the planned service and indi-
viduals’ prior-perception of its performances. Agents could be distinguished with
respect to attribute preferences, prior knowledge (e.g., commuter vs. occasional
users), learning patterns (e.g., bounded rationality) or explorative versus habitual
attitude. This determines the initially anticipated path attributes of each traveller.
We can assume that all relevant attributes of paths are synthetized by a generalized
cost. Cognitive science approach will imply that the initial conditions reflect agents’
mental map which is then progressively articulated.

BusMezzo is a joint traffic and transit assignment model where public transport
passengers and private cars are generated based on separate time-dependent origin–
destination matrices. Each traveller is assigned with inherited attributes such as trip
departure time, walking speed, access to personal mobile device (e.g., real-time
updates on instantaneous journey time), travel preferences (e.g., disutility associ-
ated with in-vehicle time versus wait time, walking time and transferring) and
decision protocols (e.g., non-compensatory filtering rules, level of adaptation).
These inherited attributes are maintained throughout the day-to-day simulation.

MILATRAS transforms a given O–D demand matrix into random geographical
origin and destination locations based on residential and employment proportions
through a GIS platform. Similarly, the synthetic population generated by MATSIM
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could also be obtained based on a probability function which reflects the distri-
bution of various socio-demographic characteristics in the target population. For
example, the population could be derived from the conditional probabilities that
describe the relationships between fundamental travel decision determinants such as
age, household composition and car availability. The activity-based simulation can
hence link socio-demographic attributes to travel experience and guarantee the
internal consistency of trip chains.

6.5.2.2 Supply Representation

Simulation-based models for transit assignment can vary with respect to the level of
representation of the fundamental supply elements, namely stops and vehicles, as
well as the movements associated with them. However, the disaggregate repre-
sentation of travellers does not necessarily imply a microscopic simulation of transit
vehicles and traffic dynamics.

Traffic simulation models are commonly classified based on their level of rep-
resentation detail. Macroscopic models represent traffic as a continuous flow based
on flow-density functions without the explicit modelling of lanes or vehicles. In
contrast, microscopic models represent traffic at the most detailed level:
individual-vehicle movements are represented and their driving behaviour depends
on interactions with other vehicles, on the road geometry, on lane usage, etc. As a
result of computational constraints, there is an inverse proportionality between the
level of details and the possible size of networks under study. Mesoscopic models
are an intermediate category, where individual vehicles are represented but detailed
modelling of their second-by-second movement and interaction is avoided. Travel
times on links are indeed determined by speed-density functions, while delays at
intersections are calculated by using queue models.

Simulation-based model for transit assignment can conceptually use any of these
levels of representation for passenger and carriers flow dynamics. A multi-agent
transit assignment approach would typically imply the representation of individual
transit vehicles and their movement would be governed by either microscopic or
mesoscopic traffic flow principles. Occupancy on-board each vehicle can then be
updated throughout the simulation and capacity constraints can be explicitly
enforced. Moreover, passenger movements at stops and on-board can be repre-
sented in order to capture the impacts of crowding discomfort and queuing delays.

The available agent-based models for transit assignment differ considerably with
respect to the level of integration they exercise with road traffic simulation models.
MATSim is integrated into a larger transport model on the demand side, but transit
supply is simulated separately from private traffic and a deterministic representation
is adopted. MILATRAS is an advanced programming interface that allows the
enhancement of PARAMICS, a mesoscopic traffic model. This implies certain
restrictions on the extent to which transit dynamics could be explicitly modelled.
BusMezzo is completely integrated into Mezzo, a traffic simulation model.
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The progress of transit vehicles between one stop and the other is affected by the
interaction with other vehicles. Even though MATSim includes a mesoscopic
modelling of multimodal traffic flows, total traveller door-to-door journey time is
deterministically assumed to be twice the corresponding free-flow times of cars.
Transit travel times between stops are instead extracted in MILATRAS from link
speeds that are modelled in a mesoscopic way by PARAMICS. Transit vehicles are
thus propagated based on exogenous traffic conditions. BusMezzo also models
traffic flows at a mesoscopic level where travel times of cars and transit vehicles
depend on general (equivalent) traffic conditions. The explicit representation of
background traffic allows capturing the impacts of congestion on transit operations.
The level of interaction between transit vehicles and other vehicles depends on the
right-of-way (e.g., buses running in mixed traffic, dedicated lanes, underground).

