
Cloud-Based Network Virtualization: An IoT

Use Case

Giovanni Merlino1,2, Dario Bruneo1, Francesco Longo1,
Salvatore Distefano3,4, and Antonio Puliafito1

1 Università di Messina, Dipartimento DICIEAMA,
Contrada di Dio,

98166 Messina, Italy,
{gmerlino,dbruneo,flongo,apuliafito}@unime.it

2 Dipartimento DIEEI, Università di Catania, Viale Andrea Doria 6,
95125 Catania, Italy

giovanni.merlino@dieei.unict.it
3 Dipartimento DEIB, Politecnico di Milano,

Piazza L. Da Vinci 32,
20133 Milano, Italy

salvatore.distefano@polimi.it
4 Kazan Federal University,

Kazan, Russia
s distefano@it.kfu.ru

Abstract. In light of an overarching scheme about extending the capabil-
ities of Internet of things (IoT) with Cloud-enabled mechanisms, network
virtualization is a key enabler of infrastructure-oriented IoT solutions. In
particular, without network virtualization infrastructure cannot really be
considered flexible enough to meet emerging requirements, and even ad-
ministrative duties, such as management, maintenance and large-scale au-
tomation, would turn out to be brittle and addressed by special casing,
leading to loss of generality and a variety of corner cases. We propose a
Cloud-based network virtualization approach for IoT, based on the Open-
Stack IaaS framework, where its networking subsystem, Neutron, gets ex-
tended to accomodate virtual networks and arbitrary topologies among
virtualmachines and globally dispersed smart objects, whichever the setup
and constraints of the underlying physical networks. This work outlines a
motivating use case for our approach, and the ensuing discussion is pro-
vided to frame the benefits of the underlying design.

Keywords: IoT, Cloud, OpenStack, network virtualization, WebSocket.

1 Introduction

In the domain of the Internet of Things (IoT) [1], existing solutions are mainly
focused on a lower layer, mostly dealing with communication aspects to inter-
connect network-enabled devices and, generally, things to the Internet.

However, from a higher level perspective, specific facilities for management,
organization, and coordination of devices, sensors, objects and things are also

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
N. Mitton et al. (Eds.): AdHocNets 2015, LNICST 155, pp. 199–210, 2015.
DOI: 10.1007/978-3-319-25067-0_16



200 G. Merlino et al.

required to build up a dynamic infrastructure. To this purpose, on the one hand
the capabilities provided by existing solutions in the management of distributed
systems, ensuring flexibility and dealing with the complexity of large scale sys-
tems, should be exploited to implement basic mechanisms and tools for the re-
source management, also taking into account IoT solutions. On the other hand,
it is necessary to provide and implement advanced solutions and policies able to
manage and control the IoT infrastructure, implementing strategies aiming at
satisfying higher (applications and end users) requirements, on top of basic facil-
ities provided at a lower level. This two-layer model recalls the Software Defined
Ecosystem model, where the data plane provides basic, customizable function-
alities and the control plane implements advanced mechanisms and policies to
control the ecosystem by enforcing strategies on nodes and objects through the
lower level basic mechanisms. Thus, the main idea proposed in this paper is to
treat the IoT domain as a Software Defined Ecosystem, adopting a two-layer
Software Defined model to manage the underlying infrastructure.

To implement such a concept, Cloud computing facilities, applying a service-
oriented approach in the provisioning and management of resources, may be
exploited. The Cloud-based approach could be a good solution to address IoT-
related issues, fitting with the requirements of relevant service users and appli-
cation providers: on-demand, elastic and QoS-guaranteed, to name a few, all
needed properties for an IoT service platform, to be addressed mainly at the
control plane.

The contribution of this paper can be summarized as: a requirement analysis
for an enhanced IaaS framework able to include and provide facilities for recon-
figurable and complex aggregations of IoT devices; an architecture of node-side
modules and the corresponding mechanisms needed to empower ubiquitous vir-
tualization of networking functions; a scenario coupled with a related use case,
where the approach enables a seamless exploitation of field deployments for IoT
devices.

