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Preface

The International Scientific and Practical Conference “Computational and Information
Technologies in Science, Engineering and Education” (CITech) has a long and rich
tradition and has been held regularly since 2002.

Historically, the conference was organized in close cooperation between Russian
and Kazakh scientists and the general area of discussion was the most advanced
achievements in the field of computational technology.

The geographic reach of the conference later expanded and now it is attended by
leading scientists from Europe, the USA, Japan, India, and Turkey, among others.

The purpose of the conference is the dissemination of new knowledge and scientific
advances among the participants. A special feature of this conference is to involve
young scientists in the assessment of their scientific achievements through their
interaction with the two countries’ leading scientific. Participating in CITech has
helped formed a community of new-generation young scientists who are currently
conducting important research in the field.

CITech has been held in Almaty (2002, 2004, 2008, 2015), Pavlodar (2006), and
Ust-Kamenogorsk (2003, 2013). An important role in the formation of stable traditions
for organizing and conducting CITech is played by the personal friendships of scien-
tists from the Novosibirsk Scientific school, such as Prof. Sh. Smagulov, N. Danaev,
Yi. Shokin, V. Monakhov, B. Zhumagulov, and many others. Unfortunately, some
of them are no longer among us, but we will always remember their contribution to
science and education and keep their unforgettable image in our hearts.

For the section “Mathematical Modeling of Technological Processes – CITech-2015”
we received 56 articles by authors from seven countries. After all papers were reviewed
by at least two international reviewers, the top 20 papers were selected for this volume.

We are grateful to the members of the Program and Organizing Committees, the
additional reviewers for their help in preparing this publication, the Ministry of Edu-
cation and Sciences of the Republic of Kazakhstan, and the Closed Joint Stock
Company Intel A/O for support in the organization of conference. We hope the papers
of CITech 2015 will be interesting for the readers and of values for the scientific
community.

September 2015 Nargozy Danaev
Yurii Shokin

Darkhan Akhmed-Zaki
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Mathematical Modelling of Oil Recovery
by Polymer/Surfactant Flooding

Nargozy Danaev, Darkhan Akhmed-Zaki(B), Saltanbek Mukhambetzhanov,
and Timur Imankulov

Al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan
{darhan a,mukhambetzhanov ,imankulov ts}@mail.ru

Abstract. This article describes a hydrodynamic model of collaborative
fluids (oil, water) flow in porous media for enhanced oil recovery, which
takes into account the influence of temperature, polymer and surfactant
concentration changes on water and oil viscosity. For the mathematical
description of oil displacement process by polymer and surfactant injec-
tion in a porous medium, we used the balance equations for the oil and
water phase, the transport equation of the polymer/surfactant/salt and
heat transfer equation. Also, consider the change of permeability for an
aqueous phase, depending on the polymer adsorption and residual resis-
tance factor. Results of the numerical investigation on three-dimensional
domain are presented in this article and distributions of pressure, sat-
uration, concentrations of polymer/surfactant/salt and temperature are
determined. The results of polymer/surfactant flooding are verified by
comparing with the results obtained from ECLIPSE 100 (Black Oil). The
aim of this work is to study the mathematical model of non-isothermal oil
displacement by polymer/surfactant flooding, and to show the efficiency
of the combined method for oil-recovery.

Keywords: EOR · Polymer · Surfactant · Darcy · Porous media · MPI

1 Introduction

The investigations show that the use of chemical methods for increasing oil
recovery, such as polymer and surfactant flooding are the effective chemical EOR
methods. There are various interactions between the surfactant and the reservoir
fluids, such as adsorption, interfacial tension, wettability [1]. Surfactants are
used to reduce the interfacial tension between crude oil and reservoir water
and increase the mobility of “trapped” oil in the pore space. Polymer injection
method used for enhancing the efficiency of displacement by reducing mobility
and increasing viscosity of water phase [2,3]. At present, the combined methods
of enhancing oil recovery are used. One of such methods is surfactant flooding in
combination with water soluble polymers. Surfactant and polymer are injected
into the reservoir, then displace oil to the production wells by pumping water.
When using this method, the oil recovery rate is higher in comparison with the
c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 1–12, 2015.
DOI: 10.1007/978-3-319-25058-8 1



2 N. Danaev et al.

method when surfactant and polymer are used separately [4,5]. The aims of
this work: 1) to study the mathematical model of oil displacement by polymer-
surfactant flooding, which is considers the influence of temperature effects and
dependence of polymer/surfactant solution viscosity on agents concentration and
water salinity; 2) to develop a sequential/parallel computational algorithm for
solution of 3D problem using MPI technology; 3) study of oil recovery factor at
different impact on the reservoir.

2 Mathematical Model

In a general case, displacement of oil by polymer and surfactant is effected by
complex physico-chemical processes, when modeling and numerical realization
of which there take place definite problems. For example, viscosity of injected
solution depends on various factors, such as reservoir temperature, concentration
of polymer/surfactant in solution and water salinity and etc. The model takes
into account the following assumptions:

- the porous media and fluid are incompressible;
- gravitational forces are not taken into account;
- the two-phase flow (aqueous, oleic) is subject of the Darcyś law;
- water, polymer, surfactant and salt are fully mixed;
- adsorption of the polymer affects only on the relative permeability of the aque-
ous phase;
- dissolution of polymer and salt in oil is very small.

Based on the above mentioned assumptions, we can write the mathematical
model of two-phase flow in porous media. Mass conservation equation for aqueous
and oleic phases [6] is:

m
∂sw

∂t
+ div(vw) = q1 (1)

m
∂so

∂t
+ div(vo) = q2 (2)

sw + so = 1

where m - porosity, sw, so - water and oil saturations, q1, q2 - source or sink,
vw,vo - velocities of the water and oil phases which is expressed by the following
law:

vi = −K0
fi(s)
μi

� P, i = w, o (3)

fi(s), μi - relative permeability and viscosity of fluids, K0 - absolute perme-
ability.

Polymer, surfactant and salt transport equations can be written as [1]:

m
∂

∂t
(cpsw) +

∂ap

∂t
+ div(vwcp) = div(mDpwsw � cp) (4)

m∂
∂t (cswsw + csoso) + ∂asurf

∂t + div(vwcsw) + div(vocso) =
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= div(mDswsw � csw + mDsoso � cso) (5)

m
∂

∂t
(cssw) + div(vwcs) = 0 (6)

where cp, cs - polymer and salt concentrations in aqueous phase, csw, cso-
surfactant concentration in aqueous and oleic phases, ap, asurf - polymer
and surfactant adsorption functions, Dpw, Dsw, Dso - polymer and surfactant
diffusion coefficients.

Heat transfer equation:

∂

∂t
(((1 − m)Crρr + m(Cwswρw + Cosoρo))T ) + div(ρwCwvwT ) + div(ρoCovoT ) =

= div((1 − m)λ0 + m(λ1sw + λ2s0) � T ) (7)

where Cw, Co, Cr - specific heat of water, oil and rock, ρw, ρo, ρr - density of
water, oil and rock, λw, λo, λr - coefficients of thermal conductivity.

Flory-Huggins equation can represent a mathematical relation, which
describes the dependence of water phase viscosity on the concentration of salt,
surfactant and polymer. This dependence which takes into account temperature
changes can be written as [7]:

μa = μw(1 + (γ1cp + γ2c
2
p + γ3csw + γ4c

2
sw)cγ5

s − γ6(T − Tp)) (8)

μo = μo0(1 − γ7(T − Tp)) (9)

where γ1, γ2, γ3, γ4, γ5, γ6, γ7 - nondimensional constants, μo0 - initial viscosity
of oelic phase, Tp - reservoir temperature.

Relative permeability curves are taken as follows:

fw(sw) = s3.5
w ; fo(sw) = (1 − sw)3.5

The type of the polymer and surfactant determines their adsorptions degree.
Langmuirs law can represent the relation between adsorbed polymer/surfactant
concentration in the solution [1]:

ap =
b1cp

1 + b1cp
, asurf =

b2csw

1 + b2csw

where b1, b2 - Langmuirś constants.
Permeability reduction factor Rk can be described as follows [8]:

Rk = 1 + (RRF − 1)ap

RRF - residual reduction factor.
Initial and boundary conditions are:

sw|t=0 = sw0, cpw|t=0 = cp0, ap|t=0 = ap0

csw|t=0 = csw0, cso|t=0 = cso0, asurf0|t=0 = asurf0 (10)
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cs|t=0 = ss0, T |t=0 = Tp

∂sw

∂n |∂Ω = 0; ∂P
∂n |∂Ω = γVp; ∂T

∂n |∂Ω = γVc;

−D
∂cpw
∂n + v1ncpw|∂Ω = qn ˜cpw; (11)

−D ∂csw
∂n + v1ncsw|∂Ω = qn ˜csw; −D ∂cs

∂n + v1ncs|∂Ω = 0;

Pressure equation obtained by adding (1) and (2):

div(vw) + div(vo) = q1 + q2 (12)

3 Numerical Method

For numerical calculation, consistency of units and order of variables are impor-
tant. Therefore, a system of equations (1) - (12) is converted to a dimensionless
form. To solve these equations, an explicit/implicit scheme is used [10]. First of
all, fluid properties and physical parameters of reservoir are set. Further calcu-
lations are conducted in the following order:

- distribution of pressure (capillary pressure);
- saturation (by the known distribution of pressure);
- distribution of salt, surfactant and polymer concentrations;
- distribution of temperature in the reservoir;
- aqueous phase viscosity, depending on salt, surfactant and polymer concentra-
tions is recalculated;
- aqueous phase permeability considering the polymer adsorption is recalculated.

Table 1 gives a information about influence of polymer and surfactant con-
centrations on the main parameters of mathematical model of oil displacement
process by polymer and surfactant solutions. The table shows that both polymer
and surfactant effect viscosities of the both phases and do not effect the relative
permeabilities. Capillary pressure takes into account the influence of surfactant
concentration and the absolute permeability of rock decreases during injection
of the polymer.

Table 1. Influence of polymer and surfactant concentrations on the main parameters.

Polymer Surfactant

Capillary effects, Pc – +
Relative pearmeabilities, fw, fo – –
Phase viscosities µa, µb + +
Absolute permeability K0 + –
Adsorption, a + +
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4 Computational Results

The results of numerical calculations for non-isothermal oil displacement are
shown in Figures 1-6.

Figure 1a shows the permeability distribution. It can be noted, that for cal-
culation of distribution of the main parameters used heterogeneous field. In
opposite corners of the selected area are two wells: injection and production.
These wells are set bottom hole pressure (Pinj or Pprod). Figure 1b shows the
results of calculating the distribution of pressure in domain. Distribution of water
saturation, polymer and surfactant concentrations, which are pumped through
injection well, presented in Figures 2, 3 and 4. It is considered that the salinity
of injection water is equal to zero (Figure 5). In these calculations, the solution
is pumped into the reservoir over the reservoir temperature, the distribution of
which is shown in Figure 6. Thus, the problem is solved numerically in a simple
formulation, i.e. not taken into account changes in viscosity of the concentration
of the reagents and temperature, polymer adsorption was not affected by the

(a) (b)

Fig. 1. (a) Permeability field; (b) distribution of pressure.

(a) (b)

Fig. 2. Distribution of water saturation after: (a) - 50; (b) - 150 time iterations
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(a) (b)

Fig. 3. Distribution of the polymer concentration after: (a) - 50; (b) - 150 time itera-
tions

(a) (b)

Fig. 4. Distribution of the surfactant concentration after: (a) - 50; (b) - 150 time
iterations

(a) (b)

Fig. 5. Distribution of the salt concentration after: (a) - 50; (b) - 150 time iterations
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(a) (b)

Fig. 6. The temperature distribution after: (a) - 50; (b) - 150 time iterations

(a) (b)

Fig. 7. Average reservoir oil saturation (a), recovery factor (b).

permeability of the aqueous phase. In further calculations to get technological
parameters they are taken into account.

Figure 7 shows the influence of injected water temperature on average oil
saturation in reservoir and recovery factor. It may be noted that injection of
polymer solution at temperatures above the reservoir indicates a higher dis-
placement efficiency at a certain time.

Figure 8a shows the variation of the oil recovery at different impact on the
reservoir: oil displacement by water, displacement by using a surfactant and
oil displacement by polymer solution. Naturally, use of chemical reagents shows
higher oil recovery than using water. It may be noted that the surfactant solu-
tion to a certain point of time shows a high recovery factor, but after about 90
time iterations it is relatively worse. The polymer solution shows a high recovery
factor for the whole period of operation. From an economic point of view, we can
not always inject these reagents. For this reason, used the following sequence of
chemical injection into the reservoir (see Figure 9): at first surfactant solution
is injected, which displace the oil and reduces the interfacial tension between
“trapped” oil and water, because of capillary pressure. Then all this displaced
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(a) (b)

Fig. 8. Oil recovery factor: (a) water, polymer and surfactant solutions; (b) combined
flooding (polymer+surfactant).

Fig. 9. Sequential injection of chemicals.

by more viscous polymer solution. It is known that polymer flooding increases oil
recovery by increasing water viscosity. Then all this displaced by water. When
using this sequence of injection, it is important to know when to stop adding sur-
factant and start polymer injection to obtain a higher recovery factor. In these
calculations, after about 70 time iterations begins polymer injection (respec-
tively stops injection of surfactant). After some time oil recovery rising again
because the surface tension between the phases has fallen and all this displaced
by relatively more viscous solution, which can be seen in Figure 8b. Of course,
it would be good to calculate the optimal and cost-effective concentrations of
injected agents to achieve the maximum oil recovery. But with these studies we
can say that the use of hybrid technology of chemical flooding (in this case the
surfactant + polymer) yields positive result.

Calculation of this model on the grid 64x64x64 and more takes a huge amount
of time. Therefore, it would be advisable to use of parallelization technology to
achieve high performance computation. For parallelization of this algorithm,
the computational domain is divided into partially overlapping subdomains,
calculations in which are performed independently of each other. After each
iteration, it is necessary to make the exchange of data at the boundaries of
the subdomains [11]. The above method was implemented using MPI tech-



Mathematical Modelling of Oil Recovery by Polymer/Surfactant Flooding 9

(a) (b)

Fig. 10. Comparison of speedup (a) and efficiency (b) of parallel algorithm for different
grid sizes.

nology. The speedup and efficiency of parallel algorithm on the 64x64x64,
64x128x128, 64x256x256, 64x512x512 grids are investigated. The results are
shown in Figure 10. These graphs show that high efficiency can only be achieved
on large grids.

5 Model Verification

Correctness of proposed model was confirmed by two stages of verification [9]:

- comparison of numerical results with laboratory experiments;
- and with results of calculations on hydrodynamic simulator Eclipse 100.

First stage. Verification of mentioned above model is based on the results of a
laboratory experiment conducted by research group of Engineering specialization
Laboratory, leaded by Kudaibergenov S.E. Investigation of oil displacement in
cores with water and polymer solution performed on UIC-C(2) [12] installation.
Input data for numerical simulation of this process (which is fully consistent
with experimental data) are shown in Table 2.

Figure 11 shows dependence of oil displacement on injected pore volume,
obtained by numerical and laboratory research. It can be noted that, oil dis-
placement by polymer shows much higher recovery ratio compared with water

Table 2. Physical parameters used in simulation.

Parameter Value

Porosity, m 0.37
Absolute permeability K0 0.322 Darcy
RRF, RRF 1.2
Concentration of injection Gellan Solution Cinj 0.1 %
Oil Viscosity µo 8.09 mPa · s
Water Viscosity µw 0.9 mPa · s
Adsorption Constant 0.1 m3/kg
Initial Salt Concentration (NaCl) Cinitsalt 73 g/l
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(a) (b)

Fig. 11. Dependence of recovery rate on injected pore volume of fluid. a) numerical,
b) experimental study.

Fig. 12. Distributions of pressure and polymer concentration before water break-
through.

displacement. Oil displacement efficiency of gellan and polyacrylamide at about
the same level, which confirming results of the experimental study.

Second stage. To compare numerical results with simulator Eclipse 100 two
dimensional problem is considered. Table 3 shows fluids properties and reservoir
parameters for numerical modeling. It is exactly the same values used in the
calculation on the Eclipse simulator. Figure 12 and 13 shows simulation results
of main parameters using Eclipse 100 (first column) and proposed model (second
column).
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Fig. 13. Distributions of water saturation and oil viscosity before water breakthrough.

6 Conclusion

A mathematical model of oil displacement process by polymer-surfactant injec-
tion is considered and solved, taking into account the dependence of solution
viscosity on salt, surfactant and polymer concentrations and where viscosity of
both phase are depends on temperature. System of equations is solved using
implicit/explicit methods and following numerical results were obtained: distri-
bution of pressure, saturation distribution of both phases, salt, surfactant and
polymer concentration and temperature distribution in reservoir. A serial / par-
allel computing algorithm for solving the three-dimensional problem is developed
and the efficiency and speedup of algorithm for different grid sizes compared.
The efficiency of oil displacement by using a combination of flooding with poly-
mer and surfactant is showed. The polymer and surfactant injection process into
the oil reservoir for enhanced oil recovery can be modeled using the proposed
model. The presented results show good consistence compared with the results
of the hydrodynamic simulator Eclipse (Black Oil).
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Abstract. The present work is devoted to study of self-excitation of
magnetic field and the motion of the conducting fluid at the same time
taking into account acting forces. The idea is to specify in the phase space
of initial conditions for the velocity field and magnetic field, which satisfy
the condition of continuity. Given initial condition with the phase space
is translated into physical space using a Fourier transform. The obtained
velocity field and magnetic field are used as initial conditions for the fil-
tered MHD equations. Further is solved the unsteady three-dimensional
equation of magnetohydrodynamics to simulate homogeneous MHD tur-
bulence decay.

Keywords: MHD turbulence · Turbulence · Small-scale · LES

1 Introduction

An examination of the homogeneous magnetohydrodynamic turbulence decay
process, in spite of the large number of publications in this field, is a relevant
task for researchers of several generations. The influence of magnetic field on the
conducting fluid is studied in various fields of science and used in an engineering
and technology. Therefore, studies of magnetohydrodynamic turbulence decay is
an important task in the fields of: forming astrophysical and geophysical phe-
nomena, MHD generators, plasma accelerators and engines. The study of the
magnetohydrodynamic (MHD) turbulence process in a small range of change
of the Reynolds (Rem) magnetic number can be modeled and experimentally
investigated, while the same process remains beyond experimental reach and
computational techniques for a broad range of values. Research problems of the
magnetic field depending on the electro conductive fluid is divided into three
types:

c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 13–25, 2015.
DOI: 10.1007/978-3-319-25058-8 2
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1. An examination of the MHD turbulence at a constant value of the magnetic
field.

2. An examination of the self-excitation of magnetic field at a given velocity
of the flow.

3. An examination of the self-excitation of magnetic field and the motion of
a conducting fluid at the same time taking into account acting forces.

The problem of the magnetic field influence on turbulent flows was first raised
by [1], who provided basic equations and an analytical solution for the movement
of an electrically conducting fluid. The first numerical study of magnetohydro-
dynamic turbulence problem of the first type conducted by [2] at the magnetic
number Rem << 1. The numerical experiment of Schumann was the reflection
of the idea of [3], who researched a homogeneous isotropic flow influenced by
an applied external magnetic field. The modeling outlined in the publications of
these scientists is performed using a spectral method, which is used as the basis
for presenting a quantitative description of magnetic damping, the emergence
of anisotropy, and the dependency of the results on the presence or the absence
of a non-linear summand in the Navier-Stokes equation. The low performance
of computing machines at that time did not permit the full solution of this
problem. Later, a similar problem was researched first by [4] and later by [5].
These authors presented the results of direct numerical modeling of large-scale
structures in a periodic magnetic field, which reflected a change in the turbu-
lence statistical parameters as a result of an imposed magnetic field influence.
The contribution of these scientists in this area of expertise is determined by
proving that the behavior of two- and three-dimensional structures varies sub-
stantially. A similar result was obtained by [6] in examining locally isotropic
structures by the method of large eddies. Although the result obtained for the
anisotropy invariant distribution and the Reynolds strength was discussed by
several researchers, the findings on this matter cannot be considered conclusive
because the force of the magnetic field is the determining factor for the change of
quantitative indicators of invariants, which was not demonstrated by the author.

A generalization of a linear case researched by [2] and [3] is featured in pub-
lications by [7]. These researchers demonstrated a redistribution of the kinetic
energy between velocity components, which indicated an inconsistency with a
previously presented linear theory. In a nonlinear case, velocity components that
are parallel and perpendicular to the magnetic field decay at various velocities,
which is an apparent inconsistency with the earlier numerical experiments.

The process of the magnetic field influence on a developed turbulence was
examined by [8],and demonstrated the possibility of using the quasi-stationary
approximation for the solution of the second type problem and suggested to use
quasi-linear approximations to solve the problem at Rem = 20. One of the second
type problem results were reported in [9], the modeling of a diminishing MHD
turbulence by LES and DNS methods and demonstrated that the magnetic field
at the initial time started to decay under the influence of the total kinetic energy.
This effect is consistent with Joule dissipation. A similar picture of the decay
was not reported by the authors because their main objective was the evaluation
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the model adequacy for the LES and DNS methods. Accordingly, there was a
justification of the modified dynamic Smagorinsky model for simulation of the
temporal decaying magnetohydrodynamic turbulence.

The results of the third type of problem was presented by [10], and pro-
duced a detailed investigation of pseudospectral direct numerical simulation
(DNS), with up to 10243 nodes, three-dimensional incompressible magnetohydro-
dynamic (MHD) turbulence, without the mean magnetic field. Study was carried
out according to various statistical properties of the both decreasing and sta-
tistically steady MHD turbulence on the magnetic Prandtl number Prm, taken
over in a wide range, 0.01 ≤ Prm ≤ 10. Turbulent characteristics were obtained
at a constant magnetic viscosity for different values of the kinetic viscosity.

This work is devoted to study of self-excitation of magnetic field and the
motion of the conducting fluid at the same time taking into account acting
forces. The idea is to specify in the phase space of initial conditions for the
velocity field and magnetic field, which satisfy the condition of continuity. Given
initial condition with the phase space is translated into physical space using a
Fourier transform. The obtained of velocity field and magnetic field are used as
initial conditions for the filtered MHD equations. Further is solved the unsteady
three-dimensional equation of magnetohydrodynamics to simulate homogeneous
MHD turbulence decay.

2 Problem

The numerical modeling of a homogeneous MHD turbulence decay based on the
large eddy simulation method depending on the conductive properties of the
incompressible fluid is reviewed.

The numerical modeling of the problem is performed based on solving non-
stationary filtered magnetic hydrodynamics equations in conjunction with the
continuity equation in the Cartesian coordinate system in a non-dimensional
form:

⎧
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where ūi (i = 1, 2, 3) are the velocity components, H̄1, H̄2, H̄3 are the magnetic
field strength components, A = H2

/(
4πρV 2

)
= Π

/
Re2m is the Alfvén number,

H is the characteristic value of the magnetic field strength, V is the typical
velocity, Π = (VAL/νm)2 is a dimensionless value (on which the value Π depends
in the equation for H̄i). If Π << 1, then ∂H̄i

/
∂t = 0. The publication by [11]

discussed in detail the physics of phenomena related to the ability to disregard
the summand ∂H̄i

/
∂t. (VA)2 = H2

/
4πρ is the Alfvén velocity, p̄ = p + H̄2A

/
2

is the full pressure, t is the time, Re = LV /ν is the Reynolds number, Rem =
V L /νm is the magnetic Reynolds number, L is the typical length, ν is the
kinematic viscosity coefficient, νm is the magnetic viscosity coefficient, ρ is the
density of electrically conducting incompressible fluid, and τu

i j , τH
i j is the subgrid-

scale tensors responsible for small-scale structures to be modeled. To model a
subgrid-scale tensor, a viscosity model is presented as τu

ij = −2νT S̄ij , where

vT = CSΔ2
(
2S̄ijS̄ij

) 1
2 is the turbulent viscosity, S̄ij = (∂ūi/∂xj + ∂ūj/∂xi)/2

is the deformation velocity tensor value. To model a magnetic subgrid-scale
tensor, a viscosity model is used: τH

ij = −2ηtJ̄ij , where ηt = DSΔ2
(
J̄ij J̄ij

) 1
2

is the turbulent magnetic diffusion, the coefficients CS , DS are calculated for
each determined time layer, and J̄ij = (∂H̄i/∂xj − ∂H̄j/∂xi)/2 is the magnetic
rotation tensor.

Periodic boundary conditions are selected at all borders of the reviewed area
of the velocity components and the magnetic field strength.

The initial values for each velocity component and strength are defined in
the form of a function that depends on the wave numbers in the phase space:

ui (ki, 0) = k
b−2
2

i e
− b

4

(
ki

kmax

)2
;Hi (ki, 0) = k

b−2
2

i e
− b

4

(
ki
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)2
,

where ūi is the one-dimensional velocity spectrum, i = 1 refers to the longitudinal
spectrum, i = 2 and i = 3 refer to the transverse spectrum, H̄i is the one-
dimensional magnetic field strength spectrum, m is the spectrum power, and
k1, k2, k3 are the wave numbers.

For this problem we selected a variational parameter b and the wave num-
ber kmax, which determine the type of turbulence. For modeling homogeneous
MHD turbulence can be set parameters kmax and b, which correspond to the
experimental data [12].

3 Method for Calculating the Small-Scale Turbulence
Coefficient

Along with the accepted calculated grid, a grid with twice the size of cells
along each axis is used. The large grid number cell is indicated as p, g, r
(p, g, r are the axes numbered x1, x2, x3, respectively), p = 1, 2, 3, ..., N1/2,
g = 1, 2, 3, ..., N2/2 , and r = 1, 2, 3, ..., N3/2. The cell with the number α
along axis x1 includes the cells of the initial grid with numbers n = 2p − 1 and
n = 2p, where n changes within the range from 1 to N1. Similar to number g,
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for x2 determined cells with numbers m = 2g − 1 and m = 2g, q = 2 r − 1 and
q = 2 r. Therefore, one cell p, g, r of a large grid is the same as eight cells of the
initial grid.

The average values u2
1, u

2
2, u

2
3 for the total volume of the calculated area of

the liquid flow are marked 〈u1〉2, 〈u2〉2, 〈u3〉2. These values can be calculated
using smaller and larger calculation grids:
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1
3 - is the width grid filter of the small cell.

The deformation velocity calculated in smaller cells is
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where n = 1, N1, m = 1, N2, q = 1, N3

By placing expression (3) into equation (2), we can obtain the average velocity
value calculated in smaller cells:
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The average velocity calculated in larger cells is
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(5)
where Δl = (ΔiΔjΔk)

1
3 - is the width grid filter of the large cell, Δl = 2 · Δs.

The deformation velocity calculated in larger cells is

S
l

ij =
1
2

(
∂ūl
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∂ūl
j

∂xi

)

,

where p = 1, 2, 3, ..., N1
2 ; g = 1, 2, 3, ..., N2

2 ; r = 1, 2, 3, ..., N3
2 .

ūl
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We introduce the following notation:
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From equations (4) and (5), we can conclude
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The condition for achieving the minimum is

∂Fu

∂CS
= −2 (Zu − Y u · CS) · Y u = 0.

Thus, Zu − Y u · CS = 0.
At a certain time layer Tstep the empirical coefficient of viscosity model is

calculated by the following formula: CS = Zu/Y u, where Tstep = 10 · τ , τ -time
step.

4 Method for Calculating the Small-Scale Magnetic Field

Here is used the same grid, which was used to calculate the small-scale turbulence
coefficient, which deals with the grid twice the size of cells along each axis.

The average values of magnetic field strength H2
1 , H2

2 , H2
3 for the total vol-

ume of the calculated area of the liquid flow are marked 〈H1〉2, 〈H2〉2, 〈H3〉2.
These values can be calculated using smaller and larger calculation grids:
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The magnetic subgrid-scale tensor for smaller cells is
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ij . (7)

The magnetic rotation tensor calculated in smaller cells is

J
s

ij =
1
2

(
∂H

s

i

∂xj
− ∂H

s

j

∂xi

)

,
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where n = 1, N1, m = 1, N2, q = 1, N3

By placing expression (7) into equation (6), we can obtain the average velocity
value calculated in smaller cells:

< H2
i >s=

1
N1N2N3

·
N1∑

n=1

N2∑

m=1

N3∑

q=1

[
(H

s

i
)2 − 2 · DS · Δ2

s · (2 · Js
ij

· Js
ij

)
1
2 Js

ij

]
. (8)

The average value of magnetic field strength calculated in larger cells is

< H2
i >l=

8
N1N2N3

·
N1/2∑

p=1

N2/2∑

g=1

N3/2∑

r=1

[
(H

l

i
)2 − 2 · DS · Δ2

l · (2 · J l
ij

· J l
ij

)
1
2 J l

ij

]
.

(9)
The magnetic rotation tensor calculated in larger cells is

J
l

ij =
1
2

(
∂H̄ l

i

∂xj
− ∂H̄ l

j

∂xi

)

,

where p = 1, 2, 3, ..., N1/2; g = 1, 2, 3, ..., N2/2; r = 1, 2, 3, ..., N3/2.

H̄ l
i(p, g, r) =

1
8

⎡

⎢
⎢
⎣

H̄s
i (2p − 1, 2g − 1, 2r − 1) + H̄s

i (2p − 1, 2g, 2r − 1)+
+H̄s

i (2p − 1, 2g, 2r) + H̄s
i (2p − 1, 2g − 1, 2r)+

+H̄s
i (2p, 2g − 1, 2r − 1) + H̄s

i (2p, 2g, 2r − 1)+
+H̄s

i (2p, 2g, 2r) + H̄s
i (2p, 2g − 1, 2r)

⎤

⎥
⎥
⎦.

We introduce the following notation:

FH =
(
< H

2

1 >s + < H
2

2 >s + < H
2

3 >s − < H
2

1 >l − < H
2

2 >l − < H
2

3 >l
)2

.

From equations (8) and (9), we can conclude

FH = (ZH − Y H · DS)2,

where

ZH =
1

N1N2N3
·

N1∑

n=1

N2∑

m=1

N3∑

q=1

(H
2

i )
s − 8

N1N2N3
·

N1/2∑

p=1

N2/2∑

g=1

N3/2∑

r=1

(H
2

i )
l,

Y H = 1
N1N2N3

·
N1∑

n=1

N2∑

m=1

N3∑

q=1
(−2 (Δs)

2 (2Js
ij

Js
ij

)
1
2 Js

ij
) −

− 8
N1N2N3

·
N1/2∑

p=1

N2/2∑

g=1

N3/2∑

r=1
(−2 (Δl)

2 (2J l
ij

J l
ij

)
1
2 J l

ij
).
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The condition for achieving the minimum is

∂FH

∂DS
= −2 (ZH − Y H · DS) · Y H = 0.

Hence, ZH − Y H · DS = 0.
Thus, the empirical coefficient of viscosity model for magnetic field at a

certain time step Tstep assumes the following form: DS = ZH
/
Y H .

5 Numerical Method

To solve the problem of homogeneous incompressible MHD turbulence, a scheme
of splitting by physical parameters is used:

I. (u∗ − un)/τ = − (un∇)u∗ + A (Hn∇)Hn + (1/Re) (Δu∗) − ∇τu,

II. Δp = ∇u∗/τ ,

III.
(
un+1 − u∗)/τ = −∇p.

IV.
(
Hn+1 − Hn

)/
τ = −rot(un+1 × Hn+1) + νmΔHn+1 − ∇τH

.

The following physical interpretation of the splitting diagram is suggested.
During the first stage, the Navier-Stokes equation is solved without the pres-
sure consideration. For the approximation of convective and diffusion equation
members, a compact scheme of an increased order of accuracy is used [13]. Dur-
ing the second stage,the Poisson equation is solved, which is obtained from the
continuity equation by considering the velocity fields of the first stage. For the
three-dimensional Poisson equation, an original solution algorithm was devel-
oped – a spectral transform in combination with the matrix run. During the
third stage, the obtained pressure field is used to recalculate the final velocity
field. During the fourth stage, the obtained velocity field is used to solve the
equation to obtain the components of the magnetic field strength, which are
included in the initial equation.

6 Numerical Modeling Results

Numerical model allows to describe the homogeneous magnetohydrodynamic
turbulence decay based on large eddy simulation. For this task, the kinematic
viscosity ν = 10−4 was taken constant and the magnetic viscosity were set in the
range of νm = 10−3÷10−4. The characteristic values of the velocity, length, mag-
netic field strength were taken equal to: UCH = 1, LCH = 1, HCH = 1 respec-
tively. Reynolds number is Re = 104, the magnetic Reynolds number varied
depending on the magnetic viscosity coefficient. The Alfven number character-
izing the motion of conductive fluid for various numbers of magnetic Reynolds:
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A = Ha2/Rem, where Hartmann number is Ha = 1. For the calculations used
grid size 128x128x128. The time step was taken equal Δτ = 0.001.

As result of simulation at different magnetic Reynolds numbers were obtained
the following turbulence characteristics: kinetic energy, magnetic energy, integral
scale longitudinal correlation functions.

Figure 1 shows the evolution of the kinetic and magnetic energy changes
depending on Rem number at different points in time. Rem was selected in
range 103 ÷ 104. For the first time, the result is obtained for the turbulence
decay modeling under the impact of a magnetic field caused by the change in
Rem number on the kinetic energy of the turbulent flow of a fluid with vari-
ous conductive properties. It is easily seen the kinetic energy in case of a high
environment conductivity, when Rem = 103, the friction force increases and the
flow velocity is reduced more quickly in case of a high environment conductivity
than when Rem = 104, which is consistent with a low conductivity environment,
in this option, the friction force has less impact on the flow rate. Thus, 1 illus-
trates the dynamics of the mutual influence of magnetic and kinetic energies at
different points in time: at the initial point in time, the kinetic and magnetic
energies are defined identically; at the next point when the fluid with a higher
conductivity is studied, the turbulence decay occurs faster than in case where
Rem starts to increase, which determines the fluid with a lesser conductivity.
When value Rem = 10000, the turbulence decay virtually corresponds to the
case of an isotropic turbulence decay, as per Abdibekov and Zhakebayev [14].

According to semi-empirical theory of turbulence integral scale should grow
with time. The results presented in Figure 2 illustrates the effect of magnetic
viscosity on the internal structure of the MHD turbulence. Variation of the
coefficient of magnetic viscosity leads to a proportional change in the integral
scale. Figure 2 shows that the size of large eddies rapidly increases at small
number of magnetic Reynolds Rem = 103, than in the case, when Rem = 104

which leads to fast energy dissipation.
Figure 3 shows the change in the micro scale - calculated at different numbers

of magnetic Reynolds 1)Rem = 103; 2)Rem = 2·103; 3)Rem = 5·103; 4)Rem =
104. Figure 3 shows the change of the Taylor microscale at different magnetic
Reynolds numbers. It can be seen that in the case Rem = 103 when the magnetic
viscosity coefficient is large then the dissipation rate increases. In the case when
the magnetic viscosity coefficient is smaller then the scale gradually increases,
and the small scale structure of the turbulence tends to slowly isotropy. This
also indicates that with small numbers Rem the decay of isotropic turbulence
occurs faster than in the case when Rem is high.

Figure 4 shows the changes of the longitudinal correlation function calculated
at Rem = 103 and Rem = 104. These illustrations also show that there are an
influence of the magnetic field on the isotropic turbulence decay, as these figures
are fixed the result of changes in the correlation functions at different Rem.

The correlation function is expressed the average by volume the correlation
ratio between the components of the velocity at various points, the farther points
are located between the various components of the velocity, the smaller should
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(a)

(b)

Fig. 1. Change of the kinetic (a) and magnetic (b) energies depending on the Rem
number at different points in time

be the correlation coefficients, i.e. they should be close to zero. Figure 4a shows
the change in the longitudinal correlation function f(r) in time and calculated
at Re = 104, Rem = 103. It is seen that with increasing value r of the function
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Fig. 2. Change of the integral turbulence scale calculated at different magnetic
Reynolds numbers: 1) Rem = 103; 2) Rem = 2 · 103; 3) Rem = 5 · 103; 4) Rem = 104

Fig. 3. Change of Taylor-scale calculated at different magnetic Reynolds numbers: 1)
Rem = 103; 2) Rem = 2 · 103; 3) Rem = 5 · 103; 4) Rem = 104

tends to zero. Character of the correlations change corresponds to the change of
the correlation functions given in [14].

From the figures it is seen that in the case of high medium conductivity at
Rem = 103 the frictional force increases and the flow rate is reduced faster than,
at Rem = 104, that corresponds to the low conductivity of the medium, in this
version, the frictional force have minimal impact on the flow velocity. Based on
the study of the results determined that the first part of the turbulent kinetic
energy is used for turbulent mixing, the second part - at creating magnetic field
and the third part - on the forces of resistance between the components of the
velocity and magnetic tension.
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(a)

(b)

Fig. 4. Change the longitudinal correlation function f(r) when (a) Rem = 103 and (b)
Rem = 104 at different points in time: 1) t = 0; 2) t = 0.2; 3) t = 0.3; 4) t = 0.5

7 Conclusions

Based on the method large-eddy simulation was produced the numerical mod-
elling of influence magnetic viscosity to decay of homogeneous magnetohydrody-
namic turbulence, analyzing simulation results it is possible to make the following
conclusion: the magnetic viscosity of the flow has a significant influence on the
MHD turbulence, and therefore can be used for process control in the preparation
semiconductor structures of single crystals. Obtained results allow sufficiently
accurately calculate the change characteristics of homogeneous magnetohydro-
dynamic turbulence over time at large magnetic Reynolds numbers. Thus, the
numerical algorithm was developed for solving unsteady three-dimensional mag-
netohydrodynamic equations, for modeling MHD turbulence decay at different
magnetic Reynolds numbers. Physical processes and phenomena of homogeneous
magnetohydrodynamic turbulence identified in the numerical simulation. The
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proposed method can be used to solve the MHD turbulence without significant
changes.
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Abstract. In this paper, a hydrodynamic method of enhancement of
mineral extraction is numerically studied. Results of the preliminary
performed computing and experimental data show that during the min-
eral extraction process a stagnation zone is formed in layer. Formation
of the stagnation zone is caused by the absence of reagent flow in it.
Such zones result in reduction of the degree of the deposit development.
In this connection, there is a need to conduct research on improving
the mineral extraction degree by controlling a seepage in a layer. There-
fore, the hydrodynamic method is used to engage stagnation zones into
the leaching process. The hydrodynamic method of enhancement based
on changing reagent flow direction during the in-situ leach process by
reversing the wells.

Keywords: In-situ leaching (ISL) · Mineral extraction degree · Stag-
nation zone · Hydrodynamic method · Reversing well

1 Introduction

In-situ leaching (ISL) is a method for development of ore deposits without lifting
the ore to the surface. This method is performed by drilling of wells through
the mineral ore bodies, supply of solution into mineral ore bodies, lifting of
mineral bearing solutions to the surface. The ISL method is used for mining
low concentrated and deep-laying mineral deposits such as uranium, copper and
gold.

The results of computation show that filtration of solution almost does not
exist between production wells during the ISL mineral mining. Therefore so-
called stagnation zone is appearing, which leads to decrease an extraction degree
of mineral. One of the solution of avoiding this problem is using wells reversely
(change production well over to injection and vice-versa) in stagnation zones.
This method is called as hydrodynamic method of enhancement, and filtration
flow direction is changed by reversing the technological wells.

In this work as a mineral is considered uranium, and as a reagent − sulfuric
acid. The design of ISL well fields varies greatly depending on the local conditions
such as permeability, sand thickness, deposit type, ore grade and distribution.
Therefore, numerical study is carried out for linear as well as for hexagonal
schemes of wells location.
c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 26–32, 2015.
DOI: 10.1007/978-3-319-25058-8 3



Enhancement of the In-Situ Leach Mineral Mining Process 27

2 Mathematical Model

Transfer reaction of useful element from solid phase to liquid phase is produced
as

νmM + νrR = νpP + νwW (1)

Where M - denotes the gram-molecule of mineral (uranium) in solid phase, R -
gram-molecule of reactant (sulfuric acid), P - gram-molecule of useful element of
dissolved uranium, W - gram-molecule of by-product in liquid phase (ex., water),
ν - stoichiometric coefficient, where subscripts m, r, p and w denote reactant,
mineral, useful element and water, respectively.

Governing equations describing the ISL process are mass conservation law,
the Darcy law and conservation equation of mineral in solid phase, reagent (sul-
furic acid), mineral in liquid phase:

div(KgradH) +
n∑

i=1

qsiδ(x− xi) = 0 (2)

V = −KgradH (3)

∂Cm

∂t
= −βθCrCm (4)

∂θCr

∂t
= div(θDgradCr) − V grad(θCr) − ν1βθCmCr +

n∑

i=1

qiC
0
r δ(x− xi) (5)

∂θCp

∂t
= div(θDgradCp) − V grad(θCp) + ν2βθCmCr −

n∑

i=1

qiCpδ(x− xi) (6)

Here ν1 = νrR
νmM , ν2 = νpP

νmM , K - is the permeability coefficient, H - is the head
pressure, V - is the filtration rate, Cm - is the concentration of mineral in solid
phase, C0

m - is the initial content of mineral in layer, Cr - is the concentration of
sulfuric acid in solution, C0

r - is the concentration of reagent on injection well,
Cp - is the concentration of useful element (uranium) in solution, θ - is the
porosity of layer, β - is the coefficient, characterizing reaction rate, δ(x−xi) - is
the Dirac delta function by which location of the well is given, xi - coordinates
of wells, q - is the debit of well (q < 0 for production well, q > 0 for inject well).
D -is the hydrodynamic dispersion coefficient [2].

