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Abstract. Fracture propagation caused by fluid pumping is in the focus
of the report. The most popular approaches and problem statements used
for the propagation simulation are described.

Methods of simulation of the main processes that take place during
the fracture propagation are outlined. There processes are the follows:
rock deformation and rock breaking, fluid flow inside the fracture and its
filtration in the rock.

New method of fracture propagation simulation is proposed. The
method unites three sub-models that describe three (except the fluid
filtration) processes that affect the fracture propagation. Important
advance of the methodic is its ability to replace any sub-model with-
out numerical algorithm modification. So the appropriate sub-model can
be chosen for each process depending on the problem features.

Thus quasi static and unsteady statement may be used for simulation
of fracture propagation caused by viscous and inviscid fluid pumping.
Rock deformation is described in scope of linear elasticity equation of
homogeneous uniform material. Classical (similar to one used in [1])
and dual boundary element methods are used for this equations solu-
tion. Rock breaking caused by the fracture propagation is described by
Irwin’s criterion coupled with maximal circumferential stress criterion
for calculation of propagation direction. Various approaches are used to
obtain stress intensity factors that are necessary for both criteria.

Proposed methodic has been applied for fracture propagation simula-
tion. The sensitivity of fracture propagation process to variation of the
main physical parameters has been shown.

Keywords: Three-dimensional dual boundary elements method ·
Quasi-Static load · Viscous fluid · Hydraulic fracturing · Non-planar
fracture propagation

1 Introduction

In the paper [2] a fully 3D numerical model of fracture propagation from the
cavity in an elastic media caused by the viscous fluid pumping was developed
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and verified. Numerical model means linked submodels and numerical methods
and algorithms for their coupled solution. Three basic submodels were linked
together into a single model of propagation: the stress-strain state of the elastic
media, Newtonian fluid flow, and brittle fracturing and crack growth. The fol-
lowing assumptions were made in the model [2]. The media fracturing velocity
is assumed to be low enough. It allows using the fracture propagation the elastic
equilibrium equations and the static criteria of crack growth and direction for
the fracture propagation simulation. During the model of fracture propagation
development authors of [2] were using conventional BEM for the stress-strain
state calculations [3]. Therefore this method was used for the elasticity prob-
lem solution. However the conventional BEM cannot be used for the line cracks
because the integral boundary equation degenerates. Therefore in paper [2] the
fracture was considered as a cavity with small but finite width between its sides
(Fig. 1). So the fracture was approximated by the crack with the artificial width,
and the width itself was defined from the condition of the solution error mini-
mization, caused by this fracture approximation.

Fig. 1. Artificial notch concept: real fracture (left) is replaced with artificial notch
(right) [2].

In the present paper the fracture is treated as a real crack with infinite small
distance between sides. For the solution of the elasticity problem with the cavity
and the fracture, the modification of the Dual BEM with discontinuous elements
is built [4]. It is the most optimal method with regard to the computational costs
and the convenience of the integral equations approximation. Near the crack
front special elements are used. They account the singularity of the elasticity
problem solution. To improve the accuracy of the Stress Intensity Factors calcu-
lation, the special boundary elements near the crack front are accounted in the
interpolation formulae.
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2 Dual BEM

The elasticity problem is solved in an infinite domain with the cavity bounded by
S∗ and the fracture with sides S+ and S− which adjoins the cavity (see Fig. 1,
left). Stress-strain state of a media is described by elastic equilibrium equations

∂σij

∂xj
= 0, (1)

where σij are the components of the stress tensor; indices i, j posses the val-
ues 1, 2, 3. The Hookes law for the isotropic homogeneous material is used with
the equation (1)

σij = λδijεkk + 2μεij , (2)

where εij = 0.5(ui,j + uj,i) are the displacements tensor components, ui are the
components of the displacements vector, δij -is the Kronecker symbol, λ and μ
are the Lame parameters.

To obtain the closed differential problem let us add the boundary conditions
on the cavity surface S∗ = St + Su

ti

∣
∣
∣
St

= t∗i , ui

∣
∣
∣
Su

= u∗
i , (3)

on the fracture sides S±

ti

∣
∣
∣
S±

= −pcrackni, (4)

and on the infinite distance
ui

∣
∣
∣
S∞

= 0, (5)

to the differential equations (1),(2).
Conventional BEM [5] is used to solve the elasticity problems with a regular

boundary S∗. For the problems with fractures S± a modification of the conven-
tional BEM – the Dual BEM is suggested in [4]. In DBEM the Displacements
Boundary Integral Equation (DBIE) is solved on the regular boundary and the
Traction Boundary Integral Equation (TBIE) is solved on the fracture boundary.
To solve the elasticity problem near the fracture in an infinite elastic media a
modification of DBEM is developed in the present paper.