The remainder of this paper is organized as follows: Section 2 describes the
reference architecture of a framework implementing the network virtualization
for IoT following a service-oriented Cloud model. Then, Section 3 discusses a
use case, highlighting pros and cons of the approach. Some remarks and consid-
erations in Section 4 close the paper.

2 Reference Architecture

2.1 Requirements for Cloud-Enabled IoT

The main actors in any IoT scenario are contributors and end users. Contributors
provide sensing and actuation resources building up the “things” infrastructure
pool. End users control and manage the resources provided by contributors. In
particular, end-users may behave as infrastructure administrators and/or service
providers, managing the raw resources and implementing applications and ser-
vices on top of it. We assume that sensing and actuation resources are provided



Cloud-Based Network Virtualization: An IoT Use Case 201

to the infrastructure pool via a number of hardware-constrained units, from now
on referred to as nodes. Nodes host sensing and actuation resources and act as
mediators in relation to the Cloud infrastructure.

In order to actually accomplish the prospect of a Cloud-based IoT system,
a systematic requirement analysis is needed. A subset of requirements are the
ones relative to the contributor:

– Out-of-the-box experience - letting nodes and the corresponding sensors
and actuators be enrolled automatically in the Cloud at, e.g., unpacking time.

– Uniform interaction model - resources should be hooked up (or unenrolled,
when preferred) with the minimum amount of involvement for the contributor
to feed the enrollment process with details about their hardware characteris-
tics.

– Contribution profile - each contributor should be able to specify her profile
for contribution in terms of resource utilization (CPU utilization, memory
or disk space) and contribution period (frame time when the contributor is
available for contribution).

and others coming from the end user such as:

– Status tracking - monitoring the status (presence, connectivity, usage, etc.)
of nodes and corresponding resources, in order to, e.g., track significant out-
ages or load profiles.

– Lifecycle management - exposing a set of available management primitives
for sensing and actuation resources to, e.g., change sampling parameters when
needed or, e.g., reap a pending actuation task to free the resource for another
higher-priority duty.

– Ubiquitous access - enabled through instant-on bidirectional communica-
tion with resources as exposed from sensor-hosting nodes, whichever the con-
straints imposed by node-side network topology (e.g., NAT) and configuration
(e.g., firewall).

– Ensemble management - letting nodes and the corresponding sensors and
actuators be made available as pools of resources, e.g., to be partitioned in,
and allocated as, groups according to requirements.

A certain subset of end user requirements instead needs to be addressed by
just providing the facilities for centralized orchestration of virtualized networking
instances.

In relation to the latter, the list includes:

– Service-oriented interfaces - exposing primitives as asynchronous service
endpoint, in order to ease development and third-party software integration.

– Environment customization - enabling runtime modifications to the soft-
ware environment hosted by the node.

– Topology rewiring - providing mechanisms for the networking configuration
underneath nodes to be modified at any time.



202 G. Merlino et al.

2.2 Sensing and Actuation as a Service for IoT

In the pursuit for integration of IoT infrastructure with paradigms and frame-
works for heterogeneous resource management, we are trying to follow a bottom-
up approach, consisting of a mixture of relevant, working frameworks and pro-
tocols, on the one hand, and interesting use cases to be explored according to
such integration effort, on the other.

Indeed, beyond concerns about the scale of the effort, other requirements such
as elasticity of the sensing-based services to be provided, as well as registration
and provisioning mechanisms of the underlying heterogeneous sensor-hosting
platforms deserve an Infrastructure Manager (IM) anyway. To this purpose,
Cloud computing facilities, here also implementing a service-oriented [2] ap-
proach in the provisioning and management of sensing and actuation resources,
are exploited to enable a Sensing and Actuation as a Service (SAaaS) paradigm
for IoT. In fact, in the SAaaS perspective, sensing and actuation devices should
be handled along the same lines as computing and storage abstractions in tra-
ditional Clouds, i.e., on the one hand virtualized and multiplexed over (scarce)
hardware resources, and on the other grouped and orchestrated under control
of an entity implementing high level policies. This way, sensing and actuation
devices have to be part of the Cloud infrastructure and have to be managed by
following the consolidated Cloud approach, i.e., through a set of APIs ensuring
remote control of software and hardware resources despite their geographical
position.