2.1 Initial and Boundary Condition

Equations (4) - (6) are solved at initial and boundary conditions. At initial
time mineral distribution Cm in layer is known, Cr concentration of reagent and
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dissolved useful element Cp does not exists. Therefore, the initial condition is
given as

Cm|t=0 = C0
m; Cr|t=0 = 0; Cp|t=0 = 0 (7)

Due to the symmetry of the considering area it is sufficient to simulate only
the symmetric part. In that case, Neumann condition is used on the symmetric
boundary

∂Cm

∂x |G = 0; ∂Cm

∂y |G = 0; ∂Cm

∂z |G = 0;
∂Cr

∂x |G = 0; ∂Cr

∂y |G = 0; ∂Cr

∂z |G = 0;
∂Cp

∂x |G = 0; ∂Cp

∂y |G = 0; ∂Cp

∂z |G = 0;
(8)

On the border of the deposit it is possible to give value of concentrations,
and in that case the Dirichlet boundary conditions are used

Cm|G = CM ; Cr|G = CR; Cp|G = CP (9)

3 Numerical Model

The differential equation for head pressure (2) is solved by over-relaxation iter-
ative method [4]; filtration rate is calculated from Darcy law by using defined
values of hydraulic head. Transport equations of reagent concentration in liq-
uid phase (5), useful element concentration in solid phase (4), and its transition
to liquid phase (6) are solved together by the implicit Crank-Nicolson scheme.
Crank-Nicolson scheme is implemented in three stages in case of 3D problem by
using splitting technique of the alternating direction implicit (ADI) method [4].

4 Results of Calculation

4.1 Results of Calculation for Linear Well Location

Technology of reversing wells which allows to change the direction of streamlines
in the formation is applied to extract the mineral from stagnation (dead) zones.

Two options of reversing wells are considered: when the main quantity of
mineral is extracted I) the action of all injection wells is stopped and some of
the production wells is used as an injection to direct reagent flow towards the
stagnation zone; II) all production wells changed over to injection and vice-versa.

Calculation showed that capture area of stagnation zone differs at various
time. So the reversing a well at three different time are considered to get an
optimal value of extraction degree: a) T = 100 days, b) T = 200 days, c)
T = 300 days.

Dependence of mineral extraction degree and mineral concentration on pro-
duction well on time are represented in the Fig. 1 at the reversing wells according
to the option I and in the Fig. 2 at the reversing wells according to the option II.

Comparative results of the reversing the wells according to the option I and
option II are shown in the Fig.3. The curve with squares refers to the value of
extraction degree without reversing the wells; the curve with triangles refers to
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Fig. 1. Dependence of extraction degree of layer and mineral concentration on produc-
tion well on time: a) without reversing the well; b) reversing the well at T = 100 days;
c) reversing the well at T = 200 days; d) reversing the well at T = 300 days. Curve
with circles - extraction degree of layer; curve with squares - mineral concentration on
production well.

Fig. 2. Dependence of extraction degree of layer and mineral concentration on pro-
duction well on time: a) without reversing the well; b) reversing the well at T=100
days; c) reversing the well at T=200 days; d) reversing the well at T=300 days. Curve
with circles - extraction degree of layer; curve with squares - mineral concentration on
production well.

the value of extraction degree in which reversing the well is used at T=100 days;
curve with asterisks - at T=200 days; curve with circles - at T=300 days. The
obtained curves show that the using wells reversely in stagnation zone leads to
increase the extraction degree. In case of option I extraction degree increases for
8% and in case of option II it increases for 11% (Table 1).

Fig. 3. Comparison of extraction degrees a)option I, b) option II, c) maximal values
of the option I and option II.



30 K. Alibayeva and A. Kaltayev

Table 1. Comparative analysis of the calculation results for the options I and II (Linear
well)

Reversing
time (day)

Extraction
degree (%)

The mineral con-
tent in productive
solutions at the pro-
duction well (gr/l)

Deposit develop-
ment time (day)

Without
reversing

67 0,084 650

Option I at =100 72 0,012 650
at =200 75 0,002 650
at =300 75 0,001 650

Option II at =100 78 0,3 650
at =200 76 0,28 650
at =300 75 0,25 650

4.2 Results of Calculation for Hexagonal Well Pattern

During the in-situ mineral leaching in the case of a hexagonal well location
the results of calculations and experimental data show the presence of stagna-
tion (dead) zones where there is no filtering solution (between the petals of the
hexagon). Two kind of schemes for reversing the hexagonal well locations are
represented in Figure 4. The case without reversing wells and two options of
reversing flow directions are considered. In option I all injection wells’ action
is stopped and half of the remained production wells are reversed to the injec-
tion wells forming a linear wells pattern (Figure 4, b), and in option II the flow
direction of all wells are changed by reversing all the wells (Figure 4, c).

Fig. 4. Various scheme of reversing wells for the hexagonal well location.

In Figure 5 the distribution of minerals in the solid phase is represented at
various time. Similarly to the linear well pattern the study of reversing wells for
the hexagonal case is conducted at three various time: (a) T = 100 days, (b) T
= 150 days, (c) T = 200 days. The dependence of mineral extraction degree on
time is represented in Figure 6 for the option I (Figure 6, a) and II (Figure 6,
b). Where the curve with circles corresponds to the case without reversing the
flow direction in the well, curve with rhombus corresponds to reversing wells at
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Fig. 5. Solid mineral distribution for the hexagonal well location.

Fig. 6. Comparison of mineral extraction degree: a) option I, b) option II.

Table 2. Comparative analysis of the numerical results for the options I and II (Hexag-
onal well)

Reversing
time (day)

Extraction
degree (%)

The mineral con-
tent in productive
solutions at the pro-
duction well (gr/l)

Deposit develop-
ment time (day)

Without
reversing

99 0,045 462

Option I at =100 98 0,043 1780
at =150 99 0,043 1600
at =200 99 0,044 1400

Option II at =100 99 0,044 972
at =150 99 0,045 903
at =200 99 0,043 815

T = 100 days, curve with the triangles - at T = 150 days, curve with asterisks
- at T = 200 days.

Calculation results show that the applying reversing technology for the hexag-
onal wells pattern is unreasonable. As far as to extract a maximal mineral in
case of reversing the wells it needs more time than the case of without reversing.
Comparative analysis is represented in Table 2.
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The large distance between the production and injection wells after the
reversing wells leads to a reduction of the pressure gradient, and this nega-
tively affects the filtration rate of the solution. Inexpediency of applying revers-
ing technology according to the option I is explained by the above-mentioned
factors. Inexpediency of applying reversing technology according to the option
II is explained by the loss of time to change the direction of flow of the useful
component accumulated away from the new production wells. This implies, an
application the technology of reversing in the internal zones of hexagonal scheme
where stagnation zone is formed between the production wells is inefficient.
However, this technology can be applied near the boundary areas of deposits,
which have complex geometric shape.

5 Conclusion

Considered problem is an actual from the point of view of mineral mining tech-
nology. During the mineral extraction process, a stagnation zone is formed in
layer and an extraction degree of mineral cannot reach to the expecting value.
To solve this problem it is suggested to use wells reversely (hydrodynamic
method) in stagnation zones. However, it needs to know at which time wells
should be use reversely in order to optimize the process. Thereby several options
are considered in this work. Obtained numerical results show that using hydrody-
namic enhancement method in stagnation zone enables to increase the extraction
degree. Depending on the considering options of well reversing, the extraction
degree is increased from 8% to 11% in case of linear well location. In addition,
results of calculation showed that using reversing wells in the inner zones of
hexagon is inefficient. This technology of enhancement can also be applied in
boundary areas of deposits, which have complex geometric shape. Developed
3D numerical model is used for investigation uranium extraction process by the
in-situ leaching (ISL) method, however, it can be easily applied for study other
minerals extracting by ISL process.
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Abstract. The paper is dedicated to the mathematical model describing
dynamics of an artificial heart valve beingmovedby inhomogeneous incom-
pressible fluid flow with variable viscosity, and its computational method.
The modeling results of tricuspid valve performance are presented.
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1 Introduction

The importance of medical researches of human blood circulatory system can
hardly be overestimated, because this kind of knowledge is extremely practical
and significant. Annually approximately 250 000 surgeries are performed in the
world to restore or replace damaged heart valves [1], and the quantity is expected to
increase [2]. The solution of scientific and technical problems of the artificial valves
creation depends on correct understanding of the interaction between blood flow
and valve leaflets. Mathematical modeling of artificial heart valves performance
enables to get thorough understanding of its internal processes in order to improve
its design. There are many researches devoted to the mathematical and numerical
modeling of heart valve performance, based on which two main problem solution
approaches were defined.

First approach is related to the finite element methods ([3], [4], [5]). They
enable to take into consideration the complex geometry of heart, bu the necessity to
take into account the interaction between fluid and flexible walls requires constant
rebuilding of the computational grid to meet the changing geometry of the object
of research. It appears to be time and computational resources consuming.

The second approach, which is related to the immersed boundary method, is
under discussion in this paper ([6], [7], [8], [9]). It can be used for the problems with
complex geometry, and it doesn’t require grid modification.

There are various improvements of this method, in order to model more and
more complex problems. In the research [10] a formulation of this method was pro-
posed for the three dimensional flow problem of two non mixed (separated by flex-
ible barriers) fluids of different viscosity and density. In the papers [11], [12] this
method application in case of the two dimensional problem of two component fluid
flow is presented.

We propose to describe the blood flow in the flexible large blood vessels and the
artificial heart valve as a three dimensional nonstationary flow of viscous incom-
pressible fluidwithvariable viscosity anddensity (see [13], [14], [15], [16]).Thus, the
c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 33–43, 2015.
DOI: 10.1007/978-3-319-25058-8 4
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goal of this work is to develop a mathematical model and a solution method of the
problem of artificial heart leaflet dynamics inside a blood vessel taking into account
the inhomogeneous structure of the blood, and admixture (formed elements) cir-
culation inside a blood vessel.

2 Formulation of the Problem

We consider a nonstationary problem of blood flow inside a vessel with a valve.
Blood consists of plasma and formed elements, which are approximately 45 % of
the entire volume [17]. Vessel walls and valve leaflets consist of a large number of
thin collagen fibers, they are flexible and can change their form depending on the
fluid flow. For example, the tricuspid aortic valve, lies between the left ventricle and
the aorta, and prevents blood backflow (see Fig. 1):

Fig. 1. Aortic valve and its location inside heart

Wemodel the blood as a viscous incompressible inhomogeneous two component
fluidwithvariable viscosity, andvesselwall andvalve leaflets as afluid impermeable
surfacewith specified stiffness.Vessel andvalve leaflets aredeformedunder thefluid
pressure.

Since blood circulates through vessels under the pressure created by cardiac
beats then the problem of the blood flow can be described by Navier-Stokes non-
stationary system of differential equations [13]:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + ∇σ + f (1)

∂ρ

∂t
+ ∇ · (ρu) = 0 (2)
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Fig. 2. Computational domain boundaries

with the initial and boundary conditions:

u(x̄, 0) = u0 u|Γ1,Γ4 = ub uΓ2,Γ3 = 0 (3)
pΓ2 = pin pΓ3 = pout (4)

where x̄ = (x, y, z) ∈ Ω,u = (u, v, w) - velocityvector,ub - velocityof thevessel
walls and valve leaflets motion under deformation, ρ = ρ(x̄, t) - density, p = p(x̄, t)
- pressure, σ = μ(∇u+(∇u)T ) - viscous stress tensor, μ = μ(x̄, t) - fluid viscosity,
f = f(x̄, t) - body forces vector, which is further used to determine form of the
vessel and valve leaflets. Domain Ω is a vessel with boundary Γ = Γ1∪Γ2∪Γ3∪Γ4,
where Γ1 - blood vessel wall, Γ2 and Γ3 - inflow and outflow domains, Γ4 - valve
leaflets (see Fig. 2). As shown in [18], the problem (1) - (2) has a unique solution.

Density ρ and viscosity μ are defined by following relations [13]:

μ = c(μ2 − μ1) + μ1 (5)
ρ = c(ρ2 − ρ1) + ρ1 (6)

where ρ1, μ1 - fluid density and viscosity (plasma), ρ2, μ2 - admixture density
and viscosity (formed elements), c - admixture concentration. Admixture concen-
tration c = c(x̄, t), c ∈ [0, 1] is determined as a solution of equation:

∂c

∂t
+ u · ∇c = 0 (7)

with initial conditions:

c(x̄, 0) = c0(x̄), x̄ ∈ Ω (8)

and boundary conditions at the inflow boundary:

c(x̄, t)|Γ2 = cs(x̄, t) (9)

where c0, cs are specified functions.
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One of the issues determined for this kind of problem computational solutions
is the lack of one component of velocity vector in the inflow-outflow areas. It can be
solvedbyusing the original equations (1) - (4) at the boundariesΓ2,Γ3 to determine
the missing components of the velocity vector (see details [13]).

Motion of the vesselwalls and valve leaflets is definedby the forces,which return
themto theoriginal position.Valve leaflets canbedeformatedmuchmore, thanves-
sel walls. To describe the forces, arising due to the valve deformation, the following
formula is used:

F =
∂

∂s
(Tτ) +

∂2

∂s2
(E · I

∂2

∂s2
X) (10)

where q̄ = (q, r, s) ∈ Γ4, X(q̄) - function for describing the valve leaflets surface
at the moment t, the coordinates q, r, s are chosen so that the surface X is presented
by the large amount of parametric lines s → X(q0, r0, s), T - tension, that arises
due to the stretching along s, E - Young’s modulus, I - cross-sectional moment of
inertia (see [7], [19]). Physically the formula above means, that the valve leaflets
resist stretching, (it’s related to the first term with T , which is dependent on stiff-
ness coefficient k), and bending (it’s related to the second term, where E and I are
referred as a stiffness coefficient kb). Formula (10) allows taking into account any
changes of the valve shape.

To compute the forces, arising due to the deformation of the vessel, another
formula is used, which allows taking into account only small shape changes:

F = k‖X − X0‖ (11)

where q̄ = (q, r, s, t) ∈ Γ1,X(q̄, t),X0(q̄, 0) - functions for describing the surface
of vessel walls at the moment t and at the initial time, k - stiffness coefficient.

Researches [6], [7] show, that in order to the interaction between vessel walls,
valve leaflets and the fluid flow it is necessary to compute the field of external body
forces f in the Navier-Stokes equation, based on the force F , and determine the
current form X(q̄, t) of the vessel and the valve, based on the fluid field of velocities
u(x̄, t). The following equations are used for this purpose:

∂X

∂t
(q̄, t) =

∫

Ω

u(x̄, t) · δ(x − X(q̄, t)) dx dy dz (12)

f(x̄, t) =
∫

Γ

F (q̄, t) · δ(x − X(q̄, t)) dq dr ds (13)

where q̄ = (q, r, s) ∈ Γ - point at the vessel wall or valve leaflet, X = X(q̄, t) -
function for describing the vessel and valve surfaces at the moment t, F = F (q̄, t) -
the force of deformation resistance at givenpoint,u(x̄, t) - fluid flowvelocity vector,
f(x̄, t) - body forces vector, δ - Dirac delta function.
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Thus the model describing the motion of the viscous inhomogeneous incom-
pressible fluid inside vessel with valve is built. This model enables to determine the
fluid state and the surface form Γ1 ∪ Γ4 independently of each other. The valve
leaflets influence on the fluid is described by correlation (13) between the vector of
body forces f(x̄, t) from (1) and the force of deformation resistance F = F (q̄, t)
from (10), (11).

3 SolutionMethod

As it was mentioned before, immersed boundary method is used in the paper [6].
This method is based on the fact, that in case of flowing over a body the fluid is
effected by surface force and shear force if the body has no-slip boundary condition.
The body surface is influenced by the same forces of opposite sign. It means that
fluid flowing over the body can be modeled by a corresponding field of the external
body forces [20].

According to the immersed boundary method, we determine the fluid flow
in the parallelepiped Ω̃, which contains Ω. Ω̃ has no-slip boundary conditions.
To compute of the fluid flowweuse rectangular uniform staggered grid Ω̃h with grid
spacing hx, hy, hz and staggered arrangement of cells, where the pressure, veloc-
ity divergence and concentration are computed at the center of cell, the velocity
vector components and vector of external forces are computed at the boundaries of
cell. To determine the deformation of the surface Γ1 ∪ Γ4 we introduce additional
area Γ̃ with Lagrangian coordinate system, which is related to the vessel walls and
valve leaflets. In the Γ̃ we construct a new grid Γ̃h, with cells corresponding to the
points at the Γ1 ∪ Γ2. Solution algorithm consists of several steps: at the grid Γ̃h

the problem (1)-(4) is solved; then the convection equation (7) is solved, i.e. the
concentration of admixture is determined in the solution domain and the density
and viscosity are recalculated. Then formulas (10), (11) and (12), (13) are used to
determine the position of leaflets and the vessel form.

Differential equation (1), (9) is solved by the finite difference method. To solve
(1), (4) splitting schemes due to physical factors are used [21]:

u∗ − un

�t
= −(un · ∇)u∗ − 1

ρ
∇σ + fn (14)

ρ�pn+1 − ∇ρ · pn+1 =
ρ2∇u∗

�t
(15)

un+1 − u∗

�t
= −1

ρ
�pn+1 (16)

Numerical implementation of this scheme consists of three stages. At the begin-
ning the intermediate field u∗ is computed using the known values of velocity from
the previous time step. Thus equation (14) is solved by the method of stabilizing
corrections [22]. Then a new pressure field is determined via the computational
solution of (15) using biconjugate gradient method. At the last stage a final veloc-
ity vector field is calculated according to the formula (16).
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a

b

c

Fig. 3.Dynamics of the Valve leaflets. Current leaflet shape is indicated by points, arrows
indicate flow direction. Side view (I), front view (II) and rear view (III). ks = 5 · 103,
kb = 5 · 103, ρ1 = ρ2 = 1, μ1 = μ2 = 1 · 10−2; a) t = 0, b) t = 0.7, c) t = 1.5
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a

b

c

Fig. 4.Tracks of particles inside the valve. Flow direction is indicated by arrows. Calcula-
tion parameters are the same as in the Fig. 3 Side view (I) and front view (II). ks = 5 ·103,
kb = 5 · 103, ρ1 = ρ2 = 1, μ1 = μ2 = 1 · 10−2; a) t = 0, b) t = 0.7, c) t = 1.5
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a

b

c

Fig. 5. Valve leaflets motion in a vessel with variable viscosity and density. A constant
admixture flow cs|Γ2 = 0.45 at the inflow, admixture concentration at the initial time
c0 = 0.45, ρ1 = 1, ρ2 = 1.2, μ1 = 1 · 102, μ2 = 1.2 · 102; a) t = 4, b) t = 5, c) t = 6
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As soon as fluid flow parameters are determined it is necessary to calculate
new values of density and velocity. To do that a new time step for the convection
equation (7) must be done using the obtained values of velocity components, and
the density and viscosity are recalculated by the formulas (5), (6).

Next it is necessary to determine the deformation of vessel walls and valve
leaflets being influenced by of fluid flow, and also the distribution of body forces
f in the fluid motion equation based on this deformation. It is possible to calculate
the deformation of vesselwalls and valve leaflets under this particular fluid pressure
and the resistance forces by using the equations (12) - (13), which are numerically
integrated by using any of quadrature formulas, and equations (10) - (11). After-
wards, the body forces f are recalculated, and it is possible to move to the next time
step.

4 Results

Some results of methodical calculations for the cases with constant and variable
density and viscosity, which are aimed to demonstrate the described method vali-
dation and the possibility to get the patterns of leaflet deformation and admixture
distribution inside the valve.All calculations were performed in dimensionless vari-
ables. A circular cylinder with length l = 1, radius r = 0.11 and wall stiffness
k = 1 · 103 was used as a vessel with a valve, the domain Ω̃ had spatial parameters
1.0 × 0.5 × 0.5, spatial steps hx = hy = hk = 0.01, time step �t = 0.01.

Fig. 3 and Fig. 4 show tricuspid valve dynamics effected by the pressure of fluid
with constant density andvelocity.Thepressure differential pin−pout changes peri-
odically from 0 to 6. Coefficient of stretching resistance kb = 5 · 103 and coefficient
of bending resistance kb = 5 · 103 are specified for the valve leaflets.

As can be seen in theFig. 3 andFig. 4, the valve openswhenpressure differential
is increased, and then reverts to the original state when pressure is balanced.

The Fig. 5 shows the motion dynamics of the tricuspid valve under the pressure
of fluid with variable viscosity and density. Pressure differential pin − pout changes
cyclically from 0 to 6. Coefficient of stretching resistance ks = 8·103 and coefficient
of bending resistance ks = 6 · 103 are specified for the valve leaflets. Constant
admixture flow with concentration cs = 0.45 is set at Γ2.

Fig. 5 shows, that initial uniform admixture distribution is interrupted by the
valve leaflets motion. Eventually oscillatory mode of admixture motion can be rec-
ognized that corresponds to valve operating cycle. Moreover, the Fig. 5 shows that
admixture distribution over a cross section being parallel to axis Oy is not symmet-
ric because the valve leaflets are not symmetric about the axis Oy as well.

5 Conclusion

Constructed model of blood flow with variable viscosity and density allows to get
the patterns of leaflet deformation and admixture distribution effected by inhomo-
geneous fluid flow.
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Abstract. The 2D mathematical model of plasma-chemical etching pro-
cess, where the gas flow of the mixture was described by the equations of
multicomponent physical-chemical hydrodynamics, was presented. The
silicon etching in CF4/H2 gas mixture was studied. The chemical kinetic
model contained 28 gas-phase reactions of dissociation and recombina-
tion processes and 6 heterogeneous reactions on the wafer, which included
the products - F , F2, CF2, CF3, CF4, C2F6, H, H2, HF , CHF3, CH2F2.
The concentrations of chemical components were calculated from the
system of conservation equations included the mentioned gas-phase reac-
tions. The governing equations were numerically solved by iterative finite
difference splitting-up method. It is shown that the CF4/H2 system is
characterized by lower fluorine concentrations and higher CF2, CF3 cov-
erage of silicon surface compared to the CF4/O2 system.

Keywords: Mathematical modeling · Numerical methods · Plasma-
chemical etching technology · Multicomponent gas mixtures

1 Introduction

The processing of thin films by fluorine atoms in plasma-chemical reactors is
widely used in microelectronic device production. The active particles are formed
in the RF-discharge zone by the dissociation of gas molecules containing such
atoms. Usually they are pure gases CF4, SF6 or binary gas mixtures with O2,
H2 and etc. Due to the complex multichannel nature of fluorine formation the
probable mechanisms of gas-phase chemical reactions in glow discharge are insuf-
ficient investigated. Surface phenomena at the RF-electrodes and wafer surface
are even less understood. The defining set of chemical reactions in plasma is usu-
ally chosen using the experimental results. The concentrations of active particles
strongly depend on the choice of chemical kinetic model and the electron den-
sity distribution in RF-discharge. To provide a good optimization of the etching
process is quite essential to compare the probable kinetic models of fluorine for-
mation in such chemical systems. It may be fulfilled on the base of mathematical
c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 44–52, 2015.
DOI: 10.1007/978-3-319-25058-8 5
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modeling. Some results obtained for chemical kinetic model of silicon etching in
CF4/O2 glow discharge plasma have shown that to obtain adequate results it
is necessary to use a detail plasma-chemical kinetics with precise description of
heat and mass transfer [1]. Thereat a simulation has to incorporate calculating
the hydrodynamical and molecular transport processes in the etching chamber.

In the paper one of probable mechanisms of gas-phase chemical reactions in
CF4/H2 mixture and their influence on the etching process are studied.

2 Mathematical Model Formulation

The calculations were carried with using 2D mathematical model of plasma-
chemical etching reactor [2] in which a special attention gives to the multicom-
ponent chemical kinetics of gas-phase reactions.

In CF4/H2 mixture the basic set of chemical reactions corresponding to reac-
tions in pure CF4 was derived. Further the chemical reaction set was added by
possible reactions of CF4 with H2. Consequently the chemical kinetic model con-
tains 28 gas-phase reactions of dissociation and recombination processes, which
include F , CF2, CF3, CF4, C2F6, F2, H, H2, HF , CHF3, CH2F2 [3]:

CF 4 + e −→ CF 3 + F + e, (1)
CF 4 + e −→ CF 2 + 2F + e, (2)

H2 + e −→ H + H + e, (3)
CHF 3 + e −→ CF 3 + H + e, (4)

CF 3 + CF 3 + M −→ C2F6 + M, (5)
F + CF 3 + M −→ CF 4 + M, (6)
F + CF 2 + M −→ CF 3 + M, (7)

F + CHF 3 −→ CF 3 + HF, (8)
F + CHF 3 −→ CF 4 + H, (9)

F + H2 −→ HF + H, (10)
F + H + M −→ HF + M, (11)

F + F + M −→ F2 + M, (12)
F2 + M −→ F + F + M, (13)

H + CF 4 −→ CF 3 + HF, (14)
H + CF 3 −→ CF 2 + HF, (15)

H + CHF 3 −→ CF 3 + H2, (16)
H + CF 4 −→ CHF 3 + F, (17)

H + CF 3 + M −→ CHF 3 + M, (18)
H + HF −→ F + H2, (19)

H + H + M −→ H2 + M, (20)
H2 + CF 3 −→ CHF 3 + H, (21)
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H2 + CF 2 + M −→ CH2F2 + M, (22)
HF + CF 3 −→ CF4 + H, (23)
HF + CF 2 −→ CF3 + H, (24)

HF + CF 2 + M −→ CHF3 + M, (25)
HF + CF 3 −→ CHF3 + F, (26)

CHF 3 + M −→ CF2 + HF + M, (27)
CH2F2 + M −→ CF2 + H2 + M. (28)

The reactions (1)-(4) describe the dissociation of CF4, H2 and CHF3

molecules by electron-impact generating chemical active atoms of fluorine and
hydrogen; the reactions (5)-(28) represent the volume recombination of reactive
atoms and radicals with third body M .

The chemical kinetics of heterogeneous reactions was presented by processes
of adsorption of CF2, CF3 at wafer surface. In all 6 heterogeneous reactions are
considered:

CF 3 −→ks1 CF 3(s), (29)
CF 2 −→ks2 CF 2(s), (30)

F + CF 2(s) −→ks3 CF 3, (31)
F + CF 3(s) −→ks4 CF 4, (32)

CF 3 + CF 3(s) −→ks5 C2F6, (33)
4F + Si −→ks SiF 4. (34)

Here reactions (29)-(33) are heterogeneous reactions of adsorption-desorption of
CF2 and CF3 radicals on the silicon surface; ks1 − ks5 are rate constants of
heterogeneous reactions; the reaction (34) is the reaction of spontaneous silicon
etching; is the etching rate constant. The designation (s) is used for radicals
adsorbed on the wafer surface.

According to the selected model of multicomponent chemical kinetics the
distribution of concentration for each component was calculated from the system
of interconnected equations of convective-diffusion transfer:

v · ∇Ci = ∇ · (Di−mCt(∇xi)) + Gi(Ci, Cj)

where i, j = F , CF2, CF3, CF4, C2F6, F2, H, H2, HF , CHF3, CH2F2; Ci,
xi are the mole fraction and mole concentration of particles i; Ct is the total
gas concentration; Di−m is the multicomponent diffusion coefficient of particles
i; Gi is the generation rate of particles i by gas-phase reactions. The gas flow
(vector v) was described by the equations of multicomponent physical-chemical
hydrodynamics.

The right part of the system of convective-diffusion equations includes the
base set of crucial gas-phase reactions (1)-(28) which define a complex inter-
connection between the particle generation rates. The source term carries in to
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equations the power nonlinearity concerning particle concentrations. Moreover
the spatial distribution of initial electron density in discharge plasma defines
the generation rates of active particles [4]. Depending on the pressure and gas
medium that is under consideration, the dominant electron loss mechanism can
be diffusion, recombination or attachment. It was assumed that the electron den-
sity distribution corresponded to a diffusion-controlled approach. In the para-
metric calculations the simplified model of radio frequency discharge between
two plane electrodes was used.

According to the set of heterogeneous reactions the passivation of silicon
surface by adsorbed particles takes place. The different parts of silicon surface
are covered by various adsorbed atoms and radicals. The competing adsorption
of radicals CF2, CF3 on silicon overlap the access of fluorine atoms to the wafer
and decrease spontaneous etching silicon. The fractions of silicon surface covered
by radicals CF2, CF3 designate as ϑCF2 and ϑCF3 accordingly. The balances of
mass flows for CF2 and CF3 components on silicon surface at equilibrium give
the following relations for unknown parameters ϑCF2 and ϑCF3 [4]:

ks2xCF2/ks3xF = ϑCF2/(1 − ϑCF2 − ϑCF3),

ks1xCF3/(ks4xF + ks5xCF3) = ϑCF3/(1 − ϑCF2 − ϑCF3).

The solution of this equations are the next formulas:

ϑCF2 = ks2xCF2/(ks2xCF2 + ks3xF + ΔCF2),

ϑCF3 = ks1xCF3/(ks1xCF3 + ks4xF + ks5xCF3 + ΔCF3),

where
ΔCF2 = ks1xCF3ks3xF /(ks4xF + ks5xCF3),

ΔCF3 = ks2xCF2(ks4xF + ks5xCF3)/ks3xF .

In the present formulas the unknown characteristics of adsorption layers have a
simple presentation as the function of rate constants of chemical reactions (29)-
(33).

The heterogeneous and silicon etching reactions entered into a boundary
conditions at the wafer. The latter were written as a balance of mass flows for
each component. The presented fractions of silicon surface covered by CF2, CF3

are very important parameters because they are used in the boundary conditions
and the etching rate. For example, the local spontaneous etching rate in Å/min
was defined by the formula:

vs = 1.81 · 1010 (1 − ϑCF2 − ϑCF3) ksCF ,

where ks is etching rate constant, cm/s; CF is mole concentration of fluorine,
Mol/cm3. Because of adsorption CF2, CF3 on the wafer the etching rate includes
a complicated nonlinear dependence on concentrations of components F , CF2,
CF3, which shows competitive mechanism of particle interaction with silicon
surface.
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3 Numerical Method

The solution of problem was carried out by the numerical finite-difference
method briefly presented in [1]. The calculating domain was covered by uniform
grid Ωh with 76×46 mesh points. A presence of two-order elliptic operators in all
equations of the mathematical model allow us to approximate each equation by
implicit iterative finite-difference splitting-up scheme with stabilizing correction.
The scheme in general form looks as follows:

φk+1/2 − φk

τ
= Lφ

ξ φk+1/2 + Lφ
ζ φk + F (φk),

φk+1 − φk+1/2

τ
= Lφ

ζ (φk+1 − φk),

where φk is the mesh function of solution at the time iteration k; τ is iterative
parameter. An approximation order is O(τ + h2

1 + h2
2), where h1, h2 are mesh

widths along ξ and ζ coordinates.
The hydrodynamic equations of Navier-Stokes were reduced by using vari-

ables “stream function - vorticity” (ψ, ω). The directed finite difference of second
order was applied to approximate the vorticity at walls of reactor chamber, for
example, in mesh point (n,w):

ωk
n,w =

2
ξn

(ψk
n,w−2 − r̃32,w−2ψ

k
n,w−1 − (1 − r̃32,w−2)ψ

k
n,w)

h2,w−2h2,w−1r̃22,w−2

,

where r̃2,w−2 = 1 + h2,w−2/h2,w−1; h2,w is mesh width along ζ coordinate in
point w. The stream function was find for each iteration of vorticity.

The concentrations of reagents xi were calculated from the convective-diffusion
equations using the computed velocity. To approximate the diffusion fluxes of
reagents Qd at walls of reactor chamber the directed finite difference of second
order was used, for example, in mesh point (w, j) normal to the direction ξ:

Qk
dw,j

≈ −d̃ic̃t

(1 + 2ẽ1,w−1)xk
iw,j

− (1 + ẽ1,w−1)2xk
iw−1,j

+ r̃21,w−1x
k
iw−2,j

h1,w−1(1 + ẽ1,w−1)
,

where ẽ1,w−1 = h1,w−1/h1,w−2; d̃i, c̃t are normalized coefficient of multicompo-
nent diffusion of reagent i and total gas concentration respectively. The etching
rate of wafer was then found for known concentrations of reagents.

A solution of an original steady state problem was derived by relaxation
method. The iterative process was ended with achieving of relative error
εφ = 10−10 − 10−8 in uniform norm:

max
Ωh

∣
∣
∣
∣
∣

φk+1 − φk

τφk+1

∣
∣
∣
∣
∣
< εφ.

The created adequate numerical model of reactor process allows to investigate
subtle physical effects of plasma-chemical etching.
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4 Results and Discussion

The effect of multicomponent plasma kinetics on the production and mass trans-
fer of active particles was studied on example of radial flow plasma-chemical
etching reactor. The construction dimensions are used as in [2]. The gas flow
direction to the center of reactor was examined. The calculations have been
done for gas flow rate under normal conditions Q = 200 cm3/min. The pressure
in etching chamber of reactor was equal to p = 0.5 torr. The temperature of
reactor walls and wafer were Tw = Ts = 300 K. The average electron density
was assumed equal to ne = 6×109 cm−3. The H2 percentage fraction in CF4/H2

feed gas mixture varied in the range 0 - 90 %.

Fig. 1. The distributions of fluorine (a) CF × 10−10 Mol/cm3 and hydrofluorine (b)
CHF × 10−8 Mol/cm3 concentrations in the radial flow reactor. Processing regime:
p = 0.5 torr, Q = 200 cm3/min, Ts = 300 K, 25 % fraction of H2 in CF4/H2.

The distributions of concentrations F and HF are shown on Fig. 1, a and
Fig. 1, b correspondingly at 25 % fraction H2 in CF4/H2. The main part of fluorine
atoms obtained from the dissociation of tetrafluoromethane are consumed in the
reactions with hydrogen atoms to form an abundant component HF . As a result
the fluorine concentration monotonous decreases along the flow direction whereas
the concentration HF rises and reaches a maximum at the outlet of reactor.

With increase of H2 percentage in the feed gas mixture over the range 0-40 %
the fraction of silicon wafer occupied by radicals CF2 rises proportionally with the
concentration of H2 (see Fig. 2) and riches the value 0.98797 at 40 % H2. The frac-
tion of silicon surface covered by radicals CF3 not exceeds the value 0.01563, which
is reached at 25 % H2 and in further calculations may not take into account. Start-
ing with 40 % addition H2 the all silicon surface becomes passive because of the
intensive adsorption of radicals CF2, CF3 for which ϑCF2 + ϑCF3 = 0.99061. On
the contrary in CF4/O2 system the fractions ϑCF2 and ϑCF3 beginning from 5 %O2
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Fig. 2. The fractions of silicon surface covered by adsorbed radicals CF2 and CF3

versus inlet H2 addition in CF4/H2 mixture.

are less than 0.01 because of general depletion of gasmixture by fluorine-containing
radicals CFx intensively interacting with atomic oxygen.

The calculation concentrations of components at the wafer are presented
on Fig. 3 as function of percentage fraction of H2 in CF4/H2. The large part
of fluorine is consumed in reactions with atomic hydrogen. With increase of
H2 percentage in the feed gas composition the fluorine concentration rapidly
decreases because much of it is used to form particles HF . The concentration
of HF linearly rises with the increase of H2 and has a maximum at 50 %. The
fluorine concentration reaches a very low value at 50 % H2 and than practically
disappears. The second abundant concentration after CF4 is HF which is reaches
a maximum at 45-50 % H2 in the mixture. In the range of addition of H2 0-30 %
the concentration CF2 rises very slowly but starting with 30 % sharply increases
and has a maximum at 50 % H2. In the range of H2 addition 10-50 % the values
of F , CF3 concentrations are over order lower then the concentrations of other
components CF4, CF2, H2 and HF . The fluorine concentration monotonically
falls down as H2 content rises. The concentration of CF3 weakly rises at 0-25 %
H2 and then falls down too. As a result of chemical reactions the main stable
products HF , CHF3, CH2F2 are formed. The concentrations of CHF3, CH2F2

are essentially smaller then the most abundant concentrations (over two order).
In CF4/O2 system the oxygen atoms replacement fluorine atoms in fluorine-

containing radicals CFx which set free the additional F . Thereupon the fluorine
concentration in CF4/H2 system is considerably lower because of its additional
consumption in the reaction with hydrogen to form HF .

The fluorine component is weakly consumed in the etching reaction owing to
the passivation of silicon surface by the adsorbed radicals CF2, CF3. Moreover
the fluorine concentration decreases in general. The adsorption of CF2 on the
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Fig. 3. Average concentrations of chemical components near the wafer as a function
of percentage fraction of H2 in CF4/H2 mixture. The designations: 1 - CF4, 2 - H2,
3 - F , 4 - CF2, 5 - HF , 6 - CF3. The concentrations of F and CF3 components are
increased on the order above. Processing regime: see Fig. 1.

surface results in to the reduction of etching rate when the fluorine concentra-
tion is nonzero. The etching process is completely stop at 35 % H2. The main
channel of reduction of silicon etching in CF4/H2 connects with two processes
− the fluorine depletion and the surface passivation by radicals CF2. Thus the
hydrogen addition up to 30 - 40 % allows to decrease the etching rate and it is
an effective factor for controlling the processing regime.

5 Conclusion

The simulation of silicon etching process in CF4/H2 plasma allows to conclude
the following results.

The CF4/H2 system is characterized by lower fluorine concentration and
higher coverage of silicon surface by CF2, CF3 compared to the CF4/O2 system.
The most substantial components after CF4 are HF and CF2 which reach a
maxima at 50 % addition of H2. The most part of fluorine goes on formation
of component HF . With increase of H2 percentage in the feed gas mixture the
fraction of silicon wafer occupied by radicals CF2 rapidly rises and at 40 % H2

comes to 99 %. The fraction of silicon wafer covered by CF3 not exceeds 1.5 %
in all range of parameters. The addition of H2 in the limits up to 35 % allows
to completely stop the etching process and is an effective factor to control the
processing regime.

This research was supported by the Russian Fund of Basic Research (grant
No.14-01-00274) and by the grant of the President of Russian Federation for
state supporting of scientific school (grant No.5006.2014.9).
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Abstract. This paper presents a method for a synthetic turbulence gen-
eration (STG) to be used in a segregated hybrid Reynolds-averaged
Navier-Stokes (RANS)-Large-Eddy Simulation (LES) approach. The
present method separates the LES inflow plane into three sections where
a local velocity signal is decomposed from the turbulent flow properties
of the upstream RANS solution. Depending on the wall-normal posi-
tion in the boundary layer, the local flow Reynolds and Mach number
specific time, length and velocity scales with different vorticity contents
are imposed on the LES inflow plane. The STG method is assessed by
comparing the resulting skin-friction, velocity and Reynolds-stress dis-
tributions of zonal RANS-LES simulations of flat plate boundary lay-
ers with available pure LES, DNS, and experimental data. It is shown
that for the presented flow cases a satisfying agreement within a short
RANS-to-LES transition of two boundary-layer thicknesses is obtained.
The method is further used for the simulation of a shock-boundary-layer
interaction around an airfoil at transonic flow conditions, where the sep-
arated flow region are analyzed by an embedded LES and the remaining
flow is determined by a RANS solution.

Keywords: Zonal RANS/LES · Synthetic turbulence · Boundary layer

1 Introduction

CFD simulations at high Reynolds numbers for technical applications are nowa-
days mainly based on solutions of the Reynolds averaged Navier-Stokes (RANS)
equations. The main reason are that they are simple to apply and computation-
ally more efficient than other turbulence modelling approaches such as LES.It is
known, however, that in many flow problems the condition of a turbulent equi-
librium is not satisfied, i.e., when strong pressure gradients or flow separation
occurs, which reduces the prediction accuracy of the results obtained by one-
and two-equation turbulence models used to close the RANS equations [13,15].

Alternatives to RANS solutions are direct numerical and large-eddy simula-
tion (DNS and LES). The limits of todays available computer resources, how-
ever, still prevent these methods to become standard simulation tools for high
c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 53–65, 2015.
DOI: 10.1007/978-3-319-25058-8 6
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Reynolds number flows. In many technical flow problems complex flow regions,
which require a higher-order turbulence model, only occur in a small part of
the domain. Therefore, the combination of the computational efficiency of the
RANS approach with an LES or DNS formulation, promising a higher accu-
racy, is capable to yield physically more correct results at minimized additional
costs compared to pure RANS solutions. An overview of such hybrid RANS-LES
approaches is given in [8]. There are at least two widely used techniques to couple
RANS with LES. The first approach uses a continuous turbulence model, which
switches from RANS to LES to close the system of equations in a unified domain,
such as the detached-eddy simulation (DES) proposed by Spalart et al. [24]. The
transition from RANS to LES is triggered by the local grid size and the wall
distance, which means that where the mesh is fine enough to resolve relevant
energy containing eddies, the eddy viscosity of the RANS model is reduced to a
subgrid scale model. This approach suffers, however, from a so called grey zone,
which occurs when the DES model is already switched into LES mode, but the
larger scales of the turbulence spectrum are not established in the solution yet.
Therefore, it is difficult to switch the DES model from RANS to LES mode e.g.
in an attached boundary layer.

