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Abstract. A class (m,k)-methods is discussed for the numerical solution
of the initial value problems for implicit systems of ordinary differential
equations. The order conditions and convergence of the numerical solu-
tion in the case of implementation of the scheme with the time-lagging
of matrices derivatives for systems of index 1 are obtained. At k ≤ 4 the
order conditions are studied and schemes optimal computing costs are
obtained.
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1 Introduction

Many applied problems lead to systems of differential equations given implicitly
as [1–4]

F (x, x′) = 0, x(t0) = x0, t0 ≤ t ≤ tk, (1)

where x and F are functions of the same dimension, and F is assumed to have suf-
ficiently many bounded derivatives. Such problems arise in simulation of chem-
ical reaction kinetics [4], electrical networks [5–6], control engineering etc. A
non-autonomous systems F (x, x′, t) = 0 is brought to the form (1) by adding
the equation for the independent variable, t′ = 1.

The modern methods for numerical solution of the initial-value problem for
systems of ordinary differential equations (ODE) suppose usually the explicit
dependence of the derivative of the solution [7]

x′ = ϕ(x), x(t0) = x0, t0 ≤ t ≤ tk. (2)
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However, a reduction of (1) to the form (2) requires a large additional numerical
costs at every integration step, because this is connected with the inversion of
the matrix Fy = ∂F/∂y which generally is singular. The numerical problem
appeares to be more complicated because of the stiffness of explicit equations
systems: in this case it is necessary to apply of special methods with conversion of
the Jacobian matrix . A class of the schemes is offered [8], in which the reduction
to the form (1) and the calculation of the approximate solution are carried out
simultaneously. The given methods were generated by the (m, k)-schemes [9] for
solving the explicit ODE systems.

We use classification of implicit systems, based on the concept of the index
for such systems [1–2]. We say that system (1) is:

a) of index 0, if ‖F−1
y ‖ ≤ c < ∞ (i.e., when (1) is solvable);

b) of index 1, if (1) can be reduced to

x′ = f(x, y), 0 = g(x, y), (3)

where ‖g−1
y ‖ ≤ c < ∞;

c) of index 2, if (1) can be reduced to

x′ = f(x, y), 0 = g(x),

where ‖(gxfy)−1‖ ≤ c < ∞.

In addition, it is assumed that functions F, f, and g are Lipschitz bounded,
which ensures existence and uniqueness of the solution to problem (1) [10].

Using the notation x′ = y, problem (1) can be written in the form

x′ = y, F (x, y) = 0, x(t0) = x0, y(t0) = y0, t0 ≤ t ≤ tk. (4)

The additional condition y(t0) = y0 can be found, for example, by solving the
problem F (x0, y) = 0 and using the stabilization technique.

2 The Numerical Schemes

We define the class of the (m, k)–schemes for solving problem (4). Let m and k,
(m ≥ k) be given integers and consider the sets

Mm = {1, . . . , m},

Mk = {mi |m1 = 1, mi−1 < mi, mi ≤ m, 2 ≤ i ≤ k}, (5)
Ji = {mj − 1 |j > 1, mj ∈ Mk,mj ≤ i}, 2 ≤ i ≤ m.

Then (m, k)-methods for the systems of index 0 have the form

xn+1 = xn +
m∑

i=1

μikxi, yn+1 = yn +
m∑

i=1

μikyi, (6)
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where the internal stages are given by

Dn = A2 + ahA1,

Dnkxi = h[A2(yn +
i−1∑

j=1

βijkyj) − F (xn +
i−1∑

j=1

βijkxj , yn +
i−1∑

j=1

βijkyj)]+

+ηA2

∑

j∈Ji

αijkxj + (1 − η)hA1

∑

j∈Ji

γijkxj ,

kyi =
1
ah

[kxi − h(yn +
i−1∑

j=1

βijkyj) − η
∑

j∈Ji

αijkxj − (1 − η)h
∑

j∈Ji

γijkyj ],

if i ∈ Mk and

Dnkxi = ηA2(kx(i−1) +
∑

j∈Ji

αijkxj) + (η − 1)hA1(kx(i−1) +
∑

j∈Ji

γijkxj),

kyi =
1
ah

(kxi − η(kx(i−1) +
∑

j∈Ji

αijkxj) − (1 − η)h(ky(i−1) +
∑

j∈Ji

γijkyj).