The explicit simulation of transit vehicles enables a rich and stochastic repre-
sentation of public transport supply and its dynamics. Dwell times at stops are
modelled in MILATRAS and BusMezzo as a function of passenger activity at
stops. Trip dispatching times are modelled as a random variable in MILATRAS.
Vehicle scheduling is modelled explicitly in BusMezzo which enables the propa-
gation of delays through trip chaining. Different transit lines may be assigned to
various vehicle types, running speeds and are operated with different control
strategies. The explicit modelling of these processes and their inter-relations can
facilitate a more realistic reproduction of the underlying sources of uncertainty and
their joint impacts on reliability, compared with their generation based on inde-
pendent statistical distributions. Specifically, emulating these dynamics allows
modelling their impact on travellers’ route choice decisions. Moreover, it allows
mimicking the generation and provision of passenger information.

6.5.2.3 Within-Day Dynamics

Route attributes may include travel time components (walking, waiting, riding,
etc.), travel costs, number of transfers, as well as quality of service measures such as
punctuality, crowding level and probability of denied boarding. Anticipated route
attributes evolve iteratively through the incorporation of realized travel attributes
from assignment results.

The within-day activity corresponds to a dynamic network loading procedure
with travellers’ flow pattern determined by the decisions passengers make in
reaction to transit conditions, such as vehicle arrivals at stops, experienced travel
conditions and information provision. Throughout the day, travellers execute their
trips and accumulate experience concerning various route attributes. For example,
travellers gain experience on wait times for different lines, in-vehicle time between
different locations using different routes or modes or even assess the reliability and
crowding conditions on alternative services. This within-day learning allows trav-
ellers to exercise adaptive (or strategic) travel behaviour. At the same time, trav-
ellers’ decisions affect transit performances through the effect of passenger loads
and flows on crowding, dwell times at stops and their secondary implications on
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service reliability. The dynamic interaction between supply and demand lies in the
core of the within-day assignment.

The modelling of day-to-day dynamics allows both service users and service
providers to adapt their strategy in order to optimize or improve their objectives.
This occurs in the day-to-day update phase, where travellers integrate the experi-
ence of the previous days into their perception of the network cost pattern and
choose the strategy that they will carry out in the following day. As travellers
increase their experience with the transit system, their mental map extends and their
expectations reflect more closely the actual performances. This day-to-day learning
process can result in steady conditions that are equivalent under certain conditions
to user equilibrium.

The interaction between network supply and passenger demand takes place in
the within-day dynamic network loading. This is the core of the day-to-day iterative
process, where system dynamics are simulated and transit performance is
determined.

The other fundamental building block is the way in which individual agents
decide how to travel towards their destination. This highlights an important dif-
ference from conventional models for transit assignment, as the choice probability
is referred to individual decisions rather than to travellers flow. Here, choice
probabilities determine therefore the likelihood that a certain travel alternative will
be used by a single individual depending on his/her specific attributes, instead of the
passenger flow share that is distributed over a certain path set. A choice-set gen-
eration model composes first the paths that will be further considered in the route
choice phase based on a combination of various path search methods and heuristic
filtering rules.

Various route choice models can be formulated and embed into simulation-based
transit assignment, which may differ with respect to each of the above components.
In particular, the linkage between these components could be based on alternative
theoretical grounds, from rule-based computational processes to utility maximiza-
tion econometric models. In general, we can apply Eq. (6.40) to the single traveller:

pnku ¼ pku ~cnhu; 8h 2 Ku
� �

: ð6:87Þ

The within-day network loading in MATSim is the result of choices among
alternative travel plans rather than paths per se. The utility function of transit
alternatives is composed of static and deterministic door-to-door travel time. Hence,
the utility value is uniform across the population. Probabilities are assigned to
alternative travel plans based on a multinomial Logit. Paths are chosen at the O–D
level with no within-day learning.

MILATRAS assigns at the origin a tentative travel plan to each passenger that
will be followed unless the travel experience differs substantially from the expec-
tations. Expected travel time components are based on previous experience
(day-to-day learning) and real-time information provision; in case that no infor-
mation is available, travellers’ expectations depend solely on their experience.
MILATRAS is a bounded rationality model with a deterministic utility function:
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there is a rule that allows to decide between an exploitation option (a deterministic
choice of the alternative with the maximum utility) and an exploration option (a
random choice over the set of considered alternatives). This can potentially capture
the process of habit formation and occasional deviations.

Route decisions in BusMezzo are based on agent’s current expectations on
future travel attributes. The anticipated travel attributes incorporate prior knowl-
edge, previous experience (day-to-day learning) and real-time information provi-
sion. The model includes a phase of non-compensatory choice-set generation
followed by a probabilistic path choice process. The progress of travellers in the
transit network is considered as a sequential process of successive arc decisions;
thus passengers do not choose at any point between door-to-door paths. The
adaptive path choice model was developed within the framework of random utility.