The second technique uses two or more predefined separate computational
zones that are linked via an overlapping region, where the transition from RANS
to LES and vice versa occurs. In the RANS zone a coarse mesh is sufficient for
the solution, while in the LES regions a fine mesh is used to allow the required
resolution of the turbulent scales up to the inertial range. The interface condi-
tions between the RANS and LES regimes constitute the major challenge of this
second technique which will be denoted zonal technique in the following. For
the transition from RANS to LES the information of the turbulent flow of the
RANS domain must be used to generate a physically correct turbulence spec-
trum within the overlapping zone of the RANS and LES domains. That is, the
mean velocity distribution of the RANS solution and turbulent fluctuations are
imposed at the inflow boundary of the embedded LES domain.

There exist several possibilities to generate such turbulent fluctuations at the
inflow boundary [19]. Batten et al. [3] reformulated on the ideas of Kraichnan [14]
and Smirnov et al. [21] for wall bounded flows. The velocity signal is generated
by a sum of sines and cosines with random phases and amplitudes. The wave
numbers are calculated from a three-dimensional spectrum and are scaled by
the values of the Reynolds-stress tensor. A special wall treatment was applied
to elongate near-wall structures. A transition length to physical turbulence of
about ten channel half heights was obtained at low Reynolds number channel
flow.

Pamiès et al. [19] expanded the method of Jarrin et al. [10] by dividing the
inflow plane of an incompressible flat plate boundary layer into several zones
depending on the wall distance. At each zone turbulent eddy shapes are pre-
scribed in the sense of Marusic [17], i.e., these shapes are representative for typ-
ical coherent structures of the turbulent boundary layer. This resulted in a good
approximation for the low-order statistics of wall-bounded flows and reduced the
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transition length to approximately five boundary-layer thicknesses without using
control planes downstream of the LES inflow boundary. Note that the analysis
is focused on an incompressible boundary layer at a very limited Reynolds num-
ber range at zero-pressure gradient. Furthermore, the averaged inflow conditions
such as averaged velocity profile and Reynolds stress tensor were extracted from
a fully developed LES solution that was computed a priori.

In this study, the ansatz of Pamiès et al. [19] is modified and generalized such
that incompressible and compressible flows at a wide Reynolds number range can
be computed by a robust and efficient zonal RANS-LES method. The averaged
inflow conditions are provided by a RANS simulation and the RANS-to-LES
transition behavior is analyzed in detail.

The paper is organized as follows. In Section 2, the numerical flow solver
and the synthetic turbulence generation method are described. Subsequently, in
Section 3 the flow problems, i.e., the flat-plate flows are introduced. Section 4
contains the results. That is, solutions of the zonal method are compared with
DNS and experimental findings. Finally, results for the zonal RANS-LES method
are presented for a transonic airfoil flow and some concise conclusions are drawn.

2 Numerical Method

2.1 Flow Solver

The three-dimensional unsteady compressible Navier-Stokes equations are solved
based on a large-eddy simulation (LES) using the MILES (monotone inte-
grated LES) approach [4]. The vertex-centered finite-volume flow solver is block-
structured. A modified advection-upstream-splitting method (AUSM) is used
for the Euler terms [16] which are discretized to second-order accuracy by an
upwind-biased approximation. For the non-Euler terms a centered approxima-
tion of second-order is used. The temporal integration from time level n to n+1 is
done by a second-order accurate explicit 5-stage Runge-Kutta method, the coef-
ficients of which are optimized for maximum stability. For a detailed description
of the flow solver the reader is referred to Meinke et al. [18].

The RANS simulations use the one-equation turbulence model of Fares and
Schröder [7] to close the averaged equations.

2.2 Synthetic Turbulence Generation Method

The method used in this paper is based on the work of Jarrin et al. [10]
and Pamiès et al. [19], called synthetic eddy method (SEM), which describes
turbulence as a superposition of coherent structures. These structures are gen-
erated over the LES inlet plane by superimposing the influence of virtual eddy
cores that are defined in a specified volume around the inlet plane that has the
streamwise, wall-normal, and spanwise dimensions of the turbulent length-scale
l1, the boundary-layer thickness at inlet δ0, and the width of the computational
domain Lz, respectively. N virtual eddy cores are defined at positions xi

m inside
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of the virtual box and their local influence on the velocity field is defined by
a shape function σ which describes the spatial and temporal characteristics of
the turbulent structure. The normalized stochastical velocity fluctuation com-
ponents u′

m at the coordinate xm at the LES inflow plane reads

u′
m (x1,2,3, t) =

1√
N

N∑

i=1

εifσm (x̃n) , x̃n =
xn − xi

n

ln
, (1)

where the superscript i denotes a virtual eddy core, εi the random sign, and
m,n = 1, 2, 3 the Cartesian coordinates in streamwise, wall-normal, and spanwise
direction, respectively. . The shape function fσm that has a compact support on
[−ln, ln] where ln is a length scale which satisfies the normalization condition
1√
2π

∫ 1

−1
f2

σm dx̃m = 1. Jarrin et al. used as shape function fσm=1,2,3 a Gauss-
or a tent function. The virtual eddy cores convect with the velocity Ucon in
streamwise direction. Once xi

1 > l1 a new eddy core assigned with randomly
chosen coordinates xi

m and signs εi is generated.
The velocity signal at the LES inflow plane is composed of an averaged

velocity component which is in this work provided from the upstream RANS
solution and the normalized stochastic fluctuation u′

m of Eq. 1 that is subjected
to a Cholesky decomposition Amn to assign the values of the Reynolds-stress
tensor Rmn.

um (x, t) = Um
RANS +

∑

n

Amnu′
m (x, t) . (2)

Pamiès et al. [19] extended the method by dividing the inflow plane in several
domains p depending on the distance from the wall. Each domain is characterized
by specific shape factors, turbulent length- and time scales. Thus, the velocity
fluctuation component of Eq. 1 yields

u′
m (x1,2,3, t) =

P∑

p=1

u′
m,p (x1,2,3, t) (3)

where P denotes the number of divided domains of the inflow plane. Pamiès et
al. defined the shape function fσn

p
of the first two planes according to the educed

turbulent structures of Jeong et al. [12],

fσm=1
p=1,2

= G (x̃1) G (x̃2) H (x̃3)

fσm=2
p=1,2

= −G (x̃1) G (x̃2) H (x̃3)

fσm=3
p=1,2

= G (x̃1) H (x̃2) G (x̃3)

where H (x̃m) = 1 − cos (2πx̃m) / (2π · 0.44) and G (x̃m) is a Gaussian function.
In this work the inflow plane was divided in three planes, that is P = 3. The

position in wall-normal direction x2,beg, x2,end of each plane p and the corre-
sponding length scales in streamwise, wall-normal, and spanwise direction, and
convection velocities are given in Tab. 1. The length scales of the turbulent struc-
tures ln in the first plane p = 1 are chosen accordingly to Pamiès et al. [19] and
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del Alamo et al. [2]. However, the length scales of the structures in the second
and third plane p = 2, 3 are set to values that are different compared to Pamiès
et al. The analysis of several incompressible and compressible boundary layers
at various Reynolds numbers has shown that the values chosen by Pamiès et al.
at p = 2, 3 did not satisfactorily match the reference flow field.

The shear-stress component 〈u′
1u

′
2〉 of the Reynolds-stress tensor Rmn that

is needed for Eq.2 is obtained from the RANS solution located upstream of the
LES inlet [20]. The normal-stress components are reconstructed using a fourth
order polynomial function to match the distribution of Spalart [1].

Morkovin’ s hypothesis is applied at the inlet to relate density and velocity
fluctuations and to enforce the strong Reynolds analogy (SRA) [22]. The density
field is obtained by enforcing a constant-pressure condition at the inflow [6].

Table 1. Locations of planes p, turbulent length scales ln, and convection velocities
Ucon

plane ly,p =
[x2,beg; x2,end]

l1 l2 l3 Ucon

p = 1 [0; (60)+] (100)+ (20)+ (60)+ 0.6U∞
p = 2 [(60)+; 0.65δ0] 0.5δ0 0.3δ0 0.25δ0 0.75U∞
p = 3 [0.65δ0; 1.2δ0] 0.3δ0 0.3δ0 0.3δ0 0.9U∞

3 Computational Setup

Flat Plate Boundary Layer. A subsonic flat-plate boundary-layer flow is
investigated to validate the STG method for the zonal RANS-LES configura-
tion comparing the results with a pure RANS, pure LES, and available experi-
mental data. The freestream Mach numbers are M = 0.4 and M = 2.3 and the
freestream Reynolds numbers based on the momentum thickness at x/δ0 = 0 are
Reθ = 1400 and Reθ = 4200, respectively. where δ0 denotes the boundary-layer
thickness at the inlet of computational domain of the pure LES, pure RANS,
and the embedded LES part of the zonal RANS-LES simulation. The inflow
boundaries of the pure LES, pure RANS, and the embedded LES part of the
zonal RANS-LES simulation are located at x/δ0 = 0.

The numerical details of each simulation are presented in Tab. 2. The grids
are clustered to the surface in the wall-normal direction using a hyperbolic tan-
gent stretching function such that the minimum grid spacing in wall units is
approximately one and a stretching factor of 1.05 is not exceeded. Depending
on the configuration subsonic and supersonic outflow boundary conditions are
used at the upper and downstream boundaries. The no-slip boundary condition
is imposed at the adiabatic wall. The inflow distribution of the flow variables
for the LES inlet of the zonal RANS-LES simulation were extracted from the
RANS part that is located upstream of the LES domain.
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Table 2. Computational domain, grid resolution, and number of mesh points for
pure LES, pure RANS, and zonal RANS-LES configurations of turbulent boundary
layer simulations. The zonal RANS-LES configuration consists of the RANS domains
upstream (Zo-RANS) and of the embedded LES domain (Zo-LES).

domain domain size resolution number of grid points

Lx/δ0 Ly/δ0 Lz/δ0 Δx+ Δy+
wall Δz+ imax jmax kmax

pure LES (M = 0.4) 16.0 3.4 0.88 15.1 1.1 6.7 516 67 49

pure 2D-RANS (M = 0.4) 16.0 3.4 - 62.2 1.1 - 104 67 -

Zo-RANS (M = 0.4) 4.0 3.4 0.88 61.1 1.1 160 31 67 3

Zo-LES (M = 0.4) 12.0 5.0 0.88 15.1 1.1 6.7 387 67 49

The inflow distributions of the pure LES results is determined using the
rescaling method of El-Askary et al. [6]. The recycling station is located at x/δ0 =
6. A sponge layer is applied at the upper- and outflow boundary to damp spurious
pressure fluctuations. The wall- and velocity outflow boundary conditions are the
same as for the formulations of the pure 2D-RANS configuration.

Transonic Airfoil Flow. The transonic flow around a DRA2303 airfoil [9] was
chosen as the aerodynamic reference case to discuss the efficiency and quality of
the zonal RANS-LES method compared to a pure LES method. The flow field
is defined by M = 0.72, Rec = 2.6 · 106 based on the chord length c, and the
angle of attack α = 3◦. The laminar-turbulent transition is fixed at the pressure
and suction side of the airfoil at x/c = 0.05 for both numerical configurations
by introducing a wall surface roughness of an amplitude of approximately 10
inner wall units or 8 · 10−4Δy/c.

Table 3. Computational domain, grid resolution, and number of mesh points for pure
LES and zonal RANS-LES configuration for the transonic airfoil case. The zonal RANS-
LES configuration consists of the RANS domains (Zo-RANS) and of the embedded LES
domain (Zo-LES).

domain domain size resolution number of grid points

Lfarfield Lspanwise Δx+ Δy+
wall Δz+ Imax jmax kmax total

pure LES 25c 0.021c 100 1.0 20 2364 130 97 30 ·106

Zo-RANS 25c 0.021c 400 1.0 180 225 89 11 2.2·105

Zo-LES 0.4c 0.021c 100 1.0 20 1430 97 97 13.5 ·106

The resolution of the pure LES grid in the streamwise, wall normal and span-
wise direction of Δx+ ≈ 100, Δy+

min ≈ 1, and Δz+ ≈ 20, respectively, yields a
total number of grid points of approximately 30 · 106. The spanwise extension
of the grid is 0.021 c. Using the same grid resolution and spanwise extension,
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Fig. 1. Computational configuration of the zonal RANS-LES computation and Mach
number contours. In the LES zone λ2-contours [11] are shown color coded with mapped-
on local Mach number.

the number of grid points of the embedded LES domain of the zonal RANS-
LES configuration is approximately 13.7 · 106, i.e., the reduction is more than
a factor of two. Details of the grid configurations are given in Tab. 3. The pure
LES uses periodic boundary conditions in the spanwise direction and a no-slip,
adiabatic condition is imposed on the wall. Non-reflective boundary conditions
are applied to the far field boundaries. The computational setup of the zonal
RANS-LES computation is shown in Fig. 1. The zonal RANS-LES configuration
uses the same boundary conditions at the wall and in the far field as the pure
LES computation. At the inflow boundary of the LES domain on the upper
and lower side of the airfoil, the STGM discussed in Sec. 2 is applied to gener-
ate synthetic turbulent structures in the turbulent boundary layer. Downstream
of the LES inflow boundary at the upper side four control planes are located
between 0.37 ≤ x/c ≤ 0.4 and at the lower side between 0.7 ≤ x/c ≤ 0.73. The
time-averaged velocity profile and the Reynolds shear stress component 〈u′v′〉
of the upstream RANS solution are used as target conditions for the STGM
and the control planes. At the RANS outflow the time-averaged pressure from
the embedded LES domain located downstream is prescribed whereas density
and velocity distributions are extrapolated. At the LES inflow the density and
velocity distributions from the upstream RANS domain are imposed and the
pressure values are extrapolated from the interior of the embedded LES domain.
The LES domain is encompassed by a sponge layer to damp spurious pressure
fluctuations.

4 Results

Subsonic Boundary Layer. In this section, the findings of the subsonic flat-
plate boundary layer flow applying the STG method for the zonal RANS-LES
ansatz are discussed. In the subsequent paragraphs the term zonal RANS-LES
is applied for the results of the corresponding embedded LES domain. In Sec. 4
the inflow method is validated for a subsonic flat-plate boundary-layer flow,



60 A. Issakhov et al.

Fig. 2. Coherent turbulent structures based on the λ2-criterion with mapped-on local
Mach number for subsonic flat-plate boundary layer.

Fig. 3. Skin-friction distributions (left) and van-Driest-velocity distributions at x/δ0 =
2(right) for several numerical configurations.

respectively, by comparing the averaged boundary-layer properties and turbulent
flow field with reference LES, and experimental data. The development of the
coherent turbulent structures in the pure LES and zonal RANS-LES solution
is discussed and the streamwise distributions of the skin-friction coefficient cf ,
the shape factor H, and the displacement thickness δ1 of the pure LES, and the
zonal RANS-LES solution are compared. For the subsonic case the Reynolds
shear stress distributions at x/δ0 ≈ 2 of the zonal RANS-LES are compared
with pure LES and measurements of deGraaff and Eaton [5].

Coherent turbulent structures based on the λ2-criterion according to Jeong
and Hussain [11] with mapped-on Mach number contours are visualized in Fig. 4
for the zonal RANS-LES solution and the pure LES. Near the inflow boundary
of the LES domain of the zonal RANS-LES simulation at x/δ0 < 1 elongated
structures are already visible. At x/δ0 > 1 the size and number of those struc-
tures is comparable to that of the pure LES result. The STG method presented
in Sec. 2.2 generates coherent turbulent structures that contain the appropriate
length- and time scales which form flow patterns downstream of the inlet that
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Fig. 4. Streamwise development of the shape-factor (left) for several numerical con-
figurations and comparison of Reynolds normal-stress component distributions of pure
LES, zonal RANS-LES, and reference experimental results [5] at x/δ0 = 2 (right).

resemble the turbulent structures of the pure LES solution. That is, already at
x/δ0 ≈ 1 ejected vortices are observed and elongated structures in the stream-
wise direction that are essential for the turbulence production develop further
downstream.

The streamwise development of the skin-friction coefficient cf is presented
in Fig. 3(a). The cf -distribution for the pure RANS and the zonal RANS-LES
results are in good agreement with the pure LES solution. Downstream of the
LES inflow of the zonal RANS-LES the skin-friction coefficient does not drop but
rather immediately converges to the pure LES values. The structures generated
by the original inflow method of Jarrin et al. [10] would too strongly dissipate
such that a much larger streamwise extent would be necessary for the LES to
recover the correct cf -level.

In Fig. 3(b) the van-Driest velocity distribution at x/δ0 of pure LES, pure
RANS and the zonal RANS-LES simulation is shown. The distribution of the
zonal RANS-LES resembles that of the pure RANS, however, it started to con-
verge to the distribution of the pure LES.

Figure 4(a) shows the time-averaged streamwise distribution of the shape
factor H. The growth rates of the pure RANS, the pure LES, and the zonal
RANS-LES simulation are more or less alike. From the streamwise distributions
of the skin-friction coefficient and the displacement thickness it can be concluded
that the zonal RANS-LES method yields smooth streamwise results which are
comparable with the pure LES findings.

The distributions of the Reynolds normal- and shear-stress components of
the pure LES and the zonal RANS-LES configuration are compared with the
experimental results Reθ = 1430 of deGraaff and Eaton [5] in Fig. 4(b). A good
agreement with the experimental data is obtained corroborating that the inflow
generation method for the zonal RANS-LES configuration is capable of gener-
ating physically meaningful Reynolds stresses within a short transition length,
i.e., in less than two boundary-layer thicknesses δ0.
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(a) cp over x/c (b) cf over x/c, upper side

(c) cf over x/c, upper side, close-up (d) cf over x/c, lower side

Fig. 5. Pressure coefficient distribution cp and skin-friction coefficient distribution cf

at the upper and lower side of the DRA2303 airfoil for the zonal RANS-LES and the
pure LES.

Transonic Airfoil Flow. In Fig. 5(a) the time- and spanwise averaged dis-
tributions of the pressure coefficient cp for the zonal RANS-LES and the pure
LES are presented. The averaging time was about two shock-oscillation cycles.
The gray shaded areas represent the overlapping regions of the zonal RANS-
LES approach. The average shock position is located at x/c ≈ 0.57 for the zonal
RANS-LES and the pure LES result. A smooth RANS-to-LES transition of the
pressure coefficient at the upper and lower side of the airfoil is evident.

The skin-friction coefficient distributions at the upper side of the airfoil are
presented in Fig. 5(a). The cf distribution of the zonal RANS-LES agrees well
over the entire upper side of the airfoil with the pure LES result. From the
shock position at x/c ≈ 0.57 to the trailing edge the averaged flow field is fully
separated.

In Fig. 6(a) the velocity distribution of the zonal RANS-LES and the pure LES
solutions are compared at x/c = 0.50 which is located upstream of the average
shock position at x/c ≈ 0.57. A slight deviation near the boundary-layer edge in



Simulation of Transonic Airfoil Flow Using a Zonal RANS-LES Method 63

(a) Velocity profile u/u∞ (b) Reynolds stresses 〈uiui〉 /u2
∞

Fig. 6. Velocity profile and normal components of the Reynolds-stress tensor at x/c =
0.50 at the upper side of the DRA2303 airfoil for the zonal RANS-LES and the pure
LES.

the velocity distribution is observed. However, near the wall the difference between
the velocity profiles is small resulting in almost identical cf -values.

The distributions of the normal components of the Reynolds stress tensor at
x/c = 0.50 for the zonal RANS-LES and the pure LES computations are shown
in Fig. 6(b). The normal stresses computed by the zonal RANS-LES method are
in very good agreement with the pure LES results. This convincing match of
the velocity and the Reynolds-normal-stress distributions constitute a crucial
requirement to obtain similar shock dynamics as well as time-averaged shock
positions.

5 Conclusion

A synthetic turbulence generation method for a zonal RANS-LES method for
sub- and supersonic flows has been introduced. The STG method has been vali-
dated by computing a subsonic boundary-layer flow at M = 0.4 and Reθ = 1400
and a supersonic flow boundary-layer flow at M = 2.3 and Reθ = 4200, respec-
tively. The zonal RANS-LES solutions were compared with pure LES, pure
RANS, DNS, and experimental data. A rapid RANS-to-LES transition was
observed and the overall accuracy has been convincing. Within a transition
length from the RANS to the LES solution of approximately two boundary-
layer thicknesses the zonal ansatz showed good agreement in the streamwise cf

distribution, the velocity profiles, and the distribution of the Reynolds stresses
compared with measurements [5]. Also the growth rate of boundary-layer-shape
factor, the boundary-layer-displacement thickness in the streamwise direction of
the zonal RANS-LES solution was in good agreement with that of the pure LES
results.

The convincing agreement of the zonal RANS-LES results with the pure
LES solutions for the transonic airfoil flow increases the confidence in the appli-
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cation of the zonal RANS-LES method. Since no modifications of the interface
formulations are necessary it is more or less straightforward to apply the zonal
RANS-LES method to other three-dimensional sub- and transonic flow problems.
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Abstract. New numerical algorithm of determining the moving tsunami
wave height for linear source at the characteristic surface t = τ(x, y)
is proposed where τ(x, y) is a solution of Cauchy problem for eikonal
equation. This algorithm based on and representation of fundamental
solution of linear shallow water equations in the singular and regular
parts. This approach allows one to reduce computational time. We get
the expression of the moving tsunami wave height for the linear and
arbitrary sources. Numerical results are discussed.

Keywords: Shallow water equations · Wave front amplitude · Impulse
source · Eikonal equation · Finite difference method

1 Introduction

The recent severe tsunamis in Japan (2011), Sumatra (2004), and at the Indian
coast (2004) showed that a system producing exact and immediate information
about tsunamis is of vital importance. Mathematical modeling and numerical
simulations are most used instruments for providing a such information. Most
suitable physical models related to simulation of tsunamis are based on linear
shallow water equations:

{
ηtt = div(gH(x, y)grad η), t ∈ (0, T );
η|t=0 = q(x, y), ηt|t=0 = 0, (x, y) ∈ Ω.

(1)

Here Ω := (0, Lx) × (0, Ly) is a rectangle domain, η(x, y, t) is the free surface,
H(x, y) > 0 is a known function describing the bottom relief (bathymetry),
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q(x, y) is an initial tsunami perturbation in Ω, g = 9.8 [m/s2] is the acceleration
of gravity. Assume that the time period T is not long enough for the wave to
reach the edges of the domain, and therefore we can set homogeneous boundary
conditions at the boundary ∂Ω of the domain, i.e. η|∂Ω = 0.

Fig. 1. Illustration of the calculation domain Ω.

Simulation of tsunami wave propagation on such scales (106 kms2 on space
and about one hour when initial wave amplitude is no more than 2 meters) is
not an easy calculation task (see Figure 1) [1].

V.M. Babich ([2], § 5) developed space-time ray approach for getting expres-
sion of tsunami wave front amplitude in case of ”slowly varying” bathymetry
with caustics. In paper [3] asymptotic method for determining of tsunami wave
front amplitude based on the generalization of the construction known as the
Maslov canonical operator [4] was proposed. Practical application of some algo-
rithms can be found in papers by L.B. Chubarov, Yu.I. Shokin et al. [5], [6], [7]
and website http://www.ict.nsc.ru. Our numerical algorithm makes it possible
to calculate the front amplitude of a wave coming to a given point and the
wave arrival time by solving problem not in the entire domain Ω, but only on a
selected characteristic surface t = τ(x, y). Here τ(x, y) is a solution of a Cauchy
problem for eikonal equation τ2

x + τ2
y = (gH(x, y))−1, τ(0, y) = 0.

The paper is organized as follows. In Section 2 the Cauchy problem for deter-
mining of moving tsunami wave height is derived in case of linear tsunami
source. Numerical experiments for linear source are described in Section 2.1.
Obtained results correlate with well-known Airy-Green formula (see Section 2.2).
In Section 3 using characteristics of hyperbolic equation we demonstrate the for-
mula for tsunami wave height for point source. In the last Section 4 we show
connections between moving tsunami wave height for point, linear and arbitrary
sources and denote the plans for future work.

http://www.ict.nsc.ru
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2 Wave Front Amplitude for Linear Source

We consider the linear source q(x, y) = h(y) · δ(x). Here δ(x) is a Dirac function
and h(y) is a sufficiently smooth function. Then problem (1) can be reduced to
the following problem in a half-plane

{
ηtt = div(gH(x, y)grad η), x > 0, y ∈ R, t ∈ R,
η|t<0 = 0, ηx|x=0 = h(y) · δ(t), y ∈ R, t ∈ R.

(2)

Here R is a set of real numbers.
The main idea of calculation the moving tsunami wave height for problem (2)

consists of the change of variables z = τ(x, y) [8]. Here τ(x, y) is a solution of
the problem for eikonal equation

{
τ2
x + τ2

y = (gH(x, y))−1
, x > 0, y ∈ R;

τ(0, y) = 0, τx(0, y) = (gH(0, y))−1/2
.

(3)

Remark. We assume that maps z = τ(x, y) and x = x(z, y) are mutually inverse
and one-to-one, i.e. we exclude the appearance of caustics.

Then, with the change of variables v(z, y, t) = η(x, y, t) and b(z, y) =√
gH(x, y) problem (2) can be rewritten as follows (z, y > 0):

{
vtt = vzz + b2vyy + A1vzy + A2vz + A3vy, z > 0, y ∈ R, t ∈ R,
v|t<0 = 0, vz|z=0 = g(y)δ(t), y ∈ R, t ∈ R.

(4)

A1 = 2b2τy, A2 = b2(τxx + τyy) + 2( bz
b + bbyτy), A3 = 2b(bzτy + by), g(y) =

h(y)
(
b−2(0, y) − τ2

y (0, y)
)−1/2.

The coefficients of derivatives vtt and vzz in problem (4) are equal to unity
that allows us to represent the solution of problem (4) as follows [9]:

v(z, y, t) = S(l)(z, y) · θ(t − z) + ṽ(z, y, t). (5)

Here ṽ(z, y, t) is a smooth function, θ(t − z) is a Heaviside step function.
Substituting representation (5) in system (4) and equating the coefficients at

δ(t − z), we obtain a Cauchy problem for wave amplitude S(l)(z, y):
{

S
(l)
z + 0.5A1S

(l)
y + 0.5A2S

(l) = 0, z > 0, y ∈ R;
S(l)(0, y) = g(y), y ∈ R.

(6)

The main benefit of above algorithm consists of reducing of the problem (1)
to the problem (6) of determining the function S(l)(z, y) of two variables.

2.1 Numerical Experiment

In numerical calculations we use 1:10000 m scale. We put Lx = 70 km and
Ly = 100 km. The initial wave amplitude is equal to 1 m. The grid size is equal
to 500 × 300 points. We solve the problem (3) for artificial bathymetry using
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Fig. 2. (On the left) The times of arrival of the first waves amplitude from the linear
source (space values are given in kilometers, time is given in minutes). (On the right
top) The bathymetry H(x, y) (all dimensions are in kilometers). (On the right bottom)
The wave amplitude S(l)(x, y) (amplitude values are given in meters).

a method of characteristics [10] and the Cauchy problem (6) using an explicit
finite-difference scheme of the second order approximation (Fig. 2).

Our algorithm allows one to compute an initial wave amplitude using mea-
sured data at moment T . Note, that the inversion method of reconstructing of an
initial tsunami source q(x, y) from measurements of water-level data (marigrams)
was first proposed by T.A. Voronina and V.A. Tcheverda in 1998 [12] and was
already described in previous papers [13], [14]. This method based on singular
value decomposition approach. The optimization method of reconstructing of an
initial tsunami source q(x, y) was proposed in [1]. All these methods deal with
solving the shallow water system in the entire domain Ω. Proposed algorithm is
30 times faster than solving complete shallow water equations.

2.2 Airy-Green Formula

If all functions in Cauchy problem (6) does not depend on the variable y (one-
dimensional case), then the problem (6) has a following solution [11]:

S(l)(z) = S(l)(0) · 4
√

H(0)/H(z). (7)

The expression (7) for the moving tsunami wave height is consistent with the
well-known Airy-Green formula: the wave amplitude S(l) increases as a depth of
the bottom H decreases.
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3 Wave Front Amplitude for Point Source

Consider the Cauchy problem with a point source in (x0, y0)
{

wtt = div(gH(x, y)grad w) + δ(x − x0, y − y0)δ(t), t ∈ R;
w|t<0 = 0, (x, y) ∈ R

2.
(8)

Remark. Solutions of problems (1) and (8) are connected as follows (ξ01 =
ξ1 + x0, ξ02 = ξ2 + y0):

η(x, y, t) =
∫

R2

wt(x − ξ1, y − ξ2, t)q(ξ01 , ξ
0
2) dξ1dξ2.

It is known [10], that solution w of problem (8) can be represented as follows:

w(x, y, t) =
S(p)(x, y;x0)

√
t2 − τ2(x, y;x0)

θ(t)θ(t2 − τ2(x, y;x0)) + w̃(x, y, t).

Here τ(x, y;x0) is a solution of eikonal equation (3) with condition τ(x, y;x0) =
O(|x − x0|), x → x0 (here x = (x, y), x0 = (x0, y0)), and the wave amplitude
S(p)(x, y;x0) has the form:

S(p)(x, y;x0) =
1

πgH(x0, y0)

√
τ(x, y;x0)

exp{0.5gI(τ(x, y;x0))} , (9)

where I(τ(x, y;x0)) =
τ∫

0

((Hτx)x + (Hτy)y) dτ .

We obtain the expression (9) for the moving tsunami wave height
S(p)(x, y;x0) for a point source using the Theorem from [10].

4 Connections and Conclusion

Denote by S(x, y) the moving tsunami wave height generated by an arbitrary
source q(x, y). Then the amplitudes S(x, y), S(l)(x, y) and S(p)(x, y) for the
arbitrary, linear and point sources, respectively, are connected as follows:

S(x, y) =
∫

R2

q(ξ, ζ)S(p)(ξ, ζ) dξdζ,

S(l)(x, y) =
∫

R

h(ζ)S(p)(x, ζ) dζ,

S(x, y) =
∫

R

p(ξ)S(l)(ξ, y) dξ, q(x, y) = p(x)h(y).

We plan to apply above algorithm for real bathymetry using databases
collected by non-profit organization WAPMERR (World Agency of Planetary
Monitoring and Earthquake Risk Reduction) in modern GIS technology ITRIS
(Integrated Tsunami Research and Information System) [15]. WAPMERR has a
historical database of alleged tsunami sources around the world which is based
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on the information about seaquakes, a database of observations of the tsunami
waves in coastal areas and bathymetry data.

We propose a new numerical algorithm of determining the moving tsunami
wave height for linear source at the characteristic surface t = τ(x, y), where
τ(x, y) is a solution of eikonal equation. This algorithm based on and represen-
tation of fundamental solution of linear shallow water equations in the singu-
lar and regular parts. This approach allows one to reduce computational time.
We get the expression of the moving tsunami wave height for the linear and
arbitrary sources and discuss numerical results.

Proposed algorithm for calculation of the moving tsunami wave height can
be used for solving inverse problem of reconstruction of a tsunami source using
additional information of tsunami amplitude at t = T [16]. In this case the
Cauchy problem (6) can be solved with a reverse time, i.e. the usage of the
initial condition S(T, y) = f(y) instead S(0, y) = g(y).
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Abstract. We propose a hybrid approach, based on the combined use
of genetic algorithms, methods and heuristics of local search, and ant
colony optimization to solve the dynamic routing problem for a group
of underwater robots. Group’s objective involves visiting a certain set of
control points (for the purpose of sampling, taking measurements, photos
and videos) according to their priority and under given restrictions. The
dynamic routing problem here is to find (planning) and adjust (replan-
ning) feasible group routes for robots, ensuring as far as possible the
maximum efficiency of the group work.

Keywords: Autonomous underwater vehicles · Group control · Mission
planning · Transport routing problem · Evolutionary algorithms

1 Introduction

The rapid evolution of the subsea technologies in recent years has allowed under-
water robots to take a significant role in the study of marine resources. These
autonomous underwater vehicles (AUVs) are widely used in such underwater
tasks as seabed mapping, mines searching and deactivating, oil and gas detec-
tion, taking samples, etc. At the moment, there is a clear tendency to increase
the degree of AUV’s autonomy, allowing them to implement long-term underwa-
ter missions. Moreover, there is another tendency in robotics industry to switch
production of heavy-geared multitasking hand-built vehicles to serial assembly
of more reliable and cheap special purposed robots with modern onboard equip-
ment with extremely low power consumption. Application of coordinated and
distributed groups of such robots may significantly improve the effectiveness of
the large-scale underwater operations.

It is a problem of considerable practical interest to effectively route robots in
such works as surveillance and search, patrolling and inspection of underwater
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objects and structures, monitoring of water areas and topography mapping. All
these tasks can be united by a common concept of a multi-objective mission
within given area. One of the main features here are spatio-temporal constraints
imposed by the specific nature of the water environment and by inaccuracy of
the measuring devices.

In general, the multi-objective mission planning for the group of AUVs is
a variation of vehicle routing problem (VRP) and consist of task assignment
and path planning under given constraints. Depending on the type of research
tasks and additional restrictions on the group movement, the routing problem
may also obtain features of such VRP variations as routing with time windows,
periodic routing and others.

All specialized VRP variations in scientific publications [1],[2] have one com-
mon feature remaining from the classical VRP: each control point (customer)
must be visited exactly once (sometimes, not more than once) within one route.
This restriction does allow to implement a search and surveillance missions [3],
but can not be used for a long-term monitoring of dynamic processes and for
other multi-objective missions that includes some sets of control points requiring
periodic visits [4].

This paper proposes a formalized AUVs group routing problem for the peri-
odic multi-objective missions and provides a hybrid evolutionary approach to
address it effectively.

2 AUVs Mission Planning Problem

Periodic multi-objective mission requires AUVs to visit and examine the set of
control points at scheduled intervals. The problem of planning such a mission
is to find a feasible group route ensuring, as far as possible, the well-timed
inspection of the majority of control points.

Group mission planning is carried out:

1. in a enclosed water area with a known seabed profile;
2. for a given finite set of control points (objectives) within the water area;
3. by a heterogeneous group of multiple AUVs;
4. under a certain set of restrictions imposed both on the group movement and

movements of individual AUVs;
5. based on the effectiveness criteria of group work for current mission.

The mission area (Fig. 1a) is represented by three-dimensional space D =
{(x, y, z) : 0 � x � X, 0 � y � Y, ζ(x, y) � z � Z}, where function ζ(x, y)
describes the seabed profile. The mission area may contain a set of forbidden
zones, but anyhow, space D is always connected, which ensures the possibility
of visiting of any point outside of restricted areas by AUVs.

Let ΩN be a list of mission objectives (Fig. 1b) with their coordinates
(xi, yi, zi) ∈ D, i = 1, ..., N . Depending on the research task for each spe-
cific control point, the corresponding objective is assigned to one of two types



Hybrid Evolutionary Approach to Multi-objective Mission Planning 75

Fig. 1. Schematic representation of the periodic AUVs mission

Ti = {1, 2} and receives its periodicity pi. Ti = 1 means here that the peri-
odicity of objective is non-strict, i.e. the duration of the time interval between
its two successive inspections must not exceed pi. The second strictly periodic
type of objectives Ti = 2 requires exact length pi of the described time period.
In addition, each objective Ωi requires some time si for its examination. Also let
t′i, i = 1, ..., N be a time interval since the last inspection of each objective from
Ω.

In other words, non-strict objectives should be inspected not less than once
in their period p. The objectives of this type are commonly used in tasks, for
which the principle “the more, the better” is appropriate: patrolling and guard-
ing, checking the continuity of a different physical objects, etc. Strict Objectives
should preferably be visited exactly at equal intervals. In that way, in case of
arriving to the objective ahead of time, AUV should stand idle before starting
the inspection. This procedure provides a more efficient way to study the dynam-
ics of various underwater processes by AUVs taking samples and measurement,
photo and video shoots.

The group of robots performing the mission consists of m functionally
equivalent vehicles (Fig. 1c). At the same time, vehicles of the group may differ
by their speed while moving between objectives. Let (xk, yk, zk) ∈ D be a current
position of vehicle number k, and vk be its speed. The speed of each robot allows
us to calculate how long it will pass through specified segment of the path.
In what follows we denote by ckij the time required to k-th AUV to move from
objective Ωi to Ωj , and by cki the time to achieve objective Ωi from AUV’s
current position.

The process of mission implementation is self-contained, i.e. all calculations
are performed exclusively on board computer systems of robots. Group coordi-
nation is achieved by transfering data between members of the group through
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hydro-acoustic channel. Data can be transferred between vehicles both directly
and through other AUVs. Thus, all vehicle must form a connected graph with
lengths of arcs (distances between AUVs) less than the range of communication
channel Rc to achieve complete synchronization of actual data within the group
(Fig. 2). In what follows the group routes are called communicatively stable, if
they guarantee the ability to synchronize data regularly.

Fig. 2. Communication graph for the AUVs group

Communication stability requirement arises due to the dynamic nature of
underwater missions: firstly, the observation results may require changing param-
eters of some objectives and even their removal; secondly, the uncertainty of
external environment may lead to unexpected changes in the status of work-
ing group. All these changes may occur in real time, making it necessary to
adjust the current route (replan) in order to maximize the group efficiency in
new conditions. Among the events that require route replanning are:

– change of periodicity pi and/or examination time si of an objective;
– change of type Ti of an objective;
– adding new objectives or removing existing ones;
– change of the AUVs group’s composition.

The route of single vehicle r = 〈v1(r), v2(r), ..., vh(r)〉 is a list of objec-
tive’s numbers in the consecutive order of their planning visit. It should be
noted that any objective can be included more than once into the route of a
single robot. Group route G = {r1, ..., rm} is a set of single AUV routes.

One of the main characteristics of the route is its time duration t(r):

t(r) = cjv1(r)
+ ov1(r) + sv1(r) +

h∑

i=2

(cjvi(r)vj(r)
+ ovi(r) + svi

(r)), (1)

where oi is an idle time before starting examination of the i-th objective. If the
objective is non-strict (Ti = 1) then oi = 0, in another case (Ti = 2) the idle
time is defined as oi = max {pi − t′i, 0}.
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The effectiveness of the group work is determined, first of all, by reg-
ularity of scheduled inspections. Situations, when AUV arrives too late t′i > pi
and delays inspection of the objective, are undesirable and should be penalized
via efficiency criteria. If it is physically impossible to visit all objectives in time,
the criteria should consider two possible types of solutions:

– routes that provide minimal delay time with all mission objectives are being
visited;

– routes that guarantee full absence of delays by ignoring some objectives.

Thus, the routing problem is to find a feasible group route that provides
the minimum delay time.

2.1 Main Features of the Problem

To solve the problem described above the following features has to be considered
in the first place:

– undefined duration of the whole mission;
– dynamic conditions of the mission;
– communication stability requirement;
– expectable large-size of the problem.

Given these features we suggest the following decomposition approach: to
divide the process of mission implementation on a finite time periods (periods of
planning) with data synchronization within the group at the end of each period.
In this case, the process of mission implementation on a single period of planning
can be represented as follows on the block scheme (Fig. 3).

Accordant to this scheme each vehicle computes to find the best group route
for the next period of movement while following their pre-planned routes on the
current one. Full data synchronization at the end of each period allows robots to
receive all information obtained by the group and to exchange their best found
solutions. Thus, the most effective route among suggested is selected to become
approved route for the new planning period. This approach allows to parallelize
all calculations among the robots in a natural way.

Fig. 3. AUVs group functioning during a single period of planning
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In case of route planning for a single limited period the initial routing problem
would be a variation of the VRP, which is known to be NP-hard. The main
features of the routing problem for a single period are as follows:

1. there is no depot point to arrive at the end of period, thus the final position
of all vehicles has to be assured to allow data synchronization;

2. the expected mission condition at the end of current period should also be
taken into account, since it will be the initial condition for the next period;

3. the necessity to choose objectives which inspection should be delayed or
canceled if it is impossible to visit all mission objectives in time.

2.2 Efficiency Criteria for the Group Route

Limited duration of planning period allows us to construct an efficiency criteria
for the group route in an explicit form. In order to do this, we define an additional
function ai(t) corresponding to each objective Ωi of the mission which we call
the function of relevance, and its value at the moment t - the relevance of the
objective:

ai(t) =
{

δi(t − (tik + si)), t ∈ [tik + si, tik+1)
0, t ∈ [tik, tik + si]

, k = 1, 2, ... (2)

where ti1, ti2 is a sequence of moments, when i-th objective is expected to be
visited by AUVs according to the current route, and δi is non-decreasing function
of the relevance growth, δ(0) = 0. The examination of an objective Ωi by a robot
resets the relevance of the objective to a zero value, following that the function
ai begins to increase and reaches its value ā (equal for all objectives) in time
period of pi.