A Cloud-oriented solution indeed may fit IoT scenarios, meeting most require-
ments by default to cater to the originally intended user base, while at the same
time also addressing other more subtle functionalities, such as a tenant-based au-
thorization framework, where several actors (owners, administrator, users) and
their interactions with infrastructure may be fully decoupled from the workflows
involved (e.g., transfer, rental, delegation). Bonus points include recycling ex-
isting (compute/storage-oriented) deployments, getting most visualization and
monitoring technologies for free, as those are typically already available in such
systems, possibly even enabling federation of different administrative Cloud-
enabled domains.

In this sense, our choice leans towards OpenStack, as a centerpiece of infras-
tructure Cloud solutions for most commercial, in-house and hybrid deployments,
as well as a fully OpenSource ecosystem of tools and frameworks upon which
many EU projects, such as CloudWave (FP-7), are founding their Cloud strate-
gies. Our prototype is thus based on OpenStack and named Stack4Things.

Indeed, choosing an industrial strength solution for infrastructure Clouds lets
us eschew at the moment scalability and other generic performance issues, and
focus most of the discussion on the challenges which are relevant to centralized
management of IoT.

Putting aside the core IaaS framework, as anticipated some additional fa-
cilities are needed for our envisioned SAaaS paradigm and the specifics of the
domain at hand (IoT), among which here we may describe two classes of mech-
anisms that are core to the overall approach: those needed to access locally and



Cloud-Based Network Virtualization: An IoT Use Case 203

low-level I/O 
primitives

smart IoT 
board

s4t I/O HAL

s4
t W

AM
P 

lib

s4t 
lightning-rod

engine

s4t wstunnel lib

HTTP 
daemon

SSH 
daemon

da
ta

 a
nd

 
co

m
m

an
ds

 to
/fr

om
 

cl
ou

d
communication 
to/from internal 
services

s4t lightning-rod

SH
mon

...

sensors & 
actuators

...

board 
pins

WS 
communication

socket 
communication

serial 
communication

boa
pins

...

sa
m

pl
es

 
to

 C
lo

ud

other 
communication

Fig. 1. Stack4Things node-side stack: logical architecture.

transparently remote (I/O) resources, and those to set up arbitrary topologies
among nodes.

With regard to the former, in Figure 1 we find a logical architecture of the
node-side stack needed for pub/sub or even RPC-style I/O primitives to be
exposed to remote hosts through the Cloud. The Stack4Things lightning-rod,
acting as SAaaS Client, runs on the IoT board and interacts with the OS tools
and services of the board, and with sensing and actuation resources through I/O
pins. It represents the point of contact with the Cloud infrastructure allowing
the end users to manage the board resources even if they are behind a NAT or a
strict firewall. This is ensured by a WAMP andWebSocket-based communication
between the Stack4Things lightning-rod and its Cloud counterpart. WebSocket
is a standard HTTP-based protocol providing a full-duplex TCP communica-
tion channel over a single HTTP-based persistent connection. One of the main
advantages of WebSocket is that it is network agnostic, by just piggybacking
communication onto standard HTTP interactions. This is of benefit for those
environments which block Web-unrelated traffic using firewalls. Web Applica-
tion Messaging Protocol (WAMP) [3] is a sub-protocol of WebSocket, specifying
a communication semantic for messages sent over WebSocket, providing both
publish/subscribe and routed remote procedure call (RPC) mechanisms.



204 G. Merlino et al.

The I/O HAL (hardware abstraction layer) is equipped with a set of exten-
sions exposing the board digital/analog I/O pins to the hosted environment. In
particular, functionalities provided by the HAL include enumeration of the pins
and exporting corresponding handlers for I/O in the form of i-nodes of a virtual
filesystem.