For points y at the regular boundary S∗ the DBIE is solved

cij(y)ui(y) =
∫

S∗

Uij(y,x)ti(x)dS(x)−

−−
∫

S∗

Tij(y,x)ui(x)dS(x) −
∫

S+

Tij(y,x)Δui(x)dS(x).
(6)

The singular integrals −
∫

and =
∫

are considered in the meaning of the Cauchy

and Hadamard principal value, respectively. In DBEM on one side of the fracture
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the TBIE is taken instead of the DBIE.

tj(y+) =
∫

S∗

Lij(y+,x)ti(x)dS(x)−

−
∫

S∗

Mij(y+,x)ui(x)dS(x) − =
∫

S+

Mij(y+,x)Δui(x)dS(x).
(7)

Here Lij(y+,x) = Dkij(y+,x)nk(y+) and Mij(y+,x) = Skij(y+,x)nk(y+), and
functions Dkij and Skij are obtained from the kernels Uij and Tij by differen-
tiation with respect to the corresponding coordinates and applying the Hookes
law [6]. Equation (7) doesn’t contain displacement components ui on the fracture
boundary, but allows to determine the unknown components of the displacement
discontinuities Δui on the boundary.

2.1 Boundary Discretization and Obtaining the System of Linear
Algebraic Equations (SLAE)

Let us demonstrate the numerical method of the TBIE (7) solving in the con-
text of fracture S = S+ + S−. The whole fracture S is approximated with the
boundary elements as it is shown in the Fig. 2

S �
Ne∑

e=1

Se. (8)

Fig. 2. Segmentation of boundary S into the discontinuous squared boundary Se (left)
and (ξ1, ξ2) parameterization of an element with Nα = 9 (right).

Each boundary element Se is parameterized with the local coordinates (ξ1, ξ2)
as it is shown in Fig. 2. Components of the radius-vectors, displacements dis-
continuities, and stresses in a certain point of an element (ξ1, ξ2) are represented
as

fi(ξ1, ξ2) =
Nα∑

α=1

fi(xα)φα(ξ1, ξ2), (9)
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where xα are the element nodes, φα(ξ1, ξ2) are the element shape functions, Nα

is the number of nodes and shape functions in the element.
Equation (7) with respect to the (8) and (9) can be written as

tj(y−) =
Ne∑

e=1

Nα(e)
∑

α=1

⎛

⎜
⎝−Δueα

i

∫

ξ1

∫

ξ2

Mij(y−, ξ1, ξ2)φα(ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2

⎞

⎟
⎠ ,

(10)
where J(ξ1, ξ2) is the Jacobian of the transition to the elements local coordinate
system. The displacements discontinuities Δueα

i in the node α of the element
e are taken outside the integral because they doesnt depend on the integration
variables ξ1 and ξ2. Note that integrals in formula (10) depend only on boundary
geometry and not on the boundary conditions.

By writing out the equations (10) in the nodes yeα, SLAE for the unknown
functions Δui is obtained

MΔu = −t. (11)

Here the Δu and t are the vectors of the displacement discontinuities and ten-
sions in all of the nodes. M is the matrix, composed of the integral values in
equation (10).

In case with cavity and fracture S = S∗ +S++S− the system (11) is written
as [

T11 − 1
2I T12

M21 M22

](
u

Δu

)

=
[
U11 0
L21 −I

](
t
t

)

, (12)

where U and T are the sub-matrices, composed of the integral values in the
DBIE (6), L and M are the sub-matrices of the TBIE (7).

2.2 Boundary Elements and Approximating Functions

As long as TBIE (7) requires the smoothness of the surface in the collocation
points y on the fracture S±, and the elements edges are the lines of discontinuity,
DBEM requires to use discontinuous elements with all nodes situated inside the
element as it is shown in Fig. 2. In the present paper the discontinuous linear
and squared elements, and special elements for the fracture front were used [7].
These elements approximate the displacement discontinuity Δu asymptotic at
the fracture front, which improves the accuracy of the Stress Intensity Factors
calculations.