The function of the relevance growth δi determines both the extent of the
need for visiting corresponding objective and penalty for delaying its inspection.
We suggest using the simple linear function δi = āt/pi (Fig. 4), which is not only
easy to implement, but also assigns a relative importance of all the objectives in a
way to ensure well-timed inspections of the objectives with the least periodicity.

Fig. 4. Objective relevance increases after its last visit by an AUV

Now we define a function for calculating a penalty for delaying the inspection
of the objective:

ϕ(ai, t) =
{

ai(t) − ā, ai(t) > ā
0, ai(t) ≤ ā

. (3)
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Hence, the total penalty for the group route G is:

Φ(G) =
m∑

i=1

h∑

j=2

ϕ(av, tv), (4)

where v stands for vj(ri) and the tv values represent the time moments of their
expected inspections. The sequence of moments tv for each objective is calculated
through a simulation procedure. Operating with critera (4) only will lead us to
the situations, when some objectives are being ignored to exclude all delays
during group movement. Thus, it is needed to consider an additional function,
which would “care” not about objectives within a group route as (4), but about
the whole sitation by the end of period:

Ψ(G) =
N∑

i=1

ai(t(G)), (5)

where t(G) = max
j=1,...,m

(t(rj)) - the time moment of the route completion. The

function (5) delivers a some sort of forecasting value for the next period of
planning. Using (5) as a part of criteria allows us to provide group routes with
two positive features: it forbids robots to ignore the objectives of the mission
and also indirectly normalises route durations of all vehicles in the group.

Hence, the final efficiency criteria for the group route is as follows:

f(G) = ω · Φ(G) + Ψ(G), G ∈ Z, (6)

where Z is the set of all possible communicatively stable routes and ω is the
weight number that allows one to expertly choose the operating mode of the
group in case of impossibility of well-timed inspection of all mission objectives:
with ω ∼= 1 the group will always examine all the mission objectives but with
some delays (Fig. 5 left); with ω � 1 the group will continue to inspect only those
objectives which can be visited strictly in time, and the remaining objectives will
be ignored (Fig. 5 right).

Fig. 5. Two different operating modes of the group
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3 Hybrid Evolutionary Approach to AUVs Mission
Planning

For a broad class of VRP there are no algorithms solving it in polynomial time,
which leads us to the class of approximation algorithms, that allow to obtain
rational sub-optimal solutions in low computational time. The routing problems
can be solved by significant diversity of methods of operations research but there
is no unified algorithm for serving the full spectrum of problems of this class.

A comprehensive survey of various approaches for solving the VRP concludes
that evolutionary algorithms (EAs) generally outperform any other heuristic
or metaheuristic [5]. Its main advantage is ability to find solutions for poorly
structured problems and problems with complex constraints, as EAs require a
relatively small amount of information about the nature of the problem. Fur-
thermore, the efficiency of EAs can be significantly increased by combining with
a local search and improvement heuristics.

The described above AUV routing problem has a “bad” neighborhood struc-
ture, making it difficult to allocate and find qualitative and feasible solutions,
as they may not be in the neighbourhood of another feasible solutions of high
quality in the search space. Evolutionary algorithm for solving the given problem
must possess specialized genetic operators featuring local search heuristics and
other methods of local solutions improving. The block diagram for the proposed
evolutionary hybrid algorithm is shown in Fig. 6.

Fig. 6. The block diagram of hybrid evolutionary approach with colored blocks of
author’s procedures and modifications
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The algorithm starts with initialization of all data including the latest list of
objectives, the current state of the group and all algorithm parameters. Then,
the initial population of chromosomes (group routes) is created to ensure both
covering a significant portion of the search space and containing a variety of good
solutions. This requirement is achieved by the simultaneous use of three different
construction heuristics: a sequential insertions and two parallel insertions.

The generated population is evaluated by an objective function (6) that takes
into account not only the effectiveness of the route during current planning
period, but also an estimation of the search complexity on the next scheduling
period. According to the results of ranking, the tournament selection chooses a
set of chromosomes to be used for procreation and/or mutations.

The basic EA proposes the scheme with a chromosome supposed firstly to
be crossed with another candidate solution and after to become a subject of
mutation. We suggest to modify such a scheme, because it can sometimes lead
to loss of the intermediate genetic information, and thus to expose each solution
either to only one genetic operator or to both of them in a common way.

Specialized genetic operators here consist of multimode mutation and two
different variants of crossover. The first crossover is a heuristic modification
of the two-point crossover; the second crossover operator seeks to combine the
general characteristics of the parental individuals with the qualities of the best
known solution.

The mechanisms of parallel populations with immigration (island model),
clone removal and elitism provide faster algorithm convergence rate while pre-
venting premature convergence to local optima.

In order to further improve our newly received individuals the determinis-
tic heuristic search techniques of 2-opt exchange and λ-interchange are applied
periodically to the whole population for a deeper exploitation.

The evolutionary process is repeated until a stop criteria has been met. Here
such a criteria is an impossibility to improve solutions with any of the presented
local search heuristics.

The Procedure to Bring Solutions to Feasibility. To ensure overall com-
munication stability of the cumulative group route, vehicles of the group should
be able to synchronize data at the end of each period. To achieve this condi-
tion, each constructed route is iteratively modified according to the following
procedure until requirements are met:

1. The graph formed by final positions of all robots vh(rk), k = 1, ...,m accord-
ing to their routes is checked for connectivity only on those arcs whose length
does not exceed the range of communication channel Rc.

2. If the graph is disconnected, the center of gravity g ∈ D of all AUVs final
positions is calculated.

3. The most distant from g objective is defined between all final objectives
of single vehicle routes and replaced in the corresponding route by another
objective, that is closest to g.

4. Return to Step 1.
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Genetic Parameters Adaptation Mechanism. To improve the efficiency of
a population creation procedure, all probabilistic genetic parameters are changed
constantly at the end of each iteration of the algorithm. Being determined by the
current efficiency of the genetic operators these changes allow algorithm to adapt
to the different situations on different steps of processing. The implementation
of the adaptation mechanism may significantly increase the speed of computing
in those cases when some genetic operators begin to work significantly better
than others. The adjustable genetic parameters here are (Fig. 7):

– the probability of choosing either Crossover P (C) or Mutation P (M) for
each chromosome;

– the probability of each crossover operator Ci;
– the probability of each mutation mode Mj ;
– the probability Pij to choose a mutation mode Mj after crossover Ci.

In general, the adaptation mechanism is to keep track of the paths, which
lead to the solution improving more often than others, and to increase their
probabilities for the next generation of solutions. The scheme of the ant colony
optimization algorithm allows to implement such an adaptation in a natural way.

In our case, each chromosome of the evolutionary algorithm represents both
a solution and an ant, which goes through a network of genetic operators and
marks them with pheromones, if their work has improved the individual itself.
At the end of each iteration of the algorithm the probabilities for all operators are
redistributed according to the amount of pheromone. With the pheromones evap-
oration mechanism, the initial distribution of probabilities (e.g. equally probable)
would be restored eventually if the current set of genetic parameters would lose
its relevance.

Fig. 7. The general scheme of genetic operators network
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Fig. 8. Example of the mission planning for the group of 3 AUVs

4 The Results of Test Calculations

On the basis of a series of simulation experiments using the developed framework
AUV Mission Planner the best initial parameters of the algorithm were found to
guarantee its efficiency on various types of test problems. As a result, the average
deviation of the generated solutions from the optimal ones was obtained.

In the following example (Fig. 8), we demonstrate how the algorithm manages
to generate the group route for 3 AUVs in the mission with 25 objectives (Fig. 8a)
of both types of regularity (white and grey). The periodicity values pi of the objec-
tives lie in the interval between 1000 to 5000 time units, the whole planning period
is 12000 time units (more than 50 scheduled visits of objectives). Within comput-
ing time of 3 minutes the algorithm calculates the group route (Fig. 8b) providing
well-timed inspection of the majority of objectives with a total delay of 101 time
units while optimal solution provides 37 (deviation of ∼0,53%). Figure 8c shows a
screenshot of AUV Mission Planner during the simulation of the group movement.
The route (Fig. 8b) is built to ensure the possibility of data synchronization within
the group at the end of the planning period (Fig. 8d).
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5 Conclusion

The routing problem statement proposed in the paper allows us to formalize a
multi-objective mission of regular monitoring and can be distinguished as a sep-
arate subclass of VRP, which combines features of the PVRP and the VRPTW.
The problem is open to be expanded with new entities, parameters and con-
straints, such as new various types of objectives, functionally heterogeneous
group of AUVs etc.

We have developed a simulation framework AUV Mission Planner to test and
work out scheduling approaches and mission planning algorithms for groups of
autonomous robots with different types of tasks, objectives and restrictions. The
high efficiency of the suggested algorithm is shown through simulation studies
in solving the problems of scheduling group missions under various conditions.
The algorithm is proved to be used for efficient multiscale routing of automated
robots as a high-level control algorithm. At the same time, the hybrid approach
of described structure, as well as the proposed set of heuristics and procedures,
can also be applied for solving both standard vehicle routing problem and its
various modifications.
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Abstract. In this paper, the permeability of ordered fibrous porous
media for normal flows is predicted theoretically and numerically. More-
over, microscopic velocity profiles in the “unit cell” are investigated in
detail for normal flows. Porous material is represented by a “unit cell”
which is assumed to be repeated throughout the media and 1D fibers are
modeled. Fibers are presented as cylinders with the same radii. Planar flow
that perpendicular to the axes of cylinders is considered in this paper. All
numerical calculations are performed using Gerris program [6]. The quan-
titative comparison of numerical and theoretical results of computation of
the permeability of ordered fibrous media is reasonably good and is about
10–15%.

Keywords: Fibrous porous media with periodic structure · Navier-
stokes equations · Darcys law · Permeability of fibrous porous media

1 Introduction

Fibrous porous materials are widely used in modern industry and engineering
applications, such as heat exchangers, filters, catalysts, and fuel cell electrodes.
The main technical challenge for the fibrous porous medium is to determine the
velocity of the flow in the media. If we know the velocity of the fluid flow in
the fibrous porous media, we can determine the important technical features of
the media, such as the rate of change of temperature of the medium, the rate of
change of concentration of substance, etc.. In most cases, the flow in the fibrous
porous media is very slow and obeys Darcy’s law [1], that relates the flow rate
to the pressure gradient:

ud =
K

μ
∇(p + ρgz), (1)

where K - permeability of fibrous porous medium, μ - fluid viscosity, ud - flow
rate, p - pressure in the porous medium and ρgz - hydrostatic pressure. Calculating
c© Springer International Publishing Switzerland 2015
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of theflowrate fromthe formula (1) is verydifficult problem,becausewedon’t know
the permeability of fibrous porous medium generally. Basically permeability of the
porous medium K is determined empirically, however new experimental technolo-
gies and high-resolution imaging of porous media can provide three-dimensional
structural details of porous materials with resolution in one micron. There exist
many pore-scale models of the fluid flows in the porous medium such as Lattice-
Boltzmann [3], pore network models [2], discrete particle methods (smoothed par-
ticle hydrodynamics) [4] and direct discretization methods (finite difference, finite
element, finite volume, immersed boundary methods) [5]. All of these methods
require high computational power. In the direct discretization methods the Navier-
Stokes equations are discretized and solved for domain with complex geometries.
The main advantages of the direct discretization methods is that can be applied
for the domains with complex geometries and simulate fluid flow in the porous
medium more exactly than others. Also these methods have disadvantages, such
as: it requires high computational power and these methods are available for very
small domains (about 1 micron). From the above listed models, the most preferred
is pore network models [2]. In this model, the porous medium is represented as a
system of straight channels. Nevertheless, in many engineering designs the geome-
try of the porous medium is very simple. Also, in many engineering calculations no
need to accurately calculate the parameters of fluid flow in porous media, but it is
sufficient to calculate their average values. The fibrous porous medium with a peri-
odic structure is considered in this paper (see Fig. 1). Fibers are presented as cylin-
ders with the same radii. Planar flow that perpendicular to the axes of cylinders
is considered in this paper. We numerically predicted the permeability of fibrous
porous media and compared with existing theoretical predictions in this study. All
numerical calculations are performed using Gerris program [6].

Fig. 1. Two dimensional rectangular area with sizes s x s in that the cylinders are
periodically arranged
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2 Modeling Approach

There exist many theoretical predictions of the permeability of fibrous porous
media in the literatures [7] - [10]. From early works on the theoretical predictions
of the permeability of fibrous porous medium we can emphasize the works of
John Happel (1959) [7] and Hasimoto (1959) [8]. John Happel [7] found the
theoretical prediction of the permeability of fibrous porous media by solving the
Stokes equation for a fluid flow in fibrous porous medium. The flow around a
cylinder investigated in his work (see Fig. 2). His theoretical prediction of the
permeability of fibrous porous medium:

K∗
1 =

K1

d2
=

1
32φ

[ln(
1
φ

) − 1 − φ2

1 + φ2
], (2)

where K1 - permeability of fibrous porous media, d - diameter of the cylinders
and φ = d2

s2 , where s - the distance between centers of the cylinders.

Fig. 2. The periodic structure of the fibrous porous medium

In the work of Hasimoto [8] the exact solution of the Stokes equation for
the fluid flow in fibrous porous medium in the form of the infinite series is used
to predict the permeability of fibrous porous media. He found the theoretical
prediction of the permeability of fibrous porous media using only the terms of
lowest order of this series:

K∗
2 =

K2

d2
=

1
32φ′ [ln(

1
φ′ ) − 1, 476], (3)

where φ′ = πd2

4s2 . Later Sangani and Acrivos (1982) [9] improved the theoret-
ical prediction of fibrous porous media using the terms of highest order of the
series that presented in the work of Hasimoto [8]:
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K∗
3 =

K3

d2
=

1
32φ′ [ln(

1
φ′ ) − 1, 476 + 2φ′ − 1, 774φ′2 + 4, 076φ′3]. (4)

From recent works on the theoretical predictions of the permeability of fibrous
porous medium we can emphasize the work of Tamayol and Bahrami (2008) [10].
In this work, porous medium is considered as ”unit cell” which is repeated through-
out the media (see Fig. 1). Also the unidirectional flow with parabolic velocity pro-
file is considered in this work. Their theoretical prediction of the permeability of
fibrous porous medium:

K∗
4 =

K4

d2
=

1
3φ2

(1 − φ)
5
2

(2(φ + 2) + 4 (1−√
φ)(1−φ)2√

φ
)

√
1−φ√

φ
+ 12arctan( 1+

√
φ√

1−φ
)
. (5)

In this paper, the permeability of ordered fibrous porous media for normal
flows is calculated numerically and compared with the above theoretical predic-
tions. Moreover, microscopic velocity profiles in the ”unit cell” are numerically
calculated and compared with the parabolic velocity profile which considered in
the work of Tamayol and Bahrami (2008) [10]. Porous material is represented
by a ”unit cell” which is assumed to be repeated throughout the media and
1D fibers are modeled. Fibers are presented as cylinders with the same radii
(see Fig. 1). Planar flow that perpendicular to the axes of cylinders is considered
in this paper. All numerical calculations are performed using Gerris program [6].

3 Formulation of the Problem

The numerical simulation of single-phase fluid flow in fibrous porous medium is
considered in this paper. The object of the study is the square domain which
includes 4 cylinders (see Fig. 1). Planar flow that perpendicular to the axes
of cylinders is considered in this paper. This model is based on the numerical
solution of the Navier-Stokes equations for incompressible fluid flow:

∂u

∂t
+ (u · ∇)u = g − ∇p +

1
Re

∇2u, (6)

∇ · u = 0, (7)

where u - velocity of fluid flow, p - pressure and g - acceleration of gravity.

Initial condition for the velocity of fluid flow:

u(0, xk) = 0. (8)
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Boundary conditions for the velocity and pressure:

1) On the boundary of the domain (on the Fig. 1 showed as dashed lines):

u(t, xk)|xk=−s/2 = u(t, xk)|xk=s/2, (9)

p(t, xk)|xk=−s/2 = p(t, xk)|xk=s/2, (10)

∂u(t, xk)
∂xk

|xk=−s/2 =
∂u(t, xk)

∂xk
|xk=s/2. (11)

2) On the surface of the cylinders (no-slip boundary condition):

u(t, xk) = 0, (12)

where k = 1,2 (for two-dimensional case). We need to average the value of
the velocity over the square domain (on the Fig. 1 showed as dashed lines) to
find the flow rate - ud:

ud =
∫ ∫

u(t,x)dxdy

s2
, (13)

where s - the distance between centers of the cylinders. Since we only con-
sidered the flow, when Re � 1, then we can neglect the horizontal component of
the velocity in comparison with the vertical component of the velocity and due
to the incompressibility of the fluid we have:

∫

U(t,x)dy +
∫

V (t,x)dx ≈
∫

V (t,x)dx = const, (14)

where U(t,x) - the horizontal component of the velocity, and V (t,x) - the
vertical component of the velocity:

∫

V (t,x)dx = Q = const, (15)

where Q - flow rate. From the equations (13) and (15) follows:

Vd =
∫ ∫

V (t,x)dxdy

s2
=

∫
Qdy

s2
=

Q

s
. (16)

Further, from the equation (1) we can find the permeability of the porous
medium:

K = | μud

∇(p + ρgz)
| =

μQ

s∇(p + ρgz)
. (17)
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4 Results

On the Fig. 3, 4 and 5 shows the comparison of the numerical and theoretical
velocity profile which given in the work of Tamayol and Bahrami (2008) [10]
for various values of the radius of the cylinders. The parabolic velocity profile is
considered in the work of Tamayol and Bahrami (2008) (see Fig. 1):

V (x, y) = ax2 + bx + c. (18)

Since the fluid flow is incompressible, we have:

V (x, y) = − 3Q

4δ3
(x2−δ2) =

⎧
⎨

⎩

− 3Q

4( s
2−
√

d2
4 −y2)3

(x2 − ( s
2 −

√
d2

4 − y2)2), 0 ≤ x ≤ d
2

− 3Q
2s3 (4x2 − s2), d

2 ≤ x ≤ s
2 .

(19)
where δ - distance between the surfaces of the cylinders. Also comparison

of the numerical value of the permeability of fibrous porous media with above
theoretical predictions is showed on the Fig. 6 and Table 1.
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Fig. 3. The numerical and theoretical profile of the vertical component of the velocity
when the diameter of the cylinders - d = 0,2
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Fig. 4. The numerical and theoretical profile of the vertical component of the velocity
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Fig. 6. A comparison of numerical and theoretical values of the permeability of fibrous
porous medium

Table 1. A comparison of numerical and theoretical values of the permeability of
fibrous porous medium

Porosity - ε Numerical
value of the
permeability
- K∗

Tamayol and
Bahrami
(2008) - K∗

4

John Happel
(1959) - K∗

1

Sangani
and Acrivos
(1982) - K∗

3

0.9686 2.076525 1.828917 1.735993 2.036350

0.9294 0.584678 0.661806 0.494450 0.578512

0.8744 0.207850 0.267379 0.172364 0.206495

0.8037 0.080000 0.107103 0.062993 0.080788

0.7174 0.030931 0.040066 0.021798 0.033532

0.6154 0.010859 0.013148 0.006414 0.017729

0.4976 0.003048 0.003323 0.001340 0.017806

0.3641 0.000543 0.000424 0.000118 0.028461

5 Conclusions

As can be seen from Fig. 6 and Table 1, the theoretical prediction of the perme-
ability of the fibrous porous medium which given in the work of Tamayol and
Bahrami (2008) [10] is the most accurate in comparison with other theoretical
predictions. Also in Fig. 3, 4 and 5 showed that the error of the theoretical pre-
diction of the velocity profile is not so large and allows to investigate in detail
the fluid flow in pore scale or micro scale.
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Abstract. A class (m,k)-methods is discussed for the numerical solution
of the initial value problems for implicit systems of ordinary differential
equations. The order conditions and convergence of the numerical solu-
tion in the case of implementation of the scheme with the time-lagging
of matrices derivatives for systems of index 1 are obtained. At k ≤ 4 the
order conditions are studied and schemes optimal computing costs are
obtained.

Keywords: Stiff systems · Differential-algebraic systems of index 1 ·
Numerical methods

1 Introduction

Many applied problems lead to systems of differential equations given implicitly
as [1–4]

F (x, x′) = 0, x(t0) = x0, t0 ≤ t ≤ tk, (1)

where x and F are functions of the same dimension, and F is assumed to have suf-
ficiently many bounded derivatives. Such problems arise in simulation of chem-
ical reaction kinetics [4], electrical networks [5–6], control engineering etc. A
non-autonomous systems F (x, x′, t) = 0 is brought to the form (1) by adding
the equation for the independent variable, t′ = 1.

The modern methods for numerical solution of the initial-value problem for
systems of ordinary differential equations (ODE) suppose usually the explicit
dependence of the derivative of the solution [7]

x′ = ϕ(x), x(t0) = x0, t0 ≤ t ≤ tk. (2)

Support of RFBR Ander Grants 14-01-00047 and 15-01-00977.
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However, a reduction of (1) to the form (2) requires a large additional numerical
costs at every integration step, because this is connected with the inversion of
the matrix Fy = ∂F/∂y which generally is singular. The numerical problem
appeares to be more complicated because of the stiffness of explicit equations
systems: in this case it is necessary to apply of special methods with conversion of
the Jacobian matrix . A class of the schemes is offered [8], in which the reduction
to the form (1) and the calculation of the approximate solution are carried out
simultaneously. The given methods were generated by the (m, k)-schemes [9] for
solving the explicit ODE systems.

We use classification of implicit systems, based on the concept of the index
for such systems [1–2]. We say that system (1) is:

a) of index 0, if ‖F−1
y ‖ ≤ c < ∞ (i.e., when (1) is solvable);

b) of index 1, if (1) can be reduced to

x′ = f(x, y), 0 = g(x, y), (3)

where ‖g−1
y ‖ ≤ c < ∞;

c) of index 2, if (1) can be reduced to

x′ = f(x, y), 0 = g(x),

where ‖(gxfy)−1‖ ≤ c < ∞.

In addition, it is assumed that functions F, f, and g are Lipschitz bounded,
which ensures existence and uniqueness of the solution to problem (1) [10].

Using the notation x′ = y, problem (1) can be written in the form

x′ = y, F (x, y) = 0, x(t0) = x0, y(t0) = y0, t0 ≤ t ≤ tk. (4)

The additional condition y(t0) = y0 can be found, for example, by solving the
problem F (x0, y) = 0 and using the stabilization technique.

2 The Numerical Schemes

We define the class of the (m, k)–schemes for solving problem (4). Let m and k,
(m ≥ k) be given integers and consider the sets

Mm = {1, . . . , m},

Mk = {mi |m1 = 1, mi−1 < mi, mi ≤ m, 2 ≤ i ≤ k}, (5)
Ji = {mj − 1 |j > 1, mj ∈ Mk,mj ≤ i}, 2 ≤ i ≤ m.

Then (m, k)-methods for the systems of index 0 have the form

xn+1 = xn +
m∑

i=1

μikxi, yn+1 = yn +
m∑

i=1

μikyi, (6)
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where the internal stages are given by

Dn = A2 + ahA1,

Dnkxi = h[A2(yn +
i−1∑

j=1

βijkyj) − F (xn +
i−1∑

j=1

βijkxj , yn +
i−1∑

j=1

βijkyj)]+

+ηA2

∑

j∈Ji

αijkxj + (1 − η)hA1

∑

j∈Ji

γijkxj ,

kyi =
1
ah

[kxi − h(yn +
i−1∑

j=1

βijkyj) − η
∑

j∈Ji

αijkxj − (1 − η)h
∑

j∈Ji

γijkyj ],

if i ∈ Mk and

Dnkxi = ηA2(kx(i−1) +
∑

j∈Ji

αijkxj) + (η − 1)hA1(kx(i−1) +
∑

j∈Ji

γijkxj),

kyi =
1
ah

(kxi − η(kx(i−1) +
∑

j∈Ji

αijkxj) − (1 − η)h(ky(i−1) +
∑

j∈Ji

γijkyj).

when i ∈ Mm\Mk. Here, a, μi, βij , αij and γij are parameters defining properties
of stability and accuracy (6), h is the integration step, A1 and A2 are matrices
approximating the derivatives Fny = ∂F (xn, yn)/∂y and Fnx = ∂F (xn, yn)/∂x.
In what follows we use the notation cij = βij + γij , where γij = 0 if j /∈ Ji and
γi,i−1 = 1 if j ∈ Mm\Mk. The matrix Dn is non-singular because detFy �= 0.
For the systems of index 1 or 2 the stages of the method are given by

(E − ahA1)kxi − ahA2kyi = δihf(xn +
i−1∑

j=1

βijkxj , yn +
i−1∑

j=1

βijkyj) +

+η
∑

j∈Ji

αijkxj + (1 − η)h
∑

j∈Ji

γij(A1kxj + A2kyj), (7)

−aB1kxi − aB2kyi = δig(xn +
i−1∑

j=1

βijkxj , yn +
i−1∑

j=1

βijkyj) +

+(1 − η)h
∑

j∈Ji

γij(B1kxj + B2kyj), (8)

where A1, A2, B1, B2 are matrices approximating the derivatives

fnx =
∂f(xn, yn)

∂x
, fny =

∂f(xn, yn)
∂y

, gnx =
∂g(xn, yn)

∂x
, gny =

∂g(xn, yn)
∂y

,

and δi = 1 if i ∈ Mk, δi = 0 if i ∈ Mm\Mk.
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Reversibility of the matrix Dn is ensured for systems of index 1 by the
reversibility of the matrix gy, while for systems of index 2 – by the matrix
gxfy.

The parameter η equals to 0 or 1. At η = 0, the schemes are preferable for
computations, since they require less multiplications of a matrix by vector, and
at η = 1 the schemes are more convenient in implementation .

The main feature of the schemes presented when compared to the conven-
tional methods [11–14] is that in (m, k)–schemes the function F is evaluated k
times at each step, and the number of stages is equal to m, m ≥ k. The given
schemes can be considered as a special form of ROW-methods, in which the set
of definition of the scheme parameters is given more exactly. This simplifies the
analysis of the order conditions, and the study of the problem how to use the
time-lagged matrix Dn are carried out. The linear system of algebraic equations,
arising in calculation of stages, is solved by the LU -decomposition of the matrix
Dn. At every step once decomposition of the matrix Dn is evaluated, the func-
tion of the right side of a differential problem k times is calculated, backward in
the Gauss method m times is executed. For given m and k the cost of one step
is completely determined, and numbers m1, . . . ,mk do only distribute this costs
inside the step.

Two implementations of (6) for the systems of index 1 will be further con-
sidered:

a) the matrix Dn is reevaluated at each integration step;
b) the matrix Dn and the integration step h similar to [5] are not changed

at several steps, thus Dn = Dn+ϑ, hn = hn+ϑ, −Q ≤ ϑ ≤ 0 where Q is the
maximum number of steps in the time-lagging of matrices derivatives.

3 Convergence and Order Conditions

The local error of the scheme (6) when solving (3) is defined as the difference
between the exact and the numerical solution provided the initial values are
choosen on the exact solution

δx(t) = x1 − x(t + h), δy(t) = y1 − y(t + h).

We recall that order of consistency with respect to x is p and with respect to y
is q, if

δx(t) = O(hp+1), δy(t) = O(hq+1).

The condition for the parameters of a scheme ensuring the required order con-
sistency can be obtained by equating the coefficients of the expansion of the
approximate solution xn+1, yn+1 to the exact solution

x(tn + h) = xn +
∞∑

r=1

hr

r!

∑

t∈LT1X
ρ(t)=r

[F (t)]n, (9)
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y(tn + h) = yn +
∞∑

r=1

hr

r!

∑

t∈LT1Y
ρ(t)=r

[F (t)]n, (10)

where [F (t)]n denotes a value of the elementary differential F (t) of the order ρ(t)
at a point (xn, yn). Expressions (9), (10), trees set definition T1 = T1X∪T1X,
and the corresponding elementary differentials F (t), t ∈ LT1 were introduced
in [3].

Now we find an expansion similar to (9), (10) for the numerical solution at(
xn+1, yn+1

)
for our scheme (6).

Assume that the (m, k)-scheme is implemented with time-lagging of the
matrices derivatives. The following proposition gives the derivatives with respect
to h at h = 0 of the entries of the matrix

[
fx(xn + ϑh) fy(yn + ϑh)
gx(xn + ϑh) gy(yn + ϑh)

]

at a point (xn, yn).

Proposition 1. Let p ≡ f ∨ g and r ≡ x ∨ y. Then

p(q)r (xn+ϑ, yn+ϑ)|h=0 =
∑

t∈LT1X

ρ(t)=q

ϑq[Apr(t)]n, (11)

where [Apr(t)]n is a value of the differential

∂k+l+1p

∂r∂xk∂yl
(F (t1), · · · , F (tk), F (u1), · · · , F (ul)),

t = [t1, · · · , tk,u1, · · · ,ul] ∈ LT1 in the point (xn, yn).

Differentiating pr with respect to t gives

dqpr(xn, yn)
d tq

=
∑

t∈LT1X

ρ(t)=q

∂k+l+1p

∂r∂xk∂yl
(x(α1), · · · , x(αk), y(β1), · · · , y(βl)).

Substituting of the expression for x(αi), · · · , y(βj) obtained from (9), (10) using
the change of variables d t = ϑdh, gives the stated result as h → 0.

We denote

t = [t1λ1 , · · · , tn
λn ]r, (12)

for the tree t ∈ T1, where the index λi is the multiplicity of a inclusion of a
corresponding subtree ti ∈ T1, r ≡ x ∨ y.
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The number of a possible labelling α(t) of the tree t ∈ T1 is defined recur-
sively by α(t) = 1, if

ρ(t) = 1, α(t) = ρ̄(t)
n∏

i=1

1
λi!

(
α(ti)
ρ(ti!)

)λi

,

where ρ̄ = (ρ(t) − 1)!, if t ∈ T1X, ρ̄ = ρ(t)!, if t ∈ T1Y.
The integer number Γ (t) corresponding to a tree t ∈ T1 is defined recur-

sively by
Γ (t) = 1, if ρ(t) = 1,

Γ (t) = ρ(t)
n∏

i=1

Γ (ti)λi , if t = [t1λ1 , · · · , tn
λn ]x,

Γ (t) =
n∏

i=1

Γ (ti)λi , if t = [t1λ1 , · · · , tn
λn ]y.

We put c̃ij = cij , if i > j, c̃ii = a, c̃ij = 0, if i < j · ω = (ωij) is the inverse of
the matrix (c̃ij).

The expression φi(t) = φ1i(t) + φ2i(t)/Γ (t), t ∈ T1, 1 ≤ i ≤ m, is defined
recursively by

φ1i(t) = δi, φ2i(t) = 0,

if ρ(t) = 1,

φ1i(t) = δi

n∏

r=1

(
i−1∑

νr=1

βiνr
φνr

(tr))λr ,

φ2i(t) = ρ(t)
i∑

j=1

γij

n∑

r=1

(λrΓ (tr)ϑ(ρ(t)−ρ(tr)−1)φj(tr)),

if t = [t1λ1 , · · · , tn
λn ]x,

φ1i(t) =
i∑

j=1

ωijδj

n∏

r=1

(
j−1∑

νr=1

βjνr
φνr

(tr))λr ,

φ2i(t) =
∑

1≤v≤j≤i

ωijγjv

n∑

r=1

(λrΓ (tr)ϑ(ρ(t)−ρ(tr))φv(tr)),

if t = [t1λ1 , · · · , tn
λn ]y.

The expansion of the derivatives of the numerical solution is given by the
following proposition.

Proposition 2.

k
(q)
xi =

∑

t∈LT1X

ρ(t)=q

Γ (t)φi(t)[F (t)]n, (13)
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k
(q)
yi =

∑

t∈LT1Y

ρ(t)=q

Γ (t)φi(t)[F (t)]n. (14)

This proposition generalizes the theorem (4.4) from [3] and , for q = 1, (13),
(14) coincide with the corresponding expressions from [3].

The order conditions are defined by the following proposition.

Proposition 3.

δx
n = O(hp+1), if the conditions

m∑

i=1

μiφi(t) = 1
Γ (t) ,

hold for all trees t ∈ T1X of order ρ(t) ≤ p,

δy
n = O(hq+1), if

m∑

i=1

μiφi(t) = 1
Γ (t) hold,

for all trees t ∈ T1Y of order ρ(t) ≤ q.

A numerical solution converges with order p with respect to x and with order
q with respect to y if the global error

ex
n = xn − x(tn), ey

n = yn − y(tn)

satisfies
ex

n = O(hp), ey
n = O(hq).

Applying methods (6) for solving the scalar test equation x′ = λx we obtain
xn+1 = R(z)xn, z = hλ, where R(z) is called a stability function.

The following theorem answers the question on convergence of the (m, k)-
methods (6).

Proposition 4. Assume that scheme (6) is consistent of order p with respect to x
and of order (q − 1) with respect to y Suppose that the stability factor is such that
|R(∞)| < 1 (stability function at ∞). Then numerical solution converges to the
exact solution with the order p on variable x and with the order q on variable y,
where the value p is set by above chosen implementation of the scheme a) or b):

a) p = min(p, 2q), b) p = min(p, q + 1).

We note, that the given proposition in the case p=q follows from the theorem
1 [3] true for a wider class of the one-step methods.

In Tables 1, 2 the order conditions ensuring convergence of (m, k)-methods
up to the fourth order of accuracy are tabulated. We use the notations

γi =
∑

γijδj , c̃i =
∑

c̃ijδj , βi =
∑

βijδj .
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Table 1. Order conditions for the x-component

ρ(t) t

1 �
∑

μiδi = 1 (15.a)

2
���

� ∑
μic̃i = 1

2 (15.b)

3
���

�

��
� ∑

μiβ
2
i + 2ϑ

∑
μiγi = 1

3 (15.c)

3
��

�

�

��

�

∑
μic̃ij c̃j = 1

6 (15.d)

4
���

�

��
� � ∑

μiβ
3
i + 3ϑ

∑
μiγi = 1

4 (15.e)

4
��

�

��
�

�

��

�

∑
μiβiβij c̃j + ϑ

∑
μiγij c̃j + 1

2ϑ2
∑

μiγi = 1
8 (15.f)

4
�

���
�

��
�

∑
μic̃ijβ

2
j + 2ϑ

∑
μic̃ijγj = 1

12 (15.g)

4

��
�

�

��

�

��
�

∑
μic̃ij c̃jk c̃k = 1

24 (15.h)

4
����

� ��
�

��
�

�

�

∑
μiβiβijωjkβ2

k + ϑ
∑

μi(2βiβijωjkγk +

+γijωjkβ2
k) + ϑ2

∑
μi(γi + 2γijωjkγk) = 1

4

(15.i)

Table 2. Order conditions for the y - component

ρ(t) t

2 ��
�

��
�

�

∑
μiωijβ

2
j + 2ϑ

∑
μiωijγj = 1 (15.j)

3 ��
�

��
� �

�

∑
μiωijβ

2
j + 3ϑ2

∑
μiωijγj = 1 (15.k)

3
��

�

��
�

�

�

��
∑

μiωijβjβjk c̃k + ϑ
∑

μiωijγjk c̃k +

+ 1
2ϑ2

∑
μiωijγj = 1

2

(20.l)

3
����

�

�

��
�

��
�

�

∑
μiωijβjβjkωksβ

2
s + ϑ

∑
μiωij(2βjβjkωksγs +

+γjkωksβ
2
s ) + ϑ2

∑
μiωij(γj + 2γjkωksγs) = 1

(15.m)
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4 (m,k)-Schemes of the Optimum Order

We study the utmost achievable order of accuracy by (m, k)-schemes for given
k ≤ 4 for system (1) of index 1. First we consider the case of the implementation
a) of the scheme (6).

Let k = 1 and let us consider the schemes with one evaluation of the function
F at a step. In the case m = 1 the stability function takes the form R(z) =
[1 + (μ1 − a)z]/(1 − az). Under μ1 = 1, a = 0.5 the order conditions of the
second order are satisfied. However, unlike ODE systems, the scheme has only
the first order of accuracy, as far as |R(∞)| = 1. Under μ1 = a = 1 we have the
L-stable (R(∞) = 0) scheme of the first order, which in [6] is applied to solve
the problem of index 0.

In the case m = 2 the conditions of the second order yield μ1 = 1, μ2 = 0.5a,
and

R(z) =
1 + (1 − 2a)z + (0.5 − 2a + a2)z2

(1 − az)2
, R(∞) =

0.5 − 2a − a2

a2
.

Setting a = 1 − 0.5
√

2 or a = 1 + 0.5
√

2 we obtain the parameters of L-stable
(2, 1)-scheme of the second order.

Proposition 5. For all m there exists no (m, 1)-method of order higher than 2.

The given proposition is a consequence an analogous statement from [9].
Let k = 2 and we consider the schemes with two evaluation of the function

F on a step. Easily to be convinced, that at m = 2 the maximum order is equal
to 2. In the case m = 3, M2 = {1, 2} the conditions of the third order imply

μ1 = β−2
21 (3β2

21 − 1)/3, μ2 = β−2
21 /3, μ3 = β−2

21 (a − 3a2)/3,

c21 =
−6a2 + 6a − 1

6a2 − 2a
β2
21, c31 =

18a3 − 21a2 + 9a − 1
18a4 − 12a3 + 2a2

β2
21 − 1,

where a and β21 are free parameters. Under 1/3 ≤ a ≤ 1.068579 [12] a scheme is
A-stable, and under a ≈ 0.43587 (i.e. a is root of the a3 − 3a2 + 2a/3 − 1/6 = 0)
a scheme is L-stable.

Proposition 6. For all m and for any choice of sets (5) there exists no (m, 3)-
method of order higher than 3 for the y-component.

Let k = 3, M3 = {1, s, r}, 1 < s < r ≤ m. We denote

qs =
m∑

i=s

μiωij , qr =
m∑

i=r

μiωij , ur =
m∑

r>j≥l

βrjωjlβ
2
l .

The conditions of the fourth order (15.c), (15.e), (15.j), (15.k), (15.i), (15.m)
yields

μsβ
2
s + μrβ

2
r =

1
3
, μsβ

3
s + μrβ

3
r =

1
4
, qsβ

2
s + qrβ

2
r = 1,
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qsβ
3
s + qrβ

3
r = 1, μrβrur =

1
4
, qrβrur = 1.

We introduce the matrices

A =
{

μs μr

qs qr,

}

, B =
{

β2
s β3

s

β2
r β3

r

}

, C =
{

1/3 1/4
1 1

}

, D =
{

1 0
−4 1

}

,

then the first four equations can be represented in the form of the matrix equality:
AB = C. We notice that βs �= 0, as far as det(C) �= 0. The last two equations give
qr = 4μr. Multiplying the matrix equality from the right-hand-side by matrix
B−1 and from the left by D, we have for the right bottom element of the product

0 = βs/(3β2
r (βs − βr)).

The obtained contradiction proves the proposition.
However for the explicit problem (2) it is possible to obtain the methods

of the fourth order, in addition ensuring the third order for the problem (4) of
index 1. In the case m = 4, M2 = {1, 3} the parameters of the A-stable scheme
are

a =
1
2
, μ1 =

11
27

, μ2 = − 8
27

, μ3 =
16
27

, μ4 = − 4
27

,

β31 =
3
4
, β32 = − 3

32
, c32 = − 9

32
, c42 = −21

16
.

and parameters of the L-stable scheme at m = 5, M2 = {1, 3} are

μ1 =
11
27

, μ2 =
−22a + 5

54
, μ3 =

16
27

, μ4 =
−16a + 4

27
,

μ5 =
48a3 − 32a2 + 4a

27
, β31 =

3
4
, β32 =

−24a + 9
32

,

c32 =
216a4 − 864a3 + 648a2 − 144a + 9

384a2 − 256a + 32
,

c52 =
−6912a6 + 16416a5 − 14832a4 + 6296a3 − 1263a2 + 114a − 4

6912a6 − 13824a5 + 10944a4 − 4352a3 + 912a2 − 96a + 4
,

c42 =
[
c52(576a5 − 768a4 + 352a3 − 64a2 + 4a)−

−216a4 + 4a3 + 159a2 − 45a − 3
]
/(192a3 − 176a2 + 48a − 4),

where a is choosen such that 0.2479 < a < 0.67604 [12].
Note, that the properties of stability of (m, k)-methods depend on the choice

of the set Mk. The following proposition in particular holds.