when i ∈ Mm\Mk. Here, a, μi, βij , αij and γij are parameters defining properties
of stability and accuracy (6), h is the integration step, A1 and A2 are matrices
approximating the derivatives Fny = ∂F (xn, yn)/∂y and Fnx = ∂F (xn, yn)/∂x.
In what follows we use the notation cij = βij + γij , where γij = 0 if j /∈ Ji and
γi,i−1 = 1 if j ∈ Mm\Mk. The matrix Dn is non-singular because detFy �= 0.
For the systems of index 1 or 2 the stages of the method are given by

(E − ahA1)kxi − ahA2kyi = δihf(xn +
i−1∑

j=1

βijkxj , yn +
i−1∑

j=1

βijkyj) +

+η
∑

j∈Ji

αijkxj + (1 − η)h
∑

j∈Ji

γij(A1kxj + A2kyj), (7)

−aB1kxi − aB2kyi = δig(xn +
i−1∑

j=1

βijkxj , yn +
i−1∑

j=1

βijkyj) +

+(1 − η)h
∑

j∈Ji

γij(B1kxj + B2kyj), (8)

where A1, A2, B1, B2 are matrices approximating the derivatives

fnx =
∂f(xn, yn)

∂x
, fny =

∂f(xn, yn)
∂y

, gnx =
∂g(xn, yn)

∂x
, gny =

∂g(xn, yn)
∂y

,

and δi = 1 if i ∈ Mk, δi = 0 if i ∈ Mm\Mk.
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Reversibility of the matrix Dn is ensured for systems of index 1 by the
reversibility of the matrix gy, while for systems of index 2 – by the matrix
gxfy.

The parameter η equals to 0 or 1. At η = 0, the schemes are preferable for
computations, since they require less multiplications of a matrix by vector, and
at η = 1 the schemes are more convenient in implementation .

The main feature of the schemes presented when compared to the conven-
tional methods [11–14] is that in (m, k)–schemes the function F is evaluated k
times at each step, and the number of stages is equal to m, m ≥ k. The given
schemes can be considered as a special form of ROW-methods, in which the set
of definition of the scheme parameters is given more exactly. This simplifies the
analysis of the order conditions, and the study of the problem how to use the
time-lagged matrix Dn are carried out. The linear system of algebraic equations,
arising in calculation of stages, is solved by the LU -decomposition of the matrix
Dn. At every step once decomposition of the matrix Dn is evaluated, the func-
tion of the right side of a differential problem k times is calculated, backward in
the Gauss method m times is executed. For given m and k the cost of one step
is completely determined, and numbers m1, . . . ,mk do only distribute this costs
inside the step.

Two implementations of (6) for the systems of index 1 will be further con-
sidered:

a) the matrix Dn is reevaluated at each integration step;
b) the matrix Dn and the integration step h similar to [5] are not changed

at several steps, thus Dn = Dn+ϑ, hn = hn+ϑ, −Q ≤ ϑ ≤ 0 where Q is the
maximum number of steps in the time-lagging of matrices derivatives.

3 Convergence and Order Conditions

The local error of the scheme (6) when solving (3) is defined as the difference
between the exact and the numerical solution provided the initial values are
choosen on the exact solution

δx(t) = x1 − x(t + h), δy(t) = y1 − y(t + h).

We recall that order of consistency with respect to x is p and with respect to y
is q, if

δx(t) = O(hp+1), δy(t) = O(hq+1).

The condition for the parameters of a scheme ensuring the required order con-
sistency can be obtained by equating the coefficients of the expansion of the
approximate solution xn+1, yn+1 to the exact solution

x(tn + h) = xn +
∞∑

r=1

hr

r!

∑

t∈LT1X
ρ(t)=r

[F (t)]n, (9)
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y(tn + h) = yn +
∞∑

r=1

hr

r!