The Stack4Things lightning-rod engine represents at the core of the board-side
software architecture. The engine interacts with the Cloud by connecting to a
WAMP router through a WebSocket-based full-duplex channel, sending and re-
ceiving data to/from the Cloud and executing commands provided by the users
via the Cloud. Such commands can be related, among other things, to the com-
munication with the board digital/analog I/O pins and thus with the connected
sensing and actuation resources. The communication with the Cloud is ensured
by a set of libraries implementing the client-side functionalities of the WAMP
protocol (Stack4Things WAMP libraries). Moreover, a set of WebSocket libraries
(Stack4Things wstunnel libraries) allows the engine to act as a WebSocket re-
verse tunneling server, connecting to a specific WebSocket server running in
the Cloud. This allows internal services to be directly accessed by external users
through the WebSocket tunnel whose incoming traffic is automatically forwarded
to the internal daemon (e.g., SSH, HTTP, Telnet) under consideration. Outgoing
traffic is redirected to the WebSocket tunnel and eventually reaches the end user
that connects to the WebSocket server running in the Cloud to interact with
the board service. New REST resources are automatically created exposing the
user-defined commands on the Cloud side. As soon as such resources are invoked
the corresponding code is executed on top of the smart board.

Cloud-Based Virtualized Networking for IoT. Figure 2 shows a conceptual
depiction of the tunnel-based layering model employed for Cloud-enabled set up
of virtualized bridged networks among nodes across the Internet.

Fig. 2. Stack4Things tunnel-based layering: model.

It is important to remark that the kind of tunneling here mentioned is essential
to obtain remote access to IoT resources whichever the constraints of the network
nodes reside in, a prerequisite to expose node-hosted resources according to the
aforementioned access patterns.



Cloud-Based Network Virtualization: An IoT Use Case 205

The basic remoting mechanisms are based on the creation of generic TCP
tunnels over WebSocket (WS), a way to get client-initiated connectivity to any
server-side local (or remote) service. In this sense, we devised the design and
implementation of an incremental enhancement to standard WS-based facilities,
i.e., a reverse tunneling technique, as a way to provide server-initiated, e.g.,
Cloud-triggered, connectivity to any board-hosted service.

Beyond mere remoting, level-agnostic network virtualization needs mecha-
nisms to overlay network- and datalink-level addressing and traffic forwarding
on top of such a facility. Here the novelty of setting up VPNs on top of Web-
Socket lies in the decoupled control machinery, and the inherent flexibility of
an on-demand mechanism. The former indeed is enabled through a preliminar-
ily activated and always-on WebSocket-based control reverse tunnel (rtunnel),
acting as an out-of-band channel for command streams.

There are already certain solutions [4] for setting up VPNs on top of WS,
but without decoupled control machinery nor the inherent flexibility of an on-
demand mechanism.

Focusing the analysis on the instantiation of, e.g., a virtual bridge between
two boards, over data (in-band) rtunnels, a first step lies in setting up a TCP
connection based on a WS-based rtunnel, which consists in exposing, on the
server side, a listening socket on a local port, as soon as the rtunnel server
accepts a request for a new rtunnel. The TCP connection just established gets
piped to the rtunnel that encapsulates TCP segments in a WS-based stream.
On the WS rtunnel client side, as soon as the rtunnel is established, a new TCP
client is brought up connecting to a local listening port, and such TCP connection
gets piped to the rtunnel. A level-3 tunnel is then to be established over this
TCP-based tunnel by launching an application that starts up in listening mode
on both sides of the socket pipe and, on connection, starts exposing a virtual
(TUN) device on either side, both set up with IP addresses of choice, as long
as those belong to the same subnet. The workflow could end here if the request
was for a layer-3 VPN.