More specifically, for each local choice, such as boarding versus waiting at the
stop or alighting versus staying-on-board, the passenger evaluates alternative ac-
tions by assessing the joint (or expected) utility to reach the destination conditional
on taking that arc using the logsum term for all the available paths, as follows:

wn
au ¼ Log

X
k2Kua

Exp �~cnku
� � !

; ð6:88Þ

where

• a is the travel action (e.g., ‘walk to given stop’, ‘board a given line’) associated
with an arc

• Kua is the subset of sub-paths of Ku from arc a to the destination of traveller
u 2 U

• wn
au is the composite utility of the local action a for traveller u 2 U in day n.

Thus, the upper level of the choice model refers to travel actions rather than path,
while the used path is merely an outcome of individual’s successive decisions;
again, passengers do not choose a path per se at any given point along their trip.

The generalized cost ~cnku may synthesize in a linear form several attributes
c 2 C of path k, whose expected values anticipated by the passenger for day n are
denoted ~ankcu; these are differently perceived by each user u who associates to them a
specific weight βcu, so that it is:

~cnku ¼
X
c2C

bcu � ~ankcu: ð6:89Þ

As an example, the set of attributes C may include the number of transfers,
in-vehicle time, wait time and walking time. This path utility function can be
extended by accounting for service reliability and on-board crowdedness. The
attribute values are determined by the integration of various information sources.
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The within-day dynamic network loading yields passenger flows on each arc for
that day. In addition, the values of the attributes experienced by the passengers on
the utilized paths are obtained and are used to update the anticipated values for next
day.

6.5.2.4 Day-to-Day Dynamics

The day-to-day learning process updates system states between successive network
loadings. This process continues as long as the stopping criteria are not satisfied.
The stopping criteria typically refer to the marginal change in key assignment
outputs. For example, the stopping criterion can be defined as the share of travellers
that changed their path from the previous day. If passengers cannot improve their
travel costs by choosing an alternative path, then equilibrium conditions have been
obtained. A probabilistic path choice, such as in MATSim and BusMezzo, could
also be conceived in terms of a strategy repeated game and the Nash equilibrium.
The convergence of assignment results can also be defined as a stopping criterion
by considering changes in obtained arc flows. From a behavioural perspective, this
indicates that travellers’ perceptions are consistent with their experience, so that
they have not gained new information from their most recent trips. This can also be
explicitly assessed by checking whether the vector of travel attributes (costs)
experienced by each single passenger is significantly different from its estimation
before travelling.

The day-to-day learning process updates traveller perception by integrating the
experience cku

n obtained on the path that was followed on day n, denoted k, to the
accumulated passenger memory ck̃u

n . Then, we can apply Eq. (6.39) to the single
traveller:

~cnþ 1
ku ¼ alearnu � cnkuþ 1� alearnu

� � � ~cnku; ð6:90Þ

where alearnu is the step size assigned to the most recent experience. Various learning
functions can be specified for different segments of the traveller population to
determine how the step size evolves over time. For example, in the method of
successive averages, (MSA) the step size is a function of the number of
days/iterations, but not of their corresponding performances, with the weight of new
solutions gradually decreasing throughout the solution process. In contrast, a more
behavioural approach may assign larger weights to latter experiences.

The updating process in MILATRAS is formulated as a Markov decision. Each
possible departure time and path decision combination is expressed as a state-action
pair, where passengers’ current state contains sufficient information for determining
the next state. The Markov process is a non-equilibrium framework; however, the
decision process may fulfil the conditions for convergence to a unique and optimal
solution in terms of passenger state-action choices.
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The day-to-day learning in MILATRAS and BusMezzo includes also the update
of real-time information credibility. The information provided is evaluated against
the experienced performance and influences the weight given to real-time infor-
mation in future decisions.

6.5.3 Traveller Cognitive Process

In simulation-based models for transit assignment, the route choice probabilities lie
at the individual level, as shown in Eq. (6.87), and result in passenger flows only
after aggregation.

The disaggregated agent-based representation of transit demand is well suited to
represent a population of travellers that is not uniformly informed about transit
supply. Moreover, the representation of traveller learning behaviour, with an
emerging mental map representation, enables the incorporation of various infor-
mation sources and their integration into the path choice that changes dynamically
from day-to-day.

These notions are elaborated in the following while referring to their imple-
mentation in MILATRAS and BusMezzo. In contrast, MATSim performs a joint
modal split and route choice assuming that all travellers have perfect knowledge
and information of the transit system; this approach is inspired by co-evolutionary
theories. Moreover, this model does not distinguish between anticipated and
experienced travel attributes. MATSim is therefore currently not suitable for
modelling information scenarios and rerouting.