∑

t∈LT1Y
ρ(t)=r

[F (t)]n, (10)

where [F (t)]n denotes a value of the elementary differential F (t) of the order ρ(t)
at a point (xn, yn). Expressions (9), (10), trees set definition T1 = T1X∪T1X,
and the corresponding elementary differentials F (t), t ∈ LT1 were introduced
in [3].

Now we find an expansion similar to (9), (10) for the numerical solution at(
xn+1, yn+1

)
for our scheme (6).

Assume that the (m, k)-scheme is implemented with time-lagging of the
matrices derivatives. The following proposition gives the derivatives with respect
to h at h = 0 of the entries of the matrix

[
fx(xn + ϑh) fy(yn + ϑh)
gx(xn + ϑh) gy(yn + ϑh)

]

at a point (xn, yn).

Proposition 1. Let p ≡ f ∨ g and r ≡ x ∨ y. Then

p(q)r (xn+ϑ, yn+ϑ)|h=0 =
∑

t∈LT1X

ρ(t)=q

ϑq[Apr(t)]n, (11)

where [Apr(t)]n is a value of the differential

∂k+l+1p

∂r∂xk∂yl
(F (t1), · · · , F (tk), F (u1), · · · , F (ul)),

t = [t1, · · · , tk,u1, · · · ,ul] ∈ LT1 in the point (xn, yn).

Differentiating pr with respect to t gives

dqpr(xn, yn)
d tq

=
∑

t∈LT1X

ρ(t)=q

∂k+l+1p

∂r∂xk∂yl
(x(α1), · · · , x(αk), y(β1), · · · , y(βl)).

Substituting of the expression for x(αi), · · · , y(βj) obtained from (9), (10) using
the change of variables d t = ϑdh, gives the stated result as h → 0.

We denote

t = [t1λ1 , · · · , tn
λn ]r, (12)

for the tree t ∈ T1, where the index λi is the multiplicity of a inclusion of a
corresponding subtree ti ∈ T1, r ≡ x ∨ y.
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The number of a possible labelling α(t) of the tree t ∈ T1 is defined recur-
sively by α(t) = 1, if

ρ(t) = 1, α(t) = ρ̄(t)
n∏

i=1

1
λi!

(
α(ti)
ρ(ti!)

)λi

,

where ρ̄ = (ρ(t) − 1)!, if t ∈ T1X, ρ̄ = ρ(t)!, if t ∈ T1Y.
The integer number Γ (t) corresponding to a tree t ∈ T1 is defined recur-

sively by
Γ (t) = 1, if ρ(t) = 1,

Γ (t) = ρ(t)
n∏

i=1

Γ (ti)λi , if t = [t1λ1 , · · · , tn
λn ]x,

Γ (t) =
n∏

i=1

Γ (ti)λi , if t = [t1λ1 , · · · , tn
λn ]y.

We put c̃ij = cij , if i > j, c̃ii = a, c̃ij = 0, if i < j · ω = (ωij) is the inverse of
the matrix (c̃ij).

The expression φi(t) = φ1i(t) + φ2i(t)/Γ (t), t ∈ T1, 1 ≤ i ≤ m, is defined
recursively by

φ1i(t) = δi, φ2i(t) = 0,

if ρ(t) = 1,

φ1i(t) = δi

n∏

r=1

(
i−1∑

νr=1

βiνr
φνr

(tr))λr ,

φ2i(t) = ρ(t)
i∑

j=1

γij

n∑

r=1

(λrΓ (tr)ϑ(ρ(t)−ρ(tr)−1)φj(tr)),

if t = [t1λ1 , · · · , tn
λn ]x,

φ1i(t) =
i∑

j=1

ωijδj

n∏

r=1

(
j−1∑

νr=1

βjνr
φνr

(tr))λr ,

φ2i(t) =
∑

1≤v≤j≤i

ωijγjv

n∑

r=1

(λrΓ (tr)ϑ(ρ(t)−ρ(tr))φv(tr)),

if t = [t1λ1 , · · · , tn
λn ]y.

The expansion of the derivatives of the numerical solution is given by the
following proposition.