2.3 Hadamar Principal Value Calculation of the Singular Integral

The main difficulty of DBEM is to construct the algorithm for the calculation
of the Hadamar principal value for the singular integral along the boundary
element Se that appear in the equation (8). The integral contains the collocation
point y

Iij(y) = =
∫

Se

Kij(y,x)dS(x). (13)
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To calculate the integral Iij (13) the singularity substraction technique [8] is
used.

3 Calculation of the Stress Intensity Factors

The fundamental postulate of Linear Elastic Fracture Mechanics (LEFM) is that
the behaviour of cracks is determined solely by the value of the Stress Intensity
Factors (SIFs). The stress field in the vicinity of the crack tip is characterized by
the SIFs KI , KII and KIII . In the present paper the displacement extrapolation
method for evaluating SIFs is employed [6]

KO
I =

E

4(1 − ν2)

√
π

2l
ΔuP

b , (14)

KO
II =

E

4(1 − ν2)

√
π

2l
ΔuP

n , (15)

KO
III =

E

4(1 + ν)

√
π

2l
ΔuP

t , (16)

where ΔuP is the displacement discontinuity in the fracture point P placed at
the distance l from a front point O. Vectors b, n and t are local basis on the
crack front. Formulae (14), (15), (16) are applicable if the distance l is small
enough comparing to the typical fracture size. If the distance l is long, then the
SIFs values become understated. In this case the extrapolation of the SIFs values
KP1 and KP2 , from the points P1 and P2 to the front point O should be used
(Fig. 3). Distance to the P1 and P2 is l1 and l2, respectively.

KO = KP2 +
l2(KP1 − KP2)

l2 − l1
. (17)

To verify the DBEM and the SIFs calculation method the following problem
is considered. In the infinite media stretched by tensile stress σ in the direction y
the penny-shaped fracture of radius R is placed. The fracture is inclined around
the Oz axis at the angle α as it is shown in Fig. 4. The SIFs on the crack front
for this problem were previously determined exactly [9]

KI = 2σ cos2 α

√

R

π
, (18)

KII =
4

2 − ν
σ sin α cos α cos θ

√

R

π
, (19)

KIII =
4(1 − ν)
2 − ν

σ sin α cos α sin θ

√

R

π
, (20)

where θ is the angular coordinate characterizing the position of the point at the
fracture front.
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Fig. 3. Method of the displacements extrapolation near the crack front for the SIFs
calculation.
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Fig. 4. Problem of a penny-shaped fracture inclined by an angle α under tensile stress
σ

Problem is solved numerically on the mesh with 64 elements in the circum-
ferential direction and 16 elements in radial direction. The physical parameters
values are R = 1m, p = 1MPa, E = 20GPa, ν = 0.2, α = 45◦. Figure 5 shows
the distribution of the SIFs along the crack front. SIFs are calculated using the
special elements and formula (17). Computational error does not exceed 2%.

4 Quasi-Static and Viscous Fluid Fracture Loading

In the case of the high confining stress of deep reservoirs and the low fluid
viscosity the fluid pressure along fracture faces is nearly constant. Therefore two
models of fracture loading are considered.

In the first one we assume that the fluid pressure is constant along the frac-
ture faces, although it can be time-dependent. Under this condition it is also
assumed that fluid and fracture fronts coincide, i.e., the size of so-called fluid lag
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Fig. 5. Dependence of the SIFs from the point position at the front of a penny-shaped
fracture: exact solution (solid); KI (©), KII (�), KIII (�).

is negligible. We consider that hydraulic fracture propagation regime is described
by the quasi-static crack growth model.

In the second model the viscous fluid flow inside the fracture is taken into
account. In this case the propagation model is unsteady. The process unsteadi-
ness is taken into account by the fluid-flow continuity equation. Meanwhile all
other equations describing momentum balance, elastic equilibrium, and material
rapture are stationary. The dynamics of the propagation process is represented
by the static conditions of flow momentum, stress field, and elastic media dis-
placements in various moments of time.

Fracture surface in 3D space and its piecewise planar representation is shown
in Fig. 6. Through the boundary Sq fracturing fluid is pumped from the wellbore
to the crack. Boundary Sp is the fluid’s front.

Fig. 6. Fracture surface in 3D space and its piecewise planar representation.

At each planar fracture element the lubrication approximation for a Newto-
nian fluid flow of viscosity μ between parallel plates, with distance W between
each other, gives

q = −W 3

12μ
∇p (21)
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where q is fluid flux.
The mass conservation equation can be written as follows

∂W

∂t
+ ∇ · q = 0. (22)

From (21) - (22) it is possible to obtain the following equation for p:

∇(a∇p) = f, (23)

where a = W 3

12μ , f = ∂W
∂t .