Proposition 7. There exists a L-stable (4, 3)-scheme of order 4 with respect to
x and of order 3 with respect to y.
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However, the study of methods at M3 = {1, 2, 3} shows that |R(z)| > 1.
If we consider the case M3 = {1, 2, 4}, the parameters of the L-stable scheme
are the following:

μ4 =
4β2 − 3

12β2
4(β2 − β4)

, μ2 =
1 − 3μ4β4

3β2
, μ1 = 1 − μ2 − μ4,

c21 =
(−24a3 + 36a2 − 12a + 1)β2

24a3 − 16a2 + 2a
, c43 =

12a3 − 8a2 + a

12μ4β2
2

,

c31 =
(−12μ4c43 + 12a2 − 12a + 2)β2

2 + (4a − 1)c21
12μ4c43β2

2

,

β43 =
(−8a3 + 3a)β2 − 6a2c21

24μ4(c21 + ac31 + a)
,

β42 =
4μ4β4β43 + a

4aμ4β2β4
, β41 = β4 − β42,

μ3 =
−12μ4β42β

2
2 − 4a + 1

12β2
2

,

where β2 and β4 are free parameters, a ≈ 0.572816.

Proposition 8. There exist embedded (5, 4)-schemes of order 4 and 3 determined
by the set M4 = {1, 3, 4, 5}. The scheme of order 4 is L-stable and the scheme
of order 3 is A-stable.

Let β3, β4, β5, β32, β54, c54 be, in general, free parameters. We use a short
notation

qs =
5∑

i=s+1

μiωij , us =
m∑

s>j≥l

βsjωjlβ
2
l , s = 3, 4, 5.

The conditions of the fourth order (15.j), (15.k), (15.i), (15.m) yields

q3β
2
3 + q4β

2
4 = 1 − 1

3a
,

q3β
3
3 + q4β

3
4 = 1 − 1

4a
,

μ4β4u4 + μ5β5u5 =
1
4
, q4β4u4 = 1.

Having chosen the free parameters, we obtain q3, q4 from the first two equations
and μ5 from the expression q4 = −a−2c54μ5.

Equations (15.c), (15.e)

μ3β
2
3 + μ4β

2
4 + μ5β

2
5 =

1
3
,
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μ3β
3
3 + μ4β

3
4 + μ5β

3
5 =

1
4

give μ3, μ4.
Now u4, u5 are obtained from (15.i), (15.m). Using u4 = β2

3β43 we get β43.
Parameters c43, c53 are obtained from the expression

q3 = a−3
[
μ5(c43c54 − ac53) − aμ4c43

]

and from the equation (15.g)

μ4β
2
3c43 + μ5

(
β2
3c53 + β2

4c54
)

=
1
12

− a

3
.

The expression
u5 = a−2

[
(aβ53 − c43β54)β2

3 + aβ54β
2
4

]

gives β53.
From the conditions (15.l), (15.f)

q3β3β32 + q4β4(β43β3 + β42) =
5
6

− 1
8a

,

μ3β3β32 + μ4β4(β42 + β31β43) + μ5β5(β52+

+β54c43 + β41β54 + β31β53) =
1
8

− a

3
,

the equation

μ5c32c43c54 = a5 − 4a4 + 3a3 − 2a2

3
+

a

24
,

ensuring the L-stability, and from the conditions (15.h), (15.d), (15.b), (15.a)

μ4c32c43 + μ5(β3c43c54 + c32c53 + c42c54) =
1
24

− a

2
+

3a2

2
− a3,

μ3c32 + μ4(β3c43 + c42) + μ5(β3c53 + β41c54 + c43c54 + c52) =
1
6

− a + a2,

μ2 + μ3β31 + μ4(β41 + c43) + μ5(β51 + c53 + c54) =
1
2

− a,

μ1 + μ3 + μ4 + μ5 = 1

we evaluate sequentially the parameters β42, β52, c32, c42, c52, μ1, μ2.
Degeneration of the minor

⎧
⎨

⎩

β2
3 β2

4 β2
5

c32 β3c43 + c42 c52 + β3c53 + c54(β41 + c43)
0 −aβ2

3c43 −aβ2
3c53 + c54(β2

3c43 − aβ2
4)

⎫
⎬

⎭
,

corresponding to the parameters μ̃3, μ̃4, μ̃5 in the order conditions (15.c), (15.d),
(15.j) of the embedded scheme, ensures the existence of embedded method of the
order 3. This condition gives the algebraic equation at parameter a
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84a4 − 132a3 + 72a2 − 15a + 1 = 0

having two of the solutions in R : a1 ≈ 0.130354, a2 ≈ 0.239192.
Choosing the second value a and setting the free parameter μ̃5 we obtain

from conditions (15.a) – (15.d) of the embedded scheme other values of the
parameters μ̃i.

Now we consider the implementation b) with the time-lagging of matrices
derivatives. Assume that the coefficients of the scheme are independent of the
parameter ϑ. In the case of order 3 accuracy this yields the two additional order
conditions

∑
μiβi =

1
2
, (15.c′)

∑
μiωijβj = 1. (15.j′)

Proposition 9. For all m there exists no (m, 2)-method of order 3 satisfying
(15.c’), (15.j’).

This follows from the inconsistency of (15.c’), (15.j’), and (15.j).
In the case m = 3, k = 3 the parameters of the L-stable scheme are

μ1 =
(6a − 1)β3 − 2a

4(3a − 1)β3
, μ3 = − a

β3((6a − 3)β3 − 6a + 2)
,

μ2 =
(6a − 3)(1 − 2μ3β3)

4(3a − 1)
, β2 =

6a − 2
6a − 3

, β32 =
a(1 − 2a)

2μ3β2
,

c21 =
6a2 − 6a + 1

6μ3c32
, c31 =

1 − 2μ2c21 − 2μ3c32 − 2a

2μ3
,

where a ≈ 0.43587, and β3, β32 are free parameters.
In addition in the case of the order 4 accuracy it is necessary to satisfy 7

conditions
∑

μiβijcj =
1
6

− a

2
, (15.f ′)

∑
μicijβj =

1
6

− a

2
, (15.g′)

2
∑

μiβiβijωjkβk +
∑

μiβijωjkβ2
k = 1, (15.i′)

∑
μiβijωjkβk =

1
2
, (15.i′′)

∑
μiω̃ijβjkck =

1
2

− a − 1
6a

, (15.l′)

2
∑

μiω̃ijβjβjkωklβl +
∑

μiω̃ijβjkωklβ
2
l = 3 − 1

a
, (15.m′)

∑
μiω̃ijβjkωklβl = 1 − 1

2a
. (15.m′′)
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Here is ω̃ = ω − a−1I, where I is the identity matrix.
The following result for the scheme with the time-lagging of matrices deriva-

tives similar to Proposition 7 holds.

Proposition 10. There exists an L-stable (10, 4)-scheme of order 4 accuracy in
both variables with the time-lagging of matrices derivatives.

We present this result without the proof, since the proof is too complicated.
In conclusion we note that at m ≤ 9 there exists no the (m, 4)-scheme of the

order 4 accuracy in both variables with the time-lagging of matrices derivatives.
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Abstract. Thrombosis occurrence is associated with hemodynamics
instability. For prediction of it various experimental and numerical meth-
ods are developed. However, the greatest interest is mathematical meth-
ods for computing the hemodynamic parameters in thrombus formation.
The model is possible to calculate the basic hemodynamic parameters of
blood flow and the development of stenosis as a result of thrombosis.
To describe the two dimensional blood flow in vessels with complex
geometry as incompressible Newtonian fluid was used the conservation
momentum law. Changing the shape of the vascular bed is considered
in connection with possible biochemical processes like blood clots. It
was assumed that convective flows do not have significant changes with
the growth of blood clots, however, it is not conclusive with respect
to real systems. Thrombus growth entails a change in the flow region,
which is taken into account in this study using the immersed boundary
method. The presence of the immersed boundary is taken into account
by adding a special function in the equation of motion, allowing you to
accurately represent streamlined border area. Unknown special function
determined at the numerical solution stage of the problem, thus removing
the requirement elastic boundaries. Also model consists from the equa-
tions describing the dynamics of the distribution of the main metabolites
of blood clotting. For the numerical solution of the problem the method
of splitting into physical parameters was used. To approximate the con-
vective terms were used the quasi monotone high-order schemes. As a
result of numerical experiments it was found that the use of the immersed
boundary method qualitatively describes the dynamics of the stenosis as
a result of thrombosis.

Keywords: Hemodynamics · Incompressible newtonian fluid · Navier-
stokes equations · Complex geometry · The immersed boundary method ·
Numerical solution · Thrombus

1 Introduction

Modern medicine is essentially an experimental science with great empirical
impact experience on the course of disease by various means. Experimental study
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is limited for a detailed study of the processes in biological media and the math-
ematical modeling is the most effective method for their research. Statements
of the biological and medical problems that lead to the need for the numerical
solution of systems of partial differential equations appeared relatively recently.
They are presented in [1]. For the numerical solution of these problems were used
methods previously used for solving fluid physics [2]. The rheological relations for
the biological mechanics are developed in [3]. Description of the simplest math-
ematical model of the circulatory of heart can be found in [4]. The functions of
the circulatory system of humans, which consists of small and large circles, are
very important and diverse, so their modeling, both in normal and pathological
conditions, is one of the biggest challenges of medicine. The dynamic model of
pulsating fluid flows in the expandable tubes is the most adequate. Quasi-one
dimensional - hydraulic model of an incompressible fluid in a deformable blood
vessel, in the case of a generalized to hierarchical branching of factorial structured
blood vessels were used in [5]. Another approach of modeling the functioning of
the circulatory system based on a quasi three-dimensional circulatory system
was proposed in [6]. In this case, The change of all parameters which can be
output is a subject to simulation, for example, the concentration of active sub-
stances in the blood and the pressure on different parts of the circulatory system,
as well as the velocity of blood flow. Normal functioning of the blood coagula-
tion system provides liquid flow state of blood. The ability to provide a rapid
local reaction of the body in response to the local disruption of normal flow con-
ditions is a feature of the blood coagulation system. Maintaining the integrity
of the circulatory system is provided by high speed of activation reactions of
the coagulation system. Cascading biochemical mechanisms of signal amplifica-
tion from of the lesion of the vascular wall provide speed of these reactions [7].
To date, the number of mathematical models describing the kinematics of the
activation of key metabolites of the blood coagulation system were developed
[8–11]. Interaction processes of blood coagulation with mass transfer are given
in [25]. Effect of convective transport in the distribution of the factors of the
coagulation system in space, affecting the growth of the thrombus is analyzed in
[26], but the effect of a growing thrombus on flow around it was not taken into
account. In this paper we formulate a mathematical model describing the pro-
duction of the main metabolites of the coagulation system, their transport and
distribution of the flow by diffusion. The qualitative dependences of activation
thrombotic conditions in blood flow were investigated from its properties such
as viscosity, flow conditions as pressure drop and chemical composition.

2 Mathematical Model

The formation of a dense fibrin polymer which prevents substance migration is a
blood thrombus in the vessel. The flow is not only involved in the transfer of key
metabolites of blood clotting in the space, but also has a direct effect on blood
clot, deforming it. The transition from one type of spatial temporal behavior to
a qualitatively different type is of great interest in the study of the dynamics
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of growth of blood clots in the bloodstream, it means to define the conditions
under which the activation coagulation system is associated by damage involve
the formation of a blood clot, and in which they are not sufficient to stimulate
thrombus formation. The flow of blood is described by the equations of a viscous
incompressible fluid. As a place of activation of a cascade of biochemical reactions
will be the portion of the surface of the local damage to the vessel wall. The size
of the damage and the intensity of activation of coagulation in this area are free
parameters of the problem. Viscous flow described by non-stationary Navier-
Stokes equations.

divV = 0 (1)

∂V

∂t
+ (V ∇)V = −1

ρ
∇p + νΔV , (2)

∂Ck

∂t
+ ∇(VkCk − Dk∇Ck) = Fk(C1, ..., Cm) (3)

Dk− the diffusion coefficient of the k metabolite, Ck−- their concentration,
Fk(C1, ..., Cm) the term describing the kinetics of local production of the sub-
stance, Vk−- its rate of convective transfer. It is assumed that the transfer rate
of each of the main metabolites is given by Vk = bkV , bk, Dk are allowed to
be zero for fibrin, and bk is one for all soluble metabolites. The flow is missing
where the polymer clot have a density above a certain value ψc. The veloc-
ity of the flow at the interface of the polymer clot is considered to be zero.
We assume that in the area of injury inputted the activator, that is local increase
in the activator concentration is given in the initial time. The equations describ-
ing production and decay of the spatial transfer of activator and inhibitor, as
well as the production of fibrin are as follows [14].

∂θ

∂t
= D1Δθ − div (V θ) +

αθ2

θ + θ0
− γθφ − χ1θ (4)

∂φ

∂t
= D2Δφ − div (V ϕ) + βθ

(

1 +
φ2

φ2
0

)

− χ2φ (5)

∂ψ

∂t
= kθ (6)

The model describes the formation of the main regulators of fibrin polymeriza-
tion in the blood - activator of clotting (thrombin), the concentration of which
is noted by θ, the inhibitor concentration is indicated by φ. Thrombin catalyzes
a reaction to convert the precursor of fibrin - fibrinogen into fibrin monomer,
concentration of which is denoted by ψ, it in turn polymerizes in case and gives
thrombus.

We could rewrite the equations (5), (6) cause of divV = 0.

∂θ

∂t
= D1Δθ − V ∇θ +

αθ2

θ + θ0
− γθφ − χ1θ (7)
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∂φ

∂t
= D2Δφ − V ∇φ + βθ

(

1 +
φ2

φ2
0

)

− χ2φ (8)

Thus, the mathematical model (2), (6), (7), (8) describes the change in the
velocity field in the formation of thrombus in the vessel. To simulate the obsta-
cles of arbitrary shape (in this problem blood clot) is introduced by a discrete-
time artificial power. This force is applied only on the surface and within the
constraints of the body. Force application point disposed in a spaced, similar
velocity components defined on a staggered grid. When the point of application
of force coincides with a virtual border, an artificial force is applied so as to
satisfy the boundary conditions on the obstacle. The cell containing the virtual
boundary, does not satisfy the equation of conservation of mass. Therefore, we
introduce the source / drain weight to the cell that contains the virtual border.
Discrete in time force is used to meet the conditions of adhesion on a virtual
border, while the source / drain weight, to meet the conservation of mass for the
cell that contains the virtual boundary. Procedure nondimensionalization this
system involves choosing the characteristic scales: the concentrations θ0 and φ0,
lines size L , the characteristic scale of velocity V . In view of the above equations
(1) - (2) takes the form:

divV − q = 0 (9)

∂V

∂t
+ (V ∇)V = −∇p +

1
Re

ΔV + fi (10)

where Re = LV/ν- Reynolds number, fi - components of artificial power
defined on a cell boundary in a virtual boundary or within of the body (fi =
(fu, fv) ), q- source / drain of weight defined in the center of the cell on the
virtual border or inside the body. So

fu =
{

0, (x, z) ∈ Ω/Ω0

fu, (x, z) ∈ Ω0

}

, fv =
{

0, (x, z) ∈ Ω/Ω0

fv, (x, z) ∈ Ω0

}

, q=
{

0, (x, z) ∈ Ω/Ω0

q, (x, z) ∈ Ω0

}

where Ω0 - region of thrombus, Ω- region without thrombus. Note that the model
due to the rigidity of the reaction part of the system is difficult for numerical
implementation. The flows of matter were basic calculated values in the numeri-
cal implementation [15], which allows to build a conservative difference schemes
for stiff systems. The characteristic scales of concentrations were used to nondi-
mensionalization of model equations. Thus, the transfer equation of reagents will
take the form:

∂θ

∂t
=

1
Pe

Δθ − V ∇θ +
1
M

(
θ (θ − χ1)

θ + 1
− γθφ

)

(11)

∂φ

∂t
=

1
Pe

Δθ − V ∇φ +
1
M

(
bθ (1 − εφ)

(
1 + φ2

) − χ2φ
)

(12)
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where M = V
a∗L , P e = LV

D , χ1 = a∗χ1, χ2 = a∗χ2, b = βθ0
ϕ0a∗

, c = ϕ0
ε . The value

of the constants listed in [16].
The boundary conditions for the Navier-Stokes equations were taken as fol-

lows: on the walls of the vessel and the surface of a blood clot non split conditions
were taken. On the left and right boundaries of the field to set values of pres-
sure. It was assumed vertical components of velocity are zero at the inlet, free
conditions were given on the output of the boundary.

3 Numerical Method

For the numerical solution of the problem used the method of splitting into
physical parameters. To solve the system used the approximation on the stag-
gered grid. The presence of thrombus counted by adding a special function in
the equations of motion [17] that allows you to accurately represent streamlined
border area. Unknown special function determined at the numerical step of the
solution problem, thus removing the requirement of elastic border. Below is given
a numerical algorithm to determine the dynamics of blood flow.

1. The intermediate speeds ũ, ṽ were determined when fu = 0, fv = 0 on
the entire area (outside of the thrombus) explicitly:

ũ − un

Δτ
= −un ∂uu

∂x
− vn ∂un

∂y
− ∂pn

∂x
+

1
Re

(
∂2un

∂x2
+

∂2un

∂y2

)

ṽ − vn

Δτ
= −un ∂vu

∂x
− vn ∂vn

∂y
− ∂pn

∂y
+

1
Re

(
∂2vn

∂x2
+

∂2vn

∂y2

)

2. Then fu, fv were determined:

fu =
Ũ − un

Δτ
− un ∂uu

∂x
− vn ∂un

∂y
+

∂pn

∂x
− 1

Re

(
∂2un

∂x2
+

∂2un

∂y2

)

fv =
Ṽ − vn

Δτ
− un ∂vu

∂x
− vn ∂vn

∂y
+

∂pn

∂y
− 1

Re

(
∂2vn

∂x2
+

∂2vn

∂y2

)

where Ũ , Ṽ −speeds, which are determined by interpolation.
3. Then û, v̂ were determined with fu , fv

û − un

Δτ
= −un ∂uu

∂x
− vn ∂un

∂y
− ∂pn

∂x
+

1
Re

(
∂2û

∂x2
+

∂2û

∂y2

)

+ fu

v̂ − vn

Δτ
= −un ∂vu

∂x
− vn ∂vn

∂y
− ∂pn

∂y
+

1
Re

(
∂2v̂

∂x2
+

∂2vn

∂y2

)

+ fv

4. After definition û, v̂, q = 1
ΔxΔy (−ûΔy − v̂Δx) is determined for cell

containing virtual boundaries, that means fu �= 0, fv �= 0, q = 0 in the fluid,
outside of body.

5. Then the equation for quazipressure is solving:
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∂2ϕn+1

∂x2
+

∂2ϕn+1

∂y2
=

1
Δt

(
∂û

∂x
+

∂v̂

∂y
− q

)

6. Final values of velocity have form:

un+1 = û − Δt(
∂ϕn+1

∂x
)

vn+1 = v̂ − Δt(
∂ϕn+1

∂y
)

7. Final field of pressure is defined:

pn+1 = pn + ϕn+1 − Δt

Re
(
∂2ϕn+1

∂x2
+

∂2ϕn+1

∂y2
).

Linear and bilinear interpolation were used to improving the order of approx-
imation of the dynamic characteristics on thrombus [18].

4 The Numerical Results

Development of the thrombus is presented in Fig. 1. Initiation of blood clotting
due to a local increase in the activator concentration is accompanied by the
formation of a blood clot, which displaces the blood flow from the area adja-
cent to the site of injury. Formation of localized thrombus is determined by
the interaction between the activator and an inhibitor and also hydrodynamic
flow [14]. In the case of low flow velocities, the wave of coagulation activation is
damped by wave of inhibitor and thrombus growth is stopped. Thrombus cov-
ers up more one-third of the transverse dimension of the vessel as in [16]. The
calculations were performed for Re = 0.01, Pe = 1 on the grid with size 81x81
and δt = 0.0015, δx = 0.0125, δy = 0.00125 at time t = 0.45 − (a), t = 1.2 − (b),
t = 1.8 − (c).

Fig. 2 shows the demolition of clot downstream. The physical cause of that
development of thrombosis is the failure of inhibitor to reduce coagulation until
threshold value in the case of high speed. The results were obtained with the
same parameter values, only Re = 1. The increase in speed leads to a qualitative
change in the nature of a blood clot. Secondary blood clot appears for away from
the injury site in vascular channel. This can be seen from Fig. 3, which shows the
results of numerical calculations for Re = 1, Pe = 24. The complex topological
structure of blood clots is the result of nonlinear interaction between activators,
inhibitors and a flow in a changing geometry of the area under consideration.
Reaction of polymerization provides thrombus growth. The process of thrombus
growth affects to the characteristics of the surrounding blood. Thrombus for-
mation in the bloodstream can be activated by a change of parametric of the
problem.
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Fig. 1. Thrombus formation at low flow rates: t = 0.45−(a), t = 1.2−(b), t = 1.8−(c),
Re = 0.01, Pe = 10.

Fig. 2. Thrombus development. Re = 1, Pe = 10, t = 0.45 − (a), t = 1.2 − (b),
t = 1.8 − (c).
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Fig. 3. Thrombus development. Re = 1, Pe = 24, t = 0.45 − (a), t = 1.2 − (b),
t = 1.8 − (c).

5 Conclusion

The aim of this paper was to construct an efficient numerical algorithm for cal-
culating flows in geometrically complex areas. Numerical results obtained by the
example of the process of thrombosis, which are qualitatively consistent with
the results of other authors [16]. Since the model used is based on a number of
assumptions, the most complex development of thrombosis remain outside con-
sideration. The proposed numerical algorithm based on the immersed boundary
method increases the accuracy of boundary conditions on the obstacles. Further
modification of the proposed algorithm will allow more detailed study of the pro-
cess of thrombus formation in vessels of complex geometry, including a region
with moving boundaries.
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Abstract. In this study we examined the numerical methods of solving
the direct problem of electrical sounding with direct current for a layered
model with complex relief contact boundaries. The solution was obtained
by the method of integral equations. The system of integral equations
for the solution of the direct problem of electrical sounding with direct
current for a layered relief medium was established. Numerical simulation
of the field for two-layered medium with various shapes of relief contact
boundaries was conducted. We obtained the density of distribution of
secondary sources on contact boundaries.

Keywords: The direct problem of electrical sounding · Layered relief
medium · System of integral equations

1 Introduction

The theory of electrical sounding are usually designed for a medium with a
flat surface. However, complex structures of surface relief frequently come up
in practice. Accordingly the task of studying the impact of various forms of
ground surface on the results of geophysical investigations raises. Today some
basic methods of solving the direct problem of electrical sounding with direct
current are developed: method of integral equations [1],[2],[3] finite difference
method [4], finite element method [5], boundary element method [6].

Cases of ground surface relief of the Earth were not considered in investiga-
tions. Or the cases were not brought to systematical numeral modeling. Currently
available methods of relief form corrections have approximate pattern. In this
study, for the calculation of fields in layered relief medium, we use the method
of integral equations, well-established when performing modeling in resistivity
method [7],[8],[9].

2 Mathematical Model

Let us consider the case of medium with surface relief Γ0 and piecewise constant
distribution of the electrical conductivity σ (M). Let the medium be divided into
c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 117–123, 2015.
DOI: 10.1007/978-3-319-25058-8 12
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N areas with constant conductivity σ1, σ2, ..., σN . Let the boundaries between
the areas form two-dimensional piecewise smooth surfaces, which involve defined
normal lines almost everywhere. Let σ0 be the conductivity of the medium,
where the source electrode is placed on the surface, and Γ0 is its ground surface.
We assume that the source electrode does not fall on one of the boundaries
between the contacting media. Let Γ1, Γ2, ..., Γk be areas of surfaces of contacting
media with different conductivities, and surface media in contact with air. It
will be denoted by the values σ+

i , σ−
i of the conductivity of the surface Γi from

different angles for media that have a common internal border Γi. We introduce
new unknowns functions q1, q2, ..., qk, defined on these parts of the boundaries
with the meaning of the surface density of the secondary charges distributed in
these boundary areas.

We seek the field potential in the form of a sum of simple layer potentials
defined on these parts of the boundaries and the potential of a point source in a
half-space:

U (P ) = U0 (P ) +
I

4πσ0

K∑

k=0

uk (P ) =
I

2πσ0 |AP | +
I

4πσ0

K∑

k=0

∫

Γk

qk (M)
|PM | dΓ (M)

(1)
Obviously, that way a particular function satisfies the Laplace equation in the

areas of consistency σ. We require that the function U(P ) satisfy the boundary
conditions: ⎧

⎪⎪⎨

⎪⎪⎩

Δu = 0

σ ∂u
∂n

∣
∣
∣
Γ

= −σ ∂U0
∂n

∣
∣
∣
Γ

+ I
2π δ

(
r − OA

)

u (∞) = 0

(2)

We provide additional conditions on the inner contact boundaries. These
conditions mean a continuous flow of charge through the contact boundaries
and can be written as:

σ+
i

(
∂U

∂n

)

+

= σ−
i

(
∂U

∂n

)

−
(3)

We rewrite (3) in terms of the functions ui (P ) =
∫

Γi

qk(M)dΓ (M)
|PM | , considering

that the derivatives of the potential of a simple layer with density qi (P ) in the
i-th boundary have discontinuity at this contact boundary, and derivatives of
the potential from other sources are continuous:

σ+
i

(
∂ui

∂n

)

+

= σ−
i

(
∂ui

∂n

)

−
− (

σ+
i − σ−

i

)

⎛

⎝
4πσ0

I

∂U0

∂n
+

K∑

k �=i

∂uk

∂n
(P )

⎞

⎠ , (4)

i = 1, 2, ...,K

The boundary condition (2) at all points, except at the point A, can be
rewritten as:

I

4πσ0

K∑

k=0

∂uk

∂n
(P )

∣
∣
∣
Γ0

+
∂U0

∂n

∣
∣
∣
Γ0

= 0 (5)
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Thus, we have exactly as many relations as unknown functions qk – densities
of induced charges on parts of contact boundaries. To formulate these relations
in the form of a system of integral equations we write discontinuity property of
the normal derivative of simple layer for internal contact boundaries:

(
∂ui

∂n

)

+
= −2πqi (P ) +

∫

Γi
qi (M) cosψPM

|PM |2 dΓi (M)

(
∂ui

∂n

)

− = 2πqi (P ) +
∫

Γi
qi (M) cosψPM

|PM |2 dΓi (M)
(6)

3 Derivation of the System of Integral Equations and
Numerical Results

We derive a system of integral equations for the densities of a simple layer and
substitute the formula (6) into the boundary conditions (4):

σ+
i

(

−2πqi (P ) +
∫

Γi

qi (M)
cos ψPM

|PM |2 dΓi (M)

)

= (7)

σ−
i

(

2πqi (P ) +
∫

Γi

qi (M)
cos ψPM

|PM |2 dΓi (M)

)

−

− (
σ+

i − σ−
i

)

⎛

⎝
4πσ0

I

∂U0

∂n
+

K∑

k �=i

∂uk

∂n
(P )

⎞

⎠

After obvious simplifications, we obtain:

qi (P ) =
λ

2π

∫

Γi

qi (M)
cos ψPM

|PM |2 dΓi (M) +
λ

2π

⎛

⎝
4πσ0

I

∂U0

∂n
+

K∑

k �=i

∂uk

∂n
(P )

⎞

⎠ ,(8)

i = 1,K

where λ = (σ+
i −σ−

i )
(σ+

i +σ−
i ) is the reflectivity factor at the boundaries of two contacting

medium. Substituting in (8) function of the potential generated by charge on
other boundaries, we get:

qi (P ) =
λ

2π

∫

Γi

qi (M)
cos ψPM

|PM |2 dΓi (M) +
λ

π

∂

∂n

1
|AP | + (9)

λ

2π

K∑

k �=i

∫

Γk

qk (M)
cos ψPM

|PM |2 dΓ (M)

For the density of a simple layer on the outer boundary Γ0 the integral
equation is obtained from the boundary condition (5). In terms of density of a
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simple layer, the condition (5) after elementary simplifications can be written
as:
(

∂u0

∂n

)

+

=
∂

∂n+

(∫

Γ0

q0 (M)
cos ψPM

|PM |2 dΓ (M)

)
∣
∣
∣
Γ0

=−4πσ0

I

∂U0

∂n

∣
∣
∣
Γ0

−
K∑

j=1

∂uj

∂n

∣
∣
∣
Γj

(10)

Fig. 1. Two-layered medium with relief boundaries

Fig. 2. The model of the medium

With regard to the expression of the normal derivative for the outer side of
surface we obtain

(
∂u0

∂n

)

+

= −2πq0 (P ) +
∫

Γ

q0 (M)
cos ψPM

|PM |2 dΓ (M) (11)
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Fig. 3. The densities of secondary source on boundaries: a) on boundary Γ0; b) on
boundary Γ1

Put (10) in (9):

− 2πq0 (P ) +
∫

Γ

q0 (M)
cos ψPM

|PM |2 dΓ (M) = −4πσ0

I

∂U0

∂n

∣
∣
∣
Γ0

−
K∑

j=1

∂uj

∂n

∣
∣
∣
Γ0

=

= −4πσ0

I

∂U0

∂n

∣
∣
∣
Γ0

−
K∑

j=1

∫

Γj

qj (M)
cos ψPM

|PM |2 dΓj (M) (12)

or

q0 (P ) − 1
2π

K∑

j=0

∫

Γj

qj (M)
cos ψPM

|PM |2 dΓj (M) =
1
π

∂

∂n

1
|AP |

∣
∣
∣
Γ0

(13)
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Equations (9), (13) form a system of equations for the densities of a simple
layer defined on the contact surfaces of medium and a ground surface.

Here are some examples of systems of integral equations for different models
of medium.

For example, for the medium model, shown in figure 1, we can write the
following system of integral equations:

q0 (P ) − 1
2π

∫

Γ0

q0 (M)
cos ψPM

|PM |2 dΓ0 (M) −

1
2π

∫

Γ1

q1 (M)
cos ψPM

|PM |2 dΓ1 (M) =
1
π

∂

∂n

1
|AP | , P ∈ Γ0

q1 (P ) − λ

2π

∫

Γ1

q1 (M)
cos ψPM

|PM |2 dΓ1 (M) −

λ

2π

∫

Γ0

q0 (M)
cos ψPM

|PM |2 dΓ0 (M) =
λ

π

∂

∂n

1
|AP | , P ∈ Γ1

(14)

Similarly, the equations for the cases of buried relief or local inclusion are
written out.

In figure 3 the density of secondary sources for boundaries Γ0 and Γ1 are
plotted. The solution obtained by solving the system of integral equations. Cal-
culations were made for a three-electrode Schlumberger array (AMN) for two-
layered relief medium with resistivities ρ1 = 1 Ωm and ρ2 = 2 Ωm. The model
of the medium is shown in figure 2.

4 Conclusion

A system of integral equations for calculating the density of the secondary cur-
rents at the boundaries of contacting media in case of multiple layered relief
media was established. The proposed method allows to calculate the field of the
point source on the ground surface, which has a relief shape. Numerical examples
of the calculation of fields of current densities of secondary sources were shown.
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Abstract. A tutorial is provided of quantum computing (QC) and the
way it has made significant speed-up in various simulations. A review
will also be provided of the large eddy simulation (LES) of turbulent
flows via the stochastic filtered density function (FDF) methodology. The
potentials of the quantum speed-up in FDF simulation via QC appear
to be significant. This can results to a revolutionary means by which
turbulence simulations can be conducted in future.

1 Introduction

Quantum computation (QC) has undergone rapid development, both experimen-
tally and theoretically, in recent years [1]. Used in appropriate ways, quantum
mechanics can provide powerful resources for solving certain classes of prob-
lems, achieving speedups not available to classical computers. The best known
examples are Shor’s algorithm for factorization of integers [2], and Grover’s algo-
rithm for unstructured search problems [3]. The gain in efficiency can either be
exponential (i.e., a problem where the solution time on a classical computer
scales exponentially in the size of the problem N can have a solution time
that scales polynomially in that size on a quantum computer), or polynomial
(i.e., the problem scales polynomially with N on a classical computer, and with
a smaller power of N on a quantum computer) [1]. In either case, for the solution
of large-scale problems, quantum computers represent a potentially transforma-
tional new paradigm in computing.

Within the past decade much progress has also been made in experimen-
tal realizations of quantum computing hardware. Many architectures have been
proposed based on a variety of physical hardware. On a small scale, quantum
information has been stored and manipulated in superconducting quantum bits
(qubits) [4,5], trapped ions [6,7], electron spins [8–11], nuclear spins in the liq-
uid or solid state [12], and other systems. On the theoretical side, new quantum
algorithms have recently been found, exhibiting significant polynomial speedups
on quantum computers for solution of sparse linear equations or differential
equations [13,14], quantum Monte Carlo problems [15], and classical simulated
annealing problems [16].

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25058-8 13
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It is speculated that QC can be a very useful tool for simulation of turbulent
reacting flows. These flows are of significant interest to many industries as well
as several sectors of the government. A possible means of achieving this is to
search for quantum algorithms which are capable of solving stochastic differential
equations (SDEs) which are central to the classical large eddy simulation (LES)
methods. The optimal means of capturing the detailed physics of such flows via
LES utilizes the density function (FDF) methodology [17]. The FDF provides the
most comprehensive form of accounting for the subgrid scale (SGS) quantities
and it can be cast in the form of the Diffusion equation [17]:

dX = Adt + BdW , (1)

where X is a vector specifying all of the fluid and thermodynamic variables
associated with the flow, vector A and matrix B are the drift and diffusion
coefficients, respectively, components of which are specific to a given FDF model,
t is time and W is the set of independent Weiner processes. For LES to be
practical it must be conducted in a computationally efficient manner, especially
if it is employed for prediction of complex flows.

Fig. 1. Classical FDF Prediction of CO Mass Fraction in a Bluff-Body Reactor [21].

“Classical” computation of the FDF has experienced tremendous progress
within the past decade; see e.g. Refs. [18,19]. As a results, it is now possible to
conduct simulation of some of the most complex reacting flows. As an exam-
ple, Fig. 1 shows LES/FDF prediction of a realistic chemical reactor [20]. The
FDF simulated results as shown are within 95% agreement with experimental
measurements. However, some of these classical simulations can take of order of
several months [21]!
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2 QC for SDE Simulation

We speculate that quantum algorithms can be developed for efficient simula-
tion of SDEs using two different methods. The first method is “algebraic” and
computes arbitrary entries of the vector X in Eq. (1) using fast quantum algo-
rithms for matrix multiplication. The second method prepares a quantum state
such that, after a simple measurement, it samples from a probability distribution
as determined by general Wiener processes. This method is “physical” in that
the quantum states are prepared by quantum adiabatic evolutions of Hamiltoni-
ans that model the quantum harmonic oscillator and could be implemented by
quantum simulators. In both methods, techniques from quantum walks devel-
oped in Ref. [16] to speedup conventional Monte-Carlo can be used. For that it
is needed to investigate different reformulations of the FDF algorithm that are
more amenable to implementation on a quantum computer.

Since the FDF is essentially modelled via a set of SDEs, it may be actually
possible to employ QC for its simulations. This can be potentially achieved in two
different ways. In the first case a simulation is aimed to output an arbitrary entry
of the vector X(t), that satisfies a type of Eq. (1), with specified accuracy. This
method works because X(t) can be sometimes written as a matrix product acting
on some initial vector X(0), after discretization. Then, a fast quantum algorithm
for matrix multiplication would provide the answer. The second method aims
to prepare a quantum state that contains all the information about the evolved
probability distribution as determined by a Fokker-Planck equation like Eq. (5)
below. A simple measurement in such state allows to sample with exactly the
desired probability. The quantum state is the lowest-energy (ground) state of a
system of perturbed quantum oscillators. A generalization to the discrete case
would provide quantum algorithms for this problem that could be readily imple-
mented on a quantum simulator. Well-known tools for quantum speedups, such
as the quantum Fourier transform (which is responsible for fast factoring as in
Shor’s algorithm) will play an important role here.

3 Turbulence Formulation via FDF

As indicated previously, the idea of employing QC for turbulence (including tur-
bulent combustion) simulation appears promising because the essential means of
enacting FDF is via modeled SDEs. These SDEs describe all of the basic trans-
port variables and account for couplings of turbulence, exothermicity, variable
density, and also differential diffusion. The primary transport variables in FDF
formulation are the density ρ(x, t), the velocity vector ui(x, t) (i = 1, 2, 3), the
pressure p(x, t), the internal energy e(x, t) and the species mass fractions φα

(α = 1, . . . Ns). The equations which govern the transport of these variables in
space (xi) (i = 1, 2, 3) and time (t) are the continuity, momentum, energy and
the scalar transport, all coupled through the equation of state [22].
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where R0 denotes the universal gas constant and W is the mean molecular weight
of the mixture. T denote the temperature, e is the internal energy γ = cp

cv
is the

specific heat ratio, and S(Φ) denotes the chemical source term. The viscous stress
tensor τij , the energy flux qj , the species α diffusive mass flux vector Jα

j and σij

tensor are represented by

σij = τij − pδij , τij = μ

(
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, Jα

j = −ρΓ
∂φα

∂xj
, (3)

where μ is the fluid dynamic viscosity, λ denotes the thermal conductivity
and Γ is the mass diffusion coefficient. We assume calorically perfect gas in
which the specific heats are constants. Large eddy simulation involves the spa-
tial filtering operation: [23,24] 〈Q(x, t)〉� =

∫ +∞
−∞ Q(x′, t)GΔl

(x′,x)dx′, where
GΔl1

(x′,x) denotes a filter function, and 〈Q(x, t)〉� denotes the filtered value
of the transport variable Q(x, t). The subscript l1 indicates that 〈Q(x, t)〉� is
the first level filter value of the variable Q(x, t) [25]. In variable-density flows
it is convenient to use the Favre-filtered quantity 〈Q(x, t)〉L = 〈ρQ〉� / 〈ρ〉�.
We consider a filter function that is spatially and temporally invariant and
localized, thus: GΔl1

(x′,x) ≡ GΔl1
(x′ − x) with the properties GΔl1

(x) ≥ 0,
∫ +∞

−∞ GΔl1
(x)dx = 1.

The formal FDF is defined by FL (v,ψ,Θ,η,x; t) where, v, ψ, Θ and η are
the velocity vector, the scalar array, the sensible internal energy and pressure
in the sample space, respectively. The function F has all of the properties of
a probability density function in that the filtered value of any function of the
velocity and/or scalar variables is obtained by its integration over the sample
spaces:

〈ρ(x, t)〉� 〈Q(x, t)〉L =
∫ +∞

−∞

∫ +∞

−∞
Q(v,ψ,Θ,η)FL(v,ψ,Θ,η,x; t)dvdψdΘdη.

(4)
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However, the transport equation for FL is not in a closed form and must
be modelled. For this, as indicted earlier, we consider the general diffusion
process,[26,27] given by the system of SDEs. The modeling of the SDEs must
be in such a way that is amenable to QC. The starting point will be our sim-
plified Langevin model (SLM) and linear mean-square estimation (LMSE) [28]
coupled with an equation of state and obeying the first law of thermodynamics.
With construction of the SDEs, the corresponding Fokker-Planck equation [29]
will essentially be the modelled FDF transport equation. Our proposed model
is under construction and is of the form:
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In Eq. (5) k is the SGS kinetic energy, ε = 〈ρ〉� Cε
k3/2

ΔL
is the SGS dissipation,

ω = 1
〈ρ〉�

ε
k is the SGS frequency, A, B are the model parameters for the pressure

SDE, and

Gij =

[
Πd

2k 〈ρ〉�

− ω

(
1
2

+
3
4
C0

) ]

δij . (6)

The parameters C0, Cφ, Ce, and Cε are model constants and need to be
specified [30,31]. The same goes for the pressure dilatation term Πd [31,32].
The transport equations for all of the SGS moments are readily obtained by
integration of this Fokker-Planck equation. This provides a complete statistical
description of turbulence. The idea is to find methods that could take advantage
of quantum resources in order to speed up these calculations, at least polyno-
mially in the number of variables. Because of the size of the problem typically
considered, such a speedup could transform the way these problems are treated
in engineering; providing solutions to problems many orders of magnitude faster
than are possible with classical computers.

Another challenge associated with FDF is its implementation in complex
geometries. Structured multi-block grids lack the required flexibility and robust-
ness for handling such geometries. The grid cells may also become too skewed
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Fig. 2. Monte Carlo Particles on Unstructured Grids.

Fig. 3. Classical FDF Simulation of the Sandia/Sydney Burner [36].

and/or twisted, prohibiting efficient simulations. Unstructured grids provide a
good solution for the problem of producing grids on complex shapes. Such grids
have irregularly distributed nodes and their cells are not required to be of a
specific shape. Furthermore, the connectivity of neighboring cells can vary spa-
tially. The SDEs portraying the FDF will be primarily simulated via Monte Carlo
methods [33,34], on a domain represented by unstructured grids. As an example,
Fig. 2 shows a small fraction of the Monte Carlo particles used on unstructured
meshes for the classical simulation results shown in Fig. 1. The essence of a
quantum computing implementation would be to speed up these Monte Carlo
simulations, either in direct solutions of the stochastic differential equations, or
by solving equivalent problems (such as the Fokker-Planck equations).
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Fig. 4. Classical FDF Simulation of Taylor-Green Vortex Flow [37].