The strategies of travellers in a simulation-based model for transit assignment
could be determined as the outcome of three sources of information:

• prior knowledge—the static information for passengers has on the planned
service (e.g., schedule, frequencies);

• past experience—the accumulated first-hand experience with service perfor-
mance, and

• real-time information—with respect to the arrival times expected today, in case
available.

The reminder of this section describes how each of the above information
sources is modelled in the context of a simulation-based framework, as well as how
these information sources are integrated in the within-day assignment model and
evolve from day to day.

6.5.3.1 Prior Knowledge on the Transit Network

A synthetic population U of users is generated based on probability functions that
reflect the distribution of travellers’ characteristics in the population. Expectations
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for day 1 on costs ~c1ku for each user u 2 U and each path k 2 Ku are static sources of
information that travellers inherit upon initialization.

This prior knowledge can be limited to network topology, as in MILATRAS,
without any information on travel attributes; e.g., a fully optimistic null cost ck̃u

1 = 0 8
k 2 Ku is assumed. This implies that the first simulation will result with randomly
chosen paths. This is equivalent to starting an optimization process with a randomly
sampled solution and then progressively improving it using an iterative update pro-
cess. Note that this is nevertheless different from models that generate travellers that
are ‘tabula rasa’ and let them explore the network by applying randomwalk methods.

Alternatively, travellers can be assumed to have certain expectations on alter-
native path costs based on their prior knowledge. This information can be derived
from planned headways, travel distances, travel times between stops or even
timetables, as in BusMezzo.

In any case, travellers have no prior knowledge concerning other path attributes,
such as service reliability or crowding levels.

For example, the prior knowledge may imply that the anticipated wait time at a
given stop is half of the expected headway of the considered line, while actual wait
times are the outcomes of the dynamic progress of individual travellers and vehicles
in the simulation; the anticipated in-vehicle time may reflect the schedule or the
expected speeds of road links during the relevant time period, which may vary due
to traffic conditions on different times of day.

6.5.3.2 Accumulated Experience

The travel experience of each passenger u 2 U is however accumulated at the level
of each single attribute c 2 C of the path kn 2 Ku used in each day n, whose value is
denoted ankcu. The way in which this continuously updated source of information is
compressed into a single value ~ankcu anticipated by the passenger for day n is defined
by the day-to-day learning function. This function can, for example, allocate a
greater value to more recent experience or specify a limited memory horizon.

The experienced attributes are calculated based on simulation dynamics. In
particular, the experienced wait times are calculated directly as the time difference
between traveller arrival time at stop and the time at which the passenger boarded a
vehicle. The latter is also used as the reference value for calculating the experienced
in-vehicle time until the passenger alighted the vehicle. BusMezzo and MILATRAS
also represent access, egress and transfer links and account for their experienced
travel times in a similar fashion.

The experience in the same day made earlier during the trip can also influence in
traveller path choice. If the perceived path attributes deviate substantially from
those anticipated, then passengers may revise their choice. For example, if a pas-
senger experiences a wait time that exceeds considerably from that anticipated, then
the connection decision is reconsidered and the traveller may choose to walk to
another nearby stop.
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6.5.3.3 Real-Time Information Provision

The dissemination of real-time information (RTI) may influence travellers’ attribute
perception and ultimately passenger flows. The RTI that is available to a traveller
when making a certain route decision is determined by the dissemination means and
their locations, as well as by individual characteristics, such as the availability of a
personal mobile device. The rapid increase in the penetration rate of smart phones
may considerably change the dissemination pattern, since passengers are possibly
provided with instantaneous access to RTI during their entire trip.

Agent-based models for transit assignment enable the generation of RTI for the
single passenger, based on individual-vehicle progress and arrival prediction
schemes, which are embedded into the simulation engine. The explicit modelling of
real-time predictions and information generation as a function of dynamic supply
conditions enables the analysis of alternative dissemination strategies. In particular,
the impact of various information provision schemes on travellers’ decisions and
ultimately on travellers’ flows can be assessed. Note that RTI is therefore not
equivalent to modelling the impact of perfect information.

Information availability is uniform across the population in MILATRAS, which
represents the impacts of RTI on vehicle arrival times, when available pre-trip or
through public displays at stops or on-board. The RTI concerning wait times is
calculated based on the average conditions during the previous 45 min.