In order to set up instead a level-2 encapsulation over the aforementioned
IP-based communication, the system has to bring up a GRE tunnel, where the
endpoints are the previously configured TUN IPs and the type of tunnel-hosting
virtual device is set to TAP, thus exposing an Ethernet-compatible interface.
Adding such interface to a dedicated virtual bridge on the server ends the work-
flow, in this case exposing a layer-2 VPN. For IP-based tunneling, we resorted
to Generic Routing Encapsulation (GRE) [5], an IETF standard for a no-frills
IP-in-IP tunneling protocol. GRE support is not limited to level-3 encapsula-
tion, but also available for tunneling of level-2 (Ethernet) frames over to the
corresponding virtual (TAP) device.

3 Use Case

Once the Cloud-based IoT scenario has been laid out, it is easier to frame the
discussion in terms of a focused scenario, such as management of large-scale
emergency situations.



206 G. Merlino et al.

A peculiar feature of such scenario lies in the lack of predefined boundaries in
terms of the sensing infrastructure, which may span multiple geographical areas
and administrative domains. Whichever the footprint of alerting and support
activities for civilians, the foremost quality here is the dynamic involvement of
infrastructure.

3.1 Opportunistic Exploitation and Transparent Field Upgrade of
IoT-Based Facilities

In such a scenario a use case may be identified in the on-demand setup of facili-
ties that are ready to react to certain events which could anticipate an impending
emergency, and may avoid or at least contain damages and/or casualties. For
instance, a bridge may be considered at risk and put under control by placing
the required sensing infrastructure to monitor critical parameters, such as oscil-
lations, load, and torque or compressive stress of certain sections and elements.
In terms of actuators, the most fitting example may be gates at either side of
the bridge, only involving entry lanes in order not to impact vehicular outflow,
to be closed at the occurrence of such kind of event, as a precautionary step to
be taken before deeper investigations.

Such potential infrastructure thus needs reactive mechanisms in place, possi-
bly encoded as statements for a Complex Event Processing engine.

The aforementioned use case may indeed be implemented by deploying at least
two transducers, a sensor and an actuator respectively, where a board driving
an actuator hosts an application that operates it when triggered upon detection
of an event of interest. The latter gets generated by a CEP engine every time
predefined patterns (e.g., steady-state and/or structural anomalies) get recog-
nized out of measurements by one or more sensors sampling the corresponding
phenomena on (possibly other) boards.

Interesting patterns are set by loading rules written in an engine-specific lan-
guage.

The interactions are here described, when requesting for a number of boards
currently enrolled to the Cloud to be booked, mapped to an enumerable set of
resources, ultimately exposed for seamless interaction to a CEP engine, and the
corresponding rules, deployed in Cloud-hosted VM.

According to the description of our core mechanisms, built on top of the IaaS
framework, the first request is a routine one for the framework once extended to
include enrollment of IoT nodes, as well as the second and the fourth one even
when IoT extensions are not considered. The third request instead requires the
framework to deploy (IaaS-context) data into a VM, but then the enumeration
may take place only if the WAMP subsystem is available. Exposing remote
resources as local I/O needs a wrapper around the same subsystem too.

An opportunistic exploitation of resources yet gets feasible only when expect-
ing to be able to avoid an operator to set up the whole (distributed sensing and
actuation) system beforehand in the finest detail, including runtime adaptations
such as, e.g., swapping part of the logic and replacing nodes to be involved, when
needed.



Cloud-Based Network Virtualization: An IoT Use Case 207

In particular a useful approach may lie in the field deployment of an array
of devices with sensing functions the (aggregate) coverage of which is not nec-
essarily known in advance or perfectly partitioned somehow. As long as this set
of resources may be set up as an inter-node addressable ensemble and has a
running mechanism in place for the election and maintenance of a master node,
event detection may be delegated to the latter. In turn the detection routines
would leverage as much information as possible by aggregating data originating
from whichever resource is part of the aforementioned ensemble. For such an
autonomous system to work, sensors advertisement and discovery services are of
course a prerequisite.