Boundary conditions for the equation (23) are the following:

p
∣
∣
∣
Sp

= ppore (24)

and the inflow condition is
∫

Sq

q · nqdS = Qin, (25)

Here nq is the normal to the boundary Sq. In terms of the pressure the latter
condition (25) with consideration of (21) is rewritten as

∫

Sq

a
∂p

∂n
dS = −Qin. (26)

It is considered that the fluid front moves with the same speed vf , as the
fluid particles v(x) at the front do (Stefan condition)

vf (x) = v(x) = q(x)/W (x), x ∈ Sp. (27)

5 Coupling Between Stress-Displacement, Fluid-Flow
and Crack Growth Criteria

Let us consider an initial fracture with front defined by the points x0
i , i =

1, ..., Nfr. Step-by-step fracture propagation is denoted by superscript n. Fluid
front with nodes xn

f i, fracture front xn
r i, and the lag Lr i between the fluid

and the fracture fronts are introduced into the propagation algorithm. Also the
volume V n of the fluid in the fracture is interacting in the algorithm. It is
calculated using the fracture width as

V n =
∫

S+

WndS. (28)

The general scheme of the propagation algorithm is shown in Fig. 7. The
hydrodynamics-elasticity problem in the algorithm gives the distribution of the
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fracture width Wn+1 s and the pressure pn+1 s. Pressure is caused by the fluid
flow in the fracture at the fracture front position xn+1 s

r i and the fluid front
position xn

f i. The scheme of the hydrodynamics-elasticity problem solution is
shown in Fig. 8. Iteration process Δtk+1 = T(Δtk) is introduced to fulfill the
condition

max
i

∣
∣vm+1 k

i

∣
∣ = vf , (29)

which equalizes the maximal fluid velocity at the front and the kinematic con-
dition of the given maximal front increment L0

f over the time period Δt that is
calculated from the fracture volume dynamics.

With the iterations

Ls+1
i = L(Ls

i ), θs+1
i = Q(θs

i ) (30)

the following conditions are fulfilled in the algorithm Fig. 7

KI(xn+1 s
i , pm) = KIc, KII(xn+1 s

i , pm) = 0 (31)

in each of the fracture front nodes on the n + 1-th propagation step. Iteration
schemes (30) are based on the solution methods for the equations (31) corre-
spondingly.

6 Results of Fracture Propagation Simulating

Figures 9 – 11 show the simulation results of the quasi-static propagation of the
penny-shaped fracture with radius R from the wellbore with radius Rw. The
initial fracture is perpendicular to the axis of the wellbore, which is inclined
at the angle α to the vertical direction (axis Oy). Parameter values during the
simulation are E = 20GPa, ν = 0.2, KIc = 3MPa

√
m, R = 1m, Rw = 0.5m,

α = 30◦.
The isometric projections of the fracture during the quasi-static propagation

are shown in Fig. 11. The fracture is propagating with constant in situ stress
σ∞

x = σ∞
z = 16MPa, and various in situ stress σ∞

y = 8MPa (left) and 15.9MPa
(right). The trajectories in the plane z = 0 are also compared in the figure.

The comparison of the quasi-static and the fluid-flow approach to the simula-
tion of the fracture propagation is shown in Fig. 12. Wellbore is inclined against
the σ∞

y direction at the angle α = 45◦ as it is shown in Fig. 9. Fluid with viscosity
μ is pumped into the wellbore with rate Qin = 1 ·10−3m3/s. Rock is compressed
by vertical σ∞

y = 12MPa and two horizontal σ∞
x = 16MPa and σ∞

z = 16MPa
stresses. The wellbore height and radius are H = 5m, Rw = 0.5m. The incipient
fracture radius is R = 1m. The dynamic fluid flow approach is applied with the
two values of fluid viscosity μ = 100 and 1000Pa · s.
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Fig. 7. The fracture propagation algorithm flow chart.
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Fig. 8. The flowchart for the hydrodynamics-elasticity problem solution.
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Fig. 9. Cavity and fracture loaded with pressure p in a media, which is compressed by
a tensor σ∞ on an infinite distance: σ∞

x = −16MPa, σ∞
y = −12MPa; σ∞

z = −16MPa

Fig. 10. Fracture trajectories in problems with the wellbore (dashed line) and
without (solid line): (σ∞

x ; σ∞
y ; σ∞

z ) = −(4; 3; 4)MPa (©), −(8; 6; 8)MPa (�),
−(16; 12; 16)MPa (�).
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Fig. 11. The quasi-static fracture propagation: 1 – σ∞
y = 8MPa (left); 2 – σ∞

y =
15.9MPa (right); the trajectories in the section z = 0 (bottom).