The dissemination of passenger information simulated in BusMezzo is classified
according to the following aspects:

• Type—wait times, in-vehicle travel times, crowding levels, service disruptions;
• trip stage—pre-trip, at stops, on-board;
• comprehensiveness—concerning the local stop, cluster of connected stops (i.e.,

transit hub), the entire system.

The share of individuals that have access to RTI by using a personal mobile
device can be specified in the population generation phase. The combination of the
above aspects determines the level of information that is available to a specific
passenger at each trip stage regarding downstream travel conditions.

The approach adopted in the BusMezzo implementation is to generate RTI based
on historical data as expressed in timetables and on real-time data as resulting from
the vehicle propagation. For example, RTI concerning wait time is calculated based
on the current schedule deviation of the next vehicle arriving vehicle and the
remaining travel time to reach the stop based on historical average. This scheme is
aimed to replicate the method that is commonly used by transit agencies for gen-
erating real-time information.

Given the above information sources, traveller decisions are modelled in the
probabilistic framework of random utility choice models. The evaluation of local
alternative actions, as in Eq. (6.88), depends on passenger preferences and
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expectations with respect to forecasted travel attributes. The individual decision
protocol specifies the forecasted attributes âkcu

n as convex combination of the fol-
lowing information sources:

• ânkcu, the prior knowledge,
• ânkcu, the value anticipated by the passenger based on the accumulated

experience,
• âRTIkcu , the value resulting from real-time information.

We have then:

ânkcu ¼ aPKnu � ~a1kcuþ aTE n
u � ~ankcuþ aRTI nu � ~aRTIkcu ; ð6:91Þ

where aPKnu , aTEnu and aRTInu are the weights (that sum up to one) associated with
prior knowledge (PK), travel experience (TE) and real-time information (RTI),
respectively, in day n. These weights could be interpreted in terms of the credibility
associated with each information source. Therefore, in presence of information
Eq. (6.89) becomes:

~cnku ¼
X
c2C

bcu � ânkcu: ð6:92Þ

6.5.3.4 Day-to-Day Evolution of Information Credibility

The weights associated with the various information sources are determined
through a day-to-day learning process and thus vary with day n. Hence, day-to-day
dynamics influence not only the experienced travel attributes, but also the credi-
bility assigned to various information sources. As the day-to-day assignment pro-
gresses, the weight given to prior knowledge is expected to decrease while the
impact of experience increases. Moreover, the credibility associated with various
information sources vary among travellers. However, the extent to which the
memory of passenger u with respect to path kn 2 Ku extends over time is determined
endogenously as it depends on how relevant is the path that was followed in day
n in that network loading iteration and cannot be defined a priori as a function of n.

Moreover, the weight given to RTI reflects its perceived credibility which is a
function of the extent to which the information provided in advance accurately
predicted the corresponding travel attributes actually experienced. For example, the
day-to-day update function of the RTI weight can take the following form:

aRTI nþ 1
u3 ¼ acredu � ~aRTIkcu � ankcu

 
ankcu

þ 1� acredu

� � � aRTI nu3 ; ð6:93Þ

where acredu is the step size assigned to the most recent experience and the attributes
refer to kn that is the path used in day n.
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6.5.4 Mesoscopic Models for Schedule-Based Simulation

In Sect. 6.3, the schedule-based assignment is presented for uncongested networks
with regular services (that perfectly adhere to the timetable) assuming that pas-
sengers make a fully preventive route choice. This approach is very limiting to
model urban transit networks, especially when we need to take into account the
effects of:

• vehicle capacity, with queue formation and fail-to-board events;
• service irregularity, with path attributes that change over time;
• passenger’s en-route choices, due for example to the arrival of a run at a stop

later than expected or the arrival of overcrowded vehicles.

In particular, the basic schedule-based models reported in Sect. 6.3 do not allow
for the simulation of real-time conditions and short-term prediction.

Therefore, in the following another class of schedule-based models for transit
assignment is reported. It uses a simulation approach, which allows to overcome the
above-mentioned limits.

In particular, schedule-based assignment can be casted as an event-based sim-
ulation, in which events represent instants when passengers depart from origins or
transit vehicles arrive and depart at stops.

Passengers depart from origins with a preventive path choice in mind. Once
arrived at stops, the simulation of fail-to-board probabilities due to possible for-
mation of queues induces rerouting choices, thus providing a better estimation of
vehicle loads for each run. Note that rerouting (especially if queues are not a
recurrent event) does not necessarily imply a strategic behaviour, where passenger
would choose a hyperpath (and not a path) fully including expectations on the
real-time events and their costs.