We expect to be able to conduct LES with over billions grid points and over
tens of billions of Monte Carlo particles. These simulations are proposed to be
conducted for prototype reactors with variable physical length and time scales.
In this case, the effects of the flow residence time and the Damköhler number
will be the primary subject of the investigations. In addition, the spatial and the
compositional structures of the reacting flow field will be assessed.

At this end, to demonstrate superiority of our classical algorithms, we show
some sample results of our most recent FDF simulation of the Sandia/Sydney
swirl burner [35]. This configuration is selected as it is one of the most challeng-
ing turbulent flames for prediction. Figure 3 shows the contours of the azimuthal
velocity field as predicted by our FDF. The simulated results agree with exper-
imental data better than any other classical methods currently available [36].
But the computational time requirements are excessive. As another example,
Fig. 4 shows the contour of filtered temperature field for the symbolic Taylor-
Green vortex flow as obtained via FDF coupled with a discontinuous Galerkin
flow solver [37]. Quantum computation may potentially provide a much more
efficient means for such simulations.
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Abstract. In this paper we find spatial and average dependences of the
optical medium thickness, spectral profile and absorption line width on
the initial thickness of the medium and the ratio between the limiting
velocity of self-similar expansion and the thermal velocity of atoms.
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1 Introduction

The studying of interaction between resonant radiation and a medium plays an
important role in astrophysics and gas and plasma physics. Most of the research
in this field has been devoted to stationary media. Sobolev [1] was the first to
study the impact of macroscopic movement of gas on the transfer of resonance
radiation in expanding planetary nebulae and to estimate the probability of
photon escape from the medium. A further development of this approach can
be found in [2]. The macroscopic movement is an important consideration when
dealing with laser generation [3] or producing ultracold plasma (UCP) [4] in a
laboratory.

Our previous research efforts were focused on the radiation transfer in
expanding media [5–7], escape of resonance radiation from the center of an
expanding medium [8], absorption of external continuum radiation in a sphere
[9,10] and on finding an optimum laser radiation spectrum to obtain UCP [11].

In this paper we analyze the absorption spectrum characteristics (optical
thickness, absorption line width and shape) in a self-similarly expanding gaseous
sphere.

2 Model

In a self-similarly expanding gaseous [12] and plasma [4] sphere, the expansion
velocity V(r) at the point r is given by

V(r) =
VR

R
r, (1)
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where VR is the gas expansion velocity at the boundary of the sphere of R
radius. We will assume the gas concentration n and temperature T to be con-
stant over space and the absorption line shape to be determined by the Doppler
effect. Given these assumptions, the radiation absorption coefficient k(ν, r) at
the frequency ν at the point r will have the form

k(ν, r) = k0 exp

{

−
[
(ν − ν0)

ν0
− V(r)l

c

]2(
c

V0

)2
}

. (2)

Note that the first term in the exponent (2) is associated with thermal gas
movement and results in a Doppler shape of the absorption line while the second
term refers to macroscopic gas movement due to expansion. When there is no gas
expansion, the absorption coefficient at the resonance frequency ν = ν0 equals

k0 =
λ3
0

8π

g2
g1

A21√
πV0

n. (3)

Notations used in (2) and (3) are as follows: is the speed of light; λ0 = c/ν0 is the
resonance radiation wavelength; l is the unit vector determining the direction
of propagation of the external radiation; V0 =

√
2kBT/m; kB stands for the

Boltzmann constant; m is the atom (ion) mass; g2, g1 are the statistic weights
of the excited and ground state; A21 is the spontaneous decay probability.

Consider radiation absorption I0 propagating along a chord that is parallel to
the direction of travelling of radiation l and is determined by the angle ϕ formed
from the center of the sphere between the direction l and the direction to the
point where the chord intersects the surface of the sphere. For ϕ = 0, radiation
propagates along the sphere diameter. By the Bouguer law, the intensity of
radiation leaving a sphere at the frequency ν through unit area will be equal to
I(ν, ϕ)

I(ν, ϕ) = I0 exp

⎧
⎨

⎩
−k0

R cosϕ∫

R cosϕ

exp

[

−
(

(ν − ν0)c
ν0V0

− VR

V0

r

R

)2
]

dr

⎫
⎬

⎭
, (4)

where I0 is the incident radiation intensity independent of frequency.
We now switch to new variables

ω =
(ν − ν0)

ν0

c

V0
, y =

VR

V0

r

R
, (5)

and rewrite (4) as

I(ω, ϕ) = I0 exp

⎧
⎨

⎩
−τ1

α cosϕ∫

−α cosϕ

exp
[
−(ω − y)2

]
dy

⎫
⎬

⎭
, (6)

where
τ1 =

τ0
α

, τ0 = k0R, α =
VR

V0
. (7)
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Here τ0 is the optical thickness of the medium when there is no expansion and α
is found as a ratio of the gas expansion velocity at the boundary to the thermal
velocity of particles.

Finding a logarithm of (6) yields

ln
[

I0
I(ω, ϕ)

]

= τ1

α cosϕ∫

−α cosϕ

exp
[
−(ω − y)2

]
dy. (8)

After averaging over sphere, denoted as <>, expression (8) takes on the form

< ln
[

I0
I(ω, ϕ)

]

>= 2τ1

π/2∫

0

α cosϕ∫

−α cosϕ

e−(ω−y)2 sin ϕ cos ϕdϕ. (9)

Expressions (8) and (9) can provide spatial and mean estimates for the optical
thickness of the medium and absorption line width and shape.

3 Results

3.1 Optical Thickness of a Medium

The optical thickness of an expanding medium is found from expression (8) for
ω = 0

τ = τ1

α cosϕ∫

−α cosϕ

e−y2
dy (10)

and depends on τ0, ϕ and α. For radiation propagating along the diameter
(ϕ = 0) , the optical thickness τ (10) is shown in Fig. 1 as a function of α.
As we can see, the optical thickness reduces with growing α, which is attributed
to the absorption spectrum broadening resulting from the expansion and to the
associated reduced absorption at the frequency ω = 0.

Consider asymptotic values of τ . For α cos ϕ � 1, after series expansion of
the exponent in (10) followed by integration we obtain

τ = 2τ0 cos ϕ

[

1 − α2cos2ϕ
3

]

. (11)

For α cos ϕ � 1, from (10) we obtain

τ =
√

π
τ0
α

. (12)

The asymptotic values τ shown in Fig. 1 provide fairly good estimates of τ for
small and large α. According to (12), τ decreases when α >

√
π and the medium

becomes transparent when α >
√

πτ0.



136 N. Shaparev

Fig. 1. Optical thickness for ϕ = 0. Curve 1 refers to τ0 = 1, Curve 2 to τ0 = 5. ♦ −
asymptotic values: on the left as found from (11), on the right – from (12).

The simulations show that the optical thickness τ as a function of ϕ remains
constant for α > τ0 except for the near boundary areas (ϕ → π/2) where
τ = τ0/α → 0 and hence the radiation is no longer absorbed. Explanation
for the constant value of τ stems from τ0 and α being proportionate to cosϕ .

According to (9) and (10), the optical thickness averaged over sphere will be

< τ >= 2τ1

π/2∫

0

α cosϕ∫

−α cosϕ

e−y2
dy sinϕ cos ϕdϕ, (13)

which is plotted in Fig. 2. Applying (11), for α � 1 we obtain

< τ >= 4τ0

[
1
3

− α2

15

]

. (14)

For α � 1, the averaging of (12) yields

< τ >=
√

π
τ0
α

. (15)

Average asymptotic values < τ > are also shown in Fig. 2 illustrating good agree-
ment between the asymptotic values and the numerical estimates. The average
value of < τ > is considerably less than τ for ϕ = 0 because τ reduces along the
chords as ϕ changes from 0 to π/2.

3.2 Absorption Line Shape

Frequency dependence (8) also describes the absorption line shape I(ω). For
small α and ϕ = 0, series expansion of (8) with respect to y followed by integra-
tion yields

I(ω) = 2τ0e−ω2
[

1 − 1
3

(
2ω2 − 1

)
α2

]

. (16)
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Fig. 2. Average optical thickness Curve 1 refers to τ0 = 1, Curve 2 to τ0 = 5. ♦ −
asymptotic values: on the left as found from (14), on the right – from (15).

On the other hand, suppose V0 increases by ΔV0 , then, in virtue of the depen-
dence of ω and τ0 on V0, by expanding the Doppler line shape (Exp. (2) for
VR = 0) in series with respect to ΔV0 we obtain

I(ω) = 2τ0e−ω2

[

1 −
(
2ω2 − 1

)

V0
ΔV0

]

. (17)

Comparison of (16) and (17) indicates that I(ω) maintains Dopper distribution
for small α and

ΔV0 =
α2

3
V0, (18)

which is associated with the gas expansion. The increase of V0 by ΔV0 correlates
with the increase of the effective gas temperature by

ΔT =
2
3
α2T. (19)

Fig. 3 shows I(ω) for α = 0.3 and the Doppler distribution with a thermal
velocity increased by ΔV0. One can see that these distributions are quite close
to each other.

Fig. 4 illustrates the absorption line shape corresponding to Exp. (8) when
ϕ = 0 for τ0 = 1 and various α. It is obvious that the absorption line grows
broader and acquires the shape of a plateau as the expansion velocity VR and
hence α increase. The profile gets narrower with increasing ϕ as the result of
shrinking of the expansion velocity projection.

Note that the blue wing of the absorption curve (ω > 0) is associated with
atoms whose velocity projection V is parallel to l while the red wing (ω < 0) is
associated with atoms flying to meet radiation.

Formation of the plateau for large α is induced by the fact that the same
number of particles is absorbed at each frequency. To prove this, let us put the
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Fig. 3. Absorption line shape for ϕ = 0. The solid curve corresponds to Exp. (8) for
α = 0.3, ♦ – Doppler distribution.

Fig. 4. Absorption line shape for ϕ = 0 and τ0 = 1. Curve 1: α = 0, Curve 2: α = 1,
Curve 3: α = 5.

ω derivative in (8) equal to zero for ϕ = 0

α∫

−α

e−(ω−y)22(ω − y)dy = 0. (20)

By integrating (refeq:20) we obtain

e−(ω−α)2 − e−(ω+α) = 0. (21)

Next we expand (21) in series with respect to ω in the range ω < α and what
we get is, indeed, equality to zero of expressions (20) and (21). The unaffected
behaviour of I(ω) in the range −α < ω < α when α � 1 is due to the fact that
the medium gets optically thinner and the absorption of radiation is proportion-
ate to n, the latter being constant in space.
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Fig. 5. Average shape of the absorption line. τ0 = 1; Curve 1 refers to α = 0, Curve 2
to α = 1, Curve 3 to α = 5.

The plateau in the line shape disappears after averaging over, which brings
in contributions from different projections of the expansion velocity. The average
shape of the absorption line is plotted in Fig. 5.

3.3 Absorption Line Width

The absorption line width is determined by the frequency range equal to double
frequency difference between ω = 0 and ω1 corresponding to half maximum
absorption. For the Doppler line shape

Δω = 2ω1 = 2
√

ln 2. (22)

For small α, additional contribution to the velocity V0 is found as (18). Then
substituting ΔV0 (18) into the expression for ω (5) and expanding in series with
respect to α we obtain the line width

Δω = 2
√

ln 2
(

1 +
α2

3

)

. (23)

For α � 1, expression (8) when ω = 0 equals

I(0) � √
πτ. (24)

For
ω � ±α, (25)

I(±α) �
√

π

2
τ. (26)

Hence the line width in the given situation will be

Δω = 2α. (27)
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Fig. 6. Absorption line width for ϕ = 0. ♦ − as obtained from (8), Curve 1 as found
from (23), Curve 2 – (27).

Fig. 7. Absorption line width (top – ϕ = 0, bottom – averaged over ϕ). Curve 1 refers
to (29), Curve 2 to (31), Curve 3 – asymptotics (23), Curve 4 – asymptotics (27).

The line width as found from (8) is shown in Fig. 6 for ϕ = 0. Also shown
are the asymptotic values employed: (23) and (27).

Let us now find the line width Δω averaged over sphere. For small α and
ϕ �= 0, the line width along the chord, by (23), will be

Δω = 2
√

ln 2
(

1 +
α2cos2ϕ

3

)

(28)

By averaging (28) over ϕ we obtain

Δω = 2
√

ln 2
[

1 +
α2

6

]

. (29)

For large α and ϕ �= 0 we have

Δω = 2α cos ϕ. (30)
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After averaging we obtain

Δω =
4
3
α. (31)

Fig. 7 shows the line width for ϕ = 0 and the one averaged over ϕ. Also
shown are the asymptotic values.

4 Conclusions

We have obtained spatial and average dependences of the optical thickness, shape
andwidth of the resonance radiation absorption on the initial optical density τ0 and
the ratio of the limiting gas expansion velocity VR to the thermal velocity of atoms
V0 (α = VR/V0) in a self-similarly expanding gaseous sphere. The asymptotic and
numerical estimates appear to be in good agreement for both small and large α.

The initial optical thickness has been shown to reduce with growing α until
it becomes −1/α for large α due to frequency broadening of the absorption
coefficient under expansion. This results in optical thinning when α > τ0.

The Doppler shape of the absorption line is maintained for small α and
the absorption line for α � 1 in the frequency range −α < ω < α remains
constant due to the dominating impact of expansion on the absorption spectrum.
When averaged over sphere, the line shape becomes smooth. The absorption line
broadening is associated with the Doppler shift due to macroscopic movement
(expansion of the sphere).

The absorption line width along the chord is determined by Δω ∼ (1 +
α2/3) for small alpha and by Δω � 2α for large α. Upon spatial averaging the
coefficient in front of α decreases because of the changes in the velocity projection
on the direction of radiation propagation.

Acknowledgments. The author is grateful to A.P. Gavriliuk for useful discussions
of the results obtained.
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Abstract. Fracture propagation caused by fluid pumping is in the focus
of the report. The most popular approaches and problem statements used
for the propagation simulation are described.

Methods of simulation of the main processes that take place during
the fracture propagation are outlined. There processes are the follows:
rock deformation and rock breaking, fluid flow inside the fracture and its
filtration in the rock.

New method of fracture propagation simulation is proposed. The
method unites three sub-models that describe three (except the fluid
filtration) processes that affect the fracture propagation. Important
advance of the methodic is its ability to replace any sub-model with-
out numerical algorithm modification. So the appropriate sub-model can
be chosen for each process depending on the problem features.

Thus quasi static and unsteady statement may be used for simulation
of fracture propagation caused by viscous and inviscid fluid pumping.
Rock deformation is described in scope of linear elasticity equation of
homogeneous uniform material. Classical (similar to one used in [1])
and dual boundary element methods are used for this equations solu-
tion. Rock breaking caused by the fracture propagation is described by
Irwin’s criterion coupled with maximal circumferential stress criterion
for calculation of propagation direction. Various approaches are used to
obtain stress intensity factors that are necessary for both criteria.

Proposed methodic has been applied for fracture propagation simula-
tion. The sensitivity of fracture propagation process to variation of the
main physical parameters has been shown.

Keywords: Three-dimensional dual boundary elements method ·
Quasi-Static load · Viscous fluid · Hydraulic fracturing · Non-planar
fracture propagation

1 Introduction

In the paper [2] a fully 3D numerical model of fracture propagation from the
cavity in an elastic media caused by the viscous fluid pumping was developed
c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 143–157, 2015.
DOI: 10.1007/978-3-319-25058-8 15
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and verified. Numerical model means linked submodels and numerical methods
and algorithms for their coupled solution. Three basic submodels were linked
together into a single model of propagation: the stress-strain state of the elastic
media, Newtonian fluid flow, and brittle fracturing and crack growth. The fol-
lowing assumptions were made in the model [2]. The media fracturing velocity
is assumed to be low enough. It allows using the fracture propagation the elastic
equilibrium equations and the static criteria of crack growth and direction for
the fracture propagation simulation. During the model of fracture propagation
development authors of [2] were using conventional BEM for the stress-strain
state calculations [3]. Therefore this method was used for the elasticity prob-
lem solution. However the conventional BEM cannot be used for the line cracks
because the integral boundary equation degenerates. Therefore in paper [2] the
fracture was considered as a cavity with small but finite width between its sides
(Fig. 1). So the fracture was approximated by the crack with the artificial width,
and the width itself was defined from the condition of the solution error mini-
mization, caused by this fracture approximation.

Fig. 1. Artificial notch concept: real fracture (left) is replaced with artificial notch
(right) [2].

In the present paper the fracture is treated as a real crack with infinite small
distance between sides. For the solution of the elasticity problem with the cavity
and the fracture, the modification of the Dual BEM with discontinuous elements
is built [4]. It is the most optimal method with regard to the computational costs
and the convenience of the integral equations approximation. Near the crack
front special elements are used. They account the singularity of the elasticity
problem solution. To improve the accuracy of the Stress Intensity Factors calcu-
lation, the special boundary elements near the crack front are accounted in the
interpolation formulae.
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2 Dual BEM

The elasticity problem is solved in an infinite domain with the cavity bounded by
S∗ and the fracture with sides S+ and S− which adjoins the cavity (see Fig. 1,
left). Stress-strain state of a media is described by elastic equilibrium equations

∂σij

∂xj
= 0, (1)

where σij are the components of the stress tensor; indices i, j posses the val-
ues 1, 2, 3. The Hookes law for the isotropic homogeneous material is used with
the equation (1)

σij = λδijεkk + 2μεij , (2)

where εij = 0.5(ui,j + uj,i) are the displacements tensor components, ui are the
components of the displacements vector, δij -is the Kronecker symbol, λ and μ
are the Lame parameters.

To obtain the closed differential problem let us add the boundary conditions
on the cavity surface S∗ = St + Su

ti

∣
∣
∣
St

= t∗i , ui

∣
∣
∣
Su

= u∗
i , (3)

on the fracture sides S±

ti

∣
∣
∣
S±

= −pcrackni, (4)

and on the infinite distance
ui

∣
∣
∣
S∞

= 0, (5)

to the differential equations (1),(2).
Conventional BEM [5] is used to solve the elasticity problems with a regular

boundary S∗. For the problems with fractures S± a modification of the conven-
tional BEM – the Dual BEM is suggested in [4]. In DBEM the Displacements
Boundary Integral Equation (DBIE) is solved on the regular boundary and the
Traction Boundary Integral Equation (TBIE) is solved on the fracture boundary.
To solve the elasticity problem near the fracture in an infinite elastic media a
modification of DBEM is developed in the present paper.

For points y at the regular boundary S∗ the DBIE is solved

cij(y)ui(y) =
∫

S∗

Uij(y,x)ti(x)dS(x)−

−−
∫

S∗

Tij(y,x)ui(x)dS(x) −
∫

S+

Tij(y,x)Δui(x)dS(x).
(6)

The singular integrals −
∫

and =
∫

are considered in the meaning of the Cauchy

and Hadamard principal value, respectively. In DBEM on one side of the fracture
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the TBIE is taken instead of the DBIE.

tj(y+) =
∫

S∗

Lij(y+,x)ti(x)dS(x)−

−
∫

S∗

Mij(y+,x)ui(x)dS(x) − =
∫

S+

Mij(y+,x)Δui(x)dS(x).
(7)

Here Lij(y+,x) = Dkij(y+,x)nk(y+) and Mij(y+,x) = Skij(y+,x)nk(y+), and
functions Dkij and Skij are obtained from the kernels Uij and Tij by differen-
tiation with respect to the corresponding coordinates and applying the Hookes
law [6]. Equation (7) doesn’t contain displacement components ui on the fracture
boundary, but allows to determine the unknown components of the displacement
discontinuities Δui on the boundary.

2.1 Boundary Discretization and Obtaining the System of Linear
Algebraic Equations (SLAE)

Let us demonstrate the numerical method of the TBIE (7) solving in the con-
text of fracture S = S+ + S−. The whole fracture S is approximated with the
boundary elements as it is shown in the Fig. 2

S �
Ne∑

e=1

Se. (8)

Fig. 2. Segmentation of boundary S into the discontinuous squared boundary Se (left)
and (ξ1, ξ2) parameterization of an element with Nα = 9 (right).

Each boundary element Se is parameterized with the local coordinates (ξ1, ξ2)
as it is shown in Fig. 2. Components of the radius-vectors, displacements dis-
continuities, and stresses in a certain point of an element (ξ1, ξ2) are represented
as

fi(ξ1, ξ2) =
Nα∑

α=1

fi(xα)φα(ξ1, ξ2), (9)
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where xα are the element nodes, φα(ξ1, ξ2) are the element shape functions, Nα

is the number of nodes and shape functions in the element.
Equation (7) with respect to the (8) and (9) can be written as

tj(y−) =
Ne∑

e=1

Nα(e)∑

α=1

⎛

⎜
⎝−Δueα

i

∫

ξ1

∫

ξ2

Mij(y−, ξ1, ξ2)φα(ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2

⎞

⎟
⎠ ,

(10)
where J(ξ1, ξ2) is the Jacobian of the transition to the elements local coordinate
system. The displacements discontinuities Δueα

i in the node α of the element
e are taken outside the integral because they doesnt depend on the integration
variables ξ1 and ξ2. Note that integrals in formula (10) depend only on boundary
geometry and not on the boundary conditions.

By writing out the equations (10) in the nodes yeα, SLAE for the unknown
functions Δui is obtained

MΔu = −t. (11)

Here the Δu and t are the vectors of the displacement discontinuities and ten-
sions in all of the nodes. M is the matrix, composed of the integral values in
equation (10).

In case with cavity and fracture S = S∗ +S++S− the system (11) is written
as [

T11 − 1
2I T12

M21 M22

](
u

Δu

)

=
[
U11 0
L21 −I

](
t
t

)

, (12)

where U and T are the sub-matrices, composed of the integral values in the
DBIE (6), L and M are the sub-matrices of the TBIE (7).

2.2 Boundary Elements and Approximating Functions

As long as TBIE (7) requires the smoothness of the surface in the collocation
points y on the fracture S±, and the elements edges are the lines of discontinuity,
DBEM requires to use discontinuous elements with all nodes situated inside the
element as it is shown in Fig. 2. In the present paper the discontinuous linear
and squared elements, and special elements for the fracture front were used [7].
These elements approximate the displacement discontinuity Δu asymptotic at
the fracture front, which improves the accuracy of the Stress Intensity Factors
calculations.

2.3 Hadamar Principal Value Calculation of the Singular Integral

The main difficulty of DBEM is to construct the algorithm for the calculation
of the Hadamar principal value for the singular integral along the boundary
element Se that appear in the equation (8). The integral contains the collocation
point y

Iij(y) = =
∫

Se

Kij(y,x)dS(x). (13)
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To calculate the integral Iij (13) the singularity substraction technique [8] is
used.

3 Calculation of the Stress Intensity Factors

The fundamental postulate of Linear Elastic Fracture Mechanics (LEFM) is that
the behaviour of cracks is determined solely by the value of the Stress Intensity
Factors (SIFs). The stress field in the vicinity of the crack tip is characterized by
the SIFs KI , KII and KIII . In the present paper the displacement extrapolation
method for evaluating SIFs is employed [6]

KO
I =

E

4(1 − ν2)

√
π

2l
ΔuP

b , (14)

KO
II =

E

4(1 − ν2)

√
π

2l
ΔuP

n , (15)

KO
III =

E

4(1 + ν)

√
π

2l
ΔuP

t , (16)

where ΔuP is the displacement discontinuity in the fracture point P placed at
the distance l from a front point O. Vectors b, n and t are local basis on the
crack front. Formulae (14), (15), (16) are applicable if the distance l is small
enough comparing to the typical fracture size. If the distance l is long, then the
SIFs values become understated. In this case the extrapolation of the SIFs values
KP1 and KP2 , from the points P1 and P2 to the front point O should be used
(Fig. 3). Distance to the P1 and P2 is l1 and l2, respectively.

KO = KP2 +
l2(KP1 − KP2)

l2 − l1
. (17)

To verify the DBEM and the SIFs calculation method the following problem
is considered. In the infinite media stretched by tensile stress σ in the direction y
the penny-shaped fracture of radius R is placed. The fracture is inclined around
the Oz axis at the angle α as it is shown in Fig. 4. The SIFs on the crack front
for this problem were previously determined exactly [9]

KI = 2σ cos2 α

√
R

π
, (18)

KII =
4

2 − ν
σ sin α cos α cos θ

√
R

π
, (19)

KIII =
4(1 − ν)
2 − ν

σ sin α cos α sin θ

√
R

π
, (20)

where θ is the angular coordinate characterizing the position of the point at the
fracture front.
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Fig. 3. Method of the displacements extrapolation near the crack front for the SIFs
calculation.
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Fig. 4. Problem of a penny-shaped fracture inclined by an angle α under tensile stress
σ

Problem is solved numerically on the mesh with 64 elements in the circum-
ferential direction and 16 elements in radial direction. The physical parameters
values are R = 1m, p = 1MPa, E = 20GPa, ν = 0.2, α = 45◦. Figure 5 shows
the distribution of the SIFs along the crack front. SIFs are calculated using the
special elements and formula (17). Computational error does not exceed 2%.

4 Quasi-Static and Viscous Fluid Fracture Loading

In the case of the high confining stress of deep reservoirs and the low fluid
viscosity the fluid pressure along fracture faces is nearly constant. Therefore two
models of fracture loading are considered.

In the first one we assume that the fluid pressure is constant along the frac-
ture faces, although it can be time-dependent. Under this condition it is also
assumed that fluid and fracture fronts coincide, i.e., the size of so-called fluid lag



150 Y. Shokin et al.

KI

KIII

KII

θ°

S
IF
s

-180 -120 -60 0 60 120 180
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 5. Dependence of the SIFs from the point position at the front of a penny-shaped
fracture: exact solution (solid); KI (©), KII (�), KIII (�).

is negligible. We consider that hydraulic fracture propagation regime is described
by the quasi-static crack growth model.

In the second model the viscous fluid flow inside the fracture is taken into
account. In this case the propagation model is unsteady. The process unsteadi-
ness is taken into account by the fluid-flow continuity equation. Meanwhile all
other equations describing momentum balance, elastic equilibrium, and material
rapture are stationary. The dynamics of the propagation process is represented
by the static conditions of flow momentum, stress field, and elastic media dis-
placements in various moments of time.

Fracture surface in 3D space and its piecewise planar representation is shown
in Fig. 6. Through the boundary Sq fracturing fluid is pumped from the wellbore
to the crack. Boundary Sp is the fluid’s front.

Fig. 6. Fracture surface in 3D space and its piecewise planar representation.

At each planar fracture element the lubrication approximation for a Newto-
nian fluid flow of viscosity μ between parallel plates, with distance W between
each other, gives

q = −W 3

12μ
∇p (21)
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where q is fluid flux.
The mass conservation equation can be written as follows

∂W

∂t
+ ∇ · q = 0. (22)

From (21) - (22) it is possible to obtain the following equation for p:

∇(a∇p) = f, (23)

where a = W 3

12μ , f = ∂W
∂t .

Boundary conditions for the equation (23) are the following:

p
∣
∣
∣
Sp

= ppore (24)

and the inflow condition is
∫

Sq

q · nqdS = Qin, (25)

Here nq is the normal to the boundary Sq. In terms of the pressure the latter
condition (25) with consideration of (21) is rewritten as

∫

Sq

a
∂p

∂n
dS = −Qin. (26)

It is considered that the fluid front moves with the same speed vf , as the
fluid particles v(x) at the front do (Stefan condition)

vf (x) = v(x) = q(x)/W (x), x ∈ Sp. (27)

5 Coupling Between Stress-Displacement, Fluid-Flow
and Crack Growth Criteria

Let us consider an initial fracture with front defined by the points x0
i , i =

1, ..., Nfr. Step-by-step fracture propagation is denoted by superscript n. Fluid
front with nodes xn

f i, fracture front xn
r i, and the lag Lr i between the fluid

and the fracture fronts are introduced into the propagation algorithm. Also the
volume V n of the fluid in the fracture is interacting in the algorithm. It is
calculated using the fracture width as

V n =
∫

S+

WndS. (28)

The general scheme of the propagation algorithm is shown in Fig. 7. The
hydrodynamics-elasticity problem in the algorithm gives the distribution of the
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fracture width Wn+1 s and the pressure pn+1 s. Pressure is caused by the fluid
flow in the fracture at the fracture front position xn+1 s

r i and the fluid front
position xn

f i. The scheme of the hydrodynamics-elasticity problem solution is
shown in Fig. 8. Iteration process Δtk+1 = T(Δtk) is introduced to fulfill the
condition

max
i

∣
∣vm+1 k

i

∣
∣ = vf , (29)

which equalizes the maximal fluid velocity at the front and the kinematic con-
dition of the given maximal front increment L0

f over the time period Δt that is
calculated from the fracture volume dynamics.

With the iterations

Ls+1
i = L(Ls

i ), θs+1
i = Q(θs

i ) (30)

the following conditions are fulfilled in the algorithm Fig. 7

KI(xn+1 s
i , pm) = KIc, KII(xn+1 s

i , pm) = 0 (31)

in each of the fracture front nodes on the n + 1-th propagation step. Iteration
schemes (30) are based on the solution methods for the equations (31) corre-
spondingly.

6 Results of Fracture Propagation Simulating

Figures 9 – 11 show the simulation results of the quasi-static propagation of the
penny-shaped fracture with radius R from the wellbore with radius Rw. The
initial fracture is perpendicular to the axis of the wellbore, which is inclined
at the angle α to the vertical direction (axis Oy). Parameter values during the
simulation are E = 20GPa, ν = 0.2, KIc = 3MPa

√
m, R = 1m, Rw = 0.5m,

α = 30◦.
The isometric projections of the fracture during the quasi-static propagation

are shown in Fig. 11. The fracture is propagating with constant in situ stress
σ∞

x = σ∞
z = 16MPa, and various in situ stress σ∞

y = 8MPa (left) and 15.9MPa
(right). The trajectories in the plane z = 0 are also compared in the figure.

The comparison of the quasi-static and the fluid-flow approach to the simula-
tion of the fracture propagation is shown in Fig. 12. Wellbore is inclined against
the σ∞

y direction at the angle α = 45◦ as it is shown in Fig. 9. Fluid with viscosity
μ is pumped into the wellbore with rate Qin = 1 ·10−3m3/s. Rock is compressed
by vertical σ∞

y = 12MPa and two horizontal σ∞
x = 16MPa and σ∞

z = 16MPa
stresses. The wellbore height and radius are H = 5m, Rw = 0.5m. The incipient
fracture radius is R = 1m. The dynamic fluid flow approach is applied with the
two values of fluid viscosity μ = 100 and 1000Pa · s.
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Fig. 9. Cavity and fracture loaded with pressure p in a media, which is compressed by
a tensor σ∞ on an infinite distance: σ∞

x = −16MPa, σ∞
y = −12MPa; σ∞

z = −16MPa

Fig. 10. Fracture trajectories in problems with the wellbore (dashed line) and
without (solid line): (σ∞

x ; σ∞
y ; σ∞

z ) = −(4; 3; 4)MPa (©), −(8; 6; 8)MPa (�),
−(16; 12; 16)MPa (�).
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Fig. 11. The quasi-static fracture propagation: 1 – σ∞
y = 8MPa (left); 2 – σ∞

y =
15.9MPa (right); the trajectories in the section z = 0 (bottom).

Fig. 12. Fracture trajectories and their cross-sections: 1 - quasistatic approach; 2 -
dynamic approach μ = 100Pa · s; 3 - dynamic approach μ = 1000Pa · s

7 Conclusions

1. The concept of the 3D non-planar model of fracture propagation in an elastic
media and the numerical algorithm for its implementation are proposed.
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2. The concept combines models of the main linked problems that affect one
another: stress-strain state, fracture loading, destruction of material, and
fracture propagation.

3. The main advantage of the proposed conception is the possibility of using
various models in every sub-problem without the necessity to rebuild the
whole algorithm, which allows advancing from simple models to complex
ones easily.

4. The version of the model that combines the sub-models of the elastic equi-
librium, Newtonian fluid flow, and the fracture propagation and direction
criterion derived from the linear brittle fracture mechanics is implemented.

5. The verification of the model and the sensitivity analysis of the solution from
physical and numerical parameters is performed. It is shown that the results
obtained are reliable.

6. The next version of the model will use more precise algorithms of SIFs cal-
culations; the Newtonian fluid will be replaced with the non-Newtonian.
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Abstract. Water quality modelling in small rivers is often considered
unworthy from a practical and economic point of view. This work shows
that a simple model structure can be set up to describe the station-
ary water quality in small river basins in terms of carbon and nitro-
gen compounds, when it is unfeasible to use complex models. The
one-dimensional model include principle factors such as chemical and
biological oxidation, concentration of nutrients. Natural process of self-
purification for small river in sharp continental climate of Central Siberia
is inhibited by low temperatures, rapid currents and poor development
of plankton cenosis. So, a determination of model parameters demands
carrying out of special experiments with water samples. The results of
numerical modelling are verified by data from the environmental moni-
toring of some rivers in the basin of Central Enisey.

Keywords: Self-purification modelling · Reaeration rate · Biochemical
degradation processes

1 Introduction

Water quality management is usually affected by a variety of uncertainties raising
from the hydrodynamic conditions and meteorological processes, the variability
in the pollutant transport, the physicochemical processes, the indeterminacy of
available water and treated wastewater. While the number of models is stag-
gering, the fundamental concepts on which they are based are similar. Water
quality models represent the following: the hydrodynamic flow fields that drive
the movement of the water quality constituents, the movement and transforma-
tions of the water quality constituents [1] [2]. Eutrophication plays important
role in these models. Eutrophication is a process in which a water becomes rich
of nutrients (nitrogen, phosphorus, etc.), from domestic drainage as well as water
from agricultural practices. Production of oxygen is decreased in the water body
due to these processes.

c© Springer International Publishing Switzerland 2015
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In Europe water quality models are far less prevalent in the regulatory process.
Therefore, modelling the quantity of flow in the river is generally more important
than modelling the quality. Nonetheless, there is a gradually increasing emphasis
on quality modelling. UK environmental agencies use simple stochastic models to
help the agencies decide on future restoration activities or permit for dischargers.
Monte Carlo simulation is incorporated in the procedure to compensate for the
inherently large uncertainty in the sparse data set [3].

In Russia, the flow and transport models are well developed and commonly
used for engineering purpose. These models calculate hydrology and hydrody-
namic conditions (flow, velocity, surface runoff), movement of water quality con-
stituents. The problems of eutrophication are well studied for lakes and impound-
ments [4] [5] [6] [7] [8].

In developing water quality models small river basins pose specific problems
due to data scarcity and the large number of diverse inputs, especially if they
flow through urbanized territory. In these cases, it makes sense to use simple
models in order to derive the crucial information about the river quality.

It is known that the simple models are easier to calibrate and therefore more
reliable, but complex models are generally very sensitive and therefore difficult to
identify all parameters [7]. Moreover, large rivers are more likely to be dominated
by transport and conversion processes.

The most parameters of all models depend on regional specialty: the river
characteristics (water flow, river bed morphology, depth), climate (temperature
of air and water, precipitation), percentage of forest land, availability of ground-
water etc [9].

The purpose of this work is to develop mathematical model for small rivers
eutrophication taking into account the regional conditions.

2 Object Description

The Kacha river is considered in this study. It is the river in the basin of Cen-
tral Enisey. Hydraulically the river is subjected to spring flood, but water level
reduces significantly during the summer months, when the river quality becomes
critical and the self-purification processes are almost stopped.

Sharp continental climate of Central Siberia, basin geology and vegetation
define hydrological conditions of river flow. So, river flow rate and flow veloc-
ity differ significantly in various hydrological stages. All factors define regional
features of eutrophication processes.

For model verification we use the data from state monitoring network for the
period since 1985 to 2010 in Kacha river (three river station). All parameters
are sampled in the basic hydrological stages (7-9 times in year). In this work we
use the concentrations of oxygen, nitrogen, phosphorus and their compounds.
Additionally, some complex parameters were measured in Kacha river during
2013 - 2015: pH, dissolved oxygen, biochemical oxygen demand (BOD), redox
potential and conductivity. These parameters measured two times in week during
period without ice cover.
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3 Model Structure

The general one-dimensional advective-diffusive dynamics for a reactive pollu-
tant can be written as a differential equations [10] [11] [12]. This one-dimensional
in the x-direction model can be appropriate only for small rivers that is char-
acterizing by small fluctuations on vertical and horizontal coordinates. This
assumption wouldn’t be appropriate for large rivers. Two- and three-dimensional
representations are also possible, but they have considerable computational com-
plexity. Neglecting the diffusion term yields [13]:

d(ω · Ci)
dt

+
d(Q · Ci)

dx
= KCi

· Ci (1)

where KCi
is decay rate of pollutant, that characterizes transformation velocity

defined by the influence of chemical and biological processes, Q is river flow rate,
ω is cross-sectional area of river.

The transformational processes included in the model are: degradation of dis-
solved carbon substances, ammonium oxidation, phosphorus mineralization, den-
itrification, and dissolved oxygen balance, including depletion by degradation pro-
cesses and supply by physical reaeration and biochemical oxidation production.

The model includes equations for concentration some parameters: phosphate
CPO4 , total phosphorus CDOP , ammonium nitrogen CNH4 , nitrate nitrogen
(including nitrite nitrogen) CNO3 , total nitrogen CDON , biochemical oxygen
demand Corg, dissolved oxygen CO2 . BOD characterizes oxygen’s equivalent for
dissolved organic carbonaceous demand.

Moreover, the modelling system incorporates transformation rates of all sub-
stances Ki(day−1) and overland surface runoff Gi(g/(m · day)). Surface runoff
results the transport of pollutants into receiving waters via overland surface
runoff within a drainage basin.

System equation are based on the equation (1):

1) Phosphate (gP/m3):

d(ω · CPO4)
dt

+
d(Q · CPO4)

dx
= GPO4 + KPO4 · ω · CDOP (2)

where Q is river flow rate (m3/day), ω is cross-sectional area of river (m2), KPO4

is mineralization rate of total phosphorus (day−1).
2) Total phosphorus (gP/m3):

d(ω · CDOP )
dt

+
d(Q · CDOP )

dx
= GDOP − KPO4 · ω · CDOP (3)

3) Ammonium nitrogen (gN/m3):

d(ω · CNH4)
dt

+
d(Q · CNH4)

dx
= GNH4 + KNH4 · ω · CDON − K12 · ω · CNH4 (4)

where KNH4 is nitrogen mineralization rate (day−1), K12 is nitrification rate
(day−1).
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4) Nitrate nitrogen (gN/m3):

d(ω · CNO3)
dt

+
d(Q · CNO3)

dx
= GNO3 + K12 · ω · CNH4 − KNO3 · ω · CNO3 (5)

where KNO3 is denitrification rate (day−1).
5) Total nitrogen (gN/m3):

d(ω · CDON )
dt

+
d(Q · CDON )

dx
= GDON − KNH4 · ω · CDON (6)

6) BOD (gO2/m3):

d(ω · Corg)
dt

+
d(Q · Corg)

dx
= −KBOD · ω · Corg − KNO3 · ω · βO2/DN · CNO3 (7)

where KBOD is biochemical degradation rate (day−1), βO2/DN is the yield factor
describing the amount of oxygen used for denitrification (gO2/gN).

7) Dissolved oxygen (gO2/m3):

d(ω · CO2)
dt

+
d(Q · CO2)

dx
= ω·(KBOD ·Corg−K12·βO2/NT ·CNH4−KRO ·CO2) (8)

where βO2/NT is the yield factor describing the amount of oxygen used for nitri-
fication (gO2/gN), KRO is reaeration rate (day−1).

The system of differential equations are approximated by numerical equations
with time-space grid (tn;xi) : tn+1 = tn + τ(n = 0, N), xi+1 = xi + Δ(i =
1, L), where τ = const is time step, Δ = const is space step. The upwind
approximation scheme is used to solve these equations. It is explicit scheme
based on three-point grid [11] [14].

To remain a characteristic line the model must be calculated using the
assumption, where space step must be greater than time step and equation (2)
(8) fully describes the river quality behaviour.

4 Parameter Estimation

Almost the entire algal population is composed of N-limited species. Its interac-
tion with dissolved inorganic nitrogen is indirectly described by the nitrification
and denitrification coefficients.

The relatively simple model structure is partially offset by structuring some
parameter as a function of the varying river morphology. The model can produce
reliable results together with the step-wise parameter variations, only if it is
supported by a robust estimation procedure.

Coefficient values can be obtained in four ways: direct measurement, esti-
mation from field data, literature values, model calibration. Model calibra-
tion is usually required regardless of the approach selected. Various predictive
equations are used to estimate some coefficients, for example reaeration rate.
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The most of popular theoretical formulas show the degree of uncertainty exceed-
ing the degree of forecasted water quality [15].

Indeed, deviations occurred in the BOD and oxygen values which can be
attributed mainly to the higher complexity of phenomena involved for such
variables. Indeed, ammonia and oxygen concentration values are the results of
several chemical, physical and biological processes (i.e., nitrification, denitrifi-
cation, photosynthesis, atmospheric reaeration, etc.). A slight miscalculation of
these processes may contribute to high disagreement between measured and sim-
ulated values for BOD and oxygen concentrations. Direct field measurement is
the preferred approach for obtaining model input data [10] [16].