Proposition 2.

k
(q)
xi =

∑

t∈LT1X

ρ(t)=q

Γ (t)φi(t)[F (t)]n, (13)
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k
(q)
yi =

∑

t∈LT1Y

ρ(t)=q

Γ (t)φi(t)[F (t)]n. (14)

This proposition generalizes the theorem (4.4) from [3] and , for q = 1, (13),
(14) coincide with the corresponding expressions from [3].

The order conditions are defined by the following proposition.

Proposition 3.

δx
n = O(hp+1), if the conditions

m∑
i=1

μiφi(t) = 1
Γ (t) ,

hold for all trees t ∈ T1X of order ρ(t) ≤ p,

δy
n = O(hq+1), if

m∑
i=1

μiφi(t) = 1
Γ (t) hold,

for all trees t ∈ T1Y of order ρ(t) ≤ q.

A numerical solution converges with order p with respect to x and with order
q with respect to y if the global error

ex
n = xn − x(tn), ey

n = yn − y(tn)

satisfies
ex
n = O(hp), ey

n = O(hq).

Applying methods (6) for solving the scalar test equation x′ = λx we obtain
xn+1 = R(z)xn, z = hλ, where R(z) is called a stability function.

The following theorem answers the question on convergence of the (m, k)-
methods (6).

Proposition 4. Assume that scheme (6) is consistent of order p with respect to x
and of order (q − 1) with respect to y Suppose that the stability factor is such that
|R(∞)| < 1 (stability function at ∞). Then numerical solution converges to the
exact solution with the order p on variable x and with the order q on variable y,
where the value p is set by above chosen implementation of the scheme a) or b):

a) p = min(p, 2q), b) p = min(p, q + 1).

We note, that the given proposition in the case p=q follows from the theorem
1 [3] true for a wider class of the one-step methods.

In Tables 1, 2 the order conditions ensuring convergence of (m, k)-methods
up to the fourth order of accuracy are tabulated. We use the notations

γi =
∑

γijδj , c̃i =
∑

c̃ijδj , βi =
∑

βijδj .
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Table 1. Order conditions for the x-component

ρ(t) t

1 �
∑

μiδi = 1 (15.a)

2
���

� ∑
μic̃i = 1

2 (15.b)

3
���

�

��
� ∑

μiβ
2
i + 2ϑ

∑
μiγi = 1

3 (15.c)

3
��

�

�

��

�

∑
μic̃ij c̃j = 1

6 (15.d)

4
���

�

��
� � ∑

μiβ
3
i + 3ϑ

∑
μiγi = 1

4 (15.e)

4
��

�

��
�

�

��

�

∑
μiβiβij c̃j + ϑ

∑
μiγij c̃j + 1

2ϑ2
∑

μiγi = 1
8 (15.f)

4
�

���
�

��
�

∑
μic̃ijβ

2
j + 2ϑ

∑
μic̃ijγj = 1

12 (15.g)

4

��
�

�

��

�

��
�

∑
μic̃ij c̃jk c̃k = 1

24 (15.h)

4
����

� ��
�

��
�

�

�

∑
μiβiβijωjkβ2

k + ϑ
∑

μi(2βiβijωjkγk +

+γijωjkβ2
k) + ϑ2

∑
μi(γi + 2γijωjkγk) = 1

4

(15.i)

Table 2. Order conditions for the y - component

ρ(t) t

2 ��
�

��
�

�

∑
μiωijβ

2
j + 2ϑ

∑
μiωijγj = 1 (15.j)

3 ��
�

��
� �

�

∑
μiωijβ

2
j + 3ϑ2

∑
μiωijγj = 1 (15.k)

3
��

�

��
�

�

�

��
∑

μiωijβjβjk c̃k + ϑ
∑

μiωijγjk c̃k +

+ 1
2ϑ2

∑
μiωijγj = 1

2

(20.l)

3
����

�

�

��
�

��
�

�

∑
μiωijβjβjkωksβ

2
s + ϑ

∑
μiωij(2βjβjkωksγs +

+γjkωksβ
2
s ) + ϑ2

∑
μiωij(γj + 2γjkωksγs) = 1

(15.m)
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4 (m,k)-Schemes of the Optimum Order

We study the utmost achievable order of accuracy by (m, k)-schemes for given
k ≤ 4 for system (1) of index 1. First we consider the case of the implementation
a) of the scheme (6).