Moreover, the use of schedule-based simulation models allows to reduce the
computational complexity of large networks. It can be defined in the context of a
mesoscopic approach similar to that described in Sect. 6.5.2, which presents an
aggregate representation of individual-vehicle performances, allowing to avoid the
simulation of second-by-second vehicle movements and interactions. Specifically,
while the mesoscopic models of Sect. 6.5.2 are characterized by a disaggregate
representation of the demand at single passenger level, the simulation approach to
the schedule-based assignment here presented considers also in aggregate way the
demand as group of travellers with homogeneous features, called ‘packets’, i.e.,
passengers moving over the transit network and experiencing the same
trip. Therefore, the demand–supply interaction of this class of models is based on a
within-day dynamic network loading in which packets of passengers are propagated
along the chosen transit routes.
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6.5.4.1 Supply Variance

The network model is made of transit services represented by runs moving between
stops with travel times that are external inputs. Therefore, the representation of
transit services uses the run-based approach and the diachronic graph described in
Sect. 6.3. In case of real-time simulation, each time a transit vehicle departs from a
stop; the diachronic network is updated with the new forecasted travel times that are
used for the next step of the simulation. Such travel times can be obtained through
an Automated Vehicle Location (AVL) system in case of real-time and short-term
modelling or they can be the result of realisations of multidimensional random
variables with parameters and dispersion matrix obtained from experimental data
(e.g., using Automated Vehicle Monitoring data). If experimental data are not
available, departure times from the terminals can be assumed equal to the scheduled
times and travel times (summing up, running and dwell times) as multivariate
normal variables with the average equal to the scheduled times plus a given quantity
and variance–covariance matrix Σ defined, considering correlation among running
and dwell times of the same and different sections.

Starting from the vector of scheduled arrival/departure run-times at stops, we
obtain the vector of scheduled run and dwell times θ, according to which vector θn

of actual run and dwell times in day n is generated by extracting values from
multivariate normal random variable, MVN(θ, Σ).

The obtained vector θn must satisfy some feasibility rules including the con-
gruence of generated times with the allowed speeds for transit vehicles and the
congruence of possible bunching phenomena, for which runs passing on the same
sections cannot pass one another, so the quickest vehicles must slow down and
follow the slowest ones. The vector that satisfies the above feasibility criteria is
used to update the diachronic graph for the next simulation step.

6.5.4.2 Hierarchic, Sequential and Adaptive Route Choice

In the framework of the simulation-based mesoscopic approach, instead of indi-
vidual passengers, the model considers packets of passengers with homogeneous
characteristics (at least, origin, destination and desired departure time from origin or
desired arrival time at destination) moving on the transit network.

The segmentation over time of the demand can be represented by dynamic O–D
trip matrices, from which packets of passengers can be generated for each minute of
the simulation period.

The typical approach in modelling trip choices is based on random utility, where
a set of alternatives is identified and each one is associated with a systematic utility
plus a random residual with a given joint distribution (see Sect. 4.5). In this case,
the path choice probabilities (6.87) apply to the packet of travellers, allowing thus
to estimate the average number of passengers using a given run, and then their
contribution to its on-board load.
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As introduced in the previous section, the preventive joint (one shot) approach to
modelling route choice, where the passenger decides the whole path from the origin
to the destination before starting his/her journey, based on historic information
obtained from previous trip experiences or supplied by a travel planning system,
can be questioned from a behavioural point of view.

A different interpretation of user behaviour assumes that the actual route used by
the passenger results from a hierarchic sequence of stop choice and run choice, until
the destination is reached. Moreover, these choices can be based, not only on past
experience, but also on the information regarding the current conditions of the
transport system, possibly improved by real-time updates.

For the choice of the first boarding stop s 2 S where to access the next service
starting from vertex i 2 B at instant t 2 T, we can assume a pre-trip choice
behaviour, based on the comparison of possible alternative considering expected
characteristics, or attributes, which also include variables such as the inclusive
utility. The choice set is defined by the stops that are reachable within a maximum
walking time tg

wmax on the pedestrian network, which differs for each user class
g 2 G.

The opposite of the systematic utility vs
idgt of each stop s 2 S for passengers of

class g 2 G directed towards destination d 2 D can be given as follows:

�vidgts ¼ cstopsg � tstopg þ cvotg � cwalkg � twalkis þwjdg; ð6:94Þ

taking into account:

• the characteristics of the stop (e.g., ergonomy, presence of shops) which can be
synthetized by the stop discomfort coefficient cstopsg (introduced in Sect. 5.1.2)
that multiplies in this case a reference stop time tstopsg ;