The master node may as well be leveraged to invoke one or more actua-
tors (e.g., close the gates) should a predefined emergency event be detected, by
also discovering relevant actuating resources through the same mechanisms. Un-
planned field deployment coupled with this approach may thus lead to a seamless
exploitation of resources, where even replacement for upgrade, or loss of a subset
of nodes is not disruptive to the working status of the system.

A side effect of the choice to lift some decisions and duties off the operator
may also lie in the ability to make the system fault tolerant by design, especially
when employing an approach of redundant deployment on the actuating side, as
resilience benefits in this case from the transparent addition or replacement of
nodes.

An operator thus only needs to reserve a set of nodes once, roughly by func-
tion category or even better by geographical area, and just resort to the SAaaS
framework for the corresponding setup (and runtime adjustments) of an inter-
node configuration based on Virtualized bridging for IP-based transport
of discovery services.

As said previously, we are able to get remote access to the boards, for in-
stance for deploying an application, from anywhere a client may connect to any
Cloud-enrolled board, whichever its connectivity (e.g., node-side NAT or firewall
notwithstanding). We may submit a request for certain nodes on demand as re-
sources, and another to arrange a certain topology among boards by network
virtualization, in order to accomodate the requirements of the application itself,
by leveraging the (wide-area) control plane.

In particular, an interesting case is that of the AllJoyn [6] framework for IoT,
a family of standards and reference implementations which comprises at its core
a DBus-derived application protocol useful for messaging, advertisement and dis-
covery of services, working via selected mechanisms on available transports. As
long as the application is based on AllJoyn, services may be discovered automati-
cally, and thus leveraged according to the logic of the application. The distributed
system works by letting these boards interact through AllJoyn over an IP-based
network and the corresponding transport implementation, where mDNS and a
combination ofmulticast andbroadcastUDPpackets are used.A limitation indeed
is that the protocol is currently designed to work only as long as the communicat-
ing boards are on the same broadcast domain. Therefore, such a case may be cov-
ered by being able to leverage the Cloud to instantiate a (virtualized, wide-area)



208 G. Merlino et al.

bridged network among the nodes, coupled with the availability of remote access
for deployment and execution of the required binaries.

Under the assumption that nodes are not globally addressable or otherwise
reachable on whichever port, i.e., behind a firewall/NAT system due to an ubiq-
uitous IPv4 setup, a complex interaction flow is required to provide this kind of
abstractions and the underlying connectivity.

Supposing thus the boards to be bridged are already registered to the Cloud,
a high-level description of the workflow, from the point of view of the user,
comprises the following steps:

1. Book two (or more) managed boards.
2. Request for a bridge among the reserved boards.
3. Request for exposing SSH service on every reserved board.
4. Connect via SSH service to every reserved board for deploying and launching

the AllJoyn application.

Focusing on the unique steps of the one under consideration, the first request
gets serviced by leveraging the virtualized networking facilities and the second
one by tunneled remoting.

The following list of sequences is then expected to take place, with (low-level)
operations as depicted and numbered in Fig. 3.

1) The user requests the setup of a bridge between two specific boards, either
through the s4t dashboard or, in alternative, through the s4t command line
client.

2) The s4t dashboard performs one of the available s4t IoTronic APIs calls via
REST, which pushes a new message into a specific AMQP IoTronic queue.

3) The s4t IoTronic conductor pulls the message from the AMQP IoTronic
queue and correspondingly performs a query on the s4t IoTronic database.
In particular, it checks if the board is already registered to the Cloud and
looks up the s4t IoTronic WAMP agent to which the board is registered. At
last, it decides the s4t IoTronic WS tunnel agent to which the user can be
redirected and randomly generates a free TCP port.

4) The s4t IoTronic conductor pushes a new message into a specific AMQP
IoTronic queue.

5) The s4t IoTronic WAMP agent to which the board is registered pulls the
message from the queue and publishes a new message into a specific topic
on the corresponding WAMP router.