Let k = 1 and let us consider the schemes with one evaluation of the function
F at a step. In the case m = 1 the stability function takes the form R(z) =
[1 + (μ1 − a)z]/(1 − az). Under μ1 = 1, a = 0.5 the order conditions of the
second order are satisfied. However, unlike ODE systems, the scheme has only
the first order of accuracy, as far as |R(∞)| = 1. Under μ1 = a = 1 we have the
L-stable (R(∞) = 0) scheme of the first order, which in [6] is applied to solve
the problem of index 0.

In the case m = 2 the conditions of the second order yield μ1 = 1, μ2 = 0.5a,
and

R(z) =
1 + (1 − 2a)z + (0.5 − 2a + a2)z2

(1 − az)2
, R(∞) =

0.5 − 2a − a2

a2
.

Setting a = 1 − 0.5
√

2 or a = 1 + 0.5
√

2 we obtain the parameters of L-stable
(2, 1)-scheme of the second order.

Proposition 5. For all m there exists no (m, 1)-method of order higher than 2.

The given proposition is a consequence an analogous statement from [9].
Let k = 2 and we consider the schemes with two evaluation of the function

F on a step. Easily to be convinced, that at m = 2 the maximum order is equal
to 2. In the case m = 3, M2 = {1, 2} the conditions of the third order imply

μ1 = β−2
21 (3β2

21 − 1)/3, μ2 = β−2
21 /3, μ3 = β−2

21 (a − 3a2)/3,

c21 =
−6a2 + 6a − 1

6a2 − 2a
β2
21, c31 =

18a3 − 21a2 + 9a − 1
18a4 − 12a3 + 2a2

β2
21 − 1,

where a and β21 are free parameters. Under 1/3 ≤ a ≤ 1.068579 [12] a scheme is
A-stable, and under a ≈ 0.43587 (i.e. a is root of the a3 − 3a2 + 2a/3 − 1/6 = 0)
a scheme is L-stable.

Proposition 6. For all m and for any choice of sets (5) there exists no (m, 3)-
method of order higher than 3 for the y-component.

Let k = 3, M3 = {1, s, r}, 1 < s < r ≤ m. We denote

qs =
m∑

i=s

μiωij , qr =
m∑

i=r

μiωij , ur =
m∑

r>j≥l

βrjωjlβ
2
l .

The conditions of the fourth order (15.c), (15.e), (15.j), (15.k), (15.i), (15.m)
yields

μsβ
2
s + μrβ

2
r =

1
3
, μsβ

3
s + μrβ

3
r =

1
4
, qsβ

2
s + qrβ

2
r = 1,
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qsβ
3
s + qrβ

3
r = 1, μrβrur =

1
4
, qrβrur = 1.

We introduce the matrices

A =
{

μs μr

qs qr,

}
, B =

{
β2

s β3
s

β2
r β3

r

}
, C =

{
1/3 1/4
1 1

}
, D =

{
1 0

−4 1

}
,

then the first four equations can be represented in the form of the matrix equality:
AB = C. We notice that βs �= 0, as far as det(C) �= 0. The last two equations give
qr = 4μr. Multiplying the matrix equality from the right-hand-side by matrix
B−1 and from the left by D, we have for the right bottom element of the product

0 = βs/(3β2
r (βs − βr)).