• the walking time twalkis on the shortest path from i to Bstop
s on the pedestrian

network;
• the set of connection opportunities that can be found at stop s, synthetized by the

inclusive utility (also called satisfaction) wjdg of node j = (s, e), which represents
the attractiveness of the stop in terms of runs useful to reach the destination at
the time when s is reached, e ¼ tþ ðst þ twalkis Þ.
The probability pidgts of choosing stop s starting from vertex i 2 B at instant

t 2 T is formally given by (Fig. 6.22):

pidgts ¼ pidgts vidgts0 ; 8s0:twalkis0 � twmaxg

� �
: ð6:95Þ

Once arrived at stop, transit vehicle boarding (e.g., run choice) is simulated
through an at-stop choice behaviour, which describes how users respond to
unknown or unpredictable events, such as the transit vehicle arrivals in a different
sequence with respect to the expected one due to service irregularity.
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The overall choice set for a passenger arriving at stop s at instant t includes each
run that directly or indirectly allows to reach to destination d and satisfies some
predefined rules, such as the following:

• it is the first run of its line departing from the stop after the user arrival (this shall
be removed in case of oversaturation queues when passengers may not be able
to board the next-arriving run of each line);

• it is not dominated by another run leaving after arriving before with a lesser
generalized cost;

• it implies less that a maximum number of transfers.

The choice of the run r 2 R to board at stop s 2 S for a user that reached it at
instant t 2 T can be interpreted as the result of a sequential dynamic decision, where
the passengers waiting at the stop probabilistically reject or accepts to board each
arriving run r 2 R depending on their performance estimation of the run alternatives
r′ that are still available to reach the destination d 2 D.

The estimation may take into account also the current conditions of the service
(possibly provided by a real-time information system). Indeed, frequent users, who
know from previous experience how the system operates, can react to en-route
events (or to their information) to optimize their journey cost by adapting their route
choice (the same result can be obtained through personal information provided by a
real-time journey planner). However, this goes in the direction of a strategic
behaviour which is treated in the next chapter (see Sect. 7.1); therefore, in the
following, the role of information is simply included in the random errors associ-
ated with each run of the choice set.

The opposite of the systematic utility vsdgtrjr0 associated with each run r of the

choice-set conditional upon arrival of run r′ for passengers of class g 2 G directed
towards destination d 2 D can be given as follows:

Fig. 6.22 Example of hierarchic approach to the subsequent choice of first stop and route
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� vsdgtrjr0 ¼ cvotg � cwaitg � cstopsg � ccrowdsgt � hrs � hr0s
� �� cvotg � clossg � hr0s � st

� �
þ cbfeeLrs � cmfeeg þwjdg;

ð6:96Þ

taking into account:

• the wait time for run r given by θrs − θr′s;
• the time already waited θr′s − τt, where the value of time γg

vot is further multiplied
by a new discomfort coefficient closs

g
that weights the regret of the passenger on

the past lost opportunities and the consequent ‘loss of hope’ in the future
opportunities;

• the monetary cost cbfee‘s of boarding line ‘ = Lr at stop s;
• the expected cost to reach the destination once the passenger is on-board of the

run r, which includes travel time, comfort and number of transfers, which is
synthetized by the inclusive utility (also called satisfaction) wjdg of node
j ¼ Ndep

rs .

The attributes composing Eq. (6.96), including those making up the inclusive
disutility wrsdg, can be differently estimated according to the information sources
through Eq. (6.91).

It is worth noting that the choice set is modified over time during the wait
because after each arrival, the corresponding run is eliminated (and possibly the
next run of the line is added).

When a run r arrives at the stop a passenger may choose to board it if its
perceived utility (given by the systematic utility plus a random residual) is greater
than that of each other run r′ > r of the choice set that has not passed yet (with some
abuse of notation). The resulting (conditional) probability of choosing to board the
arriving run r′ is denoted pr′|r′

sdgt and depends on the systematic utilities vr′′|r′ of each
run r′′ ≥ r′. If the passenger does not choose run r, the choice is reconsidered when
the next run r′ arrives and so on.

Thus, a run r is boarded if it is chosen when it arrives at the stop while the runs r
′ < r of each previous arrival where not chosen. If such events are assumed inde-
pendent from each other, it is possible to evaluate the unconditional probability psdgtr
of boarding run r by a passenger of class g directed to destination d who arrives at
stop s at instant t as follows:

psdgtr ¼ psdgtrjr vsdgtr00 jr ; 8r00 � r0
� �

�
Y
r0\r

1� psdgtr0jr0 vsdgtr00 jr0 ; 8r00 � r0
� �� �

: ð6:97Þ

The above model can be particularly difficult to solve. To reduce the compu-
tational effort of this approach, the following further assumptions can be made:

• only the choice of the first stop from the origin is considered as a separate
hierarchic level, while the choice of intermediate stops is included in the run
choice of a joint route to reach the destination;
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• the choice-set restriction mechanism is not considered, while instead a new run
of the line that just passed is added;

• the loss discomfort coefficient is assumed null.