In this work the reaeration and biochemical degradation rates are calculated
with using annual variation of BOD and oxygen concentrations. The rates were
calculated with some assumption. We suppose that organic nutrients reduction is
equivalent oxidation reaction. It leads to decreasing of dissolved oxygen concen-
tration. The rate KBOD is defined from the equation (7) without concentration
of nitrogen ammonium.

The reaeration rate depends on hydrological conditions of a river. It depends
also on oxygen concentration defined by concentration of organic compounds.
The reaeration rate KRO is defined from the equation (8). It includes decreasing
of dissolved oxygen concentration, biochemical degradation, reaeration, but it
doesn’t take into account the concentration of nitrate nitrogen.

The equations (7) - (8) are simplified with help of above described assump-
tions. These equations were approximated by numerical equations with upwind
scheme. The biochemical degradation and reaeration rates are defined as in the
following:

KBOD =
1

Cn+1
(org)i

·
(

−
Cn+1

(org)i − Cn
(org)i

τ
− 1

ω
·
Qn+1

i · Cn+1
(org)i − Qn+1

i−1 · Cn+1
(org)i−1

�

)

(9)

KRO =
1

Cn+1
(O2)i

·
(

−
Cn+1

(O2)i
− Cn

(O2)i

τ
−

− 1
ω

·
Qn+1

i · Cn+1
(O2)i

− Qn+1
i−1 · Cn+1

(O2)i−1

� + KBOD · Cn
(org)i

) (10)

Space and time grid is used the same as for basic system equations (2) - (8). We
used literature values for the transformation rates of nitrogen and phosphorus
in this stage of our research [6]. These rates include also temperature influence
on eutrophication processes.

5 Results and Discussion

The reaeration and biochemical degradation rates were calculated by means of
(9) - (10) equations with using water quality data storage from state monitoring
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stations. These data were used for annual dynamics estimation of model rates
(Fig.1). To specify diurnal dynamics of these rates we used concentrations sam-
pled with short time step. These parameters were measured three times in week
during spring-summer period (2013-2015) and every hour during five days in
2014, July.

Fig. 1. Annual dynamics of model rates

The mean of reaeration rate varies in the range of 0,01 - 0,3, the mean of
biochemical degradation rate varies in the range: 0,1 - 0,5. These rates depend on
water pollution levels, varying of river flow rate, seasonal variability of tempera-
ture. The river is characterised by a very variable concentration of pollutants. In
spring, the photosynthetic activity is considerable, given the high nutrient con-
tent of the incoming water, and self-purification is very active. All this factors
define annual dynamics of both rates.

The reaeration rate differs in different years, because climate parameters vary
also in those years. Seasonally high flow normally occurs during the spring and
early period of summer from snowmelt and rains, while seasonally low flow typi-
cally occurs during the warmer summer and early fall drought periods. Summer
is typically the critical periods for evaluating the worstcase impact of pollutant
loads on water quality caused by these seasonal hydrologic and climatological
patterns of low flow, minimum dilution, and high temperature. Self-purification
intensity is minimal in this period.

Figure 2 shows the comparison between measured and simulated values. The
model generally shows a satisfactory capability in reproducing the measured val-
ues of nitrogen and phosphorus concentrations. But the calculated BOD values
are not so appropriate to measured concentrations. Probably, it can be explained
that some parameters of our model are constant, for example, nitrification, deni-
trification and mineralization rates. We are going to change it in further research.

Eutrophication is difficult processes to exactly mathematical describe because
it is quite sensitive to natural environmental conditions. These conditions include
physical characteristics such as stream flow, velocity, time of travel, and temper-
ature and chemical/biological characteristics such as in-place sediment oxygen
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Fig. 2. Calculated and measured values of some model parameters for Kacha river

demand, algal photosynthesis and respiration, and nitrification. The determi-
nation of the rates at which various water quality reactions take place in the
receiving waterbody introduces additional complications in establishing cause-
and-effect relationships and projecting water quality impacts.

Limitations in this model affect the ability to close mass balances, to repre-
sent separate biological processes, and to achieve robust model calibration for
some parameters. Mass balance problems arise from failure to account for mass
in the sediment due to the fundamental imprecision of BOD as a state variable.
Further, we suppose to estimate a contribution for all of modeling processes in
calculated values. This model turns out to be easy to use and presents interest-
ing perspectives of combination with a simplified hydraulic model to obtain a
practical tool.

This work was supported by RFBR grant 15-07-06982
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Abstract. This paper focuses on modeling of three-phase non-
isothermal compressible flow in porous media taking into account cap-
illary effects. A new formulation of the three-phase non-isothermal flow
problem using the concept of reduced pressure is proposed. The purpose
of the work is to eliminate the gradients of capillary pressure functions,
leading to the unbounded growth of the solution, from the equations for
temperature and pressure. An algorithm for the numerical implemen-
tation of the model based on the finite-difference method is suggested.
A study of the developed difference scheme using the method of a pri-
ori estimates is conducted. The simulation results on the example of a
one-dimensional model problem are presented.

Keywords: Three-phase non-isothermal flow · Reduced pressure ·
A priori estimates · Numerical results

1 Introduction

The most common approach to the numerical solution of the three-phase non-
isothermal flow problems is based on the selection of pressure of one of the
phases, temperature and saturations as the unknowns [1–4]. However, the choice
of a phase pressure as the primary variable assumes certain difficulties encoun-
tered in the numerical solution of three-phase non-isothermal flow problems,
which takes into account capillary effects. Some of them, in relation to the
isothermal case, are described in [5–7]. These difficulties are mainly related to
the unbounded increase in the derivative of capillary pressure functions when
saturations approach corresponding residual values.

To get rid of some of these shortcomings in the numerical solution of the
three-phase isothermal flow problems, so-called global (reduced) pressure - satu-
rations formulation is widely used. This approach was first proposed in [8] for
modeling of isothermal two-phase flow, and then generalized to the isothermal
three-phase case. The idea of the reduced pressure approach is to replace the
three-phase flow with the flow of some fluid which motion is described by the
Darcy’s law.
c© Springer International Publishing Switzerland 2015
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In this paper, the idea of introducing the reduced pressure is generalized for
the numerical solution of three-phase non-isothermal flow problems. The pur-
pose of this work is to eliminate the gradients of capillary pressure functions,
leading to the unlimited growth of the solution from the equations for tempera-
ture and pressure through the introduction of a replacement of variables for the
pressure. In this paper, the sought substitution is called the reduced pressure.
A new formulation of the problem, which consists of a system of four partial
differential equations with respect to the reduced pressure, temperature and the
two phase saturations is proposed. We propose a computational algorithm for
the numerical implementation of the model using the finite difference method.
A study of the developed finite difference scheme using the method of a priori
estimates is conducted. In conclusion, the results of modeling on the example of
a one-dimensional model problem are presented.

2 The Derivation of the Model

Let us describe the mathematical model of a three-phase non-isothermal com-
pressible flow in porous media taking into account capillary effects. It is assumed
that the movement of phases obeys the generalized Darcy’s law. We assume that
the phases are in the local thermal equilibrium, so that in any elementary volume
the fluids saturating the porous medium and the rock have the same tempera-
ture. Furthermore, oil is assumed to be homogeneous non-evaporable fluid and oil
reservoir consists of one type of rock. In this case, three-phase non-isothermal
flow in a bounded domain D ⊂ R

d (d = 1, 2, 3) taking into account capillary
forces and the phase transitions between the phases of water and heat transfer
is described by the following system of equations:

φ
∂

∂t
(ραsα) + ∇ · (ραuα) + Iα = qα, α = w, o, g, (1)

uα = −kkα

μα
∇pα, α = w, o, g, (2)

∂

∂t

(

φ
∑

α

ραsαiα + (1 − φ) ρrir

)

+ ∇ ·
∑

α

ραuαiα − ∇ · (kT ∇T ) = qT (3)

where the subscripts w, o, g, r denote the phases of water, oil, heat transfer, and
rock, respectively; φ and k are the porosity and permeability of the medium; pα,
sα, ρα, kα, μα, iα are the pressure, saturation, density, relative permeability,
viscosity, and enthalpy of the phase α, respectively; kT is the coefficient of ther-
mal conductivity; qα and qT are source/sink terms and heat flow rate; uα is the
velocity of the phase α, and Iα is the rate of phase transitions. Time t is changed
in the segment [0, t1]. Additionally, we have the following algebraic constraints:

sw + so + sg = 1, (4)

pow = po − pw, pgo = pg − po (5)
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where the capillary pressure functions pow and pgo depend on saturations and
temperature and they are assumed to be known. In this work, following [9–12],
we neglect the effect of temperature on the capillary pressures.

Finally, the system of equations (1)-(5) is complemented by the initial
conditions

T (x, 0) = T0, pw (x, 0) = p0, sα (x, 0) = sα0, α = w, o,

sg (x, 0) = 0, x ∈ D (6)

and appropriate boundary conditions depending on the particular flow problem.
To derive the model, we first introduce the vector

u = ρwcwuw + ρocouo + ρgcgug (7)

where cα is the specific heat of the phase α. Using (2) and (5), one can easily
show that

u = −kλ (∇po − θw∇pow + θg∇pgo) (8)

where

θα (sw, sg, po, T ) = λαλ−1, λα (sw, sg, po, T ) = ραcαkαμ−1
α ,

λ (sw, sg, po, T ) = λw + λo + λg. (9)

The main idea of the proposed method is to find a function p =
p (sw, sg, po, T ) which is determined from the differential equation

∇p = ∇po − θw∇pow + θg∇pgo. (10)

In order to eliminate the gradients of capillary pressure functions ∇pow and
∇pgo, we will look for a function pc = pc (sw, sg, p, T ) such that

∇pc = −θw∇pow + θg∇pgo +
∂pc

∂p
∇p +

∂pc

∂T
∇T. (11)

This holds if and only if the following conditions are met:

∂pc

∂sw
= −θw

∂pow

∂sw
+ θg

∂pgo

∂sw
,

∂pc

∂sg
= −θw

∂pow

∂sg
+ θg

∂pgo

∂sg
. (12)

A necessary and sufficient condition for the existence of a function pc satis-
fying the conditions (12) is the equality of the mixed derivatives which leads to
the condition

− ∂θw

∂sg

∂pow

∂sw
+

∂θg

∂sg

∂pgo

∂sw
= −∂θw

∂sw

∂pow

∂sg
+

∂θg

∂sw

∂pgo

∂sg
. (13)

Obviously, the condition (13) limits the choice of functions pow, pgo, kα, ρα

and μα. When the condition (13) is satisfied, the function pc is defined as [8]
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pc (sw, sg, p, T ) =

∫ sw

1

[
−θw (η, 0, p, T )

∂pow

∂sw
(η, 0) + θg (η, 0, p, T )

∂pgo

∂sw
(η, 0)

]
dη+

+
∫ sg

0

[

−θw (sw, η, p, T )
∂pow

∂sg
(s1, η) + θg (sw, η, p, T )

∂pgo

∂sg
(sw, η)

]

dη (14)

where p and T are considered as parameters. Now, we can define the sought
reduced pressure p in the form

p = po + pc. (15)

Using (8), (10), (2) and (5), one can easily show that

u = −kλ (γ∇p − ξ∇T ) , (16)

uw =
θw

ρwγ
u − kλw

ρwγ
(ξ∇T − γ (∇pc + ∇pow)) , (17)

ug =
θg

ρgγ
u − kλg

ρgγ
(ξ∇T − γ (∇pc − ∇pgo)) (18)

where ξ = ∂pc

∂T , γ = 1 − ∂pc

∂p .
Using the relations (15), (16)-(18), the equations (1)-(5) reduce to the fol-

lowing system of equations for the reduced pressure p, saturations sw, sg, and
temperature T :

a1
∂p

∂t
+ b1

∂T

∂t
− ∇ · (a2∇p) + ∇ · (b2∇T ) = Q, (19)

φ
∂sα

∂t
+ φsα

(

βpα

∂p

∂t
+ βTα

∂T

∂t

)

+
1
ρα

∇ · (ραuα) +
Iα

ρα
=

qα

ρα
, α = w, g, (20)

a3
∂T

∂t
+ u · ∇T − ∇ · (kT ∇T ) = QT (21)

where

a1 (sw, sg, p, T ) =
∑

α

φcαsαραβpα
, b1 (sw, sg, p, T ) =

∑

α

φcαsαραβTα
,

a2 (sw, sg, p, T ) = kλγ, b2 (sw, sg, p, T ) = kλξ, (22)

a3 (sw, sg, p, T ) = φ
∑

α

ραsαcα + (1 − φ) ρrcr,

Q =
∑

α

cα (qα − Iα) , QT = qT −
∑

α

qαiα,

βpα
=

1
ρα

∂ρα

∂p
, βTα

=
1
ρα

∂ρα

∂T
, so = 1 − sw − sg.

To determine the initial and boundary values for the reduced pressure, (15)
is used. The initial and boundary conditions for the unknowns sw, sg and T
remain unchanged.
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3 Numerical Implementation of the Model

Now, to test the adequacy of the model, we consider a one-dimensional problem
of the displacement of oil by steam on the segment D = [0, 1], at the ends of
which injection and production wells are placed. For the numerical integration
of the equations (19)-(21), we use the finite difference method. Let us define a
uniform difference mesh {xi = iΔx, i = 0, 1, ..., Nx} in the domain D, and tn =
nΔt, n = 0, 1, ..., M , t0 = 0, tM = t1 for the time segment [0, t1]. We associate
the following difference problem with the boundary value problem (19)-(21): it is
required to find the grid functions p, T, sw, sg satisfying the system of difference
equations

an
1pn+1

t
+ bn

1Tn+1
t

− (
an
2pn+1

x

)

x
+

(
b2T

n+1
x

)

x
= Q, (23)

φρn+1
α sn+1

α,t
+φρn+1

α sn
α

(
βpα

pn+1
t

+ βTα
Tn+1

t

)
+

(
ρn+1

α un+1
αx

)

x
= qn+1

α , α = w, g,

(24)

an
3Tn+1

t
− kλ

(

γpn
x − ∂pc

∂T
Tn

x

)

Tn+1
x − (

kT Tn+1
x

)

x
= QT (25)

and the initial and boundary conditions of the form

p0i = p0, T 0
i = T0, s0w,i = sw0, i = 0, 1, ..., Nx, (26)

pn
0 = p1, pn

Nx
= p0, Tn

0 = T1, Tn
x,Nx

= 0,

sn
w,0 = sw1, sn

g,0 = sg1, n = 1, 2, ...,M. (27)

Theorem. Suppose that the coefficients of the system (19)-(21) satisfy the fol-
lowing assumptions:

(A1) There are two positive bounded constants φm and φM such that φm ≤
φ (x) ≤ φM ;

(A2) λα ∈ C0 ([0, 1]), λα (sα = 0) = 0. Furthermore, there are the constants
λM ≥ λm > 0 such that

0 < λm ≤
∑

α

λα (sα) ≤ λM ∀sα ∈ [0, 1] ;

(A3) The source/sink terms and heat flow rate qα, qT satisfy the conditions
|qα|−1 < ∞, |qT |−1 < ∞;

(A4) The density of the phases are assumed to be ρα ∈ C1 (R) and there
are the constants βm > 0, βM > 0 such that

βm < βpα
< βM , βm < βTα

< βM ;

(A5) pc ∈ C1 ([0, 1]), furthermore, there are the constants mp, m′
p,

mT , ms > 0 such that m′
p <

∣
∣
∣1 − ∂pc

∂p

∣
∣
∣ ≤ mp,

∣
∣
∣
∂pc

∂T

∣
∣
∣ ≤ mT ,

∣
∣
∣

∂pc

∂sα

∣
∣
∣ ≤ ms;

(A6) There are the constants cM , km, kM kT,0 such that km ≤ k ≤
kM ,|cpα

| ≤ cM , |cVα
| ≤ cM and |kT | > kT,0.
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Then, for any initial condition v0 =
{
p0, T 0, s0w, s0g

}
there exist the numbers

M0, τ0 depending only on |Q|−1 , |QT |−1 and v0 such that for any τ ≤ τ0 and
n ≥ 0, the inequality En ≤ M0 holds, where

En = ‖pn‖2 + ‖Tn‖2 + ‖sn
w‖2 +

∥
∥sn

g

∥
∥2

.

Proof. Note that using the assumptions (A1)-(A6), it can be shown that the
coefficients of the equations satisfy the inequalities

0 < a1,m ≤ a1 ≤ a1,M , 0 < b1,m ≤ b1 ≤ b1,M ,

0 < a2,m ≤ a2 ≤ a2,M , 0 < b2,m ≤ b2 ≤ b2,M , 0 < a3,m ≤ a3 ≤ a3,M

for some ak,m, ak,M , bk,m, bk,M > 0.
Multiplying the equation (23) by 2τpn+1 and using the assumptions (A1)-

(A6), conditions (26), (27) and the formula for summation by parts, we obtain
the inequality

∥
∥pn+1

∥
∥2 − ‖pn‖2 + τ2

∥
∥
∥pn+1

t

∥
∥
∥
2

+ ν1
∣
∣
∣
∣pn+1

x

]∣
∣2 ≤ 2τ2b1,Mε1

a1,m

∥
∥
∥Tn+1

t

∥
∥
∥
2

+

+
2τ2b2,Mε2

a1,m

∣
∣
∣
∣Tn+1

x

]∣
∣2 +

2τε3
a1,m

‖Q‖2 (28)

where positive numbers ε1, ε2, ε3 are chosen so that the following inequalities
hold:

ν1 ≡ 1
a1,m

(

2a2,Mτ − b1,M

16ε1
− b2,M

2ε2
− τ

16ε3

)

> 0, 1 − 2b1,Mε1
a1,m

≥ 0.

Similarly, multiplying the equation (25) by 2τTn+1, under the same assump-
tions, we obtain the inequality

∥
∥Tn+1

∥
∥2 − ‖Tn‖2 + τ2

∥
∥
∥Tn+1

t

∥
∥
∥
2

+
2τkT

an
3,m

∣
∣
∣
∣Tn+1

x

]∣
∣2 ≤

≤ 2τ2ε4kMλMmp

an
3,m

‖pn
x‖2 ∥

∥Tn+1
x

∥
∥2

+
kMλM

2an
3,m

(
mp

ε4
+

mT

ε5

)
∣
∣
∣
∣Tn+1

x

]∣
∣2 +

+
kMλMmpT

2
0

2an
3,mε4

+
2τ2ε5kMλMmT

an
3,m

‖Tn
x ‖2 ∥

∥Tn+1
x

∥
∥2

+

+
2τε6
an
3,m

‖QT ‖2 +
τ

16an
3,mε6

∣
∣
∣
∣Tn+1

x

]∣
∣2 . (29)

Summing the inequalities (28) and (29), and choosing the numbers ε4, ε5, ε6
and the time step τ0 such that for all τ ≤ τ1

ν′
2 ≡ kT − τkMλM

(
ε4mp ‖pn

x‖2 + ε5mT ‖Tn
x ‖2

)
− τb2,Mε2

a1,m
−
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− 1
32ε6

− kMλM

2an
3,m

(
mp

ε4
+

mT

ε5

)

> 0,

we obtain

∥
∥pn+1

∥
∥2 − ‖pn‖2 + τ2

∥
∥
∥pn+1

t

∥
∥
∥
2

+ ν1
∣
∣
∣
∣pn+1

x

]∣
∣2 +

∥
∥Tn+1

∥
∥2 − ‖Tn‖2 +

+τ2

(

1 − 2b1,Mε1
a1,m

)∥
∥
∥Tn+1

t

∥
∥
∥
2

+ ν2
∣
∣
∣
∣Tn+1

x

]∣
∣2 ≤

≤ ν3 +
2τε3
a1,m

‖Q‖2 +
2τε6
an
3,m

‖QT ‖2 (30)

where ν2 = 2τν′
2

an
3,m

, ν3 = max
{

kM λM mp

2an
3,mε4

T 2
0 , kM λM mT

2an
3,mε5

T 2
0

}
. Further, discarding the

positive terms on the left side of the last inequality, we have

∣
∣
∣
∣pn+1

x

]∣
∣2 +

∣
∣
∣
∣Tn+1

x

]∣
∣2 ≤ 1

ν4

(
‖pn‖2 + ‖Tn‖2 + ν3 + τν5 ‖Q‖2 + τν5 ‖QT ‖2

)

(31)
where ν4 = min {ν1, ν2}, ν5 = max

{
2ε3

a1,m
, 2ε6

an
3,m

}
.

Using the inequality (31), one can easily show that

∥
∥un+1

x

∥
∥2 ≤ kMλMm0

ν4

(
‖pn‖2 + ‖Tn‖2 + ν3 + τν5 ‖Q‖2 + τν5 ‖QT ‖2

)
(32)

where m0 = max
{
m2

p, m2
T

}
. Using the estimate (32), we have for α = w, g

∥
∥un+1

αx

∥
∥2 ≤ ν2

6

ν2
4

(
‖pn‖2 + ‖Tn‖2 + ν3 + τν5 ‖Q‖2 + τν5 ‖QT ‖2

)
+

+ ν2
6

(∥
∥Tn+1

x

∥
∥2

+ (γx + γcx)2
)

(33)

where ν6 = kM λM m0
ν4

.
Similarly, multiplying the equation (24) by 2τsn+1

α , evaluating the scalar
products using the assumptions above and the inequality (33), we obtain the
inequalities for α = w, g. Multiplying the inequalities by the numbers ηw and
ηg, respectively, and summing them with the inequality (30), we obtain:

∥
∥pn+1

∥
∥2 − ‖pn‖2 + τ2ν9

∥
∥
∥pn+1

t

∥
∥
∥
2

+ ν10
∣
∣
∣
∣pn+1

x

]∣
∣2 +

+
∥
∥Tn+1

∥
∥2 − ‖Tn‖2 + τ2ν11

∥
∥
∥Tn+1

t

∥
∥
∥
2

+

+
∑

α=w,g

ν12
∣
∣
∣
∣Tn+1

x

]∣
∣2 +

∑

α=w,g

ηα

(
∥
∥sn+1

α

∥
∥2 − ‖sn

α‖2 + τ2
∥
∥
∥sn+1

α,t

∥
∥
∥
2
)

≤

≤ ν3 +
∑

α=w,g

2ηατ

φmρm
δ3

∥
∥qn+1

α

∥
∥2

+ τν5 ‖Q‖2 + τν5 ‖QT ‖2
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where the numbers ε7, ε8 and τ2 were chosen such that for all τ < τ2

1 − 2φMρMβp,Mηαε7
φmρm

− τν7
φmρm

∑

α=w,g

‖sn
α‖2 > 0, α = w, g,

1 − 2b1,Mε1
a1,m

− 2φMρMβT,Mηαε8
φmρm

− τν7
φmρm

∑

α=w,g

‖sn
α‖2 > 0, α = w, g,

ν1 − 2τρMε8ηα

φmρm

(
1

ρmm′
p

kMλMm0

ν3

)2

> 0, α = w, g.

Let M be the positive number such that

M = max

{

ν3,
∑

α=w,g

2ηατ

φmρm
δ3

∥
∥qn+1

α

∥
∥2

, τν5 ‖Q‖2 , τν5 ‖QT ‖2
}

.

Denoting τ0 = min {τ1, τ2} and discarding the positive terms in the left-hand
side, we obtain for all τ < τ0:

∥
∥pn+1

∥
∥2

+
∥
∥Tn+1

∥
∥2

+
∑

α=w,g

ηα

∥
∥sn+1

α

∥
∥2 ≤

≤ ‖pn‖2 + ‖Tn‖2 +
∑

α=w,g

ηα ‖sn
α‖2 + 4M.

Applying this inequality n times, we obtain
∥
∥pn+1

∥
∥2

+
∥
∥Tn+1

∥
∥2

+
∑

α=w,g

ηα

∥
∥sn+1

α

∥
∥2 ≤ ∥

∥p0
∥
∥2

+
∥
∥T 0

∥
∥2

+
∑

α=w,g

ηα

∥
∥s0α

∥
∥2

+4nM.

Finally, denoting

M0 = max
{∥

∥p0
∥
∥2

,
∥
∥T 0

∥
∥2

, ηw

∥
∥s0w

∥
∥2

, ηg

∥
∥s0g

∥
∥2

, 4nM
}

,

we arrive at the inequality

‖pn‖2 + ‖Tn‖2 + ηw ‖sn
w‖2 + ηg

∥
∥sn

g

∥
∥2 ≤ M0

for all n > 0, which ends the proof of the theorem.

4 Numerical Results

Now we present simulation results on an example of a one-dimensional model
problem. In this paper, the following values of parameters of the problem are
accepted: p1 = T1 = 1, p0 = T0 = 0, sw0 = sw1 = 0.3, sg1 = 0.7, srw =
0.29, Nx = 103, Δt = 10−5. Additionally, the following relations for relative
permeabilities, capillary pressures are used in the calculations:

kw = sw, ko = 1 − sw − sg, kg = sg, (34)

pow = −0.01 · lnsw, pgo = 0.1 + 0.01 · ln (0.0004 · sg) . (35)
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Fig. 1 shows the dynamics of changes in the reduced pressure at regular inter-
vals t = 0.1, 0.2, ..., 0.8. Obviously, the greatest intensity of fluids takes place
near the injection well, followed by decrease in the flow direction of the heat
transfer. In this regard, the zone of vapor and variable temperature zone char-
acterized by the maximum change in the reduced pressure.
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Fig. 1. Distribution of the reduced pressure
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Fig. 2. Distribution of the steam saturation sg

Figs. 2 and 3 demonstrate the profiles of steam and oil saturations. Near the
injection wells, the saturation of steam increases due to evaporation of the water
initially filled the reservoir. In the transition zone with variable temperature in
the condensation of steam injected, so in the area of water saturation increases
dramatically.
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Fig. 4. Distribution of the phase pressure po (solid lines) and the reduced pressure p
(dashed lines) at t = 0.03, 0.1, 0.3, 0.55, 0.7

Figure 4 shows the relation of the reduced pressure p and phase pressure po

for the times of development t = 0.03, t = 0.1, t = 0.3, t = 0.55, t = 0.7. The
figure shows that the largest deviation occurs in the beginning of the process of
oil displacement due to the influence of the capillary pressure gradient ∇pow.
With the passage of the saturation value of water moving away from the values
of residual water srw, and, as a consequence, the deviation decreases.

5 Conclusion

Thus, in this paper, we propose a new formulation of the three-phase non-
isothermal flow problem, taking into account the capillary forces and phase
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transitions between the phases of water and heat transfer. In contrast to the
classical formulation of the problem with the use of the phase pressure as the
unknown, the gradients of capillary pressure functions are eliminated from the
equations for determination of the pressure and temperature which lead to unre-
stricted growth of the solution when saturations approach their residual values.
The conducted study of the difference scheme proves the boundedness of the
solution under the condition of boundedness of coefficients in the equations. The
results obtained by solving a one-dimensional problem reproduce the character-
istics of the process of heat transfer injection that allows the use of the proposed
approach to more complex non-isothermal flow problems.
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Abstract. The problem of underground hydrogen gas mixture storage
is that unlike natural gas, hydrogen gas mixture undergoes chemical
changes in underground storage and thus the concentration of hydro-
gen and carbon dioxide is reduced, and the concentration of methane
increases. It has been found that these changes occur because of the
activity of methanogenic bacteria populations inhabiting in a reservoir.
This chemical activity, which caused by the bacterial activity, as well
as gas and water flow in the reservoir causes the phenomenon of self-
organization such as the occurrence of autowave spatial structures, the
dynamics of which is characterized by a multiplicity of different sce-
narios, including the occurrence of chaos and the jump from one sce-
nario to another. In this paper we developed a qualitative theory of
self-organization scenarios in the underground hydrogen storage depend-
ing on the external and internal parameters. Development of the theory
and computer models of transport in underground hydrogen storage will
be based on the relating of models of multiphase composite flows in
porous media with model of dynamics of bacterial populations which
will be based on mechanism of chemotaxis (internal chemical mechanism
by which bacteria are able to detect the presence of nutrients in the
distance and move in that direction).

Keywords: Porous media · Hydrogen · Reactive transport · Bacteria ·
Methanogenic microorganisms · Population dynamics · Oscillations ·
Chemotaxis

1 Introduction

Increasing energy demand and anthropogenic greenhouse-gas emissions pose seri-
ous challenges for national and international energy economies. Low emissions
and the increasing efficiency of fuel cells make the case for the use of hydro-
gen (H2) as the fuel of the future [1]-[2]. At best, H2 is generated, e.g. through
electrolysis, from renewable energy sources. In such a scheme, storing H2 comes
down to storing electricity. However, it may also be produced from fossil fuels,
making it easier to contain emissions at the power plants while distributing clean
energy in form of H2, e.g. for transportation.
c© Springer International Publishing Switzerland 2015
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Today underground hydrogen storage (UHS) in aquifers and depleted gas
reservoirs is considered as one of the main ways of storing large amounts of
energy[3]-[4]. During the last decade it has been found that the behavior of UHS
is radically different from the underground storage of natural gas and carbon
dioxide, primarily by the fact that in the storage occur chemical changes of
hydrogen mixture by present of bacteria in the formations, which absorbs pro-
tons of hydrogen, as the energy source. There are several underground hydrogen
storages in the UK, USA, Russia, Germany, Czech Republic, Argentine and
France. The unusual behavior of hydrogen gas mixture in underground storage
has been observed in Lobodice storage of Czech Republic and Baynes of France.
By analysis of the gas samples which were taken from the reservoir, it was found
that the composition of stored gas has undergone significant changes.

The explanation for these changes lies in the chemical reaction between hydro-
gen and carbon dioxide, which produce methane and water. In the reservoir con-
ditions it can occur only in the presence of methanogenic bacteria, populations of
whichhavebeendetected in the derived rock samples[5]-[8]. Thus, the underground
storage of hydrogen behaves like a natural chemical reactor, which eventually sig-
nificantly changes the composition of stored gas. Absorption of the gas components
by bacteria leads to intensive growth of the population and increase chemical activ-
ity. This chemical activity, which caused by the bacterial activity, as well as gas
and water flow in the reservoir causes the phenomenon of self-organization such
as the occurrence of autowave spatial structures, the dynamics of which is charac-
terized by a multiplicity of different scenarios, including the occurrence of chaos
and bifurcations the jump from one scenario to another. Thus, the new industrial
technology - underground storage of electricity in the form of hydrogen - leads to
an entirely new scientific issues lying at the intersection of several basic sciences:
from hydrodynamics and nonlinear physics to chemistry and microbiology.

The following chemical reaction between injected H2 and CO2 occurs in
reservoir:

CO2 + 4H2 = CH4 + 2H2O, or CO + 3H2 = CH4 + H2O (1)

In the present paper we continue to develop the qualitative theory of self-
organization in underground hydrogen storage, published first in [9]-[11], for
more complicated processes that include two-phase flow and the mechanism of
chemotaxis, which is one of the main types of bacterial movement. The analysis
is based on the coupled model of two-phase compositional flow and the model
of population dynamics.

2 Complete Model of the Process

2.1 Model of Population Dynamics

Let us consider an aquifer which contains an initial population of bacteria, as well
as water and gas. Now, mixture of gas in injected where it represents the mixture
of H2 and CO2 with large domination of hydrogen. Consequently, methanogenic
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bacteria move to the direction of gas-water contact scince feel nutriments con-
tained in the mixture.

The two-phase system in porous medium represents a fine dispersed alterna-
tion of gas bubbles or channels with water channels of droplets. At the macrso-
cale such a system is considered as two interpenetrating continua coexisting at
each space point. The water-gas interfaces which are observed on the pore scale
disappear in macroscopic description. At any point two phases are identified by
saturation of water S.

Both phases can consist of several chemical components:(1) = H2, (2) =
CO2, (3) = H2O, (4) = CH4. The gas phase essentially consists of H2 and CO2,
while liquid consists mainly of H2O with low concentration of CO2,H2 and CH4

(the injected gas contains low concentration of CO2, and hydrogen is low soluble
in water). This determines the specific situation when bacteria live in water but
the major part of nutriments is concentrated in gas phase.

We consider two kinds of bacteria:

- bacteria present in water: they can be plankton or biofilms attached to pore
walls wetted by water;

- the neuston: a biofilm situated just at the interface between water and gas.

Bacteria living in water consume dissolved H2 and CO2. Bacteria from
neuston consume H2 and CO2 directly from the gas phase. On the macroscopic
scale (Darcys scale) both phases contain both kinds of bacteria which can be
found at any spatial points. Despite the fact that CO2 in highly soluble in water,
it is low present in the injected gas, while hydrogen is very low soluble in water.
Therefore, we should consider the concentrations of both these components in
water are of the same order.

In gas we have an abundant resource of H2 and a sufficiently low resource
of CO2. Then the eating rate of bacteria in neuston is controlled only by the
concentration of CO2. Bacterial population can grow due to replication of species
and can decay due to natural or forced death. As usually, we assume that the
population grow rate is proportional to the eating rate.

Bacteria also can move. We distinguish three types of their motion:

- they can move chaotically similar to brownian motion (bacterial diffusion);
- they can move due to chemotaxis;
- bacteria living in water can be transported by water flow (single-phase

bacterial advection);
- bacteria living in neuston can be transported simultaneously with the move-

ment of the water-gas interface (two-phase bacterial advection)

We assume that bacteria in neuston are not transported by chemotaxis but
can diffuse. We keep diffusion as it is the mechanism which stabilizes the math-
ematical properties of the solution, which is considered in the paper [11].

The disappearance of gas-water interfaces in macroscopic equations imposes
some difficulties in describing the neuston which represents a pore-scale object.
This means that the movement of neuston in macroscopic equations can be
obtained by homogenization of its pore-scale motion.
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2.2 Balance Equations

Let nw(x, t) and nns(x, t) be the number of bacteria per unit volume of porous
space in water and in neuston respectively. Taking into account all assump-
tions formulated above, we can formulate the following equations of population
dynamics:

∂nns(1−S)
∂t = ηns(1 − S)Φns(c

(2)
g , nns) − (1 − S)Ψns(c

(2)
g , nns)

−〈Unsgradnns〉 + div(Db(1 − S)gradnns) + qwn;
(2)

∂nwS
∂t = ηwSΦw(c(1)w , c

(2)
w , nw) − SΨw(c(1)w , c

(2)
w , nw) − Uwgradnw

+div(DbSgradnw) − div(Dch(C(1))SnwgradC(1)) − qw;
(3)

where subscripts w and ns refer to water and neuston respectively; S is the water
saturation; Φ and Ψ are the rate of eating and death of the overall population,
their dimension is mol/(s · m3); η is the rendering coefficient (the coefficient
of proportionality between the eating rate and growth rate), its dimension is
1/mol; qwn is the rate of bacteria transition from water to neuston; Db is the
coefficient of bacterium diffusion in bulk water; Uns is the velocity of movement
of gas-liquid interface; Uw is the water flow velocity; c

(k)
i is the mole fraction

of chemical component k in phase i; C(k) is the total mole fraction of chemical
component k in both phases.

Term 〈Unsgradnns〉 represent the advective movement of neuston homoge-
nized over an elementary representative volume of porous medium. As mentioned
above, the neuston represents a pore-scale object, so the velocity Uns is a pore-
scale variable.

The relation between c
(k)
i and C(k) is as follows:

C(k) =
ρwc

(k)
w S + ρgc

(k)
g (1 − S)

ρwS + ρg(1 − S)
(4)

where ρi is the molar density of phase i (mol/m3).
Functions Φns and Φw have the meaning of the number of moles of nutriments

consumed by all bacteria during 1s in a volume unite. The ratios Φ/n and Ψ/n
are the individual rates of eating and decay per one bacterium. The rendering
coefficient η determines at what degree the colony growth rate is different from
the eating rate. In particular, if η < 1 then growing is slower than eating.

In general case the individual eating rate Φ/n depends on the size of the
population and on the amount of nutriment. These two effects considered in
paper [11] in more detail is provided below:

Φns = 1
te,ns

nnsc(2)g

(1+ansc
(2)
g )

, Φw = 1
te,w

n2
w

(1+n2
w/n2

wn)
c(1)w c(2)w

(1+aw1c
(1)
w )(1+aw2c

(2)
w )

,

Ψns = nns

td
, Ψw = nw

td
. where te,ns and te,w are characteristic time of eating

at vanishing resource; td is the time of decay; ans, aw1, aw2 are three additional
empirical coefficients.
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2.3 Reduced Equation of Population Dynamics

Twoequations (2),(3)with respect tonns andnw maybe reformulatedwith respect
to the total number of bacteria n = nns(1 − S) + nwS and the ratio θ = nwS/n.
Respectively nns(1 − S)/n = 1 − θ. Equation for n has the following form:

∂n
∂t = ηnsc(2)g (1−θ)n

te,ns(1+ansc
(2)
g )

+ ηwc(1)w c(2)w θ2Sn2

te,w(S2+ θ2n2

n2
wn

)(1+aw1c
(1)
w )(1+aw2c

(2)
w )

− n
td

+〈Unsgrad (1−θ)n
(1−S) 〉 + div(Db(1 − S)grad (1−θ)n

(1−S) ) − Uwgrad θn
S

+div(DbSgrad θn
S ) − div(Dch(C(1))θngradC(1))

(5)

It can be simplified.
First of all, it is possible to neglect the neuston advection in the first approx-

imation. Indeed, the flow of water and gas does not mean that the interface
between them moves. A movement of the interface means, on the maroscale, that
the local saturation changes. Therefore the term 〈Unsgrad...〉 is proportional to
∂S
∂t . For slow variation of saturation in time, this term can be neglected.

The second approximation takes into account the fact that concentrations
of CO2 and H2 in water are low. This means that terms aw1c

(1)
w , aw2c

(2)
w and

ansc
(2)
g are low with respect to 0.

The third simplification consists of assuming that the value of nwn which
corresponds to the state of satiety is high, then the value n

nwm
→ 0.

The fourth approximation can consist of assuming that the ratio θ is close
to water saturation S. This means that the fraction of the number of bacteria
in neuston is of the same order as gas saturation, and the fraction of bacterial
number in water is of the same order as water saturation. Then we can use only
one equation for n to describe population dynamics. It takes the following form:

∂n
∂t = ηns(1 − S) c(2)g n

te,ns
+ ηwS

c(1)w c(2)w n2

te,w
− n

td

−Uwgradn + div(Dbgradn) − div(Dch(C(1))SngradC(1))
(6)

where Dch(C(1)) = Dmax
ch e−λchC(1)

is the decreasing function, n is bacteria num-
ber.

2.4 Reactive Transport of Chemical Components

For reactive multi-component transport, the main problem is the coupling
between components through the reactive term. Indeed the reaction kinetics
depends on the concentrations of several components, which makes necessary
to consider large system of coupled transport equations. For the case of an irre-
versible reaction, the situation is simplified because the reaction kinetics depends
only on reagents and does not depend on the reaction products. Then it is suf-
ficient to formulate the transport equations only for hydrogen and CO2.

The reaction rate is totally controlled by bacteria and, thus, is equal to the
rate of bacterial eating ΦwS + Φns(1 − S). According to the formula of the
chemical reaction (1), one mole of consumed nutriment contains 1/5 of CO2 and
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4/5 of H2. As the result, the model of CO2 and H2 transport has the following
form: k = 1, 2

φ ∂
∂t (ρgc

(k)
g (1 − S) + ρwc

(k)
w S) + div(ρgc

(k)
g V

(k)
g + ρwc

(k)
w V

(k)
w ) =

1
Ω Ginjc(k),inj − φγ(k)(1−S)c(2)g n

te,ns
− φγ(k)c(1)w c(2)w Sn2

te,w

+div(ρgD
(k)
g φ(1 − S)gradc

(k)
g + ρwD

(k)
w φSgradc

(k)
w )

(7)

For the total fluid:

φ
∂

∂t
(ρg(1 − S) + ρwS) + div(ρgVg + ρwVw) =

1
Ω

Ginj (8)

where
Vg = −λg(gradPg − ρm

g g), Vw = −λw(gradPw − ρm
w g), λi = Kki(S)

μi
;

V
(k)
i = Vi + V

(k)
iD = −φD

(k)
i Si

c
(k)
i

, i = g, w;

Pw = Pg − Pc(S);
Dissolution:

c(3)g = 1 − c(1)g − c(2)g ; (9)

c(k)w = Hk(Pw)c(k)g , k = 1, 2, 3; (10)

where S is the water saturation; P is the pressure; ρ is the molar density; μ is
the dynamic viscosity; K is the absolute permeability; φ is the porosity; kg,w(S)
is the relative permeability; Ginj is the molar rate of gas injection (mol/s),
Ω is the total volume of the reservoir, c(k),inj is the injection concentration of

component k in the injected gas (constant value);γ(k) =
{

4/5, k = 1
1/5, k = 2 . C(k) is

the total mole fraction of chemical component k in both phases.