The obtained contradiction proves the proposition.
However for the explicit problem (2) it is possible to obtain the methods

of the fourth order, in addition ensuring the third order for the problem (4) of
index 1. In the case m = 4, M2 = {1, 3} the parameters of the A-stable scheme
are

a =
1
2
, μ1 =

11
27

, μ2 = − 8
27

, μ3 =
16
27

, μ4 = − 4
27

,

β31 =
3
4
, β32 = − 3

32
, c32 = − 9

32
, c42 = −21

16
.

and parameters of the L-stable scheme at m = 5, M2 = {1, 3} are

μ1 =
11
27

, μ2 =
−22a + 5

54
, μ3 =

16
27

, μ4 =
−16a + 4

27
,

μ5 =
48a3 − 32a2 + 4a

27
, β31 =

3
4
, β32 =

−24a + 9
32

,

c32 =
216a4 − 864a3 + 648a2 − 144a + 9

384a2 − 256a + 32
,

c52 =
−6912a6 + 16416a5 − 14832a4 + 6296a3 − 1263a2 + 114a − 4

6912a6 − 13824a5 + 10944a4 − 4352a3 + 912a2 − 96a + 4
,

c42 =
[
c52(576a5 − 768a4 + 352a3 − 64a2 + 4a)−

−216a4 + 4a3 + 159a2 − 45a − 3
]
/(192a3 − 176a2 + 48a − 4),

where a is choosen such that 0.2479 < a < 0.67604 [12].
Note, that the properties of stability of (m, k)-methods depend on the choice

of the set Mk. The following proposition in particular holds.

Proposition 7. There exists a L-stable (4, 3)-scheme of order 4 with respect to
x and of order 3 with respect to y.
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However, the study of methods at M3 = {1, 2, 3} shows that |R(z)| > 1.
If we consider the case M3 = {1, 2, 4}, the parameters of the L-stable scheme
are the following:

μ4 =
4β2 − 3

12β2
4(β2 − β4)

, μ2 =
1 − 3μ4β4

3β2
, μ1 = 1 − μ2 − μ4,

c21 =
(−24a3 + 36a2 − 12a + 1)β2

24a3 − 16a2 + 2a
, c43 =

12a3 − 8a2 + a

12μ4β2
2

,

c31 =
(−12μ4c43 + 12a2 − 12a + 2)β2

2 + (4a − 1)c21
12μ4c43β2

2

,

β43 =
(−8a3 + 3a)β2 − 6a2c21

24μ4(c21 + ac31 + a)
,

β42 =
4μ4β4β43 + a

4aμ4β2β4
, β41 = β4 − β42,

μ3 =
−12μ4β42β

2
2 − 4a + 1

12β2
2

,

where β2 and β4 are free parameters, a ≈ 0.572816.

Proposition 8. There exist embedded (5, 4)-schemes of order 4 and 3 determined
by the set M4 = {1, 3, 4, 5}. The scheme of order 4 is L-stable and the scheme
of order 3 is A-stable.

Let β3, β4, β5, β32, β54, c54 be, in general, free parameters. We use a short
notation

qs =
5∑

i=s+1

μiωij , us =
m∑

s>j≥l

βsjωjlβ
2
l , s = 3, 4, 5.

The conditions of the fourth order (15.j), (15.k), (15.i), (15.m) yields

q3β
2
3 + q4β

2
4 = 1 − 1

3a
,

q3β
3
3 + q4β

3
4 = 1 − 1

4a
,

μ4β4u4 + μ5β5u5 =
1
4
, q4β4u4 = 1.

Having chosen the free parameters, we obtain q3, q4 from the first two equations
and μ5 from the expression q4 = −a−2c54μ5.

Equations (15.c), (15.e)

μ3β
2
3 + μ4β

2
4 + μ5β

2
5 =

1
3
,
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μ3β
3
3 + μ4β

3
4 + μ5β

3
5 =

1
4

give μ3, μ4.
Now u4, u5 are obtained from (15.i), (15.m). Using u4 = β2

3β43 we get β43.
Parameters c43, c53 are obtained from the expression

q3 = a−3
[
μ5(c43c54 − ac53) − aμ4c43

]

and from the equation (15.g)

μ4β
2
3c43 + μ5

(
β2
3c53 + β2

4c54
)

=
1
12

− a

3
.