In this case, the proposed sequential framework reduces to a stochastic arc-based
model on the diachronic graph which can be solved easily through the equations
and algorithms provided in the previous sections. Indeed, for each run departure
from a stop, the diversion on the diachronic graph between boarding arc and (keep)
waiting arc represents a binary probabilistic choice, in which all passengers have
the same behaviour independently from their arrival time at the stop.

6.5.4.3 Dynamic Network Loading

The dynamic network loading allows to simulate the propagation of travellers on
the diachronic graph and to obtain run on-board loads. It can be divided into several
steps considering the simulation framework in which the previous choices of
travellers moving on the network are updated at stops.

The first step consists of loading the pedestrian network from origins to access
stops on the basis of traveller pre-trip choices consistently with Eq. (6.95). The
second step allows defining the contribution to the on-board load of each run
consistently with Eq. (6.97).

The loading process is carried out in discrete times, considering only the instants
in which a run of transit services arrives at any of the stops and hence on-board
loads could change. Passenger boarding a given run is obtained by summing up all
contributions due to all paths of all O–D pairs.

If the loads of passengers willing to board a given run at a given stop exceeds the
residual capacity, this implies a redistribution of this share to next-arriving runs and
updating the path choice for the passengers who failed-to-board, using in a recur-
sive way the loading process defined by Eqs. (6.96)–(6.97), and assuming a FIFO
rule or a mingling rule at the stops (see Sect. 7.3).

6.5.5 Reference Notes and Concluding Remarks

The application of day-to-day dynamic assignment to transit networks for
schedule-based models on diachronic graphs (see Sect. 40) is today further
employed in most simulation-based approaches (e.g., Toledo et al. 2010).

Among simulation-based models for transit networks we can mention: MATSim
(Balmer et al. 2008), where the transit assignment model is part of an activity-based
model; MILATRAS (Wahba and Shalaby 2005), which is tool for long-term
planning of the transit systems; BusMezzo (Cats 2013), which is a joint traffic and
transit assignment model oriented to operations. In addition to the above models, an
agent-based bus model was developed by Meignan et al. (2007). However, it is not
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a simulation-based as passengers’ decision is limited to choosing between the
shortest path by alternative travel modes.

In any case, the reader should know that the development of simulation-based
models for transit assignment is still in its early stage. Their development is inspired
by a range of theoretical domains and their implementation is often part of a larger
laboratory environment development.

The dynamic and disaggregate modelling of both transit supply and demand
could potentially yield more realistic assignment results. The validation of
simulation-based transit assignment model is a prerequisite for them to become
more operational. The representation of traffic dynamics is already at a mature stage
with sufficient validation studies. Transit vehicle trajectories and service variations
were validated for BusMezzo (Cats et al. 2010, 2011). Moreover, MATSim traffic
assignment and MILATRAS transit assignment were validated against standard
assignment tools (Gao et al. 2010; Wang et al. 2010). These validation results
provided positive indications. However, there is a need to further validate assign-
ment results against actual time-dependent passenger flows at the individual-vehicle
run level.

The performance of agent-based transit assignment model in terms of running
times and convergence properties has not been carefully analysed yet. The avail-
ability of prior knowledge for example may provide a first feasible solution, which
will improve the assignment solution process in terms of both quality and speed
compared with starting with a random solution. The learning function parameters
also presumably have important implications on the converging process. Further
developments of dynamic path choice models and the underlying behavioural
determinants will require a more extensive framework for representing memory
construction as well as habit formation and risk assessment.

Until agent-based models will not reach acceptable calculation times, the use of
schedule-based simulation models allows us to reduce the computational com-
plexity, particularly in large network applications. The use of the schedule-based
assignment approach can be very useful for real-time and short-term modelling, and
today, it represents one of the frontiers of modelling and applications in this field,
especially when effects of traveller information on short-term predictions about
on-board loads should be deployed.

Simulation-based assignment models provide a natural common modelling
platform for analysing complex urban transport dynamics. The co-evolutionary
process which drives the assignment and the modular simulation environment could
potentially accommodate additional travellers’ adaptation strategies such as modal
shift, trip departure time adjustments and even destination choice. Existing models
already combine several decisions layers. This development is in line with the
development of activity-based demand models and agent-based urban planning
tools such as ILUTE (Salvini and Miller 2005) and PUMA (Ettema et al. 2007).
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