Fig. 12. Fracture trajectories and their cross-sections: 1 - quasistatic approach; 2 -
dynamic approach μ = 100Pa · s; 3 - dynamic approach μ = 1000Pa · s

7 Conclusions

1. The concept of the 3D non-planar model of fracture propagation in an elastic
media and the numerical algorithm for its implementation are proposed.
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2. The concept combines models of the main linked problems that affect one
another: stress-strain state, fracture loading, destruction of material, and
fracture propagation.

3. The main advantage of the proposed conception is the possibility of using
various models in every sub-problem without the necessity to rebuild the
whole algorithm, which allows advancing from simple models to complex
ones easily.

4. The version of the model that combines the sub-models of the elastic equi-
librium, Newtonian fluid flow, and the fracture propagation and direction
criterion derived from the linear brittle fracture mechanics is implemented.

5. The verification of the model and the sensitivity analysis of the solution from
physical and numerical parameters is performed. It is shown that the results
obtained are reliable.

6. The next version of the model will use more precise algorithms of SIFs cal-
culations; the Newtonian fluid will be replaced with the non-Newtonian.

Acknowledgments. Authors gratefully acknowledge the support of this research by
the Russian Scientific Fund under grant number 14-11-00234.

References

1. Lapin, V.N., Cherny, S.G., Esipov, D.V., Kuranakov, D.V.: 3D model of fracture
initiation and propagation from the cavity in the elastic media loaded by constant
pressure. In: Proceedeings of VIII Kazachstan-Russian Conference “Mathematical
Modelling in Science and Technical Problems of Oil and Gas Industry”, vol. 2,
pp. 129–132, Jun 20–21, Kazakhstan, Atyrau (2014) (in Russian)

2. Cherny, S.G., Lapin, V.N., Esipov, D.V., Kuranakov, D.S., Avdyushenko, A.Y.:
Simulating fully 3D non-planar evolution of hydraulic fractures. Submitted to the
International Journal of Fracture (2015)

3. Alekseenko, O.P., Potapenko, D.I., Cherny, S.G., Esipov, D.V., Kuranakov, D.S.,
Lapin, V.N.: 3D Modeling of fracture initiation from perforated non-cemented well-
bore. SPE J. 18(3), 589–600 (2013)

4. Mi, Y., Aliabadi, M.H.: Dual boundary element method for three-dimensional frac-
ture mechanics analysis. Engineering Analysis 10(2), 161–171 (1992)

5. Rizzo, F.J.: An Integral Equation Approach to Boundary Value Problems of Clas-
sical Elastostatics // Quart. J. of Applied Mathematics 25, 83–95 (1967)

6. Aliabadi, M.H.: The Boundary Element Method. Applications in Solids and Struc-
tures, vol. 2, 598p. John Wiley and Sons Ltd. (2002)

7. Cisilino, A.P., Aliabadi, M.H.: Three-dimensional BEM analysis for fatigue crack
growth in welded components. Int. J. for Pressure Vessel and Piping 70, 135–144
(1997)

8. Guiggiani, M., Krishnasamy, G., Rudolphi, T.J., Rizzo, F.J.: A general algorithm for
numerical solution of hypersingular equations. J. Appl. Mech. 57, 906–915 (1990)

9. Tada, H., Paris, P., Irwin, G.: The Stress Analysis of Cracks Handbook, 3rd edn.
ASME Press, NY (2000)


	Three-Dimensional Model of Fracture Propagation from the Cavity Causedby Quasi-Static Load or Viscous Fluid Pumping
	1 Introduction
	2 Dual BEM
	2.1 Boundary Discretization and Obtaining the System of Linear Algebraic Equations (SLAE)
	2.2 Boundary Elements and Approximating Functions
	2.3 Hadamar Principal Value Calculation of the Singular Integral

	3 Calculation of the Stress Intensity Factors
	4 Quasi-Static and Viscous Fluid Fracture Loading
	5 Coupling Between Stress-Displacement, Fluid-Flow and Crack Growth Criteria
	6 Results of Fracture Propagation Simulating
	7 Conclusions
	References