The expression
u5 = a−2

[
(aβ53 − c43β54)β2

3 + aβ54β
2
4

]

gives β53.
From the conditions (15.l), (15.f)

q3β3β32 + q4β4(β43β3 + β42) =
5
6

− 1
8a

,

μ3β3β32 + μ4β4(β42 + β31β43) + μ5β5(β52+

+β54c43 + β41β54 + β31β53) =
1
8

− a

3
,

the equation

μ5c32c43c54 = a5 − 4a4 + 3a3 − 2a2

3
+

a

24
,

ensuring the L-stability, and from the conditions (15.h), (15.d), (15.b), (15.a)

μ4c32c43 + μ5(β3c43c54 + c32c53 + c42c54) =
1
24

− a

2
+

3a2

2
− a3,

μ3c32 + μ4(β3c43 + c42) + μ5(β3c53 + β41c54 + c43c54 + c52) =
1
6

− a + a2,

μ2 + μ3β31 + μ4(β41 + c43) + μ5(β51 + c53 + c54) =
1
2

− a,

μ1 + μ3 + μ4 + μ5 = 1

we evaluate sequentially the parameters β42, β52, c32, c42, c52, μ1, μ2.
Degeneration of the minor

⎧
⎨

⎩

β2
3 β2

4 β2
5

c32 β3c43 + c42 c52 + β3c53 + c54(β41 + c43)
0 −aβ2

3c43 −aβ2
3c53 + c54(β2

3c43 − aβ2
4)

⎫
⎬

⎭ ,

corresponding to the parameters μ̃3, μ̃4, μ̃5 in the order conditions (15.c), (15.d),
(15.j) of the embedded scheme, ensures the existence of embedded method of the
order 3. This condition gives the algebraic equation at parameter a
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84a4 − 132a3 + 72a2 − 15a + 1 = 0

having two of the solutions in R : a1 ≈ 0.130354, a2 ≈ 0.239192.
Choosing the second value a and setting the free parameter μ̃5 we obtain

from conditions (15.a) – (15.d) of the embedded scheme other values of the
parameters μ̃i.

Now we consider the implementation b) with the time-lagging of matrices
derivatives. Assume that the coefficients of the scheme are independent of the
parameter ϑ. In the case of order 3 accuracy this yields the two additional order
conditions ∑

μiβi =
1
2
, (15.c′)

∑
μiωijβj = 1. (15.j′)

Proposition 9. For all m there exists no (m, 2)-method of order 3 satisfying
(15.c’), (15.j’).

This follows from the inconsistency of (15.c’), (15.j’), and (15.j).
In the case m = 3, k = 3 the parameters of the L-stable scheme are

μ1 =
(6a − 1)β3 − 2a

4(3a − 1)β3
, μ3 = − a

β3((6a − 3)β3 − 6a + 2)
,

μ2 =
(6a − 3)(1 − 2μ3β3)

4(3a − 1)
, β2 =

6a − 2
6a − 3

, β32 =
a(1 − 2a)

2μ3β2
,

c21 =
6a2 − 6a + 1

6μ3c32
, c31 =

1 − 2μ2c21 − 2μ3c32 − 2a

2μ3
,

where a ≈ 0.43587, and β3, β32 are free parameters.
In addition in the case of the order 4 accuracy it is necessary to satisfy 7

conditions ∑
μiβijcj =

1
6

− a

2
, (15.f ′)

∑
μicijβj =

1
6

− a

2
, (15.g′)

2
∑

μiβiβijωjkβk +
∑

μiβijωjkβ2
k = 1, (15.i′)

∑
μiβijωjkβk =

1
2
, (15.i′′)

∑
μiω̃ijβjkck =

1
2

− a − 1
6a

, (15.l′)

2
∑

μiω̃ijβjβjkωklβl +
∑

μiω̃ijβjkωklβ
2
l = 3 − 1

a
, (15.m′)

∑
μiω̃ijβjkωklβl = 1 − 1

2a
. (15.m′′)
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Here is ω̃ = ω − a−1I, where I is the identity matrix.
The following result for the scheme with the time-lagging of matrices deriva-

tives similar to Proposition 7 holds.

Proposition 10. There exists an L-stable (10, 4)-scheme of order 4 accuracy in
both variables with the time-lagging of matrices derivatives.

We present this result without the proof, since the proof is too complicated.
In conclusion we note that at m ≤ 9 there exists no the (m, 4)-scheme of the

order 4 accuracy in both variables with the time-lagging of matrices derivatives.
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