6) Through the s4t WAMP lib the s4t lightning-rod engine receives the message
by the WAMP router.

7) The s4t lightning-rod engine sets up a rtunnel with the s4t IoTronic WS
tunnel agent specified by the s4t IoTronic conductor, also providing the TCP
port through the s4t wstunnel lib. It also brings up a number of sockets to be
piped and overlaid over the rtunnel, plus the corresponding virtual interfaces,
as described in Sec. 2.2.



Cloud-Based Network Virtualization: An IoT Use Case 209

Fig. 3. Workflow and interactions between Cloud and board for the use case.

8) The s4t IoTronic WS tunnel agent follows up with its own set of server-side
network virtualization duties, still according to Sec. 2.2. Then, it publishes
a new message into a specific AMQP IoTronic queue confirming that the
operation has been correctly executed.

9) The s4t IoTronic APIs call pulls the message from the AMQP IoTronic queue
and replies to the s4t dashboard.

10) The user gets notified of the success of the operation.

This first sequence has to be replicated for both nodes, as well as the following
two. In order not to stretch the description, here only phases which are different
from the previous one are outlined. In particular, the second sequence (remote
access) steps 2-6,9 remain unchanged, step 1,7-8,10 are changed as follows:

1) The user asks for a connection to the SSH service local to a specific board,
either through the s4t dashboard or, in alternative, through the s4t command
line client.

2) The s4t lightning-rod engine sets up a rtunnel with the s4t IoTronic WS
tunnel agent specified by the s4t IoTronic conductor, also providing the



210 G. Merlino et al.

TCP port through the s4t wstunnel lib. It also opens a TCP connection to
the internal SSH daemon and pipes the socket to the tunnel.

3) The s4t IoTronic WS tunnel agent brings up a TCP server on the specified
port, and then publishes a new message into a specific AMQP IoTronic queue
confirming that the operation has been correctly executed.

4) The s4t dashboard provides the user with the IP address and TCP port that
she can use to connect to the SSH daemon running on the board.

And an additional step is present:

5) As the user employs an SSH client to connect to the specified IP address
and TCP port, the session is tunneled right to the board.

4 Conclusions

In this paper, we presented a new paradigm that can be considered as an ap-
proach to provide a simplified and programmable exploitation of the underlying
ecosystem of devices so that innovative and powerful services can be realized.
Starting from the well known concept of Software Defined paradigms (e.g., sep-
arating control and data planes) a Cloud-based framework is proposed, tak-
ing advantage of off-the-shelf technologies (e.g., OpenStack) and extending the
computing and storage virtualization concepts also to the sensing and actuating
facilities. Architectural aspects have been discussed as well as implementation
choices. Future work will include the validation of the whole architecture in a
real-world scenario involving hundreds of devices, under the #SmartME project.

References

1. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): A
vision, architectural elements, and future directions. Future Generation Computer
Systems 29(7), 1645–1660 (2013)

2. Distefano, S., Merlino, G., Puliafito, A.: Sensing and actuation as a service: A new
development for clouds. In: 2012 11th IEEE International Symposium on Network
Computing and Applications (NCA), pp. 272–275, August 2012

3. Fette, I., Melnikov, A.: The WebSocket Protocol. RFC 6455, RFC Editor, December
2011

4. VPN-WS. https://github.com/unbit/vpn-ws
5. Hanks, S., Li, T., Farinacci, D., Traina, P.: Generic Routing Encapsulation (GRE).

RFC 1701, RFC Editor, October 1994
6. AllJoyn. http://allseenalliance.org

https://github.com/unbit/vpn-ws
http://allseenalliance.org

	Cloud-Based Network Virtualization: An IoT Use Case
	1 Introduction
	2 Reference Architecture
	2.1 Requirements for Cloud-Enabled IoT
	2.2 Sensing and Actuation as a Service for IoT

	3 Use Case
	3.1 Opportunistic Exploitation and Transparent Field Upgrade of IoT-Based Facilities 

	4 Conclusions
	References