3 Analytical and Numerical Results

3.1 Asymptotic Model for Low Gas Saturation

Let’s consider asymptotic model for low gas saturation. In this case the neuston
is very modest and bacteria living in water dominate far from the interface.
Consequently, the chemotaxis which determines the neuston formation should
be taken into account. Since the reaction kinetics depends on concentrations of
both CO2 and H2, the model of the process resulting from (6) and (7) consists
of three equations in this case:

⎧
⎪⎨

⎪⎩

∂c1
∂t = q1 − α1c1c2n

2 + D
(1)
w Δc1

∂c2
∂t = q2 − α2c1c2n

2 + D
(2)
w Δc2

∂n
∂t = −βn + α3c1c2n

2 + DbΔn − Dmax
ch ∇(exp(−λchc1)n∇c1)

(11)
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where
ck = ck

g , qk = Ginjc(k),inj

ΩφρwH(k)S
, α1 = 4H(2)

5te,wρw
, α2 = 4H(1)

5te,wρw
, α3 = ηwH(1)H(2)S

te,w
,

β = 1
td

Moreover, when the concentration of one of the components is very low, we
obtain the model which may be analyzed without simplifications. Let us assume
that water can contain very low concentration of hydrogen, that is c1 << c2.
Then concentration c2 may be considered as variable with small change. From
(11) the following expression is obtained:

{
∂c1
∂t = q1 − α1c1n

2 + D
(1)
w Δc1

∂n
∂t = −βn + α3c1n

2 + DbΔn − Dmax
ch ∇(exp(−λchc1)n∇c1)

(12)

which is the Turing model [12], if chemotaxis term is neglected.

3.2 Analytical Study: Limit Stationary Spatial Waves

The resulting model (12) has a limit cycle in time, if diffusion term and chemo-
taxis are neglected. In the paper [10],[13]-[14] there is a criterion for the existence
of a limit cycle for the case α1 = α3 = β = 1:

0.90032 < q1 < 1.0 (13)

Stationary solutions of the system (12) represent the second kind of limit
behavior at (t → ∞). In the 1D case the system of equations correspond to the
model:

{
D

(1)
w

∂2c1
∂x2 = α1c1n

2 − q1
Db

∂2n
∂x2 − Dmax

ch
d
dx (exp(−λchc1)n d

dxc1) = βn − α3c1n
2

(14)

The simplest non-trivial stationary solution corresponds to the limit case:
Db=0,Dmax

ch = 0
{

D
(1)
w

∂2c1
∂x2 = α1c1n

2 − q1
0 = βn − α3c1n

2 (15)

System (15) requires two boundary conditions:

c1 |x=0= c0,
dc1
dx

|x=0= 0 (16)

Then the system (15) may be reduced to one ordinary differential equation
of the second order:

d2c1
dx2

= f(c1), f(c1) =
α1β

2

α2
3D

(1)
w c1

− q1

D
(1)
w

(17)

Equation (17) may be reduced to a non-linear autonomous dynamic system:
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{
∂c1
∂x = U
∂U
∂x = f(c1)

(18)

We have obtained the non-linear autonomous second-order system which can
be analysed using the traditional methods of the theory of non-linear dynamics.
The Jacobi matrix of the system is:

J =

( −1 1
− α2

3q2
1

α1D
(1)
w β2

−1

)

(19)

One stationary point exists: Us = 0, cs = α1β2

α2
3q1

. Then we calculate eigenvalues
ν1,2 of matrix J at the stationary point Us, cs:

det(J − νI) =

∣
∣
∣
∣
∣

−ν 1
− α2

3q2
1

α1D
(1)
w β2

−ν

∣
∣
∣
∣
∣
= 0

The eigenvalues are:

ν1,2 = ± α3q1
√

α1D
(1)
w β

i (20)

Thus, point p(Us, cs) is the center if the expression α3q1√
α1D

(1)
w β

> 0 is positive,

which is the condition of existence of periodic solutions of system (15).The phase
portrait of (15) calculated for α1 = α3 = 1, D

(1)
w = 1 and q1 = 0.95 is shown in

Fig.1. The corresponding periodic oscillations of H2 concentration are shown in
Fig.2 for the case of the boundary condition:

c1 |x=0= 0.1,
dc1
dx

|x=0= 0 (21)

3.3 Numerical Study

Then we analyze the problem (12) of gas injection in two-dimensional case with
constant initial conditions and Neumann boundary conditions which correspond
to impermeable boundaries:

n|t=0 = 1, c1 |t=0= 1,
dc1
dν

|∂Ω= 0,
dn

dν
|∂Ω= 0 (22)

The initial values are located within the zone of attraction of the limit cycle,
so that the solution of this problem is space-invariant and oscillating in time. The
flow rate q1 in equation (12) represents the hydrogen injection into the reservoir.

This space-invariant solution was perturbed in the form of an instantaneous
non-zero concentration gradient applied to the small vicinity of the origin. The
evolution of the perturbation is shown in Fig. 3- Fig. 4. And, Table 1 shows the
data used in the calculations.
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Fig. 1. Phase portrait of stationary system (18)

Fig. 2. Stationary periodic behavior of hydrogen concentration

After perturbation, the irregular waves traveling throughout the overall
domain were observed. Their evolution was very fast establishing to the struc-
ture presented by regular periodic waves invariable in time. The Fig. 3 and 4
represents the results of numerical calculation of the evolution of the hydrogen
concentration, changes in the number of bacteria at t = 40..1000 with diffusion as
well as taking into account chemotaxis which was used the calculated data from
Table 1. This means sufficiently regular ring waves are developed with excess
and deficiency of hydrogen and bacteria in the space, which alternate with each
other. In areas with high bacteria concentrations where the reaction (1) is rapid,
alternation with the ring excess and deficiency of bacteria appear, whereby the
methanogenic bacteria generates methane.
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Table 1. Calculated data.

Computational grid 32 × 32

Time step 0.006104

q1 (perturbation) 0.95 + 0.01

q1 0.95

D
(1)
w 0.01

Dmax
ch 0.001

α1 1

α3 1

β 1

λch 1

Fig. 3. Evolution of auto-waves of bacterial population with diffusion and chemotaxis
at t = 40..1000

In case of taking into account the chemotaxis of bacteria, the bacteria forms
neuston formation. In this work an attempt has been carried out to qualitatively
analyze the impact of methanogenic bacteria on the dynamics of the formation of
methane in underground hydrogen storage. Occurrence of undamped oscillations
during the time which tends asymptotically to periodic waves, means that the
system undergoes self-organization of new structures in the form of methane.
It should be noted that, not only in the case of consideration of diffusion but
also chemotaxis damping oscillations were observed in space. In the limit of
computational time steady-state spatial pattern of frozen waves is observed.
Following results in Fig. 2 and Fig. 4 predicts the effect of a natural in situ
separation of hydrogen gases, which was observed in practice.
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Fig. 4. Hydrogen concentrations at t = 40..1000

4 Conclusion

In papers [7] and [8] it was proved that an underground storage of hydrogen
can function as a natural chemical reactor producing methane from hydrogen
and carbon dioxide. The reaction between H2 and CO2 (1) is catalyzed by
methanogenic bacteria and happens in the form of the metabolism process.

In paper [10] the first mathematical model of the process was developed. It
was based on single-phase flow model coupled with population dynamics equa-
tion. The bacterial population was considered in the average and various forms
of its existence were reflected in nonlinear kinetics of population growth.

In paper [11] we developed the two-phase flow model coupled with the dynam-
ics of two bacterial populations. One of them represents bacteria living in water,
while the second one is the neuston - a thin biofilm situated at the interfaces
between water and gas. We also developed the mathematical model of chemotaxis
in two-phase fluid, which is the main mechanism of neuston formation: bacteria
living in water feel the presence of nutriments concentrated in the injected gas
and move to the direction of the interfaces water-gas without crossing them. We
have shown that the chemotaxis law should satisfy some specific conditions to
ensure the neuston formation. In particular, the bacteria diffusion is shown to be
a regularizing mechanism which ensures mathematically the existence of regular
solutions.

In this paper, we used above mentioned mathematical model from [11], ana-
lystically and numerically studied the equations of mathematical model for the
case of low gas saturation, and compared the results.

In case of low gas saturation, asymptotic model (12) related to hydrogen and
population of bacteria, taking into account Db = 0 and Dmax

ch = 0 when t → ∞,
was analytically studied. This model leads to non-linear autonomous dynamic
system which depends on space coordinates, that is, (18). When the model in
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(18) which is second-order system was studied using traditional methods of the
theory of non-linear dynamics, stationary point of that system was found and its
type found out to be center (Fig. 1). It means that the considered system has a
periodic solution, that is, the hydrogen is periodically distributed over the space
which can be noticed from Fig. 2. This periodic distribution phenomenon is also
detected, when model (12) is solved by taking into account the bacteria diffu-
sion and chemotaxis.The results provided in Fig. 4 is obtained by perturbation
theory. Moreover, the steady-state distribution of the hydrogen concentration
over the space is achieved when time is at least t = 1000. After t = 1000 the
periodic distribution is frozen, which means, now, it does not depend on time.
The obtained results describe natural gas in situ separation in the underground
hydrogen storage.

The results in Fig. 3 compare two cases: a) the model takes into account the
diffusion of bacteria b) the model takes into account chemotaxis of bacteria. It is
noticed that in case of chemotaxis, amount of bacteria was higher concentrated in
the places where hydrogen concentration is high compared to the case when the
model uses diffusion of bacteria. This physically means that more the bacteria
is concentrated faster the chemical reaction (1). As a result of this phenomena,
the methane gas is generated in underground hydrogen storage.

In a word, the results provided above show the natural in situ separation of
hydrogen mixture and the generation of methane gas during the underground
hydrogen storage.
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Abstract. In this paper, some problems of geophysical monitoring
of the natural environment are considered. Many of them involve
online detection of natural and technogenic events and the preced-
ing geodynamic processes developing in the Earth. Such events include
earthquakes, volcano eruptions, lunar and solar tides, landslides, falls of
celestial bodies, quarry explosions causing technogenic earthquakes, etc.
A new approach to solving the problem of active geophysical monitoring
of the natural environment is proposed and investigated. It is based on
the detection and separation of waveforms generated in the Earth and
surface atmosphere by the above events. The solution is obtained by a
unifying process of discrete optimization. The efficiency of this approach
is illustrated by some numerical experiments.

Keywords: Geophysical monitoring · Natural and technogenic events ·
Inverse problems · Posteriori algorithms · Numerical experiments · Seis-
mic location · Borehole source

1 Introduction

At present, the monitoring, prediction, and prevention of natural and techno-
genic disasters are among priority problems. Many of them are associated with
geophysical monitoring of natural and technogenic events and the preceding
geodynamic processes. Such events are earthquakes, volcano eruptions, lunar
and solar tides, landslides, falls of celestial bodies, quarry explosions causing
technogenic earthquakes, etc. Monitoring has several successive stages, includ-
ing recording of responses to events and measurement of their major parameters,
such as travel times of seismic waves or initial waveforms. At the final stage,
inverse problems of determining the geographical location and recording time
of an event are solved. The problem of determining the geometric parameters
of the underground zone of preparation for catastrophic events is even more
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complicated. A popular method for solving the inverse problems is the least-
squares method based on simple calculations. At the same time, this method
is sensitive to crude measurement errors (large deviations) in the initial data,
which indicates its limited character [1]. Therefore, it is important to increase
the accuracy of estimating the wave parameters in noise. In this paper, a new
approach is proposed. In comparison to the known methods of statistical data
processing, it provides higher accuracy in the measurement of wave arrival times
and simultaneous separation of their forms. This approach is based on a posteri-
ori computational algorithms of discrete optimization. The results of numerical
experiments on estimating the accuracy and noise immunity of the algorithms
are presented.

2 Methods for Solving the Problem of Geophysical
Monitoring

2.1 Problem Statement

The problem of estimating unknown parameters of an event is reduced to solving
the nonlinear system of equations

η̂ = η(γ, θ) + ε, (1)

where η̂ = (n̂1, ..., n̂N )T is the vector of measured wave’s travel times, η(γ, θ) =
(n1, ..., nN )T is the N-dimensional vector of calculated travel times (theoretical
hodograph) or the regression function, ε = (ε1, ..., εN )T is the residual vector,
θ = (x, y, z, v, t)T is the m-dimensional vector of estimated parameters, γ =
(γ1, ..., γN ) is the matrix of the sensors coordinates, and N is the sensors number.
The space coordinates of the source x, y, z are the parameters to be estimated, v
is the velocity in the medium, and t is the time in the source. The parameters are
estimated using information about the distribution of the errors εi = η̂i(xi, θ) −
ηi(xi, θ), i = 1, , , ., N . In what follows, it will be assumed that εi, i = 1, ..., N
are mutually independent random quantities. At small values of εi, i = 1, ..., N
(as in the case of a sufficiently dense observation system) and without “large
deviations”, many distributions of εi, i = 1, ..., N in the limiting case transform
to a normal distribution with zero mean and given variances: Eεi = 0, Eεiεj =
σ2

i δij , σi = σ(xi), where δij is the Kronecker symbol, i = 1, ..., N .
The solution to equation (1) is reduced to solving the inverse problem. In

this case, the accuracy of the solution is in estimating errors of the time vector
η̂, characterized by the variance σ2

η, the errors ε = (ε1, ..., εN )T , and choosing
sensor arrangement geometry on the Earth’s daily surface. In particular, for
a triad of seismic stations (N = 3) errors in determining the azimuth to the
source and the “source - receiver” distance in the polar system of coordinates
are, respectively,

σ2
AZ = σ2

ηF1(η̄, γ̄), σ2
R = σ2

ηF2(η̄, γ̄). (2)
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Here σ2
η is the estimation error of the travel times, and F1(η̄, γ̄), F2(η̄, γ̄) are

the functions depending on geometry of arrangement of gauges, their positions
concerning a source and a vector of a transit time of waves. The expressions (2)
show that the error in determining the source coordinates directly depends on
the errors in measurement of the travel times, which calls for their minimiza-
tion. The major stages of solving the problem are as follows: 1) detection of
waves on the background of external noise, measurement of their travel times,
and recovery of their forms; 2) solution of the inverse problem of calculating
the parameters of events from measurement data; At present, there exist some
successive algorithms, that is, algorithms allowing online determination of wave
arrival times with minimization of their measurement errors in (2). The suc-
cessive approach is oriented to obtaining the “(currently)” fastest but, in the
general case, not optimal solution to the problem. It forms a basis for a fam-
ily of algorithms to detect the times of changes in the properties of signals [2].
Among them is the autoregressive integrated moving average (ARIMA) algo-
rithm [3] used to detect earthquakes [3] and industrial explosions [4]. In recent
years, wavelet filtration algorithms have been widely used to solve problems of
geophysical monitoring and analyze seismic data [5–7]. In the class of considered
algorithms traditionally used a deconvolution, based on Wiener-Hopfa inverse
filtration. The last set as the purpose approach seismic impulse to δ a-shaped
kind [8]. This list of successive algorithms is far from complete. In addition to
the successive algorithms, there are also a posteriori (off-line) algorithms. In
contrast to the former, the latter are oriented to obtaining an optimal solution
(solution over all accumulated data). In other words, this approach is potentially
more accurate than the successive one. However, its algorithmic implementation
involves solving discrete optimization problems using cumbersome calculations.
Therefore, most existing off-line technologies for solving such problems have sev-
eral stages (subproblems): for instance, noise filtering with subsequent solution
of the problems of detection, estimation, or decision-making. A key shortcoming
of step-by-step data processing is as follows: even in the case of optimal solution
of subproblems at each stage the resulting solution may not coincide with the
optimal one, because, in the general case, the solution found on the basis of
conditional extremums must not coincide with the optimal one. In the present
paper, another approach, which has been insufficiently studied as applied to geo-
physical monitoring, is investigated. Within the framework of this approach, a
solution to the problem is found in a unified process of discrete optimization
without dividing the problem into stages. The following two types of detection
are possible: direct estimation of wave arrival times or simultaneous obtaining
of arrival time estimates and wave pulse shapes. In this class of algorithms, we
will consider those designed for the processing of sequences that change their
properties quasi-periodically [9,10]. This means that the time interval between
two successive pulses is bounded from above and below by given constants.
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2.2 Posteriori Algorithms for Determining the Parameters of Wave
Forms in Noise

In this section, the a posteriori algorithms for solving the problems of detection
and separation of waveforms presented by a quasi-periodic sequence and dis-
torted by Gaussian noise are justified. We consider two variants of waveforms
in a quasi-periodic sequence, both identical and different. To solve the problem,
the following model of data for analysis is proposed. Let the vector components
X = (x0, ..., xN−1) ∈ RN form the sequence

xn =
M∑

m=1

un−nm
(m), n = 0, ..., N − 1, (n1, ..., nM ) ∈ ΩM , (3)

Ω =
Mmax⋃

Mmin

ΩM ,

ΩM = {(n1, ..., nM ) | 0 ≤ n1 ≤ Tmax − q; N − Tmax ≤ nM ≤ N − q;
q ≤ Tmin ≤ nm − nm−1 ≤ Tmax, m = 2, ...,M},

(4)

Assume that uj(m) = 0, if j �= 0, ..., q − 1, at each m = 1, ...,M , and
Mmin and Mmax are found from the solution to the systems of inequali-
ties in the definition (4), in which q, Tmin, Tmax are natural numbers. Also
assume that Um = (u0(m), ..., uq−1(m)),m = 1, ...,M,w = (U1, ..., UM ) and
η = (n1, ..., nM ),m = 1, ...,M . Let 0 < ‖Um‖2 < ∞,m = 1, ...,M . Then,
according to the introduced notation, the vector X depends on the pair of sets
η and w having the same number of M elements, that is, X = X(η, w). Let
the random vector Y = (y0, ..., yN−1) be the sum of two independent vectors,
Y = X(η, w) + E, where E = (e0, ..., eN−1) ∈ ΦX,σ2I , σ2 < ∞. Here ΦX,σ2I

denotes normal distribution with the parameters (0, σ2I).
With allowance for the above, the problem of detection of quasi-periodic

sequences of waveforms is in finding, with the observed vector Y, the set η,
according to which the non-observed vector X(η, w) was generated. In this
model, components of the vectors Y and X correspond to the observed and
non-observed signals, and components of the vector E, to noise. The numbers
of the vector components are associated with uniform discrete time. Elements
of the set (n1, ..., nM ) correspond to the arrival times of waveforms, and the
q-dimensional set Um,m = 1, ...,M , corresponds to a waveform. The values of
Tmin and Tmax are interpreted as the maximum and minimum intervals between
two successive forms. To solve such problems, the principle of maximum likeli-
hood is used. It has been shown by the authors that noise-immune maximum
likelihood detection of a given number of unknown wave forms can be simulated
by the following discrete extremal problems:

Problem 1. Given: a numerical sequence Y = (y0, ..., yN−1), natural numbers
q,M, Tmin, Tmax. Required: a set η = (n1, ..., nM ) ∈ ΩM such that

F (n1, ..., nM ) =
M∑

m=1

q−1∑

k=0

y2
nm+k → max .
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In the case that all waveforms are identical, that is, Um = U = (u0, ..., uq−1) for
every m=1,...,M, and their number M is not known, the problem of detection of
these forms induces the following extremal problem:

Problem 2. Given: a numerical sequence Y = (y0, ..., yN−1), a vector
U = (u0, ..., uq−1), natural numbers q, Tmin and Tmax. Required: a set η =
(n1, ..., nM ) ∈ ΩM and its dimension such that

S(n1, ..., nM ) =
M∑

m=1

q−1∑

k=0

uk(uk − 2yni+k) → min (5)

The functions F and S are separable. Therefore, problems 1 and 2 are exactly
solved by the same method of dynamic programming, but using different recur-
rence formulas. Problem 1 is solved in time O(MN2), and problem 2, in time
O(N2). It’s induced by the problem of joint detection and estimation of the
recurrent form at an unknown number of recurrences is most difficult. The prob-
lem is formulated as follows.

Problem 3. Given: a numerical sequence Y = (y0, ..., yN−1), natural numbers
q, Tmin, Tmax. Required: a set (n1, ..., nM ) ∈ ΩM and its dimension such that

G(n1, ..., nM ) =
M∑

m=1

M∑

j=1

q−1∑

k=0

ynm+k ynj+k → max

Optimal values of components of the sought-for set Û = (û0, ..., ûq−1), cor-
responding to the waveform are found by the formula

ûk =
1
M̂

M̂∑

m=1

yn̂m+k, k = 0, ..., q − 1

where nm,m = 1, M̂ and M̂ are elements of the optimal solution to problem 3.
This NP problem is difficult. Hence, in the general case its exact solution

cannot be found in polynomial time (if P �= NP ). Therefore, approximate algo-
rithms are of interest. One of such heuristic algorithms is proposed in the present
paper. The idea of the algorithm is as follows: First, find a solution to problem
1 at M = 1 for the initial part of the sequence Y containing Tmax − q + 1 ele-
ments. Then, using the found value of n̂1 , find the set (yn̂1 , ..., yn̂1+q−1). With
this set, solve problem 2 setting U = (yn̂1 , ..., yn̂1+q−1). Finally, using the found
set (n̂1, ..., n̂M̂ ), calculate estimates of components of the vector Û . Taking into
account the above approach, we propose a two-stage (locally optimal) algorithm
for finding an estimate. Namely, at the first stage a rough estimate of the pulse
shape is made. At the second stage, this estimate is refined in the process of
solving the problem of joint estimation of the pulse shapes and detection of the
pulse beginning times. The essence of the first stage is in solving the problem of
verifying the hypotheses. The second stage is designed for solving the problem
of estimation, which is reduced to minimization of the additive functional.
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To verify the performance of the proposed algorithm and study its accuracy,
some numerical experiments were made, with simulation of various waveforms
and the same forms and duration and complicated by Gaussian noise of different
levels. Real waveforms from explosions and vibration sources recorded earlier
and various signal/noise ratios were specified. The generated set (n1, ..., nM ) of
random numbers was used to form a sequence of components of the vector X.
According to the adopted model, the sequence of components of the vector Y
was synthesized as the sum of the vector X and the Gaussian vector E with
the distribution parameters (0, σ2I). As an example, Fig.1 presents, in graphic
form, the results of simultaneous detection and separation of waveforms by the
algorithm for solving problem 2. This figure shows: a) the generated model noisy
sequence and the sequence found by the algorithm for solving problem 2, b) the
results of numerical estimation of errors in the separation of identical waveforms
in the quasi-periodic sequence on the background of noise for a signal/noise
ratio of 1.25. The arrival times for all separated pulses in the both sequences are
plotted on the X-axis, at the beginning of each pulse. The series of numerical
experiments has shown that the mean absolute error in estimation of the wave-
form arrival time is 0.047 s. It is by a factor of 3 smaller than for the wavelet
filtration algorithm with a threshold detector used to solve the same problem. To
verify the quality of the algorithm for waveform estimation, we used a measure
of root-mean-square deviation in the form

δU (M) =
1
q

·
q−1∑

k=0

(uk − ûk)2,

where uk, ûk, k = 0, ..., q − 1 are the given and calculated components of the
waveform U. The relative root-mean-square error in the waveform estimation
for the data in Fig.1 does not exceed 6 %.

2.3 Fractals in a Posteriori Algorithms

In problems 1-3 and algorithms to solve them, the parameters q, Tmin, Tmax

corresponding to the waveform duration and the upper and lower bounds of the
interval between two successive waveforms are input data. However, in practical
problems these parameters are often not known in advance. To remove this a
priori indefiniteness, we propose an approach for preliminary estimation of the
above parameters based on a fractal representation of waveforms. Waveforms are
mapped onto a two-dimensional “frequency-time” plane using a two-dimensional
Fourier transform of the form

F (k1, k2) =
1√

N1N2

N1−1∑

n1=0

N2−1∑

n2=0

F [n1, n2] · wk1n1
N1

wk2n2
N2

, wN = exp(−j
2π

N
) (6)

Projection of the function of two variables obtained according to (6) onto the
“frequency-time” plane will be a two-dimensional image in which the levels of



196 G. Voskoboynikova and M. Khairetdinov

Fig. 1. Signal/noise ratio=1.25, Tmin=1.3 s, Tmax=2.2 s, q=1 s; N=20 s, M=11;
δU (σ) = 6 ∗ 10−2

amplitude values will correspond to brightness levels. The thus obtained wave-
form images serve for preliminary estimation of the wave pulse boundaries. Sub-
sequent corrected calculation is made using the discrete optimization algorithm
by solving problem 3. In what follows, the results of a numerical simulation for
the fractal approach to separate the waveform boundaries in noise are presented
(see Fig.2).

The simulation was made as follows. Real waveforms taken from experi-
ments were specified. The form corresponding to a specific problem was chosen
from the set. Then, a frame was formed with different values of the parameters
N,M, Tmax, Tmin and q according to (3), (4). Noise with a Gaussian distribu-
tion with the parameters (0,σ) was superimposed on the selected forms. The
signal/noise ratio was specified by the level of σ.

Fig.2 gives a qualitative picture of the above. In Fig.2b (top) one can see
noisy waveform sequences to be processed. The record contains 8 waveforms cut
out from real seismograms from vibrational sources. Fig.2a presents the result
of two-dimensional Fourier transform of the record according to (6). Here the
starts and ends of wave pulses, including the beginning of a quasi-periodic pulse
sequence, are separated well from noise. This improves the performance of the
discrete optimization algorithm. Fig.2b (middle) shows waveform sequences with
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found arrival times, and in Fig.2c (bottom), the dark histogram shows calcula-
tion errors of arrival times without the fractal representation (6), and the light
histogram, with the fractal representation. The boundaries in the records outline
waveform locations, both initial and calculated ones using the fractal approach
with the optimization algorithm. It follows from the error plot that the use of the
fractal representation of the pulse sequence allows a considerable increase in the
accuracy and reliability of determining arrival times by the discrete optimization
algorithm. In some cases, the error decreases by an order of magnitude [11].

2.4 Solution of the Inverse Problem

The problem of estimating the parameters θ in (1) is a part of regression analysis,
and its solution are estimates by the least squares method:

θ = arg min Q(θ), Q(θ) =
N∑

i=1

σ−2
i (n̂i − η(γi,θ))2 (7)

To find a minimum of the functional Q(θ), the Gauss-Newton iterative
method or its modifications based on linear approximation of the regression
function in the neighborhood of a point θk are used:

J(γ,θk)Δθk + η(γ,θk) − n + ε = 0, (8)

where

J(X,η) =
(

∂η(xi,θ)
∂θ1

, ...,
∂η(xi,θ)

∂θm

)

, i = 1, 2, ..., n. (9)

To solve equations (7-9), an approach with direct solution of the system (8)
at each step of the iterative process by the pseudo- (or generalized) inversion
method is used. It is based on singular value decomposition (SVD). It is well-
known that the SSVDC procedure in the Linpack library is used to calculate
SVD [12]. Paper [13] presents a standard SVD procedure in Fortran-IV used
in the present paper. The current MATLAB system versions have a built-in
function svd(A) implementing this decomposition for an arbitrary n×m matrix
A. The calculation scheme of the SVD procedure is in decomposing the matrix
(9) at each step of the iterative process into the product of three matrices,

J(γ,θk) = UkΣkV T
k , (10)

where Uk is the orthogonal n × n matrix, Vk is the orthogonal m × m matrix,
and Σk is the diagonal n × m matrix with the structure, where Σk = (Sk/0) , is
the diagonal matrix of singular numbers arranged in decreasing order ρi ≥ ρi+1.
The method also includes the so-called singular analysis, which is in excluding
zero singular numbers and the corresponding columns of the matrices U and V.
In this case the iterative process has the following form:

θk+1 = θk + VkS−1
k dk, k = 0, 1, 2, ... (11)
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(a)

(b)

(c)

Fig. 2. Signal/noise ratio=3, Tmin=1.3 s, Tmax=2.2 s, q=1 s; N=20 s, M=11; δM (σ) =
2 ∗ 10−3; 7.6 ∗ 10−3

where dk is a vector consisting of the first m components of the vector
UT

k y(γ,θk), where y(γ,θk) = (n − η(γ,θ))T . During this process, not only
a covariance matrix of the space of parameters, but also a covariance matrix of
the space of data, and a resolution matrix VkVkT, are obtained. The closeness
of the latter matrix to the unit matrix shows the degree of solvability of the
problem. The information density matrix is UkUkT , whose closeness to the unit
matrix shows the relative significance of individual observations [14,15].
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3 Conclusions

1. The problem of geophysical monitoring of natural and technogenic events,
including environmental monitoring, has been considered. The monitoring
has several successive stages, including recording of responses to remote
events in the form of seismic waveforms and measurement of their major
parameters - arrival times and initial forms. At the final stage, inverse prob-
lems of determining the geographical location and time of occurrence of an
event are solved.

2. To increase the accuracy of solving the problems of detection and separa-
tion of waveforms, a posteriori discrete optimization algorithms have been
proposed and analyzed. High accuracy of the proposed algorithms has been
proved by numerical experiments. Specifically, it has been shown that the
root-mean-square deviation in the estimation of waveforms does not exceed
6 % and relative estimation errors of their arrival times are not worse than
0.1 %.

3. The proposed algorithms were used to solve inverse problems of estimation of
the parameters of events, namely, their geographical coordinates and times
of occurrence, the velocity characteristic of the medium.
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Abstract. In this paper, the motion model of the two-component
incompressible viscous fluid with variable viscosity and density is consid-
ered for modeling the process of the surface wave propagation. The model
consists of the non-stationary Navier-Stokes equations with variable vis-
cosity and density, the convection-diffusion equation and equations for
determining the viscosity and density depending on the concentration of
the components. Thus we model the two-component medium, one of the
components being more dense and viscous liquid. The results of calcula-
tions for two-dimensional and three-dimensional problems are presented.

Keywords: Navier-Stokes equations · Surface wave propagation · Vari-
able viscosity · Variable density · Inhomogeneous fluid · Two-component
fluid

1 Introduction

The investigation of the surface waves is a fundamental problem of the hydro-
dynamics and the environment. Such investigation is necessary for solving a
number of applications connected with designing, maintenance and security of
ships and coastal structures. The problem of the numerical modeling of such
waves (especially those with non-linear character) remains topical despite the
fairly large number of studies.

Mesh and mesh-free approaches are used for modeling problems of the
wave emergence and propagation on the free surface. A distinctive feature and
main advantage of the mesh methods is tracking an interface by nodes of the
deformable computational grid. It allows one to describe the free surface as
accurate as possible and to account complex boundary conditions (e.g., surface
tension). These methods include LINC [1] and ALE [2]. However, using the mesh
Lagrangian methods involves considerable difficulty or it is even impossible for
the complex flows calculation, where the interface can be destroyed or intersect
itself (wave breaking, decay and combining the bubbles, filling reservoirs, etc.).

Mesh-free methods are used as an alternative to the mesh methods. One
of them is the mesh-free Lagrangian smoothed-particle hydrodynamics method
c© Springer International Publishing Switzerland 2015
N. Danaev et al. (Eds.): CITech 2015, CCIS 549, pp. 201–210, 2015.
DOI: 10.1007/978-3-319-25058-8 20
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(SPH) [3-5]. This method has been developed for example in [6, 7]. The parti-
cles being not linked by grid lines, they are not limited in their movements in
space. Continuous distributions of physical values in the area can be approxi-
mated according to these values attributed to the particles. Mesh-free methods
allow one to carry out calculations of flows with strong deformations of the com-
putational domain boundaries allowing change of the area connectivity and the
boundaries overlap. SPH disadvantage compared with mesh methods is that a
large number of particles is necessary to generate a simulation with equivalent
resolution. However, the calculation accuracy can be significantly increased by
using SPH together with grid-based techniques.

An example of such an association is the method of marker-and-cell (MAC)
[8, 9]. MAC method feature is to use a mixed Euler-Lagrange approach. The area
being studied is divided by stationary staggered Euler grid into cells. Lagrangian
particles-markers mesh being carried by the velocity field is used to determine the
position of the free surface and to visualize the flow simultaneously. MAC allows
one to calculate complex flows with the uniting and/or dividing fluid volumes,
modelling such process with Lagrangian mesh methods being a considerable
complexity. This MAC method ability is due to the markers monitoring exactly
fluid volume movement, but not that of its surface. The disadvantage is that
very large number of particles-markers is needed to be calculated. Lack of the
particles reduces the accuracy of determining the contact boundary position and
moreover can cause non-physical appearance of a ”blank” cells in a volume filled
with a liquid (e.g., near a flow stagnation point).

In contrast to MAC, a special phase function was suggested to be used instead
of calculating big amount of particles in the method Volume of Fluid (VOF) [10].
Value of this function equals one if the phase is at the point, there being no phase
it equals nil. Currently this approach is rather widespread (e.g., [11, 12]). The
advantages of VOF method are low computational requirements and the theo-
retically possible conservatism. Its disadvantage is schematic phase dispersion,
which is the consequence of the front smearing of VOF function due to numerical
viscosity.

Method Level Set [13] was developed in order to overcome this effect. It also
uses a special function of the distance to the free surface. Special function (e.g.,
Heaviside step function) is used to set the discontinuity of density and viscosity at
the interface. The advantage of this method is a good accuracy in determining
the geometric shape of the contact boundary. However, the method is poorly
applied exactly for applications where the liquid dispersion and fragmentation is
physically possible. In addition, since the level function is not explicitly included
in the equations of conservation there may be imbalance of mass, momentum,
etc. It should be also noted that level functions method cannot be extended
in the case of several (more than two) immiscible liquids in contrast to VOF
method. Level Set method is also widely used at the present time (e.g., [14, 15]).

It is worth noting that attempts are also made to develop a joint Level Set
and VOF method combining the advantages of both approaches [16].
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The motion model of the two-component incompressible viscous fluid with
variable viscosity and density is considered for modeling the process of the surface
wave propagation in this paper. The model consists of the non-stationary Navier-
Stokes equations with variable viscosity and density, the convection-diffusion
equation and equations for determining the viscosity and density depending
on the concentration of the components. Thus we model the two-component
medium, one of the components being more dense and viscous liquid.

Previously this model has been used in problems of substance diffusion in
the branched channel [17] and cohesive soil erosion [18].

An important step in the model is the calculation of the occurring medium
movement. Methods for calculating the stationary and non-stationary flow prob-
lems have been considered in [19, 20]. Methods for solving problems with given
pressure difference as the boundary conditions have been considered and two-
dimensional and three-dimensional calculations have been carried out in [21,
22]. The variable viscosity has been used to accelerate the convergence rate of
iterative schemes for solving problems of viscous incompressible flow in [23].

2 Mathematical Model

The motion of medium consisting of two incompressible miscible liquids with
densities ρ1, ρ2 and viscosities μ1, μ2 is considered. We mean a solution x = x(t)
of the Cauchy problem dx

dt = V (x, t), x(0) = x0 by mixture particle, where
V (x, t) is a velocity vector of the mixture at the point x = (x1, x2, x3) and
time momentum t. C(x, t), μ and ρ denote the volume concentration of one
component (more dense and viscous), the dynamic viscosity and the mixture
density respectively.

The following dependencies on the components concentration are used for
finding the viscosity and density of the mixture:

{
μ = C (μ2 − μ1) + μ1,
ρ = C (ρ2 − ρ1) + ρ1.

(1)

Mass diffusion occurs between the particles of the mixture according to the
law:

qn = − (ρ2 − ρ1) D
∂C

∂n
, (2)

where D is the diffusion coefficient.
Moving volumes ωt do not change its value in time due to the mixture incom-

pressibility:
∫

ωt

1 dx = const, (3)

hence
div

(
V

)
= 0. (4)



204 Y. Zakharov et al.

The mass balance equation for the fluid volume ωt:

d

dt

∫

ωt

ρ dx = −
∫

∂ωt

qn dσ. (5)

Equality can be obtained from (Eq. 5):

dρ

dt
+ ρdiv

(
V

)
= (ρ2 − ρ1) DΔC (6)

or taking into account (Eq. 1) and (Eq. 4)

dC

dt
= DΔC. (7)

From the integral momentum equation

d

dt

∫

ωt

ρV dx =
∫

∂ωt

Pn dσ +
∫

ωt

ρF dx (8)

taking into account (Eq. 4), (Eq. 6) and known relation

d

dt

∫

ωt

ρF dx =
∫

ωt

[
d

dt
(ρF ) + ρFdiv

(
V

)
]

dx (9)

the following equation is obtained:

ρ
dV

dt
= −V (ρ2 − ρ1) DΔC + divP + ρF , (10)

where P is the stress tensor in the mixture, F = (f1, f2, f3) is the vector of
mass forces.

Then the equations system for the motion of two miscible incompressible
fluids mixture taking into account variable viscosity is obtained:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vi

∂t +
∑

j

vj
∂vi

∂xj
= 1

ρ

(
−vi (ρ2 − ρ1) DΔC − ∂p

∂xi
+

+ ∂
∂xi

(
2μ ∂vi

∂xi

)
+

∑

j �=i

∂
∂xj

(
μ

(
∂vi

∂xj
+ ∂vj

∂xi

))
)

+ fi, i = 1, 2, 3,

3∑

j=1

∂vj

∂xj
= 0,

μ = C (μ2 − μ1) + μ1,
ρ = C (ρ2 − ρ1) + ρ1.

(11)

where p is pressure in the mixture.
Thus the model given consists of the convection-diffusion equation for the

concentration of the components, relations to determine the density and the vis-
cosity coefficient and hydrodynamic Navier-Stokes equations for incompressible
viscous fluid.
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A pressure difference and tangential velocity components or the total value
of the velocity vector as the boundary conditions at the inlet and outlet is set
for motion equations. We use a no-slip condition on the solid wall and bound-
ary conditions of the second kind for the concentration equation. Some initial
distribution for the concentration is also given [18].

3 Solution Scheme

To solve the initial boundary problem (Eq. 11) we used the following algorithm. It
comprises three stages. The time step for the hydrodynamic part of the equations
system (Eq. 11) is done in the first stage, based on the known velocity and
concentration distribution (and hence the density and viscosity). The scheme of
splitting on physical factors [24] with variable density is used for this purpose:

Ṽ −V n

Δt = − (V n · ∇) V n + 1
ρ (−V n (ρ2 − ρ1) DΔC + μΔV n+

+ (∇μ · ∇) V n + (∇μ · JV n)) + F ,

ρΔpn+1 − (∇ρ · ∇pn+1
)

= ρ2∇Ṽ
Δt ,

V n+1−Ṽ
Δt = − 1

ρ∇pn+1.

(12)

The first equation of system (Eq. 12) is considered to describe the transfer
of momentum only by convection and diffusion. Thus the intermediate velocity
field does not satisfy the continuity equation. However, this field maintaining the

Fig. 1. Picture of wave motion for various time points t = 0, 0.5, 0.7, 1.0.
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vortex characteristics of the interior points, it has got a physical significance. The
following two equations describe the transfer of momentum only by the pressure
gradient taking into account the continuity equation.

The time step for the convection-diffusion equation (Eq. 7) is done in the
second stage, using the values obtained for the velocity components. We use a
predictor corrector scheme with approximation of the convective terms against
the flow [25] for this purpose.

The values of the density and viscosity in the space are recalculated according
to (Eq. 1) in the third stage. Then the transition to the first stage of the next
iteration of the algorithm follows.

It is worth noting that the system of equations (Eq. 11) is solved numerically
by the grid method on the staggered grid [26].

Solving an algebraic system of equations obtained as a result of the equa-
tion discretization for finding pressure in (Eq. 12) represents one of the most
important and dominant moments of the computational procedure in terms of
the computing cost. The task can be very complicated because of the operator of
this system often being nonselfadjoint and indefinite. The biconjugate gradient
stabilized method (BiCGStab) [27] was used to solve this part of the computing
process.

Fig. 2. Picture of wave motion for various time points t = 0, 0.5, 0.9, 1.3.
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4 Wave Propagation on Surface

The two-component fluid model described by (Eq. 11) is used to simulate the
propagation of surface waves. Here one of the components (more dense and
viscous) simulates the behavior of the fluid, and another one does that of the
gas. We consider the boundary of the two components to take place at C = 0.1.

We considered the following problems to test the proposed method. The first
one is the collapse of the liquid column. The liquid column is in the middle of the
area at the initial time. Then column collapses under the influence of the gravity
and movement of the entire medium takes place. The following hydrodynamic
parameters were chosen here: μ1 = 10−3, ρ1 = 10 for liquid and μ2 = 10−5,
ρ2 = 1 for gas. All the borders of area are solid. Fig. 1 and Fig. 2 show the
appearance of the wave motion for two- and three-dimensional cases respectively.

The second one is the wave overrunning on the obstacle. Rectangle of the
liquid substance is located above the general level in the left side of the area
at the initial time. Then the collapse of the rectangle launches a wave in the
direction of the obstacle. Here we used the same viscosities and densities as in
the first problem. All the borders of area are solid. Fig. 3 and Fig. 4 show the wave
overrunning on the obstacle for two- and three-dimensional cases respectively.

Fig. 3. Picture of wave motion for various time points t = 0, 0.2, 0.4, 0.7.
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Fig. 4. Picture of wave motion for various time points t = 0, 0.2, 0.5, 0.8.

5 Conclusion

The main output stages of the two-component viscous incompressible fluid model
were considered and numerical algorithm for solving the resulting model was cho-
sen as well in this work. Calculations for two-dimensional and three-dimensional
problems of the wave emergence and propagation on the free surface were carried
out.

Acknowledgments. The work was carried out with support of state task of Ministry
of Science and Education, project number 1.630.2014/K.
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